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Preface 

Some time ago, the authors collaborated on a book entitled "Atomic Dynamics 
in Liquids", which has subsequently been reprinted by Dover. This book, it 
is fair to say, was motivated by advanced lecture courses the two authors had 
presented at a variety of venues, notable among these being the Abdus Salam 
International Centre for Theoretical Physics in Trieste. 

Subsequently, because of our mutual interests in charged fluids, we followed 
up the above Volume (Dover, 1991) with "Coulomb Liquids". This naturally 
had a narrower range of coverage: dominantly classical ionic melts and liquid 
metals, where the valence electrons are fully quantal. 

Trends in the subject of the "Liquid State" since these two books were 
published have impressed us to the extent that both of us judged that the 
time was ripe for a more general book on this area. Thus, the subject has 
become important for workers in a wide range of disciplines. Two that came to 
our minds were the glassy (amorphous) state, concerning materials which have 
large technological relevance, and the need to understand, fully quantitatively 
eventually, the phenomena of turbulence. 

It is also true that the massive increase in computational power available 
now in science and technology has had a big impact on the development of 
the ability to calculate a whole variety of liquid state properties. However, we 
were also conscious that the output of massive computer simulations is often 
analogous to, say, that of radiation scattering experiments. No one doubts, in 
the latter area, the importance of attempting to interrelate many experimental 
facts by some simple theoretical ideas. In turn, such ideas often spring from 
somewhat oversimplified models (e.g. hard spheres or one-component plasma 
models, depending on whether the force law between building blocks has a 
very well defined region of excluded volume, or whether the forces are long-
range). 
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VI Preface 

This is the background against which the present Volume has come into 
being. It has, for reasons expounded above, much greater breadth than our 
two earlier Volumes. We feel as an Introduction to the liquid state, includ­
ing importantly a variety of chemically bonded liquids, it should be useful to 
students, both at advanced undergraduate and research levels, in a variety 
of disciplines: physicists, chemists, chemical and mechanical engineers, and 
also to workers in the important interfaces between chemistry, biology and 
medicine, as well as in environmental technology. 

Because of breadth, we have also covered areas in which our own personal 
contributions have been minimal (unlike our earlier Volumes). Therefore our 
indebtedness to other workers is greater in the present case. Especially, we ac­
knowledge that we have at times drawn heavily on existing books, e.g. Faber's 
on hydrodynamics and turbulence, and various accounts on polymers and liq­
uid crystals. We trust, without being more specific (and inevitably then more 
tedious) such workers will accept our grateful thanks. 

Should our book prove useful, we hope that readers who feel that there are 
places where we should do better will write to us and we shall do our utmost 
to respond constructively in the future. 

Finally, we thank staff of World Scientific for their patience and under­
standing. 

Oxford and Pisa 
N. H. March 

M. P. Tosi 
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Chapter 1 

Qualitative Description of 
Liquid Properties 

Everyday experience testifies to the classification of three different phases of 
matter: solid, liquid and gas. Solids are rigid, and when studied by X-ray 
diffraction give rise to sharp Bragg reflections. This is the hall-mark of crys-
tallinity: an ordered array of the building blocks, be they atoms or groups of 
atoms (e.g. Ceo in crystalline fullerites). In such a state of long-range order the 
neighbours of every molecule are arranged in a regular pattern so that, even 
when two molecules are separated by tens of intermediate ones, their distance 
apart is fixed. 

A very characteristic property of liquids and gases is that they flow under 
a shear stress, however small that may be. As will be discussed in Chap. 4, 
when X-rays are scattered from a dense liquid, such as argon near its triple 
point, there are no longer sharp Bragg reflections, demonstrating that there is 
no long-range order among the atoms or molecules. 

Though this distinction between crystals and fluids is clear, glasses and 
amorphous solids yield quite similar X-ray diffraction patterns to those of dense 
liquids. These solid states may be viewed as liquids with their disorder frozen 
in. We shall address the (finer) distinctions between liquid and glassy states 
in Chap. 10. 

Though we mentioned above the three phases of matter — solid, liquid and 
vapour, the qualitative distinction drawn from diffraction experiments between 
crystal and liquid does not carry through to distinguish liquid and vapour. We 
elaborate on this below, but historically it should be noted that van der Waals 
was well aware of the continuity of liquid and gaseous phases. Below a critical 
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2 Qualitative Description of Liquid Properties 

temperature, two fluid phases are able to coexist in equilibrium. The denser 
phase is liquid and the less dense is vapour. Above the critical temperature 
coexistence of the two fluid phases is no longer observed, but a single fluid 
phase exists. Thus it is possible to pass continuously from vapour at low 
temperature to liquid at low temperature by (i) heating above the critical 
temperature and (ii) compressing and cooling. The difference between liquid 
and vapour phases is then essentially a difference of density: this means that 
intermolecular interactions play a much greater role in the denser liquid phase 
than in the dilute vapour. 

Reference was made already to liquid argon. Rare gas atoms, including 
argon, are spherical and chemically saturated, and in a fluid assembly of such 
atoms the only disorder that is possible is that connected with translational 
motions. When the building blocks of the condensed phase are complex molec­
ular units which are not spherical, there is the possibility of rotational disorder. 
This may, indeed, already occur in a crystal: the translational order being re­
tained while rotational disorder exists — this is the case of plastic crystals. 
But in other systems rotational order can persist over a temperature range af­
ter the translational order is lost. One example then is that of liquid crystals: 
this area will be covered together with that of polymeric fluids, both classes of 
materials being very important for technology. 

Before going on to discuss other challenges that understanding the physics 
of the liquid state poses, let us elaborate on the three phases available to 
matter: solid, liquid and gas. 

1.1 Three Phases of Matter: pVT Behaviour of 
Pure Materials 

Figure 1.1, taken from Blinder1 illustrates a section of the surface representing 
the equation of state 

F(p,V,T)=0, (1.1) 

for a fixed mass of a chosen substance in the space defined by the variables 
pressure p, volume V and temperature T. This plot actually embodies, in a 
qualitative way, a whole body of empirically observed facts on the thermal and 
mechanical properties of matter. 
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Fig. 1.1. A section of the surface in the (p, V,T) space representing the equation of state 
for a pure substance, with isotherms shown as dashed curves. The regions are named from 
the physical state of the material. (Schematic; redrawn from Blinder, Ref. 1.) 

The surface shown in Fig. 1.1 is divided into various regions separated by 
solid lines and classified by the state of matter there. Within the regimes 
labelled "solid" and "liquid-gas-vapour", the system exists as a single homo­
geneous phase. In the other three regions, there co-exist two distinct phases in 
equilibrium. When one of the solid lines in Fig. 1.1 is crossed in some physico-
chemical process, a phase transition takes place. For instance, on crossing the 
boundaries which delimit the solid phase one enters into the regimes of solid-
liquid coexistence (above the triple-point line) or of solid-vapour coexistence 
(below the triple-point line). After further boundary crossings the system ends 
into the homogeneous liquid or vapour phases. 

In such different phases the substance under consideration has distinctly 
different properties: discontinuous changes in physical properties occur across 
a phase transition. 



4 Qualitative Description of Liquid Properties 

1.1.1 Critical isotherm 

The dashed curves in Fig. 1.1 represent isotherms, i.e. lines of constant temper­
ature. Geometrically, these curves are the intersections of the p, V, T surface 
with planes corresponding to T = constant. The tangent to the liquid + 
vapour regime is termed the critical isotherm. The critical point is the point 
of tangency, the uppermost point of the liquid + vapour region. 

As a matter of terminology, the region above the critical isotherm is marked 
as "gas", whereas the contiguous regimes below the isotherm are denoted by 
"liquid" and "vapour", on either side of the two-phase region. There is, it 
must be stressed, no physical discontinuity observed in going across the critical 
isotherm: say from liquid to gas or from gas to vapour. 

1.1.2 Triple point 

The boundary marked triple-point line in Fig. 1.1 derives from the fact that 
the three states of matter can coexist in equilibrium at the so-called "triple 
point". For instance, the triple point of the ice-water-aqueous vapour system 
lies at T = 0°C (or 273 K) and 0.006 bar (1 bar = 105 Pa). By comparison, 
the critical point of the water-vapour coexistence curve lies at T = 374°C and 
p = 221 bar. The densities of the two phases differ by a factor of about 2 x 105 

at the triple point, whereas at the critical point they are equal and correspond 
to a specific volume of about 5.7 times the intrinsic volume of an H2O molecule. 

In fact, it is seen from Fig. 1.1 that, inside the boundaries of the 
liquid-vapour, solid-vapour and solid-liquid sections of the pVT surface, the 
isotherms are parallel to the axis labelled V. This implies that the volume V is 
not a single-valued function of pressure p and temperature T within the two-
phase regions. In these regions, the further variable determining the volume is 
the relative proportion of the two phases. 

For instance, in the liquid-vapour coexistence region each value V of the 
volume (per mole, say) is given by 

V = CM+CyVv, (1.2) 

where V\ and Vv are the molar volumes of the two phases and c\ and cv are 
their concentrations (with c\ + cv = 1). In this situation liquid droplets are 
formed in which the molecules pack more tightly, while the remainder of the 
molecules are dispersed thus keeping the pressure constant. 
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1.1.3 Phase diagram of a pure material (e.g. argon) 

A schematic projection of the whole pVT surface on to the (p, T) plane is 
shown in Fig. 1.2. This figure essentially summarises the phase diagram of a 
pure material. The two-phase regions, where the isotherms as discussed above 
are parallel to the V axis, project on to curves in the (p, T) plane. Specifically, 
the liquid-vapour region projects on to the vaporisation curve, the solid-vapour 
region on to the sublimation curve and the solid-liquid region on to the curve 
labelled fusion. In the (p, T) plane, the triple-point line projects on to a single 
point. 

The vaporisation curve in Fig. 1.2 depicts the dependence on temperature 
of the saturated vapour pressure, which is the pressure of the vapour in equi­
librium with the liquid at a given temperature. Equilibrium between liquid 
and vapour implies that in a given period of time the number of molecules 
which from the vapour would be condensing on the liquid surface after hitting 
it balances the number of molecules escaping from the liquid into the vapour. 
An increase in vapour pressure increases the frequency of collisions with the 
liquid surface and favours condensation against evaporation. 

SOLID 

Fig. 1.2. Phase diagram of a pure substance, obtained by projecting the pVT surface onto 
the (p, T) plane. (Schematic; redrawn fram Blinder, Ref. 1.) 
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In analogous fashion, the sublimation curve gives the equilibrium vapour 
pressure above the solid. The sublimation curve terminates at the triple point 
and the vaporisation curve ends in the critical point. The slopes of both 
curves are always positive, since vapour pressure increases with temperature. 
Evaporation absorbs energy but the system as a whole is more disordered 
when molecules are randomly dispersed: these two effects balance each other 
at equilibrium, as on the two curves representing the saturated vapour pressure 
against temperature. 

The slope of the fusion curve is normally positive. Increased pressure 
favours the solid, which is, in most cases, denser than the liquid. A quite cru­
cial exception here is water, for which the fusion curve has a negative slope, ice 
being less dense than water near freezing. The functional forms of three-phase 
equilibrium lines can be obtained by thermodynamic arguments, resulting in 
the Clapeyron and Clausius-Clapeyron equations (see Chap. 3). 

1.1.4 Phase change from gas to liquid 

Consider now compressing water vapour, whose properties can be represented 
as a function of its thermodynamic state in the (p, T) plane. When the tem­
perature exceeds the critical value Tc s=s 647 K, the effect of increasing the 
pressure leads to no sharp transformation. Provided the final pressure of the 
compressed vapour exceeds the critical value pc « 221 bar, then we can verify 
that, on decreasing the temperature at constant pressure, it is possible to pass 
in a continuous fashion from the gaseous to the liquid state. Releasing the 
pressure will now bring us back to the vaporisation curve from above. 

On the contrary, below the critical temperature Tc as we increase the pres­
sure there is a definite discontinuity on reaching the vaporisation curve from 
below. Here the molecules do not become closer in a continuous way if the 
volume is made smaller, but as already described small isolated droplets are 
formed inside which the molecules pack tightly. These droplets grow until the 
state of the homogeneous liquid is reached. The abrupt change in volume that 
occurs at condensation is substantial at lower pressures but decreases as the 
pressure approaches the critical pressure pc. At the critical point the densities 
of the liquid and the gas become equal. 

In fact, because of fluctuations small droplets of higher-than-average den­
sity are already continuously forming and dissolving in the gas phase. If the 
critical point is approached from the gas phase by lowering the temperature 
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at constant volume, such density fluctuations will continue to grow in size and 
live longer: in this situation the gas will start scattering light strongly as the 
size of the fluctuating regions becomes comparable to or larger than the light 
wavelength. This phenomenon is known as critical opalescence (see Chap. 3): 
the gas near criticality comes to look "milky" in visible light (milk being a 
suspension of droplets of fat whose diameter is of order 1 /xm, comparable to 
the wavelength of sunlight at about 0.5 /xm). 

In the two-phase (liquid + vapour) region, on the other hand, liquid 
droplets will be larger than in the gas away from criticality and will persist for 
longer times. Some of them, most often nucleated on dust particles, grow to 
be very large by absorbing other droplets and further vapour molecules and 
become visible by scattering light of wavelength comparable to their size. This 
is not critical opalescence, but the effect is similar. As an example, clouds in 
the sky are made from water droplets or ice particles with a characteristic size 
in the range from 1 to 10 /xm and are seen through their scattering of sunlight. 

The conclusion is that the liquid, since it can be reached continuously from 
the gas where on average the molecules are homogeneously distributed in a 
random fashion, must have a disordered structure. The difference between the 
gas and the liquid arises from the change in density — passing from low to high 
density. However, as we shall see in Chap. 4 the liquid acquires short-range 
order from its high density inducing tight molecular packing. 

1.1.5 A liquid open to the atmosphere 

A liquid exposed to the open air must also be in equilibrium with its vapour 
at the value of the saturated vapour pressure corresponding to the prevailing 
temperature. The atmosphere does not affect the equilibrium state and, if 
the molecules escaping from the liquid surface can freely migrate away, the 
liquid will in time evaporate completely. Evaporation is delayed if the diffusive 
motions of the escaping molecules are in some way slowed down, so that a 
layer enriched in vapour content may form above the liquid surface. A layer of 
water in an open vessel with a depth of a few centimeters will be stable for a 
few hours, thanks to the humidity (i.e. water vapour) which is already present 
in air. 

Boiling occurs when the saturated vapour pressure becomes equal to the 
atmospheric pressure above the liquid. Take again water exposed to air as 
an example: the total pressure is P = 1 atm and the partial pressure of air 
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on the water surface is P — p, where p is the vapour pressure. Therefore, the 
system can be in equilibrium only as long as the water vapour pressure is below 
1 atm, this value being attained at 100°C. When water is heated in open air, its 
temperature increases continuously till it reaches 100°C and remains constant 
thereafter while the water boils away into vapour. 

1.2 Melting and Lindemann's Law 

The phase diagram illustrated in Fig. 1.2 shows the crystalline solid as coex­
isting with the vapour on the sublimation curve and with the liquid on the 
fusion curve. Across these lines there is a fundamental discontinuity, since 
they separate the ordered state from the disordered states. It is impossible to 
go continuously through this essential structural change. 

Of course, a static model for crystalline order is not completely correct. 
The atoms are always in thermal motion and in a crystal each of them is 
executing small-amplitude vibrations around a fixed point belonging to an 
ordered lattice. It is the average atomic positions which are ordered over long 
distances. 

From this viewpoint, it is a very remarkable aspect of fusion that the melt­
ing point is so sharp for a crystalline solid. The cohesive forces maintain 
crystalline order in spite of the atomic vibrations, up to a temperature where 
the amplitude of the vibrations becomes so large that the solid melts. In 1910 
Lindemann proposed that one could estimate the melting temperature by as­
suming that melting occurred when the amplitude of vibrational motions in 
the hot crystal exceeds a "critical" fraction of the atomic spacing. 

Let xc be that vibration amplitude which leads to melting in the above 
viewpoint. If / denotes the force constant between one atom and its neighbour, 
then for harmonic motion the mean total energy during vibration will be (E) — 
\fx\. Since melting points are generally high, we assume use of the principle 
of equipartition of energy and equate (E) to k^T (a linear harmonic oscillator 
having two degrees of freedom, each contributing ^ksT). Hence 

(E) = kBTm = l-fx2
c , (1.3) 

where Tm is the melting temperature. 
But for a simple cubic structure, / = Ya where a is the atomic spacing 

and Y the Young modulus of the solid. Hence it follows that kBTm = Yax\j2. 
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Since Lindemann's assumption was that melting occurs when xc is some fixed 
fraction of the atomic spacing a, write xc = f3a where 0 < j3 < 1. Then 
Tm = Yf32a3/2k^ and assuming cubic structure (a3 = Q = M/p, where 0 is 
the molecular volume, p is the density of the solid and M is the molar mass) 
we get 

with R = 8.31 J/(mol K). Assuming /32 = 1/50, Table 1.1 shows the melting 
point Tm (K) for some solids. 

Table 1.1. Melting point from Lindemann criterion. 

Solid Y x 1 0 - 1 0 p x 10~3 M Tm (K) 
(N • m - 2 ) (kg • m - 3 ) (kg) criterion observed 

Lead 
Silver ' 
Iron 
Tungsten 
Sodium chloride 
Quartz 

1.6 
8.3 

21.2 
36.0 

4.0 
7.0 

11.3 
10.5 

7.9 
19.3 
2.16 
2.6 

0.207 
0.108 
0.056 
0.184 
0.057 
0.060 

400 
1100 
1800 
4200 
1200 
1900 

600 
1270 
1800 
3650 
1070 
2000 

1.3 Molecular Thermal Movements in the Liquid Phase: 
Brownian Motion 

As a result of thermal agitation, no static molecular model is adequate to 
describe a dense liquid. However, it is plain that since in a dense liquid the 
molecules are packed rather closely together, their motions cannot be as free 
as they are in a dilute gas of the same substance. 

Thermal motions are indeed easy to visualise in a dilute gas. The atoms fly 
around with a kinetic energy which on average is proportional to temperature, 
with speeds of the order of hundreds of meters per second at ordinary temper­
atures. During these motions the atoms collide with each other and with the 
walls of the container, exerting a pressure. A collision deflects a colliding atom 
from a straight path, so that the trajectory becomes a complicated pattern of 
broken lines. Such zig-zag trajectories result in a random distribution of the 
atomic positions. 
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In a tightly packed liquid, on the other hand, many of the atoms are so 
confined by their neighbours that each of them can only vibrate as if inside 
a cage. Almost as soon as the atom moves away from the centre of the cage, 
collisions from its neighbours reverse its velocity and send it back. Motions 
of this sort have frequencies of order 1012-1013 Hz, similar to those of the 
vibrational motions in a solid or of the internal vibrations in a molecule, and 
may last on average for time intervals of the order of a few picoseconds before 
being damped out. 

However, the "cage" is not a rigid one but is made of other atoms, which are 
going through their own thermal motions. If it so happens that its neighbours 
move in some appropriate concerted way, the "central atom" may succeed 
in exiting from the cage and start on a diffusive type of motion which will 
ultimately bring it far away from its initial position. A picture emerges in 
which each atom in the dense liquid is hopping along a zig-zag trajectory made 
of discrete microscopic jumps interspersed with oscillations in discrete sites of 
residence. The hopping frequencies may be of the order of 1010-1012 Hz. 

Macroscopic evidence for diffusive motions in a liquid is provided by the fact 
that two miscible liquids will slowly mix together even if no stirring is done. 
More directly, the diffusive motions of finely divided particles suspended in 
a liquid can be observed under an optical microscope, as was first done in 
1827 by the English botanist R. Brown. In this so-called "Brownian motion" 
particles with typical dimensions of 1 /xm or less are seen to dance around in an 

^ 

Fig. 1.3. Schematic plane projection of Brownian motion for three particles suspended in 
a liquid. 
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irregular manner under the effect of random collisions by the molecules of the 
medium. Again a zig-zag trajectory is observed for the suspended mesoscopic 
particle (see Fig. 1.3). 

In trying to visualize how such a trajectory arises, one should recall an 
argument first given by Stokes: a macroscopic particle floating in a fluid and 
experiencing collisions from its molecules only feels viscous friction against its 
direction of motion, since the collisions compensate each other in the other 
directions. The particle must be large compared with the mean free molecular 
path, so that it feels the buffeting by the molecules as if the fluid were a contin­
uum. As the size of the diffusing particle decreases, the probability increases 
for an unbalanced collisional event which may deflect it into a particular di­
rection. Further collisions produce viscous friction as the particle proceeds in 
that direction towards the next deflection. This picture may be brought down 
to the microscopic level to describe the hopping motion of an atom in a liquid 
under the effect of collisions against its partner atoms, over time scales longer 
than that of the localised vibrations inside the cage of first neighbours. 

In 1908 Langevin described the diffusive motions of a mesoscopic particle 
in a fluid by partitioning the forces that it feels into the sum of a viscous force 
and of a random collisional force. This yields the equation of motion 

mx — —fx + Fr, (1.5) 

where m is the particle mass, x is the component of its displacement in any one 
of the three spatial directions, / is a friction coefficient and Fr is the random 
force. We multiply Eq. (1.5) by x and average over a large number of collisions. 
This averages away the random collisional term, since positive and negative 
values of FT are equally probable in the long run. We get 

m(xx) = —f(xx), (1.6) 

where the brackets denote the average. 
We assume that the mean square kinetic energy of the particle equals the 

thermal energy: ^m(x2} = \k&T (here &B = 1-38 x 10~23 J /K is Boltzmann's 
constant). From the identity xx = (d(xx)/dt) — x2 we have md(xx)/dt + 
f(xx) = k^T. This integrates to 

(xx)=(^Pj+Ae-W™, (1.7) 
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A being an integration constant. The exponential term decays rapidly to zero, 
so that over long time intervals we have (xx) = k^T/f or equivalently a mean 
square displacement of the diffusing particle which increases linearly with time: 

& y > = ( ^ ) . . (1.8) 

This behaviour is characteristic of diffusive motions and indeed Eq. (1.8) can 
be used to relate the diffusion coefficient D to the viscous coefficient / as 

D=k-f. (1.9) 

Diffusion in liquids will be the subject of Chap. 5 in this book. We shall 
see there that Eq. (1.9) yields at once the Stokes-Einstein relation between 
diffusion coefficient, particle size and shear viscosity, the latter transport coef­
ficient being also determined by collisions. Here we add the remark that, while 
Brownian motion results from spontaneous fluctuations, the atomic diffusion 
coefficient D that these determine can be shown to be proportional to the 
particle mobility /J,, according to the Nemst-Einstein relation 

D = kBTfi (1.10) 

(see Chap. 5). The mobility fi is accessible to measurements of driven transport 
under a constant external field, the most common case being that of charged 
particles in an electric field. 

1.4 Qualitative Considerations Continued: Flow Properties 
of Dense Liquids 

We have already emphasised that, while solids exhibit resistance to shear, a 
liquid flows under an arbitrarily small shear stress. This may be termed a 
"collective" or "cooperative" property on the macroscopic scale. A sophisti­
cated question is what distinguishes between equilibrium and non-equilibrium 
liquids.2 Let us begin to discuss the flow properties of liquids at an elementary, 
though basic level (cf. the book by Tabor3; see also the book by Faber4). 
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1.4.1 Ideal liquids and Bernoulli's equation 

As with gases, one can postulate the existence of ideal liquids in which internal 
forces play an unimportant part: leading to neglect, at first of surface tension 
and viscosity. Naturally no real liquids can have such properties: they would 
not be liquids if that were the case. But if the inertial forces dominate, they 
can often behave as ideal liquids in flow. This is the circumstance in which 
one is led to an important flow equation, due to Bernoulli. 

Let us consider then the flow of such an idealized liquid and try to follow 
the trajectory of some particle in it. If the liquid moves in a continuous steady 
state, one can draw a line such that the tangent at any point gives the direction 
of flow of the particle. Such lines are termed streamlines. These are smooth 
continuous lines throughout the fluid and cannot intersect. No liquid particles 
can flow across from one streamline to another. 

Consider Fig. 1.4, in which AB represents an imaginary tube in the liquid 
bounded by streamlines. At A the liquid is at a height h\ with a flow velocity 
vi, the pressure is pi and the cross-sectional area of the tube is a\. At B 
the corresponding quantities are h^, V2, P2 and a^. Consider now the energy 
balance during a short time interval dt. The pressure drives through the tube a 
volume dV = a\V\dt of liquid at A and an equal amount dV = a-^v^dt of liquid 
leaves at B. The sum of the pressure work p\dV, the kinetic energy \pv\dV 

hi 

rfe 

Fig. 1.4. Streamlines of flow in a gravitational field. 

file:///pv/dV
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and the gravitational potential energy pgh\dV at A must be equal to that at 
B, since we assume steady motion and an ideal fluid. The result is 

Pi + 2 ^ 1 + P^hi = P2 + 2 ^ 2 + P9h2 • C1-11) 

This is Bernoulli's equation of flow for an ideal liquid. It is just a statement of 
the law of energy conservation as applied to a fluid in which mechanical and 
thermal energy are uncoupled. 

In deriving Eq. (1.11) we have assumed that the mass density p of the fluid 
does not vary with position ("incompressible flow"). This is not permissible in 
handling flows where large pressure differences arise (e.g. flows through narrow 
channels or the circulation of the atmosphere over a large range of height) nor 
in treating the propagation of sound waves (see Chap. 6). Excluding such 
situations, Eq. (1.11) becomes applicable when the speed of flow v is small 
compared with the speed of sound c (the ratio v/c is known as the Mach 
number). 

As an example of application of Bernoulli's law let us consider the outflow 
of liquid driven by gravity through a small hole near the bottom of a container. 
We can set in Eq. (1.11) pi = p2 and v\ = 0. The outflow velocity thus is 

v\ = 2g{h1 - h2). (1.12) 

The flow of such an ideal liquid does not involve any particular molecular 
model. Density is the only property involved, and we shall only discuss it 
briefly. Thus, it may be noted that in general an increase in flow velocity is 
accompanied by a drop in pressure. This accounts, for instance, for aerody­
namic lift: because the top surface of an aerofoil is larger, the air velocity in 
flight is higher and the pressure lower than over the bottom surface. 

Similarly, forcing water flowing inside a horizontal channel to go through a 
narrow constriction at sufficiently high velocity may lead to a negative pressure 
inside the constriction. The critical velocity can be estimated from p{v\ — 
t>i)/2 = pi — P2 by taking pi = 1 atm and vi <C i>2 ahead of the constriction 
and pi = 0 at the constriction: this yields V2 « 10 m • s _ 1 . At negative p% the 
liquid, being prevented from evaporation by the walls of the channel, cavitates 
through the formation and growth of vapour-filled bubbles either at the walls 
or in its interior. 
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1.4.2 Flow in real liquids: Introduction of viscosity 

Real liquids experience a viscous resistance to flow. If the velocity gradient 
between two neighbouring planes is dvx/dz the force Fxz per unit area to 
overcome viscous resistance is 

where 77 is defined as the shear viscosity. More precisely, Fxz is the shear 
stress needed to maintain the velocity gradient in a steady state. Fluids which 
obey this relation are known as Newtonian fluids (see Chaps. 6 and 11). The 
dimensions of 77 are [77] = L~1MT~1. 

The viscosity of gases is explained in terms of transfer of molecular momen­
tum across the flow. In a dense liquid the simple molecular model developed 
by Eyring5 explains viscous resistance by considering that the molecules are 
so close together that considerable energy must be expended in dragging one 
molecular layer over its neighbour. Here we describe it in words and shall 
discuss viscosity more quantitatively in Chap. 6. 

Consider an instantaneous snapshot of the liquid. There is short-range or­
der (SRO) and we may represent a small region of two neighbouring molecular 
planes by an array similar to that of a solid. Dragging a molecule in the top 
plane, say, from its equilibrium position to a neighbouring equilibrium position 
requires overcoming the attractions from its neighbours: there is a potential 
energy barrier and energy must be provided to bring the molecule to the top 
of the barrier. When no stress is applied, thermal fluctuations will induce such 
jumps but, in the absence of a preferred direction, no net flow can occur. An 
applied shear stress instead performs work on the molecules and favours slid­
ing in one direction against all others. The work dissipated in this process is 
restored as heat, which is released when the molecule slides down from the top 
of the barrier into its new equilibrium position. 

1.4.3 Poiseuille's formula: Viscous flow through a tube 

As an important example of flows which are dominated by viscosity rather 
than by inertia as in Bernoulli's equation, let us consider an incompressible 
viscous fluid flowing through a cylindrical pipe of length I and radius a. The 
experiment allows liquid to enter one end at pressure p\ and to leave the other 
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end at pressure p?. We ask how large must be the longitudinal pressure drop 
to force through a volume Q of fluid per unit time. 

If the flow is uniform, the streamlines are all parallel to the axis of the 
pipe. There is no slip of liquid at the solid boundary and the velocity profile 
is parabolic across the pipe diameter. The rate of flow is then 

Poiseuille first used this formula to determine the viscosity of blood in horses' 
arteries. It was independently derived by Hagen, a German hydraulic engineer. 

1.4.4 Turbulence and Reynolds number 

If the flow is steady and stable the work done is expended solely in overcoming 
viscosity and appears as heat. However, if the velocity of flow is too high or 
if there are some other unfavourable circumstances, vortices may develop and 
some of the work goes in providing their kinetic energy. Vortices often assemble 
on a solid boundary in a boundary layer. 

The condition for turbulent flow was first established by Reynolds. Con­
sider a liquid of mass density p and viscosity r) flowing with velocity v along 
a channel of lateral dimension a. There is a critical velocity vc above which 
orderly streamlined flow gives way to turbulent motion. The Reynolds number 
Re is defined by purely dimensional analysis as 

Re = m . (1.15) 
V 

It is dimensionless and the transition from streamlined to turbulent motion 
occurs when its value is around 1000 to 2000 (see Chap. 12 below). 

Turbulence is essentially a condition of instability and the force involved 
in flow is not necessarily a direct indication of whether or not turbulence has 
occurred. The force is determined primarily by viscous or inertial factors. A 
simple example of these two conditions is afforded by considering the steady 
movement of a solid sphere of radius a through a fluid. The resistance to 
motion can be derived from arguments of dimensional analysis. One solution 
for the resistive force is 

F oc arjv. (1.16) 
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This is Stokes' law. Further analysis proves that the proportionality constant 
equals 6ir, so that the friction coefficient / in Eq. (1.9) equals 6itar]. Another 
solution is 

F(xpa2v2. (1.17) 

This does not involve viscosity but kinetic energy, the force being determined 
by the momentum of the incoming fluid. 

The laminar flow pattern in a pipe to which Poiseuille's law refers becomes 
turbulent when primary eddies get out of control before viscosity may quench 
them and start generating strings of further eddies. Experiments show that 
above the critical Reynolds number the pressure gradient needed to drive a 
fluid through a pipe increases more rapidly than linearly with the rate of flow 
Q. Hydraulic engineers, who need to transfer fluid losing as little pressure head 
as possible, may achieve values of the critical Reynolds number as high as 105 

by taking special care in pipe construction and lay-out. 

1.5 Rigidity of Liquids 

We mentioned in Sec. 1.3 that the molecules in a dense liquid jump around 
with frequencies typically in the range 1010-1012 Hz. If the rate of shear is 
sufficiently great there may not be time for the molecules to progress to a 
neighbouring site, as assumed in our qualitative discussion of shear viscosity 
in Sec. 1.4.2. In this case the liquid will not show viscous flow, but will exhibit 
a finite elastic rigidity. 

For simple liquids the rates of shear for this to occur in macroscopic flow are 
enormous, but visco-elastic effects may arise in collective motions at a micro­
scopic level and have been observed in water by experimental techniques of in­
elastic photon scattering (see Chap. 6). For liquids with large bulky molecules 
visco-elastic behaviour may instead arise in macroscopic flow at moderate rates 
of shear. There is a similar behaviour in polymers (see Chap. 11) such as 
polyethylene, nylon and perspex. The flow of polymeric chains which occurs 
at slow rates of loading resembles the viscous flow of liquids. This may be 
impossible at high rates of strain and the material will then deform elastically. 

Another example of this type of behaviour is the material silicone putty. 
This material will bounce with a very high resilience, as there is not enough 
time for the molecules to flow. Again if the material is in the form of a rod 
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and is pulled rapidly it will first stretch and then snap in a brittle manner. 
However, at very low rates of deformation it will flow in a viscous fashion. 

1.6 Surface Properties 

In this section, basic concepts of surface properties of liquids will be introduced. 
This will suffice to introduce the reader to the account of the liquid-vapour 
interface given in Chap. 13. 

1.6.1 Surface free energy and surface tension 

It is a well known fact that liquids have a tendency to draw up into drops. Small 
drops form in spherical geometry and because a sphere is that geometrical form 
which has the smallest ratio of surface area to volume, one may conclude that 
the surface of a liquid has higher energy than that of the bulk fluid. It is correct 
to say, then, that a liquid is always endeavouring to achieve its lowest energy 
configuration by reducing its surface area. The free energy excess per unit 
surface area is termed the free surface energy 7 and is conveniently measured 
in J • m - 2 . For many simple liquids 7 has values in the range 10-100 mJ • m - 2 . 

For a liquid having area A, the free surface energy is therefore 7 A If one 
increases the surface area by stretching, then the work done is given by 

dA ~1 + AdA' ( L 1 8 ) 

In the case of a liquid, however much the surface is stretched, the initial con­
figuration of the surface is regained in a very short interval of time. Thus, 
in contrast to a solid, the equilibrium structure remains unchanged so that 
d^f/dA = 0 and 7 gives the work done per unit area of extension. Numerous 
experiments have shown that very thin films of water have the same surface 
energy as two surfaces separated by bulk water, down to a thickness of only 
2 nm. This implies that the molecular forces responsible for the surface energy 
have short range. 

The free surface energy is equivalent to a line tension acting in all directions 
parallel to the surface. Consider a liquid surface of width L and length X (see 
Fig. 1.5). Suppose at the edge AB one applies a force F parallel to the surface 
and normal to AB so that the length of the surface is extended by an amount 
a;. The work done in increasing the surface area is jLx and this must be equal 
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Fig. 1.5. Illustrating the equivalence of surface energy per unit area and surface tension 
per unit length. 

to the external work Fx. Hence 

7 = I (1.19) 

Therefore the free surface energy is equivalent to a surface tension 7 (in 
N - m - 1 ) . 

The free surface energy of a liquid lends itself to a rather simple molec­
ular interpretation. Whereas molecules in the bulk are subject to attraction 
from isotropically distributed neighbours, molecules at the surface are pulled 
towards the bulk liquid. There is practically no attraction from the side of the 
vapour, except on the approach to the liquid-vapour critical point where the 
two phases are taking equal densities. An increase in surface area can only 
be achieved by pulling molecules up to the surface from the bulk against this 
one-sided attraction. The bond breaking in this process is practically confined 
to the last few liquid layers. 

Without going into more detail it is evident that the surface energy is of the 
order of one-half the energy required to break all bonds per molecular layer. 
If L is the latent heat of vaporisation per mole, M is the molecular mass and 
p the mass density, one estimates 

7«0.3 
L NAP\V3 

M J (1.20) 

as an approximate relation, Nx being Avogadro's number. This gives (i) for 
liquid argon 7 = 14 mJ • m - 2 compared with the observed value of 13, (ii) for 
nitrogen 11 compared with 10.5, (iii) for benzene 110 compared with 40 and 
(iv) for mercury 630 compared with 600 mJ • m~2. 
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1.6.2 Surface energy versus surface free energy 

Thermodynamics considers also another quantity, the surface energy h. When 
a surface is increased in area, apart from the work 7 there is also a "latent 
heat" term. Heat must be applied to keep the temperature constant. The 
magnitude is —Td'y/dT. Hence the surface energy is 

h-,-T%. (1.21) 

Equation (1.20) does not distinguish between these two concepts: it is really a 
model to estimate 7 at T = 0. On the other hand the difference between h and 
7 is often significant: as an example, for water 7 = 72 and h = 118 mJ • m - 2 . 

If fine drops of water are permitted to coalesce so as to destroy their surface 
area, the increase in temperature is determined by h, not by 7. This provides 
a method of determining areas of fine particles. They are first equilibrated 
with water vapour so that their surface is fully covered with a condensed film 
of water only a few tens of a nanometer thick. They are then immersed in 
water inside a calorimeter. If the heat given out is AQ, the surface area is 
AQ/h. 

1.6.3 Contact angle 

Liquids with low surface tension readily wet most solids, giving a contact angle 
of zero, while those with high surface tension often show a finite contact angle. 
In molecular terms, if the cohesion between the molecules of the liquid is greater 
than the adhesion between liquid and solid, then the liquid will not wet the 
solid and will exhibit a finite contact angle. 

Contact equilibrium is depicted in Fig. 1.6. The free surface energy of 
the liquid is 7L; the solid-liquid interface has a free surface energy 7SL and 
the exposed portion of the solid adjacent to the liquid where vapour has been 
absorbed has a free surface energy 7sv- If one considers a virtual process which 
expands the area of wetting by 1 m2, then the virtual work done on the liquid 
surface (7LCOS#) and on the solid-liquid interface (7SL) must be balanced by 
the virtual work released at the solid-vapour interface (7sv): 

7L cos0 + 7SL = 7sv • (I-22) 

This equation, going back to Young (1805) and Dupre (1869), determines the 
contact angle 8. 
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Fig. 1.6. Illustrating the contact angle equilibrium. 

Table 1.2 
mica (mJ-

Fluid 

Water 
Hexane 

. Interfacial 

7SV 7SL 

183 107 
271 255 

free energies of 

7SV — 7SL 7L 

76 73 
16 18 

Equation (1.22) also corresponds to balancing the horizontal components 
of the surface tension forces. One may then raise the question as to what has 
happened to the vertical component 7L sin 9. The answer is that this force 
is very small and usually has negligible effect on the solid. However, if the 
solid has a thin, flexible sheet structure as in mica, the vertical forces may be 
sufficient to visibly distort the solid surface. 

As an example, Eq. (1.22) has been studied experimentally for mica, by 
measuring the force needed to open a crack in this "perfectly brittle" solid 
first exposed to water vapour and then immersed in liquid water (see Tabor3). 
These experiments measure 7sv and 7SL- Since water wets mica completely 
(9 = 0), one should have 7L = 7sv — 7SL- This is seen in Table 1.2 to be the 
case for water and also for hexane, another liquid which wets mica. 

1.6.4 Capillarity 

Some of the general properties of capillarity will now be discussed (see the 
book of Rowlinson and Widom6 for an advanced account). The starting point 
is a simple relation for the pressure difference across a curved liquid-vapour 
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interface, 

p l-p 2 = 7li^T' (L23) 

where Ri and RQ. are the principal radii of curvature of the interface, p\ is the 
pressure on the vapour side and p% is that on the liquid side. The pressure on 
the concave side is greater than on the convex side of the liquid surface. 

The relation (1.23) becomes clear in the following two simple examples. For 
a spherical drop of radius R, upon expanding its radius by dR and using the 
principle of virtual work, the work done in stretching the surface is (%-K^RdR) 
and is balanced by the work (4irpR2dR) released by the internal pressure. 
Therefore, the excess pressure inside the drop is 

P = f - (1-24) 

The second example is that of a soap bubble. Here two surfaces are involved 
and the excess pressure inside the bubble is related to the surface tension 7s 
of the soap solution by 

P=Jf- (1-25) 

We can apply Eq. (1.23) to discuss capillary rise. A uniform tube of small 
radius R is held vertically and lowered into a liquid of density PL (see Fig. 1.7). 
The liquid rises to a height h wetting the capillary. For zero contact angle the 
meniscus is a hemisphere of radius R and the pressure on the liquid side is 
lowered by 2'y/R. Therefore, the liquid is drawn up the tube to a height h 

Fig. 1.7. Capillary rise in terms of pressure defect. 
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determined by balancing the weight of the liquid column against the pressure 
deficit: 

PL9h = ^ . (1.26) 

From the above argument, the capillary rise depends only on what happens 
at the meniscus, in agreement with observations. If the liquid ascent is large 
compared with the diameter of the meniscus, then the meniscus is hemispher­
ical in shape since the height of the rise is practically constant over its entire 
width. If the contact angle is finite, the radius of curvature becomes R/cos 6 
and the pressure defect is 27 cos 9/R. As the capillary is made wider the height 
of the rise becomes small compared with the capillary diameter. The detailed 
shape of the meniscus can then be calculated by equating the pressure defect 
given in Eq. (1.23) at any given point of the liquid surface to the value of pi,gh 
at that point, h being the local height of the liquid above the bulk level far 
away from the walls of the container. 

Referring again to Fig. 1.7 in the case of a narrow capillary, we see that the 
vapour pressure above the meniscus is reduced by the amount pvgh, where py 
is the mean density of the vapour. We may write 

p v g h = ^ . (1.27) 
R PL 

More generally, the vapour pressure over a concave meniscus surface is less 
than that over a flat liquid surface by the amount shown in Eq. (1.27). The 
vapour pressure over a convex meniscus is likewise greater than over a flat 
surface by the same amount. 

1.6.5 Energy for capillary rise 

By rising to a height h in a narrow tube of radius R the liquid gains a gravi­
tational energy equal to ^irR2h2pi,g, corresponding to raising a mass irR2hpi, 
through a height of \h. We ask the question as to what is the source of this 
energy. The answer is that it comes from the wetting of the walls of the tube 
by the liquid. 

Let us consider again a completely wetting liquid. If the liquid advances 
along the tube so as to cover 1 m2 of the surface, one loses 1 m2 of 7sv and gains 
1 m2 of 7SL- There is no change in the area of the liquid meniscus. The energy 
given up by the system in this wetting process is then 7sv — 7SL> which from 
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Eq. (1.22) is equal to TL. Therefore, the energy released in a rise of h is given by 

27ri?/i7L, or TrR2h2piJg from Eq. (1.26). This implies tha t if the liquid were non-

viscous it would rise to height 2/i and oscillate between 0 and 2h with its mean 

position at h. In practice viscosity dissipates the excess energy very rapidly. 

Notice a further implication of the above result. If the liquid is completely 

wetting, then the capillary rise does not depend on the material of which the 

capillary is made. It depends only on the surface tension of the liquid-vapour 

interface. 

1.7 W a t e r a n d Ice R e v i s i t e d 

We have often appealed in this chapter to liquid argon and to water as examples 

of liquid systems. The specific non-spherical shape of the H2O molecule and the 

specific interactions tha t it gives rise to have a number of novel and important 

consequences. 

In the H2O molecule the oxygen a tom binds two hydrogens by electron 

pairing, thereby imparting an electric dipole moment to the molecule, and 

arranges its further four valence electrons in two lone-pair bonds. The four 

bonds point towards the vertices of an almost perfect te t rahedron and each 

lone pair can interact with an electron-deficient hydrogen a tom belonging to a 

neighbouring H2O molecule. By virtue of this so-called hydrogen bond, each 

H2O molecule in the dense liquid or solid phases is tetrahedrally coordinated by 

four other H2O molecules and structural correlations can build up in space as 

a consequence of this constraint. Of course, this type of bonding is responsible 

for much of what happens in the field of biology. 

From X-ray diffraction experiments (see Chap. 4 for an introduction to 

this technique of structure determination) it is possible to determine how the 

density of molecules in water builds up with increasing distance from a central 

"average" water molecule. This is shown in the top par t of Fig. 1.8, from the 

work of Nar ten et al.7 As in all liquids, there is a region of "excluded volume" 

(i.e. of essentially zero local density) within a molecular diameter from the cen­

tral molecule: the electronic energy rises very sharply from both the exclusion 

principle and the Coulomb repulsions as the valence electrons of two chemi­

cally sa tura ted molecules are squeezed close together, so tha t each molecule 

looks at very short range like a hard wall. Further out the liquid density profile 

in Fig. 1.8 is seen to rise into a shell of first neighbours and then to oscillate 
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Fig. 1.8. Oxygen-oxygen correlations determined by X-ray scattering from liquid H2O 
(top), amorphous solid H2O (middle) and polycrystalline ice (bottom). (Redrawn from 
Narten et al, Ref. 7.) 
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Fig. 1.9. Radial distribution functions for oxygen atoms in water (dashed line) and for liquid 
argon (solid line). Both liquids are near their respective freezing points and the distance 
R = r/a- is scaled by the van der Waals diameter a (2.82 A in water and 3.4 A in argon). 
(Redrawn from Franks, Ref. 9.) 

and decay to the homogeneous liquid density at a few intermolecular distances 
further out. Figure 1.8 also contrasts the liquid structure with that of amor­
phous solid water (middle part) and with that of polycrystalline ice (bottom). 
In fact X-rays are almost blind to hydrogen atoms, so that Fig. 1.8 essentially 
shows us the distribution of oxygen atoms in these states of aggregation of wa­
ter. Special techniques in neutron diffraction have allowed detailed mapping 
of the spatial arrangement of the two atomic species in water and also around 
foreign cations and anions in electrolyte solutions.8 Finally, in Fig. 1.9 (from 
the booklet by Franks9) the structure of water is contrasted with that of liquid 
argon near freezing. The average number of first neighbours is estimated from 
these data to be about 4.4 in water and about 10 in liquid argon, the latter 
being, however, very sensitive to temperature changes. 

As water crystallises into ice at atmospheric pressure, the local tetrahedral 
arrangement of the oxygens is frozen into a periodic lattice consisting of lay­
ers of rippled hexagons (see Fig. 1.10, taken from the book of Petrenko and 
Whitworth10). This microscopic hexagonal arrangement of the H 2 0 molecules 
in the ordered crystalline phase is beautifully revealed at the macroscopic level 
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Fig. 1.10. Crystal structure of hexagonal ice, with the molecules frozen in a particular 
hydrogen-bond configuration and showing in gray the four oxygen atoms belonging to the 
unit cell of the average structure (shown in dashes). (Redrawn from Petrenko and Whitworth, 
Ref. 10.) 

5 10 15 20 

Fig. 1.11. Phase diagram of the ice-water system. (Redrawn from Franks, Ref. 9.) 
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in the sixfold symmetry of snowflakes. There evidently is a lot of empty space 
in the very open structure of ice and this has two main consequences: (i) melt­
ing is accompanied by a partial structural collapse, leading to the observed 
increase in density; and (ii) the crystalline structure of ice is very sensitive to 
pressure and some ten polymorphs are known — each of them being stable in 
a limited range of pressure and temperature and all showing fourfold coordi­
nation of the oxygen atoms. The phase diagram of H2O, showing the liquid 
and various solid polymorphs, is reported in Fig. 1.11 (taken from the booklet 
by Franks8). 

In crystalline ice both the translational and rotational symmetries of the 
liquid water phase are broken. Systems with intermediate symmetries also 
occur in nature: in particular we have already mentioned liquid crystals, in 
which the full symmetry of the liquid phase is broken in steps through a series 
of mesophases. It is also worth stressing that the dynamical behaviours of 
the crystalline and liquid phase (and of an amorphous state if attainable) 
are crucially dependent on the time scale. Having mentioned in Sec. 1.5 the 
visco-elastic behaviour shown by water under a high-frequency probe, we may 
conclude this Chapter by recalling that ice flows over very long time scales, as 
is evidenced by the behaviour of glaciers. Such flow properties of crystalline 
materials are determined by the presence of line and plane defects in the real 
crystal. 



Chapter 2 

Excluded Volume, Free Volume and 
Hard Sphere Packing 

In the first chapter, a bird's eye view has been attempted of the liquid state 
of matter, in largely qualitative terms. While the concept of short-range order 
in liquids has already been introduced, in the present chapter we press this in 
the simplest model with at least a measure of realism, namely an assembly of 
hard spheres. 

2.1 Excluded Volume and Packing Problems 

There is a sense in which van der Waals was already appealing to a model of 
this kind when he wrote his equation of state, 

(p + ^Pj(V-Nb) = RT. (2.1) 

For in Eq. (2.1), the term V — Nb acknowledges the idea of some "excluded 
volume", whereas the "correction" aN2/V2 to the pressure in the perfect gas 
equation of state is taking some gross account of attractive forces between 
atoms. Although Eq. (2.1) has severe quantitative limitations, it already em­
bodies some essential ideas of the gross structure of a liquid. 

Since the pioneering studies of Bernal11 and Scott12 on static packing mod­
els of hard spheres, to be discussed below, assemblies of spherical particles 
interacting via a hard sphere potential (i.e. experiencing only impulsive forces 
at contact) have been studied quantitatively in order to model dense liquids13 

and also glasses,14 as will be discussed in a later chapter. It can be asserted by 

29 
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now, with confidence, that notwithstanding the simplicity of such hard sphere 
interactions, lacking both attractions and directionality, hard sphere assem­
blies exhibit a number of the properties of real dense liquids. Just as the hard 
sphere fluid provides a useful reference system for understanding the geometric 
consequences of interatomic interactions and some features of liquid structure 
for at least monatomic systems (see Chap. 4), it also is the simplest system 
which is known to exhibit a fluid-solid transition. 

The excluded volume property of the hard sphere model can be stated 
as follows: with fixed diameter a there is an upper limit to the number of 
molecules that can be contained in a fixed volume V. Put another way, for 
a given number N of hard spheres, there is a lower limit Vc to the volume V 
needed to accommodate them. Finally, there is a lower limit vc, which may 
depend on N and on the shape of the container for small N, to the volume v 
per molecule. 

In the limit as N tends to infinity, certain exact bounds on vc are avail­
able for static hard sphere models. Though we are mainly interested in three 
dimensions, among two-dimensional assemblies of hard disks the hexagonal 
close-packed arrangement is the densest possible,15 with a lower limit given 
by 31/2(72/2 for the area per disk. For three dimensions16 the densest possi­
ble packing is likely that of the face-centred-cubic and the hexagonal close-
packings, each of which has vc = <r3/21/2, but to our knowledge there is no 
rigorous proof. The best lower bound for vc in the three-dimensional case, 
again due to Rogers,15 is some 5% smaller. It is found in practice that when 
hard spheres are packed as tightly as possible in an irregular three-dimensional 
static arrangement, the largest value that can be attained for the ratio of 
the volume of the spheres to the total volume is about 0.64. This is 14% 
less than the value 0.7405 for the ordered crystalline arrangements mentioned 
above. 

2.2 Accessible Configuration Space 

Salsburg and Wood16 have constructed different close-packed arrangements of 
equal numbers of hard disks inside equal rectangular containers. For instance, 
they compare two arrangements of twelve hard disks of diameter 431/2/24 in a 
rectangular container of sides 31 '2 /2 and 1, the first arrangement being part of 
the regular hexagonal lattice while the second is a close-packed arrangement of 
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coordination number 4. Here, the term "close-packed" is used without further 
qualification to describe an arrangement of molecules in which no molecule can 
be moved while the others are held fixed. Thus, in a two-dimensional system 
each molecule must touch at least three others, while for three dimensions it 
must touch at least four others. 

Salsburg and Wood point out that it is quite likely that the above two ar­
rangements are not accessible from each other, even for somewhat larger values 
of the total available area. The issue emerges of how much of configuration 
space is accessible from a given static arrangement of the molecules, as opposed 
to the freedom that a molecular assembly at high temperature has to explore 
configuration space through collective rearrangements. 

Similarly, and for our purposes more importantly, the randomly packed 
arrangements studied by Bernal11 (see immediately below for some details of 
such experiments) and by Scott12 appear to be stable against shaking and 
may (for finite N and fixed V and a) be inaccessible from the closest-packed 
arrangements. 

2.3 Experiments on Random Packing Models 

Therefore, to begin the study of the liquid state without making any direct 
appeal to either gaseous or solid phases, it is natural to elaborate on the studies 
of Bernal and Scott (see also Tabor's book3 and the review by Finney17). The 
limitations of these static models will become apparent in the sequel, when we 
shall turn to dynamic studies of hard sphere assemblies. 

Bernal from the outset recognised not only the disorder inherent in the 
liquid structure, but also its relatively close-packed character. Prompted by 
this fact, his approach was extremely simple and practicable, and went as 
follows. Starting with a large number of plasticine spheres, which were chalked 
to prevent sticking, Bernal placed them in a football bladder, removing the air 
to avoid bubbles. Then he squeezed them together until they filled the whole 
of the available space. On examining the aggregate it was found that the 
spheres had been changed into polyhedra of various irregular shapes. The most 
common number of faces was thirteen and the most common number of sides to 
a face was five. The former number is an upper estimate for the first-neighbour 
coordination number, because the centres of some of the neighbours were more 
than the average distance apart. Associated with the high incidence of five-fold 
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faces, there are five-fold rings of neighbouring atoms. This is a feature which 
for any crystal lattice is excluded by translational symmetry. 

In a later study Bernal emphasised that the packing of the molecules which 
occurs in condensed states is mainly determined by the repulsive part of the 
interatomic forces: the molecules behave in this respect very much like impene­
trable spheres. He therefore considered the random packing, not of deformable 
plasticine spheres as in his earlier study, but that of a large number of hard steel 
balls. The number of contacts and near contacts could be studied by pouring 
black paint on the assembly. The model led to a coordination number vary­
ing between four and eleven. The average radial distribution of pairs of hard 
spheres, as a function of the distance between them, has the same qualitative 
features as that measured in experiments of X-ray diffraction on real liquids 
(see Fig. 2.1 and Chap. 4): around each sphere there is a region of excluded 
volume and a shell of first neighbours, followed by progressively more poorly 
defined shells of further neighbours. This is a good picture of short-range order 
for monatomic liquids in thermodynamic states close to freezing. 

The Bernal model tries to provide an instantaneous picture of the struc­
ture of a liquid (this is known as the random-close-packing model of a dense 
disordered system). If we add to this the thermal motions we can imagine 
that the molecules are continuously shuffling around and occasionally squeez­
ing through their neighbours. The radial distribution functions in Fig. 2.1 
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Fig. 2.1. Radial distribution function g(r) as a function of the reduced distance r/a for 
the random packing model of Bernal (•) and Scott (V), compared with a schematic plot 
of diffraction data on an argon-like liquid. For the hard sphere fluid one has g(r) = 0 for 
r/ar < 1. (Redrawn from Tabor, Ref. 3.) 
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essentially represent averages over various regions of the sample — a static 
disordered sample in the Bernal model and a dynamic one in the diffraction 
experiments. The marks of thermal motions in the measured radial distri­
bution function are evidently rather subtle and can only be extracted from it 
through quantitative analysis, especially on the detailed shape of the main first-
neighbour peak and of the valley following it. Through this valley the exchange 
of atoms takes place between the first-neighbour shell and rest of the fluid. 

As Bernal had already pointed out, it is the decrease in the coordination 
number with increasing temperature, rather than an essentially uniform ex­
pansion of the interatomic distances, which leads to the rather large thermal 
expansion of liquids. He made the proposal that the transition from the liq­
uid to the gas phase occurs when the coordination number falls to an average 
value of three or four. This implies that the density at the liquid-vapour criti­
cal point may be between one-quarter and one-third of the density of the liquid 
near freezing. This prediction is in reasonable agreement with experiment for 
simple fluids. 

2.4 Origins of Method of Molecular Dynamics 

Bernal's models for liquids have been criticized for being static. The method 
of molecular dynamics enables one to construct models in which the molecules 
are continuously on the move. There are whole books devoted to this method 
(see e.g. Allen and Tyndesley18), which has had and will continue to have a 
strong impact on our quantitative understanding of the liquid state. The basic 
concept is simple, though elaborate computations are involved. The approach 
is associated with names like B. Alder and A. Rahman, though many others 
were involved from an early stage. The very first studies by this technique 
were concerned with the dynamics of assemblies of oscillators and with the 
thermodynamics of a classical gas of charged particles. 

A surprising result coming from early computer studies13'19 was that, with 
increasing density, a fluid of equisized hard spheres exhibits a first-order freez­
ing transition to form a close-packed crystal (see Sec. 1.2 on Lindemann's law 
of melting). It must follow then that since the internal energy of such a system 
of hard spheres is purely kinetic, the above transition must be entropically 
driven.20 The volume change on melting from these dynamical studies is only 
5%, against the value of 14% predicted from the static hard sphere models 
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(see Sec. 2.1). We have already noticed that a dynamical model has much 
greater freedom to wander in configuration space and thereby to go from one 
arrangement of high structural packing to another. 

However, to return to the basic concept, in such early studies molecules 
were treated as hard, smooth and perfectly elastic spheres obeying the laws 
of classical mechanics. Later such refinements were embodied in the method 
as representing the atoms as attractive square-wells having a rigid core or 
more "realistic" interactions described by smooth pair potentials consisting 
of a repulsive core and an attractive tail (see Sec. 2.7). Even more recent 
developments have been the ability to simulate systems of particles obeying 
the laws of quantum mechanics and to treat fluids as assemblies of ionic inner 
cores and valence electrons (see Chap. 14). 

The idea of the method in its early developments was to simulate the be­
haviour of a limited number of molecules placed inside a given volume by nu­
merically solving Newton's equations on a computer. The particles are started 
off with random velocities and periodic boundary conditions are usually im­
posed, i.e. a particle which leaves the box across one face re-enters with the 
same velocity through the opposite face. In this way the number of molecules 
in the box and the total energy are kept constant. After relatively few colli-
sional times the velocity distribution equilibrates to a Maxwellian form. The 
mean kinetic energy measures the temperature of the sample. 

The behaviour of the system of hard spheres was found to depend on the 
kinetic energy and on the packing of the particles (see Fig. 2.2). At one ex­
treme the particles oscillate about a set of equilibrium lattice positions: this 
corresponds to the solid state [Fig. 2.2(a)]. In the other limit the particles can 
move through the box quite freely, as in a dilute fluid state. In an intermediate 
dense-fluid regime the particles oscillate within first-neighbour cages about a 
disordered set of positions, but are also able to exchange places and to slowly 
diffuse through the sample [Fig. 2.2(b)]. Of course diffusion also occurs in 
crystals (often via vacancies), but the rate of diffusion is much lower than in 
the fluid. The results reported in Fig. 2.2 refer to 32 particles and map out a 
view of the trajectories as seen from one face of the simulation box. 

The results reproduced in Fig. 2.2 are quite striking, even though they 
refer to an assembly of particles without attractive interactions. From the 
point of view of packing, the structure of a dense monatomic fluid should not 
be too sensitive to the details of the interactions (see the work of Bernal and 
its discussion given above). However, without attractions the system has no 



Origins of Method of Molecular Dynamics 35 

I * '# * J 

(•) (b) 

Fig. 2.2. End face of simulation box for 32 hard spheres: Solid-like behaviour for particle 
trajectories in (a) is contrasted with fluid-like behaviour in (b). Notice particles swapping 
places in (b): A and B; C, D and E. (Redrawn from Tabor, Ref. 3.) 

Fig. 2.3. End face of simulation box for 108 particles interacting via a hard-core repulsion 
and a square-well attraction. (Redrawn from Tabor, Ref. 3.) 

cohesion and external pressure has to be applied to keep it in a condensed 
state. Perhaps more seriously, in the absence of attractive interactions there 
is no condensation from vapour to liquid (i.e. a single fluid phase exists). It 
is therefore appropriate to report in Fig. 2.3 the behaviour shown by a sys­
tem of 108 spherical particles possessing a hard elastic core and a square-well 
attractive field. This seems to depict a liquid-vapour transition region. 
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2.5 Free-Volume Approximation 

Before proceeding to a discussion of the entropically driven freezing transition 
in the system of hard spheres, it will be useful to introduce the so-called free 
volume approximation to the equation of state of hard spheres. The limit­
ing configuration is taken to be that of a regular close-packed lattice. The 
discussion below follows closely those of Kirkwood and Wood.21 

The volume of the fluid is divided up into N cells Aj(i = 1,2 • • • N), one for 
each molecule. These cells are the Voronoi polyhedra, constructed by drawing 
planes to bisect at right angles the lines that join adjacent molecules. By 
such a construction the cells pack so as to completely fill the volume. The 
approximation of single occupancy of the cells Aj is implicit and is closely 
related to the assumption of disconnected regions of configuration space (see 
Sec. 2.2). The free volume for each sphere essentially is the volume within 
which it can move without requiring changes in the positions of other spheres. 

These assumptions, when developed quantitatively, lead to an equation of 
state having the form in d dimensions: 

PV 
y 1 + NkBT 

i/d "> _ 1 

V\L/a 

(2.2) 

(see also Salsburg and Wood16). 
The essential approximations of the free volume theory, in summary, are (i) 

single occupancy and (ii) the assumption that the molecules may be treated as 
moving independently within their own cells. Each molecule is thus confined 
within its own cell, instead of being able to ultimately wander over the whole 
volume of the fluid. 

Such confinement is quite appropriate for a crystalline solid and can be 
usefully invoked in the evaluation of the equation of state of the dense fluid. 
However, it evidently leads to an underestimate of the entropy of the fluid 
state. Further study indicates that this entropy deficit becomes increasingly 
severe in a fluid as its density decreases. 

2.6 Free Volume and Entropically Driven 
Freezing Transition 

The freezing transition of an assembly of hard spheres arises from a compe­
tition between configurational entropy and the entropy associated with the 
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amount of local free volume available to the spheres. As for instance Eldridge 
et al.22 note in the context of their work on binary hard sphere mixtures, at 
high concentrations efficient ordered packings, which can provide greater free 
volume than "amorphous" packings, are favoured thermodynamically. 

As already mentioned in Sec. 2.1, it was demonstrated by Bernal that the 
maximum packing or volume fraction of an amorphous system of hard spheres 
is about 0.64. At such a density, the spheres are totally constrained by their 
neighbours and have no free volume for local motions. But in a crystal, at 
volume fraction 0.64, the spheres have considerable free volume, the concen­
tration of a fully compressed close-packed crystal of such hard spheres being 
0.74. Thus, from the above discussion one might anticipate that hard spheres 
freeze at a concentration smaller than 0.64. This is in agreement with the 
results of Hoover and Ree,19 whose computer studies revealed a first-order 
freezing transition, the maximum (freezing) volume fraction of an equilibrium 
hard sphere fluid being 0.494 and the minimum (melting) value of the crys­
tal being 0.545. Evidently, even in the solid phase near melting the thermal 
motions of the spheres keep them well apart from one another. 

The liquid-solid phase transition may be detected in these computer ex­
periments not only by extracting the coordinates of the particles and verifying 
that crystalline order has set in, but also by examining the mean pressure 
exerted by the hard spheres on the walls of the container. Since the inter­
nal energy U of the hard sphere system is entirely kinetic, it does not depend 
upon the volume at constant temperature. From the thermodynamic identities 
(dU/dV)T = -p + T(dS/dV)T and (dS/dV)T = (dp/dT)v (see Eq. (3.20)) 
we then find 

H£)y- (2-3) 
i.e. p/T is a function of the volume only. Therefore all isotherms may be made 
to coincide in a single curve by plotting the dimensionless quantity pVcp/Nk^T 
against the reduced volume V/Vcp, where Vcp is the volume that the spheres 
would occupy if they were close packed. 

Such a scaled plot for the solid and fluid isotherms of the hard sphere 
model is reported in Fig. 2.4.23 There is some uncertainty on the position of 
the horizontal tie-line which joins the solid and liquid branches. The melting 
pressure pm is 

„ 5.8jVfc; 
Pm - vcp 

(2.4) 
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1.4 1.6 1.8 

Fig. 2.4. Solid (S) and fluid (L) branches of the isotherms for the hard sphere system. The 
plot shows pVcp/NkBT against V/Vcp, with Vcp the volume at close packing (Redrawn from 
Faber, Ref. 23.) 

From the equality of the Gibbs free energies of the two phases at coexistence 
(see Sec. 3.4), we havepmAl^ = TAS. Hence, the change of entropy on melting 
is 

AV AV 
AS = Pm—^ 5.8ATfcB— S 0.5NkB . (2.5) 

These results define the curve of fusion for the hard sphere system: on this 
curve the pressure increases linearly with temperature and the entropy change 
on melting is constant. 

The isotherms of Alder and Wainwright for the fluid phase of the hard 
sphere system are analytically represented with high accuracy by the formula 
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proposed by Carnahan and Starling.24 The hard sphere pressure p^s is written 

as 

PhsV ( l + rz + ^ - r / 3 ) 
(2.6) NkBT (1 - r?)3 

where 

is the packing fraction. Much use has been made of the expression (2.6) in 
treating simple liquids. One example will be illustrated in the next section. 

A more accurate analytic expression for the equation of state of the hard 
sphere fluid has been proposed by Hall25 through fits of the simulation data 
by means of Pade approximants. He also used the same method to obtain an 
approximate formula for the equation of state of the hard sphere solid, on which 
simulation data have been available from the work of Alder and coworkers.26 

More recent studies of crystalline phases of the hard sphere system include 
the evaluation of its radial distribution function in the face-centred cubic and 
hexagonal close-packed structures over a very broad range of density27 and 
studies of thermodynamic properties and density distributions of crystals of 
hard hyperspheres by an extension of the free-volume approach, with special 
focus on the body-centred cubic crystal.28 

2.7 Building on Hard Sphere Equation of State: the Model 
of Longuet-Higgins and Widom 

A point pressed by workers such as Hoover and Ross in early studies is that a 
hard sphere model can be viewed as a limiting case of a repulsive pair potential 
decaying with increasing separation r between an atomic pair as an inverse 
power r~n, in the limit n —> oo. For argon, for example, the Lennard-Jones 
(LJ) potential 

Mr) = ±-% (2-8) 
has evidently n = 12 for the repulsive interactions and includes the van der 
Waals interactions to account for an attractive tail, with a constant conven­
tionally written as C§ in accord with quantum chemical notation. Clearly, C$ 
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is to be put to zero in a purely repulsive limit such as hard spheres, whereas 
n is then in this model allowed to tend to infinity. The discussion of thermo­
dynamic properties, to be given in Chap. 3, starts from such inverse power 
potentials, which are a broad enough class to embrace the hard sphere model 
on which this chapter is focused. 

Here we refer to the work of Longuet-Higgins and Widom,29 who have 
suggested an elegant way by which the effects of attractions may be included 
in the equation of state through a simple modification of the hard sphere 
result. Their main attention was on simple monatomic liquids at high density, 
specifically on liquid argon near the triple point. 

In essence, Longuet-Higgins and Widom show that in this regime the equa­
tion of state is well represented by a modified form of the van der Waals 
Eq. (2.1). Let us rewrite the van der Waals equation in the form 

p = T^Vp-
ap' (2'9) 

where p = N/V is the particle number density. The first term on the RHS is 
designed to take account of the "finite size" of the atoms, i.e. it is the analogue 
of a hard sphere term, while the second term takes account of the attractive 
forces. Longuet-Higgins and Widom suggest that the potential energy of each 
atom in argon is proportional to the density of its neighbours, i.e. to p. In 
present terms we may thus want to write 

p = phs(p,T) - ap2 . (2.10) 

The function phs(p,T) may be taken from studies of the hard sphere system 
and the quantity a from a model of the interatomic attractions.30 

Longuet-Higgins and Widom show that this equation of state gives a quan­
titative account of the properties of argon near the triple point. To show this, 
we reproduce in Table 2.1 some results that they obtained, together with the 
corresponding experimental results. The dimensionless quantities shown in 
Table 2.1 are: first the ratio of the liquid and solid volumes at the triple point; 

Table 2.1. 

Theory 
Experiment 

Properties of argon at triple point. 

VL/VS p AS/NkB Ec 

1.19 - 5 . 9 1.64 - 8 . 6 
1.11 -5 .88 1.69 -8 .53 
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second the pressure; third the entropy of melting A5 , in units of Nks; and 
fourth the cohesive energy Ec of the liquid. 

Some second derivatives of the free energy are given less satisfactorily by 
the model of Longuet-Higgins and Widom, and in particular there is no con-
figurational contribution to the specific heat. Nevertheless, their idea has been 
the germ for some modern approaches making use of the hard sphere model 
as a reference system for liquid structure. 

2.8 Hard-Particle Fluid Equation of State Using 
Nearest-Neighbour Correlations 

With the above introduction to the hard sphere model, we shall go on to note a 
number of approximate analytical results for such a model. Thus, a more 
recent form of its equation of state will be presented in this section. In the 
chapters on mass, momentum and energy transport, it will be shown that 
diffusion, viscosity and thermal conductivity are elegantly related using such a 
model. However, it must occasion no surprise that while such results are very 
valuable for obtaining order-of-magnitude estimates and for gaining physical 
and chemical insight, deviations from the hard sphere predictions are often 
quantitatively serious and sometimes are even qualitative. 

An approach for determining the free energy of classical fluids developed 
by Edgal31 has been employed by Edgal and Huber32 in an approximate form 
for the hard sphere fluid. These workers formulate the equation of state of 
this fluid in terms of a nonlinear differential equation with a single unknown 
parameter. 

Edgal and Huber write the hard sphere equation of state as 

Z = [1 - kr,e(ri)]- 1 + kri 
2 de{rj) 

drj 
(2.11) 

where Z = p/pk^T and in one, two and three dimensions k is 1, (2/7r)31/2 

and (3/7r)21^2. The packing fraction rj is defined as 77 = pvo, with p = N/V 
and vo the hard-core volume of a particle. In obtaining Eq. (2.11), it has been 
assumed that the partition function may be written in terms of a reduced 
volume V as (QV)N/N\. The quantity Q has the dimensions of an inverse 
volume, resulting in the partition function being dimensionless. V is then 
expressed as V = V — ks(r])Nvo. The parameter £ is a dimensionless quantity 
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which can be expected to approach unity as the packing fraction tends to its 
maximum value rjmax = l/k. 

To complete Eq. (2.11), one needs a way to determine the function e(r]). 
Edgal and Huber write for this function a differential equation in the form 

1 + krj2^^- = exp[-4?7(l - kr,)'"1^] exp(Z - 1). (2.12) 

The equation of state of the hard-particle fluid is therefore characterized by 
the function m{rj). To date, this function is only known precisely for small r) 
through the expansion 

m{rj) = 2.407 - 0.9468r? + • • • , (2.13) 

where known exact results for the third and fourth virial coefficients have been 
used to obtain the numerical values shown. 

Finally Edgal and Huber use the above results to construct a differential 
equation for the compressibility ratio Z, which is characterised by the function 
m(r)). In particular, the high-density asymptotic solution for Z is 

/ \ ~rn(v) 
Z & ±r)(l - krj)-™^) = 4 7 7 ( 1 - - ^ - ) . (2.14) 

The merit of writing the compressibility ratio in this way is that 771(77) is a 
relatively slowly varying function of 77. Examining their Fig. 1, and taking 
account of computer simulation data suggests values of m « 1.84 and m « 1.14 
corresponding to simulation data for the low and the high density branch. 

2.9 Free Volume Revisited in Hard Sphere Fluid 

The fact that the properties of the hard sphere fluid stem from strictly entropic 
terms, that is from purely geometrical considerations, underlies the ongoing 
interest in this model. This is reflected in considerable emphasis directed to 
gaining understanding of the statistical geometry of dense sphere packings (see 
Sastry et al.33 for detailed references; see also Gonzales and Gonzales34 and 
Speedy35-36). 

In the study of Sastry et al. a method is presented for the efficient cal­
culation of free volumes and corresponding surface areas in the hard sphere 
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assembly. Their method is then used to evaluate the free-volume distribution 
of the fluid in a range of densities near to freezing. 

From the distribution of free volumes, the equation of state can be obtained 
by a geometric analysis (for the reader with some acquaintance with computer 
simulation, this allows the calculation of the pressure in Monte Carlo studies). 
Moreover, Sastry et al. obtain the cavity-volume distribution indirectly from 
the free-volume distributions in a density range where direct measurement is 
inadequate. They also point out that direct measurement of the first moment 
of the cavity-volume distribution makes it possible to calculate the chemical 
potential near freezing. 

More generally, quantities that describe the void space (volume available 
for the insertion of an additional hard sphere), the free volume (volume within 
which a given hard sphere can move without requiring changes in the positions 
of other spheres) and the corresponding surface areas are quite directly related 
to thermodynamic properties. 

2.9.1 Statistical geometry of high-density fluid 

Speedy and Reiss37 have shown that the free volume and cavity volume distri­
bution functions are related — their arguments are given below following the 
account of Sastry et al.33 

They define p(v)dv as the probability that a cavity has volume between v 
and v + dv, while p(vf)dvf is the probability that the free volume of a sphere lies 
between Vf and Vf+dv{. Probability densities analogous to these can be defined 
for the cavity surface ps(s) and the free surface /s(sf). For a given configuration 
of spheres, the union volume of the cavities represents the available space Vo. 
The surface area SQ available comprises the surface area of the individual 
cavities. The average cavity volume and surface area may be expressed as 

(v) = ^ = jTxp(x )dx (2.15) 

and 

(s)={-^ = fQ°°yps(y)dy. (2.16) 

Nc being the number of cavities in the system, averaged over all realisations 
of the particles. 
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Speedy38 has demonstrated that the equation of state of a hard sphere 
fluid at equilibrium can be written in terms of the statistical geometry of the 
cavities as 

P - 1 + ^ S P 2 (2-17) pkBT 2D(v) 

where D is the dimensionality of the system. He also proved the valuable 
relationship 

M _ <£> - M 
<«f> ~ (v) " <Yo) { } 

and hence the pressure can be found from free-volume information alone: 

pkBT-1 + 2D(Vl)- V-W) 

It is worthy of note in the present context that Eq. (2.19) was suggested long 
ago by Hoover et al.39 during their considerations on the dynamics of a light 
particle in a classical system. 

2.9.2 Chemical potential in terms of statistical geometry 

The chemical potential fi of the hard sphere system can also be directly con­
nected to its statistical geometry (see e.g. Sastry et al.33): 

' •^ (s) -^(T) <™> 
where N is the number of particles in the assembly while A is the thermal de 
Broglie wavelength [A = (2nh2/mkBT)1/2 with h = 1.0542 x 10"34 J s being 
Planck's constant]. It is useful to separate fj, into the sum of an ideal and an 
excess contribution: 

— J +fcBrinf-^yJ . (2.21) 

The excess term embodies the reversible work required to form a cavity of 
radius a. 

While both analytical and numerical techniques have been used40 to study 
the cavity volume and free volume distributions in two dimensions (hard disks), 
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Sastry et al. focus on their exact determination for the three-dimensional 
assembly. The excess chemical potential as calculated from the cavity volume 
statistics is compared in their work with earlier results using more conventional 
approaches. The pressure was also determined in the vicinity of the freezing 
transition. For further details the interested reader is referred to the original 
work. 

2.10 Hard Particles in Low Dimensions 

In bringing this chapter on a "gross" account of the short-range order in a 
liquid to its conclusion, we may summarise its main points as follows. The 
pioneering studies of Bernal and Scott on static assemblies of hard spheres did 
already evidence the gross features of the structure of a dense liquid such as 
argon near its triple point. By endowing the hard sphere model with thermal 
agitation through the techniques of computer simulation, Alder and Wain-
wright were able to show that it could, starting from the fluid phase, undergo 
a transition to a close-packed crystal with ample free volume for thermal vi­
brations, as envisaged by Lindemann for a solid near melting. There has been 
continued interest in the hard sphere model, not only as a reference system 
for real monatomic liquids but also in regard to its statistical geometry and to 
how this relates to thermodynamic properties. On the other hand, it should 
also be mentioned at this point that dense packing of spheres has little rele­
vance to the numerous disordered systems in which strong directionality of the 
interatomic forces induces open network structures. While excluded-volume 
considerations still apply in the immediate neighbourhood of each molecule, 
short and intermediate-range order reflect rather specific aspects of the molec­
ular interactions (see Figs. 1.8—1.10 and Chaps. 8 and 9). 

Let us close this chapter, therefore, by (i) briefly recalling some properties 
of the equation of state for systems of hard particles in lower dimensionali­
ties (disks and rods) and for systems of hard ellipses mimicking anisotropic 
mesophases; and (ii) by summaries of studies of the equation of state of hard-
body fluids and of hard sphere fluids in narrow cylindrical pores. This ac­
count may provide the reader with the stimulus to continue this study on his 
own. 
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2.10.1 Rods and disks 

The equation of state for impenetrable rods which are constrained to move on 
a line is 

^ = ( ! - » * ) - ' , (2.22) 

where p is the linear number density of the rods and b is the length of one 
rod.41 Making a virial expansion of the RHS of Eq. (2.22) in powers of the 
density, it is seen that the virial coefficient of order n + 1 is bn. 

According to Eq. (2.22), the pressure rises smoothly and monotonically 
to become infinite for the close-packed array. It follows that there is no phase 
change in dimensionality d = 1. This result has been generalised by van Hove42 

to all one-dimensional assemblies for which the molecules possess hard cores 
and attractive forces of finite range. A transition can, however, appear if the 
attractive forces have infinite range but are infinitely weak.43 

Turning to the two-dimensional case, the equation of state for a system of 
hard disks is not known in exact closed form paralleling Eq. (2.22). However, 
Alder and Wainwright44 carried out computer simulations of the equation of 
state of assemblies of hard disks, with densities increasing to quite near that 
of the close-packed ordered array. The isotherms thereby found have two 
branches: a disordered fluid state and an ordered solid phase whose struc­
ture is that of the close-packed hexagonal lattice. The phase behaviour of the 
two-dimensional system of hard disks is thus analogous to that of the three-
dimensional system of hard spheres. 

2.10.2 Hard ellipses 

Vieillard-Baron45 has simulated an assembly of 170 long hard ellipses (with an 
axis ratio equal to 6) as a two-dimensional model for a nematic liquid crystal 
(see Chap. 9). A close-packed configuration of such a system, corresponding 
to the minimal value AQ for the area of the confining box, is shown in Fig. 2.5. 
The isotherms of the model are found to exhibit two phase transitions with 
decreasing areal density. A first transition occurs at an area A = 1.15^4o 
to a nematic mesophase, in which the axes of the ellipses are still oriented 
whilst the centres of the ellipses show no longer any extended-range order. 
The orientational order is then lost at a density 1.5 times smaller. 

As for the hard-disk system, the disorientation transition to the disordered 
fluid phase leads to a sudden increase in the configuration space available to 
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Fig. 2.5. A close-packed configuration for a hard-ellipse system. (Redrawn from Vieillard-
Baron, Ref. 45.) 

the system and hence in its entropy. However, since the disorientation affects 
only one degree of freedom per ellipse instead of two, the nematic and liquid 
branches of the isotherm are very close to each other. The observed entropy 
change AS/Nk& has a value between 0.05 and 0.12, much smaller than that 
for melting of hard disks which is 0.36. 

2.11 Equation of State of Hard-Body Fluids 

We have referred earlier to approximate forms of the equation of state for the 
hard sphere fluid. Here we record an extension to fluids in which the basic 
building block is not spherical. 

Kolafa and Nezbeda46 have considered a fluid of hard tetrahedra and raised 
the question as to its possible relevance as a model for the structure of water. 
Without going into details, these authors adopt as an equation of state valid 
for large non-sphericities the expression 

P _ 1 + (3a - 2)?; + (a2 + a - l)r?2 - a{5a - 4)r73 

As usual 77 represents the packing fraction. The non-sphericity parameter a 
has the value a = 2.2346 for a fluid of hard tetrahedra. 

Kolafa and Nezbeda compare the analytic form (2.23) with Monte Carlo 
results available in the literature on a fluid of regular hard tetrahedra and find 
it to be good up to moderately large packing (77 < 0.3). Beyond the equation 
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of state results, they conclude that nowithstanding the fact that there are no 
attractive forces in their model, the tetrahedral shape of the hard basic units 
leads at high densities to a structure which resembles that of water. 

2.12 Hard Sphere Fluid in Narrow Cylindrical Pores 

Fluids in restricted geometries have been studied over a long period (see 
e.g. Warnock et al.,47 Klafter and Drake48 and Henderson49) and are often 
found to behave very differently from bulk fluids. Here we record results from 
a study by Mon and Percus50 of the pore radius dependence of hard sphere 
fluids in very narrow cylindrical pores with hard walls over a substantial range 
of pressure and density. 

These workers deal with sixty hard spheres of diameter a in cylindrical pores 
of radius R. The length of the cylinder is denoted by L and the two ends obey 
periodic boundary conditions. To investigate the effect of such restricted ge­
ometry on the equation of state, Mon and Percus consider a constant-pressure 
Monte Carlo (MC) simulation (see Allen and Tildesley18). The radius of the 
pore remains constant but the length of the cylinder is permitted to fluctuate 
with Boltzmann weight of exp(— pV/k^T), where p is the pressure while V 
denotes the cylinder volume. 

Figure 2.6 shows the constant-pressure MC results for the density corre­
sponding to three values of the pore radius. The important point to note from 
this figure is the non-monotonic dependence on the pore radius with a mini­
mum at R = a and an increase towards the bulk limit with increasing R. This 
non-monotonic behaviour persists over a very wide range of pressure of density, 
both near and much below the dense solid. To illustrate this further, Fig. 2.7 
shows a plot of density against pore radius for a pressure p = 0.5kBT/<73. Two 
system sizes are shown and no significant differences appear. 

Mon and Percus explain the above behaviour as follows. For pore radius less 
than <T, the fluid density is maximum at the smallest allowable radius a/2. On 
increasing the radius, the density initially will fall since the pore radius is still 
too small to accommodate two or more hard spheres across the diameter. It is 
only above a pore radius of a that much more dense packing configurations are 
allowed, which then increase the fluid density. Mon and Percus also observe an 
inflexion point near the onset of configurations with three hard spheres across 
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Fig. 2.6. Monte Carlo results for density against pressure in a hard sphere fluid inside 
narrow cylindrical pores. For 0 , x and + the pore radius is 0.55, 1.0 and 1.75 times the 
hard sphere diameter a. Density is in units of number of particles per <r3, /3p in units of 
a 3 . The estimated sampling errors are smaller than the size of the plotting symbols and the 
solid lines are only to guide the eye. The dashed line gives the Carnahan-Starling equation 
of state for the bulk hard sphere fluid. (Redrawn from Mon and Percus, Ref. 50.) 
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Fig. 2.7. Monte Carlo results for the density (in units of number of particles per <J3) against 
pore radius R (in units of cr) at constant pressure /3p = 0.50/cr3. The two symbols refer to 
a system of 60(+) and 120(x) particles. (Redrawn from Mon and Percus, Ref. 50.) 
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the pore. This occurs at a radius of [(1/2) + (l/^/3)]a. The density then 
approaches the bulk fluid density smoothly for larger radius. 

The interested reader should consult the study of Mon and Percus who 
discuss another way to understand the origin of the non-monotonic dependence 
by using a low-pressure expansion for the mean density. 



Chapter 3 

Thermodynamics, Equipartition of 
Energy and Some Scaling Properties 

In this chapter, some thermodynamics plus a little relevant statistical mechan­
ics will be summarised. After an introduction to the thermodynamic functions 
which are needed to describe the fluid state of matter, we shall discuss spe­
cific heats and compressibilities, which play an important role in theories of 
especially classical liquids, and shall emphasise their role in governing fluctu­
ations around the equilibrium state. Thermodynamics relevant to the melting 
transition will then be surveyed, again quite briefly. 

In the latter part of the chapter we shall pause on the evaluation of ther­
modynamic functions in statistical mechanics. Specific attention will be given 
to the principle of equipartition of energy and to thermodynamic properties of 
the hard sphere fluid. Finally, scaling properties of thermodynamic quantities 
for a special, but important class of repulsive potentials, namely inverse power 
potentials <j>(r) oc r~n with n > 1 will be presented. As already mentioned in 
Chap. 2, the limit n —> oo recovers the hard sphere system. 

3.1 Thermodynamic Functions for a Fluid 

We recall in this section some basic facts of thermodynamics for a (one-
component) fluid in contact with a thermal bath and subject to pressure forces 
only.51 Considering the entropy S(U, N, V) of the fluid as a function of its in­
ternal energy U, its number N of particles and its volume V, the definitions 
of absolute temperature T, chemical potential /i, and pressure p follow by 

51 
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imposing conditions of thermal equilibrium through maximisation of the total 
entropy. The notion of entropy as a measure of the number of accessible mi­
croscopic states is then to be used to obtain the rules of statistical mechanics 
for the evaluation of the thermodynamic functions.52 

In particular the definition of inverse temperature, 

follows from imposing equilibrium against the net exchange of energy between 
the fluid and the thermal bath. Of course, thermal contact in isothermal con­
ditions allows spontaneous exchange of energy, so that small fluctuations of 
energy occur in the fluid at thermal equilibrium. By the same argument it also 
follows that, if initially the fluid and the thermal bath are not at the same tem­
perature, then there is a net flow of energy from the hotter to the cooler system. 

Let us next consider the more general case in which both thermal contact 
and diffusive contact are established. Diffusive contact means that molecules 
can freely move from one system to the other across their permeable boundary. 
The equilibrium against net transfer of matter is determined by the condition 
of constancy of chemical potential, the latter being defined by 

Thus, two bodies that can exchange energy and particles are in mutual equilib­
rium when their temperatures and their chemical potentials are equal. Again, 
this situation allows spontaneous exchanges of particles between the two bodies 
and small fluctuations in the number of particles. Away from diffusive equi­
librium, a net flow of matter passes from the body of high chemical potential 
to that of low chemical potential. 

Finally, the notion of pressure is introduced by considering the mechanical 
work done on the fluid through a quasi-static displacement of its boundaries 
and by equating it to the change in its internal energy: 

w) • M 
u v J S,N 

Such a quasi-static process is reversible and the entropy remains constant in 
time, its rate of change being quadratic in the rate of displacement of the 
boundaries. Small fluctuations in pressure on a boundary surface will occur and 
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unbalance of pressure across a boundary surface will act as a net mechanical 
force driving its displacement. 

3.1.1 Thermodynamic identity and the first principle 

of thermodynamics 

The expression (3.3) for the pressure may also be written in the forma 

This expression is valid only for reversible changes. 
It then follows from Eqs. (3.1), (3.2) and (3.4) that during an infinitesimal 

thermodynamic process the change in the entropy function S(U, N, V) is given 
by dS = (dU — fidN + pdV)/T, or equivalently that the change in the internal 
energy function U(S, N, V) is 

dU = TdS + /xrfAT - PdV. (3.5) 

The thermodynamic identity in Eq. (3.5) is closely related to the first prin­
ciple of thermodynamics, expressing conservation of energy in any thermody­
namic process undergone by the fluid. The first principle states that the change 
dU of internal energy of the fluid in an infinitesimal process is the sum of the 
amount of heat dQ exchanged with the fluid and of the work dL done on it, 

dU = dQ + dL (3.6) 

(we are using the symbol d to denote an infinitesimal change which depends on 
the path followed during the process). Energy added to the fluid by thermal 
contact with a reservoir is called heat, while energy added by all other means 
is called work. 

In the case of a reversible process we can compare Eqs. (3.5) and (3.6) 
term-by-term and set dQ = TdS and dL = p,dN — pdV, the work dL being 
the sum of a chemical term fidN and a mechanical term —pdV. Of course, 
chemical work is of special relevance in the context of electro-chemistry and 
for this we refer the reader to the book of F0rland et al.53 

a In deriving Eq. (3.4) from Eq. (3.3), we set (dS/dV)u + (dS/dU)v(dU/dV)s = 
(dS/8V)s = 0, whence (dU/dV)s = -(dS/dV)u{dU/dS)v = -T(dS/dV)u (at constant 
number of particles). 
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On the other hand, in an irreversible process the inequality TdS >dQ holds, 
expressing the fact that the entropy is increasing in such a process beyond and 
besides the quantity of heat that may be transferred to the fluid. We therefore 
reach the important inequality 

dLittev > dLrev = fidN - pdV. (3.7) 

This inequality shows that the work done in bringing the system from a given 
initial state to a given final state through an irreversible process is always 
greater than that done in a reversible process between the same two states. 
The inequality may arise from two main reasons: (i) irreversibility is due to 
friction and dissipation, and additional work is needed to compensate the ac­
companying loss of energy; or (ii) during the irreversible process no work is 
done on the system, whereas negative work would be done if the same final 
state were reached in a reversible manner from the same initial state. An ex­
ample of case (ii) is the expansion of a gas into a larger volume through a hole 
opened in its container. No work is done on the gas in this process whereas, if 
the same final state were reached in a reversible manner, the work done would 
be —pdV and this is negative since the gas has expanded (dV > 0). 

3.1.2 Helmholtz free energy and variational principle 

Prom the above summary on basic thermodynamic variables and on the first 
principle of thermodynamics we proceed to introduce the thermodynamic func­
tions which are most useful for statistical mechanics. These are primarily the 
free energy functions. 

Let us consider an infinitesimal reversible process carried out at constant T 
and JV. The work done during this process becomes an exact differential, since 
the identity (3.5) gives dLrev = -pdV — d(U - TS). We therefore introduce 
the thermodynamic state function 

F = U-TS, (3.8) 

which is known as the Helmholtz free energy. From Eq. (3.5) its differential is 
given by 

dF = -SdT-pdV + tidN (3.9) 

i.e. the Helmholtz free energy is a function F(T, V, N). 
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From Eq. (3.9) we find the following important results for the first deriva­
tives of F: 

(3.10) 

(3.11) 

(3.12) 

Thus, knowledge of the Helmholtz free energy enables entropy, pressure and 
chemical potential to be directly calculated. We also remark that the definition 
(3.12) of the chemical potential is more appealing to intuition than that given 
in Eq. (3.2): fi is seen to correspond to the average change in Helmholtz free 
energy associated with adding or taking away a particle at constant volume 
and temperature. This alternative meaning for the chemical potential ex­
plains the crucial role that this concept plays in phase equilibria and interfacial 
phenomena. 

Let us now consider the spontaneous evolution of a fluid towards equilib­
rium in an irreversible process at constant T and N, no work being done on 
the system. Since dF = dLTev < r^Lirrev = 0, F must decrease in such process. 
The following variational principle thus holds: in the equilibrium state F is 
at a minimum against changes of state which occur at constant T, N and V. 
This principle affords a precise definition of the state of thermal equilibrium 
for a macroscopic body. 

Finally, we note that Eq. (3.11) can be generalised into the Hellmann-
Feynman theorem, 

(§a,,r<f>' 
where / is any parameter describing a quasi-static external field and H is the 
Hamiltonian of the system, the symbol (• • •) denoting the average value. For 
instance / could be an applied electric field E and in this case from Eq. (3.13) 
we can find the polarisation as P = -(dF/dP)v,N,T, since the coupling of the 
system to the electric field is - P - E . 
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3.1.3 Gibbs free energy 

The Gibbs free energy is defined as G = F+pV. Prom Eq. (3.9) its differential 
is 

dG = -SdT + Vdp + ndN, (3.14) 

i.e. G = G(T, p, TV) and fi = (dG/dN)Ptr- However, since T and p are intensive 
variables, the dependence of G on N is of the simple type G = N * fn(T,p), 
yielding fj, = (dG/dN)PtT = G/N = fn(T,p). In a monatomic fluid the chem­
ical potential is the Gibbs free energy per particle and is a function of T and p. 

An immediate consequence is the Gibbs-Duhem relation, which follows 
from Eq. (3.14) by setting G = Nfi: the chemical potential is a function of 
temperature and pressure, and its differential is given by 

dll = -{jf)dT+(Tr)dp- (3-15) 

The quantities entering this relation are the entropy and the volume per 
particle. 

The Gibbs free energy obeys a variational principle which is analogous to 
that holding for the Helmholtz free energy: in the equilibrium state G is at a 
minimum against changes of state occurring at constant T, N and p. 

3.2 Specific Heats and Compressibilities 

According to the variational principles on the Helmholtz (or Gibbs) free energy 
that we have met in Sec. 3.1, the equilibrium state is defined as a state of 
minimal free energy against changes occurring at constant T, N and V (or 
p). Let us consider an infinitesimal process which moves the system out of 
equilibrium by changing its internal energy, entropy and volume by amounts 
dU, dS and dV at constant T, N and p. We impose the condition that the 
Gibbs free energy increases in such a process, 

dG = dU-TdS + pdV > 0 , (3.16) 

and use the thermodynamic identity (3.5) to find that the first-order terms 
cancel away. Clearly, a condition of minimal free energy implies inequalities 
on its second derivatives. 
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These inequalities follow from Eq. (3.16) by expanding the change dU in the 
internal energy function U(S, V, N) up to quadratic terms in dS and dV. One 
finds that the second-order change in free energy is always positive provided 
that two conditions are satisfied: (i) the heat capacity at constant volume 

CV=T{%)V={^), 
must be positive, and (ii) the isothermal compressibility 

K7 ~dP 

(3.17) 

(3.18) 

must be positive. Here and in the following, except where explicitly noted, we 
are keeping constant the number of particles. Since from Eqs. (3.10) and (3.11) 
we have Cv = -T(d2F/dT2)v and 1/KT = V{d2F/dV2)T, it is clear that 
the stability condition (3.16) determines the signs of the second derivatives 
of the free energy: the function F(T, V, N) is everywhere concave in T and 
convex in V. We also see that the internal energy U must be a monotonically 
increasing function of temperature. Similarly, it can be shown that the function 
G(T, p, N) is concave in T and p. 

3.2.1 Specific heat at constant pressure 

There is a well-known relation expressing the difference in specific heats Cp — 
Cy in terms of other thermodynamic quantities (see for instance the book of 
Zemansky51): 

Cp — Cy -T(-^ I 
8V\ 
dp ) T h (3.19) 

Here, the heat capacity at constant pressure is denned as Cp = T(dS/dT)p. 
The further result51 

dV)T \dT)v 

allows Eq. (3.19) to be rewritten in the form 

r r VKT-
Op — Uv = —m— 8V 

(3.20) 

(3.21) 
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This yields the well known results Cp - Cy = NkB in the limit of the ideal 
classical gas, with equation of state pV = Nk^T. 

We have seen in Sec. 2.6 that the quantity (dU/dV)T in Eq. (3.20) van­
ishes for the fluid of hard spheres. Equation (3.21) then yields the result 
Cp - Cy = VKTP2/T, which is exact for this model. However, for real 
dense liquids the term (dU/dV)x can be quantitatively important in de­
termining the difference in specific heats from Eq. (3.21). We shall see in 
Chap. 4 on structural theories of liquids that (dU/dV)T can in an (assumed) 
pair potential model be calculated from a structural correlation function (see 
Eq. (4.14)). 

3.2.2 Specific heat properties of liquid metals near freezing 

We wish to note here for future reference some interesting empirical properties 
of the specific heats of liquid metals near freezing. Thus we have recorded 
in Table 3.1 the ratio 7 = Cp/Cv of the specific heats near the melting 
temperature Tm and the value of Cy/Nk-Q-

As Table 3.1 shows, 7 is not substantially greater than unity, while Cy is 
quite near to, but usually somewhat larger than 3Nk&. As we shall see in 
Sec. 3.6 below, the latter value is appropriate to a classical system in which 
the thermal agitation can be described in terms of a superposition of harmonic 
oscillatory motions. We shall take up the underlying physics of this "harmonic­
like" behaviour of liquid metals near freezing in Chaps. 5 and 6. We shall also 
see that during thermal motions the coupling between fluctuations in particle 
density and in heat density becomes negligible as 7 approaches unity. 

The assumption Cp = Cy, which becomes valid in strictly harmonic assem­
blies, is a useful "zero-order" approximation for the liquid metals in Table 3.1. 
In contrast, for liquid argon near its triple point one has 7 = 2.2 and no 
quasi-harmonic approximation can be useful. 

Table 3.1. Specific heats of liquid metals near the melting temperature. 

Na K Rb Zn Cd Ga Tl Sn Pb Bi 

7 = Cp/Cy 1-12 1.11 1.15 1.25 1.23 1.08 1.21 1.11 1.20 1.15 

Cv/NkB 3.4 3.5 3.4 3.1 3.1 3.2 3.0 3.0 2.9 3.1 
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3.2.3 Compressibilities, both adiabatic and isothermal 

It is a further well known result of thermodynamics51 that the ratio of specific 
heats equals the ratio of compressibilities, i.e. 

The adiabatic compressibilities Ks = —(l/V)(dV/dP)s is experimentally ac­
cessible through measurements of the speed of sound — such experiments will 
be referred to in Chaps. 6 and 7. 

The isothermal compressibility KT is related to liquid structure in an im­
portant way, as we shall see in the following chapter. This fact is related to 
the special role played by KT in governing fluctuations in the volume occupied 
by a given number of particles (or alternatively the fluctuations in the number 
of particles contained in a given volume) in a fluid at equilibrium. 

In view of this fact, we turn next to a brief reminder of fluctuation phe­
nomena on the thermodynamic scale. 

3.3 Fluctuation Phenomena 

This section introduces what is an important aspect of any statistical view­
point: namely the fluctuations that occur in any thermodynamic property in 
a system at thermal equilibrium. The concept of root-mean-square (RMS) 
fluctuation is equally applicable in all branches of statistics. 

Two of the most striking examples of fluctuations have already been in­
troduced in Chap. 1, in presenting critical opalescence and Brownian motion. 
As mentioned there, the optical phenomena which occur in a normally colour­
less fluid near the liquid-vapour critical point are very remarkable. When 
illuminated by a beam of light the fluid appears diffuse and shimmering and 
extremely white, but as the temperature is raised or lowered by even a frac­
tion of a degree away from the critical point, the whiteness disappears and 
the vapour or liquid is seen to be colourless again. This behaviour provides 
direct evidence that droplets of liquid and bubbles of vapour are continuously 
forming and breaking up inside the fluid near criticality, on a size scale which 
is comparable with the light wavelength. 
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Similarly, the movement of a mesoscopic Brownian particle suspended in a 
liquid is determined through collisions by the mean momentum of the molecules 
within a small volume of the surrounding liquid, comparable in size with that 
of the particle itself. The non-smooth motion of the particle shows that this 
quantity fluctuates. The observation of Brownian motion tells us that, al­
though in a stationary fluid the mean momentum crossing any plane in the 
fluid interior averages to zero over a sufficiently long time interval, its value de­
parts from zero at any instant. Namely, fluctuations in this momentum about 
its zero average value must occur. 

We focus below on the fluctuations that occur in the density and the tem­
perature of a classical fluid around its state of thermal equilibrium, as these 
are governed by the compressibility and heat capacity parameters that we have 
introduced just above in Sec. 3.2. 

3.3.1 Fluctuations in a perfect gas 

Later in this section we shall show, by simple physical arguments, that if a 
volume, say Vo, of a fluid in equilibrium at given pressure and temperature is 
altered to volume V by either expansion or contraction occurring in a sponta­
neous fluctuation, then we have 

Probability of volume V ( BVQ 2 \ 
Probability of volume V0 ~ 6 X P \ 2kBT ) ' ^ ' ' 

where B = 1/KT is the isothermal bulk modulus and A = \V — Vo|/Vo is the 
fractional change of volume. This formula assumes that the deviation from 
the state of equilibrium is limited in relative magnitude. The inequality B > 0 
(see Sec. 3.2) then ensures that the state of equilibrium is stable against such 
density fluctuations. 

Accepting Eq. (3.23) for the moment, let us first apply it to a classical 
perfect gas, with equation of state pV — Nk^T. Then B is simply equal 
to the pressure. Working out the mean square volume fluctuation (A2) from 
Eq. (3.23) yields after a short calculation 

<*2>=ti (3.24) 
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and therefore for the perfect gas 

Namely, the relative RMS fluctuation in the volume occupied by a given num­
ber N of particles in a classical perfect gas vanishes in the thermodynamic 
limit like 1/y/N. 

An alternative way to express this result is by calculating the number of 
molecules to be found in a given volume of a classical perfect gas. Suppose 
that number, on average, to be N. From the result (3.25) it is easily seen that 
the actual number will fluctuate in the range N ± y/N. Fluctuations can still 
be said to be "small", in the sense that the relative RMS fluctuation in the 
number of particles is equal to 1/y/N (or, more generally, of order 1/y/N, as 
is immediately seen from the factor Vo entering Eq. (3.24)). 

3.3.2 Effect of intermolecular forces 

Including intermolecular forces, the result for (A2) in Eq. (3.24) is still applica­
ble, but the bulk modulus B no longer equals the pressure p. In fact, the main 
conclusion from Eq. (3.24) is that the smaller the bulk modulus, the larger are 
the fluctuations. Returning to critical opalescence, the bulk modulus tends 
to zero at the critical point, which would seem to herald infinite fluctuations. 
This is not physical, but can soon be correctly dealt with. The essential point 
is that fluctuations in volume (or density) are long-ranged in the critical region 
and this is the reason light is strongly scattered by a fluid near its critical point. 

The remaining point of this section is to sketch the derivation of Eq. (3.23) 
above. Since the volume is changed isothermally from VQ to V, we have (now 
approximately if V is near to Vo) B = — Vo(dp/dV)T and the extra pressure is 
p' = —B(V — Vo)/V0. The energy required to make a further volume increase 
dV in isothermal conditions is — p'dV, so that the total energy needed is related 
to the fractional volume change A by 

Vo Jv0 

AU = ^r I (V- V0)dV = i.BVbA2 . (3.26) 

We can now calculate the ratio between the probabilities of these two states 
having volume V0 and V by using the Boltzmann factor exp(—AU/ksT). 
Hence the result (3.23) is obtained. 
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3.3.3 Temperature fluctuations 

A similar treatment can be given for the isochoric fluctuations of tempera­
ture, with the result that the probability of a fluctuation AT is proportional 
to exp[-CV(AT)2/2kBT2]. Namely, the "thermal stiffness" of a fluid is deter­
mined by its specific heat and the mean square fluctuation in temperature is 
given by 

((AT)2) = ^ (3.27) 

at constant volume. The relative RMS fluctuation is inversely proportional to 
Cy and hence again vanishes like 1/y/N as the number of particles increases. 

We leave this topic and turn to a brief discussion of the thermodynamics 
of melting. 

3.4 Clausius—Clapeyron Equation and Melting 

Following Pippard,54 we give below a derivation of the basic equation governing 
a first-order phase transition such as melting. We first note that along any 
equilibrium line separating two different phases (1 and 2, say) in the p — T 
diagram, the Gibbs free energies (per mole, say) are equal, i.e. 

G1=G2. (3.28) 

Namely, the two phases coexist at the same pressure, temperature and chemical 
potential. This condition ensures that there is no drift in the boundary between 
the two phases and no net transfer of energy or matter across the interface. In 
what follows we choose the suffix 1 to label that phase which is stable on the 
low-temperature side of such an equilibrium line. 

Due to Eq. (3.28), for small changes dp and dT of pressure and tempera­
ture which alter the state of the system to a neighbouring state still on the 
equilibrium line, the variations of Gi and G2 must be equal. From Eq. (3.14) 
we easily find 

(52 - Si)dT = (V2 - Vi)dp. (3.29) 

We can use Eq. (3.29) as dT —» 0 to relate the slope dp/dT of the equilibrium 
line to the ratio of differences in specific entropy and volume of the two phases 
at equilibrium: 
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dp (s2 - so (3.30) 
(V2 - Vi) " 

This completes the derivation of the Clausius-Clapeyron equation. If one 
wishes, the RHS of Eq. (3.30) can be written in terms of the latent heat of the 
transition, L = T(S2 — Si). 

In Sec. 2.6 we have already used the relationship (3.30) in discussing the 
thermodynamic parameters of melting for the hard sphere system. More gen­
erally, Eq. (3.30) can be used to describe the dependence of the temperature 
Tm of melting on pressure, in the form 

dTm = (Vj - Vs) 

dp Sm 
(3.31) 

where Vi, and Vs are the molar volumes of the liquid and solid phase at co­
existence and Sm is the molar entropy of melting. When the pressures used 

Table 3.2. Thermodynamic parameters of melting for 
alkali halides. 

Salt 

LiCl 

NaF 

NaCl 

NaBr 

Nal 

KC1 

^ m 

(e.u.) 

5.6 

6.2 

6.7 

6.0 

5.6 

6.2 

Table 3.3. 
equation. 

Crystal 

AVm 

(cm3/mol) 

5.88 

5.15 

7.55 

8.02 

8.58 

7.23 

Parameters 

To(K) 

A V m / S m {dT/dp)ohs 

(deg/bar) 

0.025 

0.016 

0.027 

0.032 

0.037 

0.028 

in the Simon 

a (kbar) 

0.0242 

0.0161 

0.0238 

0.0287 

0.0327 

0.0265 

melting 

c 

4 He 
3He 

Kr 

Xe 

In 

Ni 

P t 

Fe 

2.046 

3.252 

115.745 

161.364 

429.76 

1726.0 

2046.0 

1805.0 

0.05096 

0.11760 

2.376 

2.610 

35.800 

1020.0 

1020.0 

1070.0 

1.5602 

1.5178 

1.6169 

1.5892 

2.30 

2.2 

2.0 

1.76 
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are small the quantities on the RHS of Eq. (3.31) can usually be treated as 
independent of pressure: investigations of the melting curve at fairly low pres­
sures have thus provided a general means of evaluating the volume change on 
melting from the more commonly known entropy change. An example for some 
alkali halides is reported in Table 3.2, from the book of Ubbelohde.55 We shall 
discuss in Chap. 8 the empirical relationships that exist between volume and 
entropy changes on melting for a broad class of ionic systems, stressing their 
structural implications. 

Empirical forms of the melting curve have also been proposed from studies 
over moderate pressure ranges. An example for crystals with simple structures 
is the empirical equation of melting due to Simon, which reads 

p - p0 = a (3.32) 

Here, po and To are the pressure and temperature at the triple point, while a 
and c are empirical parameters characteristic of the material. For most systems 
po in Eq. (3.32) can be neglected, and an illustrative tabulation of the other 
constants is given in Table 3.3.56 

With the development of practicable means of applying very high pres­
sures, as are allowed by the diamond anvil cell,57 the study of solid-liquid 
equilibria has been expanding tremendously. Figure 3.1 shows experimental 
data on the melting curve of argon up to 717 K and 60 kbar, as obtained by an 
interferometric technique in a diamond anvil cell.58 Examples of current foci 
of interest in the high-pressure area are (i) the emergence of electron delocal-
isation and metallic conduction in insulators as the overlap of the molecular 
orbits of neighbouring atoms is enhanced by the application of pressure,59'60 

and (ii) the equation of state for planetary materials (especially hydrogen) 
under pressure of astrophysical relevance61 (see Sec. 14.6). 

In Appendix 3.1 explicit examples are given of the use of the Clausius-
Clapeyron equation (3.30) to characterise various kinds of phase transitions. 

3.5 Free Energy from Partition Function 

The evaluation of the Helmholtz free energy through the normalisation condi­
tion on the Gibbs' canonical ensemble is the basic law of equilibrium statistical 
mechanics.52 F(T, V, N) is written in terms of the partition function Q for N 
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Fig. 3.1. Melting curve of argon at high pressure from smoothed piston-cylinder (A) and 
diamond-anvil-cell experiments (o and • ) , and from theory. (Redrawn from Zha et al, 
Ref. 58.) 

particles in an assembly in thermal equilibrium at temperature T as 

F = -kBTlnQ. (3.33) 

The partition function is in turn determined by the spectrum of energy levels 
En of the system under study according to 

Q=YJ9ne-E^T, (3.34) 
all n 

where gn is a degeneracy factor for each energy level. 
As a particularly simple example we consider a set of JVho identical harmonic 

oscillators, as is met in dealing with the vibrational motions in a gas of diatomic 
molecules or in the Einstein model for lattice dynamics. In this case the energy 
levels of each oscillator are 

sn=(n+^\tkj, (3.35) 

Liquid 

i i i i i 
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where w is the angular frequency of the oscillator and the index n can take all 
values n = 0,1,2, The summation in Eq. (3.34) is readily carried out to 
yield the partition function 

e-hu)/2kBT 
Qh° = 1 _ e - ^ / f c B T ' ( 3 - 3 6 ) 

for each oscillator. Hence, the partition function of the assembly of identical 
oscillators is 

Q = (Qho)Nb° (3.37) 

and correspondingly, we find 

-Fko = ^Nhotku + NhokBTln[l - e - * " / * B r ] . (3.38) 

All other thermodynamic functions of this simple model can then be evaluated 
starting from Eqs. (3.10)-(3.12), if one knows the volume dependence (if any) 
of the vibrational frequency. 

Until the final chapter of this book, however, we shall be dominantly con­
cerned with classical liquids, and in the above example this means taking the 
limit such that the thermal energy kBT is very much greater than the level 
spacing hu. Equation (3.38) reduces to 

Fho = NhokBThi(^-], (3.39) 
\kBTj ' 

whence 

Siio = - ( -T^T ) = NhokB 1 - l n 
fkj \ 

(3.40) 

and 

Uho = Fho + TSho = JVhofcBr. (3.41) 

This result will be utilised immediately below to motivate the statement of an 
important physical principle for classical liquids. 
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3.6 Principle of Equipartition of Energy 

A crucial simplification in classical statistical mechanics over the quantal case 
is that the value of the average kinetic energy for a classical assembly in thermal 
equilibrium is independent of the nature of the interatomic interactions and 
is equal to kBT/2 for each degree of freedom of (translational, rotational or 
vibrational) motion. 

3.6.1 Internal energy and other thermodynamic functions 
of a perfect gas 

Let us then consider the model of a monatomic perfect gas, in which we drop 
all interatomic interactions and omit electronic excitations arising only at very 
high temperatures. There are then no internal degrees of freedom and with each 
of the N atoms there are three translational degrees of freedom. Therefore, the 
above principle immediately allows the internal energy U (all kinetic energy in 
this example) to be written as 

U=^NkBT. (3.42) 

We next use the so-called Gibbs-Helmholtz relation, 

which is obtained by combining Eqs. (3.8) and (3.10). The combination of 
Eqs. (3.42) and (3.43) then yields the first-order differential equation 

which integrates to 

F(T, V, N) = -NkBT [in T3 /2 + fn(V/iV)l . (3.45) 

The function of the specific volume V/N, that we have indicated by in(V/N), 
enters Eq. (3.45) as a constant of integration. 

If we now use in Eq. (3.11) the equation of state of the perfect gas, pV = 
NkBT, we easily find fn(VyiV) = ln(V/N) + constant. The full result for 
the Helmholtz free energy, to be obtained from the calculation of the partition 
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function for the case when the energy levels are determined by the translational 
kinetic energy of each atom, is (see e.g. Landau and Lifshitz52) 

wv.«i = -wi.+hfef^v ' 
N V 2TVH2 J 

(3.46) 

In Eq. (3.46) we recognise the role of the thermal de Broglie wavelength A = 
(2nh2/mkBT)1^2, already introduced in Sec. 2.9, in giving a natural unit of 
length for the volume per particle V/N. 

3.6.2 Harmonic oscillator revisited 

In contrast to Eq. (3.42), the internal energy of a classical assembly of Nho 
harmonic oscillators is given by Eq. (3.41). Since each oscillator corresponds 
to one degree of freedom for vibrational motion, the number of oscillators is 
related to the number of particles by iVho = 3JV. We find from Eq. (3.41) that 
the vibrational internal energy in the classical regime is 

Uvih = 3NkBT. (3.47) 

Of course, one-half of the vibrational internal energy in Eq. (3.47) arises from 
the kinetic degree of freedom, according to Eq. (3.42). The other half is as­
sociated with the potential energy of the oscillators. Since the Hamiltonian 
is in this case quadratic in both the momenta and the displacements, both 
sets of dynamical variables contribute the same amount to the internal energy, 
i.e. 3NkBT/2. 

As a final remark, from Eq. (3.47) we find 

Cv = (^r)v
 = 3NkB> (3-48) 

for the specific heat of a set of classical harmonic oscillators. This was antici­
pated in Sec. 3.2.2. 

3.7 Thermodynamic and Other Properties of 
Hard Sphere Fluid 

In addition to the "ideal" term given in Eq. (3.46), the free energy of the hard 
sphere fluid contains an "excess" term due to the excluded volume from hard 
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sphere packing. We write 

F = F i d + F e x , (3.49) 

where from Eq. (3.46) 

Fid = -NkBT[l - ln(pA3)]. (3.50) 

Here, p = N/V and A is the thermal de Broglie wavelength. 
The excess term and other thermodynamic properties of the hard sphere 

fluid can usually be derived with sufficient accuracy from the Carnahan-
Starling equation of state (see Sec. 2.6). This reads 

*» ^Zhs{r])=(l±^Z^l (3.51) 
pkBT~ n & v " ( l - r ^ 

with 7} = 7T/9t73/6 the packing fraction (Eq. (2.6)). We therefore have 

F e x = NkBT fV*/*=<^ = NkBT^M . (3.52) 
Jo rf (1 - T})2 

During the discussion of the structural properties of fluids in Chap. 4 it 
will be shown that within a pair-potentials model the pressure can be obtained 
from the interatomic force weighted by the radial distribution function g(r), 
which gives the probability of finding two atoms in the fluid at a distance r 
from each other. However, in the hard sphere fluid interatomic forces arise 
only between particles at contact: one accordingly finds that the pressure is 
related to the value 9hs(°'+) of the radial distribution function at contact. 
Precisely, 

2h5(r?) = l + 4r?5hs(<7+), (3.53) 

(see Eq. (4.16) and the discussion following it). From Eqs. (3.51) and (3.53) 
one gets 

^ + > = | ^ . (3.54) 

The contact value of g(r) in the Bernal-Scott model was displayed in Fig. 2.1. 
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3.8 Scaling of Thermodynamic Properties for Inverse-Power 
Repulsive Potentials 

From the very elementary examples above, let us turn to the thermodynamic 
properties of again a classical monatomic assembly, but this time with repulsive 
pair interactions described by a pair potential <j){r) having the form 

<P(r)=e{^y. (3.55) 

The merit of this reference system is that, for any inverse-power potential, 
thermodynamic properties are easy to calculate because only a single isotherm, 
isochore or isobar needs to be known: all others can then be determined, as 
discussed by Hoover and Ross.62 This property follows from the partition func­
tion, which for a Hamiltonian H built from pair potentials is written explicitly 
in Appendix 3.2. 

The essential feature to note for present purposes, which follows from the 
partition function constructed from pair-wise additive potentials of the form 
(3.55), is that the (now dimensionless) thermodynamic properties obtained by 
using Eq. (3.33) for F from the partition function depend only on the single 
density-temperature variable, denoted by x below: 

3/n 

(3.56) 

with p = Na3/V. 

3.8.1 Consequence for melting transition 

Along any isotherm, isochore or isobar the melting transition is marked by 
discontinuities in (dp/dV)?, (dp/dT)v, (dT/dV)p: all these derivatives being 
discontinuous at melting and again at freezing (see for example the isotherms 
of the hard sphere system in Fig. 2.4). The discontinuities, which signal the 
start and end of the phase transition, occur at two characteristic values of the 
density-temperature variable, say xs = ps(s/kQT)3^n and xp = p-p{e/k^,T)3/n. 

If we introduce the compressibility ratios Zs and Z-p, with Z = p/pksT, 
for pure phase (solid and fluid) components, then at melting (with i = S or F) 

^ ! = fi+WZixr'* , (3-57) 
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^ ^ p ' " Z i i _ (358) 
and 

'kBT\3/r 

e -) 
Xi. (3 .59) 

Of course, these four constants (a;s, xp, Zs and Zp) characterising the melting 
transition have to be determined by statistical calculations. 

The empirical Simon expression for the melting curve under pressure 
in Eq. (3.32) is in fact exact for "soft-sphere" inverse-power repulsive poten­
tials, with 

c = 1 + - . (3.60) 
n 

Of course, the situation is complicated once an attractive term is included in 
the interactions (see Chap. 4, especially Sees. 4.6 and 4.7). 

Appendix 3.1 Analogues of the Clausius-Clapeyron 
Equation for Other Phase Transitions 

In this appendix we first give as an example the extension of the Clausius-
Clapeyron equation to a first-order transition in a magnetic fluid and then 
briefly refer to the discussion given by Pippard54 for extensions to higher-order 
phase transitions. 

A3.1.1 A magnetic system 

According to the Hellmann-Feynman theorem (see Sec. 3.1.2), the thermo­
dynamic identity for the Gibbs free energy of a magnetic fluid at given 
Wis 

dG = -SdT + Vdp-MdH, (A3.1.1) 

where M is the magnetic moment and H the magnetic field. All extensive 
properties in this equation are per mole and the free energy incorporates the 
field energy of the empty solenoid. 
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The analogues of the Clausius-Clapeyron equation follow immediately by 
the same argument as given in Sec. 3.4, except that here in imposing the equal­
ity G\ = G2 we have to deal with a transition surface instead of a transition 
line. By taking small changes dp, dT and dH on the transition surface we get 
-SidT + Vxdp - MidH = -S2dT + V2dp - M2dH and hence 

dH_ 
8T 

s2 
M2 

V2-

-S, 
- M i ' 

vi 

(A3.1.2) 

fX-K^is (A3-L3) 

^ S*-Sl (A3.1.4) 

and 

dTjH V2-V^' 

The last equation is identical to the standard Clausius-Clapeyron equation. 
The relations holding for a phase transition in an electrically polarised system 
are also evident from the above. 

A3.1.2 Higher-order phase transitions 

For the equilibrium between a superconductor (s) and the normal (n) fluid 
at the critical field Hc, the Meissner effect gives Mn <C Ms = —VsHc/in. 
Equation (A3.1.2) becomes 

0HA = _ 4 T ( ^ ) , ( A 3 X 5 ) 

dT Jp VSHC 

showing that the transition becomes of the second order at the critical tem­
perature Tc where both Hc and (Sn — Ss) vanish. Here we follow Pippard54 in 
adopting Ehrenfest's classification of phase transitions: in a second-order tran­
sition first derivatives of the free energy (such as the entropy) are continuous 
while second derivatives (such as the specific heat) are discontinuous. 

Thus, in a second-order transition we take S and V as continuous, but 
allow for discontinuities in the specific heat Cp and in the volume expansion 
coefficient /?. We need to consider in this case the second-order terms in the 
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equality G\ = G2 on the transition line: 

dp 

~dT 

= {VT) 

dS2\ 
9Tjp~ 

_ l ( C p 2 " 

-m,\ 
-Cpi) 

1 W) -
A dP JT 

\ dP JT 

(A3.1.6) 

This relation, which replaces the standard Clausius-Clapeyron equation, may 
also be rewritten in terms of the compressibility difference between the two 
phases (see Eq. (3.19)). 

Pippard54 goes on to discuss the equilibrium equations holding for phase 
transitions of still higher order and the appropriateness of the Ehrenfest clas­
sification. We must, however, refer the interested reader to the illuminating 
discussion given in his book. 

Appendix 3.2 Partition Function, Phase Space and 
Configurational Integral for Inverse 
Power Repulsive Potentials 

The canonical partition function Q can be formally written as the trace 
of exp(—H/k^T), with H the appropriate Hamiltonian. For a classical 
monatomic fluid this implies an integration over the phase space defined by 
the momenta p* and the positions rj of all the particles (i = 1,2,. . . , N). The 
r e su l t c a n b e w r i t t e n a s 

Q = QidQe 

w h e r e 

Qid N\ U 3 

N 

(A3.2.1) 

(A3.2.2) 

= (2irh2/ is the partition function of the ideal monatomic gas, with A 
mkBT)V2, and 

Qex = V'N dri--- drNexp ~yj 

arises from the potential energy $ ( r i , . . . , rjv) as a function of the positions of 
all the particles. 

(A3.2.3) 
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We also report at this point the structure of the grand-canonical parti­
tion function QQ, that will be needed in Appendix 4.1. The number of 
particles N is allowed to fluctuate in the grand ensemble, and QG is ob­
tained from the trace of exp[(/iiV — H)/kBT] where \i is the chemical po­
tential. Integration over the momenta for a classical fluid yields an expan­
sion in powers of the fugacity z — (mkBT/2nh2)3/2 exp(p/kBT), that is 
QG(Z,T, V) — J2N ZNZN(T,V), where the coefficients are determined by 
Zjv = (JV!)_1 f dri • • • /drjv exp[—^^/feeT]. We also recall that the con­
nection with statistical mechanics is effected through the grand potential 
n = -kBT\nQG. 

Returning to Eq. (A3.2.3), for pairwise additive interactions described by 
the soft-sphere repulsive model in Eq. (3.55) it takes the form 

Qex = V- -N / * , . . . / drjv exp 
"*feT E'iT 

%<j 

(A3.2.4) 

The sum in Eq. (A3.2.4) runs over all pairs of particles. With the definitions 

No3 

P = V 

and 

we then find 

Qe 

v) 
1/3 

- / * - / 
ctejv exp ep' ,n/3 

kBT E-« B 
t<j 

(A3.2.5) 

(A3.2.6) 

(A3.2.7) 

The essential feature to note in Eq. (A3.2.7), as stressed by Hoover and 
Ross,62 is that the Helmholtz free energy (in units of kBT) and other thermo­
dynamic properties depend on the single variable 

X — p kBT 

3 / n 

(A3.2.8) 

some consequences of this being discussed in the main text. 



Chapter 4 

Structure, Forces and Thermodynamics 

4.1 Pair Distribution Function g(r) 

We have emphasised in Chap. 1 that the most basic characteristic of a liquid 
is that it possesses short-range order, as opposed to the long-range periodicity 
of a crystalline solid. We now introduce the appropriate tools to describe the 
short-range order in a monatomic liquid such as argon, or liquid metal sodium. 

The idea is simple enough. One selects out an atom and chooses to "sit on" 
the position of its nucleus as an origin of coordinates while the atom moves 
through the liquid. Then if the number density of the bulk homogeneous liquid 
is p = N/V, where as usual N is the number of atoms in the liquid volume 
V, we define the density that we see as a function of the distance r from the 
atom chosen as origin as pg(r). A statistical average is, of course, implied. So, 
more precisely, g(r) is the probability of finding two atoms in the liquid at a 
distance r from each other and the quantity 4npg(r)r2dr is the mean number 
of atoms inside a spherical shell of radius r and thickness dr, centred on an 
"average" atom. We are evidently taking the liquid as isotropic at this level of 
description. Information on preferred bond angles should be sought from the 
distribution functions of triplets and higher clusters of atoms. 

Since atoms cannot come closer together than an atomic diameter a, then 
g(r) must be essentially zero in the range 0 < r < a. But then, because of 
short-range order, there will be a near-neighbour "shell" of atoms around a 
distance which, for a liquid near the triple point, is close to the corresponding 
near-neighbour spacing in the crystalline solid prior to melting. In contrast 

75 
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though to the long-range order in a crystal, the next near-neighbour shell in 
the liquid is much less prominent, and the next outer shell may hardly be 
visible in g(r). Correlations in atomic positions rapidly die out in a liquid and 
g(r) tends to unity (corresponding to complete disorder) over a distance of a 
few atomic diameters. 

We are thus led to a form of g(r) as was already shown in Figs. 1.8 and 1.9. 
This function can actually be obtained by Fourier transform from data coming 
from a diffraction experiment. Just as the structure of a crystal is determined 
experimentally by observing the Bragg reflections of X-rays or neutrons, liquid 
structure is measured via diffraction. To describe the experimental data, be it 
neutron or X-ray, we next introduce the liquid structure factor S(k). 

4.2 Definition of Liquid Structure Factor S(k) 

One direct way to introduce the liquid structure factor S(k) is via the pair 
distribution function g(r) presented above. Essentially, S(k) — 1 is the Fourier 
transform oig(r) — l, with a number density factor p introduced for dimensional 
reasons. The precise relation is 

S{k)-l=pjdr[g{r)-l}^. (4.1) 

Notice that with this definition we would have S(k) = 1 in a completely dis­
ordered system, corresponding to g(r) = 1 as already remarked. Actually, as 
already indicated in Sec. 4.1, it is S(k) itself which is rather directly accessible 
to neutron or X-ray scattering experiments: from these data g{r) is obtained 
by Fourier inversion of Eq. (4.1). 

Since g{r) is a spherically symmetric function, the volume integral in 
Eq. (4.1) can be reduced to a single radial integration, the angular integra­
tion being completed to yield 

S{k) -l=4np f°° r2dr[g(r) - 1] ̂ ^ . (4.2) 
Jo kr 

We recognise inside the integrand in Eq. (4.2) the interference function 
sm(kr) / (kr) associated with a spherical diaphragm. 

The main feature of the structure factor of a simple monatomic liquid, 
as is for instance reproduced in Fig. 4.1 for liquid sodium63 at 100°C, is a 
prominent main peak reflecting a preferred range of first-neighbour distances. 
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Fig. 4.1. Measured structure factor of liquid sodium at 100°C. (Redrawn from Greenfield 
et oL, Ref. 63.) 

This shows up in the corresponding g(r) through the presence of successive 
shells of neighbours, as we have already noticed in the discussion given in 
Sec. 4.1. The main origin for this type of short-range order lies in the excluded 
volume which is associated with the repulsive core of each atom. It is often 
referred to as topological short-range order, to distinguish it from additional 
types of short-range order such as arise in molten salts and chemically ordered 
alloys (see Chap. 8) and in glasses (see Chap. 10). 

The short-range order in a liquid is enhanced as its temperature is decreased 
towards freezing, as is revealed by the increasing height and the narrowing 
width of the main peak in S(k). We shall discuss the temperature dependence 
of the main peak in S(k) and its connection with the freezing transition in 
Sec. 4.4 below. Let us first briefly record how it is measured in neutron or 
X-ray scattering experiments. 
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4.3 Diffractive Scattering from a Liquid 

To be specific for the latter case, the intensity I(k) of X-rays scattered through 
an angle 20 from a liquid sample (say argon) containing N atoms is given by 

1(h) = N[f(k)]2S(k). (4.3) 

Here, k = 47rsin#/A, with A the X-ray wavelength, is the scattering wave 
number (see Fig. 4.2), while f(k) is the scattering amplitude of a single atom. 
In a completely disordered system (i.e. for S(k) = 1) the intensity results from 
independent scattering processes on the N atoms: the deviations of S(k) from 
unity therefore describe the effects of interference between waves scattered by 
pairs of atoms. Coherence in the scattering arises from short-range order in 
the liquid. 

In Eq. (4.3), since X-rays are scattered dominantly by electrons, the atomic 
scattering factor f(k) results from the ground-state electron density p(r) of a 
single atom: given again by a Fourier transform relation, 

f(k) = jdvp(r)( 
, i k r (4.4) 

Since for an atom of atomic number Z we have J drp(r) = Z, it is clear from 
the definition (4.4) that f(k = 0) = Z. The atomic scattering factor f(k) 
decreases from this value to zero with increasing k, the asymptotic behaviour 
being proportional to k~A. 

An equation of similar form to that in (4.3) holds also for neutron diffrac­
tive scattering. However the fc-dependent factor f(k) for X-ray scattering is 
replaced by a fc-independent neutron scattering amplitude, since the range of 

Fig. 4.2. Illustrating the definition of the scattering angle 29 and of the scattering wave 
vector k as the difference between initial wave vector kj and final wave vector k / of a 
diffraction probe. 
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the nuclear force is much smaller than the neutron wavelengths 2iv/k used in 
these experiments (see, for example the book by Bacon64). On the other hand, 
the neutron scattering cross-section against an atomic nucleus depends on the 
isotopic state of the nucleus. This fact has been very effectively exploited as a 
means to enhance the scattering contrast in multi-component liquids such as 
liquid alloys,65 by suitable changes in the natural isotopic composition through 
isotopic enrichment for one of the atomic components. Examples of structural 
results obtained by the technique of isotopic substitution in neutron diffrac­
tion will be shown in Chap. 8, in regard to structure determination for molten 
salts. 

Returning for the moment to monatomic liquids, we proceed below to 
present the salient features of their structure factor S(k). From time to time 
throughout this volume, we shall have occasion to refer to specific forms of S(k) 
extracted from scattering experiments, or sometimes from computer simulation 
studies. 

4.4 Salient Features of Liquid Structure Factor 

4.4.1 Long wavelength limit and connection with 
thermodynamic fluctuations 

First of all, by arguments from fluctuation theory concerning the long-
wavelength density fluctuations in a classical atomic fluid (see the brief ac­
count already given in Sec. 3.3), we can obtain the long wavelength limit (wave 
number k -> 0) of 5(fc) as 

S(k = 0) = 5(0) = pkBTKT. (4.5) 

In Eq. (4.5) p is the number density N/V and KT is the isothermal com­
pressibility. The main point is that 5(0) is proportional to the mean square 
fluctuation in the number of atoms contained in a given volume, and this is in 
turn measured by KT-

The latter thermodynamic quantity is usually available from laboratory 
experiments using thermodynamic or ultracoustic techniques and it proves to 
be very important in dense liquids, such as argon near its triple point or liq­
uid sodium just above the melting point, to know 5(0), for the diffraction 
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measurements of S(k) must eventually join continuously with the long-
wavelength limit S(0). 

Small-angle (i.e. small k) scattering experiments are very important for 
a full characterisation of the liquid structure. We shall discuss the small-
angle scattering behaviour for liquid argon near the triple point in Sec. 4.6.3 
below. 

4.4.2 The Hansen-Verlet freezing criterion 

Less fundamentally based than Eq. (4.6), but nevertheless of importance is the 
so-called Hansen-Verlet criterion.66 As a liquid like argon is cooled down, the 
height of the principal peak in S(k), at k = km say, increases and the Hansen-
Verlet criterion asserts that the liquid will freeze when this peak reaches a 
height given by 

5(A: m )^2 .8 . (4.6) 

This criterion for freezing, which was originally proposed for Lennard-Jones 
liquids, turns out to be of wider applicability. Thus, Ferraz and March67 noted 
that a classical plasma would freeze under the same condition and compared 
this with experiment for the alkali metals Na and K. 

The so-called "density wave" theory of freezing (see Kirkwood and 
Monroe68 for early work; then see especially Ramakrishnan and Yussouff69) 
leads rather naturally to such a freezing criterion. The essential point is that 
the fluctuation-theory result given in Eq. (4.5) can be generalised to arbitrary 
wave number k. 

Consider subjecting a classical liquid to an external potential which is pe­
riodic in space with a periodicity corresponding to a given wave vector k. If 
the strength of the external potential is sufficiently weak that the response of 
theliquid lies in a linear regime, this response will merely be a modulation of 
the liquid density at the same wave vector k. We may ask about the work done 
in creating such a density modulation, as a function of the modulus k of the 
wave vector k. Just as the value of S(k = 0), being proportional in Eq. (4.6) 
to the isothermal compressibility measures the softness of the liquid against 
squeezing under uniform pressure, so the value of S(k) at any k measures the 
softness of the liquid against a density modulation induced by a periodic ex­
ternal potential. By "softness" we mean that the work needed to create the 
density modulation at given k is inversely proportional to the height of S(k) 



Salient Features of Liquid Structure Factor 81 

at that value of k. This is an exact result in statistical mechanics, following 
from the general theory of linear response for a fluid subject to static external 
forces70 (see Appendix 4.1). 

Thus, as the value of S(km) is observed to increase with decreasing tem­
perature towards the freezing point, it signals an increasing softness of the 
liquid against modulation by density waves having wave vectors of magnitude 
near km — until, when the approximate relation (4.7) is satisfied, such den­
sity waves are spontaneously locked into the liquid as its transition to the 
crystalline phase takes place. 

The density-wave theory of freezing predicts that the phase transition from 
liquid to solid in a monatomic system is governed by a balance between a 
gain of free energy from volume contraction and a loss of free energy incurred 
in the spontaneous density modulation which changes the uniform density 
profile of the liquid into the periodic profile of the crystal. A first-order phase 
transition is predicted in this way, in accord with the behaviour of simple 
real systems such as argon or sodium: Namely, the bulk liquid phase becomes 
thermodynamically unstable against crystallisation, but remains mechanically 
stable and could thus be undercooled by appropriate means. A mechanical 
instability of the liquid phase would instead correspond to a divergence in the 
value of S(km) and would prevent supercooling of the liquid state. 

According to this interpretation of the liquid-solid phase transition, the 
position of the main peak in the liquid structure factor should correspond 
to the main crystalline periodicity (the first set of reciprocal lattice vectors, 
according to crystallographic terminology). A loose correspondence between 
liquid-state order in wave number space and the locations of the first one or 
two sets of Bragg diffraction spots from the crystal is indeed observed in simple 
systems. 

4.4.3 Relation between the main features of the peak in the 
structure factor 

We shall elaborate below on the relation between the Lindemann criterion for 
melting and the Hansen-Verlet criterion for freezing. The work of Bhatia and 
March,71 though proposed to relate more generally the height, position and 
width of the principal peak of the structure factor S(k) of dense monatomic 
liquids, supplies such a relationship. The aim will simply be to exhibit a 
correlation between the two different approaches to the phase transition. 



82 Structure, Forces and Thermodynamics 

Let us first examine, therefore, how the above three main features of the 
peak in S(k) are related to each other. We start from the fact that in a 
dense classical liquid, because of excluded volume requirements (see Chap. 2), 
the pair distribution function g(r) must vanish for values of the interatomic 
separation r shorter than the atomic diameter. In particular, g(r) must satisfy 
g(r = 0) = 0. Using the Fourier transform relation (4.1), this condition can be 
written as 

2 T T V 

/ • O O 

/ k2[l - S(k)]dk. (4.7) 
Jo 

An approximate evaluation of the integral in Eq. (4.7) can be achieved as 
follows. With km denoting as above the position of the main peak of S(k), 
let 2Ak be the peak width as measured by the separation between the two 
adjacent nodes of [S(k) — 1] embracing km. Furthermore, make the (in general 
reasonable) assumption that any asymmetry of the peak about km is sufficiently 
weak to be neglected. If Eq. (4.7) is now expressed as 

/-fcm-Afc /-fem+Afc 

2TT2
P = / fc2[l - S{k)]dk + / k2[l - S(k)]dk 

J0 Jkm—Ak 

/ •oo 

+ / k2[l-S{k)]dk, (4.8) 

then the following approximations prove useful: (i) to take S(k) = 0 over the 
range of the first integral in (4.8); (ii) to neglect the third integral in (4.8), 
due to the oscillations of S(k) — 1 around zero; and (iii) to estimate the second 
integral by the triangular area [S(km) — Ijk^Ak. 

Using the above simplifications and writing p = 3/(47r.RA), it is readily 
verified that S(km)k2

nAk « ^fc^Jl - ^(i^A^m) - 3]- Empirically it is found for 
dense liquids that î A^m * 4.4 and the second term in the brackets contributes 
0.15 compared to unity. Thus one has the result 

S(km) « ^ • (4.9) 

It is now instructive to compare the approximate prediction (4.9) with the 
accurate neutron diffraction data of Yarnell et al.72 on liquid argon at 85 K. 
One finds from their data that S(km) = 2.70, km = 2.00 A - 1 and AA; = 
0.275 A - 1 , yielding the value S(km)Ak/km = 0.37, which is nearer to 3/8 
than the predicted 0.3 in Eq. (4.9). It is also satisfactory that the X-ray data 
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of Greenfield et al.63 on liquid potassium at 65°C yield S(km) = 2.73, km = 
1.62 A - 1 and k — 0.225 A - 1 , and hence a constant of 0.38, whereas from their 
experiment on potassium at 135°C the constant is 0.37. Similarly from their 
experiment on sodium at 100°C and 200°C the measured data yield 0.37 and 
0.36. Thus, for the above five examples, it emerges that Eq. (4.9) is quantitative 
provided 0.3 is replaced by 3/8. The fact that this is greater than 0.3 seems 
to point to the third integral in Eq. (4.8) having a non-zero negative value. 

Turning to the features of the main peak in the pair distribution function 
g(r), an estimate of S(0) from Eq. (4.1), carried out with similar assumptions 
to those made above, leads to 

g{rmymAr = ±r3
m - ± /&[l - 5(0)], (4.10) 

with definitions paralleling those for S(k). Since g(r) is less readily accessible 
than S(k), no comparison of Eq. (4.10) with experiment will be attempted. 
However, again using the data of Yarnell et al.72 on liquid argon at 85 K, one 
has g(rm) = 3.05, Ar = 0.545 A and rm = 3.68 A. The value of rm/Ar is 6.7, 
to be compared with km/Ak = 7.2. Thus, quite approximately, 

^ » 12 . . (4.11) 
Afc Ar V J 

4.4.4 Verlet's rule related to Lindemann's melting criterion 

To return now to the melting and freezing criteria of Lindemann and of Hansen 
and Verlet respectively, let us use the above estimates. For Ar, Na and K, where 
freezing at standard pressure involves only minor changes in local coordination, 
the use of S(km)\xm = 2.8 at the melting temperature Tm yields the estimate 
(Ar/rm) |Tm ~ 0.11 from Eqs. (4.9) and (4.10). Lindemann's law of melting 
gives (Ar/i?A)|rm ~ 0.2 if one is allowed to identify Ar as the root-mean-square 
displacement of the atoms in the solid near melting.73 Since rm = 1.8i?A, the 
two results are in approximate agreement. 

Thus, the main conclusion of the above argument is that there is no dif­
ficulty in reconciling the Hansen-Verlet freezing criterion with Lindemann's 
melting rule. 
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4.5 Internal Energy and Virial Equation of State with 
Pair Forces 

Whereas the relationship (4.5) for a classical monatomic liquid is independent 
of the specific model adopted for the interatomic forces, we shall here display 
two further relations between liquid structure and thermodynamics which are 
valid only within pair-potential models. They both depend on using the quan­
tity <±Trpg(r)r2dr to count the average number of pairs of atoms at separation 
r (see Sec. 4.1). 

In a classical monatomic liquid at temperature T, the kinetic energy 
per degree of freedom is kBT/2 (see Sec. 3.6) and the internal energy can 
be written as 

U=^NkBT+{$), (4.12) 

($) being the mean potential energy. If $ is written as the sum of pairwise 
interactions, then 

"=i Nk*T+uZ>(*«))' (4-13) 

where Rij is the separation between atoms i and j and the factor 1/2 corrects 
for the fact that each atom pair enters the sum twice. Prom the definition of 
g(r) Eq. (4.13) can be rewritten as 

3 1 f°° 
U = -NkBT + -NAirp / r2g(r)<j>(r)dr . (4.14) 

2 2 J0 

We thus have a way to evaluate, within a pair-potentials model, the thermo­
dynamic internal energy of a fluid from its pair distribution function. 

Similarly, the equation of state can be obtained through the classical virial 
theorem, going back to Clausius, which relates the average kinetic energy (K) 
to the virial of the forces. The virial of the pressure is 3pV, yielding for a 
perfect gas 2{K) = 3pV. More generally, 

PV = NkBT+UY/Ri-Fi\ . (4.15) 

Here Rj and F , denote respectively the vector position of the ith particle and 
the total force on this particle due to the remaining particles. Using again the 
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definition of g(r), for a fluid of identical spherical particles interacting via a 
central pair potential Eq. (4.15) takes the form 

p = pk}iT - ^ p 2 f°° r3g(r)^-dr. (4.16) 

This Eq. (4.16) was anticipated in Chap. 3 and will be used in Sec. 4.8 to 
discuss properties of a fluid such as argon at its critical point. 

For the hard sphere fluid, the interatomic force —(d(f>(r)/dr) is different 
from zero only at contact, i.e. for r equal to the hard sphere diameter a. As 
anticipated in Sec. 3.7, Eq. (4.16) then yields p = pkBT[l + 2Trp<r3g(a+)/3], 
with g(&+) the value of the pair distribution at contact. 

A form of the equation of state, which is recorded in standard physical 
chemistry texts,74 comes into its own in the context of critical behaviour. This 
is Dieterici equation of state, and we outline in Appendix 4.2 a derivation, 
following the arguments of Blinder.1 

4.6 Ornstein-Zernike Direct Correlation Function c(r) 

A further valuable quantity, going back to the pioneering studies of Ornstein 
and Zernike75 on critical phenomena, is the direct correlation function c(r). 
Though these workers defined c(r) from h(r) = g(r) — 1 (h(r) is often called 
the total correlation function), it is most simply defined in k space where the 
Fourier transform of c(r), denoted by c(k) below, is related to S(k) by 

i-c(*) = ^ y - (4-17) 

Why should c(k) be interesting when it is so directly related to 5(fc)? 
One answer is that it changes the emphasis put on the fc-space experimen­
tal data for S(k). Thus, 5(0) near freezing is often = 0.01 to 0.06, which 
means from Eq. (4.17) that c(0) = -100 to -20 . But at km, using Eq. (4.6), 
c(km) = 0 . 7 and suddenly all emphasis has been moved from an S(k) picture 
"dominated" by S(km) to a c(fc) description dominated by k -C fcm (see Fig. 4.3 
from Ashcroft and March76). Details on the relevance of c(k) to critical point 
behaviour will be given in Sec. 4.8. 

In fact, according to Eq. (4.5) we have for a classical atomic fluid the result 

pkBT[l - c(k -»• 0)] = ^ - . (4.18) 
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O 

Fig. 4.3. Direct correlation function in k space for fluid argon at 84 K. Experimental data 
(dash-dotted line) are compared with results calculated in slightly different ways for the hard 
sphere fluid. (Redrawn from Ashcroft and March, Ref. 76.) 

Since pk#T is the value of the isothermal bulk modulus for an ideal classical 
gas, Eq. (4.18) shows that the quantity —pks,Tc{k —¥ 0) measures the contri­
bution of the interatomic forces to the isothermal bulk modulus of the fluid. 
More generally and recalling the arguments given in Sec. 4.4.2, the function 
—pk#Tc(k) gives the non-ideal term in the mechanical stiffness of the fluid 
against a modulation of its density by a weak periodic potential having wave 
vector k. It is this meaning as a mechanical-stiffness function, and its connec­
tion to the interatomic forces which is implied by the definition (4.17), which 
makes the function —pk^,Tc{k) so important in the context of liquid-structure 
theories. 

Ornstein and Zernike, while focusing on critical point behaviour, recognised 
that in dense monatomic liquids usefully described by a pair potential c{r) is 
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rather directly connected with (f>(r). Indeed, well away from the critical point, 
it is widely accepted that 

<r) - - ^ (4.19) 

at sufficiently large r. Generally, it can be said that there is rich content on 
detailed interatomic forces in diffraction measurements of liquid structures. 
Methods are now emerging by which, in appropriate cases (e.g. argon and 
sodium) <j)(r) can be extracted by "inverting" the measured liquid structure 
factor.77,78 Nevertheless, it is also true that the gross features of the short-
range order in a simple monatomic liquid can be mimicked by a hard sphere 
model: such a structural description based on one particular liquid structural 
theory, which yields analytic results for the direct correlation function c(r), is 
set out immediately below. 

4.6.1 Direct correlation function from Percus-Yevick 
theory for hard spheres 

In the hard sphere model the fluid particles are perfectly impenetrable and 
therefore the pair distribution function g(r) is exactly zero over the whole 
range of interatomic distance lying inside the hard sphere diameter a: 

g{r) = 0 (for r < a). (4.20) 

In the liquid structure theory due to Percus and Yevick,79 this exact statement 
for the hard sphere model is combined with an approximate statement on the 
relationship between the direct correlation function c(r) and the pair potential 
0(r), extending Eq. (4.19) away from the asymptotic (r -> oo) regime. In 
the hard sphere model, with <f>{r) = 0 down to the hard sphere diameter, this 
approximate relationship is 

e(r) = 0 (for r > a). (4.21) 

It was independently noted by Thiele80 and by Wertheim81 that the condi­
tions (4.20) and (4.21) allow a full analytic determination of c(r) when one uses 
them in the Ornstein-Zernike relation (4.17), written after Fourier inversion 
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as a general relationship3 between g(r) and c(r): 

g{r) - 1 = c(r)+pjdT'c(\r - v'\)[g(r') - 1]. (4.22) 

Making use of Eq. (4.20), the result is to supplement the expression (4.21) for 
c(r) outside the hard sphere diameter a with a cubic-polynomial expression 
for c(r) inside a: 

c(r) =a0 + a1 (-) + a3 ( - ) for r < a . (4.23) 

Here, the coefficients a; are expressed in terms of the packing fraction T) = 
7T/9<73/6 as follows: 

(1 + 2,7)2 
a0 ( I - ' ? ) 4 ' 

671 {' + 2) (4.24) 
H l = ( I - . ) 4 ' 

1 T?(1 + 2r?)2 

Q3~ 2 ( 1 - ^ ) 4 • 

The Fourier transform c(k) of c(r) in Eqs. (4.21) and (4.23) can also be eval­
uated analytically, and hence an analytic expression for S(k) follows with the 
help of Eq. (4.17). 

Let us consider in particular the long-wavelength relationship (4.18). After 
some calculation one finds 1 — c(0) = — ao and hence 

{%)T-&>+*,*1-')-t- (4'25) 
Integration of Eq. (4.25) yields the equation of state of the hard sphere fluid 
in the form 

p = ^ B r ( l + 7? + r ?
2 ) ( l - 7 7 ) - 4 , (4 .26) 

a The Fourier transform of the convolution integral in Eq. (4.22) is the simple product of 
the Fourier transforms: thus Eq. (4.22) yields S(k) - 1 = c(k) + c(k)[S(k) - 1], which is 
Eq. (4.17). 
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30-

20-

Fig. 4.4. Models for the fluid branch of the isotherm of the hard sphere system. The solid 
line is from simulation data and is well reproduced by the Carnahan-Starling equation of 
state. The dashed line marked 2 represents the Percus-Yevick compressibility equation of 
state, Eq. (4.26). The other dashed lines are alternative evaluations of the fluid isotherm. 
(Redrawn from Rowlinson, Ref. 83.) 

Table 4.1. Values of Ornstein-Zernike function for some 
liquid metals near freezing. 

Metal -c(r = 0) -c(fc = 0) Ratio c(r = 0)/e(fc = 0) 

1.0 

1.0 

1.1 

1.3 

1.3 

1.0 

0.9 

0.8 

0.8 

0.2 

0.4 

0.3 

1.0 

0.8 

0.7 

Na 
K 
Rb 

Cs 
Cu 

Ag 
Au 
Mg 

Al 
Ca 

Pb 
Sn 
Fe 

Ni 
Co 

43 
42 
45 

50 
60 
51 
35 
31 

45 
34 

44 
40 

46 
41 
35 

41 
40 
42 

38 
47 
53 
38 
39 
54 
200 
110 
140 
48 
50 
50 
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as first obtained by Reiss, Prisch and Lebowitz.82 This result should be com­
pared with the Carnahan-Starling equation of state in Eq. (2.6), which was 
obtained from a fit of the simulated isotherms of the hard sphere fluid. There 
is good numerical agreement between these two analytic forms of the equation 
of state on the fluid branch,83 as can be seen from Fig. 4.4. 

The relation 1 — c(0) = — ao coming from the Percus-Yevick theory of the 
hard sphere fluid implies that the ratio c(0)/c(0) is near to unity. A direct test 
of this approximate theoretical result against experiment for a number of liquid 
metals is reported in Table 4.1, from Bernasconi and March.84 More generally, 
the essentially geometric packing problem for a dense monatomic liquid is well 
described by the hard sphere model, as is shown by numerous comparisons 
with experimental data on S(k) e.g. on liquid metals near freezing. 

4.6.2 Softness corrections to the hard sphere potential 

Considerable detailed refinements have been developed in liquid structure the­
ory, taking full advantage of the computer simulation techniques. In particular, 
much effort has been devoted to the question of how best to correct the thermo­
dynamic properties and the pair distribution function of the hard-core fluid for 
the finite steepness of the repulsive potential in real fluids. A very successful 
scheme has been proposed by Andersen et al.S5 Defining the function 

y ( r ) = 5 ( r ) e ^ ) / f e B T , (4.27) 

where (f)(r) is the pair potential taken, however, to be purely repulsive, and 
similarly introducing the function yhs(r) for the hard sphere fluid, these authors 
show that the relation 

y(r) = Vhs(r) (4.28) 

holds to first order in the range of the deviation between the two potentials 
provided that the hard sphere diameter a is suitably chosen. This simple 
approximation yields excellent agreement with Monte Carlo data on the equa­
tion of state, at the expense of having an effective hard core diameter which is 
dependent on temperature and density. 

The results for S(k) obtained by this approximation are compared with the 
molecular dynamics results of Verlet86 for a Lennard-Jones fluid in Fig. 4.5, 
from work by Chandler and Weeks.87 The agreement is especially remarkable 
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o s 10 " ka 

Fig. 4.5. Structure factor of a fluid having the same repulsive interactions as in the Lennard-
Jones potential, in an expanded hot-fluid state (state 1) and in a dense cold-fluid state 
(state 2), compared with simulation data for the full Lennard-Jones potential (• and A ) . 
(Redrawn from Chandler and Weeks, Ref. 87.) 

because the theory has omitted the attractive part of the potential, but evi­
dently the latter becomes noticeable at relatively small wave number and that 
only in low-density states of the fluid. 

4.6.3 Small angle scattering from liquid argon near 
triple point 

We return to the asymptotic relationship (4.19) between the direct correlation 
function c(r) and the assumed pair potential <j){r), to record how it was used 
by Enderby et al.S8 to evaluate the small-angle (neutron or X-ray) scattering 
from a classical Lennard-Jones liquid such as argon near its triple point. This 
theory was subsequently brought into contact with the neutron scattering data 
of Yarnell et al.72 by Matthai and March.89 

To summarise all this, (j)(r) tends to the van der Waals attraction —Ce/r6 

at large r in argon (if retardation effects are neglected: a good approximation 
here). Use of Eq. (4.19) and simple Fourier transform theory then has the 
consequence that c(fc) has a fc3 term at small fc: 

c(fc) = c(0) + c2fc
2 + c3fe

3 + • • • , (4.29) 
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where C3 = n2pCe/12kBT. It follows from Eq. (4.17) that S(k) has a similar 
small-A; expansion. 

4.7 Thermodynamic Consistency and Structural Theories 

As we have seen, three routes to the isothermal compressibility are available 
for the theory. One is via the fluctuation formula in Eq. (4.5), the second is 
through the first density derivative of the virial pressure in Eq. (4.16), and 
the third is via the second density derivative of the Helmholtz free energy 
in Sec. 3.2. These three routes to the compressibility, which naturally in an 
exact theory will yield identical values for KT, in approximate liquid structural 
theories allow one to explore "thermodynamic inconsistencies". The following 
discussion is limited to a density-independent pair potential description, which 
is a useful starting point for liquid argon (not for a liquid metal such as sodium, 
where the valence electrons belong to the liquid as a whole and lead to electron-
mediated interactions which have an important density dependence). 

4.7.1 Consistency of virial and fluctuation compressibility: 
Consequences for c(r) 

The fluctuation-theory route to the compressibility in Eq. (4.5) is readily re-
expressed as 

(feBr)"1(^) =l~pjdvc{r). (4.30) 

It is now illuminating to compare this equation with the density derivative 
of the virial equation of state. After some manipulation, following Kumar 
et a/.,90 the equivalence of these two equations is ensured provided the following 
condition is obeyed: 

-pr2c(r) = ^ T ^ d r [pVg(r)] + F(r; p, T), (4.31) 

where the function F(r) must integrate to zero. 
Equation (4.31) suggests91 that c(r) may be written as the sum of two 

parts, 

c ( r ) = c p ( r ) + c c(r) , (4.32) 
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where the "potential" part cp(r) is defined by the first term on the RHS of 
Eq. (4.31) and the so-called "cooperative" part cc(r) can be anticipated to be 
short-range compared with cp(r), except when cooperative effects are known 
from physical arguments to dominate, such as near the critical point. Unfor­
tunately to date cc(r) is only known precisely for a few simple models. 

4.7.2 A route to thermodynamic consistency in 
liquid-structure theory 

The primary aim of structural theories for classical monatomic liquids is to 
evaluate the pair distribution function g{r) from a given pair-potential model 
for the interatomic forces. The availability of computer simulation data ob­
tained with the same model allows useful tests of the statistical mechanical 
approximations which underlie the theory. In this section we shall briefly 
present two such approaches: the Percus-Yevick (PY) approximation, that we 
have met in Sec. 4.6.1 in connection with the structure of the hard sphere 
fluid, and the hypernetted-chain (HNC) approximation. We shall then return 
on thermodynamic consistency via an interpolation procedure between these 
approximate theories. 

In both the PY and the HNC approximation, the (exact) Ornstein-Zernike 
relation between c(r) and g(r) in Eq. (4.22) is combined with an approximate 
"closure" relation bringing the pair potential into the problem. The best choice 
of closure depends on the character of the pair potential, as we discuss imme­
diately below, and can be justified from the study of diagrammatic expansions 
for the correlations between atomic positions.92 

The PY closure for the hard sphere potential is given in Eq. (4.21). More 
generally, the PY closure relation for a pair potential 4>{r) is 

c(r) = h(r) + 1 - * > • * ( $ ) ' 
(4.33) 

with h(r) = g(r) — 1, yielding back Eq. (4.21) in the case of hard spheres. 
Experience has shown that Eq. (4.33) is quite a useful approximation when 
<j>(r) is very short-ranged and leads to a good representation of the main peak 
in g(r) for a liquid such as argon near its triple point. 

The HNC closure relation reads instead as follows, 

c(r) = h(r) — In 
* > - ( $ ) ' 

(4.34) 
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Again, it is a matter of practical experience that Eq. (4.34) works best for 
systems where the interactions are long-ranged, but underestimates the role of 
short-range repulsions in determining the shape of the main peak in g(r). A 
merit of the HNC is that it embodies self-consistency between virial and free 
energy pressure,93 although it contains an important internal inconsistency 
with the fluctuation-theory formula (4.5). 

In fact, it is an exact result of statistical mechanics that the pair distribution 
function g(r) is related to the pair potential </>(r) by 

g(r) = exp 
kBTj 

+ h(r) - c(r) + b(r) (4.35) 

where the so-called bridge function b(r) is defined through an infinite series of 
correlation diagrams. The HNC closure in Eq. (4.34) follows from Eq. (4.35) 
by setting b(r) to zero. 

A rather successful proposal in liquid structure theory has been made by 
Rosenfeld and Ashcroft,94 who drew attention to the behaviour of the bridge 
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Fig. 4.6. Radial distribution function of the Lennard-Jones fluid near the triple point. 
The hypernetted-chain result ( ) and its modification through inclusion of thermody­
namic consistency ( ) are compared with simulation data. (Redrawn from Rosenfeld and 
Ashcroft, Ref. 94.) 
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function in the excluded-volume region at short interatomic distances. They 
accordingly evaluated b(r) from the PY theory of the hard sphere model. The 
packing fraction of this model enters as a parameter, and its value may be 
chosen so as to achieve consistency between virial and fluctuation compress­
ibility. Figure 4.6 gives an illustration of the improvements in the predictions 
on liquid structure from given pair potentials, which accompany the improved 
thermodynamic consistency of the theory. 

In conclusion, we remark that in a classical monatomic liquid the pair dis­
tribution function is exactly related to the distribution function of triplets of 
particles through an assumed interatomic pair potential. The derivation of 
this so-called force equation in the grand-canonical ensemble is reported in 
Appendix 4.3. This approach leads into the Born-Green-Yvon hierarchy of 
integral equations relating the many-particle distribution functions of succes­
sively higher order. Truncations of the hierarchy yield alternative approximate 
approaches to the theory of liquid structure. 

4.8 Liquid-Vapour Critical Point 

So far we have been mainly dealing with liquids in the region of the triple point, 
where liquid and solid densities are comparable. In this section we discuss the 
region near the critical point, where liquid and gas densities become compa­
rable. Indeed, for the liquid-vapour transition an important thermodynamic 
variable is the difference p\ — pv between the liquid and gas densities. This 
is zero in the "disordered" single-fluid phase above the critical temperature 
Tc and becomes non-zero below Tc. This is the behaviour typical of an order 
parameter. 

4.8.1 Critical constants for insulating fluids and expanded 
alkali metals 

The most common definition of the liquid-gas critical point is that state at 
which the isotherm has a point of inflection satisfying 

Critical constants for a variety of (mostly insulating) substances1 are recorded 
in Table 4.2. 
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Table 4.2. Measured critical constants for liq­
uid—vapour coexistence. 

Substance TC(K) pc (atm) Vc (cm3 /mol) 

44.3 

74.6 

92.1 

123.4 

90.0 

94.2 

172.7 

55.4 

55.2 

72.0 

90.0 

74 

99 

171 

256 

310 

367 

40.1 

Ne 

Ar 

Kr 

Cl2 

CO 

C 0 2 

cs2 
H 2 0 

D 2 0 

NH 3 

N2 

o2 
CH4 

CH3COOH 

C 6 H 6 

n-C5Hi2 

n-CeHi4 

Hg 

44.7 

150.9 

209 

417.1 

134 

304 

546 

647 

645 

406 

126.0 

154 

190 

595 

562 

470 

508 

1735 

26.9 

48.3 

45.2 

76.1 

34.6 

72.8 

72.9 

218 

219 

112 

33.5 

50 

46 

57 

48 

33 

30 

1042 

Density, g/cmJ 

Fig. 4.7. Density of liquid and saturated vapour as function of temperature for n-pentane. 
Their average ( ) follows a straight line on the scale of the figure. 
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Table 4.3. Compressibility ratio at critical point for insulating fluids and 
alkali metals. 

Substance: H2 He N2 0 2 Ar Kr Xe CO 

Zc 0.33 0.32 0.29 0.29 0.29 0.29 0.29 0.28 

Substance: Li Na K Rb Cs 

Z c 0.064 0.132 0.175 0.217 0.203 

For a particular insulating substance, n-pentane, the coexistence curve in 
the density-temperature plane is plotted in Fig. 4.7. This illustrates the so-
called "law of rectilinear diameters", which appears to be traceable back to 
Cailletet and Mathias in 1886, but which is now known to be restricted in its 
applicability. The assertion here is that the mean density of the liquid and its 
saturated vapour is a linear function of the temperature. Major deviations are 
known, however, for fluid metals near the critical point (see below). 

Table 4.3 reports values of the compressibility ratio Zc = Pc/Pc^B^c at 
the critical point for both insulating fluids and alkali metals.95 As discussed 
in Appendix 4.2, the Dieterici equation of state gives a good account of the 
measured value Zc = 0.29 for the heavier rare-gas systems Ar, Kr and Xe, 
yielding Zc = 0.27.96 From the virial equation of state (4.16), this fixes for 
these systems the value of a structural integral at the critical point,97 

This result is independent of the excluded-volume parameter in the equation 
of state — a satisfactory result since, as was already known to Ornstein and 
Zernike (see below), the pair distribution function g(r) becomes very long-
ranged as the critical point is approached. 

Rather different and system-dependent values are taken by the critical 
compressibility ratio in the alkali metals (see Table 4.3). The pioneering ex­
periments of Hensel and coworkers98 on liquid Cs and Rb taken along the 
liquid—vapour coexistence curve towards the critical point have shown that the 
main lowering of the density that occurred was reflected in their structure fac­
tors measured by neutron scattering through a lowering of the coordination 
number z, with only a modest increase in the near-neighbour distance. These 
experiments testify to the value of a "chemical" picture in expanded alkali met­
als, in which the bond is the basic building block. A coordination-dependent 
equation of state,99 which can be justified by glue models of cohesion in metals, 
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is consistent with the variation of Zc through the alkali series and leads to the 
relation 

Tcyc
1/3 = constant. (4.38) 

This result is required from the empirical analysis of Chapman and March95 

who gave the exponent in Eq. (4.38) as 0.3. 

4.8.2 Ornstein-Zernike theory and critical exponents 

From Eq. (4.36) it follows that the isothermal compressibility KT and hence 
S(0), the long wavelength limit of the structure factor, diverge at the critical 
point. The original argument of Ornstein and Zernike75 for the form of g(r) — 
1 = h(r) near the critical point started out from Eq. (4.22) for the direct 
correlation function c(r). They made in essence two assumptions: (i) that c(r) 
is short-ranged compared with h(r), which is only true near the critical point; 
and (ii) that h(r') in the integral in Eq. (4.22) can be Taylor expanded around 
the point r up to second-order terms. A straightforward calculation leads to 
the asymptotic solution 

h(r) oc r - 1 e - r / £ , (4.39) 

where £ oc [1 — c(0)] - 1 /2 = [5(G)]1/2 has the meaning of a correlation length 
between density fluctuations. Evidently, this length diverges as the critical 
point is approached. 

While these results are useful first approximations, the modern theory of 
criticality100 requires two independent exponents to describe the long-range 
correlations between density fluctuations. That is, near the critical point the 
total correlation function has the asymptotic form 

h(r) oc r2-d-r>e-r/i , (4.40) 

where d is the dimensionality of the system and the correlation length has the 
form £ oc t~u, where t = \T — Tc\/Tc is the reduced temperature. At the same 
time, the form of KT at the critical density pc is KT oc t - 7 and the difference 
between liquid and gas densities is pi — pv oc t@. 

The experimental evidence on the liquid-vapour transition in insulating 
fluids indicates that the exponent r? is small ( « 0.1) and yields v « 0.6, 7 « 1.1 
and (3 w 0.35 (see Sec. 4.8.4). 
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4.8.3 Scaling relations 

The definitions of the exponents which characterise the singular behaviours of 
physical properties near the critical point are usually introduced using a lan­
guage specific to spin magnetism. In addition to the four exponents introduced 
above (with KT becoming the susceptibility \ a n d Pi — pv the magnetisation 
M), two further exponents are introduced. These give the behaviour of the 
heat capacity in zero field, C oc t~a, and of the order parameter as a function 
of the field H at t = 0, M oc Hl/S. 

Experiments on critical behaviour show that very different systems can have 
closely similar values of the critical exponents. The exponents have universal 
character in the sense that, while they depend on the dimensionality d of the 
system and on the number n of components of the order parameter, they do not 
depend on the details of the interactions. Furthermore, some simple relations 
exist between the values of the various critical exponents. These facts have led 
to the concept of scaling, which underlies the renormalisation-group theory of 
critical phenomena. 

The crucial aspect of criticality is the divergence of the correlation length 
£ on the approach to the critical point. The scale of order in the system, 
as measured by £, increases indefinitely and hence the configuration of the 
system becomes invariant under a change in scale. In the so-called homo­
geneity hypothesis101 one assumes that the correlation function changes like a 
homogeneous function of the variables r, H and t under a change in scale: 

h(r;H,t) = b2yh(r/b; by>H, bvH), (4.41) 

for any b, when r is large and H and t small. This hypothesis leads to the 
following relations: 

a + 2/3 + 7 = 2 

7 = (3(6-1) 

7 = (2 - n)v 

a = 2 — dv 

These relations are satisfied by the critical exponents in the exact solution of 
the Ising model in d = 2 given by Onsager102 (a = 0, /3 — 1/8, 7 = 7/4, v = 1, 
S = 15,7? = 1/4). 

(4.42) 
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Let us briefly see how the relations (4.42) between the critical exponents 
can be proved within the homogeneity hypothesis. Taking H = 0 and b = r 
we have h(r;0,t) = r2yh(l;0,rV2t), yielding by comparison with Eq. (4.41) 
2y = 2 — t) — d and y2 = l/v. For the scaling of the susceptibility we now have 
from the fluctuation-theory formula 

kBTX{H,t)= fddrh(r;H,t)= fddrh(r/b;byiH,byH) 

= kBTb2v+d
X(byiH, byH). (4.43) 

Setting H = 0 and bv* = l/t we find x(0,t) = r( 2 j / + d) / J ' 2x(0, l) or 7 = 
(2y + d)/y2 = (2 - rj)v. The relations y1 = 2 - 77 + /3/v, 7 = fi{5 - 1) 
and a + 2/3 + 7 = 2 are obtained by treating in a similar manner the order 
parameter M = J xdH and the free energy F = f MdH. Finally, by assuming 
that the singular part Fs of the free energy be extensive and dimensionless, 
i.e. Fs/(kBT) w V/£d with £ « t~u, we get the heat capacity C w td l /-2 namely 
a = 2 — di/. 

Scaling is justified by the theory of critical phenomena based on the 
renormalisation-group technique in field theory. The theory allows an approx­
imate evaluation of the critical exponents: for instance, for the Ising model in 
d = 3 it yields a w 0.1, /3 w 0.33, 7 « 1.3, 1/ w 0.6, 6 « 4.2 and 17 « 0.07. 
The measured values of the critical exponents for the liquid-vapour transition 
in argon, that we report in Sec. 4.8.4 below, are in fact close to these values. 
A detailed study of similarities and differences between the critical behaviour 
of real fluids and critical phenomena of the "broken symmetry" type can be 
found in the work of Orkoulas et al.103 

4.8.4 X-ray critical scattering from fluids 

Lin and Schmidt104 have used X-ray absorption and small-angle scattering to 
study the equilibrium equation of state of argon near the liquid-vapour critical 
point. Measurements of the angular dependence of the X-ray scattering at 
angles less than a few degrees give information about the correlation of density 
fluctuations in the critical region. Also, the scattering intensity in the zero-
angle limit is proportional to 5(0) and hence to the isothermal compressibility, 
both in the one-phase region above the critical temperature and below it in 
the region where the fluid separates into the liquid and vapour phases. In 
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addition, X-ray absorption measurements can be employed to determine the 
fluid density in both regions. 

The main results of the experiments of Lin and Schmidt on argon are as 
follows. The exponent of the order parameter is obtained from the temperature 
variation of the densities of the coexisting phases below Tc and is /3 = 0.349 ± 
0.005. The values of the exponents for the correlation length and for the 
compressibility are v = 0.52±0.02 and 7 = 1.13±0.02 on the coexistence curve 
in the two-phase region.These exponents instead take the values v = 0.63±0.02 
and 7 = 1.20 ± 0.03 at the critical density in the one-phase region above Tc. 

4.9 Fluids at Equilibrium in a Porous Medium 

The methods of equilibrium liquid-state theory have been extended to inves­
tigate the properties of fluids permeating a disordered porous material. Such 
a material can be viewed as made of many atomic aggregates, which are dis­
tributed in space in an essentially random manner to yield a structure of solid 
regions and voids. This structure can be taken to be homogeneous and isotropic 
over length scales larger than the characteristic size of the aggregates. 

The problem that one faces in the statistical mechanics of a fluid inside a 
quenched matrix is that the free energy and the correlation and linear response 
functions are determined by double averages. One must first average over the 
annealed degrees of freedom keeping the quenched ones fixed, and then av­
erage over the quenched degrees of freedom. This problem has been tackled 
by the replica method, first developed to deal with spin glasses.105 An outline 
of the general procedure for the construction of the free energy F, starting 
from a Hamiltonian function H(x; y) where x stands for the degrees of free­
dom of the annealed component and y for those of the quenched component, 
is as follows. The free energy F(y) in a given realisation of the pore network 
is given by F(y) = —&BTlnQ(y) where Q(y) = /exp[—H{x;y)/kBT]dx is 
the partition function. The free energy F is then obtained by averaging over 
all realisations of the porous medium through a probability function P(y), 
i.e. F = -kBT J P(y)lnZ(y)dy = -kBT (In Z (y)). The replica method pro­
vides a way to carry out this latter average by expressing the logarithm of 
the partition function in terms of other functions which are more suitable for 
calculation. This is physically equivalent to creating replicas for the annealed 
fluid components. 
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The evaluation of the equilibrium structure taken by a dense fluid inside a 
quenched disordered matrix has been tackled by a variety of techniques based 
on the cluster expansion, the replica method, and linear response theory.106 

These results show that the Ornstein-Zernike relations in a classical mixture of 
annealed and quenched particles can be mapped onto those of a limiting case 
of a fully multi-component fluid, made from the original fluid and its replicas. 

The issue of fluid phase equilibria in such confined geometries has been 
addressed in a short review by Rosinberg,107 with regard both to liquid-gas 
coexistence and to demixing in liquid mixtures. Experimental studies refer to 
fluids in aerogels, which are very dilute disordered networks of silica strands 
with porosity well in excess of 90%, and in porous glasses such as Vycor, with 
porosity of roughly 30%. In high-porosity media the role of confinement is 
marginal compared to those of disorder and wetting, so that reference can 
usefully be made to an Ising model of spins subject to a random field as in­
troduced by Brochard and de Gennes.108 Vycor glass shows instead formation 
of many microscopic domains rather than macroscopic phase separation. An 
alternative explanation has been advocated in terms of wetting phenomena 
occurring inside a single pore.109 In this view the confinement and the com­
petition between adsorption and interfacial tension are at the origin of a very 
slow transformation kinetics. 

Appendix 4.1 Inhomogeneous Monatomic Fluids 

We present in this Appendix some general properties of a monatomic fluid at 
given temperature T and chemical potential //, subject to an external potential 
V(r). The position-dependent potential breaks invariance under translation 
and makes the average particle density a function of position (p(r), say). We 
shall be concerned with the grand potential Cl = —pV and the Helmholtz free 
energy F of such an inhomogeneous fluid. 

The discussion requires the mathematical notion of a functional. Very 
briefly, if F is some physical property of a macroscopic body (such as its free 
energy) and / ( r ) is a function of position inside the body (such as a density 
profile), then we say that F is a functional F[f(r)] if its value (a number, at 
given T and /u) is known once / ( r ) is known at all points in the body. 

In the problem of present interest we first define u(r) = fi — V(r). 
Assuming that we know how the atoms interact with each other, V(r) 
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completely determines the Hamiltonian of the fluid and hence u(r) determines 
(in principle!) the equilibrium grand-canonical ensemble and the corresponding 
grand-potential. We express this fact by saying that the grand-potential is a 
functional ft[u(r)] of u(r). 

Since the equilibrium ensemble determines the equilibrium density profile 
p(r), we may say that u(r) determines p(r). A theorem due to Hohenberg, 
Kohn and Mermin70 ensures that also the reverse is true: in principle we can go 
back from a given density profile p(r) to the potential u(r) which determines it. 

There is, therefore, a biunivocal relationship between u(r) and p(r). This 
allows us to treat these two microscopic functions in essentially the same way 
as we treat conjugate thermodynamic quantities, when we pass from one to the 
other via a Legendre transformation. In this case the transformation allows us 
to introduce a new thermodynamic quantity F, which is a functional of p(r): 

F[p{r)} = fi[«(r)] + I dvp{v)u{v). (A4.1.1) 

By comparing this equation with the relation F = Nu — pV between the 
Helmholtz and Gibbs free energies (see Sec. 3.1.3), it is evident that 

F = F~ J drp(r)V(r). (A4.1.2) 

Namely, F is the so-called "intrinsic" Helmholtz free energy, given by the 
Helmholtz free energy after subtraction of the mean energy of interaction with 
the external potential V(r). 

A4.1.1 Equilibrium conditions 

The first-order functional derivative 6F[f(r)]/6f(r) is defined as the change in 
the value of F due to an infinitesimal change df(r) at any specified position 
r in the body. From Eq. (A4.1.1) we find the equilibrium condition which 
determines p(r) at given u(r), 

6F =u{r) (A4.1.3) 
Sp(r) 

as well as the equilibrium condition which determines u(r) at given p(r), 
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Let us at this point consider for an illustration a classical ideal gas of atoms 
which do not interact with each other. Its equilibrium density profile is given 
by the Boltzmann distribution, 

p(r) = A 3 exp 
u(r) 
kBT 

(A4.1.5) 

where A is the thermal de Broglie wavelength. This result can be obtained 
from the appropriate equilibrium condition, which is 6F\A/5P(T) = u(r), if the 
ideal free energy functional is 

^d[p(r)] = kBTjdvp(v){ln[\3p(v)) - 1]} . (A4.1.6) 

Indeed, by taking p(r) = constant in this expression we recover the free energy 
of the homogeneous ideal gas (see Eq. (3.50)). 

More generally, for a real fluid of interacting particles it is convenient to 
break F into the sum of its ideal part and of the "excess" part due to the 
interactions between the particles: 

F[p(v)}=Fid[p(v)}+Fex[p(r)}. (A4.1.7) 

In a classical fluid Fy is still given by the expression (A4.1.6). Therefore, the 
equilibrium density profile takes the form 

p(r) = A 3 exp 
"Ks(r) 

kBT 

where UKS(I") is the potential introduced by Kohn and Sham,70 

SF„ 
UKs(r) = u(r) -

6p(v) 

(A4.1.8) 

(A4.1.9) 

On comparing Eq. (A4.1.8) with Eq. (A4.1.6), we see that Eqs. (A4.1.8) and 
(A4.1.9) establish a mapping between the fluid of interacting particles and 
the ideal classical gas. Of course, UKS(F) is a functional of p(r) and a self-
consistent evaluation of the equilibrium density is required, after invoking a 
suitable approximate expression for the functional Fex. 
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A4.1.2 Direct correlation function 

The higher derivatives of the functionals fi and F e x define two hierarchies of 
correlation functions. In particular, for their second derivatives we have 

c l n . r ^ H - ^ T ) - 1 fiFm 

5p(n)5p(r2) 

s(*i - r2) , , Tx-i^(ri) f\Aim\ 
r—: (KB-i) x f , (A4 .1 .10 ) 

and 

F(n,r2) = -kBTx * ' " = kBT6/p\. (A4.1.11) 

In taking the last step in these equations we have used the equilibrium condi­
tions (A4.1.3) and (A4.1.4) as well as the definition (A4.1.7) of the excess free 
energy. The function c(ri,T2) defined in Eq. (A4.1.10) is the Ornstein-Zernike 
direct correlation function for the inhomogeneous fluid, while H(ri, r2) can be 
shown to be related to the pair correlation.1" 

The first-order functional derivatives in the RHS of Eqs. (A4.1.10) and 
(A4.1.11) have a precise physical meaning: Sp(ri)/5u(r2) describes the change 
in density of the inhomogeneous fluid in response to a change in the external 
potential, and Su(ri)/Sp(r2) is its inverse. Treating them as matrices with 
indices r i and r2, from their matrix product we obtain the Ornstein-Zernike 
relation for the inhomogeneous fluid, 

F ( r 1 , r 2 ) = p ( r 1 ) < 5 ( r 1 - r 2 ) + p ( r 1 ) y d r 3 c ( r 1 , r 3 ) i f ( r 3 , r 2 ) . (A4.1.12) 

Finally we take the limit V(r) —• 0: we recover the homogeneous fluid, in 
which c(ri,r2) = c{rn) and i f (n , r 2 ) = p5{x\ - r2) + p2[g(ru) - 1]. The 
Ornstein-Zernike relation becomes 

h(n2) = c{r12) +p f dr3c{r13)h(r32), (A4.1.13) 

b The derivation requires starting from the expression of fi in the equilibrium grand ensemble 
(see Appendix 3.2), but adding the interaction of the fluid with the external potential: see 
also Appendix 4.3. 
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with h(r) = g(r) — 1; namely, in Fourier transform 

S(k) = [1 - c(fc)]-1. (A4.1.14) 

This result is Eq. (4.17) in the main text. The interpretation given above 
for Eqs. (A4.1.10) and (A4.1.11) shows that a diffraction experiment on a 
classical liquid gives us directly its static density response susceptibility to 
a weak external potential varying periodically in space with a wavelength 
2-x/k. 

A4.1.3 Hypernetted-chain approximation in 
liquid-structure theory 

A plausible way to obtain an approximate expression for the functional Fex 

uses an expansion of the inhomogeneous fluid around the homogeneous one at 
density p. With the notation Ap(r) = p(r) - p, the expansion yields for the 
difference AF of the intrinsic free energies of the two fluids, taken at the same 
temperature and chemical potential, the expression 

AF=(ji- kBT) J rfrAp(r) + kBT f drp(v) In ^ 

- kBT jf drdr'c(\r - r ' |)Ap(r)Ap(r') + • • • . 

The higher terms in the expansion involve higher-order direct correlation func­
tions of the homogeneous fluid. 

We use the above expansion, truncated at second order terms, to relate the 
present discussion to the hypernetted-chain (HNC) approximation in liquid-
structure theory. To this end we consider the special case in which the "exter­
nal" potential is the interatomic potential (j>(r) generated by an atom taken at 
the origin in a homogeneous classical fluid. In this case we have p(r) = pg(r), 
where p is the average density of the homogeneous fluid and g(r) is the pair 
distribution function. 

The equilibrium condition in Eq. (A4.1.3) then yields 

g(r) = exp{-/3(^(r) + p f dr'cflr - r'\)h(r') + • • •} 

= exp{-/3</>(r) + h(r) - c(r) + • • • } , (A4.1.15) 
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with /3 = I/U-QT. In the last step we have used the Ornstein-Zernike relation 
(A4.1.13). Equation (A4.1.15) is the HNC closure and corresponds to setting 
to zero the "bridge function" b(r) in Eq. (4.35) in the main text. 

Appendix 4.2 The Dieterici Equation of State 

Consider rare gas atoms inside a container. Atoms near one of the container 
walls will experience an asymmetric distribution of attractive forces, resulting 
in a reduction of the boundary-layer density pb relative to the bulk density p. 
To estimate the influence of such interatomic forces on the equation of state, 
let us use the Boltzmann law 

p(r) oc exp 
V(r) 

kBT 
(A4.2.1) 

where V(r) denotes the potential energy of an atom at position r. Let e repre­
sent the average potential energy of an atom in the interior of the fluid, while 
£b is the corresponding quantity near the walls of the container. Neglecting 
other possible effects, the ratio pb to p is 

Pb 
— = exp 
P 

Ae 

kBT 
(A4.2.2) 

where Ae = e\,—e > 0, the inequality following from the fact that the attractive 
forces tend to pull the atoms away from the walls. 

Introducing excluded volume effects as in the van der Waals equation of 
state, one is led rather directly from Eq. (A4.2.2) to the Dieterici equation of 
state: 

p(v-b) = kBTexp(-~fY (A4.2.3) 

where v = 1/p is the volume per atom and a oc Ae. If it is valid to expand 
the exponential to first-order only, then the van der Waals equation can be 
recovered by only inessential approximations. However, we stress below that it 
is very important to retain the exponential form in Eq. (A4.2.3) in modelling 
the heavier rare gases at the critical point. 

Indeed, by standard calculations96 the critical constants can be derived 
from Eq. (A4.2.3) as vc = 2b, k,B,Tc = a/4b and pc = (a/4b2)exp(-2), yielding 
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for the compressibility ratio 

z* = r^F = 2 e x P ( - 2 ) - ° - 2 7 • (A4-2-4) 

This is in good agreement with the measured value Zc = 0.29 for the heavy 
rare gases Ar, Kr and Xe. In contrast, the van der Waals equation of state 
leads to Zc = 3/8 = 0.375. 

Appendix 4.3 Force Equation and Born-Green Theory 
of Liquid Structure 

We derive in this Appendix a further exact relationship between the pair dis­
tribution function g(r) in a classical monatomic liquid and an assumed pair 
potential <j){r). This relationship involves the triplet distribution function in the 
liquid and leads into a hierarchical series of integral equations for many-particle 
distribution functions that needs truncating by some approximate decoupling 
procedure in order to yield useful results. 

The starting point is the definition g{ri2) = (/°'2Hri>r2))/p2 f° r 9(r) m 

terms of the mean two-body density (for r i ^ Yi). Calculating the average 
over the grand-canonical ensemble and carrying out the classical integration 
over momenta leads to 

2 , v ^ > e x p P + JV^/fcBT] fmkBT\3N/2 [ m f 

/ <£> \ N 

x exp l-j^) £ *(** ~ r iWR ; - r 2 ) ' (A4-3-1) 

Here, 3>jv is the potential energy function (depending on all the coordi­
nates Ri ,R ,2 , . . . ,Rjv of the atoms), fj, is the chemical potential and 0, 
the grand-potential, related to the grand-canonical partition function H by 
5 = exp(—Cl/ksT). We introduce the fugacity z as 
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and find 

1 °° zN f f 

P2g(ru) = 5 ^ (jV-2)! J dRz " J dRN eXP 
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^ N ( r i , r 2 , R 3 , . . . , R j v ) 

kBT 

where 

z f f 
H = ^ — / dRi ••• dRN e x p 

$ J V ( R I , . . . , R N ) 

fcBr 

(A4.3.3) 

(A4.3.4) 

The force equation follows from Eq. (4.3.3) by taking its gradient with 
respect to r i and setting $jv equal to the sum of pair interactions. We get 

-kBTp2Vrig{r12) = - £ _ J dRz--J dRNexp 

x Vri</.(n2) + ^ V r i ^ ( | n - R i | ) 

$JV 

i=3 

*BTJ 

(A4.3.5) 

The sum in the square bracket contributes (N — 2) equal terms, whose value 
can be determined by taking i = 3, say. The result is 

-fcBTVri<?(r-i2) = ff(ri2)Vri0(n2) + p Jdr3g
{3)(ri,r2,r3)Vri<£(r13), 

(A4.3.6) 

where </3H r i i r2,r3) the three-body distribution function. This is the force 
equation. 

From Eq. (A4.3.6) it is possible to derive the exact relation (see e.g. Ref. 30) 

kBT 
dg{r) 

dp 
= / dr3[2 (3)(r-i,r2,r3) - g{r)g{r2z) - g{r)g{rzl) + g{r)}. 

(A4.3.7) 

Therefore, the experimental study of the pressure dependence of g(r) gives 
information on the three-body correlations, integrated over all values of 
the coordinates of the third particle. Tests of approximate expressions for 
the triplet function have been made from measurements of the isothermal 
pressure derivative of the liquid structure factor in rubidium near the triple 
point and in argon near the critical point.525 
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One such approximate expression is the so-called superposition approxima­
tion 

<?(3)(n. r2, r3) = g(ri2)g(r23)g{r31), (A4.3.8) 

which was proposed in early work by Kirkwood.526 This is the basis of the 
Born-Green theory of liquid structure,527 which is known from experience to 
work reasonably well for liquids with short-range interactions. 

For an application of this general approach in relation to liquid metal Na 
near freezing, as described by a Fourier-transformable pair potential from the 
electron theory of metals, the reader is referred to the work of Golden et al.528 



Chapter 5 

Diffusion 

This and the next two chapters will be concerned with transport processes 
in dense liquids. The present chapter deals with mass transport (diffusion), 
the following chapter with momentum transport (viscosity) and the third with 
transport of energy (thermal conduction). 

It has been known for a long time, from kinetic theory arguments, that 
diffusion in a dilute gas is rapid and depends in a well-defined way on the 
thermodynamic state. But when we turn to dense liquids, the problem is 
immediately more difficult because of the complex nature of collisions between 
particles. A good starting point is Brownian motion, that we have already 
presented in Sec. 1.3 as part of a largely qualitative introduction to molecular 
thermal motions. This can be applied to treat a colloidal particle in a liquid, 
and is also already useful in connection with the irregular zig-zag motions of 
a molecule in a fluid under the impact of the other molecules. 

5.1 Background: Magnitude of Diffusion Coefficients in 
Gases Contrasted with Liquids 

Diffusion, or mass transport, has very distinctive features in the dense liquid 
state. It is concerned, from a microscopic point of view, with following the 
motion of a chosen atom, say in liquid argon, which is taken to be at the origin 
of spatial coordinates (r = 0) at time t — 0. 

i l l 
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The idea is then to watch the motion of the chosen atom away from the ori­
gin as time elapses. More precisely, we shall want to follow how the velocity of 
the atom at time t correlates with its initial velocity and then take an ensemble 
average over the initial velocity. In his early work, Einstein recognised that 
the diffusive motion of a "tagged" atom is such that, at sufficiently long time 
t, the mean square displacement (r2) becomes proportional to t, in complete 
contrast to free particle motion at constant velocity where the distance moved 
in time t is proportional to t. 

In terms of the self-diffusion coefficient D, the diffusive behaviour can be 
written 

(r2{t))=6Dt (5.1) 

in the long time limit. As to magnitudes of diffusion coefficients of dense 
liquids, many of these values fall close to 10~5 cm2 - s _ 1 (see Table 5.1 below 
for dilute solutes diffusing in water). 

Such diffusion coefficients, for orientation, are some ten thousand times 
slower than the corresponding values in dilute gases. In this limiting case, one 
may treat the diffusion process by considering a gas of rigid spheres of small 
molecular dimensions.110 The result of this model for the diffusion coefficient 

Table 5.1. Solute diffusion (at infinite 
dilution) in water at 25° C. 

Solute 

Argon 

Chlorine 

Nitrogen 

Oxygen 

Carbon dioxide 

Ammonia 

Methane 

Benzene 

Methanol 

Ethanol 

Acetic acid 

Acetone 

Glycine 

Haemoglobin 

D x 1 0 - 5 cm2- s - 1 

2.5 

1.89 

2.0 

2.42 

1.91 

1.64 

1.84 

1.02 

1.28 

1.24 

1.29 

1.28 

1.05 

0.07 
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Dis 

D = \vt, (5.2) 

where v represents the average particle velocity while £ is the mean free path 
between successive collisions. Both quantities entering Eq. (5.2) can be calcu­
lated in a gas of rigid spheres in equilibrium at temperature T. If the molecular 
mass is m, then the principle of equipartition of energy yields v = {k^T/m)1/2. 
In order of magnitude the mean free path t can also be calculated, and 
we merely quote the result (see also the discussion of a hard sphere fluid 
below): 

l~k-^ = —2, (5.3) 
paz pa1 

where p is the pressure, p is the number density and a is the hard sphere di­
ameter. Inserting numbers for dilute gases, one find values of D from Eq. (5.2) 
of the order of 1 cm2 • s _ 1 . 

5.1.1 Practical consequences of "slow" diffusion in 
dense liquids 

Though, in this basic Introduction to dense liquids most of the quantitative 
work will take the simplest possible examples (e.g. self-diffusion in liquid argon 
near its triple point or in liquid metal sodium near freezing), it is important to 
recognize practical consequences in everyday life of the "slow" rates of diffusion 
in liquids. These are discussed, for example, in the book by Cussler.111 As 
he notes, diffusion frequently limits the overall rate of processes occurring in 
liquids. He cites some examples, among which are: 

(i) in chemistry, diffusion limits the rate of acid-base reactions; 
(ii) in chemical industry, diffusion is responsible for the rates of liquid-liquid 

extraction; 
(iii) in metallurgy, diffusion can control the rate of surface corrosion; 
(iv) in physiology, the rate of digestion is diffusion limited. 

The concept of diffusion-controlled reactions in liquids can be traced as far 
back as Smoluchowski112 (see also Chandrasekhar113). This concept is appli­
cable whenever the rate of reaction is dominated by the slow process of mutual 
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diffusion of the reaction partners. For example, in some limiting cases one of 
the reaction partners may be large and can be viewed as immobile. Then it is 
fruitful to consider an array of static sinks which can absorb particles diffusing 
independently in the ambient medium. In this type of model, Smoluchowski 
could already derive an expression for the chemical rate coefficient in the dilute 
limit by studying the absorption by a single sink. In dense systems, more gen­
erally, there will be a competition between such sinks and the rate coefficient 
will be dependent on the concentration of the sinks. For some account of the 
theory of this dependence, the interested reader may consult, for instance, the 
work of Calef and Deutsch.114 

It is also relevant to note that one method that has been proposed for 
experimentally testing the concentration dependence of the diffusion-controlled 
rate coefficient is fluorescence quenching (see again Calef and Deutsch114; see 
also Baird, McCaskill and March115). 

5.2 Fick's Law and Diffusion Equation 

In the above context, pioneering work of Fick (1855) is to be cited. He rec­
ognized that diffusion is a dynamical molecular process and developed its law 
using analogies with the earlier studies of Fourier (1822) on thermal conduction. 
This led Fick to write, in a one-dimensional case, a flux per unit transverse 
area (j, say) in terms of a concentration gradient dc/dz as 

j = -Dpg. (5.4) 

In fact, the driving force for diffusion of matter is the gradient of chemical 
potential fi(c) associated with the concentration gradient, and Eq. (5.4) implies 
writing d\ijdz = (d/jb/dc)(dc/dz) and incorporating the factor d\ijdc into the 
definition of D. 

Fick also paralleled Fourier's work on heat conduction in using the conti­
nuity equation 

to obtain from Eq. (5.4) the transport equation 
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Equation (5.6) generalizes in three dimensions to the diffusion equation involv­
ing the Laplacian operator V2(V2 = d2/dx2 + d2/dy2 + d2/dz2 in Cartesian 
coordinates): 

Use will be made of this three-dimensional equation based on Fick's work, later 
in this chapter. 

5.2.1 Examples of diffusion across a thin film 

As a simple example of Fick's law, let us consider diffusion across a thin film. 
On either side of the film is a well-mixed solution of one solute. The solute 
diffuses from the fixed higher concentration, present for z < 0 into the fixed 
lower concentration solution, located at z > L. 

The aim now is to employ Fick's law to find the solute concentration profile 
and also the diffusion flux across the film. To do so, the starting point is to 
write a mass balance equation on a thin layer with thickness Az, located in the 
film at some position z. In order to avoid accumulation of the solute, which is 
the condition for steady state diffusion, the rate of diffusion into the layer at 
z must be equated to the same quantity out of the layer at position z + Az. 

The steady state condition reads j{z) = j(z + Az) and, if we divide by the 
thickness Az of the chosen layer, then in the limit as Az tends to zero we find 
that the divergence of the current vanishes, dj(z)/dz = 0. The concentration 
profile is therefore constant in time and, according to Fick's law, is determined 
by solving the differential equation 

With the boundary condition c(0) = CQ and c(L) = CL, the solution for the 
density profile is 

c(z) = c0 + - j-i~ . (5.9) 

The steady-state flux is immediately found from Eq. (5.4), 

j = ^ Z ^ l . (5.10) 
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A richer solution of Eq. (5.7) is given in Sec. 5.4.1. 
Other examples related to the above, for instance that of a single solute 

diffusing through a thin membrane where the membrane is chemically different 
from the two solutions, are worked out in the book of Cussler111 and we shall 
not go into further details here. However, the thrust of the argument is clear 
enough: in such problems Fick's law (5.4) is to be combined with mass balance 
considerations to calculate concentration profiles and fluxes. 

5.3 Solute Diffusion at High Dilution in Water and in 
Non-aqueous Solvents 

Following the above introduction to Fick's law and the diffusion equation, 
we want in this section to press further the point as to the "slowness" of 
diffusion in liquids. We choose to do so by returning to Table 5.1 for solute 
diffusion coefficients in water at 25°C, in the limit of infinite dilution, from 
tabulations in the Handbook of Chemistry and Physics.116 We start off with 
one of the simplest elements, rare-gas argon. This is followed in the Table by 
diatomic molecules such as chlorine and carbon dioxide, and by polyatomic 
hydrocarbons such as methane and benzene. Table 5.1 ends with the example 
of haemoglobin. 

When we change from water to non-aqueous solvents such as chloro­
form, benzene or ethyl alcohol, solute diffusion coefficients still lie close to 
1 0 - 5 cm2-s_1 . Exceptions arise for solutes having higher molecular weight such 
as polystyrene or albumin, for which diffusion can be one hundred times slower. 

5.3.1 Stokes—Einstein and semiempirical estimates of 
solute diffusion 

We turn to enquire as to the way one might begin to make theoretical es­
timates of such solute diffusion coefficients. A common route for estimating 
diffusion coefficients in liquids is the so-called Stokes-Einstein relation. As 
already discussed in Chap. 1, this relation invokes as an essential ingredient 
another transport property, the shear viscosity of the solvent in which the so­
lute diffusion is occurring. Since the next chapter is devoted to viscosity, the 
introduction of the Stokes-Einstein relation here is somewhat anticipating the 
discussion there. 
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Following the arguments developed in Chap. 1 (see especially Eqs. (1.9) 
and (1.16)), the Stokes-Einstein relation reads 

/ Qnrja 

In the equation, / denotes the "friction coefficient" for the solute, r\ is the vis­
cosity of the solvent, and o is the "radius" of the solute. The dependence of the 
diffusion coefficient on the nature of the solute is simply through its "radius". 
While one has little difficulty in specifying a for the spherical argon atom rep­
resenting the first entry in Table 5.1, and perhaps a similar situation obtains 
for the "nearly spherical" molecule of methane, for many of the other entries 
"molecular shape" is involved, and hence some gross averaging is involved in 
specifying a in Eq. (5.11). 

As Cussler111 notes in his book, diffusion coefficients do vary inversely 
with viscosity when the ratio of solute to solvent radius exceeds five. This is 
encouraging in the sense that the Stokes-Einstein relation (5.11) was (at least 
initially: but see generalisation eventually effected below) derived by assuming 
a rigid solute sphere diffusing in a structureless solvent. For a large solute 
diffusing in a solvent made up of small particles, Eq. (5.11) has a theoretical 
justification. 

As an example in Cussler's book, he uses the Stokes-Einstein relation to 
estimate the diffusion constant of oxygen in water at 25°C, for which the 
measured value of D entered in Table 5.1 is « 2 x 10 - 5 cm2 • s _ 1 . As he notes, 
the chief difficulty is to estimate a, the "radius" of the oxygen molecule. If one 
assumes that this is half the collision diameter in the gas, one has a « 1.7 A 
and one is led t o D w 1.3 x 10~5 cm2 • s - 1 : sensible but not quantitative. 

It is worthy of note in the above context that a variety of alternatives 
— usually less theoretically well based than the Stokes-Einstein result — 
are available for estimating diffusion coefficients in liquids such as recorded 
in Table 5.1. Thus Scheibel117 has empirically introduced the ratio of molar 
volumes of solute and solvent into a modification of the Stokes-Einstein 
relation: this considerably improves the estimate for oxygen in water, to 
D w 2.2 x 1 0 - 5 cm 2 - s _ 1 . Finally, Wilke and Chang,118 again empirically, 
have introduced a factor representing solute-solvent interaction into a modifi­
cation of the Stokes-Einstein relation. 
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5.4 Summary of Techniques, Including Computer 
Simulation, for Determining Diffusion Coefficients 

In this section, we shall give a quite brief account of some experimental tech­
niques, including computer simulation, which are relevant to the study of dif­
fusion and to the determination of diffusion coefficients. We do not discuss 
the standard radioactive tracer technique for tracer diffusion measurements. 
However, we report in Fig. 5.1, from a review by Angell119 on supercooled 
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Fig. 5.1. Arrhenius plot for self-diffusion coefficient in H2O as a function in inverse tem­
perature at two different pressures, showing both the results of tracer diffusion mea­
surements (• and x) and of NMR measurements (o and A). (Redrawn from Angell, 
Ref. 119.) 
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water, an Arrhenius plot of the self-diffusion constant of H2O at two different 
pressures, comparing tracer data with those obtained by the nuclear magnetic 
resonance technique discussed further below. 

5.4.1 Incoherent neutron scattering 

In Sec. 5.1 we have introduced the atomic diffusive motions in a classical liquid 
(say in pure liquid argon to be definite) by a vivid picture: we "sit" on a 
tagged atom as it meanders in time through the liquid, having taken it at time 
t = 0 as being at the origin of coordinates (r = 0). Then it is natural to 
enquire what is the probability that this tagged atom, at a later time t, is at 
position r. We denote this probability by Gs(r, t), the subscript s denoting 
self-motion. The atom during its motion can exchange energy and momentum 
with its neighbours and we then have only one conservation law to take care of, 
i.e. that for particle number. This is the reason why the self-diffusion problem 
is much easier than viscosity and heat conduction. 

A natural enough starting point to study some "gross" features of Gs(r,t) 
is to assume that it obeys the diffusion equation, already introduced in Sec. 5.2 
via the pioneering work of Fick. Applying this to determine the evolution of 
Gs(r,t) in time, one can write from Eq. (5.7) in a pure liquid like argon with 
self-diffusion constant D: 

?°&&=DVG.{r,t). (5.12) 

The physical solution of this equation is readily verified by substitution to be 

G„(r, t) = (47r£>i)_3/2e~r2/4i)*, (5.13) 

for t > 0. It is easily verified that as t —> 0 Gs(r,t) reduces to a representa­
tion of the delta function — the specified initial condition. The mean square 
displacement is 

(r2) = J drr2Gs(r, t) = 6Dt, (5.14) 

as expected. 
Of course, the result (5.13), having been based on Fick's law, is valid only 

for times long compared with collision times. Without entering microscopic 
details, however, the important point is that the double Fourier transform of 



120 Diffusion 

Gs(r,t) (the spectral function Ss(k,u), say) determines the incoherent cross-
section in the process of inelastic scattering of a beam of neutrons from the 
liquid under study. The variables hk and hu> here have the meaning of the 
momentum and energy given up to the liquid in the inelastic scattering process. 
This theorem, which is due to van Hove120 (also see Marshall and Lovesey121) 
implies that the self-diffusion coefficient can in principle be measured from 
the half-width of the incoherent scattering spectrum. The spectral function 
corresponding to Eq. (5.13) is 

Ss(k,u) = 
2Dk2 

u>2 + (DA;2)2 ' 
(5.15) 

as expression which is valid at low k and u>. Therefore, the half-width of the 
spectrum in this limit is Dk2 (see Fig. 5.2). 

More generally, one may express the relationship between the self-diffusion 
coefficient and the van Hove dynamic structure factor Ss(k,uj) as 

D - lim 
2 w-to 

us lim 
fc-yO 

Ss(k,Lj) 

fc2 (5.16) 

The expression, which can be verified from Eq. (5.15), is one of the celebrated 
Kubo formulae relating transport coefficient to wavenumber and frequency 
dependent correlation functions.122 

Complex systems such as polymers exhibit interesting dynamics over a 
wide temperature range and a broad time scale. By permitting experimental 

S k̂.O)) y^" 

2Dk2 \ 

Fig. 5.2. Schematic form of the dynamic structure factor Ss(k,u>) for self-diffusion in a 
monatomic liquid. 
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separation of the incoherent and coherent scattering parts, the use of polarised 
neutrons with spin polarization analysis enables confident model fitting to 
scattering data in such systems.123 

5.4.2 Dynamic light scattering 

Together with incoherent neutron scattering, dynamic light scattering and di­
electric relaxation are widely used experimental tools for the study of molecular 
motions in polymers, even down into the temperature range approaching the 
glass transition.124 To visualise diffusive motions in such macromolecular sys­
tems it is useful to focus on the case of a single polymer molecule floating 
in a neutral solvent of low molecular weight. Then, as proposed by Vrentas 
and Duda,125 the molecule can usefully be pictured as a necklace of spherical 
beads connected by a cord that does not exhibit any resistance to flow. If the 
solution is very dilute, then the only interaction is with the solvent. In certain 
cases the solvent will considerably expand the necklace in solution, while in 
other cases the polymer necklace can shrink into a blob (see Chap. 9). 

Between the above extremes, polymer and solvent can interact sufficiently 
for the segments of the necklace to be essentially randomly distributed. The 
limit of a "random coil" of polymer is, by convention, chosen as the "ideal" 
polymer solution. Under such circumstances the polymer diffusion can be 
estimated from a modified Stokes-Einstein relation: 

D=P^, (5-17) 
onr]ae 

where ae is the effective radius of the polymer. This radius is taken from 
calculations as 

ae = 0.676(i?2)1/2 , (5.18) 

where (i?2)1/2 is the root-mean-square radius of gyration, which is the cus­
tomary measure of the size of polymer molecules in solution. One method of 
determining this radius is by light scattering. Equations (5.17) and (5.18) are 
found to be in agreement with such experiments. 

Away from "ideality", the diffusion coefficient is still estimated from the 
Stokes-Einstein relation, but of course the relation between ae in Eq. (5.17) 
and the RMS radius presents more of a problem. Moreover, in certain cases the 
diffusion coefficient can increase markedly with polymer concentration. Such 
increase occurs in the face of rapidly increasing viscosity. 



122 Diffusion 

Solutes of low molecular weight in a polymer solvent are also of interest 
as a second limiting case of diffusion in polymer systems, while a third case is 
that where both solute and solvent are polymers (see, for example Tirrell126). 
This third case has practical relevance in adhesion, in material failure and in 
polymer fabrication. 

5.4.3 Nuclear magnetic resonance 

Measurements of diffusion coefficients by nuclear magnetic resonance127 

(NMR) allow the achievement of an accuracy of « 5%. In the experimen­
tal set-up a homogeneous sample is placed in a substantial magnetic field, 
which aligns the magnetic moments of the nuclei under study. For example, 
the moments associated with the protons in water molecules may provide the 
spin magnetisation which is used as the experimental probe. When the mag­
netic field is then slightly altered, the moments precess and this can induce 
in an adjacent coil a small time-dependent voltage V(t) = VQ sin(i/r). The 
period T is often the focus of interest in NMR, as it contains information on 
the immediate chemical environment of the nuclear moment. 

For diffusion studies, however, one wants to observe directly the dephasing 
of the transverse component of the spins, due to the random local magnetic 
fields arising from molecular motions. This characteristic dephasing time is 
called the spin-spin relaxation time T2. When a static magnetic field gradi­
ent is imposed, the nuclei during their motions experience different fields and 
diffusion through the liquid can be followed provided that Ti is not too short. 
Typically T2 in a liquid is of order 1-10 s. 

Another NMR method uses instead a pulsed field gradient, which is ap­
plied first in one direction and then, after a short interval T', in the opposite 
direction. If the solute molecules were fixed, the two perturbations would not 
change the amplitude Vo. However, these molecules are performing Brownian-
line motions, causing a reduction in amplitude which can be measured as a 
function of the interval r ' between the gradient pulses. The slope of this vari­
ation constitutes a direct measure of the Brownian-like motion and hence of 
the diffusion coefficient. 

Figure 5.3 reports pulsed-NMR data128 '129 on diffusion of water molecules 
as a function of inverse temperature in an Arrhenius plot, both in pure water 
and in aqueous solutions of ZnC^ at various concentrations. The activation 
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Fig. 5.3. Temperature dependence of the self-diffusion coefficient of water in H20-ZnCl2 
solutions at various concentrations. (Redrawn from Nakamura et al, Ref. 128.) 

energy that can be extracted from this plot essentially doubles in going from 
pure water to the saturated solution. 

5.4.4 Computer simulation of mean square displacement 

The study of diffusion by the molecular dynamics (MD) method has the advan­
tage that, given an interatomic force law as input, one obtains for a classical 
liquid reliable results corresponding to a known (though often not fully real­
istic) force field. The diffusion coefficient D is extracted from the long-time 
limiting behaviour of the mean square displacement of a particle in the model 
liquid as a function of the elapsed time, which according to Eq. (5.1) is a linear 
increase with time: (r2) = 6Dt. Only a few examples will be mentioned here. 

An early example of such work, referring to two different pair-potential 
models for liquid sodium near freezing, is reported in Fig. 5.4.130 As is seen 
from the figure, the "long-time" linear behaviour is being established in this 
model liquid at times w 0.5 ps and the marked difference between the two 
curves in this regime shows that the diffusion constant is quite sensitive to 
the interactions. At times below 0.1 ps, on the other hand, an approximately 
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Fig. 5.4. Mean square displacement (r2) against time t from a molecular dynamics study of 
two alternative pair-potential models of liquid sodium. (Redrawn from Rahman and Paskin, 
Ref. 130.) 

quadratic increase of (r2) with time is observed, as for free particle motion. 
The detailed dynamics of an average particle at low and intermediate times 
can be better appreciated from the velocity autocorrelation function, which is 
presented in Sec. 5.5 below. 

As a further example of MD studies of diffusion in liquids we refer to the 
determination of the transport coefficients of the hard-sphere model. These 
are by now well known over the whole fluid range. A convenient fit of the data 
is that given by Speedy,131 

D = D° i1 ~ u b ) [ 1 + p4{0A ~0,83p4)] (5.19) 
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where p — Na3/V. In this expression Do is the infinite dilution value of D, 
which is given exactly by kinetic theory132 as 

n0 = %(wf, (5.2o, 
8/9 \ 7TTO / 

where again m is the particle mass and p = Ncr3/V. 
An alternative expression for the density dependence of the self-diffusion 

coefficients for hard spheres has been given by Erpenkeck and Wood,133 who 
fitted their simulation data to 

D = £>E(1 + 0.0382/9 + 3.l8p2 - 3.869p3). (5.21) 

Here, the Enskog value of the self-diffusion constant D E is given as 

1.01896A) 
DE= g(a+) ' ( 5 - 2 2 ) 

where g(cr+) is the value of the pair distribution function at constant (see 
Sec. 3.7). 

Finally, Heyes and Powles134 have made simulations of fluids with inverse 
power-law repulsive potentials, <j>(r) = e(a/r)n. The scaling of thermodynam­
ics for fluids described by such potentials was set out in Sec. 3.8. The aim of 
their work was to study how the self-diffusion coefficient D{n) for exponent n 
converges to the hard sphere limit D(n = oo), at a packing fraction equal to 
0.044. Their results are fitted with remarkable accuracy by the expression 

D(n) - D(n = oo) = 7 . 5 n - i n , (5.23) 

showing rather slow convergence to the hard-sphere limit. Here D is in units 
oia{e/m)1'2. 

5.5 Velocity Autocorrelation Function in Pure 
Dense Liquids 

As anticipated in Sec. 5.4.4 above, the technique of MD computer simulation 
affords a microscopic view of atomic motions in a liquid through the study 
of the velocity autocorrelation function Z(t). This is defined for a classical 
fluid by 

Z(t) = (v(0).v(t)>, (5.24) 
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v(t) being the velocity of a particle at time t and the brackets denoting the 
ensemble average. 

The mean square distance (r2(t)) travelled in the time interval t by a par­
ticle starting off at the origin r = 0 at time t = 0 is related to Z(t) by 

(r2(t)) = 2 / dt'(t - t')Z{?). (5.25) 
Jo 

This relation is most easily proved by showing firsta that d(r2(t))/dt = 
2 J0dt'Z(t'). From this one recovers at long times the diffusive behaviour 
given by Eq. (5.1), 

l i m ( r 2 m ) = 6 Z » t , (5.26) 
t—yoo 

t h e diffusion coefficient D b e i n g g iven b y 

1 f°° 
D = =- dt'Z(t'). (5.27) 

Such an expression for a transport coefficient as the integral of a time correla­
tion function is known as a Green-Kubo formula. 

We have already seen in Fig. 5.4 the behaviour of the function (r2(t)) for 
two models of liquid sodium near freezing. Figure 5.5 shows the behaviour of 
Z(t) from MD results of Nijboer and Rahman135 on a model of liquid argon. 
The fact that Z(t) becomes negative indicates that each particle on average 
recoils at short times after hitting its neighbours and before escaping from its 
coordination cage. 

5.5.1 Frequency spectrum and long-time tails 

The frequency spectrum (f(u>), say) of the velocity autocorrelation function is 
introduced from its Fourier representation, 

Z(t)= / —f(u)cos(ujt). (5.28) 
J0 27T 

aWe note that d(r2(t))/dt = 2{r(t) • v(t)} = 2 /„' dt'{v(t') • v(t)>. The function in brackets 
is Z(t — t'), from the invariance of the equilibrium ensemble under translation in the time: 
setting t-t' = t", we thus find d{r2{t))/dt = 2 /0 ' dt"Z(t"). This agrees with Eq. (5.25), as 
is easily checked by differentiating the latter with respect to t. 
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Fig. 5.5. Velocity autocorrelation function Z(t)/(v2) against time t from a molecular dy­
namics study of a model for liquid argon. (Redrawn from Nijboer and Rahman, Ref. 135.) 

From the definition (5.24) we find 2nf(u) = (v(w)-v(-u)), the autocorrelation 
function of the Fourier transform of the particle velocity. It is evident from 
this expression that f(u) in Eq. (5.28) is an even function of frequency w. 

Figure 5.6 shows the behaviour of f(u>) for the Nijboer-Rahman model of 
liquid argon, in comparison with MD data on a model of liquid rubidium near 
freezing.136 The frequency range covered by this spectral function is similar to 
that of the spectrum of harmonic lattice vibrations in the crystal, extending 
up to u » 1013 s _ 1 . The main new features of f(u) in a liquid state are (i) 
its finite value at zero frequency and (ii) the absence of a high-frequency cut­
off. While the latter feature is due to the absence of lattice periodicity and to 
"strong anharmonicity", the former is related to diffusion, since by inverting 
Eq. (5.28) and using Eq. (5.27) we find 

/(0) = 2 f 
Jo 

dtZ(t) = 6D. (5.29) 

Thus, the spectrum f(w) in a liquid describes not only vibrational motions, 
but also diffusive motions in the low frequency region. 
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Fig. 5.6. Frequency spectrum f(u>) against pulsation frequency u> from molecular dynam­
ics studies of models for liquid argon by Nijboer and Rahman and of liquid rubidium by 
Schommers. (Redrawn from Copley and Lovesey, Ref. 136.) 

From Fig. 5.6 we should also notice the different shapes of the frequency 
spectrum for diffusive motions in argon and in rubidium. We have already 
remarked in Sec. 3.2, on the basis of specific heat data, that liquid metals such 
as rubidium are considerably more "harmonic-like" than liquid argon. This 
observation is confirmed in Fig. 5.6 by the spectrum for rubidium, showing 
lower diffusivity and a spectral peak which is both higher and narrower. This 
implies a more marked oscillatory behaviour for each atom on average inside 
its coordination cage. 

The behaviour of the velocity autocorrelations over long times contains 
some further interesting information. From hydrodynamics, Ernst et al.137 

have shown that Z(t) has a long tail, decaying at long time as t~3/2. This was 
first noticed by Alder and Wainwright138 in the MD study of the hard sphere 
fluid. As a consequence of the tail, the spectrum acquires an a;1/2 singularity 
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at low frequency139: its low frequency expansion is 

f(u) =6D + diw1 /2 + 0{w), (5.30) 

where the coefficient d\ has the value 

Physically, the long-time tail comes about because in a time interval t the 
diffusing atom shares out its initial momentum with other atoms within a 
radius r « (Di)1 /2 . This leads to a £~3/2 decay of the velocity autocorrelations, 
although it must be noted that the precise magnitude of the tail involves 
also the shear viscosity 77, through coupling of diffusive motions to collective 
transverse motions in the liquid.140 This is evident from the value of d\ in 
Eq. (5.31). 

Finally, it is also of interest to examine the behaviour of the velocity au­
tocorrelations in the opposite limit of short time. By expanding Eq. (5.28) in 
powers of t we find 

00 

^ ^ E T S T ' 2 " ' (5"32) 

n = 0 *• '• 

where 

an = (-l)n f°° —u2nf{u>) (5.33) 
Jo n 

are known as the moments of the frequency spectrum. It is easily proved that 
&o — (v2) = SksT/m and that a\ = (v2). Thus, while ao reflects only the free-
particle behaviour, a-\. is given by the mean square force acting on a particle 
in the liquid: in a pair-potential model this can be evaluated from the pair 
distribution function g(r). In the next section we shall see how the first few 
spectral moments can be useful in models evaluating Z(t) and the diffusion 
coefficient. 

5.5.2 The Nernst-Einstein relation 

From its definition through the mean square displacement of a particle over 
a long time interval, the diffusion coefficient D is the result of atomic mo­
tions determined by spontaneous thermal fluctuations in a fluid. Only the 
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correlations of these motions in time are relevant to diffusion, as is evident 
from Eq. (5.27). The Nernst-Einstein relation, referred to in Sec. 1.3, shows 
how such spontaneous fluctuations can be revealed through a measurement of 
driven transport. 

To derive the Nernst-Einstein relation we consider the particle motions 
which are induced by an external, time-independent force field. Common ex­
amples may be the motions of charged particles in an electric field or those of 
massive particles in a gravity field, both in the presence of external scatterers 
determining a diffusive regime. The mobility p, is defined through the relation 
vz = — p(dV(z) Idz) between the mean drift velocity vz acquired by the parti­
cles in an applied potential V(z) and the force exerted by V(z). The particle 
current density in the z direction is iz = pvz = —pp(dV (z) / dz) if the fluid is in 
a free-flow configuration with a (constant) particle density p. In a blocked-flow 
configuration, the fluid acquires a density profile p(z), which drives a diffusion 
current according to Fick's law. The particle current density becomes 

dV(z) ^dp(z) / r n „ N 

and vanishes in the stationary state provided that 

nV(z) 
p(z) oc exp 

D 
(5.35) 

Comparison of Eq. (5.35) with the Boltzmann distribution p(z) oc exp[—V(z)/ 
k&T] shows that the diffusion coefficient and the particle mobility are simply 
related to each other: 

D = kBTp. (5.36) 

From Eqs. (5.29) and (5.36), the Nernst-Einstein relation (5.36) is seen to 
relate the mobility in a constant force field to the zero-frequency value of the 
velocity spectrum: 

/(0) = 2m(v2)p. (5.37) 

This relation can be generalised to the case of a time-dependent external field 
in the linear regime (see e.g. Ref. 30), when it takes the form 

f(u>) = 2m(v2)Rep,(uj). (5.38) 
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Here, w is the angular frequency characterising the time dependence of the 
(monochromatic) external field and Re/x(a>), the real part of the frequency-
dependent mobility, measures the dissipation of power from the source of the 
external field into the system. Equation (5.38) provides an example of the 
so-called fluctuation-dissipation theorem,141 according to which a spectrum of 
spontaneous fluctuations such as f(u) is accessible to measurement through 
the dissipation spectrum of a suitable external probe in the linear regime. 

Ideally, the natural dissipative probe for measurements of the frequency 
spectrum /(u>) should be provided by the incoherent neutron inelastic scatter­
ing experiment referred to in Sec. 5.4.1. It can be proved in full generality that 
in a classical fluid142 

with Ss(k,u>) being the van Hove dynamic structure factor for self-motions as 
introduced in Sec. 5.4.1. In practice, MD simulations still provide the most 
effective approach to unravel the microscopic diffusive motions of atoms or 
molecules in fluids. 

5.6 Models of Velocity Autocorrelation Function 

The simplest model for the velocity autocorrelations is provided by the 
Langevin approach described in Sec. 1.3 — which, we recall, applies to a meso-
scopic particle diffusing in a molecular fluid medium. Prom Eq. (1.5), setting 
x(t) = vx(t) we have 

mvx = -fvx(t) + Fr(t). (5.40) 

We multiply both sides of this equation by vx(0) and average over the equilib­
rium ensemble, bearing in mind that the random force Fr(t) does not correlate 
with the initial velocity (i.e. (vx(0)Fr(t)) = 0). We immediately find that 
Eq. (5.40) integrates to give 

(v(0) • v(i)> = 3(vx(0)vx(t)) = Z{vl)e~tlT , (5-41) 
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for t > 0, with r = m/f being the "relaxation time". The spectrum thus has 
the Lorentzian form 

where (v2) = Sk^T/m. Equation (5.29) relates the relaxation time to the 
diffusion coefficient, 

D-fflr. (5.43, 

The measured transport coefficient carries information on the time scale of the 
transport process. 

We present in the remaining part of this section some more recent models 
for diffusive particle motions, which are usefully applied to describe the self-
diffusion coefficient and the Stokes-Einstein relation in atomic and molecular 
liquids. 

5.6.1 The Zwanzig model 

Starting from ideas of Stillinger and Weber,143 Zwanzig144 invoked a combina­
tion of vibrational and jumping motions in order to derive a Stokes-Einstein 
relation between the atomic diffusion coefficient and the shear viscosity in a 
cold, dense liquid directly from the Green-Kubo time correlation formulae. In 
essence, in the model the configuration space is divided into "cells", each cell 
being associated with a local minimum on the free energy hypersurface. Some 
of these minima may correspond to almost crystalline local configurations. 
The configuration of the liquid remains in one of these minima, performing ap­
proximately harmonic rattling motions until it finds a saddle point and jumps 
through it to another cell. The effects of the jump are (i) to rearrange the 
positions of the particles in some subvolume V*, and (ii) to interrupt the os­
cillations within it, so that the motions inside V* before and after the jump 
are uncorrected. 

The realisation of the model introduces a spectrum of vibrational frequen­
cies to reduce the average over atoms, which is involved in Eq. (5.24), to a 
sum over normal modes localised in the various subvolumes V* and having 
a time dependence of the form cos(wt). One also introduces a distribution 
•w(t/r) of waiting times, with a characteristic time r for cell jumps destroying 
coherence in any subvolume V*. Evidently, this dynamical picture requires 
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that the waiting time be appreciably longer than the vibrational period. The 
diffusive jump is then assumed to be essentially instantaneous. 

Within a single-frequency Einstein model for the rattling motions one finds 

Z(t) = ( ^ r ) v> (^ coS(wEt), (5.44) 

WE being the Einstein frequency. Here from Eq. (5.27), one obtains with the 
empirical choice w(t/r) = sech(i/r) , the expression145 

D=(tfHT). (5.45) 

for the self-diffusion coefficient D. The early result of Brown and March,146 

(5.46) 

where O>D is a Debye frequency, follows in the limit LJT <C 1. 

Fig. 5.7. Reduced self-diffusion coefficient D* = ^ (me /o - ) 1 / 2 against reduced temperature 
T* = kftT/e in a Lennard-Jones fluid at various values of the reduced density n* = per3: 
theoretical results (solid lines) compared with results from molecular dynamics by Heyes. 
(Redrawn from Tankeshwar et al., Ref. 145.) 
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Figure 5.7 reports the work of Tankeshwar et al.145 a comparison of results 
obtained from Eq. (5.45) with MD data on the temperature and density depen­
dence of the diffusion coefficient of Lennard-Jones fluids. The two disposable 
parameters WE and T have been adjusted to two low-order moments of f(ui) 
(see Sec. 5.5.1). 

5.6.2 Wallace's independent atom model 

In contrast to Zwanzig's model, the model of velocity autocorrelations devel­
oped by Wallace147 focuses on atomic motions within a volume consisting of 
an atom plus its near neighbours and allows diffusive jumps to occur several 
times within a vibrational period. The transits that represent the diffusive 
jumps are then incorporated by Wallace within his description of the atomic 
motion. 

The Wallace model leads to a two-parameter formula for the self-diffusion 
coefficient 

\ nmu; J 

In Eq. (5.47) w is linked within the model to a well-defined RMS frequency 
related to quasi-harmonic phonon frequencies and £ is a transit parameter, that 
Wallace extracts from the available data on ten liquid metals (see Table 5.2: 
with the subscript m denoting the liquid at freezing, the data in Table 5.2 are 

Table 5.2. Transport data on liquid metals at the freezing point. 

Metal 

Li 

Na 
K 
Rb 
Cu 

Ag 

P b 

Zn 

In 

Hg 

Tm 

(K) 

453.7 

371.0 

336.4 

312.6 

1357.0 

1234.0 

600.6 

692.7 

429.8 

234.3 

Pm 
(g/cm3) 

0.515 

0.925 

0.829 

1.479 

8.000 

9.346 

10.68 

6.58 

7.02 

13.69 

I 'm 
(10~5 cm 2 / s ) 

5.96 

4.23 

3.70 

2.72 

3.98 

2.55 

1.74 

2.03 

1.68 

0.97 

77m 

(cp) 

0.60 

0.69 

0.54 

0.67 

4.1 

3.9 

1.9 

U 

0.50 

0.55 

0.55 

0.58 

0.61 

0.50 

0.60 

0.52 

0.68 

0.92 

*̂ m 

53.(0) 

43.(7) 

43.(5) 

44.(0) 

41.(7) 

54.(9) 

52.(6) 

(2-0. 
(5.47) 
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the temperature Tm, the density pm, the self-diffusion coefficient Dm and the 
shear viscosity rjm, the transit parameter £m at Tm, and the quantity ai^1 = 
(k^T'p1/3 JDr))m). It will be seen from Table 5.2 that the values of £ in these 
liquid metals at the freezing point cluster mostly around £m « 0.6: they fall 
between about 0.5 and 0.7 for nine metals, with Hg lying outside this range 
with a value of 0.92. 

More generally, Wallace shows that the curve of £ versus T/Tm at atmo­
spheric pressure is approximately universal for nine liquid metals. The simple 
model of diffusive motions has also proven useful in a description of the glass 
transition.148 

5.6.3 Generalisation of Stokes-Einstein relation 

The model summarised in Sec. 5.6.1 was used by Zwanzig144 to propose a 
generalisation of the Stokes-Einstein relation for dense liquids, having the form 

Dr) = 0.0658 f 2 + -5.\ . (5.48) 

In Eq. (5.48), 77 and 771 are, respectively, the shear and longitudinal viscosities 
(see Chap. 6), while p is the atomic number density. The RHS of Eq. (5.48) 
has bounds that can vary between 0.13 and 0.18 and this is in accord with 
data on a variety of organic liquids. However, these bounds are violated for 
some liquid metals at freezing. 

The transit parameter of the Wallace model has been used149 to relate shear 
viscosity and self-diffusion in liquid metals at the freezing temperature. From 
the result of Brown and March146 in Eqs. (5.46), Eq. (5.47) can be written in 
the form 

/ T i / 2 
D ' 

.ml/2pU3 . ( 2 - U 
(5.49) 

But Brown and March also obtained the shear viscosity from Green-Kubo-type 
arguments as ?7m oc Tm ml'2pm , a formula that goes back to Andrade150 (see 
Sec. 6.6.3). Multiplying Eqs. (5.49) and (5.50) to get a Stokes-Einstein form 
immediately yields 

-Ur^)* L 
(2-&n)J 

(5.50) 
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Fig. 5.8. Illustrating deviations from the Stokes-Einstein relation in liquid metals. (Re­
drawn from March and Tosi, Ref. 149.) 

Figure 5.8 shows the extent to which a linear relationship between a;"1 and £"*, 
as predicted by Eq. (5.50), is satisfied from the data reported in Table 5.2. It 
appears, therefore, that Eq. (5.50) is a step forward in representing deviations 
from a Stokes-Einstein relation in liquid metals near freezing. 



Chapter 6 

Viscosity 

6.1 Hydrodynamic Variables 

Thermodynamic equilibrium in a dense classical fluid is established and main­
tained by intermolecular collisions occurring with an average time interval 
r which in many instances may be of order 10_ 1 0-10~1 3 s. The mean free 
path £ = VT is the mean distance travelled by a molecule between successive 
collisions, with v w (A^T/m)1 '2 being the thermal velocity. Consider now 
a disturbance of the equilibrium which varies periodically in time and space 
with frequency w and wave number k. If UJT <C 1 and M < 1 , there are many 
collisions within each space-time cycle of the perturbation and we may assume 
that the liquid responds to the perturbation as if at each point in space it were 
close to equilibrium at each instant in time. 

In fact, while almost every degree of freedom in a many-body system will 
relax to its equilibrium value in a time determined by the system's detailed 
microscopic interactions, some degrees of freedom are sure to vary slowly in 
time at long wavelengths. We met an example of such a variable in treating 
mass diffusion in Chap. 5 (see especially Sec. 5.4.1). Particle conservation 
implies a continuity equation relating the time derivative of the density of 
particles to the divergence of the flux (see Eq. (5.5)). As a result, the frequency 
range relevant to the variation of the particle density in time is Dk2, vanishing 
for k -> 0 (see Eq. (5.15)). 

This argument extends to the densities of all conserved quantities, namely 
(for a one-component fluid) momentum and energy in addition to the number 
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of particles. Thus, sound waves and thermal conduction in a simple fluid have 
characteristic inverse times which vanish as the wavelength goes to infinity. In 
general terms, the time dependence of the density of each conserved quantity 
is determined by the divergence of its current density and, for slowly varying 
disturbances, this is a local function of the fields which are thermodynamically 
conjugate to the conserved quantities. Referring again to Chap. 5, we saw in 
Fick's law that the particle flux is driven by the gradient in chemical potential 
(see Eq. (5.4) and the comment following it). 

The equations relating currents to fields are known as the constitutive re­
lations and the parities under time reversal of each field and of the currents 
that it drives are all important. As a general rule, a current has opposite par­
ity to that of the associated density of conserved quantity, since the two are 
related by a continuity equation. Hence, a coefficient relating a current and 
a field having the same parity is purely reactive, while the relation between 
a current and a field having opposite signs under time reversal is necessarily 
dissipative. Equation (5.4) is an example of such purely irreversible behaviour. 
Of course, the relations between currents and fields may contain both reactive 
and dissipative terms — an example being the propagation of sound waves. 

The term "hydrodynamics" is commonly used to refer to such dynamics at 
long wavelength and low frequency.151,152 As we have already remarked, for a 
one-component fluid there are five conservation laws and five hydrodynamics 
modes. This number increases in liquid mixtures because of mass conservation 
for each component, and also in ordered systems with continuous broken sym­
metries. As an example of the latter case we may cite a nematic liquid crystal, 
in which the molecules in the shape of short sticks line up along the so-called 
director. Since the director can point in any direction (in the absence of anchor­
ing to the container walls), it takes a vanishingly small energy to induce a slow 
continuous variation in this direction and hence the time rate of change of the 
variable that describes the "broken symmetry" must be small. For a nematic 
liquid crystal this argument leads to two additional hydrodynamic modes (see 
Chap. 11). On the other hand, in a superfluid the additional hydrodynamic 
variable is the superfluid velocity: the continuous broken symmetry is in this 
case related to gauge invariance and, since the superfluid velocity can be ex­
pressed through the gradient of a phase, there is just one extra hydrodynamic 
mode (see Sec. 7.7). 

In this chapter we shall be concerned with momentum as a conserved quan­
tity in an isotropic one-component fluid and shall defer to Chap. 7 an account 
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of energy conservation. We shall then see that the hydrodynamic theory pre­
sented here for sound-wave propagation is correct when energy fluctuations are 
decoupled from density fluctuations: this occurs in the limit when the specific 
heat ratio Cp/Cy tends to unity (as for metals near freezing: see Sec. 3.2.2). 

6.2 Stresses in a Newtonian Fluid and the 
Navier-Stokes Equation 

The main aims of this section are firstly to introduce the Newtonian law relat­
ing the stress in a viscous fluid to the local gradients in fluid velocity, and then 
to derive the basic equations governing the time variation of the momentum 
density. The book by Faber4 gives a good introduction to macroscopic fluid 
dynamics and will often be cited in the next few sections. 

6.2.1 Viscosity stress tensor 

Consider a fluid flowing along the x\ direction with velocity V\{x2) correspond­
ing to a uniform velocity gradient dvi/dx2 (see Fig. 6.1). In a microscopic view 
the molecules in any given layer are moving more slowly than those in the layer 
above it. Newton assumed that in such circumstance there is a shearing drag 
force between adjacent layers, directed along the x± axis and acting in the plane 
orthogonal to the x<i axis. Denoting the force per unit area (i.e. the stress) as 
<j\i in this case, then Newton's law of viscosity gives its magnitude as 

d v i / « i ^ 
<7i2 = r\-r— > I 6 - 1 ) 

dx2 

,S,/,,,S,//S,,/S/,/S,S/,M,MM,ss„„„SM/SM,////,/,////////SS//S 

X l 

//'/y/wV/V/Wy/tyŷ ^̂ ^̂  

Fig. 6.1. Illustrating the velocity gradient between different layers in a viscous fluid. 
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at low rates of shear, r\ being the shear viscosity. This law obeys two basic 
requirements: (i) the stress changes sign when the flow is reversed; and (ii) if 
the velocity gradient vanishes everywhere, there is an inertial frame in which 
the fluid is at rest and the shear stress vanishes. In such a frame only the 
diagonal elements of the full stress tensor of the fluid are different from zero 
and are given by the pressure p as Oij = —pSij. 

As a first step towards the extension of Newton's law to three-dimensional 
flow, let us consider the case where a velocity gradient dv2/dx\ is also present. 
The quantity 

1 fdvi dv2\ , . 

"12 = 2 U ^ ~~ dVj (6"2) 

describes the local rate of rotation of the fluid. No stress can be associated 
with such vorticity, since local rotation does not change the separation between 
any two neighbouring points inside the fluid. The stresses ayz and <y2i must 
be equal to each other and proportional to the average of the two velocity 
gradients — or otherwise each volume element of the fluid would be subject 
to a couple about the X3 axis and hence to an angular acceleration. 

The conclusion is that stress in a fluid is a symmetric second-rank tensor 
and may thus be expressed as the sum of an isotropic term and of an anisotropic 
symmetric term. We may note the analogy with the relation between stress 
and strain in the theory of elasticity in solids: in the fluid the relative density 
change (included in the hydrostatic pressure term) and the velocity gradients 
(i.e. the rates of deformation) take the place of the strain tensor. The most 
general form of the stress for a Newtonian fluid in the hydrodynamic regime 
accordingly is 

•̂ = (-p + W-v).,+,(gi + g), (6.3) 

where r? and rj' are known as the first and the second coefficient of viscosity. 
These are the analogues of the Lame coefficients /x = C44 and A = c\i in the 
theory of elasticity. 

The quantity V • v in Eq. (6.3) is the divergence of the velocity field and by 
particle conservation a continuity equation relates it to the total time derivative 
of the particle density p, 

v.v-ig. m 
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By the operator D/Dt it is meant that the rate of change is being taken 
following the fluid, i.e. 

^ = ^ + v . V p . (6.5) 
Dt dt y K ' 

Thus, Eq. (6.4) can also be written in the more transparent form 

^ = - V . ( p v ) , (6.6) 

p\ being the particle current density j . For incompressible flow we set V-v = 0 
in Eq. (6.3). 

6.2.2 Bulk and shear viscosity 

Let us introduce, as usual, the mean pressure p through the trace of the stress 
tensor: 

p = --(0-11+0-22+^33) = p - 7 7 b V - v , (6.7) 

where we have defined 1% = rj' + 2r//3. The parameter r/b is known as the 
bulk viscosity. The second term on the RHS of Eq. (6.7) may be rewritten 
in terms of the total time derivative of the particle density through Eq. (6.4). 
The pressure p in Eq. (6.7) will instead be evaluated by the thermodynamic 
rules from the instantaneous free energy density of the fluid. 

Bulk viscosity is often irrelevant in the dynamics of simple fluids, but enters 
explicitly in the attenuation of sound waves. Let us consider a planar sound 
wave of small amplitude propagating along the xi direction, with a velocity 
field v\ depending sinusoidally on x\. From Eq. (6.3) the normal component of 
the stress tensor is —o\\ = p — (|?7 + r)h)(dvi/dxi). This expression provides 
the basis for a discussion of sound-wave attenuation (see Sec. 6.7). 

6.2.3 The Navier-Stokes equation 

We now write the equation of motion of the fluid in the form of a continuity 
equation relating the time derivative of the momentum density gi = mpvi to 
the divergence of the momentum current density 7Tjj, 

dt 2-J dx - S ^ <6-8> 
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Assuming for a moment that dissipation may be neglected, we set -K^ = 
p5ij + g%Vj. Equation (6.8) may then be written with the help of Eq. (6.6) in 
the form 

^ + (v -V)v = - — V p . (6.9) 
at mp 

This is the equation first proposed in 1755 by Euler to treat inviscid flow. With 
the definition given earlier for the total time derivative, it may be written in 
the form 

mp— = -Vp, (6.10) 

showing that Euler's equation is nothing but Newton's dynamical law relating 
to the pressure force the acceleration of a mass element having instantaneous 
velocity v(r(t) , i) . A density of external force may be added to the RHS of 
Eq. (6.10) if needed. 

The same considerations hold, of course, for Eq. (6.8) when viscous dissi­
pation is taken into account (as already noted in Sec. 6.1, we neglect thermal 
dissipation in the present chapter). We only need to include in the momentum 
current density the full stress tensor from Eq. (6.3): 

•*ij = -<Tij + giVj . (6-11) 

Using Eqs. (6.11) and (6.3) in Eq. (6.8) then leads us to the Navier-Stokes 
equation, 

mp 
9V / T̂ N 

^ + ( v . V ) v - V p + ( | » ? + »n,) V(V-v)+»7V 2 v . (6.12) 

This is to be combined with the continuity Eq. (6.6). Because of the non­
linear terms on the LHS of Eq. (6.12), the solutions of this equation can be 
very complex and rich. 

6.2.4 Viscous dissipation 

The viscous forces supplementing the Euler terms in the Navier-Stokes equa­
tion are frictional forces causing irreversible loss of energy. Let us consider 
the amount of work 5W done on the fluid per unit volume in giving to the 
molecules quasi-static displacements <Ss(r) = v(r)<5i in a time interval 6t. From 
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the definitions of stress and strain we have 

5W _ 1 ^-^ / 9vi dvj' 

~~5t = 2 \?ai* \dx~ + ~dx~it 
»j 

^Pv.v+,'(v.vf+i,E(|i+g)2. m 
ij J ' 

The first term on the RHS is the pressure work done in changing the den­
sity (see Eq. (6.4)) and may have either sign depending on the sign of V • v. 
The viscosity terms instead cannot be negative and are responsible for energy 
dissipation. 

In particular, if only the component dv\/dxi of the velocity gradient is 
different from zero we find from Eq. (6.13) 

-st H^Hfe) • (6-14) 
vise 

Such a dissipative term has already been met in Sec. 6.2.2. On the other hand, 
if only the component dvi/dx2 is non-vanishing we get 

= l(¥)2. (6-15) 
5W 

ST \dX2j 

As we shall see in Sec. 6.7 below, these two expressions are directly relevant 
to determining the attenuation of longitudinal sound waves and of transverse 
motions, respectively. 

6.3 Laminar Flow and the Measurement of Shear Viscosity 

A presentation of the various methods by which the shear viscosity of a fluid 
may be measured can be found in the book of Kestin and Wakeham.153 

Illustrative values for some materials at atmospheric pressure are shown in 
Table 6.1.116 An Arrhenius plot of the shear viscosity of water, extending down 
into the supercooled region, is reported in Fig. 6.2.119 

Here we pause on the equations governing two of these methods of measure­
ment (the oscillating-disk viscometer and the Couette viscometer) as examples 
of laminar flows described by the Navier-Stokes equation (see also Faber4). 
The term "laminar flow" is used in a restricted sense, implying that the fluid 

file:///dX2j


144 Viscosity 

Table 6.1. Shear viscosity of some fluids at 
atmospheric pressure. 

Fluid T(C) 77 (cp) 

Air 

Argon 

Bromine 

Water 

Mercury 

Glycerol 

Glass 

15 

- 1 8 8 

20 

50 

0 

25 

100 

25 

100 

25 

100 

1.789 x 1 0 - 2 

0.28 

1.252 

0.746 

1.793 

0.890 

0.282 

1.526 

1.245 

934.0 

14.8 

> 1015 

Fig. 6.2. Arrhenius plot of the shear viscosity of water, extending into the supercooled 
region. (Redrawn from Angell, Ref. 119.) 
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is being viewed as an assembly of thin laminae of uniform thickness, whose 
boundaries remain fixed as the fluid moves through them. The two cases of 
present interest are when the laminae are (i) plane sheets, or (ii) concentric 
cylindrical shells. 

6.3.1 Oscillating disk viscometer 

For viscous flow in planar laminae we take vi(xz,t) as the only non-zero com­
ponent of the fluid velocity. Equation (6.12) then yields 

dvi dp d2v1 
m p ^ t = - d ^ + r > ^ - ( 0 6 ) 

This equation also governs the case in which the laminar flow is induced in 
a large body of fluid by moving in it a flat solid plate, in the absence of a 
pressure gradient. Taking the surface of the plate at x^ = 0 and the fluid in 
the region x^, > 0, we have in this region 

dvi d2vi 
~m=T1~dx 

mP^T = V^a » (6-17) 
2 

with the non-slip boundary condition that V\{x.2 = 0,t) equals the velocity of 
the plate u(t). 

Let us take u(t) as an oscillating function of time with angular frequency u 
and look for travelling-wave solutions of the form V\(x2, t) oc exp[i(fca;2 — wt)], 
with the understanding that only the real part of this expression is significant. 
From Eq. (6.17) we find A; = ±(1 + i)/5 with 

\mpoj J 

The length S may be viewed as the boundary layer thickness in the fluid, 
within which the waves induced by the oscillating plate are attenuated. In 
practice, the viscosity is measured from the logarithmic decrement of a system 
of horizontal disks undergoing torsional oscillations. 

6.3.2 Couette viscometer 

Viscous flow in concentric cylindrical shells is best described by adopting cylin­
drical coordinates (r, 6, x^). The fluid may either flow along the £3 axis or 

file:///mpoj
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circulate about this axis. The former case leads back to the Poiseuille equa­
tion (see Sec. 1.4.3), while the latter is appropriate to the Couette viscometer 
(for a full discussion see the book of Faber4). 

The viscometer consists of two coaxial cylinders, with the outer one rotating 
at constant angular velocity Wb- In such steady state the fluid rotates with 
tangential velocity v(r) increasing with the radius r. At a point in the fluid, 
the rate of rotation of a short line embedded in it is v/r if it lies at right 
angles to the radius vector but dv/dr if it lies along the radius vector. We set 
dv\/dx2 = —dv/dr and dv2/dx\ = — v/r to find 

*ia = V ^ . (6-19) 

The torque per unit length is gz(r) = —r(2itr<j\2). The viscosity may be 
measured from the torque transmitted from one cylinder to the other after a 
steady state has been established. 

6.3.3 Hydrodynamic lubrication 

Following Tabor,3 let us consider a shaft of radius a rotating with angular 
velocity u inside a bearing of radius (a + c). If the shaft carries a light load 
and the bearing is filled with oil, they will remain concentric. The velocity 
gradient across the lubricant is u>a/c and the tangential force / per unit length 
that must be exerted on the shaft to maintain steady rotation is 

/ = ( 2 * r a ) ^ . (6.20) 

The equation was derived by Petroff in 1883 and is adequate for a lightly loaded 
bearing. 

However, as was first realised by Reynolds in 1886, a much larger load 
can be supported if the shaft rotates in an eccentric position, so that the oil is 
squeezed through the converging gap between the two surfaces. Rotation of the 
shaft causes its centre to shift, inducing a pressure difference which supports 
the weight. 

6.4 Creeping Flow Past an Obstacle 

Following again the book by Faber,4 we consider in this section cases in which 
an effectively incompressible fluid is in quasi-steady flow at very slow velocity 
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past an obstacle of size a. This requires values of the Reynolds number Re — 
pav/r) which are much less than unity. In these cases the LHS of the Navier-
Stokes equation can be neglected and, setting V v = 0 in its RHS, the equation 
reduces to 

V2v = t7_1V«p. (6.21) 

Here, 6p(v) = p(r) — p is the excess local pressure. Equation (6.21) is to be 
solved under appropriate asymptotic conditions on the flow far away from the 
obstacle. 

6.4.1 Stokes' law revisited 

The problem that we have posed above is that solved by Stokes in 1851 for 
a spherical obstacle of diameter a. We have already indicated its solution in 
Sec. 1.4.4 (see Eq. (1.16)). Let us pause here to see how Eq. (6.21) is solved. 

In general, the solution of such a differential equation is the sum of a partic­
ular integral Vi(r), obeying the equation V2Vi = 7?-1Vp, and of a complemen­
tary function V2(r) satisfying the equation V2V2 = 0 and enforcing asymptotic 
conditions at large distance from the sphere. With regard to V2(r), in the ab­
sence of vorticity we may introduce a single-valued scalar potential function 
</>(r) such that v2(r) = V</>(r). Evidently, the condition V • v2 = 0 is satisfied 
if ^>(r) obeys the Laplace equation V2</>(r) = 0. By applying the divergence 
operator (V-) to Eq. (6.21) it is seen that the pressure must also obey the 
Laplace equation V2p(r) = 0. 

In the problem of creeping flow past a sphere, the solution of the Laplace 
equation which satisfies the asymptotic condition of uniform flow at velocity 
u along the x\ direction, say, is 

4>{r, 0) = (ur + Ar-2) cos 9 (6.22) 

in polar coordinates. Similarly, taking the excess pressure to vanish at infinity 
we have 

Sp{r,9) = Br~2 cose. (6.23) 

Expressions for the radial and tangential velocity fields follow at once from 
these expressions, and the two coefficients A and B are determined by asking 
that v(r, 1? = 0) should vanish at contact with the sphere (i.e. for r = a/2). 
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The result for the radial and tangential components of the velocity field is 

vr(r, 6) — u I 1 — -x -\—x3 J cos 6 

(6-24) 

ve(r, 6) = —u I 1 — —x + -a;3 J sinO, 

with x = a/2r. This solution is easily checked by substitution into Eq. (6.21). 
The no-slip condition (vT = 0) is satisfied on the surface of the sphere. 

The excess stress acting on the surface of the sphere has normal and shear 
components which can be obtained from Eqs. (6.3) and (6.19). Taken together, 
these are equivalent to a uniform force per unit area in the direction of u, of 
magnitude 3-qu/a. The total drag force is 

F = na2 (?rL\ = 37rr)(TU. (6.25) 

This is Stokes' law (see Eq. (1.16)). 
If, on the other hand, the sphere is itself a liquid of viscosity rf, one has to 

account for circulating currents arising within it and modifying the external 
pattern of flow. In this case the surface force per unit area becomes 

F = 2nWu11 + 3v'/2 , (6.26) 

giving back Eq. (6.25) for r\ < f / but yielding F = 2-irqau when 77 S> rf'. 
As an application let us consider a small solid sphere of radius a and mass 

density pa, falling under gravity down the axis of a vertical cylinder which 
is filled with liquid of mass density pi — the essence of the falling-sphere 
viscometer. In the conditions under which it was derived, Eq. (6.25) can be 
used in the reference frame in which the liquid is stationary and the sphere is 
moving. The falling sphere may thus be expected to reach a thermal velocity 
given by 

37T?7CTU = -na3g(ps - pi). (6.27) 

In the case of a gas bubble in a liquid, on the other hand, we need to use 
Eq. (6.26) with r\ » rf instead of Eq. (6.25) and to replace ps in Eq. (6.27) by 
Pgas ^ Pi- The result is that the bubble rises with a terminal velocity given 
by u = pe<r2g/12r). 
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6.4.2 The viscosity of suspensions 

As a preliminary to evaluate the effective viscosity of a fluid containing a dilute 
system of solid particles in suspension, Faber4 considers again the problem of 
the velocity field around a solid sphere, but now under the assumption that the 
vorticity-free shear be uniform far away from the sphere. That is, the velocity 
field V2(r) is given asymptotically by 

v 2 ( r ) = c ( * i , - 5 * 2 , - ^ : 3 ) , (6-28) 

with £ being the rate of extension of the fluid. 
By comparing Eq. (6.28) with Eq. (6.13) it is easily shown that the rate 

of energy dissipation approaches asymptotically the amount 3r)£2 per unit vol­
ume. In the presence of the foreign sphere, on the other hand, the energy 
dissipation is calculated to be 

8W = 377C2 1 + 1(4)3 + " V (6.29) 

over a spherical volume V of radius B o > a . Thus, the presence of the foreign 
sphere increases the shear viscosity of the incompressible fluid by the factor 
shown in the brackets in Eq. (6.29). 

The above result immediately suggests an effective-medium description of 
the shear viscosity of a dilute dispersion of solid particles. The effective vis­
cosity of a fluid containing a large number of solid particles in suspension can 
be estimated as 

r^ad) « n ( l + | / ) , (6.30) 

where / is the fraction of the total volume of the suspension which is occupied 
by solid matter. A similar argument applied to the suspension of spherical gas 
bubbles leads to the result 

^ ^ ( 1 + / ) , (6-31) 

for its effective viscosity. To such a suspension one may, in fact, also attribute 
an effective compressibility Keg ~ fKesis and an effective viscosity 77b,eff ~ 
4r?/3/. 
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6.4.3 Percolation 

By invariance under a Galilean transformation the problem of a liquid flowing 
through a set of stationary solid particles is equivalent to the fall of a set of 
solid particles through a stationary liquid. Assuming the solid particles to be 
spheres of diameter a occupying a fraction / of the total volume and the liquid 
to have viscosity 77, an estimate of the terminal velocity can be obtained from 
Eq. (6.27) by using the effective viscosity (6.30) of the suspension in place of 77. 

More generally, the semiempirical expression 

2 

u=^(ps-Pe)fn(f) (6.32) 

is often used in this connection by engineers, the first factor being taken from 
Eq. (6.27) and the function fh(/) being taken in the form fn(/) = (1 - / ) 3 / 1 0 / . 
This expression can be used in situations where the particles are in contact 
and are falling as an essentially solid permeable block, but disregards effects 
of the geometry of the packing and the shape of the particles. 

The problem is of great practical importance in situations where a liquid 
is percolating through a porous medium under a pressure gradient, as for wa­
ter through soil or oil through shale.4 The velocity of flow is proportional 
to the pressure gradient and inversely proportional to the viscosity of the 
liquid, through a permeability coefficient k which depends on the proper­
ties of the porous medium but not on the properties of the liquid. This is 
known as Darcy's law. Equation (6.32) gives an estimate of the coefficient as 
k = a 2 fn( / ) /18/ . 

6.5 Vorticity 

In deriving Stokes' law for the drag on a solid sphere, the Reynolds number 
was assumed to be much less than unity. The effects that arise when this 
assumption does not apply depend critically on the behaviour of the boundary 
layers, where the flow is contaminated by vortices. 

The velocity w = V x v described the local rate of rotation of the fluid 
(see Sec. 6.2). With this definition, the divergence of u; is necessarily zero 
everywhere — a property that it shares with the electromagnetic fields E and 
B in the free space and with all other so-called solenoidal vectors which are 
defined as the curl of another vector. Thus, its variation in space can be 
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described by continuous field lines whose direction coincides with the local 
direction of u> and whose density is proportional to the magnitude of u>. Every 
free vortex line can be described as a bundle of such lines of vorticity. 

6.5.1 Vorticity diffusion 

The analysis of vorticity dynamics is usefully based on the Navier-Stokes 
Eq. (6.12). Standard vectorial calculus yields the relation V ( V • v) = V2v + 
V x u; and hence Eq. (6.12) can be rewritten as 

mp 
dv 
^ + (v.V)v 

= - Vp* - r/V x w , (6.33) 

where p* = p — (rfc + 4r//3) V • v. We discuss below the case of uniform fluid 
density and incompressible flow, when by taking the curl of Eq. (6.33) we find 
the equation of motion for vorticity in the form 

-£- + (v • V)w = (u> • V)v + -^-V2u>. (6.34) 
dt y ' y ' mp v ' 

The LHS of this equation is Dui/Dt, the rate of change of u taken while 
following the fluid. 

The last term on the RHS of Eq. (6.34) vanishes for inviscid flow described 
by the Euler Eq. (6.9). In this case the lines of vorticity can be regarded 
as embedded in the fluid and forced to move with it. Furthermore, they are 
conserved in number so that the magnitude of u increases when the fluid is 
stretched in the direction of w. 

The viscous term on the RHS of Eq. (6.34), on the other hand, implies 
the presence of three-dimensional diffusion for each of the three components 
of the vector u> (see Chap. 5 for the diffusion equation in the context of mat­
ter transport). Thus, vorticity is not permanently embedded if the fluid has 
viscosity: rather, it spreads by diffusion with a diffusivity coefficient given by 
the kinematic viscosity v = rj/mp. 

Of course, as in any other diffusive process the vorticity is still conserved. 
However, if it is positive in some regions and negative in others, some cancella­
tion will occur as the lines of vorticity diffuse. In particular, a line of vorticity 
forming a closed loop can disappear by collapsing into a point. In other situ­
ations a line of vorticity may diffuse towards the liquid surface and disappear 
there. Surfaces may act both as sinks or as sources of vorticity. 
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The above elementary facts are at the basis of the behaviour of fluids in 
boundary layers adjoining the surfaces of solid bodies at increasing Reynolds 
numbers, leading to the formation of eddies and turbulent wakes — a subject 
of crucial importance in fluid dynamics and its applications. We refer once 
again the interested reader to the excellent introduction of these topics given 
in the book of Faber4 (see also Chap. 12 below concerning turbulence). 

6.5.2 The Magnus force 

Here we briefly refer to the so-called Magnus effect, which concerns a uni­
formly rotating solid cylinder embedded in a fluid moving relative to it with a 
transverse velocity v(r) tending to the value u asymptotically far away. The 
electromagnetic analogue is the current-carrying wire inside a uniform mag­
netic field B, which experiences a force f = i x B per unit length. 

Similarly, the so-called Magnus force tends to uplift the rotating cylinder 
and is given by f = — mpK x u, where K = § v • d\ is the circulation integral or 
in essence the strength of the vortex line associated with the rotating cylinder 
in terms of the local fluid velocity. This lift force which acts on a bound vortex 
line is independent of the cross-section of the solid body to which the line is 
attached. 

6.6 Models of Viscosity 

As noted in the short review by Heyes and March,154 transport of momentum 
and energy occurs in a liquid not only by the bodily movement of molecules 
as in the transport of matter, but also by the action of intermolecular forces 
at a distance. Of these two independent mechanisms, the former is predom­
inant at low density while the latter is the important one at high densities. 
Transport in monatomic fluids at low densities is well understood through the 
work of Chapman and Enskog.132 The theory of transport in liquids is less 
well developed: as the inter-molecular potential varies continuously with dis­
tance, collisional momentum transport is associated with a distortion of the 
radial distribution function g(r), as emphasised in the early work of Irving and 
Kirkwood.155 Much progress has been made by exploiting the simplicity of the 
hard sphere model and by computer simulation of transport in Lennard-Jones 
fluids. 
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6.6.1 Shear and bulk viscosity of hard sphere fluid 

Collins and Raffel156 and Longuet-Higgins and Pople157 emphasised that in a 
liquid of rigid molecules the singular nature of the interactions permits a finite 
flux of momentum and energy even when the radial distribution function is 
momentarily isotropic, as it is in equilibrium. 

The earliest study of transport in a dense hard sphere fluid goes back to 
Enskog. He used a Boltzmann-like equation to determine the evolution of 
the single-particle distribution function as for a dilute gas, but modified the 
collision term to take account of effects which become important as the density 
increases: the molecules cannot be treated as point-like and the free volume 
that they can occupy is reduced. The calculation of Longuet-Higgins and Pople 
tackled directly the collisional contributions to the shear and bulk viscosities 
on the assumptions that (i) the pair distribution function does not depend on 
the rate of strain, but only on density and temperature; and (ii) the velocity 
distribution function has a Maxwellian form peaking at the local hydrodynamic 
velocity and with a spread determined by the local temperature. Some details 
of their calculation can be found in Appendix 6.1. 

The results of Longuet-Higgins and Pople can be expressed in terms of the 
deviation of the equation of state from the ideal-gas form, through the quantity 
a = (p/pk^T — 1) where p is the number density, as follows: 

V = 5pa \T~) a ( } 

and 

Vb = lv, (6-36) 

a being the hard sphere diameter and m the particle mass. The factor a 
reflects the probability of finding two spheres at contact, which is given by 
the contact value of the pair distribution function (see Eq. (3.53)). Use of the 
virial expansion for a, which for the hard sphere fluid is a = bp[l + 5bp/8 + 
0.2869(6p)2 + • • •] with b = 27rer3/3, emphasises the strong dependence of the 
viscosities on density. The same model yields the Stokes-Einstein relation in 
the form 

Dr, = ^a2pkBT (6.37) 
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and relates the thermal conductivity A to the shear viscosity in the form 

*-(£"• (6.38) 

Correlations between these transport coefficients and the excess entropy from 
studies of simple fluids by molecular dynamics will be discussed in Sec. 7.2. 

Later work on transport in the hard sphere fluid is discussed in the books 
of Kestin and Wakeham153 and of Ferziger and Kaper.158 On the phenomeno-
logical side, Fig. 6.3 reports from Dymond and Brawn159 a plot of the volume 
dependence of the reduced viscosity rf for fluid argon and some monatomic 
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Fig. 6.3. A plot of the reduced viscosity rf versus reduced volume V/VQ for argon 
(o), krypton (A) and xenon ( • ) at various temperatures. The vertical bars show hard 
sphere results. (Redrawn from Dymond and Brawn, Ref. 159.) 
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gases at several temperatures. This quantity is denned as 

2/3 

v* = ir ( w ) > (6-39) m \v0) 
where 770 refers to the low density limit and Vo is the atomic core volume. 
Figure 6.3 includes as vertical bars results for the hard sphere fluid, showing 
that this model supplies us with a good description of the data for these simple 
fluids. 

More generally, a rapid increase of shear viscosity with pressure is the 
rule for liquids. This can be a very significant factor in lubrication: many 
sliding mechanisms may operate successfully because local high pressures, 
which would normally be expected to squeeze out the lubricant, so increase 
its viscosity that it remains trapped between the surfaces. This type of elasto-
hydrodynamic lubrication is of substantial importance in lubrication practice. 

6.6.2 Temperature dependence of shear viscosity 

We have introduced in Sec. 1.4.2 the Eyring model for shear viscosity. We 
present it here in some detail to show how it leads to an Arrhenius behaviour 
for the temperature dependence of the shear viscosity, as a first approximation 
for dense liquids (see for example Fig. 6.2). 

The model introduces an energy barrier E for the relative sliding of local 
neighbouring sheets of the liquid. The frequency with which such sliding will 
occur in the absence of applied stress will be VQ = (k&T/h) exp(—E/k-g,T). Of 
course, jumps to the right and to the left are equally probable in this situation. 
Under an applied force F, however, the work associated with sliding over a 
distance ±d is ±Fd/2 and the activation energy is E ± Fd/2. The frequency 
of jumps in the direction of the force, assuming Fd <C fceT, becomes 

and this is soon seen to imply 77 oc exp(E/kBT). This relation is in accord with 
the observed marked decrease in viscosity with increasing temperature. For a 
very large range of liquids the activation energy E is of order 0.3-0.4 times the 
latent heat of vaporisation L. 

However, for liquid metals it is found that E <£. OAL. Brown and March160 

have drawn attention to the role of the temperature dependence of g(r), as first 
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Table 6.2. Activation energy for shear viscosity and melting temperature of liquid metals. 

Hg Bi Pb Sn Zn Cd Sb Cu Ag Na K 

E (eV) 0.027 0.069 0.086 0.060 0.141 0.089 0.136 0.154 0.211 0.065 0.050 

T m (K) 234.3 544 600.6 505 692.7 594 903 1357.0 1234.0 371.0 336.4 

noted by Green.160 On this basis they proposed that the activation energy for 
shear viscosity is E w |$m in | , <frmin being the value on interatomic pair potential 
at its main minimum. In a metal |<&min| *C L, because of the large contribution 
to cohesion from the sea of valence electrons. 

Table 6.2 reports the values of the activation energy for shear viscosity in 
a number of metals162 and shows that it roughly correlates with the melting 
temperature Tm. 

6.6.3 Green-Kubo formulae for viscosity 

As was the case for the diffusion coefficient in Chap. 5 (see Eqs. (5.16) and 
(5.27)), the shear and bulk viscosities can be expressed through the limits taken 
by appropriate spectral functions in the hydrodynamic regime (see Sec. 6.7). 
The corresponding space-time functions express the autocorrelations of trans­
verse currents for shear viscosity and of the dissipative component of the lon­
gitudinal current for bulk viscosity. For instance, the shear viscosity can be 
written as the time integral of a function r)(t), 

77= / v(t)dt (6.41) 
Jo 

and 77 (£) is conveniently calculated in computer simulation runs by molecular 
dynamics on simple monatomic fluids163 from the autocorrelations of the off-
diagonal components of the microscopic stress tensor (see Sec. 7.2.4). 

In this viewpoint Brown and March,146 by arguments involving the assump­
tion of a Debye frequency, obtained an appropriate formula relating the shear 
viscosity of a liquid metal at freezing to the melting temperature Tm and the 
atomic number density p (see Sec. 5.6.3): 

umocT^m1/VJ3. (6-42) 

Choosing the proportionally constant in accord with the work of Andrade150 

there is excellent agreement between Eq. (6.42) and experiment, as is shown 
in Table 6.3. 
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Table 6.3. Shear viscosity of liquid metals near freezing (in cp). 

Expt. 

Eq. (6.42) 

Li 

0.60 

0.56 

Na 

0.69 

0.62 

K 

0.54 

0.50 

Rb 

0.67 

0.62 

Cs 

0.69 

0.66 

Cu 

4.1 

4.2 

Ag 

3.9 

4.1 

Au 

5.4 

5.8 

In 

1.9 

2.0 

Sn 

2.1 

2.1 

6.6.4 Computer simulation of shear viscosity in a 
Lennard-Jones fluid 

Computer simulation of space-time autocorrelation functions in Lennard-
Jones fluids by the methods of molecular dynamics was first carried out by 
Rahman.164 Levesque et aZ.163 used this technique in long-duration runs on 
large samples of such fluids near the triple point and evaluated the transport 
coefficients from the Green-Kubo formula. They reported a long-time tail for 
shear viscosity autocorrelations, but none for the bulk-viscosity function. 

Since then the technique has been applied numerous times to cover essen­
tially the whole of the Lennard-Jones fluid phase diagram165 and to study the 
dependence of shear viscosity on strain rate.166 The data for all transport coef­
ficients fit reasonably well to a range of analytical approaches and the success 
with respect to kinetic theories such as Enskog's is quite acceptable. 

6.7 Transverse Currents and Sound Propagation in 
Isothermal Conditions 

We report in this section the solution of the linearised Navier-Stokes equa­
tion describing isothermal momentum transport in a one-component fluid in 
the hydrodynamic regime. The reactive coupling between particle density and 
momentum density leads to two propagating sound modes, while two purely 
diffusive modes are due to transverse currents. The effect of coupling with ther­
mal fluctuations, which shifts the velocity of sound propagation from isother­
mal to adiabatic and contributes to sound wave attenuation, will be discussed 
in Chap. 7. 

6.7.1 Linearised Navier-Stokes equation 

Linearisation is carried out with respect to the deviations from the equilibrium 
state, which are Sp(x,t) = p{x,t) - p, 6p(x,t) — p(x,t) — p and v(x, i) . To 
first order in these quantities, Eq. (6.13) is expressed in terms of the current 
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density j = pv as follows: 

dt mp 
^ + r?b )v (V- j ) + ^ - V 2 j . (6.43) 
3 J mp 

It is convenient to separate j into the sum of its longitudinal and transverse 
parts, j = jj + jt , defined so that V x j ; = 0 and V • j t = 0 . The pressure 
force is purely longitudinal and the density is coupled only to jj via the mass 
conservation equation. 

Equation (6.43) then yields a diffusive equation for each of the two compo­
nents of jt: 

IT- = VV If 
dt J 

(6.44) 

where v = rj/mp is the kinematic viscosity. The attenuation length L can be 
estimated from this equation as L « (cu/v)1'2, yielding L « 1 0 - 5 cm for water 
(with r) « 1 cp and mp = 1 g/cm3) at frequency w = 2ir x 105 Hz — a high 
rate of damping. 

By analogy with Eqs. (5.12) and (5.15) we easily get the spectral function 
for transverse-momentum fluctuations in the linear hydrodynamic regime, 

Ivk2 

Sr{k,u,)=iA , , ^ „ (6.45) 
w2 + (i^fc2)2 

and the Kubo formula for shear viscosity, 

7j = -mp lim < u) lim 
2 u>->o I fc-s-o 

ST(k,cu) 

k2 (6.46) 

Again by analogy with diffusive motions (see Eqs. (5.27)), the shear viscosity 
can be expressed through the time integral of the transverse-momentum auto­
correlation function. As already noted in Sec. 6.6.3, this function reflects the 
autocorrelation of the off-diagonal microscopic stress tensor. 

We turn to the longitudinal part of Eq. (6.43). Taking its divergence and 
using the mass conservation equation, 

dSp{x., t) 
in-

dt - V - j j ( x , t ) , 

we find a second-order differential equation in time for Sp(x,t), 

d2 1 / 4 
—m dt2 -3ri + rh —V2 

at 
Jp(x, t) = - V2<Jp(x, t). 

(6.47) 

(6.48) 
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However, thermodynamics relates the pressure and density fluctuations in 
Eq. (6.48) through 

8p(x,t)=(j£\ 6p(x,t). (6.49) 

Thus, after taking the space-time Fourier transform of Eq. (6.48) we get from 
it the eigenvalue equation a>2 — c2k2 + iwk2T = 0, where c2 = m~1(dp/dp)T 
and r = (|?7 + r^/mp. The complex solutions of the eigenvalue equation are 

w = ±ck - -iYk2 , (6.50) 

and describe two longitudinal sound waves which (i) propagate with speed c 
determined by the isothermal compressibility, and (ii) are attenuated by bulk 
and shear viscosity. The value of the attenuation coefficient T was anticipated 
in Sec. 6.2.2. Notice that the attenuation vanishes with wave number faster 
than the real part of the sound frequency. 

For typical sound-wave intensities in the laboratory, corresponding to a 
power of w 0.1-0.3 Watt/cm2 transmitted per unit area normal to the direc­
tion of propagation, the mean particle velocity is much smaller than the wave 
velocity. In these conditions the linearisation of the Navier-Stokes equation 
is justified. However, in highly viscous liquids the omission of higher-order 
derivatives of the velocity in the derivation of the stress tensor is no longer 
permissible. 

6.7.2 Bulk viscosity 

We pause at this point to reflect on the molecular origin of bulk viscosity. 
From the way in which this friction term enters Eq. (6.43), its presence can be 
viewed as equivalent to having an enhanced local pressure in a fluid element 
where V • j < 0 (or a reduced one when V • j > 0). 

Such an effect can be quite significant in the dynamics of polyatomic fluids 
with internal degrees of freedom. The partition of energy between translational 
and internal degrees of freedom need not be the same as in equilibrium: thus, 
if an element of the fluid is suddenly compressed the extra energy may initially 
reside in the translational degrees of freedom and only later the internal ones 
may receive part of it. 
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This argument suggests that •% may be much larger than 77 in some poly­
atomic fluids. Available estimates indicate TJ^/TJ « 2.5 in water and as large as 
102 in benzene. Molecular dynamics on the Lennard-Jones fluid near its triple 
point163 yields instead v^jt] « 0.25. 

6.7.3 Brillouin light scattering 

Light scattering measures fluctuations in the local complex refractive index, 
which to a good approximation in isotropic fluids is a function of the local 
particle density. The spectral function for density fluctuations is obtained 
from the results reported in Sec. 6.7.1 as follows: 

_„ , 2kBTrk4/m . „, 
g(k'^(^ff)HWF' (6-51) 

This is the value taken in the isothermal hydrodynamic regime by the van 
Hove dynamic structure factor of a one-component fluid, that we shall present 
in full generality in Sec. 6.8 below. 

It is evident from Eq. (6.51) that this form of the spectrum for density 
fluctuations, and hence of the light scattering spectrum, presents two peaks at 
frequencies to = ±cfc with widths given by Vk2. This double-peak structure 
is known as the Brillouin doublet and its measurement determines the speed 
of sound in a frequency range definitely higher than that covered by standard 
ultracoustic techniques. We must, however, defer a full discussion of light 
scattering from a liquid in the hydrodynamic regime to the next chapter. 

6.8 Microscopic Density Fluctuations and 
Inelastic Scattering 

We have seen in Sec. 6.7.1 that propagating sound waves are the manifesta­
tion of hydrodynamic density fluctuations in a simple liquid. The relationship 
between longitudinal particle currents and the driving field — the gradient of 
the stress tensor — involves both a reactive term and a dissipative term: the 
former leads to wave propagation at a finite velocity and the latter to damping 
by viscosity. On the other hand, a liquid offers no resistance to slow shears and 
there is no reactive term for transverse currents in the hydrodynamic regime. 

In the last section of this chapter we aim to extend the above picture 
outside the hydrodynamic regime, by treating microscopic density fluctuations 
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in isothermal conditions. We shall first give a general introduction to the 
inelastic scattering of neutrons and X-rays as the basic techniques for the 
experimental study of the microscopic dynamics of liquids. We shall then 
emphasise the wave-vector and frequency dependence of both restoring and 
friction forces in the collective particle dynamics. With regard to transverse 
currents we shall merely recall at this point that, as already introduced in 
Sec. 1.5 on the rigidity of liquids, restoring forces may arise in high-frequency 
transverse motions. 

6.8.1 Inelastic neutron scattering from liquids 

In introducing the microscopic space-time correlations between density fluc­
tuations in a simple liquid we follow the line of argument developed by van 
Hove167 in evaluating the differential cross-section for inelastic neutron scat­
tering from condensed matter. 

Let Ri(t) be the position of the ith atom at time t in a classical fluid of 
mean density p containing N particles in a volume V = N/p. The function 
p(r,t) = X^*Hr — R-i(*)) c a n be used to describe the actual density of atoms 
at point r at time t. We construct the correlation function 

G ( | r - r ' | , i - t ' ) = -(p(r,t)p(r ' , i ')> (6.52) 

or 

G^) = jj (E*( r - **(*)+R^°))/ • (6-53) 

As usual, the brackets (• • •) denote the average over the equilibrium ensemble. 
In each term of the double sum we are asking what is the probability of finding 
atom i in r at time t if atom j (which could be the same atom or another 
atom) was in the origin at time t = 0. 

It is in fact useful to consider separately the terms with i = j . Van Hove 
wrote 

G(r,t) = G.(r,t) + Gd{r,t), (6.54) 

with 
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and 

G^ t) = jf £ ^ r - R<(*)+R^(°))) • (6-56) 

Of course, Gs(r,t) describes single-particle motions as already introduced in 
Sec. 5.4.1. Setting < = 0we get Gs(r,0) = J(r) and Gd(r,0) = pg(r), with g(r) 
the pair distribution function introduced in Chap. 4. On the other hand, in 
the limit t —> oo the correlations should vanish and hence Gs(r, oo) = 1/V and 
Gd(r, oo) = p. The sketch shown in Fig. 6.4 indicates how Gs(r, t) and G<j(r, t) 
may be expected to evolve as time passes. 

The space Fourier transform of the particle density, defined by 

pk(i) = f dvp(r,t)eikr = J2eikRi(t), (6.57) 
J i 

describes for k ^ 0 a wave-like density fluctuation of given wave vector k. 
Hence, the function 

F(k,t) = Jd{v - r')G(|r - r ' | ,i - t ' y * ^ = N-^^p.^O)) (6.58) 

(which is known as the intermediate scattering function) gives the probability 
amplitude that, starting from the liquid at equilibrium and having created a 
density fluctuation with wave vector —k at time t = 0 and a density fluctuation 
with wave vector k at time t, the liquid is found at the end in the same equilib­
rium state. If such a density fluctuation corresponds to an excited eigenstate 
with frequency w^, we expect that .F(k, t) should depend on time through the 

(short t) (intermediate t) (large t) 

Fig. 6.4. Schematic drawing of the spreading of the van Hove correlation functions with 
increasing time. 
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phase factor exp(±icvkt). This is, for instance, the case of harmonic lattice 
vibrations in crystals. More generally, the decay of F(k, t) in time reflects the 
lifetime of a collective excited state, at least in ranges of k where a wave-like 
density fluctuation is not simply an overdamped oscillation. 

A further Fourier transform leads us to van Hove's dynamic structure factor 

S(k, u)= f dtF(k, t)e-^1 = ff drdtG(r, t)ei(-kr-^ (6.59) 

expressing the correlations between the wave-like fluctuations with frequencies 
us and — w. We have 

/ . 

OO 1 

— S(k, u) = F(k, t = 0) = S(k) : (6.60) 
oo 2 7 r 

we recover the structure factor S(k) measured in a diffraction experiment (see 
Chap. 4). 

Starting from these definitions and using time-dependent second-order per­
turbation theory (equivalent to the first Born approximation in scattering the­
ory) , van Hove showed that the differential cross-section for inelastic scattering 
of neutrons from a liquid is determined by S(k, LO) and by its analogue Ss(k, u>), 
obtained by Fourier transform from Gs(r,t). More precisely, the probability 
P(k, u) of an inelastic scattering event in which momentum ftk and energy 
fhj are exchanged between the neutron beam and the liquid is the sum of a 
coherent contribution and an incoherent one, which are given by 

Pcoh{k,uj)=N\(f)\2S(k,Lj) (6.61) 

and 

P inc(k,a,) = iV[(|/|2) - | ( / ) | 2 ]5 s (k ,W ) . (6.62) 

Here, (/) = (l/AT)Ei.A and (|/|2) = (1/N) £ , \h\\ h being the scattering 
amplitude for a neutron from nucleus i. The scattering amplitude depends 
on the chemical nature and on the isotopic state of the nucleus, but is inde­
pendent of k at the wave vectors of interest in neutron scattering experiments 
from condensed matter, which correspond to wavelengths of order 0.5-50 A 
(i.e. much larger than the radius of the nuclear forces). The corresponding 
excitation frequencies are of order 1013 s _ 1 . These values are in match with 
the peak momentum and energy parameters of a beam of thermal neutrons 
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from a nuclear reactor, making this probe a particularly useful one for inelas­
tic scattering studies of atomic motions. Exhaustive presentations of this topic 
can be found in the books of Lovesey168 and Egelstaff.169 

Of special interest in liquids and amorphous solids is the region of scatter­
ing momentum and energy which is intermediate between the hydrodynamic 
behaviour, where a density fluctuation can be regarded as a small perturbation 
in an isotropic continuum in thermal equilibrium, and the regime at very short 
length and time scales, where the dynamics can be viewed as that of indepen­
dent particles between successive collisions. The intermediate region reflects 
the properties of the correlation function at distances of the order of the mean 
first-neighbour separation and at times characteristic of microscopic collective 
motions. 

In Fig. 6.5 we report, from the experiments of Copley and Rowe170 on 
liquid Rb at 370 K, the dispersion relation for collective density fluctuations as 
measured from the position of an observed side peak in the inelastic scattering 
spectrum versus the scattering wave vector. The side peak is visible up to 
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Fig. 6.5. Frequency of side peak in the scattering function of liquid rubidium at 320 K, as 
a function of wave number (•). The solid straight line is obtained from the measured speed 
of sound. (Redrawn from Copley and Rowe, Ref. 170.) 
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k w 1 A - 1 in the spectrum of this liquid metal and is further evidence for 
the "harmomcity" of liquid alkali metals as compared to liquid argon, say. 
Figure 6.5 also includes a linear dispersion relation obtained from the velocity 
of sound as measured in the same liquid by ultrasonic techniques. These results 
demonstrate how the hydrodynamic and the microscopic regime merge together 
in this liquid. 

For a review of chemical applications of diffractive and inelastic neutron 
scattering to a variety of systems (molecular solids and liquids, hydrogen-
bonded materials, zeolites, polymers, adsorbates) the reader is referred to the 
article of Trouw and Price.171 We shall return on neutron inelastic scattering 
in discussing excitations in superfluid Helium in Chap. 7. 

6.8.2 Inelastic photon scattering from liquids 

Traditionally, the use of photons for the study of the microscopic dynamics of 
condensed-matter systems has been based on the Raman inelastic scattering 
technique. The cross-section for these scattering processes172 is determined by 
the Fourier transform of the autocorrelation of the polarizability tensor a(r , t) 
and is therefore not simply related to the van Hove function S(k,cj) in the 
appropriate range of momentum and energy (corresponding to ui = ck of order 
50 to 1000 c m - 1 say, with c the speed of light). Thus, Raman scattering data on 
liquid argon have been interpreted in terms of a second-order mechanisms,173 

in which a density fluctuation is polarized by the incident light and interacts via 
a dipolar field with another density fluctuation: the additional time-varying 
polarization scatters the light, the cross-section being approximated by the 
convolution integral of the product of two van Hove functions. 

In fact, the Raman scattering techniques is most useful for the study of 
internal vibrations of structural units in complex-forming molten salts (see 
Chap. 8) and in molecular liquids (see Chap. 9). These excitations show no 
dispersion and are often insensitive to the surrounding liquid medium. Their 
study gives mainly structural information on the molecular units that may 
be present in the liquid and on how these may change with variables such as 
temperature and chemical composition. 

On the other hand, with the development of high-flux synchrotron radia­
tion sources and of high-energy resolution techniques, the inelastic scattering 
of X-ray photons has become a very powerful tool for the study of micro­
scopic atomic motions in solids and liquids.174 Collective excitations have been 
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revealed in all investigated liquids and glasses at wavelengths approaching the 
mean interparticle distance. The wave number dependence of their energy 
shows that they are the short-wavelength evolution of the hydrodynamic sound 
mode, while their fc-dependent broadening contains information on microscopic 
relaxation processes. 

An example of these spectra and of their analysis is shown for liquid Li at 
475 K in Fig. 6.6, from the work of Scopigno et al.175 The two side peaks ob­
served in this spectrum at k = 0.7 A - 1 provide clear evidence for propagating 
microscopic excitations. The figure also reports tests of various fits based on 
extensions of Eq. (6.51) into the microscopic regime. A very good fit of the 
data, shown by the full line in Fig. 6.6, is obtained by means of a visco-elastic 
model, as will be introduced immediately below in connection with the findings 
on molecular dynamics in water. In brief, the best fit in Fig. 6.6 involves the 
use of two relaxation times, reflecting damping of collective density fluctuations 
via mechanisms associated with interatomic collisions and with couplings to 
other collective modes of motion. 
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Fig. 6.6. Intensity of inelastic X-ray scattering spectrum versus frequency u> in liquid 
lithium at T = 475 K and k = 0.7 A - 1 . The various lines report fits of the data by 
alternative microscopic approaches. (Redrawn from Scopigno et al, Ref. 175.) 
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6.8.3 Fast sound in water 

The propagation of sound in water has received much attention since a molec­
ular dynamics study176 showed that the spectrum of density fluctuations in a 
mesoscopic region of wave number exhibits a secondary maximum at a much 
higher frequency than that appropriate to hydrodynamic sound. Sette et al.177 

have used inelastic X-ray scattering to follow the evolution of acoustic-like lon­
gitudinal excitations in water as their speed of propagation goes from 2000 m/s 
at k = 0.1 A - 1 to the fast-sound value v^ w 3200 m/s at k > 0.4 A - 1 . Hydro-
dynamic sound propagates in water at VQ « 1500 m/s. The experiment thus 
provides a mapping of the cross-over from hydrodynamic to high-frequency 
sound. The data for the dispersive behaviour of the speed of sound in this 
molecular liquid are shown in the LHS panel in Fig. 6.7. 

A simple visco-elastic model178 yields for the relevant susceptibility the 
expression 

X(k,w) = 
nk2 

m 
• WQ(A;) + iu> 

a&(ft)-u;g(fc) 
-iuj + T~1(k) 

- l 

(6.63) 

the scattering function S(k,u>) being simply proportional to the imaginary 
part of x(^,w). To describe the data on water we should in Eq. (6.61) set 
u>o(k) = vok and u>oo(k) = v^k, and interpret r(fc) as a phenomenological 
relaxation time governing the cross-over from a resonance at frequency u>o to 
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Fig. 6.7. Velocity of acoustic-like excitations in water (left panel) and visco-elastic relax­
ation time (right panel) versus wave number k. (Redrawn from Tozzini and Tosi, Ref. 178.) 
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one at frequency WQO- The results of the analysis of the data on the basis of 
this simple model are shown in Fig. 6.7. 

The dispersive behaviour of sound in water is qualitatively similar to that 
observed in glass-forming liquids. There the transition between the two dynam­
ical regimes is determined by the coupling of the propagating density waves 
with the dynamics of structural rearrangements. The transition occurs at 
w r » l , the system having a viscous behaviour for W T < 1 and a solid-like 
behaviour for W T > 1 . This transition is accompanied by the appearance of 
propagating transverse currents at high frequencies. 

Appendix 6.1 Kinetic Calculation of Shear Viscosity for 
Hard Spheres 

Longuet-Higgins and Pople157 consider the transfer of x-momentum inside a 
hard sphere fluid, occurring in a very short time interval through unit distance 
in the y direction. The transfer is taken to occur via collisions of pairs of spheres 
which are already close together at the beginning of the time interval. If p i = 
pil and p2 = P2I are the momenta of the two particles, with 1 the unit vector 
along the interparticle separation vector ri2, then the relative momentum of 
approach is p = p\ — p2 and the relative rate of approach is p/m. The spheres 
will soon collide if p > 0 and when this happens a momentum pi will be 
transferred from one to the other. The x component of this momentum is plx 

and the y component of ri2 is aly, where a is the sphere diameter. Therefore, 
the total flux of i-momentum in the y direction from two-body collisions is 

P$=i h(p,u;)^^cL;dp. (A6.1.1) 
J Jo m 

Here h(p,u))du> is the number of pairs per unit volume within distance of con­
tact, having relative momentum p and such that 1 lies in the solid angle duj. 
The first integration is over all orientations and the second is over the positive 
range of p. 

At this point the two approximations already noted in Sec. 6.6.1 are made 
to evaluate h(p,u>): it is written as 

h(p, w) = (27rpV) (gj .) 4>(p, w), (A6.1.2) 

where go is the value of the equilibrium pair distribution function at contact 
and (j){p, u) has a local Maxwellian form. If the fluid velocity is zero at the point 
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of collision of the two spheres, the mean values of pi and pi are (<j/2)p'lxls 

and —(a/2)p'lxly, so that the distribution of p is 

<j>(p,v) = (47rmfcBT)"1/2exp 

In evaluating the integral in Eq. (A6.1.1) it is a valid procedure to expand to 
the first power of p', since velocity gradients are assumed small. The result for 
the integral in Eq. (A6.1.1) is 

The shear viscosity is given by Pxy /{p1 /m) and the result in Eq. (6.35) in 
the main text follows by using Eq. (3.53) for the contact value of the pair 
distribution function. 

(p - cp'lxly)2 

(A6.1.3) 
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Chapter 7 

Heat Transport 

7.1 Fourier 's Law 

Of all transport coefficients in condensed matter, thermal conductivity has 
some notable features that distinguish it from the others, such as self-diffusion 
and viscosity treated in the previous two chapters. Unlike these other two, 
the thermal conductivity coefficient does not exhibit any major discontinuity 
at the liquid-solid phase boundary. Also, there can be a substantial electronic 
contribution in the case of metallic systems (see Sec. 7.3). 

In the linear response regime thermal conduction is described by Fourier's 
law, 

J0(r , t) = - A . V T ( r , t ) , (7-1) 

where jQ(r, t) is the local heat flux and VT(r, t) the temperature gradient 
driving the heat flow. Strictly, A is a second-rank tensor, which is important 
when considering anisotropic solids and liquids (e.g. liquid crystals). Here, 
we will confine our discussion to isotropic liquids, which over time have no 
preferred direction for the molecules. The thermal conductivity is then a 
scalar, A. 

The thermal conductivity A in a liquid varies with density and temper­
ature in much the same way as does the shear viscosity r], except near the 
critical point where thermal conduction may become really large. In normal 
liquids ry and A are typically 10 to 100 times larger than in a dilute gas. This 
enhancement is dominantly due to collisional transfer: this being an efficient 
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way of transporting momentum and energy. This is seen clearly in the hard 
sphere model (see the kinetic calculation of shear viscosity for hard spheres in 
Appendix 6.1), where a collision leads to an instantaneous transfer over the 
distance between the centres of two molecules. For the same essential reason, 
the speed of sound in a liquid metal near freezing is substantially larger than 
the mean thermal velocity of the atoms. In contrast, self-diffusion involves 
transport of the molecules themselves and does not involve collisional transfer 
of mass. 

The methods for the measurement of thermal conductivity are reviewed in 
the book of Kestin and Wakeham,153 already referred to in Chap. 6 in connec­
tion with the measurements of shear viscosity. A steady-state parallel plate 
method and a concentric cylinder method parallel the viscometers presented 
in Sec. 6.3. In Fig. 7.1 we report from the work of Dymond179 the analogue 
of Fig. 6.3 for the reduced shear viscosity 77* by showing the reduced thermal 
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Fig. 7.1. The reduced thermal conductivity A* defined in Eq. (7.2) in dense gases versus 
reduced volume V/Vo- The vertical bars show hard sphere results. (Redrawn from Dymond, 
Ref. 179.) 
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conductivity A* in dense gases of Neon, Argon and Krypton as a function of 
the reduced volume V/V0. Here, A* is defined as 

2/3 

(7.2) 

as in Eq. (6.39) for t}*. In fact, the core volume V0 in Fig. 7.1 has been taken 
from viscosity measurements. Again, hard sphere results (shown in Fig. 7.1 by 
vertical bars) give good estimates for real monatomic fluids. 

In Fig. 7.2 we report from the work of Basu and Levelt Sengers180 quoted 
by Kestin and Wakeham153 the observed behaviour of the thermal conductivity 
of carbon dioxide as a function of mass density p at various temperatures in 
the neighbourhood of the critical point. As anticipated, thermal conductivity 
becomes very large in the critical region. 
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Fig. 7.2. The thermal conductivity of carbon dioxide in the critical regime. (Redrawn from 
Kestin and Wakeham, Ref. 153.) 
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According to the general criterion that we have presented in Sec. 6.1, 
Fourier's law in Eq. (7.1) tells us that the relation between thermal current 
and driving field is purely dissipative. An important theme of this chapter 
will therefore be to discuss the thermodynamic laws in the presence of mass 
flow and to explicitly show how dissipative forms for the constitutive rela­
tions are associated with entropy production (see Sec. 7.4). As a consequence, 
heat flow in normal systems shows diffusive-type behaviour and contributes to 
sound wave damping via coupling to density fluctuations (see Sec. 7.5). On the 
other hand, heat propagation can occur in a superfluid and gives rise to novel 
phenomena in this state, as will be discussed in Sec. 7.7. Before addressing 
these themes, however, we shall dwell on the microscopic background to heat 
conduction. 

7.2 Studies of Heat Conduction by Molecular Dynamics 

Accurate theoretical predictions of transport coefficients are still lacking and 
currently we rely to a large extent on computer simulations. The transport 
coefficients in simple fluids appear to obey a corresponding-states behaviour 
which correlates fairly well with the configurational entropy Sg in excess of 
the ideal-gas value.181 Hundreds of simulation results can be fitted to a form 
which is suggested by elementary kinetic theory for a dense fluid of particles 
with thermal velocities and a mean free path between collisions of the order of 
the mean interparticle distance: 

0.6p_1/3i;e-0-85, 

0.2mp2/3ve°-8s, (7.3) 

1.5kBp2/3ve°-5s. 

Here, v = (kT/m)1/2 and s is a positive quantity defined as s = — S B / A ^ B -

The heat flux has components that are purely kinetic and components that 
represent energy transfer through the interaction forces. Molecular dynamics 
(MD) simulation solves the many-body problem for a representative region of 
the liquid by numerical integration of the equations of motion of the inter­
acting molecules, and can be used to calculate the heat flux from appropriate 
microscopic expressions. A range of model systems have been studied: here 
we focus on one-component monatomic and molecular liquids.182 

Aw 
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7.2.1 Green-Kubo formula 

Two classes of MD methods have been proposed to compute the thermal 
conductivity for an arbitrary molecular system, specified solely in terms of 
pair potentials and imposed thermodynamic conditions. In equilibrium MD 
methods the molecules are allowed to interact in the absence of any perturbing 
field (e.g. a temperature gradient). The other approach is to employ a non-
equilibrium MD method, which is closer in spirit to Fourier's law. 

In the limit of a small applied field, the Green-Kubo method relates heat 
conductivity to the integral of the correlation function of fluctuations in the 
heat-flux vector in a chosen direction a;: 

A = 
V fto+t 

lim / dt'(JQx(t')JQx{0)). (7.4) 
• _ > 0 ° J to kBT2 t->-oo Jto 

For a fluid consisting of N atoms in volume V, we have 

Ji Qx v-
N N-l N 

Y^eiy™ + £ Yl (r« ' V*)$jr*j* 
i=l i=\ j=i+l 

(7.5) 

for the x-component of the heat flux, where e, = miV%/2 + ^V, 4>ij is the energy 
of a molecule with index i in the fluid, <f>ij being the pair interaction potential. 
The equilibrium Green-Kubo approach has been applied to Lennard-Jones 
liquids by a number of groups since the pioneering work of Levesque et al.163: 
see for example the work of Hoheisel et al.183 

This treatment has been generalized to a single-component molecular fluid 
of N molecules containing a number n of interaction sites (see Heyes and 
March182 for details). Simulations of the thermal conductivity of compact 
near-spherical molecules such as SF4 and CF4 have been carried out by this 
method.184 The heat flux is given in this case by 

1_ 
V 

N N-l N 

i=l i=l j=i+l 

•Ui •Ti) (7.6) 

where i and j refer to center-of-mass quantities and ef1 is the total energy of 
molecule i. The other quantities entering Eq. (7.6) are the force Uj between 
the centres of mass of molecules i and j , the principal angular velocity Wj of 
molecule i and the corresponding principal torque I \ . 
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7.2.2 Non-equilibrium methods 

It has proved rather difficult to devise accurate non-equilibrium MD approaches 
to thermal conduction. The transport coefficient is straightforwardly measured 
in the laboratory by direct application of Fourier's law. This approach can 
be mimicked in computer simulations by sandwiching the sample between two 
"thermal" walls at a finite separation in the z direction.185 The problem with all 
such "wall-based" methods for transport coefficients is that the liquid becomes 
spatially inhomogeneous (the molecules form layers against each wall) and very 
large temperature gradients have to be imposed. These techniques also tend 
to be statistically quite poor. Nevertheless, thermal-wall MD techniques have 
proved useful in studying other non-equilibrium phenomena such as Rayleigh-
Benard convection rolls.186 

The application of a constant field across a simulation cell must be com­
patible with periodic boundary conditions. This is achieved for shear viscosity 
by the use of the Lees-Edwards boundary conditions.187 The nearest that can 
be achieved for heat transport is to impose an oscillatory temperature profile 
in the cell, with a finite wave vector compatible with periodic boundary condi­
tions. Another procedure that has been applied to Lennard-Jones fluids and 
ionic systems involves dividing the MD cell into a number of layers parallel 
to one of its faces. One layer at each end of the cell is heated and two layers 
in the middle are used at heat sinks. Two heat fluxes in opposite directions 
are induced towards the centre of the cell and the thermal conductivity can be 
obtained by direct application of Fourier's law in the two regions.188 

Evans189 and Gillan and Dixon190 have devised ingenious synthetic non-
equilibrium equations of motion which are free of gradients. Some of the un­
derlying ideas were contained in an earlier external field perturbation method 
invented by Jacucci et al.191 The theory for this approach is described below 
using the formalism of Morriss and Evans,192 who extended the Green-Kubo 
formula to apply to non-equilibrium systems. 

7.2.3 Transient time correlation formula 

We consider an external force field F being switched at time t = 0 onto a 
system at equilibrium. The response of any time-dependent property of the 
system, B(t) say, is given by 

(B(t)) = <fl(0)> + - ^ f dt'(B(t')H(0)). (7.7) 
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The time derivative of the Hamiltonian is viewed as "dissipative heat" in the 
phenomenological form of a flux times a perturbing thermodynamic force, 
i.e. H = — J Q • F where J Q is the dissipative flux. In the case of thermal 
conductivity, the fictitious force or "heat field" F replaces the temperature 
gradient but still induces an additional heat flux A J Q (t) in the system. Setting 
B = J Q and substituting for H in Eq. (7.7) gives the so-called transient time 
correlation function formula for the thermal conductivity at arbitrary applied 
field. We then have 

w=£5, Hr * = 3£r* jf "<**«& • JQ(0)) • (7-8) 

In order to satisfy the equation H = —JQ • F at the microscopic level, the 
equations of motion for a monatomic system are 

ri = 5 i , (7.9) 
m 

N 1 N-l N 
Pi = Fi + (ei - (e»F - £ fyry • F + — £ ] T ftfry • F - aPi. (7.10) 

j = l 3 = 1 k=j+l 

Here, Fj is the instantaneous force on particle i, (e) is the average of the 
instantaneous energy e, taken over all atoms in the system, and as before 
fij is the pair force between atoms i and j . The last term on the RHS of 
Eq. (7.10) serves to prevent a rise in the temperature of the system from 
the imposed heat force: a constant-kinetic-energy condition is enforced by 
applying a thermostatic control in the form of a multiplier a acting on the 
chosen momentum pj and being evaluated at each time step according to 

N 

l^ii=lVi i = l 

N 

Fi + (e4 - (e»F - £ V « • F 
3 = 1 

1 N-l N 

3=1 k=j+l 

(7.11) 

Equations (7.9)-(7.11) are homogeneous and conserve the momentum of 
the MD cell. Through the term (e» - (e))F they originate a heat current, 
since the atoms with energy greater than the average (e) will be driven by the 
external force in the opposite direction to those atoms which instantaneously 
have an energy below the mean. 
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The thermal conductivity is obtained from such simulations by extrapola­
tion of the field-dependent conductivity to zero F . Even when linear response 
transport coefficients are of sole interest, several simulations at different field 
strengths still need to be made in order to carry out the extrapolation to zero 
field. The simulations at finite heat field have no experimental analogue. In 
contrast, in the case of shear viscosity the finite-field simulations correspond 
to finite shear rates, which are experimentally realizable and can lead to im­
portant phenomena in non-Newtonian flows (see Chap. 11). 

We conclude by remarking that, away from equilibrium and from the linear-
response regime, the decoupling of transport coefficients such as shear viscosity 
and thermal conductivity no longer holds. Simulations of thermal conduc­
tion in a strongly sheared Lennard-Jones fluid193 reveal that the symmetry-
breaking due to the shear field causes (i) the diagonal elements of the thermal 
conductivity tensor to become unequal and (ii) non-diagonal elements to 
emerge. 

7.3 Electronic Contribution to Heat Conduction in 
Liquid Metals 

In earlier chapters we have often referred to liquid metals as examples of atomic 
liquids. This is correct in regard to phenomena in which the valence electrons 
follow adiabatically the motions of the ions in the metal. In heat conduction 
the nature of metal as a two-component fluid of ions and valence electrons 
emerges, since the two components separately contribute to thermal transport 
and indeed the electronic contribution is usually dominant. A clear indication 
of this fact comes from the Wiedemann-Franz law relating thermal and elec­
trical conductivity. Electronic conduction in a metal is, of course, due to the 
motion of the valence electrons against the background of positively charged 
ionic cores under an applied voltage drop. 

The most elementary approach to the Wiedemann-Franz law involves two 
steps.194 In the first step, one uses the kinetic theory of gases to express the 
thermal conductivity A and the electrical conductivity a of the valence electron 
gas in terms of the respective relaxation times (see Appendix 7.1). These 
expressions are A = Ceu

2T\/3 and a — ne2Ta/m, where n is the number density 
of electrons (having charge e and mass m), Ce is the electronic contribution 
to the heat capacity of the metal per unit volume and u is the velocity of an 
electron on the Fermi surface. In evaluating these expressions one must take 
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account of the quantum degeneracy of an electron gas in simple liquid metals. 
The second essential step is to assume that the relaxation times for the two 
transport processes are equal. The result is 

The RHS is the so-called Lorenz number, L = 2.45 x 10 - 8 W O K " 2 . 
Equation (7.12) does not depend on such details as the shape of the Fermi 
surface and the density of electron states, but assumes elastic scattering. The 
validity of this assumption is discussed, for example, by Rice.195 

Experimentally, the measured value of X/crT for the liquid alkali metals is 
between 2.1 and 2.6 x 10~8, but somewhat larger deviations from the prediction 
(7.12) are met in other liquid metals (Table 7.1). Both inelastic scattering 
processes and electron-electron interactions may play a role in determining 
these deviations.196 We shall return in Chap. 14 on the microscopic background 
to the properties of conduction electrons in metals. 

An evaluation of the viscosity of liquid alkali metals by electron plasma 
theory197 indicates that the electronic contribution to this transport coefficient 
is instead quite small, of order 10% at most. Momentum transport in a liquid 
metal mostly occurs through ionic motions and ion-ion collisions, with the 
valence electrons following in an almost adiabatic manner. 

March and Tosi198 have related the thermal conductivity Am of the liquid 
alkali metals at freezing to their electrical resistivity pm and shear viscosity 

Table 7.1. Values of \/oT for a number of 
liquid metals (in units of 1 0 _ s W- CI • K - 2 ) . 

Metal 

Li 

Na 

K 

Cs 

Cd 

Hg 
Zn 

Al 

Ga 

Tl 

Sn 

2.6 

2.2 

2.1 

2.4 

2.5 

2.75 

3.2 

2.4 

2.07 

3.2 

2.9 

Metal 

P b 

Sb 

Bi 

Ti 

Zr 

Hf 

Mo 

W 

Ru 

Ir 

Nb 

2.4 

2.6 

2.5 

2.9 

2.25 

2.7 

2.6 

2.5 

2.45 

1.95 

2.6 

Metal 

Ta 

Re 

Os 

Pt 

In 

La 

Ce 

Pr 

Nd 

Gd 

Dy 

2.4 

1.75 

1.75 

2.3 

2.7 

2.65 

2.56 

2.89 

2.27 

1.83 

2.34 
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Vm by 

Lrf 
Xm = ApmMn^ ' ( 7 - 1 3 ) 

with M the ionic mass and A = 5.1 x 10 4. This expression agrees with the 
data well within 10%. 

7.4 Thermodynamics with Mass Motion and 
Entropy Production 

Like viscosity, heat flow is an important source for the attenuation of sound 
waves in fluids. We have seen in Sec. 6.7 that propagation of sound waves is 
accompanied by compressions and rarefactions of the medium. The compressed 
regions experience a rise in temperature and heat flows out of them into the 
rarefied regions. To treat these phenomena we need to couple the equations of 
motion for density fluctuations with the time dependence of the entropy. 

7.4.1 Thermodynamic relations 

As a first step we have to extend the thermodynamic relations that we have 
presented in Sec. 3.1 to the case of a fluid moving with velocity v (for a more 
detailed presentation see for example the book of Chaikin and Lubensky199). 
The internal energy U is the sum of the rest-frame energy UQ(S, N, V) and of 
the kinetic energy P2/(2Nm) associated with the center-of-mass motion, with 
P = Nmv being the total momentum: 

U(S, N, V, P) = U0(S, N, V) + J£- . (7.14) 

We thus have v = (dU/dP)s,N,v and hence Helmholtz free energy is 

F(T,N,V,v) = U-TS-P -v = F0(T,N,V) - -^— . (7.15) 

Prom the identity (3.9) for the differential of the free energy Fo in the rest 
frame, we find 

dF = -SdT-pdV + fidN-P-dv, (7.16) 
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so that the pressure p — -{dF/dV)x,N,v and the entropy S = —(dF/dT)N,v,v 
do not depend on v when expressed in terms of T, N and V. The chemical 
potential is instead given by 

/i=(^)^,v = / X 0 " ^ 2 ' ( 7 - 1 7 ) 

where po = (dFo/dN)T,v is the chemical potential in the rest frame. 
In terms of intensive densities of conserved quantities at fixed volume and 

of the entropy density s = S/V, we can obtain the pressure from the relation 
pV = Np,-F as in Sec. 3.1.3: 

p(p,T,v)=pp-u + Ts + g-v, (7.18) 

where p = N/V, u = U/V and g = P/V = my Finally, by differentiating 
Eq. (7.14) and using Eq. (3.5) for dUo, we find the relation 

Tds = du - pdp - v • dg, (7.19) 

for the differential of the entropy density in terms of the differentials of the 
densities of conserved quantities. These equations are valid for uniform trans­
lations of the whole fluid, but will extend to situations in which there are only 
slow spatial variations. 

7.4.2 Entropy production 

Equation (7.19) is crucial for the derivation of hydrodynamic equations, since 
we can use it to get the form of the constitutive relations between the currents 
of conserved quantities and the fields T, p, and g. We only need to combine 
it with the conservation laws for (i) particle number (Eq. (6.6)), (ii) total 
momentum (Eq. (6.8)), and (iii) total energy. The latter is 

Sf-v-j.. («o) 
where j„ is the energy current density. We aim to get an equation for the rate 
of change of the entropy, bearing in mind that the entropy current contains 
both a term sv and a heat-current term. 

From Eq. (7.19) we find 

ri-£-,£-v.!~v.j. + ,v.j + 5 > v „ „ p.») 
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and 

Tv • Vs = v • Vw - /xv • Vp - Y^ v.vj Viffj. (7.22) 

By combining these two equations, and using the fact that the vector g — mp\ 
must vanish since it is by definition the momentum density in the fluid rest 
frame, we find that the rate of change of the entropy density obeys the equation 

= - y J Q • VT - ^ ( T T J J - pSij - Vigj)ViVj . 

(7.23) 

Here, the pressure p is given by Eq. (7.18) and the heat current density jg is 
defined as 

JQi = jui + Yl(Viyj9j ~ VjlTji) • (7.24) 
3 

Equation (7.23), combined with the requirement that entropy production must 
be non-negative, will give the constitutive relations for the currents. 

7.4.3 Constitutive relations 

In the absence of dissipation the entropy must obey a continuity equation 
(ds/dt) = —V • (sv)) and Eq. (7.23) can be satisfied by setting JQ = 0 and 
•Kij = pSij + giVj. We recover, of course, the inviscid flow of the Euler fluid 
presented in Sec. 6.2.3. The corresponding energy current density is j u = 
(u + p)v. 

When there is dissipation, the RHS of Eq. (7.23) must be positive and 
this restricts the form of the dissipative couplings between currents and fields 
having opposite parity under time reversal (see Sec. 6.1). Considering each 
term in turn, we can see that (i) the dissipative heat current }Q must flow 
against the temperature gradient, thus giving back Fourier's law; and (ii) there 
is a dissipative term in the momentum current density (a1^, say) which is 
defined through 

7r»j = pSij + mpViVj - a'^ . (7-25) 

In the Newtonian regime <r̂  is linearly related to the velocity gradients 
VfcVj by a fourth-rank tensor, which must have the same symmetry as the 

9s „ 
s v + jiiQ 
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elastic-constants tensor in the theory of linear elasticity. We recover the re­
sults already presented in Sec. 6.2.1: namely, the tensor a^ = — pdij + O[A has 
the form given in Eq. (6.3). 

7.5 The Effect of Heat Flow on Sound Wave Propagation 

We can now return to the discussion of sound wave propagation given in Sec. 6.7 
and complete it by including heat flow. The Navier-Stokes equation still holds 
and its linearisation yields Eq. (6.46), that we report here for convenience: 

d2 1 / 4 \ fl2 <5p(x, t) = -V 2 Jp(x , t). (7.26) 

From Eq. (7.24) we get the linearised energy current density as 

j« = (u + p ) v - A V r . (7.27) 

Inserting this expression in Eq. (7.20) and using the linearised continuity equa­
tion for the particle density [V • v = —p~1(dSp/dt)] we obtain 

d 

m 
6u(x,t) <fy?(x,£) = AV2£T(x,i). (7.28) 

Here, from the linearised forms of Eqs. (7.18) and (7.19) and with s = s/p we 
have 

5u(x,t)-(u+ p)
6p(X^ = PT6s(x, t). (7.29) 

7.5.1 Hydrodynamic modes 

In solving the coupled Eqs. (7.26) and (7.28) it is convenient to adopt par­
ticle and entropy fluctuations as the independent variables. The relevant 
transformations are Sp = (dp/dp)sSp + (dp/ds)p6s and 5T = (dT/dp)s5p + 
(dT/ds)p6s, where p(dp/dp)s = Kg1 is the adiabatic bulk modulus and 
pT(ds/dT)p = Cy is the isochoric heat capacity per unit volume. We also 
need the thermodynamic relation for the difference between isobaric and iso­
choric heat capacities, Cp - Cv = -T(dp/dV)T[{dV/dT)p}

2 (see Eq. (3.19)). 
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Equations (7.26) and (7.28) may now be written as 

- l (dP -w + {^>2 6p(x, t) -m ds 
V26s(x,t) (7.30) 

and 

* - 2 J ^ = ̂ (f)r ^ - r A v a ) « ( x , t ) = - ( - V26p(x,t). (7.31) 

We have set c | = m~1(dp/dp)s, Tn = (|r? + r^/mp and T\ = X/Cy-
Equations (7.30) and (7.31) are easily solved by taking Fourier-Laplace 

transforms. The main results to be noted are as follows. From (7.31) we get a 
diffusive heat mode at frequency 

u = -iDTk2. (7.32) 

where DT is the thermal diffusion coefficient. In an incompressible fluid the 
RHS of Eq. (7.31) vanishes and DT = T\ in this case. More generally, we can 
set 

«*•"--< txd)/^) 
in Eq. (7.31), to order k2, with the result 

i>r = r> ^ (!),(!)p(f), GD 

(7.33) 

(7.34) 

With regard to density fluctuations, we see from Eq. (7.30) that coupling 
to entropy fluctuations has shifted the speed of sound to the adiabatic value 
cs from the isothermal value CT obtained in Sec. 6.7.1. The complex sound 
frequencies are given by 

w = ± c s - -iTk2, 

where 

T = TV + DT 

(7.35) 

(7.36) 
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Coupling to heat fluctuations contributes to the damping of sound waves. 
Recalling that cs /cr = (Cp/Cv)1^2, we see that all effects of this coupling 
vanish in the limit CvjCy ->• 1. 

According to Eq. (7.36), the contributions to sound wave damping from 
viscosity and from heat flow are additive. For monatomic fluids the theory is 
in good agreement with experimental observations, but in polyatomic fluids the 
observed attenuation is substantially larger than predicted. A sound wave can 
disturb the distribution of energy between translational and internal degrees 
of freedom of the molecules as well as their spatial arrangement. These two 
types of phenomena are called thermal relaxation and structural relaxation, 
respectively, and contribute to sound wave damping in molecular liquids. 

7.5.2 Light scattering 

We have already noted in Sec. 6.7.3 that density fluctuations can be observed 
by light scattering through the fluctuations that they induce in the complex 
refractive index of the medium. Following the pioneering work of Landau and 
Placzek,200 the light scattering spectrum is evaluated from the hydrodynamic 
equations and is proportional to the van Hove function S(k,Lo) in the appro­
priate region of long wavelength and low frequency (see for example the review 
by Mountain201). For a plane-polarized incident wave with frequency Wj = cki, 
the intensity of scattered light at position R = (R, <f>) from the scattering site 
is202 

J(R,w) (Na2u\ 

h ( S ? ) 8 i n a * 5 ( * ' w ) ' (7"37) 

where N is the number of (spherically symmetric) molecules of polarizabil-
ity a in the scattering volume, w is the shift in angular frequency and 
k = 2ki sin(0/2) with 6 the scattering angle. 

From the calculations that we have reported in Sec. 7.5.1, it is clear 
that there are three peaks in S(k,u) as a function of angular frequency u 
(see Fig. 7.3). The central component of the spectrum, peaking at UJ = 0, 
arises from the coupling of density fluctuations to thermal fluctuations (see 
Eq. (7.33)) and is known as the Rayleigh peak. There also are two "Doppler-
shifted" peaks, referred to as the Brillouin components, centred a t w = ±csk 
with width Tk2 in accord with Eq. (7.35). Non-Lorentzian parts of the 
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Fig. 7.3. A sketch of the light scattering intensity from density fluctuations in a simple fluid 
in the hydrodynamic regime. Left, far from the critical point; right, approaching the critical 
point. 

spectrum are also present but are usually neglected, since they do not con­
tribute significantly to the intensity near the three main peaks. 

The ratio of integrated intensities for the Rayleigh (7R) and Brillouin 
peaks (27B) is 

The ratio becomes very large on the approach to the critical point, where 
(dp/dp)T and hence Cp are diverging (see Chap. 4). This is the phenomenon 
of critical opalescence, referred to earlier. At the same time the width of the 
Rayleigh peak narrows, being proportional to X/Cp —> 0. 

The light scattering technique was used in the work of Zollweg et al.203 

to measure the effective kinematic viscosity of Xenon along the coexistence 
curve up to Tc — T « 0.070 K. Very precise data on shear viscosity at various 
frequencies for Xenon approaching its critical point have become available from 
experiments performed in microgravity condition.204 

7.5.3 Sound propagation in the critical region 

As was shown theoretically by Kadanoff and Swift205 and by Kawasaki,206 the 
dynamical behaviour of systems near criticality is intimately related to the 
anomalous static properties as the critical point is approached. A valuable 
method for investigating this behaviour is to use an acoustic-beam probing 
technique to measure the speed and attenuation of sound.207 

In a pure fluid, sound propagation is markedly influenced by the fact that 
the adiabatic compressibility diverges at the critical point. The divergence 
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can be traced to the fact that the spontaneous density fluctuations, which are 
normally correlated over a distance of only a few A, become correlated over 
distances as large as thousands of A. Since any compression requires transport 
over distances of the order of the correlation range to restore local equilibrium, 
such transport requires an ever longer time as the critical point is approached, 
and a compression must occur at an ever lower frequency in order to corre­
spond to the static compressibility. This implies substantial dispersion and 
attenuation in sound waves near the critical point. 

Cannell and Sarid207 have measured the speed and attenuation of sound 
in SF6 on the approach to the critical point along the critical isochore. 
All their data can be modelled through a frequency-dependent viscosity, in­
volving a slightly modified form of the frequency dependence calculated by 
Kawasaki in the mode-coupling approach of Kadanoff and Swift, together 
with a single relaxation to account for energy exchange with the vibrational 
states. 

Hohenberg and Halperin208 have exhaustively discussed the cross-over that 
occurs in approaching the critical point from the hydrodynamic to the so-called 
critical region, as the correlation length for density fluctuations becomes much 
longer than the scattering wavelength. In the region the hydrodynamic value 
of the relaxation frequency (U>R = Dr(T,p)k2) is replaced by a power-law 
behaviour LJ OC kz with a dynamical critical exponent z sa 3.2 0 9 

7.6 Binary Fluids 

7.6.1 Thermodiffusion 

A temperature gradient applied to a binary fluid will also cause a relative flow 
of the two species in opposite directions. Let us consider a binary mixture 
in which there are Na molecules of species a each with molecular mass ma 

(a = 1,2). When a concentration gradient is imposed on the isothermal mix­
ture, a temperature gradient develops as interdiffusion occurs. This so-called 
Dufour effect is rather hard to measure in liquids, but there is more success 
for the reverse process, known as the Soret or thermodiffusion effect. Here a 
temperature gradient creates a species concentration gradient as specified by 
the equation 

TVxi = -fcTVT, (7.39) 
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where X ( j £1X6 the mass fractions, xa = Nama/(Nim,i + JV2m2). The mass 
fluxes are210 

J a = pxa(ua - u ) , (7.40) 

where p is the total mass density, uQ is the centre-of-mass velocity of species a 
and u is the centre-of-mass velocity of the mixture. The mass currents of the 
two species are related by J2 = — J i , so that only one need be considered.211 

Linearised irreversible thermodynamics relates212 the flows of concentration 
and heat to driving forces through Onsager's phenomenological coefficients 
Lij, 

J Ji = LnXi + LIQXQ 

[ J Q = LQIXI + LQQXQ , 

where Xi = —T-1V(/xi — P2) and X Q = —T~2VT, the /x's being the chemical 
potentials of the two species. The Dufour and Soret effects are determined by 
the cross coefficients in Eq. (7.42), with LIQ — LQI from Onsager's reciprocity 
relations. 

In the absence of a temperature gradient, Fick's law gives another expres­
sion for J i , 

J i = -pD^Xi, (7.42) 

where D\ is the bulk diffusion coefficient of species 1 relation to the centre of 

mass. Using the Gibbs-Duhem relation gives 

In the experimental fixed volume frame D\ and D2 are related to the mutual 
diffusion coefficient D by D = PV2D1 — pviZ?2, v a being the partial specific 
volumes. 

The cross coefficient LIQ characterises the Soret effect. Combination of 
Eq. (7.39) with Eq. (7.42) gives for the Soret coefficient 

* = 2&- <7 '44> 
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Finally, the thermal conductivity of the mixture follows from Fourier's law by 
setting Jx = 0, 

A = T - 2 (LQQ - L\QILn) • (7.45) 

The Onsager coefficients Lij can be obtained in MD studies210 either 
through the Green-Kubo formula expressing them as integrals of the time 
correlation functions of the currents, or by non-equilibrium methods as de­
scribed in Sec. 7.2. Although the definitions of the mass and heat fluxes in 
Eq. (7.41) are not identical to those measured experimentally, the Green-Kubo 
simulations by MacGowan211 show that the differences are small and can be 
ignored in practice. 

7.6.2 Hydrodynamic modes 

Bhatia and Thornton213 have introduced number-concentration (N-c) structure 
factors to describe diffraction and inelastic scattering from a binary liquid, with 
main reference to alloys. 

The number-number (or mass-mass) spectrum is closely related to the van 
Hove function S(k,u)) for a monatomic liquid. In the hydrodynamic regime214 

the Rayleigh peak in the alloy is the sum of two Lorentzians, the width of one 
of them being mainly controlled by thermal conductivity and that of the other 
by mutual diffusion. Sound attenuation in the Brillouin doublet is determined 
not only by viscosity and thermal conduction, but also by interdiffusion. The 
N-c spectrum contains again the same thermodynamic modes, whereas the c-c 
spectrum is determined solely by heat and interspecies diffusion. 

Binary liquids with chemical short-range order are reviewed in Chap. 8 
below. The c-c static and dynamic structure factors acquire special relevance 
in the presence of this type of order, including the possibility of collective 
relative oscillations of the two species. 

7.7 Superfluid Helium 

The normal boiling point of the bosonic isotope of helium (4He) lies at 4.21 K 
and, when the temperature is further reduced, the liquid remains stable under 
the saturated vapour pressure — apparently down to T = 0. Rather high 
pressures are needed to obtain the solid phases, as is shown in the phase 
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Fig. 7.4. Schematic phase diagram of 4He. 

diagram reported in Fig. 7.4. Application of the Clausius-Clapeyron relation 
to the melting curve in the figure shows that the melting entropy is virtually 
zero for all temperature below 1 K, so that the liquid cannot loose entropy by 
freezing. 

Just below its boiling point the liquid behaves as an ordinary fluid with low 
viscosity, but at 2.17 K it undergoes a liquid-liquid transition to a superfluid 
(He-II) phase. The transition is signalled by a specific heat anomaly, whose 
characteristic shape has led to the name "A-line" being given to the coexistence 
curve of the two liquid phases. The microscopic origin of this behaviour lies in 
the combination of weak interatomic cohesive forces with a small atomic mass 
favouring quantum-mechanical delocalisation of the atoms. 

Non-Newtonian behaviour and heat-wave propagation are macroscopic 
manifestations of quantum mechanics in liquid He-II. Chapter 14 in this book is 
devoted to quantum fluids, but it seems appropriate to conclude the discussion 
of momentum and energy transport in fluids by reference to some of the phe­
nomena which are observed to occur when Newton's law (6.3) and Fourier's 
law (7.1) do not apply. In this section a brief review of the main facts on 
transport in He-II will lead us into the two-fluid model and into the study 
of excitations out of a collective ground state by means of neutron inelastic 
scattering experiments. 

*w 
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7.7.1 Transport properties of superfluid 4He 

Liquid He-II seems to have virtually zero viscosity in experiments designed to 
measure viscous resistance to flow.215 The liquid will flow through fine cap­
illaries in the absence of a driving pressure gradient, at least as long as the 
flow rate does not exceed a critical value at which viscous resistance appears. 
Persistent currents can be induced in a torus-shaped vessel packed with porous 
material to provide very narrow channels. A glass beaker containing He-II will 
rapidly empty itself by a siphon effect through a very thin film completely wet­
ting the glass surface, the film thickness being typically of order 100 atomic 
layers under saturated vapour and the driving force being the difference in 
gravitational potential between the ends of the film. 

On the other hand, viscosity appears in experiments which detect the drag 
on a body moving through liquid He-II. These experiments use oscillating-
disk or vibrating-wire viscometers to measure the rate of decay of torsional 
or vibrational oscillations and demonstrate the existence of viscous drag, the 
magnitude of the viscosity coefficient of He-II being comparable with that of 
normal liquid He or of He gas. 

These different viscous behaviours can be reconciled by viewing He-II as if it 
were a "mixture" of two fluids: the normal fluid possessing Newtonian viscosity 
and the superfluid being capable of frictionless flow through capillaries or past 
obstacles. In this so-called two-fluid model, going back to the work of Tisza216 

in 1938, the liquid can simultaneously execute two types of motion, having local 
velocities v n for the normal fluid at local density pn and v s for the superfluid 
at local density ps. The total density is 

P=Pn+Ps (7.46) 

and the total current density j is 

J = PnVn + P sv s . (7.47) 

It should be stressed that the two fluids do not correspond to two different 
classes of 4He atoms and cannot be physically separated. 

The two-fluid model is useful when the velocities are small: at high ve­
locities the superfluid becomes dissipative and the normal fluid becomes tur­
bulent. In a classical experiment carried out by Andronikashvili217 in 1946, 
the effective density pn of the normal component was measured as a function 
of temperature from the period of torsional oscillations (and hence from the 
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Fig. 7.5. Fractions of normal fluid and superfluid in liquid 4 He as functions of temperature, 
from Andronikashvili's experiment. 

moment of inertia) of a pile of thin metal disks, which were closely spaced to 
ensure that all the normal fluid in the interstices would be dragged along while 
the superfuid remained stationary. The experiment shows that pn/p decreases 
from unity at 2.17 K towards zero near 1 K (see Fig. 7.5). 

The two-fluid model can also explain the main features of heat transport in 
He-II. Early experiments showed that the thermal conductivity is so high that 
it is impossible to establish a temperature gradient in the bulk liquid. Indeed, 
boiling ceases as the liquid is cooled across the A-line: no large temperature 
fluctuations can occur in bulk He-II to nucleate gas bubbles, so that evapo­
ration can occur only at free surfaces. A temperature gradient can instead 
be set up between two volumes of He-II connected by a channel filled with 
microporous material: since ps/p decreases with increasing temperature, the 
superfluid flows to the hotter volume in order to reduce the "concentration" 
gradient and in so doing produces a pressure difference. 

In fact, heat is not transported in He-II by conduction or convection of the 
whole liquid. A variety of thermomechanical effects215 show that the normal 
component flows from the source to the sink of heat, while the superfluid flows 
in the opposite direction to maintain the total density constant. Thus, when 
heat is supplied periodically (e.g. by passing an oscillating electric current in 

X-point 
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a resistor immersed in a liquid volume) the two components oscillate in an­
tiphase at constant total density. In this way temperature waves can propagate 
in liquid He-II. The name attributed to these waves is second sound, to distin­
guish them from ordinary longitudinal pressure waves (first sound) involving 
isothermal fluctuations of the total density. 

The two-fluid model also describes the behaviour of He-II inside a rotating 
vessel. As for an ordinary liquid, the normal component undergoes solid­
like rotation with the vessel by being dragged from friction against its walls. 
The superfluid component experiences instead vortex motion at sufficiently 
high rotational velocities: discrete vortex lines thread the fluid and the super-
fluid rotates round each line, with an angular momentum which is quantised 
according to 

v. • <fl = — . (7.48) 
m 

The integral is taken around any contour surrounding a vortex line. This 
integral is known as the circulation and from Eq. (7.48) it is an integral multiple 
(n = 0,1,2, . . . ) of a quantum of circulation given by h/m, h being Planck's 
constant and m the mass of the 4He atom. 

The hydrodynamic equations governing normal and superfluid flow in He-
II were derived by Landau,218 who also discussed the main features of the 
microscopic excitation spectrum. An introduction to the hydrodynamic modes 
is given in Appendix 7.2 and a full discussion can be found in the book of 
Khalatnikov.219 Extensions to higher frequencies and to inhomogeneous su-
perfluids have also been given.220'221 Here we focus on quantised excitations 
in He-II. 

7.7.2 Inelastic neutron scattering from superfluid 4He 

In the early days of the two-fluid model the appearance of a superfluid fraction 
in liquid helium was believed to be related to Bose-Einstein condensation in 
the ideal gas of Bose particles, when a macroscopic number of bosons start 
occupying the single-particle state of lowest energy (see Chap. 14). Experi­
mentally and under conditions specified immediately below, a condensate in 
liquid Helium should contribute to its inelastic neutron scattering spectrum 
a narrow peak superposed on a Doppler-broadened peak due to scattering 
against atoms out of the condensate.222 The appropriate conditions are that 

/ 
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the dominant contribution to the cross-section comes from the scattering of 
neutrons against single atoms: this requires measurements at high momentum 
and energy transfers, so that the role of the interatomic forces in the scattering 
process may be negligible. These experiments show that a fraction of about 
10% of He atoms may be in a Bose-Einstein condensate in superfluid He-II 
at very low temperature.223 There is, therefore, a clear difference between the 
superfluid (the whole liquid at very low temperature) and the condensate (a 
relatively small, though macroscopic, fraction of the atoms). This "depletion 
of the condensate" is due to the interatomic forces. 

We must thus take the correlated collective ground state of the superfluid 
as our starting point and study the quantised excitations that it can sustain. 
The normal component of He-II at low temperature can be viewed as a dilute 
gas of such excitations, which are thermally created according to Bose statistics 
out of the ground state. The latter is governed by the interactions between 
the atoms and has no simple relation to the ground state of an ideal Bose 
gas. 

With regard to the dispersion relation u/(k) between frequency and wave 
number for the elementary excitations, at low k they should merge into the 
first-sound waves ("phonons") with a linear dispersion relation w — csk. From 
the property of superfluidity Landau218 argued that with increasing k the 
dispersion curve should go through a maximum and bend over into a minimum 
at k = ko say, with w(&o) = A, a finite "excitation gap". The elementary 
excitations in the region of the minimum are the "rotons", which may be 
visualized as microscopic quantised motions requiring a minimum amount A 
of energy for their excitation. 

The results of inelastic neutron scattering experiments on superfluid 4He 
confirm this viewpoint.224 A scattering event involves the creation of excita­
tions through transfer of momentum and energy from the neutron beam to 
the liquid. Figure 7.6 reports the dispersion curve of elementary excitations 
as obtained from these experiments. The data clearly show the linear part of 
the dispersion curve associated with single phonons (with a slope which agrees 
with the speed of sound as independently measured by ultracoustic techniques) 
as well as the roton minimum at wave number fco ~ 2 A - 1 , in approximate 
coincidence with the position of the main peak in the structure factor S(k) of 
the liquid. However, the decay of an elementary excitation into two becomes 
possible at k « 2.3 A - 1 . This leads to a broadening of the dispersion curve 
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Fig. 7.6. Dispersion relation of elementary excitations in He-II from neutron inelastic scat­
tering experiments. (Redrawn from Cowley and Woods, Ref. 224.) 

till it can no longer be seen at k w 3.5 A - 1 and frequency w « 2A, where the 
decay of a single excitation into two rotons becomes allowed. 

While an elementary excitation appears in the spectrum as a narrow peak, 
a second and much broader peak is seen at higher energies and becomes dom­
inant at k « 2.3 A - 1 . A full representation of the observed spectrum in the 
momentum and energy transfer plane is reported in Fig. 7.7,224 where the 
broad peak is shown by the hatched area. This contribution is due to the 
creation of two (or more) correlated elementary excitations. The figure also 
shows that it is this second spectral contribution which ends at high energy 
and momentum transfer into scattering by single atoms. 
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Fig. 7.7. Excitation spectrum of He-II as determined by neutron inelastic scattering. The 
hatched region describes the broad "multi-excitation" peak within its half-width. The dashed 
line shows the dispersion relation t*j(q) = hq2/2m for free particles. (Redrawn from Cowley 
and Woods, Ref. 224.) 

Appendix 7.1 Kinetic Theory of Thermal and 
Electrical Conductivity 

We report in this appendix a kinetic calculation of transport coefficents in an 
electron gas. Treating first heat conduction in a classical gas, we take the 
temperature gradient along the z axis and consider the transfer of energy by 
particles crossing the xy plane. A particle traveling over a distance equal 
to the mean free path £ and striking the plane at an angle 6 acquires an 
energy (£cos0)(dE/dz), the energy gradient being related to the temperature 
gradient by n(dE/dz) = C(dT/dz) where n is the number density and C the 
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heat capacity per unit volume. The number of particles which cross unit area 
of the plane per unit time, in a direction making an angle between 8 and 8 + 68 
with the z axis is nucos9sm9d9/2, with u the average velocity. Thus, the net 
flow of energy against the temperature gradient is 

1 syr r* i Q'T 
j Q z = - Cut— d9cos28sm8 = --Cu£—- (A7.1.1) 

2 oz Jo 3 oz 

and Fourier's law gives 

\=]-Cut, (A7.1.2) 

for the thermal conductivity. This expression can be used for an electron gas 
in a semiclassical approximation, in which C = it2nk\T/run2 and u is replaced 
by the velocity of an electron on the Fermi surface (see Chap. 14). 

Turning to electrical conductivity, in an applied electric field E and in the 
presence of dissipative scattering we can write the semiclassical equation of 
motion 

™ ( £ + H = e E - <A"-3> 
for the drift velocity v of the electron gas. This equation has the particular 
solution v = (er /m)E, corresponding to a constant electric current density 
given by 

j = new = f j E . (A7.1.4) 

This is Ohm's law, with the electrical conductivity being given by a = ne2T/m. 
The inertial term in Eq. (A7.1.3) plays a role in electron dynamics under a 
time-dependent electric field. 

The mean free path in Eq. (A7.1.2) can be written as the product of u 
times a relaxation time. Setting £ = UT implies the assumption that the 
scattering processes for transport of energy and charge by electrons are the 
same. Differences arise in solid metals at very low temperatures. 
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Appendix 7.2 Hydrodynamics of Superfluid Helium in the 
Two-Fluid Model 

Superfluid Helium was the first system with a broken continuous symmetry (see 
Sec. 6.1) to be treated in the linearised hydrodynamic regime.218 The theory 
attributes to the superfluid a complex order parameter ip = \ip\ exp(icp), whose 
phase determines the superfluid velocity as 

v . ( r , t ) = ( ^ ) v p ( r , i ) . (A7.2.1) 

The crucial point is that the superfluid velocity field is irrotational, so that 
transverse shear viscosity resides entirely in the normal component. The func­
tion ip(r, t) can be viewed as the wave function of the condensate (see Chap. 14). 

If v s is non-zero, the free energy increases by ^mps J drv2 where ps is the 
superfluid density. We consider next a Galilean transformation in which the 
whole fluid is taken to move with velocity vn relative to the laboratory rest 
frame. The free energy acquires an extra term —Nmv^/2 (see Eq. (7.15)); in 
addition, there is a free-energy contribution associated with the phase of the 
order parameter if v s ^ vn . We can therefore write the free energy as 

F(T, N, V, vn , v.) = F0(T, N, V) - ^Nmv2
n + ±mps J dr(vs - v n ) 2 . 

(A7.2.2) 

The momentum density g = P/V is obtained as for an ordinary fluid (see 
Eq. (7.16)): 

d(F/V) 
g = - = mpvn - mps(vn - vs) = m(pnvn + psvs), (A7.2.3) 

with pn = p—ps- We have thus recovered Eqs. (7.46) and (7.47) of the two-fluid 
model. Finally, the field conjugate to the superfluid velocity is 

g = ^ P - = mps{ws - vn) (A7.2.4) 

and vanishes unless the two fluids are in relative motion. 
The treatment of thermodynamic quantities for fluid He-II then follows 

along the lines given in Sec. 7.4 for an ordinary fluid, except that (i) the 
velocity v appearing there is replaced by vn , and (ii) there is an extra term 
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associated with v8. In particular, the differential for the entropy density s is 

Tds = du — fidp — vn • dg — g • dvs. (A7.2.5) 

This relation will yield the constitutive relations between currents (j = g /m 
and vs) and fields (vn and g) in the superfluid. 

In the linear regime, the constitutive relation for j evidently involves a 
Newtonian stress tensor written in terms of v n and in addition a dissipative 
coupling to the divergence of g. We also need a constitutive relation for vs 

and, in view of Eq. (A7.2.1), its time derivative must be the gradient of a scalar 
quantity. We write 

m ^ = -V(fi + X), (A7.2.6) 

where [i is the chemical potential and X is a dissipative term, determined in 
the linear regime by the divergence of the fields vn and g. The appearance of 
fi in Eq. (A7.2.6) can be justified by noticing that at equilibrium there must be 
free exchange of atoms between condensate and non-condensate (see Chap. 14): 
the condensate must therefore lie at the chemical potential in this case, so that 
its phase must vary linearly with time according to tp(t) = <p(0) + fit/h. 

We refer the reader for further details to the book of Khalatnikov219 and 
continue the discussion for the superfluid in a non-dissipative linear regime. 
From the foregoing discussion we see that we can write for the hydrodynamic 
modes the following equations: 

(i) a continuity equation for the total particle density fluctuation, 

^ = - V - j ; (A7.2.7) 

(ii) a non-dissipative Navier-Stokes equation involving the pressure fluctua­
tion, 

m i = _Wp; (A7-2-8) 
(iii) a continuity equation for the entropy density fluctuation with the entropy 

current being carried (according to Eq. (A7.2.5)) by the normal compo­
nent, 

~ = sV-vn; (A7.2.9) 
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and (iv) a non-dissipative constitutive relation following from 
Eq. (A7.2.6)), 

m ^ = -V<5/i. (A7.2.10) 

At the low temperatures of present interest we can neglect the coupling 
between density and heat fluctuations. Equations (A7.2.7) and (A7.2.8) can 
then be combined to yield 

^f- = 1 V28p = - V V2Jp. (A7.2.11) 
dt2 m y mpKs

 K ' 
Taking 5p(r,t) oc exp[i(k-r — u/t)] we find two first-sound modes at frequencies 
given by 

w = ±{mpKs)-1>2k, (A7.2.12) 

as for an ordinary fluid in adiabatic conditions. 
From Eqs. (A7.2.3), (A7.2.8) and (A7.2.10) we get mpn(dvn/dt) = p sVJ/x-

V<5p, where dp, = p~1(8p - s5T). Upon neglecting the coupling to density 
fluctuations, Eq. (A7.2.9) yields 

where 5" and Cy are the entropy and the isochoric heat capacity per par­
ticle. This equation admits propagating entropy-wave solutions, 6s(r, t) oc 
exp[i(k • r — ut)) with eigenfrequencies given by 

u = ±(-^^-) k. (A7.2.14) 
\pnTnCvJ 

This is the dispersion relation for second sound in He-II. 



Chapter 8 

Chemical Short-Range Order: Molten 
Salts and Some Metal Alloys 

Hitherto we have mainly concerned ourselves with monatomic fluids. This is a 
correct description for liquid argon, for example. But already for liquid sodium 
it is not correct in all respects — although in many of its properties this liquid 
behaves as if made of "pseudoatoms", for some others it is necessary to view it 
as formed of positive ions and conduction electrons. More obviously, one has 
to start from an ionic picture in describing a sodium chloride melt.225 

We shall refer to liquid metals as ion-electron liquid in Chap. 14 on quantum 
fluids, in view of the Fermi degeneracy of the conduction electrons. Here 
we focus on molten halides and on some alloys of metallic elements in which 
electronic charge transfer between the components is also taking place. The 
main new concepts are those of (static and dynamic) screening and of chemical 
short-range order. Molten chalcogenides will be met in Chap. 10 on glassy 
materials. 

8.1 Classical One-Component Plasma: Static and 
Dynamic Screening 

We introduce ionic fluids by reference to the one-component classical plasma 
(OCP). This is a model of identical point-like ions, with charge e and mass m, 
which are embedded in a uniform background of charge and obey the laws of 
classical statistical mechanics. The charge density of the background is chosen 
so that the whole system is electrically neutral.226 

201 
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The OCP is, just as the hard sphere fluid, a basic model of liquid state 
physics. It already exhibits some important features that characterise real 
Coulomb fluids, such as classical ion-electron plasmas and electrolyte solutions. 
These are the phenomena of static screening and plasma oscillations, arising 
from the long-range nature of the Coulomb interactions. 

8.1.1 Debye screening 

Let <j>(r) be the electrical potential created in the OCP by an "average" ion, 
taken at the origin (r = 0). The Poisson equation relates the Laplacian of <j>(r) 
to the charge density: 

V2cj)(r) = -47r[e<5(r) + eng{r) - en]. (8.1) 

The three terms on the RHS of Eq. (8.1) are (i) the ion at the origin, with a 
point-like density described by a delta-function; (ii) the surrounding ions at 
density ng(r), where n is the average density of the plasma and g(r) is the pair 
distribution function; and (iii) the background. 

In the self-consistent theory of Debye and Hiickel,227 the probability of 
finding a second ion at a distance r from the ion at the origin was taken as a 
Boltzmann factor involving the potential energy e<j>{r). If we further assume 
that e<j)(r) <gC k&T, we can write in Eq. (8.1) 

g(r) « e - ^ « / f c B ^ « 1 - ^ . (8.2) 

The Poisson equation reduces to V2</>(r) = — 4-7re<5(r) + K2(j>(r), where 

9 4-7rne 2 .„ „ . 

" = l^r (8-3) 

defines the Debye length 1/K. The solution of the Poisson equation is 

0 D H ( r ) = ( ; ) e - " p , (8.4) 

as can be checked via Fourier transform. The length 1/K has the meaning of 
a screening length: it is the distance over which the electrical potential due to 
the ion at the origin and to the surrounding equilibrium distribution of ionic 
charges is exponentially cut down. 

From Eq. (8.2) we find gnu(r) = 1 - (e2/rfcBT')exp(-Kr) and hence by 
Fourier transform, we get the structure factor Szm(k) of the plasma in the 
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Debye-Hiickel theory as 

<7DH(fc) = l + njdr[gm(r) - l ] e i k r = (<c2 + fe2) • (8-5) 

The important point is that SuK(k) vanishes proportionally to k2 for k -> 0. 
While in an atomic fluid the structure factor takes in this limit a finite value 
determined by the compressibility (see Sec. 4.4), macroscopic fluctuations of 
charge density are suppressed in the plasma. 

The simplest route to the thermodynamic functions of the OCP within the 
Debye-Hiickel theory is to notice from Eq. (8.4) that <j>(r) —>• (e/r) — en for 
r —> 0. The first term is due to the ion at the origin and hence the term — en 
is the potential created at the origin by the surrounding ionic charges. Thus, 
the shift in internal energy due to the Coulomb interactions is 

AUDH = -~Ne2K. (8.6) 

The corresponding free energy term is easily found to be A F D H = 2 A £ / D H / 3 . 

In summary, the plasma at equilibrium distributes itself around each ion 
so as to screen its bare potential within a distance of order 1/K. The Debye-
Hiickel results for the thermodynamic functions become correct in the limit 
K3/n <C 1, namely at high temperature and low density.a This parameter is a 
measure of the coupling strength in the OCP, since (K 3 /T I ) 2 / 3 = 47re2n1/3/k^T 
is of the order of the ratio (potential energy)/(thermal energy). 

The screening length 1/K was originally introduced by Gouy and 
Chapman228,229 in the theory of how the ions in an ionic solution screen a 
charged planar electrode. In this problem 1/K describes the thickness of the 
dipole layer generated at the interface between the solution and the electrode, 
and thus determines the electrical capacitance of the interface per unit area. 
The extension to a multi-component plasma is immediately effected by redefin­
ing the screening length through K2 = Ait ̂ i{nie2)/k-e,T, with the sum running 
over all charged species. 

aEquation (8.5) for S(k) in the OCP is valid in general for fc -+ 0. However, the DH form 
of g(r) is incorrect at small r: g(r) has to vanish for r —• 0 in a classical fluid with repulsive 
interactions. 
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8.1.2 Dynamic screening and plasma excitation 

Whereas the Debye-Hiickel theory refers to a weakly coupled plasma at equilib­
rium, a signature of screening also emerges in the dynamics of the plasma. Let 
us suppose that each ion in the OCP is moved relative to the background by 
an amount £. The induced surface charge per unit area is en£ and by Gauss 
law creates an electric field E = — 4nen£. This acts as a restoring force in 
the equation of motion d2£/dt2 = eE/m, which describes an oscillator having 
frequency 

/ 47 rne 2 \ 1 / 2 

Thus, the plasma has an oscillatory mode of motion at the plasma frequency 
o;p in Eq. (8.7). An external electric field oscillating at this frequency will be 
in resonance with the plasma. 

For the classical plasma we may now write the screening length 1/K as the 
ratio between a characteristic velocity vc and the characteristic frequency wp, 
1/K RS vc/ujp. From the expressions for K and wp we find vc « (fceT/m)1 '2, 
which is the mean speed of thermal agitation. This argument shows the 
underlying connection which exists between static and dynamic screening. 

8.1.3 Structure and dynamics of the strongly coupled OCP 

Historically, extensive studies of the structure of the OCP as a function of 
its coupling strength (conventionally denoted by T = e2Ik^Ta with a = 
(47r,n/3) -1/3) were first carried out by Brush, Sahlin and Teller230 by the 
Monte Carlo computer simulation method. Figure 8.1 is taken from their work 
and shows that, starting from a monotonic shape of g(r) at very low T as in the 
Debye—Hiickel theory, the radial distribution function develops with increasing 
r an excluded-volume region and a first-neighbour peak. In fact, the state 
of short-range order in the strongly coupled OCP is not dissimilar from that 
of a fluid of neutral hard spheres.231 With ever increasing coupling strength 
one observes that at T « 180 the OCP freezes into a classical body-centred-
cubic crystal, under the sole effect of the Coulomb repulsions. The short-range 
order in g(r) is combined with complete screening as expressed in the long-
wavelength form of the structure factor S(k) given in Eq. (8.5), S(k) —> k2 /K2 

for k -»• 0. 

(8.7) 



Macroscopic Properties of Molten Salts 205 

Fig. 8.1. Pair distribution function of the one-component classical plasma as a function of 
distance (in units of a = (47rn/3)1 ' '3) for a series of values of the plasma coupling-strength 
parameter T = e2/(k&Ta). (Redrawn from Brush et at, Ref. 230.) 

The most important aspect of the dynamics of the OCP concerns the collec­
tive oscillations of the charge density. In the limit of long wavelengths (k —» 0), 
the result (8.7) for the plasma frequency remains valid in the fluid state at all 
values of the coupling strength and also applies to longitudinal vibrations in 
the crystalline state. The plasma mode appears as a sharp peak in the dy­
namic structure factor S(k,u>),232 which progressively broadens and shifts as 
k increases. At large k the spectrum takes a Gaussian shape centred at u> = 0, 
as for an ideal gas. 

8.2 Macroscopic Properties of Molten Salts 

The crystal structures of halide compounds arise from electronic charge transfer 
and local compensation of positive and negative ionic charges through chemical 
order. Nature achieves charge compensation in two qualitatively distinct ways. 
The first involves halogen sharing and high coordination for the metal ions, 
as for example in alkali, alkaline-earth and lanthanide metal halides. In the 
second type charge compensation takes place within well defined molecular 
units, either monomeric ones as for example in HgC^ and SbCi3 or dimeric 
ones as in AlBr3. 
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Neutron diffraction studies of metal halide melts have shown that melting 
usually preserves the type of chemical order found in the crystal. For example, 
the melting of MgCl2 or YCI3 can be viewed as a transition from an ionic 
crystal to an ionic liquid (ionic-to-ionic, in short) and that of SbCl3 or AlBr3 
as a molecular-to-molecular transition. However, AlBr3 and FeCl3 are known 
instances of ionic-to-molecular melting (see below). Intermediate-range order 
(IRO), extending over distances of 5 to 10 A say, has been revealed in both 
network-type and molecular-type melts. This type of order is well known in 
glassy materials (see Chap. 10). 

In this section we present macroscopic data (melting parameters and trans­
port coefficients) in selected halides, which along with the microscopic evidence 
from diffraction experiments allow a broad classification of melting mecha­
nisms and liquid structures. The next sections will give representative cases of 
structural evidence for various types of ordering. More details and complete 
references can be found in specialised reviews.233 

8.2.1 Selected macroscopic data for chlorides 

Table 8.1 collects, for several chlorides to be discussed in the following sections, 
(i) the measured values of the melting parameters, (ii) the structure of the hot 
crystal phase and (iii) transport coefficients of the melt near freezing (ionic 
conductivity a and shear viscosity rj). 

Table 8.1. Macroscopic properties of metal chlorides*. 

Salt 

NaCl 

CuCl 

SrCl2 

CaCl2 

MgCl2 

HgCl2 

ZnCl2 

LaCl3 

YCI3 

FeCl3 

AICI3 

GaCl3 

SbCl3 

XM 

0.40 

1.20 

0.55 

0.60 

1.28 

1.32 

1.44 

0.705 

0.66 

0.99 

1.66 

1.68 

2.08 

Crystal 

NaCl 

Wurtzite 

CaF 2 

CaCl2 

CdCl2 

HgCl2 

ZnCb 

UC13 

AICI3 
FeCl3 

AICI3 
GaCl3 

SbCl3 

T m ( K ) 

1074 

696 

1146 

1045 

980 

554 

570 

1131 

994 

573 

466 

351 

346 

A 5 m (e.u.) 

6.30 

2.43 

3.44 

6.44 

9.74 

9.11 

4.09 

11.49 

7.56 

17.80 

18.14 

7.84 

8.96 

AV m /Vi 

0.28 

0.16 

0.11 

0.043 

0.28 

0.21 

0.14 

0.16 

0.0045 

0.39 

0.47 

0.17 

0.17 

^ ( f i - L c m - 1 ) 

3.6 

3.7 

2.0 

2.0 

1.0 

3 x 10~5 

1 x 1 0 - 3 

1.3 

0.39 

0.04 

5 x 1 0 - 7 

2 x 10~6 

2 X 1 0 - 4 

V (cp) 

1.0 

4.1 

3.7 

3.4 

2.2 

1.6 

4 x 103 

6.7 

— 
— 
0.36 

1.8 
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Each compound in Table 8.1 is labelled by a parameter XM as an indicator 
of the character of the chemical bond, which has been taken for the metal 
atom from the chemical scale of the elements proposed by Pettifor.234 The 
ordering of the compounds in the table corresponds to increasing covalency 
against ionicity in moving downwards for each value of the valence. 

8.2.2 Melting parameters 

The entropy change ASm and the (estimated) volume change AVm/V on 
melting give useful indications on the melting mechanism. The empirical 
relation 

ASm = vR\n2 + jCv 
AVm 

V 
(8.8) 

has been proposed.235 Here v is the number of atoms in a formula unit, R the 
gas constant, 7 the Griineisen parameter and CV the specific heat. Insofar 

20 

CO 

< 

15 

T T 
• A 
AICI 

1 *CuCI 
• B.F, 

0.1 0.2 0.3 0.4 A V / V 0.5 

Fig. 8.2. Relation between entropy of melting AS (in cal K - 1 m o l - 1 ) and relative vol­
ume change AV/V = (Ve - V3)/Vt for monohalides (o), dihalides ( • ) and trihalides (A). 
Filled symbols mark systems showing appreciable deviations from Eq. (8.8). (Redrawn from 
Akdeniz and Tosi, Ref. 236.) 



208 Chemical Short-Range Order: Molten Salts and Some Metal Alloys 

as 7 and Cy take similar values for similar systems in corresponding states, 
Eq. (8.8) implies an approximate linear relationship between A 5 m and AVm/V, 
extrapolating for AVm/V —¥ 0 to a constant value ASm/u —> i?ln2. 

Figure 8.2 shows that such a linear relationship is approximately verified 
by a number of halides of mono-, di- and tri-valent metals236 (o, • and A). 
Some systems, however, show a deficit in ASm relative to the "norm" (filled 
symbols). These exceptions are associated with special melting mechanisms, 
i.e. from a disordered solid (• and • ) or into a network-forming liquid (•) and 
into a molecular liquid (A). The deficit in ASm is associated in the first case 
with disordering in the hot crystal before melting and in the other cases with 
residual order in the melt. The points for AICI3 and FeCl3 at large values of 
A 5 m and AVm/V reflect drastic changes in the state of order on melting. 

8.2.3 Alkali halide vapours and critical behaviour of 
ionic fluids 

Even for alkali halides, the vapour at coexistence with the hot melt is made of 
molecular monomers and dimers. The same basic ionic model can account for 
cohesion in these molecules as in the solid and dense liquid states, provided 
that distortions of the electron shells of the ions from electrical and overlap 
effects are accounted for.237 

The issue of critical behaviour in ionic fluids is a topic of high interest (for 
a short review see Fisher238). While fluids with short range or van der Waals 
interactions tend to exhibit Ising-type critical exponents (see Sec. 4.8), various 
observations on ionic solutions show either classical criticality or a crossover 
to Ising behaviour occurring only very close to criticality. A persistence of 
classical behaviour was attributed by Mott239 to the presence of long-range 
Coulomb forces. 

It is well established from work on model ionic fluids of charged hard spheres 
that inclusion of ion pairing and of the associated free-ion depletion is essential 
at low density. The results of this work still predict only classical criticality, 
but are in quite satisfactory agreement with Monte Carlo data. However, at 
higher temperatures all pairing theories violate thermal convexity, owing to 
problems in implementing a chemical picture of ion pairing and in specifying 
appropriately the association constant. To overcome these problems an exact 
thermodynamic formulation of chemical association has been developed.240 
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A number of novel results obtained in this context for density and charge 
correlations238 concern (i) the use of the density correlation length to evaluate 
the cross-over scale for departure from classical/mean field behaviour; and (ii) 
the role of charge density oscillations as markers of incipient charge ordering 
and its competition with density fluctuations in the critical region. 

8.3 S t ruc tura l Functions for Mul t icomponent Fluids 

The description of the atomic pair structure in a multicomponent fluid such 
as a molten salt requires partial radial distribution functions gap(r), which are 
defined so that 4nr2npgap(r)dr is the average number of /3-type particles lying 
in a spherical shell of radius r and thickness dr centred on an a-type particle. 
Here, rip is the partial number density of /3-type particles. 

The features of foremost interest in the function g^ (r) for cation-anion 
correlations in a molten salt are (i) the position of the main peak, giving the 
average bond length d; (ii) the depth of the minimum after the peak, as a gauge 
of the stability of the local structure against relaxation and exchange of ions 
with the rest of the liquid; and (iii) the first-neighbour coordination number. 
Further information can be obtained from second-neighbour bond lengths and 
coordination numbers if the whole set of distribution functions gap{r) can be 
resolved. 

The partial structure factors of the molten salt are related to gap{r) by 

Sap(k) = 6ap + 47r(nan/3)1/2 [°°r
2dr[gap(r) - 1 ] ^ . (8.9) 

Jo kr 

With this definition the intensity I(k) of radiation with wavelength A, coher­
ently scattered through an angle 26 in a diffraction experiment, is given by 

I(k) = (f)S(k) = £ ( ^ ) V 2 fafpSaP(k), (8.10) 

where k = (47r/A)sin0 is the scattering wavenumber, fa are the scattering 
amplitudes and n is the total number density. As already noted in Sec. 4.3, 
the scattering amplitudes for X-rays depend on k and increase monotonically 
with the atomic number. They are independent of k for neutron scattering 
and vary rather randomly with the nuclear species. 
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Evidently, a single diffraction experiment does not suffice to resolve the par­
tial structure factors and to yield the full set of distribution functions gap{r)-
Nevertheless, it does provide an average pair function in which the first few 
shells of neighbours may be approximately resolved by suitable fitting proce­
dures. Full resolution of pair correlations can be obtained with the method 
of multipattern determination by isotopic substitution in neutron diffraction, 
first applied to a liquid alloy by Enderby et al.241 and to a molten salt by Page 
and Mika.242 In brief, for a binary liquid this method requires diffraction ex­
periments on three samples in which the contrast has been changed by varying 
the isotopic composition at a fixed chemical composition. In particular, the 
use of the 35C1 and 37C1 isotopes, with scattering amplitudes differing by a 
factor of about five, has led to detailed structural information on many molten 
chlorides. Useful structural information may also be obtained from X-ray 
absorption spectroscopy.243 

8.3.1 Number-concentration structure factors 

Some linear combinations of the partial structure factors emphasise specific 
aspects of the short-range order, as was first noted by Bhatia and Thornton244 

for binary alloys. Thus, if in Eq. (8.10) we take the /Q ' s to be identical for all 
species, we obtain 

5NN(*) = £ ( ^ ) 1 / 2 ^ ( f c ) - (8.11) 
a/3 

This function, and the corresponding distribution function <7NN(F), describe the 
correlations between fluctuations in the total number density of particles and 
reflect the topological order coming from excluded-volume effects. In molten 
alkali halides the main peak in 5NN(&)

 a^ ^N ~ 2ir/d is very broad and g^ti(r) 
is almost flat beyond the first-neighbour peak. 

On the other hand, if we consider a binary liquid with n\f\ = — 712/2, we 
obtain 

Scc(k) = ^{n2Sn{k) - 2(n1n2)1/2512(fc) + n ^ f c ) ] . (8.12) 

This function and the corresponding distribution function gcc(r) describe cor­
relations between fluctuations in composition, i.e. the chemical short-range 
order. In molten alkali halides gCc{r) shows marked oscillations around zero, 
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which extend over distances of at least 10 A: starting from a given ion, one 
meets regions that are alternatively enriched and depleted in ions of the other 
species. The period rc of these oscillations is close to the second-neighbour 
bond length. Scc(k) correspondingly shows a very strong and rather narrow 
peak at kc « 0.7%. This is known as the Coulomb prepeak and is commonly 
taken as a signature of chemical short-range order. 
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Fig. 8.3. Partial structure factors of molten NaCl at 875° C. (Redrawn from Biggin and 
Enderby, Ref. 245.) Here and in Fig. 8.5, the definition of partial structure factors is from 
T. E. Faber and J. M. Ziman, Phil. Mag. 11 , 153 (1965). 
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8.4 Coulomb Ordering in Monohalides and Dihalides 

8.4.1 Alkali halides 

Figure 8.3 shows the partial structure factors of molten NaCl at 875°C as an 
illustrative example of alkali halides, from neutron diffraction measurements 
on natural and isotopically enriched samples by Biggin and Enderby.245 The 
trademark of Coulomb ordering in a 1:1 melt is the deep valley in S^aci(k) lying 
in phase with the main peak in •S'NaNa(k) and in Scici(k). It is immediately 
seen from Eqs. (8.11) and (8.12) (with n\ — n2 = n/2) that these features lead 
to a strong peak in Scc(k) and largely cancel out in 5NN(&)-

Figure 8.4 compares the experimentally derived ga/3(r) with those obtained 
from ionic pair potentials.246 Coulomb attractions and closed-shell core repul­
sions between Na+ and Cl~ ions lead to a first-neighbour shell of unlike ions 
around any given ion, with a sharply defined region of excluded volume. In 
spite of the large volume expansion of NaCl on melting (see Table 8.1), the 
bond length d is shorter in the melt than in the crystal at melting (2.78 A 
versus 2.95 A). Melting thus occurs with reduction in coordination. It is also 
seen from Fig. 8.4 that the Coulomb repulsions between like ions push them 
into second-neighbour shells having similar shapes. 

r(A) 

Fig. 8.4. Pair distribution functions of molten NaCl near freezing, from neutron diffraction 
(o), computer simulation (•) and theory (curves). (Redrawn from Ballone et al., Ref. 246.) 
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Thus, the nature of Coulomb ordering in a molten salt is such that the 
distribution of the screening charge density around any given ion oscillates in 
space, rather than being a monotonic function of distance as in the Debye-
Hiickel theory. Nevertheless, a meaningful definition of screening length in a 
dense ionic fluid can be based on the Debye-Huckel concept of the potential 
drop across the dipole layer formed by an ion and by the screening charge 
distribution. The relevant thermodynamic quantity is the Coulombic internal 
energy Uc of the melt. A simple and physically transparent analytical result 
is obtained for a 1:1 melt in the primitive model of equisized charged hard 
spheres as solved in the so-called mean spherical approximation.247 This yields 
Uc = —e2/(L + d/2) where d is the bond length and 

L = d[{l+2Kd)1/2-l}-1, (8.13) 

with K, = {Anne2/k-e,T)ll2. The length L can thus be viewed as the screening 
length in the ionic fluid. More generally, this argument leads to an expression 
for the screening length as a function of density, temperature, dielectric con­
stant, ionic charges and ionic radii. Contact can then be made with data on 
the differential capacitance of electrode/molten salt interfaces.248 

8.4.2 Noble-metal halides 

The monovalent Cu+ and Ag+ ions, with an outer shell of ten d-electrons, 
have small ionic radius and large electronic polarisability in comparison with 
the corresponding alkali ions. These properties lead to some hybridisation and 
covalent binding in copper and silver halides, tending to favour low coordina­
tion of first neighbours and promoting remarkable transport behaviours. 

The ionic conductivity a of solid CuBr and Cul increases rapidly with tem­
perature, already reaching values of « O.lf i^-cm - 1 before attaining, through 
two structural phase transitions, fast-ion (superionic) behaviour of the Cu+ 

ions before melting. A phase transition is also exhibited by Agl at 147° C and 
is accompanied by a jump in a to values of RS l f i _ 1 -cm - 1 , typical of ionic 
melts. The Ag+ ions in the a phase are disordered over many interstitial sites. 
Solid CuCl, AgCl and AgBr also show premelting phenomena, with a rising 
to values of « 0.1-0.5 Cl~1 • cm - 1 . 

It can be seen from Table 8.1 and Fig. 8.2 that these materials melt at 
relatively low temperature with a relatively low entropy change, while the ionic 
conductivity of the melt is comparable to that of molten alkali halides. Excess 
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entropy has been released in the crystal before melting through the massive 
disordering of the metal ions. Diffraction data are available for all melts of this 
family: overall, their liquid structure can be described in term of a random 
close-packing of halogens, accommodating the metal ions in tetrahedral-like 
coordinations. 

8.4.3 Fluorite-type superionic conductors 

Fluorite-type materials such as SrCl2 undergo a diffuse transition to a high-
conductivity state before melting. The ionic conductivity and the entropy 
increase rapidly but continuously with temperature across the transition, 
whereas the heat capacity shows a peak. A high dynamic concentration of 
anionic Frenkel defects (interstitial-vacancy pairs) is gradually created across 
the transition, as revealed by neutron diffraction and diffuse quasi-elastic scat­
tering studies on a variety of materials including SrCl2, CaF2, PbF2 and UO2. 
In other materials, such as BaCl2 and SrBr2, a superionic state is attained 
through a structural phase transition to the fluorite structure. A deficit of 
entropy of melting is again apparent from Fig. 8.2. 

The liquid structure of BaC^ and SrC^ has been determined by neutron 
diffraction using isotopic substitution.249 In both melts, within the frame of 
the divalent cations, the halogen ion component is more weakly ordered. The 
liquid structure thus shows a remnant of the fast-ion conducting state that the 
solid attains through an extensive disordering of the anions. 

The observed short-range ordering in molten SrC^ and BaCl2 suggests 
that freezing may be viewed as a process in which the cationic component 
is independently crystallising and at the same time modulating the anions 
into the lattice periodicity.250 The anionic component in the hot crystal near 
melting may thus be described as a modulated "lattice liquid". In turn, the 
diffuse transition from the superionic to the "normal" state on cooling 
the SrCl2 crystal may be viewed as a continuous process of anionic freezing 
inside the periodic force field of the metal-ion lattice. 

8.4.4 Tetrahedral-network structure in ZnCl-z 

The pair structure is also experimentally known for a number of other di-
halide melts. The evolution of the liquid structure with increasing XM (in 
essence, with increasing covalency versus ionicity of the bonding) brings it 
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from a cation-dominated structure to one in which the anions provide a "de-
formable frame" accommodating the doubly-charged cations. The C1_-C1~ 
structural correlations are not especially affected: the Cl-Cl bond length stays 
in the range 3.6 to 3.8 A. 

To illustrate and qualify the above statement, let us contrast ZnCl2 with 
SrCl2- ZnCl2 melts with relatively low Tm and ASm from a crystal structure 
formed by corner-sharing tetrahedral units, and in the melt has very low ionic 
conductivity and very high viscosity (see Fig. 8.2 and Table 8.1). Molten ZnCl2 
can be supercooled into a vitreous state, with a glass transition temperature 
Tg « 115°C. The deficit in the entropy of melting for ZnCl2 (and also for BeF2 

and BeCl2 in Fig. 8.2) is associated with the presence of IRO in the melt and 
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Fig. 8.5. Partial structure factors of molten ZnCl2 at 327° C. (Redrawn from Biggin and 
Enderby, Ref. 251.) 
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should be gradually made up on heating the melt. BeF2 is again a glass-former 
with a crystal structure built from corner-sharing tetrahedra, while in BeCl2 
the local tetrahedral coordination leads through edge-sharing to the chain-like 
"fibrous SiS2" structure. 

The measured partial structure factors of molten ZnCl2251 are shown in 
Fig. 8.5. The peaks associated with topological and chemical short-range order 
are clearly visible in all three partials. In addition, a prominent first sharp 
diffraction peak (FSDP) is present at k « 1 A - 1 in the Zn-Zn partial. The 
FSDP is a marker of the IRO in the liquid. 

The state of pronounced IRO in molten ZnCl2 arises from strongly stable 
local tetrahedral structures through the formation of a network of chlorines. 
The partial distribution functions can be interpreted as describing a disordered 
close-packed arrangement of chlorine ions which provides tetrahedral sites for 
the Zinc ions. Such a structural arrangement is very similar to that of the 
glassy state of ZnC^252: the Zn-Cl bond length is practically the same in 
the two states and the average coordination number of Zn is reported as 3.8 
in the glass and » 4 in the melt. 

8.5 Structure of Trivalent-Metal Halides 

Two main trends emerge from liquid structure studies on trichlorides: (i) the 
trend from cation-dominated Coulomb ordering to loose octahedral-network 
structures across the series of lanthanide compounds including YCI3, and (ii) 
the stabilization of molecular structures with strong intermolecular correlations 
leading to IRO. The overall structural evolution is governed by the increasing 
weight of covalency versus ionicity. 

The macroscopic properties reported for trichlorides in Table 8.1 reflect 
melting mechanisms which are consistent with the observed liquid structures. 
Progressive network formation in the melt from LaCi3 to YCI3 is signalled 
by decreasing values of ASm, AV^/Vi and a. The melting parameters ASm 

and AV^/Vi for FeCl3 and AICI3 are drastically larger than those of YCI3: 
melting occurs from layer-type ionic crystals in these compounds, but brings 
the former two into a molecular-liquid state with a reduction in coordination 
number from 6 to about 4. GaCl3 and SbCi3 provide examples of melting from 
molecular crystal structures into associated molecular liquids with a deficit in 
ASm (see Fig. 8.2). 



Structure of Trivalent-Metal Halides 217 

8.5.1 Octahedral-network formation in lanthanide chlorides 

X-ray diffraction data on the series of molten rare-earth trichlorides show sim­
ilar structural characters.253 The C?MCI bond length lies in the range 2.7-2.9 A 
while the second-neighbour bond lengths are 4 M ~ 5 A and rfcici ~ 4 A, 
indicating a Coulomb ordering primarily ruled by the repulsion between the 
cations as discussed earlier for SrCl2. Ionic conductivity and Raman scatter­
ing data suggest that the coordination of the metal ions is becoming more 
stable through the series, leading to a liquid structure which resembles a loose 
network of Cl-sharing octahedra. 

DyCl3 and YCI3 crystals are structurally isomorphous and melt with sim­
ilarly low values of A 5 m and AVm/V{. In a neutron diffraction experiment 
on molten YCI3254 a well defined FSDP was seen at k = 0.95 A - 1 , giving 
unambiguous evidence of IRO. The average coordination number of the metal 
ions is 5.9, which confirms the Raman scattering findings of a rather long-lived 
octahedral coordination of the metal ions.255 The octahedral network must 
be relatively loose on a time scale longer than the period of the breathing mode 
of the octahedron at v « 260 cm - 1 , to be compatible with the value of the 
ionic conductivity of molten YCI3 given in Table 8.1. 

8.5.2 Ionic-to-molecular melting in AlCl3 and FeCl$ 

YCI3 is structurally isomorphous to AICI3 in the crystal phase. Figure 8.6 
shows a layer in the AICI3 and FeCl3 crystal structures, formed by a metal-ion 

Fig. 8.6. Schematic illustration of a layer in the AICI3 crystal structure and of melting in 
YCI3 and AICI3. 
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plane (black spheres) sandwiched between two layers of chlorines (the top plane 
appears in grey and the bottom plane in white). The lower cluster shows the 
octahedral coordination of the Y, Al and Fe ions in the crystal, which is basi­
cally preserved in YC13 on melting. The upper cluster illustrates the cooper­
ative mechanism of metal-ion displacements by which the A^Cle and Fe2Cl6 
molecules can form on melting, each dimer being in the shape of two tetrahedra 
sharing an edge. In AlBr3 such an arrangement of Al ions in tetrahedral sites 
already exists in the crystal. The melting of A1C13 and FeCl3 also involves 
expansion of the chlorine packing in view of the large value of AVm/Vi. 

Joint X-ray and neutron diffraction experiments have been carried out on 
molten FeCl3.256 The neutron pattern is very close to the Bhatia-Thornton 
SNN{k), since the scattering amplitudes of Fe and CI are almost identical. It 
exhibits three peaks which, after scaling with an average first-neighbor distance 
d = 2.28 A, lie at kd « 2.2, 4.7 and 8.4. These values are typical for the FSDP, 
the Coulomb peak and the topological (excluded-volume) peak, respectively.257 

The pair function g(r) yields an average first-neighbour coordination number 
of » 3.6 about the metal ions, definitely ruling out the sixfold coordination 
found in the crystal. 

8.5.3 Liquid haloaluminates 

In AICI3 and AlBr3, while the pure melt is a molecular liquid, molten-salt be­
haviour emerges on mixing with alkali halides. Complex anions are formed with 
the alkalis playing the role of counterions. Thus, starting from neutral AI2CI6 
dimers in the AICI3 liquid, the (AI2CI7)- anion in the shape of two tetrahedra 
sharing a corner has been identified in mixtures with alkali chlorides.258 This 
anion is ultimately replaced by (AICI4)- anions at 1:1 stoichiometry. 

The fluoroaluminates behave quite differently. The Na3AlF4 compound, 
known as cryolite, presents special interest because of its role in the industrial 
Hall-Heroult process for the electrodeposition of Al metal from alumina.259 

The Raman spectra of molten (AlFs)c- (NaF)i_c and other Al-alkali fluoride 
mixtures give evidence for a gradual conversion of (AIF4)- into (AIF5)2- and 
(AlFe)3- as the solution becomes more basic with c decreasing below O.5.260 

8.5.4 Molecular-to-molecular melting in GaCl^ and S0CI3 

For other trihalides, such as GaCl3 and SbCl3 in the bottom rows of Table 8.1, 
molecular units can be recognised as constituents in the crystal structure. 
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Crystalline GaCl3 can be viewed as composed of Ga2Cl6 dimers. The crystal 
structure of SbCl3 is instead built by packing chains of monomers in the shape 
of trigonal pyramids with metal ions at the apices. The stable molecular units 
in the vapour phase are the Ga2Cl6 dimer and the SbCl3 monomer. 

The liquid structure of SbCl3 at 80°C has been studied by a combination of 
X-ray and neutron diffraction.261 It can be described as arising from separate 
monomeric units with strong intermolecular correlations. Each metal ion has 
three additional chlorine neighbours from other molecules: such a strongly 
distorted octahedral arrangement could result from stacking the monomers in 
chains like umbrellas, the dipole axes of molecules within a chain being strongly 
correlated over at least one or two molecular diameters. 

The neutron diffraction patterns measured for molten AlBr3, GaBr3 and 
Gal3 show three peaks at approximately 1.0, 1.9 and 3.4 A - 1 , which represent 
the FSDP, the Coulomb peak and the excluded-volume peak.262 The corre­
sponding pair distribution functions exhibit a very well defined coordination 
shell of first neighbours, with coordination number 4.0 ± 0.2 for AlBr3 and 
GaBr3 and 3.75 ±0.2 for Gal3. The intermolecular correlations between halo­
gens are quite significant, the corresponding coordination number being in the 
range typical of a random close-packing in the liquid state. 

8.6 Transport and Dynamics in Molten Salts 

In a broad sense, the transport properties and the microscopic dynamical be­
haviour of molten salts are correlated with the types of liquid structure that 
we have outlined above. Some unambiguous examples of these correlations will 
be exposed in this section. 

8.6.1 Ionic transport 

We return to Fig. 8.4 and notice that the rather deep main minimum ingNaci(r) 
implies a moderate rate of ionic exchange between the first-neighbour shell and 
the surrounding liquid. 

The persistence times of local structure in molten alkali halides near freezing 
are of the order of several picoseconds. These correspond to values of ionic 
conductivity and shear viscosity as given for NaCl in Table 8.1. The self-
diffusion coefficients of the two ions in molten NaCl have similar values263 

(£>Na = 1.7andZ)ci = 1.3xl0~4cm2 - s _ 1 ) , in spite of the differences in atomic 
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masses and ionic radii. This is consistent with the similarity of #NaNa(?") and 
ffcici(r) in Fig. 8.4, which implies similarity in restoring forces and residence 
times for the two types of ions. 

On the other hand, for the melts of noble-metal halides computer simulation 
studies264 and theoretical calculations based on the Zwanzig model265 (see 
Sec. 5.6.1) indicate a large difference in the mobilities of cations and anions, 
by up to a factor of order ten in molten Agl (see Table 8.2). This difference 
has been related to the observed liquid structure as discussed in Sec. 8.4.2, 
which leads to major differences in the structural back-scattering of cations by 
cations and of halogens by halogens. On the quantitative side, however, both 
simulations based on simple pair potentials and theoretical models of transport 
coefficients are subject to large uncertainties. 

Table 8.2. Calculated diffusion coefficients in superionic-conductor melts (in 
units of 1 0 - 5 cm2 s - 1 , compared with the results of molecular dynamics (MD). 

Salt 

Agl 

CuCl 

CuBr 

Cul 

T ( K ) 

873 

773 

880 

923 

D+ 

3.6 

20.0 

13.0 

18.0 

(D+)MD 

3.8 

10.0 

10.0 

8.8 

D-

0.34 

4.3 

2.3 

2.2 

(D-)MD 

0.3 

2.5 

2.7 

1.3 

D+/D-

11.0 

4.8 

5.6 

8.1 

( £ > + / D _ ) M D 

12.7 

4.0 

3.9 

6.8 

A further example of the deep connections which exist between structure 
and transport in molten salts is provided by the Chemla effect.266 This was 
first discovered in experiments on molten (Li, K)Br mixtures, showing that 
the mobility of K overtakes that of Li with increasing content of KBr. The 
transport behaviour of the two cations is related to the structural features of 
the cation-anion pair distribution functions, combined with the volume dilation 
which accompanies the increase of KBr content. The local liquid structure 
around Li forces the ion to spend a relatively long residence time in oscillations 
at a fourfold-type site before being able to diffuse out, and this "trapping" is 
strengthened with decreasing number density and temperature. 

With regard to the relation between ionic difFusivities and ionic conductiv­
ity, deviations from the Nernst-Einstein form by up to 20% have been reported 
for alkali halides both from experiment and from computer simulations.267 This 
relation can be written as 

a=(^j(D++D_)(l-A), (8.14) 
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where the factor (1 - A) reflects cross-correlations between the ionic motions. 
Positive values of A, as observed, reflect a tendency of oppositely charged ions 
to diffuse together. 

In molten ZnCl2 near freezing, Sjoblom and Behn268 report diffusion coef-
ficiencts of about 1.5 x 10~7 cm2/s for both ions. From the Nernst-Einstein 
relation and the measured ionic conductivity (see Table 8.1), one would predict 
diffusivities lower than this by several orders of magnitude. It is evident that 
motions of neutral units are mainly responsible for diffusion in this melt. 

8.6.2 Viscosity 

As discussed by Hirschfelder et at,269 dimensional analysis suffices to suggest 
scaling laws for transport coefficients through microscopic interaction param­
eters. Examples have been given for shear viscosity and thermal conductivity 
in Chaps. 6 and 7. In the same spirit Abe and Nagashima270 have shown that 
the correlation 

= -5.960 + 23.37V*T*1/2 
(8.15) 

holds for the reduced shear viscosity 77* = r)<r2/{me)1'2 in molten alkali halides 
as a function of V* = V/Na* and T* = kBT/e, with a and e being parameters 

0.35 0.1 
V».T*" 

Fig. 8.7. Inverse of scaled shear viscosity against V T * 1 / 2 in 18 alkali halide melts. 
(Redrawn from Abe and Nagashima, Ref. 270.) 
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of the interionic potential and m the molecular weight. The relation (8.15) is 
shown in Fig. 8.7 together with data on 18 alkali halides, with appreciable de­
viations being evident for two of them (CsF and Csl). Other systems discussed 
by the same authors include alkali nitrates, liquid metals, and hydrocarbons. 

Precise viscosity measurements on pure and mixed ionic melts (alkali 
halides and nitrates) including glass-formers have revealed a universal 
behaviour in the form of a modified Arrhenius law.271 Figure 8.8 reports the 
correlation 

r] oc — exp 
Jo T 

(8.16) 

where q — 5.9 ± 0.1 and To is a suitably chosen characteristic temperature. 
Figure 8.9 reports from the work of Voronel et al.272 a fractional-power 

relation between ionic conductivity and shear viscosity of pure and mixed ionic 
melts, 

CTTOC ( - (8.17) 

with a = 0.8 ± 0.1. This relation holds over nine orders of magnitude for 77 in 
the glass-forming Ca2K3(NOs)7 compound. In a range of temperature where 

1000 

T/T 

Fig. 8.8. Viscosity of seven alkali halides and nitrates against inverse reduced temperature. 
(Redrawn from Voronel et at, Ref. 271.) 
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Fig. 8.9. Relation between electrical resistivity p and shear viscosity 77 in eight nitrates 
and halides. The solid line corresponds to the slope m = 1. (Redrawn from Voronel et al., 
Ref. 272.) 

both a and •q~1 can be represented by an Arrhenius law, the relation (8.17) 
implies a systematic difference in the respective activation energies. 

8.6.3 Dynamics of density fluctuations 

In the simplest model of a molten alkali halide, one would expect that 
the dynamics of density fluctuations be described by a "superposition" of 
oscillations of the total mass density, leading to sound waves at long wave­
lengths as described for monatomic fluids in Chap. 6, and of oscillations of the 
charge density as a counterpart of the propagating plasma mode discussed in 
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Sec. 8.1.3 for the strongly coupled OCP. This viewpoint, though quantitatively 
oversimplified, is essentially correct. Thus, Coulomb ordering is responsible for 
a propagating collective excitation of charge fluctuations. We refer to a spe­
cialised review233 for a discussion of detailed analyses of infrared reflectivity, 
neutron inelastic scattering and Raman scattering data. 

The Raman scattering technique becomes especially useful in network-like 
melts such as ZnCl2 and in molecular-like liquids such as AICI3. Experiment 
shows that the density of vibrational states in these liquids is strongly struc­
tured: it mainly reflects the vibrational motions of the basic structural unit and 
these are only moderately affected by the network-induced (or IRO-induced) 
coupling. An extensive collection of Raman frequency data for ionic systems 
has been given by Brooker and Papatheodorou.273 

8.7 Chemical Short-Range Order in Liquid Alloys 

Fully ionised salts with a large band gap, like the alkali halides, remain ionic 
across melting. At the opposite extreme, melting of covalent semiconductors 
such as Ge and InSb involves a collapse of the covalent structure, which is 
directly revealed by an increase of coordination from 4 to values in the range 
6-8 and by a sharp increase in electrical conductivity to an essentially metallic 
type. Between these extremes a number of systems have been identified which 
show a variety of intermediate electronic behaviour in the liquid phase. 

We briefly refer below to alloys from metallic elements with a relatively 
large difference in electronegativity, which form intermetallic compounds at 
certain "stoichiometric" compositions in the solid state. Examples are Cs-
Au274 or Li-Pb275 and other alloys of alkalis with Pb or Sn.276 The melts 
of these alloys near certain compositions show a marked preference for unlike 
first neighbours in the local structure, as well as a maximum in the electrical 
resistivity and a minimum in its temperature coefficient. We limit ourselves to 
an outline of the chemical order near "stoichiometry" and refer to specialised 
reviews233 for the parallels that can be made between these alloys away from 
stoichiometry and the solutions of metals in molten salts. 

8.7.1 The CsAu compound 

The stoichiometric CsAu compound crystallises in the CsCl-type structure and 
is a strongly polar semiconductor with an optical band gap of 2.6 eV at room 
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temperature. Its electrical conductivity drops on melting to a value which is 
comparable to molten salts. Electromigration experiments give evidence that 
Cs migrates to the cathode and Au to the anode, one Cs + and one Au~ being 
transported per elementary charge to the electrodes. 

A neutron diffraction study of the liquid structure of the Cs-Au alloy277 

shows a structure in the neutron structure factor at k = 1.2 A - 1 , which is 
interpreted as the "Coulomb prepeak" characteristic of chemical order. After 
Fourier transform of these data, the Cs-Au first neighbour distance at 3.6 A 
can be followed up to 80% Cs, while the Cs-Cs distance at 5.3 A characteristic 
of the pure Cs metal start emerging at 70% Cs. 

8.7.2 Other alkali-based alloys with chemical 
short-range order 

Interspecies ordering as shown by the Cs-Au system has been reported for 
a number of other alkali-based alloys, the alloying partners being elements 
of group III, IV or V. The formation of chemical short-range order at certain 
compositions is signalled by anomalies in electronic properties such as the elec­
trical resistivity and the magnetic susceptibility, which reflect a minimum in 
the electron density of states at the Fermi level if not the opening of a gap 
due to full charge transfer. Three different kinds of compound formation can 
be identified: (i) compound formation near the electronic octet composition 
A4B as in Li-Pb or Li-Sn; (ii) compound formation near the equimolar com­
position AB, as in K-Pb or Rb-Pb; and (iii) compound formation near both 
these compositions, as in Li-Si, Li-Ge or Na-Sn. The data show increasing 
stability of the octet composition through the sequence Si, Ge, Sn and Pb, and 
decreasing stability through the sequence from Li to Cs. 

A neutron diffraction measurement of the Bhatia-Thornton concentration-
concentration structure factor in Li4Pb has shown chemical order extending 
over a range of about 20 A in the corresponding gcc{r) distribution function.275 

With regard to alkali-group IV alloys in the second and third classes men­
tioned above, such as K-Pb or Na-Sn, Meijer et a/.276 have proposed a model 
for order at equimolar composition which invokes formation of essentially tetra-
hedral Pb4 or Sn4 polyanions. Such tetrahedral "Zintl ions" are seen in the 
crystal structure of the equiatomic compound. In such a tetrahedral cluster 
the p-type electron states of Pb, say, would be split into bonding and antibond-
ing states and the former could be filled by electron transfer from the alkali 
atoms. 



226 Chemical Short-Range Order: Molten Salts and Some Metal Alloys 

The presence of polyanions in Zintl alloys also has dynamical consequences. 
A striking case is NaSn, in which the Sn4 polyanions are observed to undergo 
jump reorientations and thereby to enhance the diffusivity of the Na cations 
by a paddle-wheel mechanism.278 These two types of disorder appear simulta­
neously as the melting point is approached. 



Chapter 9 

Bonds, Rings and Chains 

9.1 Outline 

This chapter deals with molecular liquids, including polymers and liquid crys­
tals. We begin with liquid nitrogen, which under normal conditions consists 
entirely of strongly bonded N2 molecules. Then, in turn, we shall consider 
carbon, selenium and sulphur. One unifying theme for these three liquids (and 
possibly also embracing water) is the concept of liquid-liquid transitions occur-
ing in the phase diagram. Studies of the structure of liquid boron will also be 
described, as an instance of very unusual covalent bonding which transforms 
into a metallic state on melting. The precise formulation of liquid structure in 
assemblies of simple molecular units will then be set out and illustrated, with 
special focus on the structure of water. 

Polymers and liquid crystals follow in turn, with main attention to their 
structural description as introductory to the overview on their flow properties 
that will be given in Chap. 11. In these two areas, the interaction between first-
principles statistical mechanics and technical applications is of considerable 
importance. 

Following this brief outline, we turn first to summarise some properties, 
with especial attention to phase boundaries, in a number of elemental molecular 
assemblies. 

227 
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9.2 Elemental Molecular Liquids 

9.2.1 Nitrogen 

Let us begin with liquid nitrogen. As already remarked, under normal condi­
tions of temperature and pressure it consists of an assembly of triple-bonded, 
non-spherical N2 molecules. The new element of structural order in the con­
densed phases arises from the orientational correlations between the molecules, 
and the quantitative structural description of such liquids in terms of these cor­
relations will be given in Sec. 9.3. Liquid 0 2 is another example, though this 
differs from nitrogen in that the ground state of the molecule in free space has 
two unpaired spins and the molecule carries a magnetic moment. The phase 
diagram of 0 2 has solid-state regions where cooperative magnetism (e.g. order 
in the molecular spins taking up an antiferromagnetic arrangement) exists. 

Homonuclear diatomic molecules might be thought to form some of the 
simplest condensed molecular systems. Their phase diagrams can, however, 
be quite complicated. In the case of nitrogen, nine solid phases have been 

a. 
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Fig. 9.1. Phase diagram of nitrogen, showing plastic /3-crystal phase above melting curve. 
(Redrawn from Bini et al, Ref. 279.) 



Elemental Molecular Liquids 229 

reported for temperatures in the range from 4 to 300 K and pressures up to 
130 GPa. At standard pressure the c*-N2 phase, where the molecules are trans-
lationally and orientationally ordered on the sites of a cubic lattice, is stable 
up to 35.6 K. In the /8-N2 phase, which is stable from 35.6 K up to the melting 
point at 63.1 K, the lattice is instead hexagonal-close-packed and there is a 
high degree of molecular disorder. As is seen from the phase diagram279 shown 
in Fig. 9.1, this disordered solid phase is in equilibrium with the liquid phase 
on the melting curve as a function of pressure. The solid phase in equilibrium 
with the liquid is a "plastic crystal"280: while it has long-range crystalline 
order, it only has short-range order in the orientational correlations between 
the molecules. 

As discussed by Tozzini et al.,281 the relation between the melting curve 
and the transition boundary from conventional crystal to plastic crystal can 
be treated in a model going back to Pople and Karasz.282 These authors gen­
eralized the melting phenomenology of Lennard-Jones and Devonshire283 to 
include orientational disordering together with positional melting (see also Ap­
pendix 9.1). The new feature is the height of a potential barrier between differ­
ent allowed orientations of the diatomic molecules on crystal lattics sites. The 
height of this barrier links the melting curve and the plastic crystal boundary. 

9.2.2 Phase diagram of carbon: Especially 
liquid-liquid transformation 

Ferraz and March284 (see also Ghosli and Ree285) suggested the existence of 
a liquid-liquid phase transition (LLPT) in the phase diagram of carbon. The 
first quantitative treatment of this transition was a semi-empirical equation-of-
state modelling of carbon by van Thiel and Ree.286 However, it was only later 
that the first experimental evidence, albeit indirect, for the LLPT in carbon 
became available in work by Togaya.287 This study on the melting of graphite 
(see also Fig. 9.2) strongly suggests that the slope of the pressure-temperature 
melting line has a discontinuity at the temperature maximum and hence at 
least three stable phases coexist at this point. As stressd by Ghosli and Ree, 
the most plausible interpretation is that this corresponds to a triple point and 
the carbon phase diagram exhibits a LLPT. 

Support for this conclusion is afforded by the atomistic computer simula­
tions of Ghosli and Ree,285 which were performed using a bond-order potential 
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Fig. 9.2. Phase diagram of carbon, showing critical point at end of liquid-liquid "phase 
boundary". (Redrawn from Ghosli and Ree, Ref. 285.) 

developed in earlier work by Brenner. The potential energy function takes 
the form 

*= Yl W^-MAM. (9.i) 
{bonds} 

In Eq. (9.1), (/>R and </>A consist of exponential functions representing the re­
pulsive and the attractive terms in the bond energy, respectively. The symbol 
{bonds} denotes the set of all bonds, but although a sum over bond energies 
<&, it is to be stressed, is not built from pair potentials. The bond-order factor 
bij is many-body in nature and depends on both bond and torsional angles, 
bond lengths, and atomic coordination in the neighbourhood of the bond. 

While there is semiquantitative accord between the results of Ghosli and 
Ree from their atomistic simulations and the melting line of graphite as mea­
sured by Togaya, the essential point to be emphasised here is the "phase 
boundary" found between high-density and low-density liquids, ending in a 
critical point (compare Fig. 9.2). The critical constants from the model are 
estimated as Tc = 8800 K, pc = 10.6 GPa and Vc = 8.7 A3/atom. 
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Ferraz and March284 had already proposed a low-density liquid phase in 
carbon having sp hybridisation. The Ghosli-Ree study leads to considerable 
insight into the atomic structure and permits them to conclude that the high-
density liquid is characterized by sp3 hybridisation while the low-density liquid 
has indeed sp hybridisation dominantly. Ghosli and Ree stress that refine­
ments of the bond-order potential (9.1) will be required to gain fully quanti­
tative agreement with experiment, and especially note the need to incorporate 
long-range van der Waals forces. 

9.2.3 Selenium and sulphur: Especially 
liquid-liquid transitions 

In this section, a brief discussion will be devoted to related behaviour of molten 
Se and S to the LLPT for carbon discussed in some detail above. Emphasis will 
be given to the connection between pressure-temperature diagrams of these two 
elements and experimental observations of volumetric and resistance anomalies 
in the liquid state. The reader requiring more details is referred to the report 
of Brazhkin et o/.288 and references therein. 

Discussing Se first, the short-range order in the molten state is characterised 
by two-fold coordination, just as for the crystalline phase. Gross modifications 
in the structure of Se can be effected by changing the temperature, and in par­
ticular the mean molecular chain length reduces substantially with increasing 
temperature. In the vicinity of the liquid-vapour critical point, having critical 
constants Tc = 1630°C, pc = 380 bars and pc = 8.7 g/cm3, the average chain 
molecule consists of only about ten atoms.289 

Experimental studies have shown that the liquid structure factor S(k) of Se 
at pressures of 4.4 and 8.4 GPa differs markedly from that observed at normal 
pressure. It is thus feasible to produce a major structural transformation of 
molten Se by compression.290 Also of significance in the context of a LLPT is 
that electrical as well as volumetric anomalies have been observed in molten Se 
in the pressure range from 1 to 10 GPa.288 These observations are consistent 
with a structural transformation in liquid Se, as shown in the p-T diagram 
reported in Fig. 9.3. 

Turning to molten sulphur, once again structural changes have been induced 
by increasing temperature at atmospheric pressure. Near the melting point at 
390 K, the short-range order in the melt resembles that in the solid state 
and is based on the same Ss rings, which are described as structural units 
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Fig. 9.3. Phase diagram of Se, showing transition between structurally different liquid states 
L and L'; resistance anomalies are indicated by solid circles. (Redrawn from Brazhkin 
et al, Ref. 288.) 

with an average bond length of 2.05 A and a bond angle of w 108°.291 The 
melting temperature is about 115°C and sulphur forms a light-yellow liquid 
of relatively low viscosity. Around 160°C, the viscosity increases markedly 
with temperature. Viscosity can be (very approximately) related to the liquid 
structure factor via intermolecular forces. 

Experiments by Brazhkin et al.292 have clarified the situation regarding 
various physical properties of molten sulphur in the pressure range between 5 
and 12.5 GPa. These workers found, in particular, metallisation in the melt, 
this taking place near the melting point at 12 GPa. In their report Brazhkin 
et al.2S8 give a p-T diagram of solid and liquid sulphur in their Fig. 3, to which 
the reader interested in further details is referred. 

9.2.4 Structure of liquid boron 

Boron and boron-rich borides have numerous technical applications, especially 
when a hard and light material is needed. The crystalline structures293 are 
dominated by the B1 2 regular icosahedral unit. In the a-rhombohedral form 
the icosahedra are connected via a combination of two-centre and three-centre 
bonds, giving a mean first-neighbour coordination number of 6.5. At about 
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1200°C the a-phase transforms into the /?-rhombohedral from, in which the 
icosahedra are surrounded by pentagonal pyramids yielding a unit cell of 105 
atoms with mean coordination number of 6.6. These structures are indicative 
of the unusual character of covalent bonding in pure B, leading to a wide range 
of physical and chemical properties in boron-rich solids. 

Boron melts at about 2360 K through an insulator-to-metal transition ac­
companied by a volume expansion of about 5%. The liquid is extremely reac­
tive to any container. Therefore, a determination of the liquid structure has 
required special diffraction techniques,294 using synchrotron X-rays on levi­
tated samples. The data on g(r) yield a coordination of about 6 and show 
very little change in bond length on melting, but a broadening of the first co­
ordination shell. They are in reasonable agreement with ab initio calculations 
by molecular dynamics. 

Figure 9.4 compares the pair distribution function measured in this study294 

on liquid boron at 2600 K with those of the crystalline phases and of the 
amorphous state. These data have a bearing on the question of whether the 
B12 iscosahedral units can survive melting and the simultaneous transition to 
a metallic state. In the a-rhombohedral form the peak at 2.99 A is associated 

amorphous 
a-Rhombh. 
0-Rhombh. 
Tetragonal 

Fig. 9.4. Comparison of the pair distribution function of liquid boron at 2600 K with those 
of the amorphous and crystalline states. (Redrawn from Krishnan et at, Ref. 294.) 
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with the icosahedra and that at 3.58 with the bonding between them. The 
significant shifts and broadening of these structures on melting, which are seen 
in Fig. 9.4, suggest that in the melt the intermediate-range structure may be 
rather different. 

9.3 Orientational Pair Correlation Function from 
Diffraction Experiments 

The work of Soper295 has highlighted a number of important points about 
studies of the structure of simple molecular liquids by diffraction techniques. 
The structure can be defined by means of the orientational pair correlation 
function (OPCF) g(r, w j , ^ ) . This determines the probability of a molecule 
being found at position r with orientation U2, given that there is a molecule 
with orientation u>\ at the origin. Such a description was known, for example, 
to Blum and Torruella296 (see also the book of Gray and Gubbins297), but has 
seldom been used. 

One reason for this is due to the fact that g as defined above appeared to be 
a function of nine variables, though only six of them are in fact independent. 
In the case of two molecules at an arbitrary relative orientation, each molecule 
has orientation specified by three Euler angles. However, to usefully visualise 
the orientational correlations one has to orient the laboratory Cartesian axes 

<*>2 = ( * M 0 M X M > 

„ - y 

Pig. 9.5. Diagram showing the axes and coordinates of two water molecules. Molecule 1 is 
held at the origin of the laboratory frame, with the H-O-H plane in the x — z plane and the 
dipole moment (bisecting the H-O-H angle) along the z axis. 
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so that the axis of molecule 1 coincides with one of them: i.e. a>i = 0. This 
reduces the OPCF to a function of six independent variables. Such a procedure 
is correct in an isotropic homogeneous liquid, but would not apply, for instance, 
in the presence of a surface. 

The remaining variables are r = (r, 0L,</>L) for the position of the second 
molecule relative to the first, and w-i = (<£m,#m,Xm) for the Euler angles used 
to define the relative orientation of the two molecules (see Fig. 9.5 for the case 
of two water molecules). If the first molecule is linear there is no dependence 
on </>L, and if the second molecule is also linear then Xm = 0. 

9.3.1 Use of generalised rotation matrices 

In, for example, the book of Gray and Gubbins,297 the spherical harmonic 
expansion of the OPCF has been exploited. This expansion may be written as 

g(r,LJi,Lj2) = "^2 ^2 ^2 g(hhl,n1n2;r)C(hl2l,mim2m) 
(I1I2I) (mim2m) (niri2) 

x I?Ji i n i ("1)* O j i U (W2TDU") • (9-2) 

In this equation Dmn(oj) are the generalised rotation matrices, C(lil2l,mi 
7712m) are the Clebsch-Gordan coefficients while g(hhl,nin2;r) are the coef­
ficients of the series that need to be found. 

As Soper points out, for the case of water it turns out that an accurate 
representation of the orientational structure results with Zmax = 4, involving 
158 coefficients. With, say 100 values of r for each coefficient, this still amounts 
to a reduction in storage by more than six orders of magnitude. However, it 
must be noted that as the orientational correlations become stronger, so the 
number of coefficients increases. One satisfactory feature of such an expansion 
is that it can embody any molecular symmetry present: any coefficients not 
obeying molecular symmetry rules are to be put to zero. Also it is worthy 
of note that Eq. (9.2) can be applied to any pair of molecules, regardless of 
whether or not they are of the same type. 

Given the expansion (9.2) as the underlying equation to be solved for any 
particular liquid, the problem of structural refinement reduces to that of finding 
the coefficients in this expansion. This needs to be carried out in such a 
manner that available data are embodied as satisfactorily as possible. Obvious 
data for liquids come from diffraction experiments, but ideally there should be 
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attention given to others: say constraints in the orientational coefficients and 
on the overlap of molecules, and, for instance in the case of hydrogen-bonded 
liquids, on which atom in the first molecule is correlated with particular sites 
on the second molecule. 

9.3.2 Example of orientational structure in water 

Liquid H2O has been widely studied with diffraction techniques and a complete 
set of site-site radial distribution functions are available from experiment over 
a range of thermodynamic states298 (see Fig. 9.6 for ambient water). Soper295 

has discussed this case in some detail. 
Figure 9.7 shows an example of four spherical harmonic coefficients de­

rived in an analysis of diffraction data. Calculations using three different 
reference potentials lead to similar distributions of molecular centres, as given 
by g(000,00; r). It is encouraging that they produce quite similar results for 
the higher-order coefficients also. Thus, although the OPCF is sensitive to the 
model interactions, a range of potentials can be found which produce OPCF's 

Fig. 9.6. The three site-site radial correlation functions in ambient water (HH, OH and 
OO from bottom to top). The results from two different analyses of diffraction data are 
compared with simulation results (•). (Redrawn from Soper et al., Ref. 298.) 
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Fig. 9.7. Four spherical harmonic coefficients derived from the analysis of water diffraction 
data. (Redrawn from Soper, Ref. 295.) 

which are sufficiently similar to be considered all consistent with available 
experimental data. 

More generally, there has been continued interest in the structure and prop­
erties of water over a wide range of the equation of state, including the deeply 
supercooled region where the coexistence of high- and low-density fluids has 
been proposed299 as well as the supercritical regime which is of great impor­
tance in extraction and reaction process technology.300 Badyal et al.301 have 
carried out measurements of the X-ray structure factor of water in ambient 
conditions with synchrotron radiation and compared the results with those 
predicted from neutron partial structure factors describing the nuclear posi­
tions, with different assumptions for the electron distribution. They estimate 
a charge transfer of about 0.5e from each hydrogen to the oxygen on the same 
molecule, implying an effective dipole moment of 2.9 ± 0.6 Debye. 
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9.4 Polymers 

So far the building blocks of the liquids that we have considered have mostly 
been single atoms as in argon or small molecules as in water. But when we 
turn to polymers, the building blocks become huge — a polymer chain being 
formed by linear repetition of a group of atoms, termed a monomer. For 
instance, polyethylene is a chain of CH2 groups, i.e. [CH2]N with N up to 
105, terminated at both ends by a CH3 group. Two other polymers that are 
present in everyday life are polystyrene and polyvinylchloride, described by 
[CH2 — CH]JV where the bar over the second carbon denotes that a benzene 
side ring or a chlorine atom is attached to it. In fact, the number N of monomer 
groups does not have a fixed value for a given species and can vary in ways 
that depend on the conditions under which the material has been prepared. 

There are three main physical states for dense assemblies of flexible linear 
polymers: (i) a liquid of entangled chains at high temperature, (ii) a glass 
obtained most often by cooling the melt (this is, for instance, the case for 
the polystyrene that is used in plastic packing), and (iii) under favourable 
circumstances a crystal — although starting from the melt one usually obtains 
only partial crystallisation, i.e. a composite formed by crystalline parts inside 
an amorphous matrix. In addition, the macromolecules may be dispersed in 
certain liquids to form a solution: at very low concentration they are essentially 
independent (though in strong interaction with the solvent molecules), but 
with increasing concentration they soon start to get tangled with each other. 
Reference to a number of introductory books on these topics may be made.302 

9.4.1 The isolated polymer molecule 

A macromolecule does not have a fixed configuration: the majority of linear 
polymers in solution or in the melt are quite flexible. Returning to polyethylene 
for an illustration, the whole chain, formed by maybe 25,000 CH2 groups, can 
be likened to a long thin thread which twists and turns in irregular fashion, 
going from pieces where it is more or less straight to parts where it might form 
a compact ball. 

The chain lengths are therefore statistically distributed, the most probable 
end-to-end distance being a-v/iV for an ideally flexible chain of N monomers 
each of length a. This result is obtained by assuming that there is no correlation 
between the directions that different bonds can take and that all directions 
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have the same probability: in this case, the configuration of the polymer chain 
can be mapped into a random walk on a lattice. Inclusion of short-range 
interactions between bonds simply replaces a by an effective bond length and 
preserves the y/N dependence on the number of monomers. 

The distribution of segments inside the chain can be described by means 
of the segment pair distribution function, denned as 

N N 

n = l n ,m=l 

where R n are the position vectors of the segments and the brackets denote a 
statistical average. The Fourier transform of g(r) is accessible to experiments 
such as light scattering or small-angle X-ray scattering. These experiments 
yield the radius of gyration i?g defined by 

Rl = 5^5 £ « R " - R m ) 2 > • (9'4) 

n ,m=l 

This quantity provides a precise measure of the average distance between the 
segments and the centre of mass of the chain. For an ideal chain one finds 
R g = ayjN/6. On account of non-ideality, and especially of excluded-volume 
effects, this law is modified into 

Re = Nva, (9.5) 

where the exponent v is close to 0.6. 

9.4.2 Polymer solutions 

Even when quite dilute, polymer solutions flow only with difficulty. It was seen 
in the discussion of viscosity given for simple liquids in Chap. 6 that when a 
liquid flows in contact with a solid wall, the various layers parallel to the wall 
move at different velocities and viscosity results from the interaction between 
successive layers of molecules sliding over each other. But macromolecules have 
such great lengths that different pieces of the same chain can be dragged along 
at varying velocities, thus creating internal tensions inside each macromolecule. 
Since the different pieces may well find themselves in different liquid layers, this 
effect interlinks the various layers and can greatly diminish the speed of flow. 
A cyclist who, long ago, had to repair the inner tube of his tyre would have 
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used a solution of rubber in toluene, where such viscous behaviour would be 
evident. Measurements of viscosity in dilute solutions can indeed be employed 
to estimate the chain length of the polymer. 

The critical concentration at which different molecules begin to entangle 
in a polymer solution can be estimated by setting c*R^ « N, where c* is the 
critical number of segments per unit volume and i?3 is an approximate measure 
of the volume taken by each polymer molecule. Prom Eq. (9.5) this relation 
yields c* oc TV -08, so that overlap starts at very low concentration (« 1%) if 
N is large (« 105). 

Flory and Huggins303 introduced a simple lattice model for describing the 
thermodynamic properties of polymer solutions. Let <j> = npN/N be the vol­
ume fraction occupied by n p macromolecules, each consisting of N segments, 
over a lattice of N lattice points. The remaining points are occupied by a 
number ns = N — npN of solvent molecules. The model yields the Helmholtz 
free energy of mixing as Fm = Nk^,Tfm{4>), where 

/•»W = - ^ M ' + (l - <A)ln(i - <t>) + 4>{i - 4>)w. (9.6) 

The first two terms come from the ideal entropy of mixing and the third is an 
interaction term. 

The osmotic pressure II, denned as the extra pressure needed across a semi­
permeable membrane to maintain the equilibrium of solvent molecules, follows 
from the relation /xs(0,p, T) = /j,s(<f>,p + II, T) on the chemical potential of the 
solvent: 

n _ NkBT ^-\n(l-4>)-4>-w4>2 (9.7) 

This equation yields van't Hoff's law II = n^k^T/V at very low polymer 
concentration (cj) ^ !)• On the other hand, if N becomes large the first term 
can be neglected and Eq. (9.7) yields II = (NksT/V)^ — w)<j>2: the osmotic 
pressure becomes independent of the molecular weight, as observed. In fact, 
the observed dependence on polymer concentration c for c > c* is somewhat 
steeper than the law II oc c2 predicted by the Flory-Huggins mean-field theory. 
A scaling argument showing that II oc c9/4 is given immediately below. 

Scaling concepts have proved very useful in understanding the physical 
behaviour of polymeric systems.302 On purely dimensional reasons, the osmotic 
pressure can be written as a function of the segment concentration c and the 
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number N of monomers as 

U = ckBTf(ca3,N), (9.8) 

where a is an effective segment length and / denotes some function of 
the indicated arguments. We consider a scaling transformation defined by 
N —> N/X,c —> c/A and a —> aA", which corresponds to grouping together A 
segments at constant radius of gyration Rg. We take this unit of A segments 
as representing a new segment and impose that the osmotic pressure should 
be unchanged. This condition reduces the form (9.8) to 

n = -^fcBr/(^(Ar^)3). (9.9) 

This form holds for solutions in both the dilute (c < c*) and the semidilute 
(c > c*) regime. In the so-called semidilute regime, however, chain en­
tanglement sets in and the osmotic pressure should become independent of 
the chain length N. This requires f{x) ex x 1 / ^ - 1 ) in Eq. (9.9) and hence 
II oc c3"^3" -1) PS c9/4, as anticipated above. 

A poor solvent may accommodate only a limited number of macromolecules. 
The polymer will in this case tend to aggregate and beyond a certain concentra­
tion there will appear two phases, a dilute solution and a concentrated solution. 
In the Flory-Huggins theory the homogeneous solution is stable as long as the 
free energy /m(</>) has only one minimum, but separation into two phases (at 
volume fractions <f>i and fa, say) occurs if fm{4>) n a s two local minima, al­
lowing a common-tangent construction to determine the phase equilibrium or 
equivalently permitting equality of the chemical potentials in the two phases 
at coexistence. Since the shape of the function fm(<f>) depends on temperature 
entering Eq. (9.6) through the interaction parameter w, in the <j> — T plane 
we obtain a phase diagram comprising a region of homogeneous solution and 
a phase-separation region culminating in a critical point. The latter is deter­
mined by the conditions d2fm/d(j>2 = 0 and d3fm/d(j>3 = 0 (see the analogous 
discussion of the liquid-vapour coexistence curve and critical point in Chap. 4). 
Equation (9.6) yields the values of the critical parameters as 

^ = (1 + ^ / 2 ) - ! , ^ = 1(1 + ^ -1 /2 )2 . ( 9 1 0 ) 

Therefore, as N increases the critical volume fraction decreases and the critical 
temperature increases, as is indeed observed experimentally. 
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9.4.3 Polymer blends 

T h e Flory-Huggins model can also be used to evaluate the the rmodynamic 
functions and the fluctuation concentrations in polymer blends. If we mix two 
different polymers A and B, with respective number of monomers NA and NB 
and volume fraction cf>A and (/>B , the free energy of mixing is determined in the 
model by 

JMA -IVB 

The two entropic terms in this equation become rapidly irrelevant as bo th NA 
and ./VB increase, so tha t it is not possible to mix the two polymers unless w 
becomes very small (of order 1/N). 

W i t h regard to concentration fluctuations in the case of a miscible polymer 
combination, their correlations are described by a s t ruc ture factor Scc(k) 
defined as 

Scc{k) = CACB[cBSAA(k) + cA5B B(fc) - 2(cACB)1 / 2SAB(fc)]. (9.12) 

In the Flory-Huggins model (taking for simplicity the case NA = NB = N) we 
have 

*»(*> = i f w ' (9-13) 
where 

s lQ) .
 1 W ~ * ) (9U) 

2 Na? 
^ ~ 12[1 - 2Nwcl>(l - <j>)\ ' ( 9 ' 1 5 ) 

Analogous relations arise in the Ornstein-Zernike theory of the liquid-vapour 
critical point (see Chap. 4). In the present case of a polymer blend, the critical 
point of demixing is given by <j>c = 1/2 and wc = 2/N so that the denominator 
in both Eqs. (9.14) and (9.15) diverges there. That is, on the approach to 
the critical point the scattering intensity at low momentum transfer, which is 
dominated by Scc(0), and the range of the correlations in the concentration 
fluctuations, which is given by the length £, become very large. On the other 
hand, far away from the critical point the above denominator is of order 1, so 
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that the scattering intensity is proportional to N and the correlation length is 
proportional to \f~N. 

9.4.4 Polymeric materials 

We conclude this section by a brief mention of some materials with great rel­
evance to polymer science and applications. We have already remarked that 
polymeric crystals prepared from the melt usually consist of ordered (but not 
perfectly crystalline) domains interspersed inside a disordered matrix. Taking 
again polyethylene as an example, if the axes of the ordered domains are essen­
tially randomly distributed the material has a cloudy appearance because of 
its heterogeneous structure and is very flexible because the disordered domains 
are easily deformed. In oriented polymers, instead, crystalline regions do not 
have random orientations. These materials include natural fibers such as cot­
ton and synthetic fibers such as nylon. There is indeed a variety of techniques 
by which a polymer melt can be made to solidify in the form of a continuous 
filament of uniform diameter and high tensile strength (see also Sec. 11.4). 

Solid polyethylene formed by slow evaporation of dilute solutions appears in 
the form of very thin diamond-shaped lamellae. Electron and X-ray diffraction 
show that they are small single crystals, with the polymer chains oriented 
normally to the plane of the lamella.304 Since the lamellar thickness is of order 
100 A, each chain must be folded onto itself, with the parallel strands of equal 
length being joined at their ends by loops consisting of a few CH2 groups. 
Chain folding is due to kinetic reasons305 — crystallisation in this way is most 
rapid and the resulting crystals are not in their most stable state but will tend 
to it e.g. on subsequent heating (for a discussion of the nucleation of metastable 
phases with lower barriers for nucleation, see Appendix 9.2). Lamellae have 
also been identified in the bulk melt-crystallised product, where they usually 
are components of more complex aggregates such as sheaves or spherulites. 

Finally, with regard to amorphous polymers we only mention here the 
process of vulcanisation leading to rubber. Back in 1839, it was noticed by 
Goodyear that natural rubber obtained from trees such as Hevea brasiliensis 
was considerably improved for practical purposes by incorporating a small 
amount of sulphur into its heating treatment. Starting from a liquid of lin­
ear chains, the vulcanisation process chemically joins together some chains 
that happen to be close to one another. This yields a random lattice of con­
nected chains which, while locally is still a fluid, at the macroscopic level resists 
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compression with a finite elasticity modulus. Rubber in everyday life is indeed 
flexible and very elastic. However, if it is cooled to — 100°C it becomes hard 
and brittle like glass. The material has been brought by cooling across its glass 
transition temperature — a concept that will be central to the discussion of 
the glassy state in Chap. 10. 

9.5 Liquid Crystal Phases 

The term "liquid crystal" is used to designate certain phases of macromolecular 
substances showing some degree of order which is intermediate between that 
of a molecular crystal and that of a molecular liquid which has no long-range 
translational or orientational order. Some one hundred years ago, it was first 
observed that a crystal of the organic material cholesteryl benzoate melted 
into a viscous and cloudy liquid at about 145°C and that, on further heating 
to about 179°C, this liquid became fluid and transparent. On cooling, the 
reverse transformations were seen at the same temperatures. Both transitions 
were accompanied by volume and heat changes. Hundreds of organic materials 
have subsequently been found that possess such an intermediate phase or even 
a succession of different intermediate phases. 

Many substances exhibiting such mesophases have a common feature: the 
molecules which are their building blocks have an elongated shape like a rod, a 
typical length being about 20-30 A. Generally the rod is somewhat flattened, 
with a cross-section of some 4 x 6 A, and rigid, at least in its central regions. 
The liquid crystalline properties arise from the tendency for the molecules to 
lie with their long axes aligned and the transitions are most easily induced by 
changing the temperature of the sample (for this reason this class of materials 
is known as "thermotropic" liquid crystals). The so-called "lyotropic" liquid 
crystals, instead, are solutions of non-spherical macromolecules in which phase 
transformations are effected by changing the concentration of the solute or 
the characteristics of the solvent. Mesophases are also found with molecules 
shaped like flat discs forming stacks ("columnar" liquid crystals). Reference 
to a number of textbooks on these systems can be made.306 

We consider below the most important liquid-crystalline phases. They can 
be classified in terms of the single-particle distribution function pi, which in 
the crystalline solid is a function pi(r, fi) of the position vector r = (x, y, z) of 
the molecular centre-of-mass and of the vector Q. describing the molecular 
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orientation, while in the isotropic liquid it becomes the constant particle 
density p. In liquid crystals p\ depends on some, but not all coordinates. 

9.5.1 Smectic phase 

Proceeding one step in the direction from crystal to isotropic liquid, in the 
smectic phase layers of rod-like molecules persist but they can slide over 
each other, which allows the order between successive layers to be disrupted. 
Furthermore, the molecules within a layer no longer have long-range trans-
lational order, although their areal density remains close to the crystalline 
value. The one-body density in smectics is periodic in one spatial direction, 
Pi = Pi(z,£l). Each layer may therefore be likened to a two-dimensional 
orientationally ordered liquid. 

There are in fact many possible smectic arrangements. The simplest is 
smectic-A [see Fig. 9.8(a)], in which the orientational distribution of the 
molecules is axially symmetric and the direction of the symmetry axis (the 
"director" n) is perpendicular to the plane of the layers. The work smectic 
comes from the Greek for "soap", the consistency of these phases reminding 
one of a soft soap-like material. 

A thin layer of smectic placed between two parallel glass plates becomes 
optically anisotropic, i.e. shows birefringence as a crystal platelet. The action 
of the glass surfaces is to orient the smectic planes making them parallel to 
the plates throughout the whole layer. 

9.5.2 Nematic phase 

The simplest and best known liquid-crystal phase is the nematic mesophase. 
Nematics have no long-range positional order, but preserve orientational order. 
That is, pi = p/(H) where /(H) is a normalised orientational distribution func­
tion. In uniaxial nematics [see Fig. 9.8(b)] /(fi) is axially symmetric around 
the director n and is a function only of the angle i? between Cl and n. The 
centres of the molecules are disordered, however, as in a normal liquid. 

A thin nematic layer placed between two parallel glass plates is, again as for 
smectics, subject to constraints from the interactions of the molecules with the 
glass surfaces. Depending on the treatment of the glass surface the molecules 
may take an orientation which is either parallel or normal to the surface. Using 
two glass plates that have been rubbed in perpendicular directions may produce 
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Fig. 9.8. Schematic snapshot of a molecular configuration in a smectic liquid crystal (a) 
and in a nematic liquid crystal (b). 

a twisted structure, with the molecules turning continuously by 90°. The plane 
of polarisation of light passing through such a nematic specimen follows the 
orientation of the molecules and is therefore rotated by 90° upon crossing the 
nematic layer (this behaviour, in combination with the orientational effects 
of an applied electric field, is exploited in liquid-crystal displays). Molecular 
orientations can also be controlled by the application of an electric field, as 
mentioned just above, or by applying a magnetic field. 

It should be remarked at this point that some materials go from the crystal 
to the isotropic liquid through the smectic phase only, and others pass only 
through the nematic phase. There are also systems, however, that follow the 
sequence of transformations crystal —> smectic -» nematic —> liquid. Even 
more complex transitions can occur, with various subspecies possible for the 
smectic phase, one after the other in the same substance. A variety of the 
nematic phase, termed a cholesteric, will be briefly referred to below in view 
of its applications. 

In materials displaying such phases as described above, the transition tem­
peratures are frequently in the range between 0° and 150°C, though some are 
found with higher values. 

9.5.3 Cholesteric phase 

Again, as with smectics and nematics, the molecules providing the building 
blocks for this type of phase have a rod-like geometry, being elongated and 
rigid. They have, however, an additional property: chirality. Each molecule is 
asymmetric in such a way that it cannot be made to superpose on its plane-
mirror image by simple movements such as displacement or rotation. 
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The structure of such a cholesteric phase differs, as a result of chirality, from 
that of an oriented nematic phase. The asymmetry of the molecules results 
in the molecules in one layer making a small angle with those in an adjacent 
layer. This process, being repeated from one layer to another, produces a 
helical structure: the preferred molecular orientation is a function of position 
in one direction, i.e. pi = pf(Q,(z)). A cholesteric specimen in contact with a 
plate takes a twist which is proportional to the distance from the solid surface. 

This helical structure endows the cholesteric phases with remarkable optical 
properties: 

(i) Their optical rotatory power is great — typically some hundred times 
larger than that of "normal" optically active condensed systems, 

(ii) The periodic layer arrangement of the sheet arising from the helical ar­
rangement of the molecular axes means that its effect on a beam of light is 
akin to the way periodic layers of atoms in a crystalline solid act on a beam 
of X-rays. However, the scales differ by a factor « 103, for the periodicity 
and the wavelengths. For a given angle of incidence there is a wavelength 
which is reflected much more than all others, so that the cholesteric sheet 
displays colour under illumination by white light. A sheet that looks blue 
under grazing incidence can appear green or yellow when the angle of in­
cidence is closer to normal. Furthermore, with a specified geometry, the 
colour observed depends on the periodicity and hence on temperature. 
The colour change is quite noticeable with a variation of temperature as 
small as 0.1°C. This property is utilised to measure the temperature, say 
of a surface, by laying down a cholesteric film on it. 

9.6 Nematic Liquid Crystals and their Phase Transitions 

To make a start on a quantitative description of a uniaxial nematic liquid 
crystal, the molecular centres have a random liquid-like distribution, subject 
to geometric constraints, while the local degree of orientational order is more 
appropriate to a solid. To describe this, we introduce the director n(r) , which 
is a unit vector parallel to the local preferred orientation and can vary from 
point to point. 

The local degree of orientational order can be quantitatively specified by 
expanding the distribution function /(fi) in the full set of orthogonal Legendre 
polynomials P^(cosi?), where -d is the angle between the symmetry axis and 



248 Bonds, Rings and Chains 

the director. The coefficients of the expansion play the role of a set of order 
parameters. In particular, the Zwetkoff parameter S is defined as 

5 = / i ( 3 c o s 2 7 ? - l ) \ , (9.16) 

the brackets representing a time or ensemble average over the molecular dis­
tribution. The above definition, involving the Legendre polynomial P2(cosi?) 
is convenient since it reduces to S = 1 for perfect orientational alignment and 
to S = 0 for ideal isotropic behaviour. Values of S up to 0.8 have been ob­
served, but typically S varies from 0.4, decreasing with increasing temperature 
and thermal disorder and discontinuously dropping to zero at the nematic-
isotropic transition temperature. At this temperature, the optical activity and 
turbidity disappear. 

The definition of nematic order parameter in Eq. (9.16) is not entirely 
satisfactory, since in the absence of external aligning forces the direction of n 
is not known a priori. However, it is possible to introduce a tensorial order 
parameter and define the director n and the Zwetkoff parameter S in terms of 
its eigenvalues.307 

9.6.1 Landau-de Gennes theory 

A convenient starting point to discuss the transition from the isotropic to 
the nematic phase (I-N transition) is to consider nematic ordering as a weak 
perturbation of the isotropic liquid. We follow Landau308 in assuming that 
the free energy difference can be expanded in terms of the order parameter S. 
That is, 

F = F0 + a(T - T*)S2 - bS3 + cS4. (9.17) 

We have assumed that in the vicinity of the I-N transition the coefficient of 
the leading term in the free energy difference between the two phases varies 
linearly with temperature while the other coefficients are essentially constant. 
The presence of a cubic term implies that a fluctuation with position S is not 
equivalent to one with opposite S, and yields a first-order I-N transition. 

In order to see what the Landau-de Gennes theory predicts for the I-N 
transition, it is convenient to rewrite Eq. (9.17) in the form 

2 

(9.18) F-F0 
b2 

a(T-T*)- — 
4c 

S2 + cS2 b_ 

2c 



Nematic Liquid Crystals and their Phase Transitions 249 

It is then easily seen that the I-N transition occurs at the temperature TNI = 
T* + b2/4ac, with a discontinuous jump in the order parameter from zero to 
S = b/2c. For T < T^i the temperature dependence of the order parameter is 
obtained from minimisation of the function F(S) as 

*m = i 1 + W 1 -
8(T-T*) 

9(TNI - T*) 
(9.19) 

All other thermodynamic quantities in the vicinity of the phase transition 
can be obtained from Eq. (9.17). Of course, the theory does not provide 
predictions for the magnitude of the coefficients of the expansion. An example 
of a molecular theory will be reported below. 

Fig. 9.9. Landau free energy associated with order parameter fluctuations in a nematic 
liquid crystal, from Monte Carlo simulations. : low-density isotropic phase; •••: ne­
matic phase close to I-N transition; —• — •—: high-density nematic phase, where only 
small fluctuations around a non-zero order parameter S occur. (Redrawn from Prenkel, 
Ref. 307.) 
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Spontaneous fluctuations in the order parameter near the phase transition 
may in principle be observed by light scattering. To treat this the theory 
needs extending to include account of the gradient of the order parameter and 
will then lead to an expression similar to Eq. (9.11) with a correlation length 
of order £ = y/L/a(T-T*). An effective way to examine order-parameter 
fluctuations is through computer simulations309 (see Fig. 9.9). 

The Landau-de Gennes approach has been extended by Matsuyama and 
Kato310 to treat the I-N transition in a mixture of a liquid crystal and semiflex-
ible polymer chains. Such mixtures have technical applications in non-linear 
optics and electro-optical devices, and their phase behaviour has attracted the 
interest of a number of workers.311 The study of Matsuyama and Kato indicates 
new phase behaviours in the temperature-concentration plane, such as nematic 
unstable and metastable regions, a critical solution point in the nematic phase, 
azeotrope points and triple points. This general area should continue to be of 
interest. 

9.6.2 Molecular mean-field theory of 
isotropic-nematic transition 

In a molecular mean-field theory of orientational melting one calculates the 
potential energy of a representative molecule in the mean field of its neigh­
bours, no account being taken of the reaction of the molecule on its environ­
ment. Maier and Saupe312 proposed an anisotropic pairwise intermolecular 
potential <̂>i2 = u(r)(3cos2#i2 — l ) /2 , where #i2 is the relative orientation of 
the two molecules and u(r) is attributed to van der Waals dispersion forces. 
If we average over all spatial and orientational configurations of the second 
molecule, the potential energy of the first is <f>\ = uS(3cos2i?i — l ) /2 and the 
molecular orientational distribution is given by the single-particle Boltzmann 
expression 

/(cost?) = exp 
uS(3 cos2 •& - 1) 

2kBT 
(9.20) 

The order parameter S can then be determined self-consistently from its defi­
nition in Eq. (9.16). 

The excess Helmholtz free energy can also be evaluated from the mean one-
body potential energy and is found to vanish at the I-N transition temperature, 
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which is given by 

fcBTNiS-0.22u. (9.21) 

Within the Maier-Saupe model u is determined by the anisotropy in the elec­
trical polarisability of the molecule — the same effect that leads to molecu­
lar orientation by an applied electric field. An analogous anisotropy in the 
diamagnetic susceptibility of the molecule leads to molecular orientability in 
a magnetic field and to the Freedericksz transition that will be discussed in 
Chap. 11. Some further work on model potentials for molecular liquids and 
liquid crystals is recorded in Sec. 9.6.4 below. 

We conclude this section by quoting the work of Sluckin and Shukla313 on 
the I-N transition, that was carried out within a density functional context. 

9.6.3 The isotropic-nematic-smecticA transition 

The phase change from nematic to smecticA is characterised by a relatively 
small latent heat in many systems and by obvious pre-transition effects. Much 
more variety of behaviour is observed from one material to another than is 
seen in the nematic-isotropic transition.314 In a few materials the transition 
appears to be second order, while in others it is strongly first order. It offers 
an area where the effects of molecular structure on ordering can be usefully 
studied.315 

In the smecticA phase the density of molecular centres-of-mass becomes pe­
riodic in one dimension, parallel to the director (the z axis, say). The distribu­
tion function f(z) can be Fourier analysed as f(z) = [1 + 2 J2n

 an cos(2ivz/d + 
<fo)], where d is the layer thickness and ip0 fixes the origin with respect to 
the centre of the layer. For perfect ordering all the order parameters an equal 
unity, while in the nematic phase they are all zero. 

For the purpose of theoretical treatment <TI, or o\ exp(iy>o) m aY be chosen 
as the main order parameter of the smecticA phase.316 Ignoring for the present 
the orientational order, the Landau expansion for the free energy would contain 
only even powers of o\, 

F = F0 + \a{T - T*)a\ + ha\ + ±co* + •••, (9.22) 

and if 6 > 0 a second order phase transition occurs at the temperature T* 
into an ordered phase with ax{T) = [a(T* - T)^}1'2. On the other hand, the 
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transition turns out to be first order if b < 0 and c > 0. A tricritical point at 
6 = 0 separates these two regimes. Meyer314 discusses the role of a coupling 
between a\ and <JI in lowering the value of b. 

McMillan has extended the Maier-Saupe analysis to smecticA systems and 
given a molecular theory of the whole series of phase transitions. He has calcu­
lated order parameters and thermodynamic properties, with results in qualita­
tive agreement with experiment. Both the Kobayashi-McMillan model316 and 
the Meyer-Lubensky model317 can be seen as special cases of density functional 
theory. For more details the reader may refer to the review by Frenkel.307 

9.6.4 Model potentials for molecular liquid and 
liquid crystals 

Hess318 has shown that an augmented van der Waals theory can yield accept­
able results, over a wide density range, for the equation of state of a Lennard-
Jones (LJ) fluid. In his study, the short-range repulsive part of the interaction 
potential is accounted for by the use of a modified Carnahan-Starling equation 
of state (see Sec. 2.6). 

Subsequently, Hess and Su319 have extended this approach to model po­
tentials for molecular liquids and liquid crystals. They make estimates in the 
latter case for the isotropic-nematic transition. Their study is somewhat in 
the spirit of the studies of Onsager320 and the later study of Colter.321 They 
propose that, because of its relative simplicity, their model is suitable for com­
putational work on the phases of liquid crystals in restricted geometries322 and 
also on transport processes.323 

The model used by Hess and Su is, in essence, a generalised LJ potential 
where the r~6 attractive part depends on the relative orientations of the axes 
of the interacting molecules and the vector joining their centres. Various types 
of anisotropy in the interaction are accounted for. The augmented van der 
Waals results for the free energy and the pressure can then be obtained. In 
such expressions, an orientation-dependent second virial coefficient and the 
orientational distribution functions of a pair of particles enter. The short-range 
part of the interaction is again taken account of by a modified Carnahan-
Starling approach. 

The model may be tested further by calculating the Frank elasticity coef­
ficients (see Chap. 11) and also interfacial properties, along lines provisionally 
laid down by Osipov and Hess.324 



Nematic Liquid Crystals and their Phase Transitions 253 

Appendix 9.1 Melting and Orientational Disorder 

In their work Lennard-Jones and Devonshire283 presented a simple model for 
the melting of positional order as arising from the cooperative generation of 
point defects in the hot crystal. Consider a situation in which a fraction 
Q of the atoms are on normal lattice sites and the others are in interstitial 
sites. Assuming that the energy of interaction between two such neighbour­
ing atoms is W, the partition function acquires a factor Y(Q) exp[—NZWQ 
(1 — Q)/kBT] where Z is the number of interstitial sites around a lattice site 
and Y(Q) is a combinatorial factor counting the number of ways in which the 
N atoms can be randomly distributed on all sites. The same assumptions 
enter the Bragg-Williams theory of order-disorder phenomena in alloys and 
lead to 

O ZW 

"•IVSE^-1'- <A9J'1) 
for the equilibrium value of the order parameter of the phase transition. 

Pople and Karasz282 extended the above approach to include orientational 
disordering of the molecules by allowing for two possible molecular orienta­
tions on each site, separated by an energy barrier W. With the further order 
parameter S giving the fraction of molecules of given orientation on normal 
lattice sites, their model allows one to write 

In -^-Q = L[l - 25(1 - S)y](2Q - 1), (A9.1.2) 

In -^-g = 2Ly[l -2Q + 2Q2](2S - 1), (A9.1.3) 

where L = ZW/2k^,T and y = Z'W'/ZW. These two equations admit a tran­
sition from a positionally and orientational ordered solid to an orientationally 
disordered solid and then to a fully disordered liquid phase, provided y is not 
too large. The two reduced transition temperatures tm = 2k-e,Tm/ZW and 
tc = 2kBTc/ZW depend on the parameter y and an explicit relation between 
them can be found by eliminating y, as discussed by Tozzini et al.281 

The Pople-Karasz phenomenology then seems to capture the qualitative 
features of a phase diagram such as that shown in Fig. 9.1 for nitrogen, in 
which it appears that small extrapolations of the melting line and of the 8—5 
boundary line would result in a meeting of these phase boundaries. 
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Appendix 9.2 Crystallisation from Solution 

Crystallisation from solution is of considerable importance from both techno­
logical and purely scientific perspectives. As examples, one may cite wax and 
polymer crystallisation in hydrocarbon assemblies and protein crystallisation 
in aqueous systems. 

Supercooling (see also Chap. 10) is a central issue where materials pro­
cessing and the resultant crystal size and morphology are concerned.529 The 
supercooling is determined by the temperature at which nucleation takes place. 
As Sirota530 has emphasised, such nucleation does not necessarily imply ho­
mogeneous nucleation of the stable phase, but could involve nucleation of a 
metastable phase with a lower barrier for nucleation (cf. the historically impor­
tant study of Ostwald531). There is a substantial degree of interest in proposals 
that transient metastable phases, of higher density than that of the liquid, but 
where the symetry of the stable phase is not yet developed, may be responsible 
for mediating crystallisation. Such systems could embrace polymers, colloids, 
proteins and alkanes. 

The interest in n-alkanes in particular arises since they are the simplest 
organic homologous series and are the main building blocks of lipids, surfac­
tants and a good many polymers. Equilibrium properties are already well 
characterised and are known to strongly influence the properties of derivative 
molecules. Also, the equilibrium solubilities of alkanes in a variety of solvents 
have been extensively studied. 

Of special interst in the present context is the knowledge that dilute alkane 
solutions supercool532 whereas the undiluted melts do not.533 To elucidate such 
crossover behaviour, Sirota534 has studied experimentally the supercooling ex­
hibited by bulk solutions of tricosane (C23) as a function of dilution with dode-
cane (C12). He notes that C23 undergoes a solid-solid transition a few degrees 
below its melting point and demonstrates that supercooling becomes observ­
able at dilutions such that the low-T solid phase is stable at the dissolution 
temperature, and the observed precipitation coincides with the temperature at 
which the high-T solid phase becomes metastable. Sirota concludes that the 
supercooling in bulk n-alkane solutions is determined by the metastable phase 
diagram and proposes that such a mechanism where nucleation is induced by 
a transient metastable phase may possibly be of frequent occurrence. 



Chapter 10 

Supercooling and the Glassy State 

10.1 Macroscopic Characteristics of a Glass and 
the Glass Transition 

As was emphasised in Chap. 1, a substance can normally be found in one of 
three equilibrium states: gas, liquid, or ordered crystalline solid. Here, we shall 
turn to a subject of continuing technical importance, namely solids which are 
in a disordered non-equilibrium state (the terms amorphous solids or glasses 
are also used to designate them). Materials of this kind are usually formed 
by rapid cooling from the normal liquid state and have two main properties 
that characterise them: (i) their viscosity is so high that they are for all prac­
tical purposes rigid, and (ii) they show no crystalline long-range order under 
examination by X-ray diffraction. A structurally amorphous state can also be 
created by massive cold working in a number of solid alloys — even in alloys 
where rapid quenching of the melt has not been found to produce a glassy 
state. 

Taking window glass as an example, it is hard, difficult to deform and easy 
to break: it is brittle. When it breaks the new surface may have a complex 
aspect, but is smooth and shows no crystalline grains. Glass is isotropic, 
i.e. no direction can be singled out in its structure which differs from any other. 
Finally, transparency in a glassy insulator results from the absence of textural 
irregularities which may deviate the rays of light as they pass through it. 

255 
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Supposing that a liquid has been cooled fast enough to prevent crystallisa­
tion, the subsequent behaviour on further cooling may be described with ref­
erence to a first derivative of the free energy (e.g. the volume or the entropy) 
or to a dynamical property such as the shear viscosity. The former view­
point emphasises the thermodynamic aspects of the glass transition, the latter 
the kinetic aspects. A first-order thermodynamic quantity varies continuously 
with temperature (and pressure) in the supercooled liquid, but shows a rapid 
change of slope in a narrow range whose location depends on the rate of cool­
ing and on the thermal history. This temperature range is used to define 
the glass transition temperature Tg, across which the second-order quantities 
(thermal expansion coefficient, specific heat, compressibility) undergo very 
rapid changes. These behaviours are illustrated in Fig. 10.1 for the instance 
of the V-T relationship in the formation of vitreous selenium.325 On a glass 
branch the system is thermodynamically unstable and if held at a tempera­
ture below Tg it will tend to approach the metastable state of the supercooled 
liquid at that temperature, on a time scale increasing from minutes near Ts 
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Fig. 10.1. The volume-temperature relation for the formation of vitreous Se. The inset on 
top left shows the role of the cooling rate (1: fast cooling; 2: slow cooling). The inset at 
bottom right shows the expansion coefficient in the glass-transition region. (Redrawn from 
Owen, Ref. 325.) 
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to centuries well below Tg. On reheating from the glassy state anomalies will 
occur unless the rate of heating is the same as the original rate of cooling. 

The kinetic aspects of the glass transition are reflected in the thermal 
behaviour of the shear viscosity 77 and of the characteristic times associated 
with the primary (so-called a) relaxation of various kinds of structural and 
dielectric observables (see Sec. 10.5 below). Viscosity is a measure of the 
response of the liquid to a suddenly applied shear stress and is related to the 
corresponding relaxation time by the Maxwell formula 

V = GO0T, (10.1) 

where Goo is the high-frequency elastic shear modulus and r is the average 
response time of the system to the applied stress. In glass-forming liquids 77 
increases smoothly over many orders of magnitude on cooling towards and 
beyond the glass transition temperature, the value of Te corresponding in 
this context to the point at which 77 reaches a value of order 1013 poise. At this 
fluidity the configurational relaxation times are in the range of a few minutes 
to a few hours — that is, in the range of typical experimental times. Thus, in 
a kinetic viewpoint what is observed reflects the crossing between an internal 
relaxation time and the experimental time scale.326 

In many systems the viscosity satisfies over a wide temperature range the 
empirical Vogel-Fulcher relation,327 

(10.2) 

where To is a characteristic temperature lying below Tg and Ev may be viewed 
as an activation energy for viscous flow at T > To. In comparison with 
an Arrhenius behaviour as discussed in Sec. 6.3 for water, Eq. (10.2) implies 
that an "excess viscosity" emerges with decreasing temperature in the glass-
forming liquid. An alternative way of representing the phenomenon is to plot 
the effective temperature-dependent activation free energy for a-relaxation in 
the formula Ta = TQi00exp[.E'(T)/fcBT'], thus emphasising the crossover from 
Arrhenius to super-Arrhenius behaviour which is typical of most supercooled 
liquids. An early hypothesis for this behaviour was that part of the liquid 
volume would be blocked for flow by the formation of "clusters", as may be 
suggested by the theory of the viscosity of suspensions briefly reported in 
Sec. 6.4. More generally, the strong viscous slowing down of a supercooled 

77 = rjo exp 
Ev 

kB(T-T0) 
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liquid with decreasing temperature can be viewed as being the result of a 
collective jamming process. 

Many years ago Simon obtained the excess (or configurational) entropy for 
some low-temperature organic glasses from calorimetric data. In vitreous glyc­
erol it has an approximately constant value of about 5 e.u., extrapolating with 
little change down towards T = 0. This essentially constant value is the entropy 
frozen in the glass because the relaxation times for configurational rearrange­
ments exceed experimental times. In fact, the anomaly at Tg in the second-
order thermodynamic quantities occurs as the entropy of the supercooled liq­
uid is approaching that of the corresponding crystalline phase. The Kauzmann 
temperature Tk is defined from the heat capacities CP(T) by the condition 

[ C p ( l i q ) - C p ( c r y s t ) ] ^ = A S F (10.3) 

I F being the ordinary melting temperature and A5p the corresponding entropy 
change328 (see Fig. 10.2). Thus, Tk marks a point of "thermodynamic crisis" 
at which the entropy of a disordered system (the supercooled liquid) would be­
come equal to that of the ordered phase (the crystal). Kauzmann329 stressed 
that it is paradoxical that a purely thermodynamic crisis at Ts is being avoided 
via the purely kinetic crossing between the time scales of the system and of 
the experimental apparatus. There is here a strong suggestion that the kinetic 
and thermodynamic phenomena of the glass transition are closely related.328 

Below we shall go in some more detail into the many issues raised in 
this introduction. We shall start by giving some attention to the kinetics of 

100 200 300 T/K 100 200 

Fig. 10.2. Behaviour of the heat capacity and entropy of ethanol as an example of glass-
forming liquids. TK is the Kauzmann temperature. (Redrawn from Angell, Ref. 328.) 
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nucleation and crystal growth — the first requirement for glass formation be­
ing that crystallisation be avoided as the liquid is supercooled. A review of 
models of the glass transition can be found in an article of Jackie.330 

10.2 Kinetics of Nucleation and Phase Changes 

The radial distribution function g(r) that is used to describe the short-range 
order in a liquid (see Chap. 4) represents a space and time average. The 
distribution of atoms around any given atom changes rapidly with time, and 
at some times the local order may be more pronounced and bear resemblance 
to a crystalline configuration. Above freezing such a local arrangement would 
be only a transient, thermal motions tending always to disrupt it. However, 
if the liquid can be brought slightly below freezing, such "seeds" tend to be 
larger and more frequent and become potential nuclei for the start of crystal 
formation. Large supercoolings can be achieved if the formation of seeds is 
somehow prevented, as for instance in water dispersed into very fine droplets, 
some /xm in diameter, or in a viscous liquid like glycerol. 

10.2.1 Homogeneous nucleation and crystal growth 

The free energy change AG for the isothermal formation of such an ordered 
nucleus, assumed to be spherical and of radius R, is the sum of a volume term 
proportional to R3 and a surface term proportional to R2. The coefficients of 
these two terms are determined by the difference AGp in Gibbs free energy 
between the solid and the liquid (per unit volume) and by the surface free 
energy (per unit area), respectively. A G F vanishes at freezing and becomes 
negative in the supercooled liquid: at each temperature below equilibrium 
freezing, therefore, AG(R) as a function of R shows a maximum. Writing 
AG(R) = aR3 + bR2 we find that the critical size at which a nucleus could 
grow spontaneously is Re = 26/3|a|. The rate of homogeneous nucleation is the 
rate at which critical-size nuclei can form and the probability of their formation 
is proportional to exp(—AGc/kBT) with AGC = AG(RC). 

However, for a nucleus to grow atoms must be added to it and this process 
will also involve an activation energy (AGa, say) for diffusion or re-orientation. 
The rate J of formation and growth of critically sized nuclei is then given by 
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transition state theory331 as 

AGC + AGd (nkBT\ 
J={-jr)exp kBT 

(10.4) 

where n is the number of molecules per unit volume and h is Planck's constant. 
This yields325 

, fnkBT\ ( A G d \ 
J = ( — :— I exp —;—— exp O r ; ^ v" fer; 

167r7
3T2 

3A2AT2fcBr 
(10.5) 

where 7 is the surface tension, AT = TF — T is the supercooling and A = 
AHp/Vm, with AH? the latent heat of fusion and Vm the molar volume. 

From Eq. (10.5), J rises very rapidly as T decreases, passes through a 
maximum and then decreases. The maximum lies at Tp/3 if AGd = 0 and 
moves towards Tp as AGd increases. Thus, if a liquid has a sufficiently large 
AGd that it can be cooled below the temperature of the maximum in J with­
out crystallising, then crystallisation is less likely to occur on further cooling. 
Taking Tg s=s 2Tp/3 as observed for many glasses formed by normal quenching 
from the melt, one estimates325 that the maximum of J would lie at this tem­
perature if AGd « 40 kBT w 24 kcal/mol, roughly of the same order as E„ in 
Eq. (10.2). 

In reality, crystallisation in a supercooled liquid can be fostered by the 
presence of foreign particles acting as initiators for crystal growth. Such 
heterogeneous nucleation processes have been probed in great detail for the 
crystallisation of water into ice,332 some main issues being the properties of 
foreign particles that make them effective as heteronuclei and the role of dis­
persion of the liquid into droplets or in small pores and capillaries. For a 
modern account of crystal nucleation and growth in viscous liquids, the reader 
is referred to a review by Turnbull.333 

Direct knowledge of the critical nucleus is necessarily limited, since its 
formation is a fleeting event. Experiments can only probe the rate at which 
crystallites form in a supersaturated solution by observing them after they 
are formed and grown. Numerical simulations allow one to probe the early 
stages of nucleation334 and suggest that the structure and the free energy of a 
critical nucleus may deviate significantly from the predictions of the classical 
theory. 
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10.2.2 The critical cooling rate for glass formation 

It is possible to make crude estimates of the critical cooling rate Rc that must 
be exceeded to permit glass formation in a particular liquid. Sarjeant and 
Roy335 proposed that i?c is related to the shear viscosity of the melt by the 
empirical formula 

Rc = 2xl0~6^, (10.6) 

where R is the gas constant. This relation embodies the fact that the measured 
Rc decreases as the viscosity of the melt increases and its specific form is 
roughly in accord with experiment. 

The notion of a critical cooling rate implies that it should be possible 
in principle to quench any liquid into a glass. Glasses form from liquids 
with various bonding types (covalent, ionic, metallic, hydrogen or van der 
Waals bonded) and the failure to vitrify some materials (pure metals, 
most metal halides) may just be due to practical limitations in cooling 
techniques. 

10.2.3 Superheating and vapour condensation 

A nucleation process is also involved in the heating of a liquid until it boils. 
Steady boiling at the normal boiling temperature is assisted by the presence 
of nuclei, which often are dissolved gases or pockets of air at solid surfaces. 
In the absence of foreign nuclei, however, nucleation of bubbles is needed and 
these can grow only if the internal vapour pressure exceeds 2-y/R. For a bubble 
of radius R w 0.5 nm in a liquid such as water, this pressure is w 3000 atm. 
Carefully purified water can be superheated to several 100 K above the normal 
boiling point, and once bubbles begin to form and grow the excess pressure is 
rapidly released by explosion. 

The condensation of vapour into liquid droplets is yet another example 
of a nucleation phenomenon. Droplets of radius R exert a vapour pressure of 
2fpv/p\R and, instead of growing by further condensation will evaporate if this 
exceeds the saturated vapour pressure. Condensation can either be assisted 
by foreign nuclei such as dust particles or be induced by producing supersa-
turation of the vapour as through a sudden cooling. It is this second method 
which was used to reveal trajectories of charged particles in the Wilson cloud 
chamber. 
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The microphysics of clouds and the condensation of vapour on solid surfaces 
are subjects of great practical importance. An introduction to homogeneous 
nucleation in this context can be found in the book of Abraham.336 

10.3 The Structure of Amorphous Solids 

We have presented in Chaps. 4 and 8 the notions of topological and chemical 
short-range order (SRO) in liquids. The former is typical of monatomic liquids, 
with a prototype in the hard-sphere fluid, and is dominated by an atomic 
diameter a resulting in a main peak in the liquid structure factor S{k) at km « 
7.5/cr. Topological SRO is supplemented in an ionic liquid such as molten NaCl 
by chemical SRO from alternation of the component species, which results in a 
main peak in the concentration-concentration structure factor Scc(k) at kc « 
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Fig. 10.3. X-ray structure factors of germania and of a rubidium germanate glass. The 
IRO corresponds to the peak at 1.54 A - 1 in GeC>2 and at 2.0 A - 1 in Rb0 .2(Ge02)o.8. The 
small peak at 0.95 A - 1 in the germanate glass marks the extended range order. (Redrawn 
from Price and Saboungi, Ref. 338.) 

T i i — i i — i — r 



The Structure of Amorphous Solids 263 

7.5/(72 where oi is a characteristic nearest distance of ions of like charge. In 
connection with molten salts such as ZnCl2, A1C13 and FeCl3, however, we have 
also discussed in Chap. 8 the presence of a first sharp diffraction peak (FSDP) 
in the diffraction patterns as a marker of intermediate-range order (IRO). IRO 
is the characteristic feature of structural correlations in glasses, extending over 
distances of w 1 nm — larger than atomic bond lengths (PS 0.3 nm) but smaller 
than the scale of textural inhomogeneities (> 5 nm).337 Two examples338 are 
reported in Fig. 10.3. 

10.3.1 Network and modified-network glasses 

Many common glasses are characterised by directional interatomic bonds 
forming local structural units with a well defined SRO. In the crystal these units 
are connected into an ordered network. For instance, the crystal structures of 
the IV-VI compounds are built from chemically unsaturated tetrahedra which 
may be connected in two alternative ways, i.e. by corner sharing or by edge 
sharing. Pure corner sharing in SiC"2, mixed corner and edge sharing in GeSe2 
and pure edge sharing in SiSe2 give rise to networks having dimensionality D = 
3, 2 and 1, respectively. Among the elements, threefold coordination in P and 
As yields P 4 and As4 tetrahedra as basic units (one may describe the crystal in 
this case as an ordered network having dimensionality D — 0). Again, twofold 
coordination in the group-VI elements yields a variety of crystalline allotropes 
with structures formed from chains or molecular rings. Covalent bonding in 
such networks appears to be generally stable across melting, although long 
range order is lost. 

In the continuous random network model proposed a long time ago by 
Zachariasen,339 the structure of a glass is viewed as an essentially random as­
sembly of such strong structural units. In fact, the IRO is believed to reflect 
the way in which the local groups of atoms are preferentially connected into a 
mesoscopic disordered structure.340 Alternative viewpoints attribute the IRO 
to correlations of voids or rings, or even to layer-like correlations. What is 
certain is that the FSDP implies a remarkably long range in structural corre­
lations inside a disordered system. 

The FSDP has a number of observed anomalous properties. Its amplitude 
increases with temperature and drops with increasing pressure — quite the 
opposite of what is commonly observed for the other peaks in the diffraction 
pattern of a disordered material. Compaction of vitreous silica under pressure 
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is known to attenuate the FSDP, as a result of increased frustration of the 
ordering caused by the decrease in volume available to the network.341 

IRO in network glasses also has dynamic manifestations.337 In the 
vibrational spectra, so-called defect modes and companion modes have been 
associated with local arrangements of the tetrahedral units in oxide and 
chalcogenide glasses. Low-frequency excitations (at 10-100 cm - 1 ) leading to 
anomalies in thermal properties have also been associated with IRO.342 These 
excitations are observed in Raman spectra343 (where they are usually called 
"boson peaks") and in inelastic neutron scattering.344 

The IRO is substantially affected by the addition of modifiers to the 
network. An example is shown in Fig. 10.3338: in rubidium germanate glasses 
an "extended range order" emerges at a wave number below that of the FSDP, 
while the FSDP moves to higher wave number. It has been suggested345 that 
the alkali metal ions enter the larger cages of the network, pushing out the 
oxygen atoms on the boundary and compressing the smaller cages. The struc­
tural data on several classes of modified network glasses are consistent337 with 
a model in which the network is built from various structural units that occur 
in the corresponding crystalline compounds. 

10.3.2 Molten and amorphous semiconductors 

Semiconducting group-IV elements and polar III-V compounds crystallise in 
tetrahedrally coordinated open structures. They melt into metallic liquids 
having higher density and coordination number close to seven. The elements 
can also be prepared in a network-like amorphous state, having fourfold local 
coordination and semiconducting properties. In a chemical picture the melting 
of these solids is accompanied by a release of valence electrons from interatomic 
bonds into conducting states, and the bonds are rebuilt on formation of a 
disordered network in the amorphous state. 

Figure 10.4 shows a comparison between the liquid and amorphous struc­
tures of Ge, the positions of Bragg diffraction spots of the crystal being shown 
at the top.346 The structure factor of the melt shows a main peak followed 
by a shoulder. While the position of the main peak does not correspond to 
any structural features in the crystalline or amorphous states, the shoulder 
corresponds to the (220) and (311) Bragg reflections and to be main peak in 
the amorphous structure factor. The FSDP is present in the latter and is 
in correspondence with the (111) Bragg spots of the crystal. Evidently, the 
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Fig. 10.4. Structure factor of liquid Ge at 1000° C (A) and of amorphous Ge at room 
temperature ( ). The vertical bars at the top show the location of the allowed Bragg 
reflections from the diamond crystal structure. For each state of the material, the wave 
number k has been scaled with the appropriate value of the first neighbour distance rg • 

reconstruction of the interatomic bonds in amorphous Ge has led to IRO. The 
wave vectors of the (111) star are clearly related to the formation of connec­
tivity between the local tetrahedral units, which would be frustrated if the 
system did not open up on freezing. 

The significance to be attached to the order parameters associated with 
the (220) and (311) Bragg reflections emerges from quantum-chemical consid­
erations by Stenhouse et al.347 on the correlations between atoms and bond 
centres in amorphous Si. They show that the discrepancies between the results 
of a continuous random network model and the observed diffraction pattern 
can be explained by accounting for the diffraction intensity coming from the 
distribution of valence electrons among the ionic cores. Their results imply 
that the shoulder in the liquid structure factor reflects a remnance of bonds 
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and that the emergence of the corresponding structures in the crystalline and 
amorphous states can be associated to "freezing of the bonds". 

10.4 Thermodynamic Aspects and Free Energy Landscape 

The inherent non-equilibrium nature of the glassy state implies that thermo­
statics does not work for glasses. The proper theoretical frame is provided by 
irreversible thermodynamics.348 We present below the approach proposed by 
Nieuwenhuizen349 in dealing with systems for which the non-equilibrium state 
involves two well separated time scales. 

Such a system is described by three thermodynamic parameters, i.e. the 
temperature T, the pressure p and an effective temperature Te reflecting the 
dependence on cooling rate and thermal history. The heat change -dQ in an 
infinitesimal process is written as 

4Q = TdS^ + TedSe , (10.7) 

where 5 e q is the entropy associated with the fast /3-processes, having time scales 
shorter than the observation time, while Se is the excess (or configurational) 
entropy of the slow a-processes. In its standard definition350 the configura­
tional entropy is the entropy of the glass minus that of the vibrational modes 
of the crystal. From Eq. (10.7) the first law for a glass-forming liquid reads 
dU = TdSeq + TedSe — pdV. The total entropy is S = 5 e q 4- Se and the second 
law {-dQ < TdS) leads to (Te - T)dSe < 0. 

As we have seen in Sec. 10.1, in the glass transition region a glass-forming 
liquid exhibits a smeared jump Aa = aiiqujd - agiass in the thermal expan­
sion coefficient and similarly smeared jumps ACp and AK in specific heat 
and compressibility. Discontinuous jumps in the same quantities occur across 
equilibrium second-order phase transitions, where they obey the so-called 
Ehrenfest relations351 (see also Appendix 3.1). Similar relations can be ob­
tained by similar methods for the smeared jumps in the present context.349 

Thus, one gets 

dp* - Aa no M 
~dT-AK ( 1 ° - 8 ) 

by differentiating the relation AV(T,ps(T)) = 0 and 
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dpg _ ACP 1 _ 
dT ~ TeVAa VAa 

dTe 
dT § ^ 

by differentiating the relation AU(T,pg(T)) — 0. The Prigogine-Defay ratio 
II is defined by 

In equilibrium transitions the second term on the RHS of Eq. (10.9) vanishes 
and one has II = 1. Experimentally, glass formers usually have352 II > 1: 
e.g. in Se the Prigogine-Defay ratio lies in the range 1.2-2.4. 

The implications of the non-equilibrium value of the Prigogine-Defay ratio 
in the glass transition were emphasised in the early work of Goldstein.353 He 
pointed out that in this case on the energy surface G(p, T) of a liquid there is an 
infinite set of points, each of which defines a distinct glass. In this view there 
is no "ideal" glassy state having a unique structure: rather, the structure of a 
glass is whatever the liquid structure happens to be when the liquid solidifies 
at Tg. This leads us in turn to the vivid picture of a disordered free energy 
landscape for the glassy state, having its conceptual precursors in the work of 
Goldstein353 and Anderson.354 

10.4.1 A topographic view of supercooled liquids 

As emphasised in a review article by Stillinger,355 in order to understand the 
phenomena involved in supercooling and glass formation it is useful to adopt 
a topographic view of the potential energy function $ ( x i , . . . ,XJV). We can 
imagine a 3iV-dimensional map showing the "elevation" $ at any "location" 
R = ( x i , . . . , x/v) in the configuration space of the AT-particle system. Such a 
$-scape presents maxima ("mountain tops") and minima ("valley bottoms"), 
as well as saddle points ("mountain passes"). A minimum corresponds to a 
mechanically stable arrangement of the N particles in space and is enclosed in 
its own "basin of attraction", containing all configurations that are connected 
to it by strictly downhill motions. The lowest-lying minima are those that the 
system would select if it were cooled to absolute zero slowly enough to main­
tain thermal equilibrium. Higher-lying minima represent amorphous packings 
which may be sampled by the stable liquid above melting. Transition states 
correspond to saddle points through which the system may pass in migrating 



268 Supercooling and the Glassy State 

Crystal 
permutations 

Fig. 10.5. Left: schematic map of the potential energy hypersurface in the configuration 
space of the many-particle system. Right: illustrating interbasin transitions corresponding 
to /3-type and a-type relaxations in a fragile glass. (Redrawn from Stillinger, Ref. 355.) 

from a minimum to another. A schematic view is shown in Fig. 10.5 (left 
panel). 

The <&-scape picture lends itself to a description in terms of a free-energy 
landscape on account of the role of temperature. The equilibrium state at 
any temperature T corresponds to preferential occupation of basins having 
an optimum depth <f>*(T) = $*(T)/N. The first-order transition at freez­
ing corresponds to a discontinuous change in <j>* as the system switches from 
liquid to crystalline basins. The supercooled liquid remains instead in basins 
which refer to higher-lying amorphous structures. However, as long as the 
configuration point R(T) can move more or less freely among such amorphous 
structures while avoiding crystal nucleation, the system is in a reproducible 
quasi-equilibrium state. If the system visits many such minima during its 
evolution over a certain observation time, it behaves like a liquid over such 
time scales. 

The glass transition occurs when the time scale for jumps among amorphous 
minima becomes long relative to the experimentally accessible time scales. 
The supercooled liquid can move among basins whose depths are clustered 
around ^>i*iquid(T') o m y a s l°ng a s a u structural relaxation times are substan­
tially shorter than the time available for measurement. But as temperature 
drops the mean relaxation times increase according to the Vogel-Fulcher law 
and cross the experimental time scale at Tg. Further cooling fails to lower the 
depth of the inhabited basins below </,i*qujd(Tg) and the supercooled liquid has 
fallen out of quasi-equilibrium. 
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We shall dwell on the dynamical consequences of this picture in the next 
section. Let us here briefly comment on its implications with regard to the con­
cept of an ideal glass state.355 We recall from Sec. 10.1 that at the Kauzmann 
temperature TR the crystal and the extrapolated supercooled liquid would at­
tain equal entropies. The configuration entropy of the fully relaxed glass at 
I K would then vanish. This realisation, combined with the empirical fact that 
Tk is closely similar to the relaxation-time divergence temperature To in the 
Vogel-Fulcher law, has suggested that an "ideal glass state" could be exper­
imentally attained if sufficiently slow cooling rates were available.330 Such a 
state, if it exists, would correspond to the inherent structure with the lowest 
potential energy which is devoid of substantial regions with local crystalline or­
der. There is, however, some ambiguity in qualifying inherent structures with 
regard to the size and degree of perfection allowed for crystalline inclusions in 
an otherwise amorphous structure. 

10.5 Atomic Motions in the Glassy State 

10.5.1 Relaxation processes 

A visual illustration of the emergence of diffusive slowdown at the level of 
atomic motions can be given with reference to the discussion of the velocity 
autocorrelation function in Sec. 5.5. We noted there that in the liquid the 
particles mostly execute rattling motions from first-neighbour collisions caus­
ing trajectory inversions, but occasionally a glancing collision allows a particle 
to diffuse into a transient void which becomes a new centre of rattling. As 
the volume per particle decreases with decreasing temperature, each particle 
spends an increasing fraction of time in rattling motions, since higher cooper­
ation between first neighbours is needed to allow it to diffuse out of its cage. 
While the time between trajectory reversals remains approximately constant, 
the diffusion time (which may be viewed as a structural relaxation time) in­
creases. Eventually a wide separation of time scales, of up to 10 orders of 
magnitude in the temperature range from l.lTg to Tg, opens up between the 
rattling time and the structural relaxation time. 

More generally, time-dependent response functions to any of a variety of 
weak external perturbations (mechanical, electrical, thermal, optical and so 
on) reflect the kinetics of restructuring which results from transitions in the 
free energy landscape. Denoting such a generic relaxation function as 4>n{t) 
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with normalisation (j>n(0) = 1 at the initial time, the area under the <̂ >n(*) 
curve defines a mean relaxation time rn(T). Although these times depend to 
some extent on the property that is being studied, in supercooled liquids they 
generally increase rapidly with decreasing temperature T and can often be 
fitted to a Vogel-Fulcher relation as in Eq. (10.2). The so-called CKN melt 
(the Ca2K3(N03)7 compound already mentioned in Subsec. 8.6.2, i.e. a 3:2 
mixture of the salts KNO3 and Ca(NOs)2) has become a model system for 
experimental test of the predictions made by the mode-coupling theory356 '357 

(see below) and has been the object of many physical measurements aimed at 
understanding glassy dynamics. 

In fact, a careful examination of the relaxation functions above the glass 
transition temperature Tg reveals the presence of distinct processes. Intrabasin 
relaxation is dominant over time scales of the order of vibrational periods. This 
domain is followed by an extended time regime in which interbasin structural 
relaxations take place, and in the long-time limit the relaxation function tends 
to display a Kohlraus-Williams-Watts "stretched exponential" decay: 

/n(«) « e~{t/tnr • (10.11) 

Here, the exponent 7 is in the range 0 < 7 < 1 and the characteristic time tn 

is comparable to the mean relaxation time rn when T = Ts. The 7 = 1 limit 
in Eq. (10.11) corresponds to simple Debye relaxation with a single relaxation 
time. Smaller values of 7 lead to a more or less broad distribution of relaxation 
times. This becomes evident after transformation to the frequency domain, 
where peaks appear corresponding approximately to the main relaxation times. 

The observed shape of the relaxation spectrum actually depends on 
temperature as the liquid is cooled towards the glass transition. At equilibrium 
or moderate supercooling there is a single absorption frequency maximum. 
On approaching Tg this peak splits into a pair of maxima, the slow primary 
a-relaxations and the faster secondary /3-relaxation (see Fig. 10.6). The former 
are non-Arrhenius and kinetically frozen out at Tg: they entail escape of the 
system from one deep basin into another deep one in the free energy landscape. 
The latter are more nearly Arrhenius and remain operative across the glass 
transition: they correspond to elementary relaxations between neighbouring 
basins, through transition processes that require only local rearrangements of 
a limited number of particles. The nature of the a and /? relaxation pro­
cesses in relation to the free energy landscape is illustrated355 in Fig. 10.5 
(right panel). 
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Fig. 10.6. Schematic plot of a relaxation function versus ln(t) in a moderately supercooled 
liquid, illustrating (A) long-time a-relaxations, (B) intermediate region of two-step relax­
ation, and (C) microscopic region. On a linear time scale only the a-relaxations are visible 
(see inset). With decreasing T the a-relaxations move to longer time and eventually freeze, 
so that the plateau around region B extends and results in elastic scattering of neutrons or 
light. (Redrawn from Cummins, Ref. 357.) 

In mode-coupling theory356,357 the dynamics of a liquid is described by a 
Langevin equation for density fluctuations, including a memory term arising 
from coupling between different modes of motion. Below a critical tempera­
ture Tc, say, relaxations are arrested and a spontaneous breaking of ergodicity 
occurs (that is, the system no longer explores phase space uniformly). Above Tc 

density relaxation takes place in a two-step form involving a fast /3-relaxation 
and a structural a-relaxation, whereas below Tc only the /3-relaxation persists. 
In further refinements the inclusion of hopping processes smears out Tc and 
maintains the a-relaxation and transport even at lower temperature. 

10.5.2 Strong and fragile liquids 

The scaling of viscosity data implied by the Vogel-Fulcher representation allows 
a useful classification of glass-forming liquids between "strong" and "fragile" 
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extremes,326 depending on the value of the ratio To/Tg (with Tg defined in a 
reproducible way from either relaxation data or from scanning calorimetry at 
a standard rate). This classification is shown in the Arrhenius plot reported 
in Fig. 10.7. 

The strong limit is realized in open-network liquids such as SiC>2 and GeC>2, 
which display Arrhenius behaviour corresponding to To <C Tg. The other 
extreme is realised in liquids characterised by Coulomb interactions such as 
ZnCl2 or by van der Waals interactions as in aromatic substances with many n 
electrons: in such fragile liquids the viscosity varies in a strongly non-Arrhenius 

Fig. 10.7. Arrhenius plot of viscosity data showing the strong-fragile pattern of liquid be­
haviour. The inset shows that the heat capacity jump is generally large for fragile liquids 
and small for strong liquids. (Redrawn from Angell, Ref. 326.) 
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fashion. Strong liquids typically display a very small jump in the specific heat 
at Tg whereas fragile liquids show large jumps (see the inset in Fig. 10.7). 

Fragile liquids have glassy structures that may easily reorganise through 
fluctuations over a variety of particle orientations and coordination states, 
without much assistance from thermal excitations. Strong liquids, on the 
other hand, intrinsically resist structural changes and their radial distribu­
tion functions and vibrational spectra show little reorganisation even over wide 
temperature ranges. These differences in behaviour can be traced back to topo­
graphic differences in the $-scape. In the strong glass-formers only the /3-type 
transitions between contiguous basins are relevant: little reorganisation of the 
individual basins into deep troughs takes place and the (a,/?) bifurcation is 
weak or absent. In contrast, the most fragile glass-formers exhibit distinctive 
(a, (3) bifurcations corresponding to the onset of strong a-relaxation processes 
between different deep basins in the free energy landscape. 

Fragile glass-formers display near Tg a striking breakdown of the Stokes-
Einstein relation between the self-diffusion coefficient D and the shear viscosity 
?7358: D(T) may become two orders of magnitude larger than expected from 
the measured r](T) (a similar breakdown of the Nernst-Einstein relation in 
molten ZnCl2 near freezing was noted in Subsec. 8.6.1). This feature may again 
be related to the <fr-scape cratering.355 An Q-relaxation process will involve 
a sequence of elementary interbasin transitions, which may be viewed as a 
local structural excitation fiuidising a mesoscopic domain. Thus, translational 
diffusion is disproportionately enhanced relative to rotational diffusion, only 
the latter remaining linked to shear viscosity. 

The work of Yamamoto and Onuki359 demonstrates that the diffusivity 
of tagged particles is heterogeneous on time scales comparable with, or less 
than, the stress relaxation time in a highly supercooled model liquid. The 
particle motions in the relatively active regions dominantly contribute to 
the mean square displacement, resulting in a diffusion constant larger than the 
Stokes-Einstein relation would predict. 

10.5.3 Annealing and aging 

We have emphasised above two main features of the viscous liquid state, that 
is stretched-exponential relaxation and non-Arrhenius behaviour. A third 
canonical feature of relaxing complex liquids is the so-called non-linearity of 
relaxation.360 That is, near and below Tg relaxation takes place in systems 
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which are non-ergodic and are evolving on very long time scales towards an 
amorphous state in metastable equilibrium. This process of physical aging is 
of great relevance in the glass industry and in the design, manufacture and use 
of glassy polymeric materials. The more fragile the liquid, the greater is the 
dependence of the relaxation time on the departure from equilibrium.361 

10.5.4 Anharmonicity and boson peaks 

A sudden increase of slope in the temperature dependence of the Debye-Waller 
factor, measuring the mean square displacement of the particles of the system, 
has been observed to occur across the glass transition temperature in a variety 
of systems (open-network and fragile ionic liquids, organic and inorganic poly­
mers, proteins) by a variety of techniques (Mossbauer and neutron inelastic 
scattering, computer simulation). 

Angell326 has emphasised that the origin of such breaks is associated with 
the onset of severe anharmonicity in the molecular motions. He remarks that 
this view can be reconciled with a view emphasising inelastic processes by 
recognising that the overdamping of the harmonic motions resulting in the 
boson peak appears as the inelastic processes detected by neutron scattering 
and is largely responsible for the increased mean square displacement above Tg. 

10.6 Supercooled and Glassy Materials 

We conclude this chapter by giving specific reference to some systems that are 
particularly relevant in the present context, ranging from hard spheres in the 
amorphous state to supercooled water and to special glassy materials. 

10.6.1 Hard sphere statistics on the amorphous branch 

We have presented in Sec. 2.4 the equilibrium phase diagram of the hard 
sphere system as a basic model displaying a transition from a fluid state to 
a crystalline state. The fluid state is stable for values of the packing fraction <j> 
on the branch from <f> — 0 up to <j> = 0.494, while the crystalline state is stable 
on the branch from <j> = 0.545 to <f> = 0.74, the latter corresponding to close-
packing. The disordered dense hard-sphere state is not represented by any of 
these lines, but as shown in Fig. 10.8 is a metastable extension of the fluid 
branch, ending into a state of random close-packing (RCP) at </> = 0.644. The 
RCP can be precisely defined362 as having the largest packing fraction over 
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Fig. 10.8. Phase diagram for the hard-sphere system, including the metastable amorphous 
branch ( ). 

all ergodic isotropic ensembles at which the first neighbour distance equals the 
hard sphere diameter. 

In the context of the hard-sphere phase diagram, the fundamental problem 
in creating metastable dense systems is to make sure that they are truly 
random. While there is no perfect measure of order or disorder, Rintoul and 
Torquato363 quantify the degree of local order in their computer realisations 
of hard-sphere assemblies through an order parameter which is a rotationally 
invariant average over all bonds and is nonzero in the presence of any type of 
crystallisation. This affords a precise quantitative means of creating dense 
random systems that lie on the metastable amorphous branch of the phase 
diagram. On these systems Rintoul and Torquato determine key statistical 
properties, with special attention to the statistics of voids and to mean pore 
sizes. The pore length scale determines transport properties, such as the mean 
survival time of Brownian particles diffusing in a system of traps. 
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With reference to Sec. 4.9, a random assembly of (non-overlapping, or even 
overlapping) hard spheres provides a model matrix inside which to study the 
equilibrium and transport properties of fluids adsorbed in disordered porous 
materials.107 Some important questions concern the phase transitions that may 
occur in such heterogeneous fluids and how they are related to those in the 
bulk fluid. A great deal of attention has been given to the phenomenon of 
capillary condensation, i.e. the shift in the bulk liquid-gas transition due to 
confinement, and to surface phase transitions (layering and prewetting) from 
interactions with a solid matrix. 

10.6.2 Supercooled water 

The lowest temperatures down to which water remains a liquid in ordinary 
time-scale observations have been determined in cloud chamber experiments, 
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Fig. 10.9. Homogeneous nucleation and equilibrium melting temperatures for water in 
emulsion form as functions of pressure. (Redrawn from Angell, Ref. 119.) 
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in which the behaviour of large numbers of droplets can be studied. At 
standard pressure such small droplets freeze by homogeneous nucleation at 
TH — —40°C. Figure 10.9 reports from the review by Angell119 the acceler­
ating decrease observed for temperature of homogeneous solidification with 
increasing pressure, superposed on the equilibrium phase diagram. The vitri­
fication temperature at standard pressure is estimated to be about — 135°C by 
using extrapolations from data on glass-forming aqueous solutions. 

Many properties of supercooled water have been measured in great 
detail.119 These include thermodynamic properties (density and expansivity, 
vapour pressure, heat capacity, compressibility and sound velocity), transport 
properties (diffusivity, viscosity, electric conductivity, dielectric relaxation, 
sound absorption, nuclear and electron spin relaxations) and spectroscopic 
properties (Raman and infrared spectra, proton magnetic resonance). An 
example of such measurements has already been reported in Fig. 5.2, showing 
an Arrhenius plot of the self-diffusion coefficient from tracer diffusion and 
nuclear magnetic resonance measurements. Interesting correlations between 
the temperature dependence of a number of these properties have been brought 
to light by these studies. We must refer the interested reader to Angell's review 
article119 for further details. 

10.6.3 Metallic glasses 

Amorphous metallic alloys were first discovered in 1960 by P. Duwez, who 
showed that the AU75S125 alloy could be frozen into an amorphous state by 
rapid cooling from the liquid. Metallic glasses have acquired considerable 
commercial importance, e.g. in the production of high-strength and wear-
resistant materials or of soft magnetic materials. Applications thus range from 
protective coatings to tape recorder heads and other magnetic devices. Slight 
or even substantial devitrification, and also surface devitrification, may be used 
in tailoring material properties. 

The realisation of metallic glass requires ultra-rapid cooling. A common 
laboratory technique is by melt-spinning, in which a fine stream of molten 
metal alloy is allowed to fall onto a copper wheel in fast rotation and solidifies 
into a ribbon a few millimeters wide. This method gives cooling rates of the 
order of 105-106 degrees per second. A variety of other techniques can be used 
and a large range of alloy types and compositions can be brought to a glassy 
state, as listed for instance in the review article by Greer.364 Examples of 
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glass-forming alloys include (i) transition metals in combination with 
metalloids, (ii) early and late transition metals, and (iii) aluminium-based, 
alkaline-earth-based, lanthanide-based and actinide-based systems. 

Rapid cooling from the liquidus temperature Tm down to the glass 
transition temperature Tg is evidently easier when the interval between these 
two temperatures is small. Tm can be a strong function of composition while Tg 

usually is not: therefore, glass formation can be expected to be favoured near 
deep depressions at eutectics in the liquidus curve. A general rule is that the 
glass forming ability is promoted by stabilising the liquid relative to the solid: 
this has been exploited by adding solutes and by increasing the number of alloy 
components. The presence of a multiplicity of components, especially when 
their atomic sizes are quite different, inhibits crystallisation. An alloy such 
as Zr4i.2Tii3.8Cui2.5Niio.oBe22.5 has a glass-forming ability which approaches 
that of oxide glasses. However, metallic glasses tend to be much less stable: 
they crystallise on heating or, in the case of aluminium-based alloys, devitrify 
into a quasicrystalline phase of icosahedral symmetry. 

There have been many attempts at modelling the structure of amorphous 
metallic alloys. Average coordination numbers are in the range 11-14, consis­
tently with extrapolations from data on liquid metals, and go together with 
strong chemical ordering. Models are often based on dense random packing 
and supplemented by the inclusion of local chemical order. 

10.6.4 Superionic glasses 

Ionic glasses are usually realised from a network former such as Si02 or 
AI2O3 and a network modifier such as Na 2 0 or L^O. The modifiers lower 
the glass transition temperature and open up the network structure by intro­
ducing non-bridging oxygens, while the alkali ions are mobile and can diffuse 
through the glassy network. The decoupling of conduction modes from viscous 
modes which is involved in the generation of ion-conducting glasses below Tg 

is apparently quite distinct from the (a, /?) bifurcation.365 The modes of small 
low-charged cations become anharmonic at temperatures far below those of 
other species and such cations can easily escape from their initial sites and 
wander through the glassy structure. 

A characteristic feature of singly modified ionic glasses is that the ionic 
conductivity a rises sharply with the content x of the mobile alkali species,366 

with an effective power law a oc xn where, on account of Arrhenius behaviour, 
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the exponent n is proportional to 1/T. Doping with an alkali halide expands 
the network and drastically increases the conductivity. Deviations from 
Arrhenius behaviour are observed in glasses with very high conductivity, which 
typically contain Agl mixed with silver phosphates, arsenates or borates. Such 
deviations are most pronounced in the fastest ionic conductors. In mixed-
alkali glasses, on the other hand, the conductivity shows a sharp minimum as 
the relative concentration of the two alkali oxide components is varied, and at 
the same time the diffusion coefficients of the two mobile cations vary with 
composition and intersect near the minimum-conductivity composition. 

With regard to the a.c. conductivity of singly modified glasses, Roling 
et al.367 have reported that as a function of composition, temperature and 
frequency it scales according to 

a{x,T;u) = a0f U-^j , (10.12) 

where (To is the d.c. conductivity. This relation holds for the (Na20)x-
(B2O3)i-x glass up to MHz frequencies. The same scaling function seems to 
apply to dopant modified glasses and to glass-forming supercooled melts. The 
temperature dependence of the conductivity changes over from Vogel-Fulcher 
to Arrhenius behaviour as frequency is increased into the dispersive regime. 

10.6.5 Glassy polymers 

Solid polymers are generally amorphous, that is, they are microscopically 
disordered and crystallisation is rare. The disorder remains essentially un­
changed as the polymer transforms from the amorphous solid state to the 
melt or liquid state, while elastic behaviour is changing into viscoelastic and 
ultimately viscous behaviour. 

Studies of the microscopic dynamics of polymers below and above the glass 
transition temperature have given evidence for various processes commonly 
appearing in glasses: local motions, vibrations, and relaxation processes such 
as a and /3 relaxation.368 Within the glassy state rotations about single bonds 
of the main chain, which allow diffusion of the polymer chain at high tempe­
ratures, are restricted — but this is not the case for local side motions such 
as the rotations of methyl groups around their threefold axis. These motions 
are revealed by a drop in the elastic scattering intensity, as the relaxation 
times for methyl group rotations enter the dynamical window of the neutron 
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spectrometer. With increasing temperature the relaxation times get shorter 
and the elastic scattering intensity levels off, to enter a further decay step as 
Tg is approached. 

These experiments also show that the inelastic neutron scattering intensity 
at temperatures still well below Tg contains a prominent boson peak in the 
region of 1-2 meV (see Fig. 10.10). With increasing temperature the dynamic 
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Fig. 10.10. Low-temperature neutron scattering spectra from various amorphous polymers, 
showing the boson peak as compared to crystalline trans-PB-h6 (o). (Redrawn from Frick 
and Richter, Ref. 368.) 
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scattering function starts to convert from the inelastic boson peak spectrum 
towards a quasi-elastic spectrum. This evolution is also shown in Fig. 10.10. 

Fast processes on the picosecond time-scale are revealed by the neutron 
scattering spectra as the temperature is increased near Tg. Slower processes 
are observed above Ts, corresponding to a-relaxation of stretched-exponential 
form. The neutron scattering technique allows one to investigate the wave 
number dependence of the characteristic relaxation time and of the prefactor, 
that is the fraction that relaxes via the a-relaxation process. This fraction is 
minimal in correspondence to the main peak position in the structure factor 
— apparently an instance of the phenomenon of de Gennes narrowing and in 
agreement with the predictions of mode-coupling theory. An Arrhenius plot 
of the a-relaxation rate at this wave number q = 1.88 A - 1 , from neutron 
scattering data on amorphous polymers,368 shows that at low temperatures 
the observed relaxation times follow an Arrhenius behaviour rather than a 
Vogel-Fulcher law. 
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Chapter 11 

Non-Newtonian Fluids 

11.1 Introduction to Non-Newtonian Flow Behaviour 

In Chap. 6 we have been concerned with Newtonian liquids in laminar or 
turbulent-free flow, where according to Newton's law the shear viscosity rj is 
a constant at given temperature and pressure and is independent of the shear 
rate. In Eq. (6.1) the shear stress &\2 has been related to the shear rate 
7 = (dvi/dx2) as 

o-u =rfl- (11.1) 

Examples of Newtonian fluids are many pure single-phase liquids of low molec­
ular weight, e.g. water, in which viscous dissipation can be regarded as associ­
ated with collisions between small molecules. More properly we might in such 
fluids think of the shear stress as being represented by a power series expansion 
in the shear rate, 

<712(7) = <7l2(0) + 7n + O(72) , (11.2) 

where 77 = {dai2/dAf)\^/=o- This expression reduces to Newtonian behaviour 
in the linear regime of low shear rate, if the time average of the off-diagonal 
stress tensor is zero. 

The time scale r for stress relaxation can be taken as the time for an average 
molecule to diffuse a distance of the order of its mean diameter. It is useful 
to attach a time scale rs — 7 _ 1 to the shear rate, which can be regarded as 
a "disruption" time scale. If T/TS <C 1 the fluid is in the small-perturbation 
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Newtonian limit: water is Newtonian because r « 10 - 1 2 s and, as it is rare to 
meet shear rates in excess of 106 s _ 1 , then T/TS < 1. However, if T/TS » 1 
then the molecules are unable to remain close to equilibrium during flow, and 
there are deviations from Eq. (11.1) and higher-order terms in Eq. (11.2) have 
to be considered. This is called non-Newtonian flow and its study is termed 
rheology.a 

Non-Newtonian fluids typically are made of large and slowly moving 
molecules, such as polymer melts and colloidal liquids containing solid par­
ticles in excess of 0.1 /xm in diameter.b There are many non-Newtonian fluids 
in everyday life: for instance yoghurt, tomato ketchup, toothpaste, and house­
hold cleaning fluids. Examples to be met in industrial plants, in addition to 
polymer melts and polymers in solution, are slurries and foams. All of them 
owe their non-linearity to the fact that their structure changes under shear: 
for instance, in a suspension of anisotropic particles these tend to align un­
der shear, or in a polymer melt the long-chain molecules are entangled with 
each other and tend to stretch in the direction of shear. A further point to 
be noted is that the history of the sample is often an important parameter in 
determining its non-Newtonian behaviour, especially for polymeric fluids. 

Stress generally depends on a number of parameters. An analytic rela­
tion between stress and these parameters is called the constitutive equation. 
Rheology as widely practiced relies on empirical constitutive equations of the 
form 

a12=ay+r)Pin, (11.3) 

where ay is the yield stress, i.e. the minimum stress that must be applied to the 
fluid before it will flow. The exponent n allows for a range of non-Newtonian 
behaviours: in particular n = 1 is pseudo-Newtonian with an apparent vis­
cosity r)p describing plasticity. Equation (11.3) with n = 1 is known as the 
Bingham fluid. 

a In fact the whole stress tensor has to be considered, since the off-diagonal stresses couple 
to the diagonal components of the stress tensor and these change under shear. 
b An entirely different type of non-Newtonian behaviour is presented by superfluid liquid 
Helium, as we have already seen in Sec. 7.7. A further instance that is not included in 
the present discussion is a plasma of charged particles, which becomes anisotropic when 
threaded by magnetic lines of force: transverse shear waves with an acoustic dispersion 
relation (the so-called Alfven waves) can propagate along the direction of the magnetic field 
(see e.g. Ichimaru3 6 9) . 
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Fig. 11.1. A schematic diagram showing a rheological flow curve for a liquid. 

A schematic diagram of a typical rheological flow curve is shown in Fig. 11.1. 
For n < 1 the apparent viscosity decreases with increasing rate of shear — the 
fluid is said to be shear thinning. If n > 1 the fluid is said to be shear thickening 
or dilatant, usually a situation met with colloidal liquids at high shear rates. A 
levelling of viscosity in a second plateau is observed for polymer solutions, melts 
and colloidal suspensions: the latter at high solid fractions (about 50%) show 
the additional dilatant behaviour. Shear thinning and shear thickening are 
associated with some form of internal re-ordering of the molecules in the bulk 
of the fluid, in a manner that affects flow under the applied shear stress or strain 
rate. The viscosity of all non-Newtonian fluids will approach a limiting value 
if one waits long enough to take the measurement: this is called Newtonian 
viscosity 7j0 and Eq. (11.1) then holds. 

11.1.1 Linear visco-elasticity 

Time or equivalently "history" is often an essential parameter to include in 
the description of viscous fluid behaviour. This can arise in two ways. The 
apparent viscosity, entering for instance Eq. (11.3), could be a function of time 
(the shear thinning form of this is known as thixotropy). However, time can 
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still be an important parameter in the Newtonian strain rate regime, where 
there is only a minor perturbation in the internal structure of the fluid. The 
application of an oscillatory shear strain can excite a visco-elastic response, in 
which the sample behaves simultaneously (i) as a viscous fluid without memory 
of its past history, and (ii) as an elastic medium which can store elastic energy 
of deformation to be recovered on release from the deforming element. We met 
visco-elastic behaviour in Sec. 6.7.3 in connection with the dispersion of sound 
velocity ("fast sound") in water and in glass-forming liquids. We return to it 
here in connection with the response to shears. 

Writing the strain applied to the sample as "f(t) = 70 cos(ut), the structure 
of the liquid is not significantly disrupted provided that the strain amplitude is 
low (70 < 0.03, say). Its response in the visco-elastic regime can be described 
by means of a complex shear modulus, 

G{UJ) = G'(u) - iG'\uS), (11.4) 

where G'(w) is the elastic storage modulus and G"(OJ) is the viscous loss mod­
ulus. The Maxwell model for a classical visco-elastic system describes the 
stress relaxation following the application of a step of unit strain at time t = 0 
through the function 

Cs{t) = G0 (11.5) 

where Goo is the high-frequency elastic modulus and r = r)/Goo- In terms of 
the so-called stress relaxation function we have 

/ • O O 

G(w) = -iu / dtCs{t)eiut = 
Jo 1 
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G0 

G0 

(11.7) 

The phenomenon may also be described through a complex frequency-
dependent shear viscosity, TJ(UJ) = 77/(1 — iwr) becoming purely imaginary 
at high frequency. 

We conclude by remarking that stress relaxation can also occur in a solid 
which may creep e.g. by vacancy diffusion at high temperature. In this case 
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the stress falls in time as the atoms adjust their positions, but there is a limit 
to the amount of creep that may take place over the observational time scale. 

11.2 Viscosity in Uniaxial Liquid 

Consider a liquid which is anisotropic when at rest and whose anisotropy is 
unaffected by flow. We shall in particular be concerned with nematic liquid 
crystals: these are uniaxial and the axis about which rotational symmetry 
exists is the director, which is defined from the mean orientation of all molecules 
(see Chap. 9). The director may, in principle, be anchored in any chosen 
orientation by applying a suitable field. Magnetic fields of moderate intensity 
can anchor the director very effectively in a nematic bulk sample. Notice that 
when the director is anchored the argument used in Sec. 6.2 to show that the 
stress tensor is symmetric is no longer valid. The viscous stresses can exert 
a finite torque on any fluid element because, following infinitesimal rotations 
of the molecules within the element, such viscous torque is balanced by a 
countertorque exerted by the anchoring field. Below we base our summary of 
the topic of viscosity in a uniaxial liquid in the linear regime on the account 
given by Faber.4 

Whereas the constitutive equations for an isotropic incompressible fluid in­
volve only one viscosity coefficient (see Sec. 6.2), those for a fluid with uniaxial 
anisotropy require five such coefficients, each of them independent of the others. 
An even larger number of coefficients are needed for biaxial anisotropy. The 
flow regimes of nematic liquid crystals are therefore more complex, essentially 
because the translational motions are coupled to orientational motions of the 
molecules and flow disturbs the molecular alignment in the absence of orienta­
tional anchoring (see Sec. 11.3). Conversely, a change in the alignment, e.g. by 
application of an external field, will induce flow in a nematic. Optical observa­
tions of these effects are impeded by the high turbidity of nematic samples — 
typically higher than the light scattering by conventional isotropic fluids by a 
factor of order 106, from spontaneous fluctuations in the molecular alignment. 
Measurements of viscosity in nematics require either imposing an alignment by 
an external field or using sophisticated probes such as attenuation of acoustic 
shear waves or inelastic scattering of light. 

Suppose that the director of a uniaxial fluid is anchored in the £3 direction. 
Then the linear equations for shear stress that replace Eq. (6.3) read370 
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Here rji (i = 1-4) constitute four of the five linear viscosity coefficients of 
the uniaxial fluid. Noteworthy is the fact that in Eq. (11.9) the coefficient 
of (8v2/8x3) referred to <723 and that of (dv3/dx2) for 032 are the same. An 
analogous situation arises in Eq. (11.10). These are instances of Onsager's 
relations which obtain in irreversible thermodynamics (see e.g. Sec. 7.6). 

The linear equations for the diagonal stress components, which replace 
Eq. (6.3) for an uniaxial fluid when the director is anchored along X3, involve 
a fifth viscosity coefficient: 

2 / dvi dv2 dv3\ 

*" = -*+3 (^a^-^-^J' (1L11) 

2 / dvi dv> dv^ \ 
„ 2 2 = _P +_(_%_i + 2 w _ i _ % _ i ) , ( 1 1 . 1 2 ) 

2 / 8vi 8v2 „ dv3\ . , , ,„ . 
^ 3 = - p + - ( - ^ - ^ + 2 , 5 ^ j . (11.13) 

In the case of incompressible flow, i.e. V • v = 0, we can write 

033 - - ( o n + CT22) = (t}3 + 2^)g^ • ( n - 1 4 ) 

Permutation of indices yields the equations that apply when the director is 
along Xi or X2. 

Figure 11.2 shows four cases of steady planar shear flow of an uniaxial fluid 
along the x\ direction between two plates perpendicular to the X2 axis, so that 
v\ is the only non-zero velocity component and increases linearly with X2 but 
is independent of x\ and X3. In such a set-up one may in principle measure the 
ratio between the stress o\2 on the plates and the velocity gradient {dvxjdx-i) 
to determine (a) r)\ if the director is along x\, (b) 772 if the director is along 
X2, and (c) 773 if the director is along X3. According to Eq. (11.14) one may in 
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Fig. 11.2. Four cases of planar shear in a uniaxial fluid. The orientation of the director 
is shown by a double-headed arrow in (a), (b) and (d) and by a point-and-circle in (c). 
(Redrawn from Faber, Ref. 4.) 

principle determine 775 from the force needed to extend an element of the fluid 
of known cross-sectional area in which the director is oriented longitudinally. 

In Fig. 11.2(d) the director is anchored along the %<y ELX1S of a reference 
frame S' which differs from the original frame 5 by a left-handed rotation 
about the x$ axis through an angle a. As Faber4 shows in detail, the effective 
viscosity 77* (a) as a function of the angle a is 

77* (a) = 772 cos4 Q + 2(r/3 + 775 — 774) sin2 a cos2 a + r]i sin4 a. (11.15) 

The normal stress component in the frame S can also be found. Writing 0-33 
in the form 

0-33 = -p+ g£i2(% - Vs)sin a cos a, (11.16) 

where 62 = \{dv\/dx2 + dv2/dxi), this is valid even when the fluid undergoes 
non-planar shear about the X3 axis (i.e. when dvijdx\ is non-zero as well as 
dv\ldx-z). 

Whereas the diagonal stresses remain isotropic in an isotropic Newtonian 
fluid undergoing planar shear, they become anisotropic in an anisotropic fluid 
under shear. We shall see consequences of this fact in later sections. 
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11.3 Flow Birefringence and Flow Alignment 

It has been known since the time of Maxwell that simple liquids which are 
completely isotropic when at rest, but are composed of non-spherical molecules, 
tend to become birefringent when subjected to shear. The phenomenon is 
called flow birefringence and is also exhibited by solutions made from non-
spherical solute molecules and by suspensions of solid rods, fibres, or platelets. 
We therefore proceed to extend the preceding discussion to cases where no 
external field is anchoring the director, but preferred axial alignment is induced 
by flow. We follow again the account of Faber4 for the situation in which 
the flow combines a shear component £12 = ^[{dvi/dx^) + (dv2/dxi)} with a 
vorticity W12 = \[{dv\/dx2) — (dv2,jdx\)\. 

Consider first a dilute suspension of essentially independent solid particles 
in the shape of prolate spheroids, immersed in a Newtonian fluid of viscosity 
77. In the case of planar shear in the (xi,X2) plane we have £12 = Uyi'- the 
spheroidal inclusions then precess continuously about the £3 axis and at the 
same time undergo orientational fluctuations from rotational diffusion induced 
by thermal agitation. The angular distribution function f(a), defined so that 
f(a)da is the fraction of spheroids whose major axis lies at any given time in 
the angular range between a and a + da from the x^ axis, has a maximum 
at a = 7r/4 when rotational diffusion is dominant, as is often observed exper­
imentally. In the opposite limit one finds instead that the maximum lies at 
a = 7r/2, corresponding to preferred alignment along the x\ axis. 

Another important case leading to flow alignment is that of a concentrated 
suspension of rod-like particles. If the rods tend to become almost parallel dur­
ing flow, then the fluid becomes markedly uniaxial and needs to be described 
by five viscosity coefficients. In this situation the director can go into preferred 
orientations and remain there in the absence of any anchoring field, precession 
of the individual molecules being effectively suppressed. In vorticity-free shear 
(W12 — 0) the preferred orientation is at a = 7r/4, i.e. the rods tend to line up 
in the direction in which the suspension is being stretched. In planar shear, 
on the other hand, the stable solution is 

assuming 772 3> T74 ^> Vi • From measurements of the viscosities of the MBBA 
nematic liquid crystal370 Eq. (11.17) predicts that the director sets a t a = 82° 
if no external field constrains it. 
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(a) (b) 

Fig. 11.3. The tube model, showing (a) the polymeric chain together with its tube of 
constraints and (b) the primitive chain in discretised form. 

11.4 Non-Newtonian Behaviour in Polymeric Liquids 

The dynamical properties of polymer melts can frequently be traced back to the 
topological hindrance exerted on each chain by the surrounding chains. These 
constraints have a rather complex many-body structure and the result has been 
that, in modelling the melt, their effects have often been represented by the 
action of a confining tube on the dynamics of a single chain (see Fig. 11.3). 
Further reduction is sometimes accomplished by replacing the tube by a set 
of fixed interaction sites selected at random from points that lie along its 
surface. Such a set of random scattering centres can be considered as among 
the simplest possible realisations of the microscopic entanglements occurring 
in a polymer melt.371 '372 

It seems to be rather generally agreed that a polymer molecule finding itself 
in such an arrangement of scattering centres would move by sliding down its 
own contour, to be likened to the way that defects travel down the length of a 
rope. Reptation (a word which implies snake-like motion) is the term used to 
describe segmental motion of this type, which is biased along directions parallel 
to the backbone of the chain. As to the actual behaviour to be expected of 
the polymer/scatterer assembly, a transition from free motion to reptation is 
believed to be exhibited at a particular concentration of scattering centres, just 
as in the melt an analogous type of transition is thought to occur at a definite 
chain length of the polymer371 (see also Loring373 and earlier references there). 

Not only is the flow of a polymeric liquid strongly dependent on its molec­
ular weight, but its flow properties are also sensitive to cross-linking. When 
the polymer is dispersed in an inert solvent, flow behaviour naturally depends 
on the concentration. Here we are concerned mainly with long-chain polymers 
which are not cross-linked, and which are either in molten form or dispersed at 
concentrations that are not so low for the molecules to behave independently 
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of one another. The situations envisaged here are such that each molecule 
is constrained by entanglements with other molecules and can extricate itself 
only by reptation. 

11.4.1 Reptation in concentrated polymer systems 

Flow processes in polymer melts or concentrated polymer solutions are an 
essential step in the processing of polymeric materials into manufactured 
items.374 In treating the motion of a laterally constrained chain along its length 
de Gennes371 showed that rearrangements of the chain within the existing con­
straints obey the mathematics of a model previously developed by Rouse375 for 
a single chain0 and occur in a time proportional to M2, M being the molecular 
weight. The time needed for the chain to reptate out of the existing constraints 
is thus proportional to M 3 . As the polymeric chain is deformed, so are the 
constraints and, if the only way for the chain to return to complete equilibrium 
is to diffuse out of the deformed constraints, the longest relaxation time will 
become proportional to M3. This result can be transferred to the viscosity 
coefficient, which also is found to be proportional to M3. The experiments 
indicate an M3A law. 

In the work of Doi and Edwards372 and later authors374 the model is fur­
ther developed into a constitutive equation for the stress tensor. Throughout 
the analysis the stress is calculated by considering the entropic forces in the 
segments of the tube centre-line (the "primitive chain") as given by a Gaussian 
form and by assuming that the segments of the primitive chain deform affinely 
with the continuum. In the particular case of a stress relaxation experiment, 
just after an impulsive deformation is imposed on the polymeric liquid the 
initial stress is identical to that of an ideal rubber network. The subsequent 
stress relaxation results from the combination of two processes, which have a 
different time scale and thus essentially occur one after the other. 

The fast relaxation process is a redistribution of monomers along the primi­
tive chain, corresponding to the monomer density going back to its equilibrium 

cIn brief, the model envisages each chain as a multiplicity of friction points ("beads") 
connected by springs. Stress relaxation is evaluated by introducing a spectrum of relax­
ation times T„ = r/n2, where the maximum relaxation time r is proportional to a friction 
constant £• Hydrodynamic interactions among the beads were later introduced by Zimm. 
On account of the fact that a real polymeric material is usually polydisperse (i.e. contains a 
distribution of molecular weights), the Rouse-Zimm model leads to visco-elastic behaviour. 
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value, and takes place while the primitive chain remains fixed in its deformed 
configuration. The change of stress in time follows a Rouse-like behaviour with 
the largest relaxation time being proportional to M2. The second relaxation 
process is much slower and corresponds to a longitudinal diffusion of the chain 
along the tube, bringing the chain back to equilibrium through a reptation out 
of the deformed constraints. During this process the deformed tube can be 
considered as fixed, since — although its "walls" are made up of other chains 
which are also diffusing — its relaxation time results from the cooperative 
motions of many chains and is much longer than that of a single chain. The 
deformed tube progressively disappears starting from its ends and is replaced 
by a new tube having an equilibrium random conformation. The final result 
of the model is a constitutive equation for the stress tensor, having again the 
form of a visco-elastic behaviour with a memory function determined by a 
relaxation spectrum. 

11.4.2 Macroscopic flow phenomena in polymeric liquids 

As noted in Faber's book,4 an aqueous solution of high-molecular-weight poly-
acrylamide at a concentration in the range 1-2% by weight will allow a demon­
stration of most of the behaviours outlined below. 

A striking phenomenon, for which the reptation model provides adequate 
explanation, is that of tension-thickening: that is, the extensional viscosity 
[?7ext = % + 2% in Eq. (11.14)] increases as the rate of extension increases. At 
large rates of extension the ratio between r/ext and the apparent shear viscosity 
in a polymeric liquid may exceed that of a Newtonian liquid by several orders 
of magnitude. In such cases rjeKt is apparently much larger than the other 
viscosities (rji for i = 1-4) individually. This property is responsible for the 
fact that many polymeric liquids may readily be drawn out into fine threads. 
Whereas a water jet forced under pressure through an orifice will soon break up 
by a dynamic instability, tension thickening stabilises polymer threads against 
formation and development of necks in their structure. 

Polymer solutions not only have a large extensional viscosity, but are also 
visco-elastic. Thus, if a falling stream of polymeric solution is suddenly cut, 
the two parts of it contract in much the same way as a stretched rubber band 
contracts when it is cut. 

A further manifestation of non-Newtonian behaviour in polymeric liquids 
is the die-swell effect. This is observed when a jet of liquid emerges from a 
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capillary tube through which it has been moving in a laminar fashion under 
a longitudinal pressure gradient. Except at very small values of the Reynolds 
number, a jet of a Newtonian viscous fluid would narrow as it emerges from the 
capillary, but jets of polymeric liquids normally increase markedly in radius. 
Inside the capillary the liquid feels a diagonal stress given by Eq. (11.16), which 
is compressive insofar as 77ext exceeds 3773 and therefore tends to shorten ring-
shaped elements of fluid. When the fluid emerges the rate of shear vanishes 
and the stress disappears, but because of its visco-elasticity the fluid carries 
memory and responds to the removal of the compressive stress by expanding. 

A related effect was demonstrated by Weissenberg. Consider a vertical rod 
dipped into a dish of liquid and spinning about its axis. The liquid is rotating 
too, with an angular velocity which decreases with increasing radius. The 
effect of such rotation on a dishful of a Newtonian viscous liquid is to displace 
the liquid away from the rod and to lower the level of the liquid surface there. 
The effect which is observed on a polymeric liquid is quite the reverse and is 
again related to the large value of its extensional viscosity. 

A striking manifestation of shear thinning in polymeric liquids is a phe­
nomenon referred to as the spurt effect, which is often observed when such a 
liquid is extruded through a cylindrical capillary tube. The discharge rate as 
a function of the pressure gradient displays a hysteretic transition from a slow 
to a fast regime. 

The rate of flow of water through a capillary may be strongly affected by 
small additions of polymeric molecules. Such additives not only enable water 
at large values of the Reynolds number to flow more freely through tubes, but 
also reduce the drag force exerted on obstacles. 

11.5 Flow in Nematic Liquid Crystals 

As introduced in Chap. 9, liquid crystals are locally anisotropic mesophases 
intermediate between a crystalline solid at moderately low temperatures and 
an isotropic liquid at moderately high temperatures. Liquid-crystal behaviour 
has been observed in pure compounds of both rod-like and disk-like molecules. 
In all mesophases the local structural anisotropy is usually uniaxial in the 
case of rod-like molecules, as determined by the local relative alignment of the 
molecules. The nematic mesophase has a high degree of such orientational 
order, but no long-range translational order. The preferred axis of orientation 
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Fig. 11.4. The three main types of deformation in a nematic liquid crystal. 

usually varies from point to point in the absence of anchoring fields, but a mon-
odomain sample is optically uniaxial and strongly birefringent. The anisotropy 
is a function of the orientational order and decreases with rise of temperature, 
dropping abruptly to zero at a threshold temperature through a weakly first-
order transition into the isotropic phase. Such materials commonly feature in 
liquid-crystal displays. 

The orientation of the director in a nematic in state of flow is determined by 
four competing factors. In addition to anchoring by external fields if present 
(see Sec. 11.2) and to the emergence of flow alignment (see Sec. 11.3), the 
containing solid surfaces affect the flow of thin fluid specimens and can be 
treated in various ways so as to locally anchor the director. The fourth influence 
is that of the so-called curvature elasticity of the nematic sample, that we 
introduce immediately below. 

11.5.1 Curvature elasticity and the Freedericksz transition 

Curvature elasticity is associated with stiffness of the nematic sample 
against orientational deformation of the director.376 The three main types of 
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deformation are splay, twist and bend, as illustrated schematically in Fig. 11.4. 
Considering first the case of pure splay, the elastic free energy per unit volume 
is ^Ki(d(j)/dx)2, where <j> is the tilt of the director and K\ is the splay elastic 
constant. Taking the director to be of unit magnitude and describing it by a 
unit vector n, we have <f> = nx and the free energy density is ^Ki(dnx/dx)2. 
Extension of the argument to twist and bend is immediate and leads to the 
expression 

F = - t f i (V • hf + \K2{h • V x nf + ]-K3(n x V x n)2 , (11.18) 

for the elastic free energy density. The elastic coefficients Ki are known as 
Frank's elastic constants. 

The most direct way of measuring the elastic constants of a nematic sample 
is by studying the distortions induced by an external magnetic field. The 
geometry has to be chosen so that the orienting effect of the field works against 
the orientations imposed by the surfaces confining the liquid crystal. The three 
principal experimental geometries are illustrated in Fig. 11.5. Above a critical 
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Fig. 11.5. Geometries for measuring the three elastic constants of a nematic liquid crystal. 
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value Hc of the field, a distortion sets in which can be detected optically. 
The threshold field is determined by the appropriate Prank constant and by 
the difference %a between the principal diamagnetic susceptibilities along and 
perpendicular to the axis of the director. 

To explain the mechanism of this so-called Preedericksz transition, let us 
consider the twist geometry shown in Fig. 11.5(b). The free energy density in 
the presence of the field is 

and the equilibrium value of the twist angle -&{z) is determined by minimisation 
of F. For small deformations we can set •& = $mcos(qz), neglecting higher 
harmonics and with q = n/d where d is the sample thickness. Minimisation of 
the free energy density yields 

*=(S)(£f- <"•»> 
The shape of the energy per unit area as a function of i?m is reminiscent of 
the free energy curve for a second-order phase transition: its minimum lies at 
i?m = 0 for H < Hc, but the distorted state becomes the stable one above the 
threshold field. 

11.5.2 Macroscopic flow and disclinations in nematics 

We consider a layer of nematic liquid crystal which is undergoing planar shear 
flow in the x\ direction between two plates located at x-i = ±d/2 and moving 
in opposite directions. No external field is applied, but the plate surfaces 
have been treated so that at contact with them the director is anchored along 
X3. On account of the shear the director tends to twist away from the X3 
axis into an orientation almost parallel to the x\ axis, which is favoured by 
the flow (see Fig. 11.6). There is in this situation a competition between 
the torque responsible for flow alignment and the counter-torque exerted by 
curvature elasticity until, at some critical shear rate, the orientation of the 
director along X3 becomes unstable against a perturbation twisting it about 
the X2 axis by an angle (3{x2). The result is that above the critical shear 
rate the fluid forms rolls, which are parallel to the x\ axis and have thickness 
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Fig. 11.6. Twist of the director in a nematic under shear (left), leading to the formation of 
liquid rolls (right). 
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Fig. 11.7. Director field in the neighbourhood of a disclination (after Frank, Ref. 377.) 
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comparable to d in the 2:3 direction. The sense of circulation alternates from 
one roll to the next. 

Rapid circulation of a nematic liquid crystal, induced by increasing the rate 
of shear or the temperature difference between top and bottom surface, leads 
to the generation of disclinations. A disclination is a line of singularity around 
which there is a marked distortion in the director field (splay, twist, bend or 
their combinations, as the case may be). Figure 11.7 reports from the work of 
Frank377 examples of the director field tp(a) as a function of the angle a around 
the disclination line, for several values of the parameters s and c entering the 
relation 

ip(a) = sa + TTC . (11-21) 

With reference to Fig. 11.8, if incident light is polarised at an angle ip with 
respect to the x axis its polarisation will remain unchanged at all points on 
the polar line a and hence will not be transmitted by a crossed analyser, 
resulting in a dark brush at an angle a. A similar situation arises when rp 
changes by 7r/2. Thus disclinations become visible as dark brushes when viewed 
through a microscope between crossed polarisers, the number of dark brushes 
per singularity being 4|s|. Neighbouring disclinations connected by brushes are 
of opposite signs and the sum of the strength of all disclinations in the sample 

Fig. 11.8. The arrows mark the orientation of the director along a polar line at an angle 
a. Incident light which is linearly polarised at angle ip or ip ± 7r/2 will be extinguished by a 
crossed analyser and will give a dark brush at angle a. 
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The deformation energy associated with an isolated disclination in a circular 
layer of radius R and unit thickness is obtained from elasticity theory as370 

where K is a suitable elasticity constant and rc is an inner cut-off radius inside 
which elasticity theory breaks down. Prom Eq. (11.21) we get 

F = -KKS2 In (£•}. (11.23) 

For a pair of disclinations at a relative distance r, using ip = Vi + V^ we 
similarly get 

F = TTK(SI + s2)
2 In ( — J - 2irKslS2 In (—) . (11.24) 

In the case of singularities of opposite sign (S1S2 < 0), F increases with in­
creasing r: therefore, such singularities attract each other with a force which 
is inversely proportional to their separation, as would be the case for two 
current-carrying conductors. 

For reviews of optical effects and optical applications in liquid crystals the 
reader may refer to a reprint collection by Janossy378 and to an article by 
Durand.379 

11.6 Colloidal Dispersions and Suspensions 

Colloidal dispersions are two-phase systems involving mesoscopic solid or liquid 
particles suspended in a liquid. Examples to be met in everyday life are paints, 
ink, lubricants, cosmetics, and milk. The rheological properties of suspensions 
are important in many industrial applications. An introductory account may 
be found in an article by Hansen and Pusey.380 

The sizes of colloidal particles are typically in the range 10 to 103 nano­
meters — much larger than single molecules but small enough that Brownian 
motion usually dominates gravitational settling, allowing thermodynamic equi­
librium to be attained. Solid colloidal particles may be mineral crystallites, 
synthetic polymeric particles such as polystyrene spheres suspended in water, 
or amorphous polymethylmetacrylate (PMMA) particles dispersed in hydro­
carbons. These mesoscopic particles are impenetrable and usually attract each 
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other via strong van der Waals forces, which may lead to flocculation or coag­
ulation of the colloids into gel-like structures. Flocculation may be precluded 
by either steric or electrostatic stabilisation. Steric stabilisation is achieved 
by grafting polymer brushes on the surface of the colloidal particles, provid­
ing an elastic repulsion when two particles come so close together that their 
brushes are compressed. Colloidal particles in water generally acquire a charge 
by dissociation of surface groups, forming with ions in solution electrical dou­
ble layers which repel strongly whenever neighbouring surfaces approach closer 
than the Debye screening length. In fact, the interactions between colloidal 
particles can be tuned, e.g. by the addition of salt to a dispersion of charged 
colloids, leading to a reduction of the screening length, or by the addition of 
free polymers. 

These tunable interactions lead to a rich variety of phase behaviours which 
have been thoroughly investigated, both experimentally and theoretically.381 

Depending on colloid concentration and on the concentration of added ions 
or polymers, the suspensions exhibit gaseous, liquid, crystalline, and glassy 
phases. A schematic phase diagram of the colloid-polymer system380 is re­
ported in Fig 11.9. Colloidal crystals in suspension are readily detected by 
Bragg reflection of visible light, whose wavelength is comparable to the spac­
ing of the colloidal lattice. Similarly the dynamics of colloidal systems is slow 
on the laboratory time scale, permitting detailed studies of metastability and of 
the kinetics of phase transitions. Statistical mechanical approaches have been 
developed to account for polydispersity, the inevitable distribution of sizes of 
colloidal particles. 

11.6.1 Flow properties of colloidal dispersions 

We base the present summary of the rheology of colloidal dispersions on the 
account given by Pusey,381 with main attention to simple shear flows in sus­
pensions of essentially hard spheres. Figure 11.10 reproduces from the work 
of Choi and Krieger382 the relationship between viscosity and shear stress for 
suspensions of PMMA spheres of various sizes in a variety of liquid media. 
The spheres are stabilised by polymer coating. The relative viscosity TTR on 
the vertical axis is denned as the ratio 77R = 77/770, where 77 is obtained from 
the shear stress a needed to induce flow at strain rate 7 as 77 = cr/7 and 770 
is the viscosity of the pure suspension medium. The reduced stress sj^ on the 
horizontal axis, on the other hand, is defined as s^ = iPa/k^T where R is the 
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average particle radius. With the characteristic time scale of the flow-induced 
structural rearrangement defined as rs = -y-1 (see Sec. 11.1) and estimating 
the structural relaxation time ELS T tt R2/D with the diffusion coefficient given 
by D = kBT/6irr)R, we find T/TS = 67TSR. That is, the reduced stress sR used 
as the abscissa in Fig. 11.10 is a measure of the ratio T/TS between the two 
time scales that we have introduced in Sec. 11.1. 

The data reported in Fig. 11.10 show a number of noteworthy features. 
Firstly, plotting relative viscosity against reduced stress leads to superposi­
tion of the data for suspensions of particles of different sizes, but preserves a 
strong dependence on colloid concentration as measured by the volume frac­
tion <j>. For <j> < 0.2 the viscosity is independent of shear rate, i.e. the suspen­
sions effectively show Newtonian behaviour. However, for <f> > 0.3 significant 
shear thinning is observed after a first Newtonian region at low shear rate, and 
shear thinning is followed by a second Newtonian plateau at higher shear rates. 
Shear thinning is observed for values of sR of order unity; that is, when the 
time scales for Brownian motions and for shear-induced motions of the parti­
cles become comparable so that the microstructure of the suspension can be 
significantly distorted during flow. The second Newtonian regime is believed 
to result from the persistence of a relatively stable non-equilibrium microstruc­
ture over a range of shear rate. There also are indications of shear thickening 
occurring at still higher shear rates in the data for the more concentrated 
suspensions. 

In his discussion of these data Pusey381 appeals to various other obser­
vations such as (i) computer simulations of shear thinning in simple fluids, 
showing that it may be associated with the ordering of atoms along stream­
lines, and (ii) light scattering studies of the distortion of the structure factor 
of colloidal fluids in a state of weak flow, suggesting string-like ordering of the 
particles at volume fractions near that for hard sphere freezing. Even more 
pronounced structures are observed under an oscillatory shear. It is clear, 
therefore, that suspensions of model colloids under controlled conditions of flow 
can exhibit a variety of non-equilibrium structures. Pusey381 also remarks that 
for their PMMA samples Choi and Krieger found that the low-shear viscosity 
appears to approach a divergence at (j) RS 0.58 and the high-shear viscosity at 
4> « 0.63. These values of the volume fraction lie on the metastable amorphous 
branch of the hard sphere phase diagram (see Sec. 10.6.1), suggesting that 
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Fig. 11.9. Schematic colloid-polymer phase diagram, plotting the polymer chemical poten­
tial against the volume fraction of colloid. 
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Fig. 11.10. Relative viscosity versus reduced stress for suspensions of PMMA spheres of 
various sizes in a variety of suspension media. Curves are labelled by the volume fraction. 
(Redrawn from Pusey, Ref. 381.) 
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these viscosity divergences may be associated with the glass transition and 
with the achievement of random close packing. 

11.6.2 The rheology of field-responsive suspensions 

The term "field-responsive liquid matter" embraces a class of soft-condensed-
matter systems which undergo significant changes in their properties upon 
application of an external field. Electro- and magneto-rheological fluids as 
well as ferrofluids belong to this class.383'384 

Of particular interest is the family of two-phase systems made from a re­
sponsive phase in an inactive fluid medium. The active phase may consist of 
particles carrying either a permanent or an induced dipole, which are randomly 
dispersed in the medium at low concentration and tend to aggregate at higher 
concentration. The present summary is based on a short review by Rubi and 
Vilar.385 This is mainly addressed to ferrofluids in which the active phase is 
made of single-domain magnetic particles with permanent dipole moments. 

As in the case of dispersions of more conventional colloidal particles or of 
polymer solutions, the suspended particles interact with the fluid medium and 
modify its flow behaviour. These interactions are assisted by the external field 
and are influenced by the dipolar interactions between the particles, so that 
the static and dynamic properties of the suspension, such as its magnetisation 
and its viscosity, may be substantially affected. 

In dilute suspension the viscosity increases linearly with the field strength in 
a constant field, whereas in time-dependent fields it may decrease with increas­
ing field even in the linear regime.386 The magnetic particles inside a ferrofluid 
which is in a state of rotation inside an alternating magnetic field may behave as 
nanomotors or nanogenerators.387 The essential point is the interplay between 
the magnetic and rotational degrees of freedom of the particles: in the simplest 
model the dynamics of the dipole moment is determined by the rotations of 
the particle to which it is rigidly attached, and these reflect a balance between 
magnetic, hydro dynamic, and Brownian torques. Additional dissipation arises 
form the torque exerted on the fluid medium, thus modifying its transport 
coefficients. Non-linear effects emerge when the magnetic dipole is not rigidly 
attached to the particle but may rapidly orient itself in the direction of the field. 

Coating of the particles at low concentration with a surfactant prevents 
aggregation and stabilises the suspension. With increasing concentration 
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the main new feature is the formation of chains or more complex branched 
structures. Chains appear at low temperatures, where Brownian effects are 
negligible, or in systems with strong dipolar interactions. More compact 
aggregates may be formed in other cases, including the case of ferrofluids con­
taining nanosized ferromagnetic particles. These structures may evolve in time 
by growth or fragmentation, under the influence of the external field, of the 
velocity field, and of fluctuations. The rheological behaviour of the fluid in 
this regime is very sensitive to the underlying structures. 

11.7 Surfactant Systems 

In the final section of this chapter, an area which is at the time of writing 
the focus of a great deal of interest in the general area of soft-condensed-
matter physics will be briefly presented. This concerns surface-active agents, 
or surfactants. 

The possibility of forming a monomolecular layer of an insoluble substance 
on the surface of water was first discussed scientifically by Franklin in 1774. 
Quantitative studies of the properties of these films were undertaken in the 
early part of the twentieth century — in particular, it was soon established 
that the films behave as a two-dimensional ideal gas in the limit of a large 
available area per molecule and that a variety of phases can be evidenced from 
measurements of surface pressure as a function of available area.388 Precise 
measurements of surface pressure as a function of density and temperature on 
films of pentadecylic-acid molecules on water substrates have led to the 
determination of the liquid-vapour coexistence curve and demonstrated 
the existence of a critical point for such a system of insoluble aqueous sur­
factant molecules.389 These measurements show resemblance, in a general 
fashion, to the behaviour of three-dimensional fluids and yield mean-field 
critical exponents. 

A surfactant molecule combines a water-soluble hydrophilic head with a 
water-insoluble hydrophobic tail. The molecules adsorb at air-water or oil-
water interfaces and form monolayers with the hydrophilic part lying in the 
water. Surfactants aid in stabilising emulsions of water-insoluble liquids such 
as oil. If two droplets of oil in an emulsion come into contact, their coalescence 
would reduce the surface area and is energetically favoured. The emulsion can 
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be stabilised by reducing the interfacial tension, this being achieved by the 
addition of surfactants. 

Surface-active materials can also act as wetting agents and as detergents. A 
small amount of water poured on a greasy solid surface will take the form of a 
drop under its surface tension. But if the water contains surfactant molecules, 
the drop is covered by a layer of such molecules with their hydrophobic tails 
pointing out and capable to adhere to the solid. Gravitation can then flatten 
the drop and induce its spreading out on the surface. With regard to detergent 
action, a particle of dirt sticking to cloth can become progressively covered by 
a monomolecular layer of surface-active moleules and can thus be detached 
from the cloth and removed by rinsing water. 

Surfactant molecules can also self-assemble in water solutions to hide their 
hydrophobic part from the water, forming micelles, vesicles, sponge phases, and 
liquid crystal phases among others.390 Layers of such amphiphilic molecules are 
the building blocks of all membranes found in biological systems.391 The study 
of mixed aqueous solutions of polymers and surfactants holds much promise 
both for practical applications and for biology. Following Langevin,392 the 
main ideas in understanding the physical chemistry of molecular organisation 
will be outlined below, with main attention to aqueous surfactant solutions. 

Aggregates of surfactant molecules in dilute solutions are in equilibrium 
with monomers, the monomer concentration staying close to the solubility 
limit. The issue of the shape of the aggregates can be addressed by means 
of a parameter (V/AL) where V is the volume of the nonpolar part of the 
molecule, L its length and A the area occupied by the molecule at the interface. 
If (V/AL) < 1/3 the relative bulkiness of the polar part is dominant and 
the aggregates show a strong curvature towards water, taking the shape of 
spherical micelles. If 1/2 > (V/AL) > 1/3 cylindrical aggregates are favoured, 
while if 2 > (V/AL) > 1/2 flat aggregates are favoured. The latter case often 
corresponds to double chain lipids: there may not be enough surfactant to 
form a lamellar phase and the portions of lamellae close up into vesicles. For 
(V/AL) > 2 the formation of aggregates into non-polar solvents is favoured, 
leading to the formation of reversed micelles. 

The notion of spontaneous curvature of surfactant layers has been general­
ized by Helfrich393 by appeal to curvature elasticity. Flat lamellae are formed 
when the elastic energy associated with curvature is large compared with the 
thermal energy k&T, but if it becomes comparable to k&T the layers become 
undulated due to thermal fluctuations and a sponge phase with no long-range 
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order is stabilised. A further elastic energy term regulates the balance between 
vesicles and the sponge phase. More generally additional terms in the free en­
ergy, e.g. from dispersion entropy and from interactions between aggregates, 
may contribute to determine the actual structure of the aggregate. 

Interactions between aggregates play an important role in more concen­
trated solutions and affect both size and polydispersity of micelles. They 
can also promote transitions from spherical to cylindrical micelles in ionic 
surfactant solutions. The cylinders may become entangled when they are suf­
ficiently long and the solution becomes visco-elastic as a semi-dilute polymer 
solution. In still more concentrated solutions the excluded volume interactions, 
among others, can promote the appearance of liquid crystalline phases. 

Surfactant aggregates are transient because the molecules constantly 
exchange between them and the solvent. The exchange time turns out to 
be related to the solubility of the surfactant: it may be of order 1 0 - 5 seconds 
for surfactants with chains of 16 carbons and increase up to hours for lipids. 
The rheological behaviour is strongly affected by the exchanges, an extreme 
case being the sponge phase for which the viscosity is only slightly greater than 
that of water although the structure is connected over a macroscopic length 
scale. 
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Chapter 12 

Turbulence 

12.1 Introduction 

In 1883 Osborne Reynolds, while studying the flow of liquids through long 
pipes of uniform circular cross-section, found that the flow would be orderly 
for velocities up to some critical speed, above which it would abruptly become 
turbulent at some distance from the inlet. A turbulent state of flow was ob­
served to be the norm above the critical speed, although a metastable state of 
laminar flow could be maintained by taking care to eliminate disturbances. As 
already noted in Sec. 1.4, the criterion for the transition from laminar to tur­
bulent flow is formulated in terms of the Reynolds number Re = va/v, where 
a and v are suitable length and velocity scales and v is the kinematic viscosity 
(see Sec. 6.5). 

Most flows occurring in nature and in engineering practice are turbulent. 
As defined in the book of Bradshaw,394 "turbulence is a three-dimensional 
time-dependent motion in which vortex stretching causes velocity fluctuations 
to spread to all wavelengths, between a minimum determined by viscous forces 
and a maximum determined by the boundary conditions of the flow". As re­
marked in the book by Tennekes and Lumley,395 on the other hand, "everyone 
who, at one time or another, has observed the efflux from a smokestack has 
some idea about the nature of turbulent flow. However, it is very difficult to 
give a precise definition of turbulence. All one can do is list some of the charac­
teristics of turbulent flows". In the instance of flow past an obstacle, the evolu­
tion with increasing Reynolds number is from the laminar fluid motion treated 

309 



310 Turbulence 

in Sec. 6.4 to the generation of a trail of vortices and to a fully developed tur­
bulent wake involving fluctuations over a wide spectrum of space-time scales. 

The development of turbulence is often triggered by one type or another of 
instability in the state of flow. Some common cases of instability are reviewed 
in Sec. 12.2. The onset of an instability in a conservative system can be 
identified by a linear normal-mode analysis, in which one examines small-
amplitude distortions of the state of the system and searches for situations 
in which a frequency of oscillation may become imaginary. In a dissipative 
system such as a viscous fluid, one may look at small distortions of the form 
£„(£) oc exp[—i(u)n + ryn)£] and search for conditions under which a damping 
coefficient 7„ changes sign from negative (giving an exponential return to the 
unperturbed state in a time interval of order 7"1) to positive (corresponding 
to a permanent departure from the assumed stable state). 

The path from the first appearance of an instability to the full development 
of turbulent motions is, however, hard to explore because of the insurgence of 
nonlinearities. In general terms, an instability brings the system to a new stable 
state and introduces new characteristic frequencies in its spectrum. Detailed 
studies of dynamical systems governed by nonlinear equations of motion have 
shown that their behaviour may become essentially unpredictable through suc­
cessive period doublings in the phase space trajectory, up to an accumulation 
point where the trajectory no longer closes on itself. The system is unpre­
dictable because small initial differences may then grow without limit. Ruelle 
and Takens396 have shown that the loss of predictability can be the result of 
the nonlinear interaction of a small number of modes. Intermittency may also 
arise for certain ranges of nonlinearity parameters, within which the motion 
is predictable for many periods in succession but is interrupted by bursts of 
chaos of unpredictable duration. The "route to chaos" in Benard convection 
is reviewed in Sec. 12.3. 

A characteristic feature of turbulence is indeed its irregularity or random­
ness, which requires the use of statistical methods. In analogy with other 
nonlinear systems, a liquid in turbulent flow may show intermittency and the 
formation of regular structures due to self-organisation of vorticity. Another 
feature of turbulence is its diffusivity, which causes rapid mixing and high rates 
of transfer of mass, momentum, and heat. This is the most important prop­
erty of turbulent flows as far as applications are concerned. Vortex dynamics 
plays a major role, since turbulence is characterised by high levels of fluctu­
ating vorticity needing a three-dimensional description. This can be based on 
the nonlinear equations of fluid mechanics, in which the viscous shear stresses 
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perform deformation work which increases the internal energy of the fluid at 
the expense of the kinetic energy of the turbulence. Turbulence needs a con­
tinuous supply of energy to make up for viscous losses. 

These features can be illustrated for Newtonian fluids by reference to 
homogeneous turbulence in incompressible flows, a situation that may be 
approached experimentally by passing a fluid with uniform speed through 
a uniform grid of wires. The vortices that are shed by the grid produce a 
turbulent field downstream which can be regarded as independent of position. 
This is used in Sees. 12.4 and 12.5 to illustrate the concepts of energy cas­
cade and of diffusivity in turbulence. Turbulent shear flows are introduced in 
Sec. 12.6, with main attention focused on boundary-free flows. We conclude 
the chapter with brief sections on the role of compressibility and on turbulence 
in non-Newtonian fluids. Appendix 12.1 elaborates the parallelism between the 
Navier-Stokes equation and the Maxwell equations in electromagnetism, which 
was already appealed to in Sec. 6.5 in introducing vorticity. The mathematical 
framework for a series solution of the Navier-Stokes equation is presented in 
Appendix 12.2. 

12.2 Instabilities in Fluids 

We have indicated in Sec. 12.1 how instabilities in fluids may be identified by a 
linearised analysis. We first give an example of this in the so-called Rayleigh-
Taylor instability. We then turn to convective and vortex-sheet instabilities, 
of direct relevance to the onset of turbulence. 

12.2.1 The Rayleigh-Taylor instability 

This instability can arise when a vessel containing two liquids, or a liquid 
and a gas, separated by a planar interface is abruptly turned upside down 
so that the heavier fluid lies above the lighter one. The two forces at work 
are the gravitational field and the interfacial tension. We consider a wave­
like corrugation of the interface, given by a vertical displacement C(r,£) = 

Ck(t) exp(ik • r) with r a vector in the interfacial plane. The frequency of such 
a wave is 

,2 _ -(p'-p)gk+jk3 
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(see Chap. 13), where p' and p are the mass densities of the two fluids (p' > p), 
g is the acceleration of gravity and 7 the interfacial tension. This result fol­
lows from balancing the gain in gravitational energy per unit area, which is 
« (p' — p)g(k, against the increase in free energy from stretching of the inter­
face, which is « 7&2Ck-

We see from Eq. (12.1) that for p' > p there is a cut-off wave number kc, 
given by 

Kc — 
( ^ ^ 1 1 / 2 , (12.2) 

7 

below which a corrugation of the interface can grow in amplitude. Wave-like 
corrugations with k < kc have imaginary frequency. The value of k in this 
range that maximises -w£, and hence the rate of growth of the instability, is 
fcmax = fcc/\/3 from Eq. (12.1). 

The dimensions of the container are in fact relevant in practice. Consider­
ing a rectangular container of largest dimension L in the plane of the interface, 
the smallest wave number that it can admit is TT/L so that the inverted con­
figuration will be maintained if TT/L is larger than the cut-off wave number in 
Eq. (12.2). 

Other surface tension-controlled instability phenomena are (i) the breaking 
of a jet into a regular succession of drops, and (ii) viscous fingering. These are 
discussed in the book by Faber.4 

12.2.2 Thermal convection and the 
Rayleigh-Benard instability 

In Chap. 7 we introduced heat conduction through Fourier's law setting the 
heat current as proportional to the temperature gradient and discussed its role 
in the density fluctuation spectra of a liquid within the framework of linearised 
hydrodynamics. As the temperature excess at the surface of a warm body in 
contact with the liquid increases, convective motions become important. They 
affect the temperature distribution through the liquid and in particular tend 
to localise the temperature excess within the boundary layer. 

A set of equations describing convection in a liquid in steady incompressible 
flow is given by the so-called Boussinesq approximation. Let the temperature 
distribution in the liquid be T+i?(r). The gravitational potential as a function 
of height z is mp{l — a$)gz, where a = —p~1(dp/dT)p is the coefficient of 
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thermal expansion. The Navier-Stokes equation in the form (6.33) is then 
written as 

- V ( — + gz j + agtiVz « (v • V)v + vV x w . (12.3) 

This equation is combined with the continuity equation for incompressible flow, 
V • v = 0, and with a transport equation for the local excess temperature, 

(v • V)0 = KV 2I? , (12.4) 

where K = \/(mpcp) with A the thermal conductivity coefficient and cp the 
specific heat per unit mass. These equations should be solved to find the fields 
of pressure, temperature, and velocity for given boundary conditions. The 
ratio Pr = V/K is known as the Prandtl number: it is about 6 for water and 
rises to « 103 in more viscous non-conducting liquids. 

The Rayleigh-Benard instability can arise when the fluid is confined be­
tween two horizontal plates with heat being supplied from below. In this case 
the hotter fluid near the bottom is less dense and tends to rise, displacing an 
equal volume of cooler fluid from the top. The result is a cellular pattern of 
convective currents in the form of an ordered array of convection rolls, as is 
sketched in Fig. 12.1 (notice the opposite circulation in adjacent rolls). The 
release of gravitational energy in these motions should at least compensate for 
viscous dissipation and, since both thermal conductivity and viscosity play a 
role, the governing parameter should depend on both as well as on the dis­
tance h between the two plates. The appropriate dimensionless combination 
of system parameters is the Rayleigh number Ra = agh?AT/i>K, and the onset 
of circulation corresponds to a critical value for this number. 

The problem was solved analytically by Rayleigh in 1916 for the case of 
two free-slip boundary conditions (see Drazin and Reid397 for details). In a 

Fig. 12.1. Schematic representation of fluid rolls in Rayleigh-Benard convection. 
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normal-mode approach one looks for solutions of the Boussinesq equations in 
the form vz(x,z) = f(z)exp(ikxx) etc., and finds f(z) = sin(kzz). Thus, 
the rolls have extension -K/kx along the x direction and ir/kz in the vertical 
direction, each having indefinite extension in the third direction as indicated in 
Fig. 12.1. The smallest value of the Rayleigh number for which the instability 
sets in corresponds to an aspect ratio kx/kz = l / \ /2 and is equal to 277r4/4 = 
657.5. In the case of two no-slip boundaries the critical Rayleigh number is 
found by numerical solution to be raised to the value Rac « 1708 and the aspect 
ratio of the rolls decreases to about 1. This agrees well with experiment, as 
discussed for instance in the book of Lesieur.398 

If the domain is not constrained horizontally, the convective cells will rather 
be of hexagonal shape with the warm fluid ascending in the centre. The so-
called Benard-Marangoni convection occurs in a thin liquid layer with a free 
top surface and leads to the formation of hexagonal cells, whose size is of the 
order of the layer thickness.399 In this case convection is driven mainly by the 
release of surface free energy rather than of gravitational energy. 

The direction of convection may be reversed in a deep layer of a liq­
uid mixture, when molecular interdiffusion is much slower than thermal 
conductivity.398 Let the warm fluid at high concentration c lie above the cold 
fluid at low c: then a fluid volume displaced upwards will adjust to its new 
ambient temperature before adjusting its concentration and will feel positive 
buoyancy and keep rising. This so-called double-diffusive instability leads to 
formation of hexagonal convective cells with cold fluid of low c ascending in 
the centre. Such a situation arises in an ocean which is strongly heated on its 
surface by the sun: evaporation increases the salinity in the surface layers and 
cold water rises from the depths to the surface. 

12.2.3 The Kelvin-Helmholtz instability 

The third main type of hydrodynamic instability concerns sheets of vortices. 
The so-called Kelvin-Helmholtz instability occurs in a mixing layer at the 
interface between two flows of different velocities coming from the trailing edge 
of a thin plate. This instability is eventually responsible for vortices which pair 
off and amalgamate in the downstream motion. A detailed representation of 
the evolution of the flow is given in a set of colour pictures in the book of 
Lesieur.398 
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The mechanism of vortex formation is described by Eq. (6.34) for vortic-
ity and can be understood as follows.400 Consider a mixing layer centred in 
the plane X2 = 0, the field of flow velocity being v\(x2) along the x\ direc­
tion and tending to the asymptotic values ±U far away from the plane (if the 
asymptotic flow velocities are U\ and U2, we set TJ\ — Ui = 2U and adopt 
a reference frame in which ^1(2:2 = 0) = 0). As discussed by Rayleigh for 
a fluid of uniform density and vanishing viscosity, the velocity profile is rep­
resented by V\(x2) = U tgh(:E2/<5o): thus, a strip of width « 25Q separates 
the two regions corresponding to uniform flows at velocity U and —U, and a 
crucial point is that the velocity profile has an inflection (a point of vanishing 
second derivative) at x-i = 0. In fact, suppose that the strip is perturbed by 
a sine-wave undulation of wavelength Aa (Fig. 12.2(a)). Pressure differences 
between the two layers enhance the amplitude of the disturbance and, since 
(d?vi(x2)I'dx^) « 0 near the inflection point, the vorticity is convected by the 
basic flow ^1(0:2) s o that the crests of the disturbance (for xi > 0) and its 
troughs (for X2 < 0) travel in opposite directions (Fig. 12.2(b)). This steepens 
the vortex sheet and transforms it into a spiral (Fig. 12.2(c)). 

The vortices created in this way have initially a longitudinal wavelength Aa 

and they all have the same strength and an indefinite length in the X3 direction. 
The wavelength of the perturbation which grows more rapidly is determined 
by the thickness of the rotational layer and is of order ATT6Q. In fact, in real 
fluids the layer thickness tends to increase with time because viscosity induces 
diffusion of vorticity as already discussed in Sec. 6.5. 

Starting from a regular array of vortices as described above, the subsequent 
two-dimensional evolution of the layer can be investigated numerically.398 In 
essence, the fundamental eddies tend to undergo successive pairings. The 

Fig. 12.2. Schematic illustration of the formation of Kelvin-Helmholtz vortices in a mixing 
layer. (Left to right: (a), (b) and (c)). 
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first pairing in the row of primary vortices is easily understood in terms of a 
subharmonic of wavelength 2A0. Assuming that the phase of the subharmonic 
perturbation is such that vortices are alternately lifted into the region X2 > 0 
and pushed into the region x^ < 0, the convection of vorticity by the basic flow 
will draw each vortex in the upper region against its neighbour in the lower 
region. Each vortex tends at that point to entrain the other in the irrotational 
motion that it induces outside, so that the vortices roll up about each other. 
Since the outer parts of each vortex turn more slowly than its inner parts, both 
vortices develop tails which mix into spirals during their pairing. 

Experimentally, the formation of Kelvin-Helmholtz vortices is best studied 
in the case of a vortex sheet separating two liquids of different density,401 

in which case both gravity and interfacial tension are at work. Instabilities 
against periodic disturbances may also arise in boundary layers in the absence 
of an inflection point, their origin being associated with the viscosity of real 
liquids in flows at very high Reynolds number Re = mp5U/rf PS 103 where U is 
the velocity just outside the boundary layer and S is the thickness of the layer. 

12.3 Evolution of Benard Convection with Increasing 
Rayleigh Number 

The convection rolls that are formed in a Rayleigh-Benard cell at the critical 
value Rac of the Rayleigh number are stable over a considerable range of values 
of Ra above Rac. The insurgence of period doubling is then observed to occur, 
as in the classical numerical studies of the transition of a nonlinear dynamical 
system to chaotic behaviour. 

Figure 12.3 is taken from experiments by Libchaber et al.402 on Benard 
convection in liquid mercury, using a rectangular cell which accommodates 
four convection rolls at Ra > Rac «s 1700 (see Sec. 12.2.2). The quantity 
which is being measured is the temperature of the fluid just above the middle 
of the lower plate as a function of time: after staying essentially constant up 
to Ra = 2Rac, this starts oscillating in time just as the rolls start oscillating. 
The period has already doubled once at Ra = 3.47Rac (top trace in Fig. 12.3) 
and three further doublings occur at 3.52Rac, 3.62Ra<; and 3.65Ra<;. The se­
quence of relative separations between successive period doublings approaches 
an accumulation point at 4.4 ±0.1 in this experiment, to be compared with the 
Feigenbaum number (= 4.669) entering the classical theory of the approach to 
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Fig. 12.3. Period doubling cascade in Benard convection. Direct time recordings of 
temperature for various stages of the period doubling cascade. (Redrawn from Libchaber 
et al., Ref. 402.) 

chaos.403 Similar results have been reported by Giglio et a/.404 for a transition 
of water in a Benard cell to chaotic behaviour via a reproducible sequence of 
period-doubling bifurcations. 

Intermittency as a route to turbulence in Benard convection has been 
demonstrated experimentally by Berge et al.405 by measuring the variation 
in time of the vertical fluid velocity at a point near the middle of a convection 
cell containing silicone oil. As is shown in Fig. 12.4, the velocity is seen to 
oscillate in a regular manner at Ra = 270Rac, but at higher Rayleigh numbers 
erratic bursts of motion disturb these oscillations. 

A persistence of coherent structures is observed as the fluid is being driven 
through successive bifurcations towards chaos and turbulence. These struc­
tures are seen for instance in the granulation which is present on the surface of 
the Sun, at a Rayleigh number of order 1020. The solar granulation consists of 
hexagonal cells having size of order 103 km and lifetime of order 10 minutes. 
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Fig. 12.4. Intermittency in Benard convection: time dependence of the vertical velocity at 
the centre of convection cell at Ra /Ra c = 270 (A), 300 (B) and 335 (C). (Redrawn from 
Berge et al., Ref. 405.) 

This is an example of a turbulent system where an instability drives the cre­
ation of coherent structures which are destroyed from nonlinear interactions 
and reformed through the instability.398 

Investigations of Benard convection in the laboratory have been extended 
to values of Ra as high as 1015. Figure 12.5 reports the results of such an 
experiment carried out by Castaing et al.406 on very cold helium gas. The 
shear viscosity and thermal conductivity of this fluid are very small and can 
be further reduced by cooling, while its density can be significantly increased 
under pressure. The data are shown as a plot of normalised heat transfer 
(giving the so-called Nusselt number Nu) against the Rayleigh number Ra. 

In these experiments convection evolves into oscillations with increasing Ra 
and becomes truly turbulent at Ra « 5 x 105. The transition from "soft" to 
"hard" turbulence at Ra w 4 x 107 is marked by a significant reduction of the 
observed temperature fluctuations and by a change in the power-law relation 
Nu oc Ra", from n = 1/3 to n ^ 2/7. The 1/3 law implies that the vertical 
heat flux is independent of the distance between top and bottom plates, as if it 
were occurring within thin boundary layers. A quantitative analysis has been 
given by Faber4 using the concept of eddy thermal conductivity, paralleling 
the notion of eddy diffusivity to be introduced in Sec. 12.5.3. 

In the regime of hard turbulence, flow visualisation experiments have re­
vealed a complex pattern of intermittent events. A column of fluid rises in 
a corner of the cell from the boundary layer near the hot plate through fluid 
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Fig. 12.5. Correlation between reduced heat flow (expressed as the Nusselt number Nu) and 
the Rayleigh number Ra in Benard convection. (Redrawn from Castaing et al, Ref. 406.) 

which is moving relatively slowly, and on reaching the other boundary layer 
sets up a wave-like disturbance which triggers the release of a falling column in 
the opposite corner. This in turn triggers the release of another rising column. 

12.4 Energy Cascade in Homogeneous Turbulence 

The introduction that we give in the rest of this chapter to the phenomena 
of turbulence in flows can only be very brief, but is designed to stimulate the 
reader to further study. We have already referred to useful books on turbulence: 
here we add references to the more recent book by Pope407 on turbulent flows 
and to the works of McComb and of Bohr et a/.,408 which focus attention 
principally on theoretical aspects and modern developments. 

The main features of turbulence are not governed by the molecular prop­
erties of the fluid in which it occurs. The theoretical framework therefore 
resides in the nonlinear equations of hydrodynamics: for Newtonian fluids 
the Navier-Stokes equation combined with the continuity equation for particle 
density (often reduced to the case of incompressible flow, since compressibility 
is not essential for turbulent behaviour — but see Sec. 12.7) and the entropy 
production equations given in Sec. 7.4.2. The linearised form of these equa­
tions, valid for very small disturbances, allows us to treat instabilities in flows 
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but cannot deal with the large levels of fluctuation that are met in turbulence. 
In the opposite limit one may focus on the asymptotic properties of flows at 
very high Reynolds numbers: this approach is based on a limit process related 
to vanishing molecular viscosity and is very useful in treating boundary layers. 

In intermediate regimes, where turbulence consists of fairly large fluctua­
tions governed by nonlinear equations, simple physical concepts are often of 
great help in bridging the gap between the equations and the actual flows. 
Dimensional analysis becomes useful in cases when some aspects of the struc­
ture of turbulence depend only on a few independent variables: the form of 
the relation between dependent and independent variables is then fixed and a 
solution can be obtained aside from numerical coefficients. More generally, if 
energy transfer is fast enough that the effects of past events do not dominate 
the dynamics, the problem may be reduced to treating a state of local dynam­
ical equilibrium which is mainly governed by local parameters such as scale 
lengths and times. Dimensional methods and similarity arguments can then 
be very useful. 

We illustrate the above notions in the rest of this section and in the following 
two sections by examining (i) the transfer of energy from large to small eddies 
in homogeneous turbulence, which is driven by vortex stretching and ends into 
viscous dissipation of energy near the so-called Kolmogorov microscale; and 
(ii) the ability of turbulence to transport and mix energy, momentum, heat, 
and particles of matter. 

12.4.1 Energy cascade and Kolmogorov microscales 

Let us consider a uniform stream of fluid passing at high Reynolds number 
through a grid of wires having spacing a. The grid feels a drag force and 
reacts to it by shedding eddies at a uniform rate. Near the grid these have 
a velocity field distribution which, in Fourier transform, is peaked around a 
wave number ko « a - 1 . Further downstream, however, the eddies get twisted 
around by their neighbours and instabilities develop. The lines of vorticity 
embedded in the fluid become progressively longer and, as discussed in Sec. 6.5, 
vorticity is increased by this stretching process. At the same time the lines 
of vorticity can diffuse because of viscosity and, as they do so, they can come 
together with other lines of opposite sense and form closed loops which may 
shrink and collapse. During the evolution the energy initially associated with 
wave numbers of order a - 1 is transferred to larger values of k, i.e. to smaller 
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length scales, and is ultimately dissipated as heat. Thus, in this so-called 
energy cascade the supply of translational kinetic energy for ordered flow has 
to sustain rotational motions and dissipation by viscosity. 

The nonlinear mechanism described above is dissipative because it creates 
smaller and smaller eddies until the eddy size becomes so small that viscous 
dissipation of their kinetic energy is very fast. Let us attempt to assess the 
smallest length and time scales involved in a turbulent flow, where viscosity 
can be effective in smoothing out the velocity fluctuations and prevent the 
generation of even smaller scales of motion by dissipating energy into heat. 
Following Kolmogorov,409 one assumes that small-scale motions are relatively 
independent of the mean flow and of the relatively slow large-scale turbulence: 
they should depend only on the rate of energy supply and on the kinematic 
viscosity. It is also fair to assume that the rate of energy supply should be 
equal to the rate of dissipation. With the dissipation rate e per unit mass 
(measured in m2 /s3) and the kinematic viscosity v (measured in m2 /s) we can 
form scales of length, time, and velocity as follows: 

^ ( f ) " 4 , r^Q^, „_<„)•*. (12.5) 

These are referred to as the Kolmogorov microscales. Notice that the Reynolds 
number formed from £ and v is lv/v = 1: thus, small-scale motions are quite 
viscous. Viscous dissipation can adjust itself to the energy supply by adjusting 
the length scale. 

Let us now try to compare, following Tennekes and Lumley,395 the large-
scale and small-scale aspects of turbulence by an estimate of the rate e at 
which the large eddies supply energy to the small eddies. We take the amount 
of kinetic energy per unit mass in large-scale turbulence as proportional to u2 

and its time scale as d/u, d being the size of the largest eddies as introduced 
above in discussing flow through a wire grid. The rate of energy supply to the 
small-scale eddies is therefore of order u2/(d/u), that is 

u3 

e « ^ - . (12.6) 

By substituting this in Eq. (12.5) we obtain 

^ R e - 3 / 4 ) ™ Re-*/ 2 , ^ R e - 1 / 4 , (12.7) 
d a u 



322 Turbulence 

where Re — ud/v is the Reynolds number of the flow. We see from Eq. (12.7) 
that the separation in scales between large and small eddies widens as the 
Reynolds number increases: that is, a turbulent flow at a relatively low Re has 
a relatively coarse small-scale structure. 

Visual evidence of the small-scale structure of turbulence can be obtained 
via light scattering (see Sec. 7.5.2). Gradients of the index of refraction are 
steeper if they are associated with smaller eddies, so that any optical system 
which is sensitive to such fluctuating gradients allows direct observations of 
the small-scale structure of turbulence. An example is the jittery appearance 
of the horizon as seen on a very hot day. 

We should stress at this point that the Kolmogorov microscales, though 
much smaller than the typical scales of length and time for large eddies, are 
still typically larger than molecular scales. The latter can be measured by 
the molecular mean free path Ac travelled on average by a molecule between 
successive collisions in the fluid. Using from kinetic theory the expression 
v « cAc for the kinematic viscosity in terms of the speed of sound c and of 
the mean free path, we get £/Xc RS Re 1 ' 4 /Ma and rc/Ac « Re1 '2 /Ma2 where 
Ma = u/c is the Mach number. Thus, turbulence may reach down to the scale 
of molecular motions only if the Mach number is very large — a rare situation. 
Taking as illustrative orders-of-magnitude for turbulent flows Ma m 1 and 
Re ss 106, we get £/Xc ~ 30 so that a hydrodynamic model is still appropriate. 
Since the smallest length and time scales in turbulence tend to be appreciably 
larger than molecular scales, the molecular transport processes are adequately 
described in terms of hydrodynamic transport coefficients. 

12.4.2 Kinetic energy spectrum 

While we have so far discussed only the length scales of the largest and smallest 
eddies, dimensional analysis can also give the form of the energy spectrum in 
the so-called inertial subrange, for values of the wave number k in the range 
a - 1 -C k <C i~x. Assuming homogeneous and isotropic turbulence, the energy 
spectrum is described by a function E(k) defined so that the quantity E(k)dk 
is the mean kinetic energy per unit mass which is stored in the range of wave 
number between k and k + dk. Since E(k) is measured in m 3 / s 2 , the quantity 
s2E3/k5 is a dimensionless combination. This suggests that, if we may assume 
that E does not depend on other system parameters in any important way, we 
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may write409 

E(k) <* CKe2 /3fc-5/3 . (12.8) 

The numerical coefficient CK entering this Kolmogorov (—5/3) power law for 
the spectrum of kinetic energy is CK = 1.7±0.2 from a fit to available data.408 

Experimental evidence on the inertial subrange has been obtained from 
studies of large-scale turbulence in the oceans or in the atmosphere. Figure 12.6 
reports a one-dimensional section of an energy spectrum constructed by Faber4 

from data obtained by Grant et al.410 using a flowmeter towed by a ship in a 
channel off Vancouver Island. The straight line through the data has a slope 
equal to —5/3 and is seen to hold over almost three orders of magnitude in k. 
At higher wave numbers viscosity sets in and has the effect of cutting off the 
spectrum quite rapidly. 

I 

, 0910
k i 

Fig. 12.6. Section of one-dimensional energy spectrum in measured large-scale flow. 
(Redrawn from Faber, Ref. 4.) 
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12.4.3 Energy spectra from renormalisation group approach 

A general result for the energy spectrum of a randomly forced fluid has been 
obtained by Fournier and Frisch411 using a renormalisation group (RG) ap­
proach. Earlier work by Forster et al.412 had shown that large-distance and 
long-time properties of randomly stirred fluids which involve strong nonlinear-
ities are amenable to RG techniques. Such machinery has been worked out 
when the turbulence at small length scales acts like an eddy viscosity. 

The case in point concerns three-dimensional incompressible flow under 
random forcing with a power law spectrum f(k) = 2Dk3~a, f(k) being the 
amount of energy injected per wave number. When a is positive and small, 
the resulting energy spectrum for the fluid is E(k) oc &1 _ 2 a /3 . This result had 
been obtained by Fournier and Frisch413 by a dimensional argument. 

In their later work these authors calculate the coefficient of proportionality 
in the spectrum and find 

E(k) = ( I O T T 2 ^ ) 1 / 3 ! ) 2 / V / 3 * ; 1 - 2 " / 3 . (12.9) 

This result was obtained by a quite different approach in the early work of 
Kraichman.414 

12.5 Diffusion in Homogeneous Turbulence 

12.5.1 Time and length scales in diffusion 

Turbulence can transport and mix not only kinetic energy as discussed above 
in Sec. 12.4, but also momentum, heat, and particles. Turbulent diffusivity is 
by orders of magnitudes faster than molecular diffusion. Following Tennekes 
and Lumley,395 we illustrate this fact by simple arguments based on the heat 
transport equation (12.4). 

We consider for our present purposes a space- and time-dependent distri­
bution $(r, t) of local temperature and rewrite Eq. (12.4) to account for the 
time dependence in the form 

— + (v • V)0 = «V2tf. (12.10) 

We use Eq. (12.10) to discuss a diffusion problem in which a characteristic 
length a is assigned — this would be the case, for instance, with the heating 
of a room of given size. If we drop the convective term, then the time scale of 
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the process is the molecular diffusivity time tm which is given by dimensional 
analysis as 

* m » — . (12.11) 

The turbulent time scale tt is instead obtained from the two terms on the LHS 
of Eq. (12.10) as 

t t * - , (12-12) 
v 

where v is a characteristic velocity of the turbulent flow. As already remarked 
in Sec. 12.2.2, the ratio V/K is the Prandtl number which is of order unity in 
a fluid of moderate viscosity. We may therefore replace K by v in Eq. (12.11) 
for an estimate, with the result 

tm va Re 

Thus, molecular transport is slower than turbulent transport by a factor of the 
order of the Reynolds number. As anticipated, this factor may be as large as 
several orders of magnitude. 

The same argument can be used to assess diffusion in the case where a 
time scale t is assigned, leading to a molecular length scale am « (yt)1/2 and a 
turbulent length scale at « vt. The latter estimate is applied by Tennekes and 
Lumley395 to estimate the thickness of the atmospheric boundary layer, where 
the acceleration of flow by the Coriolis force imposes a time scale of the order 
of the inverse of the angular velocity of the frame of reference. Typical values 
at intermediate latitudes are t « 104 s and v « 0.3 m/s, leading to at « 3 km 
which is indeed of the same order as the observed layer thickness. 

12.5.2 Stochastic modelling of turbulent diffusion 

A systematic way to assess length and time scales in turbulent diffusion is from 
the study of appropriate random differential equations. Stochastic modelling 
plays an important role in many aspects of the physics of the liquid state: for 
example, the Fokker-Planck stochastic equation entering Kramers' treatment 
of reaction rates. While the focus here will be on turbulent diffusion, it will be 
useful to precede this example with some more general material. 

(12.13) 
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At first, it can be asserted mathematically (see, for instance, Vanden 
Eijnden415) that stochastic modelling amounts to the study of a linear par­
tial differential equation for a scalar quantity, say p(r,t) evolving in phase 
space {r} according to 

at V 9T 

where the operator ^(r, d/dr; t) is to be taken as random with statistics to be 
specified. In physical cases, Eq. (12.14) may be the Liouville or the Fokker-
Planck equation associated with a set of random nonlinear ordinary differential 
equations. 

A complete solution of Eq. (12.14) would determine the statistics of p(t). 
However, even if only the mean value (p(t)) is of interest, and in spite of the 
linear character of the equation, averaging it leads to the highly nontrivial 
"closure" problem of determining (£(t)p(t)). Vanden Eijden employs the work 
of Kraichman416 to approximate the solution of this problem. 

In the specific case of turbulent diffusion, Eq. (12.14) is specialised to the 
form 

^ = - v ( r , t) • Vp(t) + D0V
2p(i) • (12.15) 

Here Do denotes the molecular diffusion coefficient, while the velocity field 
v(r, t) is taken to be a Gaussian random process, statistically isotropic and 
stationary. The statistics of v(r, t) are then fully specified by the scalar 
covariance 

(v(r + r',t + i')v(r', t')) = 2 f ° dkS-^^-E(k, t), (12.16) 
Jo kr 

where the quantity E(k,t) is referred to as the energy spectrum. It is nor­
malised as 

f°° 3 

J dkE(k,0) = -^, (12.17) 

where v"l is the mean square velocity in any direction. The characteristic length 
and time scales of the velocity field are then defined as 
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Evidently, these scales are determined by the spectrum of the velocity auto­
correlations. 

Vanden Eijnden discusses the meaning of these length and time scales. 
If either £* or £„ is finite, then his approximate solution of the stochastic 
equation for (p(t)) corresponds at long times to a diffusion process with an 
effective diffusion coefficient D* which, in the limit D* 3> Do, depends on 
some combination of u*, I* and i* only. However, if both (.* and t* are infinite, 
the asymptotic dynamics is superdiffusive and non-Gaussian. The case £* = 
oo means that much of the energy is concentrated in the large scales of the 
velocity field, while in the case t* = oo the velocity field undergoes no effective 
decorrelation as time goes on. 

We refer to the original article415 the reader who may be interested in 
further details. 

12.5.3 Eddy diffusivity 

In view of the complex nature of the equations describing turbulent transport, 
it is tempting to reformulate the problem in terms of a differential equation 
involving an effective diffusivity. This approach, though treating turbulence as 
a property of the fluid rather than as a property of the flow, greatly simplifies 
the mathematical analysis. The problem of particle diffusion in a field of homo­
geneous isotropic turbulence was addressed in the early work of Batchelor.417 

We summarise his findings in general terms. 
A complete description of the statistical history of a group of marked par­

ticles would need a large number of parameters. The simplest parameters 
characterise the position of the group of particles at any time and essentially 
determine the probability P(r , t) that any point r is immersed in marked fluid 
at time t. The next simplest parameters characterise the shape of the group, 
and in particular determine the dispersion of marked particles about their 
centre of mass. Batchelor introduces for this purpose the joint probability dis­
tribution Q(r, t\ro,to) that the separation between two particles goes from ro 
to r in the time interval from to to t. 

An approximate formulation of the problem of relative diffusion in terms 
of a differential equation is then sought. Batchelor uses the fact that, after 
diffusion has been proceeding for some time, the dependence of Q on ro is 
lost. Under this condition the joint distribution is replaced by a function 
T(r, t — to — t\), where t\ depends on ro. Under the guidance of the usual 
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diffusion equation as set out in Chap. 5, T is taken to obey the differential 
equation DT(r,t — to — ti) = 0, where the differential operator D is given 
by D = d/dt — V • {KW) with an effective diffusivity K that may depend on 
relative displacement and on time. 

Batchelor thought it reasonable to relate the effective diffusivity to 
the mean square relative displacement (r2(t)). The assumption K{t) = 
a({r2(t)})2/3 then leads to 

T( r , r ) = (27r<r2»-3/2exp ( - ^ ) , (12-19) 

where (r2) = (2ar/3)3. Clearly, other forms of the effective diffusivity would 
allow other physical situations to be treated by this approach. 

12.6 Turbulent Shear Flows 

We turn at this point to discuss diffusivity of momentum in turbulent shear 
flows as described by the Navier-Stokes equation. For steady flow of an in­
compressible fluid with constant viscosity we have 

(v -V)v = - ( m p ) - 1 V p + zA72v. (12.20) 

As a first step it is useful to compare the length scales of momentum diffusivity 
in laminar against turbulent boundary layers. 

12.6.1 Length scales of momentum transport 

The case of laminar flow over a flat plate with no-slip boundary condition is il­
lustrated in Fig. 12.7, which is taken from the book of Tennekes and Lumley.395 

A characteristic length L and a characteristic velocity U have been attributed 
to the flow, so that its characteristic time is t sa L/U. The viscous term on the 
RHS of Eq. (12.20) describes transport of momentum by molecular processes 
across the main flow: for a fixed time scale, this process defines another length 
scale I « (i/i)1/2 « (uL/U)1/2. Evidently, this length is in this case related 
to the length scale of the main flow by t/L « (yjLUfl2 = Re" 1 / 2 . With 
characteristic velocity fluctuations of order u as indicated in the figure, we can 
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cz=> U 

Fig. 12.7. Convection and diffusion in a laminar boundary layer over a flat plate. (Redrawn 
from Tennekes and Lumley, Ref. 395.) 

(12.21) 

write t = iju and hence we have the scale relation 

e ~ u 

The viscous length I in laminar flow represents the transverse thickness of 
the boundary layer, inside which the molecular transport of momentum deficit 
occurs away from the solid surface. 

We consider next the case of turbulent flow. The momentum transfer is now 
dominantly effected by turbulent eddies, and we may estimate the thickness of 
the boundary layer by again equating the time scale for turbulent diffusivity 
to the convective time scale, that is t/u as L/U. This merely states that 
in an imposed flow the turbulence, being part of the flow, must have a time 
scale commensurate with that of the flow. Thus, Eq. (12.21) still gives the 
scale relation for the boundary layer. However, the small eddies which are 
responsible for dissipation (Sec. 12.4.1) have much shorter time scales, tending 
to make them statistically independent of the main flow. 

12.6.2 Reynolds stresses 

As discussed in detail in Sec. 6.2, the viscous term in Eq. (12.20) arises from 
the Newtonian stress tensor as determined by the gradient of the velocity field 
via intermolecular collisions. In the regime of fully developed turbulence its 
role is taken over by turbulent stresses arising from fluctuations in the velocity 
field, which are known as Reynolds stresses. 

Let us consider steady flow at mean velocity U and let u = (ui, u2, "3) be 
a fluctuating velocity field with zero time average. The a;i-component of the 
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momentum flux per unit area across the faces dx-idx^ and dx\dxz of a fluid 
volume element are mp(Ui + ui)2 and mp{Ui + ui)(£/2 + "2)7 with average 
values mp(Ui + (u?)) and mp(C/it/2 + {MI«2)) where the brackets denote a 
time average. The equivalence between momentum flux and stress follows at 
once from Newton's second law, so that the fluctuating terms in the momentum 
fluxes above correspond to stresses an = — mp{u\) and <j\2 = —mp{uiU2) on 
the faces of the volume element. Notice that (i) an is compressive since (u\) 
is positive, and (ii) the rate at which the a^-component of momentum passes 
through the face dx2dxz leads to a shear stress 021 = <Ti2 on that face, just 
as with viscous stresses. The conclusion thus is that in turbulent flows, even 
though the relative root-mean-square fluctuations of the velocity field may be 
of the order of a percent, the mean motion is not determined only by viscous 
forces. Explicitly, the zi-component of Eq. (12.20) yields the mean momentum 
equation in the form 

(U • V)£/i = - M " 1 ^ + ^ v 2 f / i 

-((gM^M^?))- v* > 
having used the relation (uiV • u) = 0 from the continuity equation. The 
equations for the other components of the velocity field are obtained by cyclic 
interchange of indices. 

In a mainstream of fully developed turbulence, as already discussed in 
Sec. 12.5.1, the Reynolds stresses are in fact much larger than the viscous 
stresses. If one then tries to account for the Reynolds stresses by deriving 
from the original Navier-Stokes equation additional equations for the velocity 
autocorrelation functions in Eq. (12.22), one runs into what is known as the 
closure problem of turbulence: unknown correlation functions such as (uiu\) 
are generated by the convective term. This problem is typical of all nonlinear 
stochastic systems. 

Many attempts have therefore been made in the literature to find an ap­
proximate reduction of the Reynolds stress tensor to a form similar to that of 
the Newtonian stress involving the velocity gradient, by introducing an "eddy 
viscosity". A similar attempt in regard to "eddy diffusivity" has been illus­
trated in Sec. 12.5.3. There are some special cases in which the turbulent 
diffusivities depend simply on the velocity and length scales of the flow, as in 
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the Couette flow between a fixed wall and a moving wall (see the discussion 
given in the book of Bradshaw394). In general, however, there are two pro­
found differences between turbulent stresses and viscous stresses: (i) turbulent 
stresses are continuous whereas molecules collide only at intervals, and (ii) the 
dimensions of turbulent eddies are not small relative to those of the flow. The 
reader may find critical assessments of the so-called mixing length for eddy 
viscosity in the books of Faber4 and of Tennekes and Lumley.395 

More recently, great progress has been made in understanding turbulence 
through the solution of the nonlinear Navier-Stokes equation by direct nu­
merical methods.418 We have met an example of such results in the study 
of the evolution of a layer of Kelvin-Helmholz vortices in Sec. 12.2.3. The 
so-called lattice Boltzmann method, that we introduce immediately below, 
has known rapid expansion in the late eighties and has been progressively re­
fined and extended to the point where it is a competitive technique to treat a 
variety of nontrivial flows. 

12.6.3 Lattice Boltzmann computing 

The structure of the Navier-Stokes equation is quite independent of the details 
of the underlying microscopic dynamics, which only determine the numerical 
values of the transport coefficients. This university motivates the use of micro-
dynamical models which, while giving up as much irrelevant detail as possible, 
still retain the basic aspects of the physics of fluids. Lattice gas models are 
within such a class of models. Their aim consists in the definition of a sim­
plified microworld which allows one to recover in the macroscopic limit the 
equations of fluid dynamics. A proper choice of the symmetry of the lattice 
is crucial for this purpose.419 Once the correct symmetries of the lattice are 
chosen, there are two possible ways of defining the evolution rules for the sys­
tem under study. These are known as the lattice gas automata and the lattice 
Boltzmann method. 

In lattice gas automata the variables are the boolean populations and the 
evolution is denned by a set of collision rules. The method is also suitable 
to analyse fundamental issues such as the long-time tail problem in diffusion 
phenomena (see Sec. 5.5.1). In particular, one can consider the Boltzmann 
approximation to the dynamics, by making the same assumption which leads 
to the Boltzmann equation in continuous kinetic theory: particles entering a 
collision are uncorrelated. 
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The development of lattice Boltzmann (LB) methods420 was originally mo­
tivated by the need to overcome the statistical noise problem plaguing the 
lattice gas automata method. The main LB equation has a Chapman-Enskog 
form for the evolution of a particle population distribution fi(r,t) occupying 
at time t the node r of the lattice along a direction specified by a velocity 
variable c* (with i = l,...,b): 

b 

fi(v + Ci,t + 1)- fi(r,t) = J2 AiAfi ~ f?) • (12-23) 
3=1 

The matrix Aij is symmetric and its form is chosen so as to satisfy the sum 
rules coming from mass and momentum conservation. The function ffq is 
determined by the local flow field. 

This approach ensures that the Navier-Stokes equation is recovered in the 
hydrodynamic limit, defined as the limit in which the particle mean free path 
is much smaller than typical scales of macroscopic variation in the properties 
of the system. Focal points for further development at the time of writing 
concern the ability to deal with complex geometries and to incorporate existing 
models for turbulence. An example of advanced results is the demonstration of 
space-time intermittency in channel flow turbulence421: homogeneous isotropic 
turbulence is observed near the centre of the channel, but intermittency is 
found to grow as one moves towards the channel boundaries, in parallel with 
an intensified presence of ordered vortical structures. 

12.7 Turbulence in Compressible Fluids 

A common simplification in the study of turbulence is that its general be­
haviour seems to be unaffected by compressibility, as long as the pressure 
fluctuations within the turbulent flow do not become comparable with the av­
erage pressure. In most instances the velocity fluctuations are small compared 
with the speed of sound. Similarly, density fluctuations due to temperature 
differences in the flow are often small enough to have no direct effect. 

A systematic discussion of the role of compressibility in turbulence has 
been given by Moyal.422 Turbulent motion in a compressible fluid presents 
two different physical aspects: (i) the breakdown of laminar flow and the cre­
ation of fluctuating eddy motion (what Moyal calls "eddy turbulence"), and 
(ii) the existence of fluctuating compressional waves, corresponding to random 
noise. 
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The state of a real fluid is fully specified by its velocity, density, pressure 
and temperature fields, and all of these quantities fluctuate when the fluid is in 
turbulent flow. Since these fluctuations are connected by dynamical and state 
equations, the phenomena (i) and (ii) above must be closely related. Indeed 
Moyal shows that the velocity spectrum can be analysed into two components, 
which are to be interpreted as the spectra of eddy turbulence and of noise 
respectively. He also indicates how these are connected through the equations 
of motion. 

Random noise and proper eddy turbulence interact most strongly at high 
levels of turbulence and large Reynolds numbers. Under conditions such as 
these, it can be anticipated that eddy turbulence will act as a source of noise, 
and vice versa. In contrast, at low turbulence levels and low Reynolds numbers 
the two phenomena will tend to proceed independently. 

The component of the velocity field associated with eddy turbulence has 
much the same character as that found for the total velocity field when the fluid 
is taken to be incompressible. The fact that pressure changes are transmitted 
with a finite velocity is of little consequence in the regime of low Mach num­
bers. Moyal argues that probably the main effect of compressibility on eddy 
turbulence is to introduce an additional source of energy dissipation through 
production of disordered acoustic waves which are transmitted or absorbed at 
the boundaries. 

12.8 Turbulent Behaviour of Non-Newtonian Fluids 

There is much practical interest in turbulence in non-Newtonian fluids and 
viscoelastic materials. As the separation in length scales widens between the 
large energy-containing eddies and the small eddies affected by molecular prop­
erties, the turbulent behaviour will become similar to that of Newtonian fluids 
as it becomes independent of the precise mechanism for energy dissipation. 
However, non-Newtonian effects will appear near solid boundaries even if they 
are absent from the main part of the turbulent motion, since the length scale 
of the largest eddies in the boundary layer is of the order of its thickness (see 
Sec. 12.6). 

Most viscoelastic substances, such as long-chain polymer solutions, have a 
rather low yield stress beyond which the strain-dependent part of the stress 
ceases to rise. In fact, solutions of organic chain molecules, even at very high 
dilution, show significantly smaller drag in turbulent pipe flow than the pure 
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solvent. An explanation offered by Bradshaw394 is that the increase in tur­
bulent intensity and shear stress with distance from the walls is inhibited by 
distortions of the molecules, leading to a larger velocity gradient for a given 
shear stress. 

The anisotropy of liquid crystals makes them especially suited to flow vi­
sualisation by birefringence techniques (see Sec. 9.5). It also has significant 
consequences on their behaviour in thermal convection.423 Consider a nematic 
layer confined between horizontal plates which favour a planar orientation of 
the director along the x direction, say. The orientation of the convection rolls 
cannot be arbitrary in the (x, y) plane, but is related to the orientation of 
the unperturbed director no by a coupling between orientation and flow. This 
coupling vanishes by symmetry when the roll axis is parallel to no and is at 
its maximum when the rolls are perpendicular to no. 

The effect is treated by Manneville423 in a one-dimensional model where 
orientation fluctuations are confined to the (x, z) plane, using an anisotropic 
heat-conduction coefficient. The dynamical equilibrium of the director is de­
termined by a balance between the elastic torque of bending and a viscous 
torque due to convective flow. The latter results from molecular rotations in­
duced by the vertical shear and from damping due to viscous friction. The 
disorientation of the molecules induces a supplementary horizontal heat flux 
which tends to reinforce temperature fluctuations (see Fig. 12.8) and hence to 
lower the stability threshold. 

A similar account can be given for the Carr-Helfrich electrodynamic insta­
bility in nematics inserted in a parallel-plate condenser,423 using the similarity 
in structure between Ohm's law and the thermal conduction law. The control 
parameter in this case is the potential drop applied to the capacitor and the 
new variable is the electric charge density. 

<*> ^ 4 ^ k 
Fig. 12.8. Schematic illustration of heat focalisation in Rayleigh-Benard convection by 
anisotropy in a nematic liquid crystal. (Redrawn from Manneville, Ref. 423.) 
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Appendix 12.1 Navier-Stokes Equation: Analogy with 
Maxwell's Equations 

In dealing with Stokes' law in Sec. 6.4.1 we met an instance of vorticity-free, 
incompressible flow and we saw that in this case the velocity field can be 
written as the gradient of a potential function obeying the Laplace equation. 
A mapping into magnetostatics can thus be set up, with the velocity field 
being mapped into the magnetic induction B and fluid sources and sinks being 
mapped into the effective magnetic poles which appear at the ends of long 
thin current-carrying wires. More generally, the Navier-Stokes equation shows 
analogies with Maxwell's equations of electrodynamics. Here we summarise 
the findings of Marmanis.535 

The equations of motion obtained from the Navier-Stokes equations for an 
incompressible Newtonian flow can be written in the form 

^ ^ = - V $ ( r , t) - l(r, t) + ^V2v(r, t), (A12.1.1) 

where $ = v 2 /2 + (p/mp) is the Bernoulli energy function, 1 = v x UJ is termed 
the Lamb vector with w = V x v being the vorticity, and u is the kinematic 
viscosity. The equation of continuity reduces in this case to the condition that 
the velocity field is divergenceless, 

V-v(r , i ) = 0. (A12.1.2) 

Equations (A12.1.1) and (A12.1.2) constitute a system of coupled partial dif­
ferential equations, to be, of course, supplemented by appropriate boundary 
and initial conditions. 

As Marmanis notes, the above system is considered to be an adequate 
representation of flows at high Reynolds number. However, he also stresses 
that turbulent flows are characterised by many spatio-temporal scales pro­
duced and sustained by a continuous transfer of energy from the larger scales 
to the smaller ones. Under such circumstances, one must be content with a 
description of average quantities. The basic aim is to construct a theoretical 
framework which will allow one to find the average values of the velocity and 
pressure fields at high Reynolds numbers and will be useful for both homoge­
neous and inhomogeneous cases. His proposal consists of a set of equations for 
the average values of the vorticity field and the Lamb vector. 
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After some calculation, the above program can be summarised in four equa­
tions: 

(i) Description of evolution of vorticity, 

^ = - V x l + !/V2w; (A12.1.3) 

(ii) Divergenceless vorticity, 

V-w = 0; (A12.1.4) 

(iii) Equation for "turbulent charge density" n(r, t), 

V • 1 = - V 2 $ = n(r, *); (A12.1.5) 

(iv) Evolution of Lamb vector, 

^ = v2V x u - j + cVn - i/V2l (A12.1.6) 

where j is termed the turbulent current vector and is given by 

j = nv + V x (v • w)v + CJ x V ( * + v2) + 2(1 • V)v . (A12.1.7) 

In reaching Eq. (A12.1.6), a "second-order correction" i/2V4v in the viscosity 
has been dropped, relative to the term i/V2l retained there. 

Thus, Marmanis has constructed a system of four equations which are valid 
locally in any part of the fluid, to a certain useful approximation as far as 
viscous "corrections" are concerned. He stresses the correspondence between 
Maxwell's equations and the set of Eqs. (A12.1.3)-(A12.1.6) for the case when 
the kinematic viscosity is put to zero: 

Vector potential <-> v(r, t) 

Scalar potential «-> <&(r, t) 

Magnetic field «-» w(r,£) 

Electric field <-> l(r, t) 

Charge density <-> n(r, t) 

Current vector -O- j(r , t) 
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Marmanis then invokes a spatial filtering method proposed by Russakoff536 

in the context of Maxwell's equations in order to derive, after some reason­
able approximations on averages, equations for both the homogeneous and the 
inhomogeneous case. 

Appendix 12.2 Series Solution of Navier-Stokes Equation 

Wyld537 appears the first to make systematic use of perturbation theory 
to treat isotropic turbulence in incompressible fluids. Lee538 subsequently 
generalized Wyld's formulation to treat hydromagnetic turbulence. In this 
Appendix, however, we choose to summarise the method of Phythian,539 

who constructs a series solution of the Navier-Stokes equation. The self-
consistent procedure of Phythian yields the direct-interaction approximation 
of Kraichnan540 as the simplest nontrivial approximation. 

For simplicity of presentation, we follow Phythian in using the Burgers 
model equation to derive the desired expansion. As he notes, the whole proce­
dure can be carried through in the same fashion for the Navier-Stokes equa­
tion when the pressure term has been eliminated. The Burgers equation was 
introduced541 as a one-dimensional model of turbulence and is relevant to a 
number of problems, including the formation of large-scale structures in the 
Universe.542 

The velocity field v(x, t) obeys the equation 

dv d2v dv ,. 

Here f(x, t) is an applied random "force" field which has the properties that 
(i) it is statistically homogeneous and stationary, and (ii) has a Gaussian dis­
tribution with zero mean. The resulting statistical distribution of the velocity 
field is obtained by Fourier analysis, with the fluid enclosed in a space-time 
box of volume VT and satisfying periodic boundary conditions. The Fourier 
components v(k,u>) and f(k,u) are readily shown to obey the equation 

(ILJ + vk2)v{k, w) = f(k, w) 

A 
VT + ym^2M(k>UJ''kl>U;^k2>U2)V(kl>u;l)v(k2,U2) , 

(A12.2.2) 
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where the function M has the form M = — (ik/2)6k1+k2,kfiu!i+u2,u
 a n d for later 

convenience an expansion parameter A has been introduced. 
Phythian now bases a perturbation expansion on the form 

iuv(k, u) = a(k, uj)v(k, w) + g(k, u), (A12.2.3) 

where a(k,u>) = —vk2 and g(k,uj) = f(k,w) when A is set to zero. The 
corrections to this zeroth-order results are to be chosen so that certain statis­
tical properties of the velocity field agree from Eq. (A12.2.3) and from the full 
Eq. (A12.2.2). These corrections are written explicitly up to second order on 
the assumption that they can be expanded in powers of A. Phythian stresses 
that the convergence properties of his series expansion are unknown. 

The spectral function U(k,w) of the velocity field is introduced so that 

{v(x,t)\v{x',t')) = —i-j fdk fdu>U(k , w) exp[ik(x — x') + iv(t — t')]. 

(A12.2.4) 

Assuming that the random function g(k,w) has a spectral function /3(k,u>), 
according to 

{g(k, u)g{k', w')> = VT6k+k>,o6u+u>,oP(k, w), (A12.2.5) 

Phythian finds 

U(k,u) = S(k,w)S*(k,tj)f3(k,u>), (A12.2.6) 

where S(k,ui) is the response function S(k,cj) = [iu — a(A;,u>)]-1. 
These results are identical to those of the direct-interaction approximation 

of Kraichan. 
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Liquid—Vapour Interface 

13.1 Background and Empirical Correlations 

In this Chapter, we move away from the theme of bulk liquid properties and 
focus on the liquid-vapour interface. A number of basic concepts concerning 
surface properties of liquids and related applications424 have already been in­
troduced in Chap. 1: here the main emphasis will be on the atomistic aspects 
of surface tension. For the most part we shall concentrate on the simplest case 
of a planar interface, which we take to be perpendicular to the z axis. Then 
one of the central aims of the theory must be to predict the density profile as a 
function of z through the interface. In a monatomic liquid such as argon, this 
density, p(z) say, must evidently reach the homogeneous bulk liquid density 
P\ deep into the dense liquid phase and tend far into the vapour phase to the 
vapour density pv (with pv <C p\ except in the vicinity of the liquid-vapour 
critical point). In between, we must expect a decrease from p\ to pv over a 
characteristic distance which will be a measure of the surface thickness. A 
schematic illustration is given in Fig. 13.1. 

The recognition that the liquid-vapour interface will have associated with 
it a characteristic length has derived from the example above of a simple 
monatomic system. This example will be made quantitative below, but the 
idea of such a characteristic length has much wider validity. 

339 
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gas 

liquid 

Fig. 13.1. Schematic illustration of the particle density profile across the liquid-vapour 
interface near the triple point. 

13.1.1 Relation between surface tension and bulk properties: 
Organic liquids near 298 K 

One consequence of knowing the density profile p(z) through the liquid-vapour 
interface, which was already familiar to van der Waals, is that an (approximate) 
calculation can then be made of the surface tension 7. Being a thermodynamic 
property, 7 is available from experiment for a wide variety of liquids. In this 
section, we shall focus on data for organic liquids.425 

In Table 13.1, values of the surface tension are recorded for organic liquids 
at 298 K. For comparison purposes, four other liquids are recorded there, 
i.e. CS2, H2O, argon at 87 K and xenon at 165 K. From the second column of 
this Table 13.1, 7 is seen to range, in the units specified there, from about 11 
for C(CH3)4 and Ar to about 70 for H 2 0 or about 40 for C6H5CH2. Thus, for 
this rather wide variety of liquids, surface tension varies by a factor of up to 7. 

There has been a long-standing interest in relating such a thermodynamic 
surface property to bulk liquid properties.426,427 In this spirit the isother­
mal compressibility Ki of the bulk liquid is recorded in the third column 
of Table 13.1. From purely dimensional considerations, since 7 is a force per 



Background and Empirical Correlations 

Table 13.1. Relation between surface tension 7 and isothermal compress­
ibility KT of (mainly) organic liquids at 298 K. 

Surface tension 7 Compressibility KT Product -yK^ 

Liquid 

C(CH 3 ) 4 

n-C 5 H 1 2 

n-C6Hi4 

n-C 7H 1 6 

n-CsHis 

n-CioH22 

n-Ci2H26 

C 6 H 6 

CeHsCHs 

C 6 H 5 NH 2 

C 2 H 5 OC 2 H5 

CH3COCH3 

CH3OH 

C 2 H 5 OH 

CH3COOH 

tr -C 2 H 2 Cl 2 

C 2 H 5 Br 

C 6 H 5 Br 

C2H5I 

CS2 

H 2 0 

Ar (87 K) 

Xe (165 K) 

(10 - 3 kg/s2) 

11.5 

15.6 

18.4 

19.6 

21.2 

23 

25 

28 

28 

42 

17 

23 

22 

22 

27 

23 

24 

36 

29 

32 

72 

11 

18 

( IO- 1 0 m s2 /kg) 

— 
18 

16.7 

14.4 

12.8 

11.0 

9.9 

9.7 

9.3 

4.7 

19.7 

13 

12.6 

11.4 

9.4 

11.2 

13.6 

6.7 

9 

9.5 

4.6 

21.8 

17.7 

( 1 0 - 1 2 m) 

— 
28 

31 

28 

27 

26 

25 

27 

26 

20 

33 

30 

28 

25 

25 

25 

33 

24 

26 

30 

33 

24 

32 

unit length while Kf has the dimensions of inverse pressure, it follows that 
the product jKf has the dimensions of a length. We shall formalise this by 
writing 

jKT = L. (13.1) 

This length L is given in the last column of Table 13.1 and, as Freeman and 
March425 stress, has the average value 0.27±0.03 A for the entire set of liquids 
considered. The constancy of the product ^KT is remarkable, bearing in mind 
the spread of values in the separate tabulations of 7 and of Kf. In fact, the 
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approximate constancy of the product ^KT extends to metals and molten salts, 
in addition to insulating molecular liquids.426 

Later in this chapter, but now for monatomic liquids such as Ar and Xe, 
we shall discuss the meaning to be attached to the length L. Suffice it to say 
here that knowledge that the product ^K^ for classes of liquids in standard 
thermodynamic conditions has an approximately constant value is evidently 
sufficient, in conjunction with the bulk liquid compressibility, to make quite 
impressive "predictions" of the liquid-vapour interfacial tension. 

13.2 Definition of a Surface and its 
Thermodynamic Properties 

Let us now give a formal definition of a surface and its thermodynamic prop­
erties. A surface is the region between two bulk phases in which the properties 
of the matter comprising the two phases are characteristic of neither phase, 
but approach those of each of the two phases in regions remote from the other. 
The surface which is the focus of the present chapter exists between a dilute 
vapour phase and a dense liquid phase, separated by a planar region due to the 
effects of gravity and of molecular cohesion. The distance over which this re­
gion extends into the bulk phases is not precisely defined, although as we shall 
see further below, useful characteristic lengths with the order of magnitude of 
the surface thickness are not difficult to obtain. 

13.2.1 Gibbs surface 

In the studies of Gibbs428 it was shown that the properties of a system with a 
surface could be described without reference to the entire heterogeneous region. 
The construction of Gibbs was to choose a dividing plane which passes through 
all points which are similarly situated with respect to the conditions of adjacent 
matter. While the choice of such a dividing surface is at one's disposal, it turns 
out that a specific choice commends itself in single-component systems. 

The so-called Gibbs surface separates the system into three parts, i.e. two 
three-dimensional phases and a two-dimensional interface region. A thermo­
dynamic quantity such as the free energy F can be expressed as the sum of 
contributions from the three parts: 

F = FL + Fv + Fs . (13.2) 
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Here F is the observable value of the free energy for the entire system, while 
Fi, and Fv are the values of the free energy corresponding to homogeneous bulk 
phases occupying the volumes bounded by the dividing surface. The value of 
Fs depends on the choice of the dividing surface, as discussed further below. 
Let us turn in this light to the definition of surface tension. 

13.2.2 Surface tension 

The surface tension of a liquid (or in fact a solid too) is denned as the work 
required to reversibly create unit area of new surface in an isothermal process 
without changes in structure. The reversible work done on a single-phase 
system equals the change in the Helmholtz function. In a two-phase system 
with a surface, however, one must take account of the position of the division 
(cf. Brown and March427). For the general case of a multi-component fluid, 
the surface tension 7 is related to the surface Helmholtz function Fs by 

1A = Fs-Y/^i, (13-3) 
i 

A being the interfacial area. While 7 does not depend on the choice of the 
Gibbs surface, Fs in Eq. (13.3) does. In this equation /i; is the chemical 
potential of the ith component of the two-phase system and I \ is its adsorption, 
which must then depend on the choice of the dividing surface. If the z axis is 
taken normal to the planar surface, with bulk liquid conditions obtaining in 
the limit z —> — 00 and bulk vapour for z —> 00, and the Gibbs surface is taken 
to lie at z = zg, the definition of Ti is 

/

oo 

dz[Pi(z) - p^^zs -z)- PrP°u r tf(z - *s)] • (13.4) 
-00 

Here pi denotes the number density of the ith component. The Heaviside step 
function i?(ar) entering Eq. (13.4) is equal to unity for positive argument and 
to zero otherwise. 

We now emphasise that, in the special case of a single-component system, 
a choice of zs can be made such that the integral arising in Eq. (13.4) is zero. 
This so-called surface of zero adsorption is the most natural choice of dividing 
surface in such systems, as it ensures the equality of the surface tension 7 and 
the surface Helmholtz function Fs through Eq. (13.3). 
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13.2.3 Surface entropy 

For a single-component system with the choice of the dividing surface taken at 
the Gibbs equimolecular surface, from Fs — 7 A we get the differential of the 
surface free energy as dFs = "/dA + Ad'y. On the other hand, we can also write 
the change in surface free energy associated with changes dT in temperature 
and dA in surface area as dFs — —SsdT + -ydA. Thus, the thermodynamic 
definitions of surface tension and surface entropy for a pure liquid are 

7 \dA)T 
(13.5) 

It is easily seen that these formulae agree with the definition of the surface 
internal energy given earlier in Sec. 1.6.2. 

The surface excess entropy per unit area may be viewed as reflecting the 
state of order of the interface relative to the bulk. Typically, the surface tension 
in a system like argon decreases monotonically with increasing temperature 
and vanishes at the liquid-gas critical point, with S$/A showing a similar 
behaviour. This is consistent with the idea that the interface progressively 
spreads out with temperature, to disappear at the critical point. There are 
some exceptions to this rule, however: one example being that of the liquid 
metals Zn, Cd and Cu, where the surface tension shows a maximum in its 
temperature dependence. This behaviour is taken to reflect a quasi-crystalline 
state of order of the first few surface layers in these liquids near to the freezing 
point, which also appears through a visible faceting of solidified specimens 
formed from sessile liquid drops.23 

Studies of the temperature dependence of the surface tension of water have 
shown that its surface entropy is sizably smaller than that of typical nonpolar 
liquids, the entropy deficit being m 1.7 k& per molecule in the surface. This 
fact has been attributed to a preferred orientation of the molecules in the sur­
face layers, implying the presence of surface polarisation. The orientation of 
the molecular dipoles is ultimately due to the role of the molecular quadrupole 
moment in exerting a torque on a molecule in the interfacial region.429 The 
quadrupolar moment modifies the electric field lines and the molecules min­
imise the free energy by orienting themselves so that their electric fields lie as 
much as possible in the region of high dielectric constant occupied by the dense 
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liquid.430 Indeed, no surface polarisation could result if the molecular dipole 
moment were symmetrically located relative to the molecular centre. 

13.3 Phenomenology 

Having discussed the thermodynamics of liquid surfaces, and after giving a 
very practical route to relate 7 to the compressibility K? of the bulk liquid, 
it will be useful to proceed to the microscopic theory of the surface tension of 
liquids via a phenomenological approach. 

As a preliminary let us define the free-energy density ip{p, T) for the homo­
geneous fluid at number density p and temperature T and let us for a moment 
suppose that the surface tension could be expressed through this function as 

/

oo 

dzty{p{z)) - i>{p\)V{-z) - V<(Pv)tf(z)], (13.6) 
-00 

having taken the Gibbs dividing surface at z = 0. The function ip(p, T) below 
the liquid-vapour critical point has the typical shape shown in Fig. 13.2, pre­
senting two minima which allow one to locate the two coexisting phases by a 
common-tangent construction. Equation (13.6) expresses the surface tension 

WP,T) 

Fig. 13.2. Schematic drawing of the excess free energy density as a function of the particle 
density for a fluid well below the critical point. 
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as an explicit function of the density profile p(z): however, it is evident that 
the profile which minimises this functional is a discontinuous jump from p\ 
to pv at z = 0, leading as a result to 7 = 0. This result implies that the 
expression (13.6) is wrong: the relevant free-energy density cannot be a purely 
local function of the particle density. 

The simplest approximation which allows us to account for non-locality 
of the free-energy density in the interfacial region is to supplement the in­
tegrand in Eq. (13.6) by terms which depend on the density gradient. This 
idea appears to go back as far as van der Waals, but the way in which it was 
first phenomenologically implemented is usually associated with the names of 
Cahn and Hilliard.431 The presentation of this approach outlined below follows 
closely that of Widom.432 

13.3.1 Free energy from inhomogeneity 

From fluctuation theory it has been established that, if in a substantial sub-
volume v a small density fluctuation Ap occurs in the number of molecules per 
unit volume p, then there is a free energy increase F\ which is given by 

av(Ap)2 

Fi~-p^r- (13-7) 

Here, as above, K^ is the isothermal compressibility of the bulk liquid while 
a is a constant which, for genuine fluctuations in a liquid, is precisely 1/2. 

The essence of the first step in the Cahn-Hilliard approach is then to ex­
trapolate Eq. (13.7) to describe the free energy associated with any inhomo­
geneity occurring in a substantial volume of a system in which we pass to the 
thermodynamic limit. The point to be emphasised is that Eq. (13.7) is still to 
be used when the inhomogeneity is that which occurs at the interface between 
liquid and vapour phases. Of course, this is using the form (13.7) outside its 
strict range of validity. One further point needs to be noted: what should one 
take for the product p2K^ in Eq. (13.7). At the liquid-vapour interface, this 
will be assumed to refer to the bulk liquid. 

If Fi were the entire free energy associated with the inhomogeneity of the 
density across the interface, then the total interfacial free energy per unit area, 
to be identified with the surface tension, would be 71 = aL{Ap)2 / p2K"£ where 
L is used as simply a measure of the thickness of the interface. But due to 
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the presence of a density gradient across the interface, there is an additional 
contribution to the interfacial free energy. 

13.3.2 Density gradient contribution to free energy 

This further contribution to the interfacial free energy is written as 

F2 = a'v(^j , (13.8) 

where a' is yet another constant. The surface tension is now the sum of the 
free energies F\ and F% per unit area, 7 = aL(Ap)2 / p2 K? + a'L(Ap/L)2, 
and the surface thickness L can be determined by minimising 7 with respect 
to L. This yields L = ym^Kr/a and F\ = F2, i.e. equal contributions to 
the interfacial free energy from the "density fluctuation" and from the density 
gradient. Hence it follows that 

It is reasonable at this point to take as an estimate for Ap the difference 
between the bulk liquid density p and the vapour density pv. But near the triple 
point we have p 3> pv and hence it follows that 7 = 2CKL/KT, or JKT; « L. 
The product 7K1 is therefore a measure of the thickness of the surface region 
(compare Sec. 13.1.1). 

13.3.3 Extension to binary alloys and surface segregation 

The Cahn-Hilliard approach has been extended to binary alloys by Bhatia and 
March.433 In their approach the surface tension can be written in the form 

L ' , *2Scc(0) 
. ^ pkBTKT 

(13.10) 

involving, in addition to the concentration-dependent compressibility, the 
size factor S and the long-wavelength value Scc(0) of the concentration-
concentration structure factor (see its definition given in the context of molten 
salts in Sec. 8.3). These two quantities are given for an alloy at concentration 
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cby 

cvi + (1 - c)i;2 

where v\ and «2 are the partial molar volumes of the two species, and by 

Scc(O) = pkBT ( 1 ^ ) \ (13.12) 

where G is the Gibbs free energy for volume V. 
Let us briefly report from the work of Bhatia and March some examples of 

how the size factor in Eq. (13.10) influences the surface tension of some liquid-
metal alloys. A remarkable case is that of amalgams formed by dissolving 
alkali metals into liquid mercury, where the surface tension has a very strong 
dependence on the alkali-metal content at high dilution. From the size factor 
one estimates that — (d]n'j/dc)\c=o is of order 100 for dilute solutions of K in 
Hg, while for Cs a value three or four times larger results. The experimental 
observations on amalgams are thus explained in a natural physical manner. 

The size-factor term may also lead to a change in sign from negative to pos­
itive in the concentration dependence of 7. This behaviour is indeed observed, 
for example, in the Mg-Sn and Mg-Pb systems. 

Finally, one expects in general that the surface layers will be enriched in 
solute if in the pure state the solute element has a lower surface tension. Equa­
tion (13.10) is an adequate basis to discuss surface segregation in dilute alloys, 
an issue of importance in materials science and in some aspects of catalysis. 
It indicates that solute segregation in the surface layers will be favoured if the 
compressibility increases with solute addition, the correlations of this proposed 
trend with the available data being exposed in the work of Bhatia and March. 

13.4 Microscopic Theories: Direct Correlation Function 

A formally exact approach to the evaluation of the particle density profile p(z) 
and of the surface tension 7 associated with a planar liquid-vapour interface in 
a monatomic liquid will be set out in this section. It involves the direct correla­
tion function c(r, r ') in the presence of the inhomogeneity in the particle density 
across the interface (see Appendix 4.1 for the generalised Ornstein-Zernike re­
lation between c(r, r') and the inhomogeneous two-body correlation function). 
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The results will then be compared with those coming from a low-order density 
gradient expansion of the free-energy density of the inhomogeneous fluid. 

13.4.1 Density profile and surface tension 

The approach that we sketch in this section is based on fluctuation theory 
and its main result was known to Yvon, although the formal development is 
recorded in the literature through the work of Triezenberg and Zwanzig.434 

Actually, in the absence of gravitation a planar liquid-vapour interface can 
undergo long-wavelength fluctuations with an amplitude that diverges in the 
thermodynamic limit (see Sec. 13.6 below). It is therefore assumed that the 
fluid lies in a vertical gravitational field, which is sufficiently weak that its only 
effect is to stabilise the interface. 

A density fluctuation is now assumed to occur so that the density change 
is given by 

5p{R, z) = p{R, z) - p{z). (13.13) 

Here, the vertical direction is the z axis of a coordinate system and R is a 
vector in the plane of the interface. As the density fluctuates, the location 
of the Gibbs surface also fluctuates and this determines a change in surface 
area. The corresponding free-energy change is related to the direct correlation 
function c(R; z, z') by the method presented in Appendix A4.1. If one assumes 
that c(R; z, z') can be Fourier-transformed with respect to the variable R and 
expanded in even powers of the corresponding Fourier variable, the calculation 
leads to an integro-differential equation for the equilibrium density profile, 

and to the expression 

7 = — L d z L * * * * * > z ) ^ ' (13-15) 
for the surface tension. Here we have defined 

co(z,z') = Id2Rc(R;z,z') 

, (13-16) 
c2{z,z')= d2RR2c(R;z,z'). 
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Though there are alternative statistical mechanical approaches which are 
formally exact (see Sec. 13.5 below), these involve the force field describing the 
interparticle interactions in the fluid together with the inhomogeneous two-
body density across the interface. In the theory embodied in Eqs. (13.14)-
(13.16) the interactions are subsumed in the direct correlation function. 

13.4.2 Density gradient expansion: Pressure 
through interface 

At this point we appeal to an approximate approach, which is based on gradient 
expansions in the density p(z). This yields the low-order density gradient (ldg) 
result 

7lde = J°^dzA(P(z))(^-^ , (13.17) 

a formula which appears to go back to van der Waals, but which is given quite 
explicitly by Yang et a/.435 As a consequence of the density gradient expansion, 
in Eq. (13.17) the function A(p) is determined by the direct correlation function 
c(r; p) of the homogeneous fluid, but is needed over the whole range of density 
sampled by the inhomogeneous density profile p(z): 

A(p) = ±kBT f drr2c(r; p). (13.18) 

One can now compare the formally exact result (13.15) with the approxi­
mate model (13.17). To bring the two forms into contact, the simplest assump­
tion is to approximate c2(z, z') by a local form c2(z, z') « A(p(z))S(z — z') with 
z = (z+z')/2. A possible improvement on Eq. (13.17) may thus be obtained436 

by broadening the above delta function into a Gaussian function with a width 
determined by the surface thickness L. 

The expression for the chemical potential obtained in the density gradient 
expansion leading to Eq. (13.17) is 

W d g = /z(p(2)) - 2 ^ y fz[A(p(z))p'2(z)}, (13.19) 

with p'(z) = (dp(z)/dz), and integrating it gives for the pressure p the result 

Pidg = MdgP(z) - i>(p(z)) + MP{Z))P'2{Z) • (13-20) 
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In these equations p(p) and ip(p) are the chemical potential and the free energy 
density of a homogeneous fluid of constant density p, with the local density 
p(z) then inserted for p. These approximate expressions serve to evaluate the 
particle density profile and again can be obtained436 by a suitable local approx­
imation to co(z, z') in Eq. (13.14). Broadening of the off-diagonal dependence 
on (z — z') may again be effected through a Gaussian approximation. 

Using these results Bhatia and March437 have derived an alternative expres­
sion for the surface tension in the low-order density gradient approximation, 
that is 

7idg 
/

OO 

dz\p-pp{z)+i,{p{z))]. (13.21) 
-OO 

By an appropriate expansion of this expression around the bulk liquid density 
they were then able to show that 7iag is connected to the isothermal compress­
ibility of the bulk liquid by a relation of the form (13.1), with L having the 
meaning of a surface thickness. 

13.4.3 Critical behaviour of surface tension 

The work of Fisk and Widom438 was directed at the same problem, with the 
main focus on surface tension in the critical region. They predicted that the 
interfacial thickness L, that they wrote as 

CP2 (Pi ~ P v ) 2 

where /3 is the usual critical exponent which describes the shape of the coex­
istence curve and c is a parameter of order unity, may be identified with the 
correlation range £ for temperatures near to Tc. An immediate consequence of 
the assumption L — £ is the Widom equality439 

p + v = 2(3 + i , (13.23) 

where p, is the critical exponent characterising the temperature variation of 
the surface tension, while v and 7' are the exponents for the correlation range 
and for P2KT (see Sec. 4.8). 

In their light scattering experiments on Xenon in the critical region, al­
ready introduced in Sec. 7.5.2, Zollweg et al.203 measured the temperature 
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Fig. 13.3. Surface tension of xenon as a function of the reduced temperature approaching 
the critical point. (Redrawn from Zollweg et al, Ref. 203.) 

dependence of the surface tension as 

7 = ( 6 3 ± 2 ) ( 1 - -
1.302±0.006 

dyn/cm (13.24) 

(see Fig. 13.3). Using the value /i = 1.302 ±0.006 and taking from experiment 
the values v = 0.57 ± 0.05, 7' = 1.21 ± 0.03 and /? = 0.345 ± 0.01, they 
found 2/3 + 7' - (j, - v — 0.03 ± 0.06. The temperature dependence of L is 
therefore consistent with that of the correlation length within experimental 
error. Zollweg et al. also estimated c = 0.83 ± 0.15. 

13.4.4 Application to nucleation theory 

An important application of the density functional approach in liquid state 
theory, of which the low-order density gradient expansion presented in 
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Sec. 13.4.2 above is a specific practical realisation, has been to the evaluation 
of the free energy barrier for the formation of a small heterogeneous nucleus 
inside a bulk phase, leading to estimations of the nucleation rate. In par­
ticular, vapour-liquid nucleation plays an essential role in phenomena such as 
cloud formation and climatic changes, and in various processes of technological 
relevance. 

The classical theory of nucleation relies on the so-called capillarity approx­
imation (see Sec. 10.2): that is, the assumption that the free energy of a small 
germ of a new phase can be described by a bulk free energy difference, plus 
a surface term in which the effects of curvature are ignored. Oxtoby and 
coworkers440 have used density functional theory to develop a more refined ap­
proach, which allows the order parameters to vary through the cluster so as to 
give the lowest possible barrier for nucleation. Evaluations of processes such as 
liquid condensation from the vapour and crystallisation from the melt show sig­
nificant deviations from classical nucleation theory and yield nucleation rates 
that are orders of magnitude closer to experiment. 

The key idea behind the density functional approach is that a droplet must 
be characterised not only by its radius in conjunction with macroscopic bulk-
phase parameters, but by its full particle density profile. The quantity that has 
to be calculated is the grand potential for an inhomogeneous fluid of given den­
sity profile: rigorous statistical mechanics441 ensures that the exact functional 
contains complete information on the equilibrium states of the fluid, which 
are minima of the functional. In the liquid-vapour nucleation problem one is 
instead concerned with clusters that lie at the saddle point in function space 
between the uniform gas and the uniform liquid. There must be some critical 
cluster density that lies higher in free energy than the vapour but lower than 
any other saddle point, and that provides the lowest barrier to nucleation. At 
the saddle point the first functional derivative of the grand potential is zero, 
but, unlike the case of a true equilibrium case, the second derivative is not 
uniformly positive. In particular, the matrix of second derivatives has one 
negative eigenvalue, corresponding to the fact that the free energy decreases 
with gain or loss of particles by the cluster. 

The essence of the theory thus is the realisation of approximate forms 
of the density functional which preserve the main physics of the nucleation 
problem and yet are amenable to explicit calculations. In Oxtoby's approach 
the attractive part of the molecular interactions appears as a perturbation 
relative to a repulsive hard sphere term. Significant progress has been made 
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by Granasy et al.442 by using a gradient theory proposed by Iwamatsu and 
Horii443 for Yukawa attractions, which introduces the hard sphere chemical 
potential as the order parameter. This has allowed an analytic approximation 
to the results of the density functional approach, which reproduces the density 
profile and the free energy of critical cluster fluctuations with high accuracy. 
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Fig. 13.4. Calculated critical supersaturations corresponding to a given nucleation rate J 
from a density functional approach (full and thick-dashed lines), compared with experiment 
(various symbols) and with classical nucleation theory (thin-dashed lines). (Redrawn from 
Granasy et al, Ref. 442.) 
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Figure 13.4 compares the results of Granasy et al. for the predicted critical 
supersaturations corresponding to given nucleation rates J in insulating fluids 
with experiment and with the results of classical nucleation theory. 

13.5 Microscopic Theories: Two-Particle 
Distribution Function 

An alternative formally exact approach to the evaluation of surface tension, 
which applies to the case of an assumed pair-potential interaction, was based 
by Kirkwood and Buff444 on the two-particle distribution function in the in-
homogeneous fluid. Taking as usual the dividing surface at the interface as 
lying in the z = 0 plane, their result involves a calculation of the tangential 
pressure pt{z) normal to an element of area parallel to the z axis. Away from 
the interface pt(z) becomes equal to the equilibrium bulk pressure p and indeed 
the Kirkwood-Buff expression gives back the virial pressure reported earlier 
in Eq. (4.17). We can now argue that the pressure deficit [p — pt(z)} in the 
surface layer manifests itself macroscopically as a tension exerted by the fluids 
on the walls of the container. The integrated magnitude of this tension per 
unit length is evidently the surface tension, 

/

oo 

dz\p-Pt(z)}. (13.25) 

-oo 

This agrees, of course, with the concept of surface tension as the stress needed 
to stretch the interface. 

13.5.1 Tangential pressure deficit and surface tension 

For a liquid surface in the x-y plane, we calculate the pressure pt(z) along 
the normal to the y-z plane at height z by starting from the x component of 
the force exerted on the molecules in a volume element dr\ by the molecules 
in a volume element dv2- Integration over all pairs of particles gives the force 
transmitted across the y-z plane as 

Fx(z1)= [ dxj dr^^-<k'{r)p^(zUT), (13.26) 
J-OO J(x2>0) r 

where r = r2 — r i , (f>'(r) = d<f>(r)/dr with <j>{r) the pair potential, and p^2\z\, r) 
is the two-particle distribution function giving the probability of finding two 
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particles at relative position T2—T1 in the inhomogeneous fluid. The integration 
over x\ is easily carried out and, using the fact that the integrand becomes an 
even function of x% — x\, we can write 

Fx(z) = | | d r ( g a ~ g l ) V ( r ) p ( 2 W ) . (13.27) 

To this we must add the kinetic part of the stress, given by the momentum 
transport p{z)k^T across the unit area. The result is 

Pt(z) = kBTp(z) - \Jdv{X2~r
Xl)2<t>\r)p^{z,v). (13.28) 

As already remarked, this expression reduces to the virial equation of state 
(4.17) far away from the interface, where p(z) becomes the constant density p 
and p(2'(z,r) reduces to p2g(r). 

Insertion of Eq. (13.28) in Eq. (13.25) yields after some simple algebra 

7 = \ J" dzjdr{X2-r
Xl)2<t>'(v)[pV\z,T) - ti(-z)p{2\r) - tf(z)p<?>(r)]. 

(13.29) 

13.5.2 The Fowler approximation: Relation of surface 
tension to shear viscosity 

Equation (13.29) is formally exact for a one-component fluid with pair inter­
actions. However, it is obviously very difficult to evaluate p^2\z,r) in the 
presence of the interface. The calculations based on this approach have there­
fore had to approximately relate this function to the density profile and to the 
bulk pair function. 

The most simple (though drastic) assumptions are (i) that the gas has 
negligible density, and (ii) the liquid is homogeneous up to the Gibbs surface. 
This yields 

rOO 

1=^P2J drg(r)rW(r), (13.30) 

where g(r) is the pair distribution function of the bulk liquid. 
Various authors, and especially Egry,445 have noticed that the structural 

integral entering the approximate expression (13.30) for surface tension also 
enters an approximate formula given long ago by Born and Green446 for the 
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shear viscosity rj of a dense monatomic liquid in terms of the bulk pair function 
g{r) and a pair potential <j>(r). 

Dividing 7 by 77 therefore eliminates the structural integral and yields 

- w v , (13.31) 
V 

where v is the thermal velocity (A^T/m)1/2. 
Tests for liquid metals at freezing447 show that the order of magnitude 

predicted by Eq. (13.31) is correct, within a spread of roughly a factor of 3. 

13.5.3 Computer studies: Role of interatomic forces in 
condensed rare-gas elements 

From a number of fully qualitative computer studies of surface properties in 
simple fluids, we briefly refer at this point to the calculations carried out 
by Barker448 on argon, krypton and xenon near to their triple point. He 
used the Monte Carlo technique to investigate the role of the interatomic 
forces in determining surface tension, using models both with and without the 
Axilrod-Teller-Muto three-body forces. The three-body forces were treated 
perturbatively. 

The main conclusions reached by Barker were that pair potentials alone 
give values of surface tension which are higher than the experimental values 
by some 20% for argon and 35% for xenon. However, when the three-body 
forces are included, the calculated values of the surface tension are within 
about 2% of the measured values for all three condensed rare gases. 

13.6 Interfacial Dynamics 

From the above presentation of surface thermodynamics and structure we turn 
to discuss some aspects of interfacial dynamics and transport in this and in 
the following section. 

13.6.1 Surface waves 

We consider an ideal non-viscous liquid of mass density p occupying the half-
space z < 0 and in equilibrium with a gas at z > 0. We shall be concerned in 
this section with the waves that in a linear regime can propagate in such an 
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interface, with wave vector k along the x direction say, under the combined 
action of a vertical gravitational field and of surface tension. 

Assuming for the present that the density of the gas is negligible, the ve­
locity field v is confined to the z < 0 region and vanishes there as one goes 
away from the interface deep into the liquid, this being the boundary condition 
appropriate to surface motions. In the absence of viscosity and vorticity, v is 
described at all times by a potential function as v = V<̂>, with 4>(x, z) obeying 
the Laplace equation V2(/> = 0 (see Chap. 6). Writing <j)(x, z) = 4>k(z) exp(ikx), 
the Laplace equation with the boundary condition specified above immediately 
yield <l>k(z) oc exp(fcz) for z < 0. 

The interface at z = 0 moves up and down as the surface wave propagates. 
We describe this motion by means of a vertical displacement £(x, t) such that 
{DC,/Dt) = vz(xX',t) or, after linearisation, C(z,£) = vz(x,0;t). The change 
in free energy density associated with a local displacement £ is pgC, + 7gjf, 
where the first term is due to the gravitational potential and the second is 
the free energy density of the strain arising from the stretching of the surface 
area. We thus find the local equation of motion of the interface by equating 
the acceleration vz to the vertical force per unit mass: 

(13.32) 

Setting C(x,t) = Ckexp[i(A;a; — ut)] we finally get the dispersion relation of 
surface waves, 

wl = gk+(-)k3. (13.33) 

If the density of the gas is not negligible compared with that of the liquid, it 
is easy to show that Eq. (13.33) becomes 

u£ = to-frfrfc + T*3
 ( 1 3 3 4 ) 

This equation was already used in Sec. 12.2.1 in discussing the Rayleigh-
Taylor instability, arising when the locations of the two fluid phases are 
interchanged. 

A nonlinear relation between frequency and wave number, as in Eq. (13.33), 
implies that beat patterns are generated whenever two such waves, having 
equal amplitude but different wave numbers, are made to propagate in the 
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same direction starting from a common origin. The two waves combine into a 
single travelling wave of intermediate wave number and modulated amplitude, 
with the crests and troughs of the modulation travelling at the group velocity 
dw/dk. 

Equation (13.33) involves a critical wavelength A* = 27r/fc*, with k* = 
(pg/7)1/2 , which separates two different propagation regimes. The dispersion 
of the surface waves changes from Wk = (fffc)1/2 for A » A* (the so-called 
"gravity waves") to wk = (/y/p)1^2k3^2 for A < A* (the so-called "ripples"). 
Further discussion of gravity waves in situations different from those consid­
ered here (e.g. waves in shallow ponds or so-called "Stokes waves" of ampli­
tude becoming comparable to the wavelength) are discussed in the book of 
Faber.4 

13.6.2 Capillary waves and surface fluctuations 

The mean square amplitude u2 of the fluctuations in the position of the inter­
face due to capillary waves described by Eq. (13.34) is given by424 

u2 oc — / m " k dk , } ,„ . (13.35) 
7 Ami„ A~2 + fc2 

We have introduced a lower and an upper cut-off in the integral over the surface 
modes and we have denned 

A = ' ( A - * ) ! - 1 ' 2 . (13.36) 
7 

The lower cut-off in the integral in Eq. (13.35) is inversely proportional to the 
system size and therefore vanishes in the thermodynamic limit. 

The quantity A plays the role of a transverse correlation length for fluctua­
tions of the location of the Gibbs surface and, if the gravity field is allowed to 
vanish so that this length diverges, the integral in Eq. (13.35) diverges logarith­
mically at the lower cut-off in the thermodynamic limit. This was anticipated 
in Sec. 13.4.1. 

In fact, a common method for measuring the surface tension consists 
in measuring the capillary length in a capillary rise experiment, as already 
sketched in Fig. 1.7. Assuming zero contact angle, the relation A = (hr/2)1/2 

holds, where h is the height of the capillary rise and r the radius of the capillary 
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tube. Typically, the order of magnitude of A is A « 1.5 mm for the liquid-
vapour interface at 0°C. 

13.6.3 Interface reflectivity and diffuse interface 
in a critical fluid mixture 

When a wave of any kind is incident on an interface between two systems 
having different indices of refraction, a fraction of the wave will be reflected, 
the reflection being specular if the interface is planar. Experimentally, the 
structure of the interface can thus be studied in measurements of the reflectivity 
of photons or neutrons. Since the refractive index is simply related to density 
and composition, specular reflection can probe the system in a direction normal 
to the interface, over a length scale which is determined by the component of 
the wave vector perpendicular to the interface.449 

The reflectivity is given by 

/

oo 
dzn'{z)eikz 

-oo 
(13.37) 

where ni and n^ are the indices of refraction of the bulk phases and n'(z) is 
the gradient of the refractive index in the interface. The wave number k in this 
expression is k — (47r/A) sin 0, where A is the wavelength of the probe and 6 the 
semi-angle of scattering. The Fresnel reflectivity Rp — (n\ — n2) 2 / ( n i +n2)2 is 
recovered from Eq. (13.37) in the case of a step-like interfacial density profile. 

In the opposite limit the reflectance vanishes if the interface becomes very 
diffuse, as would be the case if the root-mean-square amplitude u of interfacial 
fluctuations diverges. As an example we quote the work of Gilmer et al.,450 

who have measured the reflectivity of the interface between the two phases in 
equilibrium for a cyclohexane-methanol fluid mixture just below the critical 
consolute temperature of 45.22°C. The observed reflectivities fall far below 
the Fresnel values expected of corresponding sharp interfaces, with greater 
attenuation at shorter wavelengths, precisely as would be expected of a diffuse 
interface. 

Figure 13.5 reports from the work of Gilmer et al. the measured tempera­
ture dependence of the effective interfacial thickness L on the approach to the 
critical temperature. These data yield L oc (Tc — T) _ M with fi = 0.76 ± 0 . 1 , 
in clear disagreement with the value u = 1/2 derived for an interface in a 
classical fluid by Cahn and Hilliard. Gilmer et al. also obtain the temperature 



Interfacial Transport and Rheology 361 

1000* 

100* 

0.10 
1 • ' 

1 • 1 1 1 1 

Tc 

1 1 

- T (upper curve) 
1.0 

* 
1 I I I . 

NN 

1 1 
10 

I 1 

-1 
1—

 
I 

•*N 
0.1 C 1.0 C 10.0 C 

T - T (lower curve) 

Fig. 13.5. Temperature dependence of the effective interface thickness for a cyclohexane-
methanol mixture near the critical point for demixing, as measured in reflectivity experiments 
using light at various wavelengths. (Redrawn from Gilmer et al., Ref. 450.) 

dependence of the miscibility gap for the two liquids from the measured differ­
ence of the indices of refraction along the coexistence curve, finding the value 
(3 = 0.347 ± 0.008 for the appropriate critical exponent. 

For an extensive presentation of experimental techniques for probing fluid 
surfaces and interfaces, with special emphasis on polymeric materials, the 
reader may refer to the book of Jones and Richards.451 

13.7 Interfacial Transport and Rheology 

Transport phenomena in the interfacial region between two fluids form an area 
of considerable current interest at the time of writing. Interfacial rheology 
studies the response of mobile interfaces to strain. 

Fluid interfacial motions induced by surface tension play a fundamental role 
in many natural and industrial contexts. Examples arise not only in studies 
of capillarity and of low-gravity flows, but also in hydrodynamic and Benard 
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instabilities, in cavitation, and in the dynamics of droplets in clouds and in fuel 
sprays inside combustion engines. One can also cite applications to interfacial 
turbulence, thin-liquid-film hydrodynamics and stability, and the rheology and 
stability of foams and emulsions. The reader wishing to go more deeply into 
this area could consult the edited book of Edwards et al.452 

To begin a discussion of interfacial transport, one is concerned with theory, 
measurement and applications of interfacial hydrodynamics. One can start 
by adopting the classical view of fluid interfaces as idealised two-dimensional 
singular surfaces. The adsorption of molecular or macromolecular surfactants 
imparts intrinsic rheological properties to the interface such as interfacial shear 
and dilatational viscosities and Gibbs elasticity, which indicates the change in 
interfacial tension with area. Gradients in surfactant concentration and tem­
perature cause interfacial tension gradients. With regard to experiment, light 
scattering techniques have acquired considerable importance (see e.g. Dorshow 
and Turkevich453), as has the deep channel viscometer for measuring interfa­
cial shear viscosity. This is defined as the ratio between the interfacial shear 
and the strain rate. 

Numerical simulation of multiphase flows is also of considerable 
significance.454 A most challenging part of the simulation of such flows is to 
allow the modelling of interfaces between different phases and the associated 
problem of surface tensions. An interface is regarded as a transition region 
where physical properties can vary significantly, but smoothly. When macro­
scopic equations (to be specific, Euler and Navier-Stokes) are used to study 
multiphase flows, one must confront the need for their generalisation, due to 
the fact that flow in an interface region evolves differently from behaviour in 
homogeneous regimes owing, in essence, to the phenomena of surface tension. 

As background, it should be noted that several approaches have been pro­
posed for incorporating surface tension into the macroscopic continuum equa­
tions for multiphase flows (see e.g. Chang et al.455 and earlier references there). 
Our main concern here is to illustrate the approach proposed in the work of 
Nadiga and Zaleski456 and in the later study of Zou and He.457 These workers 
insert in the Navier-Stokes equation, in parallel with the usual viscous stress 
tensor (see Sec. 6.2), an additional contribution n( s ) representing surface ten­
sion. This is expressed in the form 

n(s> = K Q | V p | 2 + p V 2 p ) l - V p V p (13.38) 
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In Eq. (13.38) the parameter K measures the strength of the effect of surface 
tension. 

Though the setting up of a generalised Navier-Stokes equation by inser­
tion of a surface-related stress tensor is essentially phenomenological, Zou 
and He demonstrate that the continuum equation (13.38), together with the 
usual equation of continuity for the fluid density, can be directly obtained 
from kinetic theory starting out from the Boltzmann equation for the single-
particle distribution, including a collisional term as set out by Chapman and 
Cowling.132 They also use the molecular theory of capillarity6 to relate the 
parameter K in Eq. (13.38) to the interfacial tension 7 via the density profile 
p(z). The approximate result then emerging is 

/

oo 

dz 
•oo 

This is reminiscent of the expression that can be obtained from Eq. (13.15) by 
the Fisk-Widom approximation438 02(2, z') « (3£2/2)6(z — z'), that is 

1 f°° 

7 = -kBTf / dz 

dp{z) 
dz 

(13.39) 

dp(z) - 4 

dz 
(13.40) 
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Chapter 14 

Quantum Fluids 

We turn in this last chapter to fluids of particles in the quantum regime. All 
important in this connection is the ratio between the thermal de Broglie wave­
length AdB and the mean interparticle spacing a, AdB = h/p^B being defined 
from Planck's constant h and from the momentum of a particle of mass m with 
kinetic energy equal to the thermal energy feeT. If AdB ^ a (or equivalently 
/oAjB -C 1, with p the particle number density), then a classical description 
is valid and Planck's constant merely determines the size of a cell in phase 
space. As the value of the de Broglie wavelength approaches the interparticle 
distance, however, quantum interference associated with the wave-like nature 
of the particles emerges. The parameter pA^g already enters to determine the 
leading quantum deviation from the equation of state pV/Nk^T = 1 of the 
classical ideal gas,52 with a sign which reflects the statistics of the gas (positive 
for fermions and negative for bosons). 

It is evident, therefore, that quantum effects become important for light 
particles in dense fluids at very low temperatures. The main focus of the 
present discussion will be on the Helium liquids, on the Bose-Einstein conden­
sates of alkali atoms, and on fluids of electrons. 

14.1 Ideal Fermi and Bose Gases 

An ideal gas is a thermodynamic system of particles whose mutual interactions 
may be neglected.52 The energy levels of the gas can be written in terms of the 

365 
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single-particle energies ek and of the number n^ of particles in a single-particle 
state at energy ek, 

E = Yjnkek, (14-1) 
k 

k being an index which labels the single-particle states (for a gas inside a 
macroscopic box, this index subsumes a momentum ftk and a spin index S). 

Below we consider two classes of particles appearing in nature3: (i) bosons, 
having zero or integer spin, for which nfc can take all non-negative integer 
values; and (ii) fermions, with semi-integer spin, for which nk can take only 
the values 0 or 1 according to the Pauli exclusion principle. Maximisation of 
the entropy of the gas yields the two equilibrium statistics: 

n(e, T) = -7 T T ^ , (14.2) 

where n(e, T) is the mean occupation number of a single-particle state of energy 
e in the gas at temperature T and chemical potential /x, and the +(—) sign 
refers to fermions (bosons). 

14.1.1 The Fermi surface 

A cell of volume h3 in phase space can contain a maximum of (25+1) fermions, 
so that at zero temperature the fermions must have a spread of momenta in 
a range up to a maximum momentum pp. For N fermions in a volume V we 
can write the density p = N/V as 

' = i < 2 5 + 1 > ( x ) 3 - (143) 

The quantity A;p = PF/^ is the radius of a spherical surface in wave num­
ber space (the "Fermi surface"). In the common case S = 1/2 we have 

increasing with the density p. The energy of a fermion hav­
ing momentum on the Fermi surface is the Fermi energy ep = t?k\j2ra and 
coincides with the chemical potential of the gas at T = 0. 

The notion of a Fermi sphere allows a vivid picture of ground state and 
excitations in a normal Fermi fluid. At T = 0 the states inside the Fermi 

"Particles with fractional statistics ("anyons") are met in some two-dimensional condensed 
matter systems, most notably those exhibiting a fractional quantum Hall effect (see, 
e.g. Lerda4 5 8) . 



Ideal Fermi and Bose Gases 367 

sphere are fully occupied by the fermions and the states outside it are empty. 
Thermal excitations at finite temperature bring fermions from states inside 
to states outside the Fermi sphere, leaving "holes" behind and lowering the 
chemical potential. 

14.1.2 Bose-Einstein condensation 

There is no restriction on the state occupation numbers for bosons and at zero 
temperature they can all condense in the state of zero momentum and zero 
energy. That is, in the thermodynamic limit (N -» oo) 

N = lim n(0,T) = lim Jr^—-
T->o v ' T-x) e-r/kBT - 1 

(14.4) 

In this limit /x must have approached zero from below, since state occupancy 
cannot be negative. 

As was shown by Einstein in 1925, a macroscopic occupation of the zero-
energy state persists up to a critical temperature To given (in the common case 
S = 0) by the condition 

MdBlcrit = 2.612. (14.5) 

Since AJB OC T 1 /2 , at temperatures T < To the fraction No/N of particles in 
the condensate is 

JVo 

N 

rp \ 3/2 
(14.6) 

1.3 k..-. 

1.93 k_ 
J B 

T0 T 

Fig. 14.1. Specific heat Cv of the ideal Bose gas at low temperature. 
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Evidently, all bosons are in the condensate for T —¥ 0 and are excited out of it 
for T > T0. 

Excitations with momentum Kk have energy £k = h2k2/2m. Figure 14.1 
shows the behaviour of the heat capacity of the ideal Bose gas as a function 
of temperature. The appearance of a Bose—Einstein condensate is marked 
by a singularity and below To the specific heat is determined by the thermal 
excitations out of the condensate, giving Cy/N oc T3 /2 . 

14.2 Boson Fluids 

14.2.1 The weakly interacting Bose gas (WIBG) 

A gas of bosons interacting via a weak Fourier-transformable repulsion is the 
simplest example of a bosonic superfluid. The theory of this model was given 
by Bogoliubov.459 

The basic assumption of Bogoliubov was that a macroscopic number No of 
particles have collected into a single quantum state, forming a Bose-Einstein 
condensate. Even at T = 0, No does not necessarily coincide with the total 
number N of particles in the system (although Bogoliubov's theory implies 
that NQ/N is not far from unity). At variance from classical systems, in a 
quantum system the interactions drive a gain in the total energy through a 
gain in potential energy and a simultaneous loss in kinetic energy: thus, the 
interactions modify the ground state of the ideal Bose gas by also causing a 
depletion of the condensate. 

Starting from this assumption, controlled approximations allow the Hamil-
tonian of the WIBG to be diagonalised by means of a canonical transformation 
into the form 

H = Eo + Y,MLl>k, (14.7) 

where b*k(bk) is an operator which creates (annihilates) an excitation with 
momentum fik, while the operator b^b^ counts the number of excitations that 
are present in the gas and has expectation value zero in the ground state. In 
Eq. (14.7) Eo is a constant and fuj^ is the energy of an excitation, which is 
given within Bogoliubov's theory by the relation 

^ k = \ / ( 2 p o « k + £k)£k • (14.8) 
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Here, po = NQ/V is the condensate density, v^ is the Fourier transform of the 
interaction potential and e^ — h2k2/2m are again the single-particle kinetic 
energies. 

The crucial point of Eq. (14.8) is that excitations out of the condensate in 
the WIBG have, instead of an energy spectrum given by the kinetic energies 
£k as in the ideal Bose gas, an energy-momentum dispersion relation which 
becomes linear at low momenta: 

limujk = ck, c=\ . (14.9) 
fc->o V m 

T h a t is, the long-wavelength excitations are phonons, i.e. quantised density 

waves propagating through the gas. An important feature of the WIBG is 

the equivalence between single-particle excitations and collective density exci­

tat ions, the excitation of a density wave in the condensate being necessarily 

associated with emission or injection of a Bose particle and vice versa. 

Related to the above basic result the WIBG was shown to have the following 

properties: 

(i) the s tructure factor S(k) has a linear behaviour at small k, 

lim S(k) = -— ; (14.10) 

(ii) the momentum distribution nk has a divergence at small k, 

trie 

1 ^ = 2 ^ ' (14"U) 

a relation between n^ (a one-body property) and S(k) (a two-body prop­
erty) being in fact a manifestation of the equivalence between single-
particle and collective excitations; and 

(iii) the dynamic structure factor S(k,uj) has a single peak at each value of k, 
at a frequency 

This expression has become familiar as the result of Feynman's theory460 

for the single-mode excitations of superfluid liquid 4He (see Sec. 14.2.2 
immediately below). However, rotons are not contained in the dispersion 
relation (14.8) of the WIBG. 
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The effects of temperature are easily included in Bogoliubov's theory of 
the WIBG by appropriate insertions of the Bose thermal distribution function, 
allowing an evaluation of the condensate density p0 and of the superfmid den­
sity ps as functions of temperature. Given the assumption that there exists a 
single-particle state tpo(j,t) which is macroscopically occupied, the conceptual 
basis for superfluidity is simple.461 We write V"o(r, t) = \/po(r, t) exp[iip(r, t)] 
and define the superfluid velocity v s(r, t) by the prescription 

v . ( r , * ) = ^ V V » ( r l t ) . (14.13) 

This embodies the property V x vs(r,£) = 0, i.e. the superfluid flow is irrota-
tional. Also, since no entropy is associated with a single quantum state, the 
entropy is entirely carried by the particles occupying states other than V'o- Fur­
thermore, from the fact that the phase of ipo must be single-valued modulo 2TT, 
one obtains the Onsager-Feynman quantisation condition on superfluid circu­
lation along a closed circuit. This quantisation condition was already given in 
Eq. (7.48) and discussed there in connection with quantum vortices. 

More appropriately, the "condensate wave function" ipo(r,t) should be 
thought of as the order parameter of the Bose-Einstein-condensed fluid. It 
should be stressed that the superfluid density ps is generally different from the 
condensate density po — |?/>o|2- For instance in bulk superfluid liquid 4He, to 
which we turn below, at the lowest temperatures the whole liquid is superfluid 
whereas the condensate fraction is of the order of 10% of the total particle 
number (see the discussion given in Sec. 7.7). 

14.2.2 Superfluid liquid 4He 

We have already given in Sec. 7.7 an introduction to a number of characteristic 
phenomena which are observed in superfluid He-II and to its transport prop­
erties and dynamical spectrum. Here we focus on some aspects of the relevant 
theory, with some attention to the connections that exist between properties 
of the dense liquid and those of the dilute, weakly interacting gas. 

The ground state of the dense, strongly interacting boson fluid is described 
to useful accuracy by a wave function of the Jastrow-Bijl form, 

* ( r i , r 2 , . . . , r j v ) = J J e x p (14.14) 
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where u(rjj) arises from correlations between pairs of particles. Forming |\&|2 

and hence obtaining the various distribution functions, it can be seen that 
there is analogy with classical statistical mechanics, with —<j>{r)/k^,T in the 
classical theory replaced by u(r). In particular the result in Eq. (14.10), which 
was shown by Gavoret and Nozieres462 to be exact for sufficiently small k, 
leads to the asymptotic expression u(r) « — (mc/7wr2pr2) for u(r) at large 
r. Evidently, long-wavelength phonons induce very long range correlations 
between the particles. 

Wu and Feenberg463 used experimental data on the structure factor S(k) 
within the hypernetted-chain approximate theory (see Sec. 4.7) to extract the 
function u(r), finding that it is strongly negative in the region of the atomic 
core. The mean kinetic energy (K) could then be calculated from u(r) and 
from the pair distribution function g(r) by the expression 

(K) = N-^- / drg'(r)u'(r). (14.15) 

This replaces the classical kinetic energy ZNk-QT/2 in Eq. (4.15) for the in­
ternal energy U. For more details the work of Reatto and Chester464 and of 
Feenberg465 may be referred to. 

Let us now turn to dynamics and see how the Feynman expression in 
Eq. (14.12) follows by general considerations from the assumption of a single-
mode dynamical spectrum. That is, we write the van Hove dynamic structure 
factor in the form 

S(k,u)) = S(k)8(cj-ujk), (14.16) 

which already satisfies the zeroth-moment sum rule, S(k) = J <hjS(k,u>). The 
first moment of the spectrum in the quantum fluid is given by 

/

hk2 

duu}S(k,uj) = — , (14.17) 

and hence Eq. (14.12) immediately follows by inserting Eq. (14.16) into 
Eq. (14.17). Using S(k) from experiments, the dispersion curve (14.12) has 
the qualitative features of the Landau phonon and roton excitations, and 
in particular shows the roton minimum near the wave number of the main 
peak in S(k). However, agreement with the measured dispersion relation of 
single-mode excitations from neutron inelastic scattering, that we discussed in 
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Sec. 7.7.2, is quantitatively poor and, of course, the multi-mode part of the 
spectrum is missing. 

It was early realised by Feynman and Cohen466 that the Feynman picture 
of independent elementary excitations had to be extended to account for their 
interactions. The current associated with a Feynman excitation (or, more 
precisely, with a localised excitation built as a wave packet of Feynman excita­
tions) involves a contribution from the backflow of the fluid around it. Feyn­
man and Cohen showed that, in the simple case of a particle tearing through 
the liquid at a given velocity, the pattern of induced longitudinal currents far 
away from the particle has the form of a dipolar backflow (see also the book 
of Pines and Nozieres467). By accounting for backflow Feynman and Cohen 
obtained a marked improvement in the one-phonon dispersion curve. Very 
similar results were obtained by a more conventional treatment of the interac­
tions between Feynman excitations by Jackson and Feenberg468 and these are 
shown in Fig. 14.2 in comparison with the measured dispersion curve from the 
neutron inelastic scattering experiments of Woods and Cowley.224 

Fig. 14.2. Comparison between the measured dispersion relation for elementary excitations 
in liquid 4He (bottom curve) and the theoretical results of Feynman (top continuous curve) 
and of Jackson and Feenberg ( ). 
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Attention has been drawn by a number of authors469 to the remarkable 
similarity that exists between the excitation spectra exhibited by S(k,ui) in 
superfluid 4He at low temperatures and in the quantum (strongly anharmonic) 
solid 4He. As stressed by Griffin,470 it is important to bear in mind the subtle 
differences that exist between elementary excitations and density fluctuations, 
the latter being measured in inelastic neutron scattering. The precise nature 
of the atomic motions in the roton region is still a question of considerable 
interest at the time of writing.471 

To conclude the discussion of He-II we shall make some brief remarks on 
vortices. It has been amply demonstrated experimentally472 that quantised 
vortices and rings can be excited in superfluid 4He, with the circulation asso­
ciated with superfluid flow being zth/m since vortices with higher circulations 
are usually unstable against decay into these. Apart from the vortex core, the 
flow field associated with the vortex is similar to the case of a classical vortex. 
Feynman459 was the first author to show how a wave function could be con­
structed to lead to the velocity field as a classical vortex line, in the presence 
of strong interatomic correlations. Subsequent work by Chester et a/.473 led to 
the construction of a model wave function for a quantised vortex line and ring. 
A topical review of quantised vortices in confined Bose-Einstein condensates 
can be found in an article by Fetter and Svidzinsky.474 

14.2.3 Bose-Einstein condensates 

At the time of writing Bose-Einstein condensation has been realised in various 
monatomic alkali gases (87Rb, 23Na and 7Li) and also in gases of *H and 4He 
(for reviews see Cornell et al.,475 Ketterle et al.,476 Kleppner et al.477 and 
Ketterle and Cornell478; see also Bradley et al.479 and Pereira Dos Santos et 
al.480). Counting both nucleons and electrons, these atoms possess an even 
number of fermions and obey Bose-Einstein statistics. The condition (14.5) 
for condensation is extremely severe: it implies having to work with metastable 
gases kept under magnetic confinement at temperatures T below 0.1 /xK and 
densities p « 1012-1014 atoms/cc. 

The critical de Broglie wavelength and the mean interatomic spacing are of 
order 0.1 /xm, i.e. much larger than the range of the interatomic forces: the 
gas is therefore so dilute that only binary collisions matter and these can be 
described by a contact (delta-function) interaction pseudopotential, v(r) = 
(4Trh2as/m)d(r) where as is the s-wave scattering length. The interaction 
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is repulsive in all aforementioned systems except in the 7Li gas, where the 
condensate is stable against collapse driven by the interatomic attractions only 
if it contains a limited number of atoms (N sa 103). A common method 
of observation is by measuring the optical density of the atomic cloud after 
turning off the magnetic trap and allowing the cloud to ballistically expand for 
a controlled length of time. Interest in these systems comes from two different 
perspectives: (i) they are new quantum fluids on which to study many-body 
physics within the simple model of contact interactions containing a single 
(and tunable) parameter, i.e. the scattering length; and (ii) they are coherent 
atomic assemblies on which to study the optics of matter waves, leading up to 
the realisation of matter-wave lasers. 

The magnetic confinement is usually well represented as an external har­
monic potential V(r) (real magnetic traps are anisotropic, either pancake-
shaped or cigar-shaped, but for the sake of simplicity we shall below have 
in mind a spherical confinement, V(r) = mu2r2/2). Condensation then oc­
curs in both momentum and coordinate space: in particular, the atoms would 
condense into the ground state of the three-dimensional harmonic oscillator 
if their mutual interactions were negligible. In this case the critical tempera­
ture To can be estimated for a given number N of atoms in the trap by setting 
^&BTO « ^muj2£2, where £ is the linear size of the cloud, and by using Einstein's 
criterion (14.5) in the form (N/£3)\lB\ctit « 2.6: this yields kBT0 « HLJN1/3 

and hence the condensate fraction at temperature T < To is 

*-!-(£)' . 
Comparison with Eq. (14.6) shows that the confinement modifies in an essential 
fashion the thermodynamic behaviour of the condensed phase.481 

The condensate is very dilute as already remarked, but nevertheless is in a 
regime of strong coupling.481 The size of the cloud can be estimated by equating 
the harmonic potential energy rruv2£2/2 to the mean interaction energy, which 
is of order (4TrH2as/m)(N/£3) since the contact interactions attribute to each 
atom a potential energy proportional to the local atomic density. This yields 

I {8irNaa\
1/S 

— « ~ , (14-19) 
O-ho V aho / 
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where a,h0 = (fi/mw)1 '2 is called the harmonic-oscillator length. The coupling 
strength of the gas is measured by the ratio between the average potential 
energy and the average kinetic energy per atom, that is 

(gpsO = ™>e/2 /5 

and this ratio increases rapidly with the number of atoms. Condensates with 
N « 107 atoms have been routinely available in many laboratories. In practice, 
the kinetic energy density becomes appreciable only in the outer regions of the 
condensed cloud. 

A large number of experimental and theoretical studies have been carried 
out on these systems since the first realisation of Bose-Einstein condensation 
in gases of 87Rb in 1995, and rapid progress is still taking place at the time 
of writing. Further richness in behaviour has been achieved by placing the 
condensate inside an "optical lattice", i.e. by superposing onto the magnetic 
trap a detuned standing wave of laser light which acts on the atoms as a peri­
odic external potential. Here we can only cite a few of these results. Among 
the early quantitative tests that condensation was in fact being achieved in 
the confined clouds of alkali atoms were the comparisons between experiment 
and theory in regard to the frequencies of the shape-deformation modes of the 
condensed cloud483 and to the internal energy of the cloud as a function of 
temperature.484 Macroscopic coherence has been directly demonstrated from 
the interference patterns that are formed in the overlap region of two expand­
ing condensates released from a divided magnetic trap.485 Emission of coher­
ent matter waves from a condensate, both in pulsed and in quasi-continuous 
form, has been demonstrated.486 A transition from superfluid to dissipative 
behaviour has been seen to occur across a local velocity threshold when a con­
densate is driven through an optical lattice by a harmonic force.487 Finally, 
the formation of vortices in a stirred condensate and their arrangement into 
triangular configurations have been observed.488 

14.3 Normal Fermion Fluids 

14.3.1 Liquid 3He in the normal state 

In contrast to 4He, the 3He atoms carry a nuclear spin of 1/2 and obey Fermi 
statistics. The Fermi degeneracy temperature of liquid 3He, calculated as 
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Fig. 14.3. Schematic phase diagram of liquid 3He at low temperatures and zero magnetic 
field. 

Tp — e-p/k-Q from the fluid density and the atomic mass, is about 1 K. Below 
Tp, quantum effects become dominant at T « 100 mK and a phase transition 
to a superfluid state, to be discussed in Sec. 14.4, occurs at T « 3 mK. Again, 
solidification is achieved only under applied pressure. Figure 14.3 reports a 
schematic phase diagram for 3He at low temperatures. Here we are concerned 
with the liquid in the normal state below 100 mK. 

The measured specific heat Cy of liquid 3He in the normal state shows a 
linear dependence on temperature T. This linear behaviour is characteristic 
of the ideal Fermi gas, where it can be explained as follows. According to the 
Fermi distribution in Eq. (14.2), at temperature T only those fermions lying 
within an energy strip of order k&T around the Fermi surface have access to 
empty states into which they can be thermally excited. The fermions occupying 
lower energy states in the Fermi distribution cannot be excited because of the 
Pauli exclusion principle. Thus, only a fraction of order T/Tp of the total 
number N of fermions can absorb thermal energy and, if we attribute to each 
of these its full classical thermal energy 3A;BT/2 we get the thermal energy of 
the gas as Eth « {3kBT/2){NT/TF). Hence C v = (dEth/dT)v <x T. A full 
quantum calculation yields for the ideal Fermi gas 

^ = w™<£f f (14.21) 
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the proportionality factor being determined by the atomic mass m and by the 
number density p. 

It is somewhat surprising that a linear relationship between specific heat 
and temperature should be observed in liquid 3He, in view of the strong in­
teractions that are expected to lead to substantial departures from ideality. 
The explanation of this and other unexpected properties has been given by 
Landau489 (for a detailed account of Landau's theory of normal Fermi liquids, 
the reader may refer to the book by Pines and Nozieres467). Landau assumed 
that in a Fermi liquid the net effect of the interactions would be to "dress" 
each atom excited out of the ground state with a cloud of surrounding atoms, 
building up what is termed a quasi-particle. Once one deals with quasi-particles 
rather than with "bare" atoms, the excitations of the liquid can be described 
as an almost ideal gas of quasi-particles. In Landau's theory, a crucial point is 
that the quasi-particles obey Fermi statistics, so that at low temperatures we 
can describe the low-lying excited states in terms of the excitation of quasi-
particles across the Fermi surface. A linear law for the specific heat of liquid 
3He follows. 

There is, however, one major difference to be emphasised between quasi-
particles and bare particles, and this is that a quasi-particle has an effective 
mass m* which is different from the mass m of a 3He atom. Given an atom 
which is tearing through the dense liquid, its motion is accompanied by a 
backflow of the other atoms and this is responsible for a shift of the bare atom 
mass into an effective mass. The value of m* can be measured from the ratio 
Cy/T (see Eq. (14.21), where m should be replaced by m*) and turns out to 
be about three times that of a 3He atom at atmospheric pressure, increasing 
to almost a factor six near the solidification pressure. 

The quasi-particle picture is only valid if momentum and energy are not 
very different from pp and £p, i-e- it is useful to describe phenomena occurring 
near the Fermi surface. With this restriction it explains not only the observed 
thermodynamic properties of liquid 3He in its normal state, but also some 
collective dynamical behaviours which can be associated to small distortions 
of the Fermi surface away from its equilibrium size and shape. Considering 
first a wave of ordinary hydrodynamic sound which propagates through the 
liquid, this is associated with periodic expansions and compressions of the 
liquid density and hence can be viewed as a local "breathing" of the Fermi 
sphere. From the quasi-particle picture Landau inferred that other types of 
periodic deformation (anisotropic ones, in fact) could be sustained by the Fermi 
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sphere in the absence of dissipative collisions. The waves propagating through 
the liquid in association with these anisotropic oscillations of the Fermi sphere 
were called by Landau "zero sound". In the quantum Fermi liquid this type of 
high-frequency collective motion is the analogue of the "fast sound" that we 
have discussed in Sec. 6.7.3 for water and glass-forming classical liquids. 

Figure 14.4 reports from the work of Abel et al.490 data on sound velocity 
and sound attenuation in liquid 3He as functions of temperature. A transition 
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Fig. 14.4. Measured amplitude attenuation coefficient and speed of sound waves in liquid 
3He, for two values of the driving frequency. The straight lines through the attenuation 
points are from the Landau theory. (Redrawn from Abel et al., Ref. 490.) 
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in sound wave behaviour, from hydrodynamic to zero sound, is seen to occur 
as the liquid is cooled through a temperature of PS 16 mK. In the limit of 
vanishing interactions the speed of hydrodynamic sound is vp/y/3 and that 
of zero sound tends to vp, where vp = hkp/m is the velocity of a fermion 
on the Fermi surface. As is seen from Fig. 14.4, a consequence of the strong 
interactions obtaining in liquid 3He is that the two speeds of sound are much 
closer to each other. 

14.3.2 Electron fluids 

Conduction electrons in normal metals form a highly degenerate Fermi liquid, 
the ratio T/Tp being typically of order 10~2 in laboratory conditions. Here 
we focus on the so-called jellium model, which smears out the underlying ionic 
assembly into a uniform background of positive charge.491 The model is also 
useful to describe fluids of electronic carriers in doped semiconductors, after 
rescaling the units of length and energy by introduction of an effective carrier 
mass and a background dielectric constant. We shall in later sections turn to 
liquid metals as ion-electron systems and to ion-electron plasmas such as are 
met in the giant planets. 

As a starting point we return to the ideal Fermi gas and enquire about the 
electron-electron distribution function g(r) in this model. Whereas g{r) — 1 
everywhere in the classical ideal gas, the probability of finding two fermions 
with the same spin at a distance r vanishes as r -» 0 because of the Pauli 
exclusion principle. That is, each electron of given spin induces a local deple­
tion of the density of electrons with the same spin. This so-called Pauli hole 
is given by 

9{r) = l - \ 
h{kpr) 

kpr 
(14.22) 

where ji(x) = (sinx — xcosx)/x2 is the first order spherical Bessel function 
(see Fig. 14.5). 

No correlations between electrons with antiparallel spins are present in 
the ideal Fermi gas. Further depletion of the local electron density around 
each electron, and especially for electrons having opposite spin, arises when 
the Coulomb repulsive interactions are switched on. An exact property of 
the so-called Pauli-Coulomb hole is that the total local depletion of electron 
density corresponds to taking away one electron from the neighbourhood of 
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Fig. 14.5. Exchange hole around an electron in the electron gas. 

each electron. This is, in fact, a microscopic manifestation of Faraday's law 
according to which a constant electric field cannot penetrate in the depth of 
a conductor. The bare potential generated by each electron is on average 
completely screened by a local rearrangement of the surrounding electron den­
sity, so that the effective potential that an electron generates decays over a 
microscopic distance. 

We introduce screening in a semiclassical way by considering a static im­
purity with charge Ze placed at the origin inside a fully degenerate electron 
plasma.b The impurity and the induced redistribution of electronic charge 
create a potential V{r) obeying the Poisson equation 

V V ( r ) = Ane2[ZS(r) - p(r) + p], (14.23) 

where p(r) is the electron density at distance r from the impurity and p is the 
average electron density (equal to the density of the uniform positive back­
ground). An additional relation between V(r) and p(r) follows from the equi­
librium condition expressed by the constancy of the electrochemical potential, 
/x(p(r)) + V(r) = M/9)- An analytic solution can then be obtained for \Z\ <§: 1, 

b The classical equivalent of this problem is the Debye-Hiickel theory of electrolyte solutions 
(see Sec. 8.1). The Debye screening length can be calculated by the argument given here if 
one uses the relationship between density and chemical potential which holds for a classical 
ideal gas. 

I 

1/2 
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when we have p{r) — p « — (dp/dp.)V(r) by Taylor expansion of/x(p(r)) around 
the homogeneous state described by p-(p). Solving Eq. (14.23) by Fourier 
transforms we get 

V(r) = - (—) e~KTFr , (14.24) 

where known as the Thomas-Fermi screening length and is given by 

K'TF — 
2 / dP 4TT^ I -~ 

an 
-1'2 / 6 7 r p e 2 \ - 1 / 2 , N 

This length is typically of order 1 A in the sea of conduction electrons in a 
metal. 

The above semiclassical argument does not take account of the quantum 
wave nature of the electrons. While the Poisson equation remains valid, the 
equilibrium condition relating V(r) to p(r) needs microscopic modification. 
We consider for an illustrative purpose in Appendix 14.1 a one-dimensional 
box with free particles moving between x = 0 and x = L, in the limit L —> oo. 
The electron density associated with filling the lowest N levels singly is seen 
to be 

* * ) = 1 _ S i n ( 2 f e F X ) . (14.26) 
p 2kFx v ' 

That is, long-range oscillations of wavelength ir/kp are induced in the one-
dimensional Fermi gas by the perturbation due to a wall located at x = 0, the 
other wall having gone to infinity. 

The induction of microscopic density oscillations of wavelength ir/k-p is a 
general property of perturbations on a Fermi gas, descending from the dis­
continuity in the momentum distribution across the Fermi surface. For a test 
charge in an electron gas, and transcending the weak-perturbation restriction, 
the asymptotic behaviour of the displaced electron density is 

. . cos(2fcpr + (p) ., . „_. 
p{r) -pcx — ^ ^ (14.27) 

at large distance from the charged impurity (see again Appendix 14.1). 
These oscillations in the displaced charge density are known as Friedel 
oscillations.492'493 Therefore, the effective potential created by an ion inserted 
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in the electron plasma (and indeed the effective potential with which an elec­
tron in the plasma acts on other electrons) is an oscillating function of distance 
— showing both repulsive and attractive regions. This result has crucial con­
sequences in the electron theory of metals (see Sec. 14.5). 

The notion of screening provides the microscopic basis for the construction 
of the Landau quasi-particles accounting for the thermodynamic properties of 
the sea of conduction electrons in metals. In regard to its dynamical properties, 
we may instead recall the argument given by Langmuir494 for the longitudinal 
plasma resonance — as already reported in Sec. 8.1. A bodily shift of the 
plasma by an amount £ relative to the background sets up a surface charge 
density and hence a restoring electric field given by Gauss's law. The plasma 
is driven into harmonic motion at frequency u)p given by 

Airpe' 
1/2 

(14.28) 
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Fig. 14.6. Electron energy loss spectra of Al in the plasmon energy range at various values 
of the wave number k. (Redrawn from Gibbons et al., Ref. 495.) 
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Plasmon excitations in metals are observed in inelastic scattering experiments, 
using either a beam of fast electrons (EEL, or electron energy loss experiments) 
or a beam of X-rays. An example of such spectra taken on Al metal495 is 
reported in Fig. 14.6. The various spectra in this figure refer to different 
scattering momenta and clearly show the dispersion and broadening of the 
collective plasma excitations as their wave number k increases. 

14.3.3 Wigner crystallisation 

The coupling strength of the jellium model is measured by the ratio 

(Epot) e2/a 
(Ekin) h2/(2ma2) 

(14.29) 

where we have introduced the average interparticle spacing a through the re­
lation 47ra3/3 = p~l and used the notation a = a-Qrs with a-Q — h2/me2 being 
the Bohr radius. As the dimensionless length rs increases (i.e. as the elec­
tron density decreases) the kinetic energy is becoming less and less important 
relative to the potential energy associated with the Coulomb interactions. 

In the thirties Wigner496 had already noticed that an optimal value is ob­
tained for the potential energy of jellium if the electrons are placed on the sites 
of a crystalline lattice having a body-centred-cubic structure. The problem of 
"Wigner crystallisation" has become a classic in many-body physics. Locali­
sation of the electrons raises their kinetic energy and the crystalline state may 
become favoured only at very low density, where the potential energy becomes 
dominant. Of course, in the crystal the electrons are not strictly localised on 
the lattice sites, but execute vibrational motions around them. Strong anhar-
monicity and relatively high concentrations of lattice defects are expected in 
this quantum solid near melting. 

Quantum computer simulations497 have indicated that with increasing rs 

the ground state of three-dimensional (3D) jellium undergoes a continuous 
transition from the paramagnetic (spin-disordered) fluid state to a ferromag­
netic (spin-aligned) fluid state and then a first-order transition to a ferromag­
netic crystal at rs w 65. Similar studies of 2D jellium498 indicate a first-order 
transition from a paramagnetic to a ferromagnetic fluid and crystallisation into 
a triangular lattice at rs « 35. The search for Wigner crystallisation in the 
laboratory has been addressed to quasi-2D assemblies of electronic carriers, 
mostly in man-made semiconductor structures. 
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In fact, the first unambiguous observation of Wigner crystallisation con­
cerned a fluid of electrons in a quasi-classical regime, floating on top of a 
liquid 4He substrate.499 Metal-insulator transitions due to interparticle cor­
relations have been subsequently reported in quasi-2D systems of carriers in 
semiconductor structures subject to very strong magnetic fields500 or in the 
presence of disorder,501 and also in high-purity samples having exceptionally 
high carrier mobility that seem to approach the expected behaviour of the ideal 
jellium model.502 

14.4 BCS Superconductivity and Superfluidity in 
Fermion Fluids 

14.4.1 The superconducting state 

The electrical resistance of a metal arises because the travelling waves repre­
senting conduction electrons are scattered by the vibrating ions and by impu­
rities (see Sec. 14.5). In 1911 Kamerlingh Onnes observed that Hg at about 
4 K lost all its electrical resistance. He later found that resistance is restored 
in a sufficiently strong, temperature-dependent magnetic field. Similar be­
haviours have been observed in many, though not all, metal and alloys (for 
an easily readable account emphasising analogies with superfluids, the reader 
may refer to the book of Tilley and Tilley503). Critical temperatures Tc in 
excess of 100 K have been achieved after 1986 in doped cuprate compounds 
(the so-called high-Tc or ceramic superconductors). 

The most basic property of the bulk superconducting state is the opening 
of a gap in the density of states around the Fermi surface: that is, no state 
are available for electrons in an energy strip from ep — A to £p + A, where 
2A » ksTc. Experimental manifestations of the opening of an energy gap are 
the appearance of transparency in the far infrared and of an exponential fall-off 
of the specific heat with decreasing temperature below Tc, 

%*ae-^l\ (14.30) 

where jT is the linear electronic specific heat of the normal metal and the 
quantities a and b, though weakly temperature dependent, are about 9 and 1.5 
for all superconductors. 

The BCS theory of the homogeneous superconducting state504 accounts for 
the energy gap through the formation of bound electron pairs in a zero-spin 
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state. Cooper505 considered a pair of electrons with opposite momenta and 
spins at the Fermi energy £p and studied the consequences of switching on 
an effective retarded attraction between them. A mechanism for such time-
dependent interaction could be the coupling of conduction electrons with lattice 
vibrations: in essence, an electron moving through the positive-ion lattice could 
locally initiate induction of a lattice polarization, which would be fully formed 
in a characteristic lattice-vibration period TD ~ 10 - 1 3 seconds and could then 
be enjoyed by a second electron passing through the same region of space with 
a time delay of order To relative to the first electron. Including the direct 
Coulomb repulsion, this model yields a net attractive interaction between the 
two electrons over an energy range hw^,, where WD = 2IT/TD is the cut-off 
"Debye frequency" of the vibrational spectrum. 

Cooper showed that formation of a bound electron pair leads to an energy 
gain given by 

E-2eFn-2hu!De-1/,JFV, (14.31) 

where up is the density of electronic states on the Fermi surface in the normal 
metal and V is the strength of the effective electron-electron attraction. He 
also showed that the mean distance £ between the two partners in the bound 
pair is of order of a few hundred Angstroms — indeed, the electron-ion mech­
anism can overcome the direct Coulomb repulsion only if the two electrons 
travel in a correlated manner far away from each other. 

In the limit £ —¥ 0 a Cooper pair would be a point-like boson and the 
transition to the superconducting state could be viewed as an instance of Bose-
Einstein condensation in a dense fluid of such pairs. Since, however, £ « 300 A 
as noted above, there is massive interpenetration between different pairs when 
a macroscopic number of them is formed. It remained for the BCS theory 
to account for the superconducting state as a dense fluid of paired electrons 
closely resembling Cooper pairs. Pairing lowers the ground-state energy by 
—0.76i/pA2 and the elementary excitations out of the BCS ground state have 
the dispersion relation 

Jiwk = A / A 2 + # ) (14.32) 

where the gap parameter A is given by A « 2fkJr>exp(—l/uFV) (see 
Eq. (14.31)) and £k are the electronic excitation energies in the normal state 
referred to the Fermi energy, i.e. £k = |£k—£F| ~ 7i|vF-(k—kp)j. The measured 
gap corresponds to the breaking of a pair and is equal to 2A, decreasing with 
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increasing temperature in a positive-feedback fashion because of interference 
between the excited electrons and the remaining bound pairs. 

The reason for attributing antiparallel spins to the two partners of an elec­
tronic Cooper pair is that in this way the Meissner effect is immediately ac­
counted for. Since the pairs carry zero spin, the effect of an applied magnetic 
field (below the threshold set by the critical field) is purely to induce diamag-
netic supercurrents flowing in the "skin" of the sample and completely screen­
ing the applied field. In the Meissner effect it is indeed observed that only the 
tangential component of the field can penetrate into the surface layers of the 
superconducting sample, over a finite penetration length A ~ (47T/9e2/mc2)-1/2 

with c the speed of light. 

In summary, a Fermi liquid is unstable against the formation of Cooper 
pairs, provided that some attraction, no matter how weak, is present between 
fermions on the Fermi surface. Appeal to the idea of Cooper pair formation 
has also been made to explain the transition of liquid 3He to superfluid phases 
at very low temperatures (see Sec. 14.4.3), as well as in connection with proton 
and neutron matter inside atomic nuclei and with neutron stars.506 

14.4.2 Flux quantisation and Josephson effects 

An inhomogeneous superconductor may be described by means of a position-
dependent gap parameter A(r) that under suitable conditions can be viewed as 
the order parameter ip(r) = \ip(r)\ exp[itp(r)] of the superconducting state.507 

We are back to the notion of a condensate wave function for the assembly of 
Cooper pairs, having density ps = IV'MI2 a n d carrying a supercurrent density 
j a(r) given by 

^ ( - s o ^ - ^ * ^ © " ^ - <i4-33) 
We have attributed a charge es and a mass ms to the carriers of supercurrent 
and have made use of the momentum operator p = —zftV to express the 
current density in terms of the gradient of the phase. Equation (14.33) is 
immediately extended to a superconductor in a magnetic field described by a 
vector potential A(r) through the transformation p —> p — (es/c)A, yielding 

j, = (**) PsV<p - (£-) PsA. (14.34) 
\msJ \mscj 
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In a simply connected sample the vector potential is denned to within an 
additive term given by the gradient of a scalar and the phase term in Eq. (14.34) 
can therefore be eliminated by a gauge transformation (A -> A + (7ic/es)V<p). 
The phenomenological constitutive equation proposed by London (1938) to 
account for the Meissner effect is recovered from Eq. (14.34), 

j , = - ( j ^ ) A , (14.35) 

with A being the penetration length. Considering instead a thick ring, we 
evaluate the integral 

j> j,(r) • d\ = (^\ j> [hVtp - (^) A] • dl (14.36) 

over a circular circuit deep inside the ring. The integral is zero because the 
current vanishes in the depth of the ring, while its two components are given 
by § A • dl = / B • dS = $ and by § V<p • d\ = 2nn: in the first component 
we have used a theorem in vector analysis to transform the line integral into a 
surface integral giving the magnetic field flux threading the area embraced by 
the integration circuit, while in the second we have used the fact that the total 
change in phase along the circuit must be an integer multiple of 2ir. The result 
is that the magnetic field flux embraced by the ring is quantised in integer 
multiples of the flux quantum hc/es, 

• " ( £ ) • <14'37) 
Measurement of the flux quantum confirms the Cooper-pair picture by giving 
es = 2e. 

Let us now turn with Josephson508 to a junction between two supercon­
ductors separated by a layer of insulating material, which is sufficiently thin 
to allow tunnelling of Cooper pairs across the junction. The equation for the 
order parameter in superconductor 1 is written as 

ih^=iinl>i+K^, (14.38) 

where Hi is the chemical potential and the constant K represents a coupling 
between the two superconductors allowing for the transfer of carriers across 
the insulating barrier. Writing a similar equation for ip2, a simple calculation 
yields the following results: 
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(i) (dpsi/dt) = -(dps2/dt) = (A-KK /K){psipS2)l/2 soup, i.e. the current I oc 
— (dpsi/dt) through the junction is a sinusoidal function of the phase dif­
ference <p = (f2 — fi; 

(ii) the time dependence of the phase difference is determined by the difference 
in chemical potentials, (d(p/dt) = (pi — ^2)/^-

Thus, a continuous current from an external source can be driven across the 
junction with no potential drop appearing across it {p\—p2 = 0), provided that 
the intensity of the current is below some maximum value. This is known as the 
d.c. Josephson effect and has a number of important applications, including the 
realisation of extremely sensitive magnetometers. On the other hand, if a given 
potential drop pi — P2 is applied across the junction, the a.c. Josephson effects 
are observed: (i) carriers may tunnel along the potential drop by emitting 
photons at frequencies given by nuj = (fix — ^2)/^; or (ii) carriers may be made 
to tunnel against the potential drop by a process of absorption of n photons 
provided by shining on the junction an electromagnetic wave of frequency 
^ = (A*I - M2)/ft™-

14.4.3 Superfluidity in liquid 3He 

We have seen in Fig. 14.3 a schematic phase diagram for 3He in the (p, T) plane, 
showing that as the liquid is cooled along the melting line a transition occurs 
from the normal Fermi liquid phase to a new phase termed A. On cooling to 
still lower temperatures a second transition is observed to a phase termed B. 
Both the A and the B phase are superfluid.509 

The theory510 that has been invoked to explain 3He superfluidity parallels 
the BCS theory for superconductivity in metals, summarised in Sec. 14.4.1. 
In 3He a natural source of attractive interactions is provided by the van der 
Waals interatomic forces. However, an effective attractive interaction can lead 
in this fluid to the formation of bound atom pairs only if the resulting pair wave 
function vanishes at short distances inside the atomic core diameter, where the 
interactions become strongly repulsive. A way of achieving this is by building 
pair wave functions with nonzero total angular momentum L. 

While the total angular momentum and the total spin of a Cooper pair 
in the BCS theory for the electron fluid are zero, the evidence indicates that 
in the case of 3He one gets in the A and B phases bound-atom pairs of p 
character (L = 1). Since the radial part of the pair wave function is therefore 



Electron Theory of Liquid Metals 389 

antisymmetric under exchange of the two partners, the spin part must be 
symmetric to comply with the Pauli principle. That is, the two partners have 
parallel spins. 

There are three symmetric (S = 1) spin states that can be built from two 
particles, each with spin 1/2, and these correspond to the values Sz = 1, 0 
and —1 for the component of the total spin along a chosen quantisation axis. 
The occurrence of two superfluid phases can be accounted for by invoking two 
different admixtures of these three components. In both phases two privileged 
directions can then be identified: one in spin space corresponding say to the 
direction d along which the component of the total spin is zero, and the other 
in coordinate space corresponding say to the direction 1 along which the orbital 
angular momentum has component 1. 

While in the absence of other interactions these two directions would be 
uncorrelated, a coupling between 1 and d is provided by the interaction be­
tween the nuclear magnetic moments. This is very small within each Cooper 
pair, but its effects are enhanced by the coherence of the macroscopic conden­
sate of pairs. These interactions between orbital momentum and spin, which 
are responsible for the existence of two superfluid phases, have been investi­
gated in Nuclear Magnetic Resonance experiments: the applied field tends to 
vary the orientation of the spins and exerts on them an additional force which 
may change the position and shape of the resonance line. A variety of collec­
tive excitations have been predicted, and in part observed, in superfluid 3He, 
corresponding to different ways of breaking the complex order that exists in it. 

14.5 Electron Theory of Liquid Metals 

Here we consider some properties of simple liquid metals having conduc­
tion electrons in s and p states, that specifically reflect their nature as two-
component liquids of ions and electrons. These properties are (i) the effective 
interaction between pairs of ions as determined by screening of their bare 
Coulomb repulsions by the conduction electrons; (ii) the structural correlation 
functions involving the conduction electrons and supplementing the nuclear 
structure factor S(k) in a full description of the liquid-metal structure; and 
(iii) the theory of electrical resistivity and viscosity of liquid metals. Full ref­
erences are given in an article by March.511 For a general account of liquid 
metals the book of March512 may be consulted. 
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14.5.1 Interatomic forces from liquid structure factor S(k) 

Classical theories of liquid structure aim to calculate S(k), or its r-space equiv­
alent g(r), from a given force law (see Chap. 4). Johnson and March pro­
posed to reverse this approach and invoked experimental diffraction data to 
extract a pair potential 4>(r) for ions in liquid Na near its freezing point. They 
used for this purpose the Born-Green theory of liquid structure presented in 
Appendix 4.3, based on an approximate decoupling of three-body correlations. 

Currently, computer simulation is being used to bypass the need for an 
approximate theory of liquid structure.513 This has led to the extraction of 
the so-called "diffraction potential", the example of liquid Na being shown 
in Fig. 14.7 in comparison with the results obtained by Perrot and March 
from electron theory. It is remarkable that all major features of the diffraction 
potential are being reproduced by the theory, though quantitative discrepancies 
remain. 

Fig. 14.7. Diffraction pair potential (in units of k^T) in liquid Na near freezing. For 
comparison the electron-theory pair potential of Perrot and March (upper curve at large r) 
is also shown. 
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It should be emphasised that the pair potential 4>(r) in a liquid metal, being 
determined by electron screening, depends on electron density in an important 
way. The extensive work of Hensel and coworkers514 on expanded liquid alkali 
metals, especially on liquid Cs taken up the liquid-vapour coexistence curve 
towards the critical point, has shown that as the liquid density is reduced the 
coordination number decreases rapidly while the near-neighbour distance re­
mains remarkably constant. The coordination number obtained from the data 
by extrapolation to the critical density approaches the value 2, suggesting for­
mation of chain-like structures as the fluid is driven towards a metal-insulator 
transition. The shape of the diffraction potential from data on expanded Cs 
still resembles that shown in Fig. 14.7, i.e. a steep repulsive core followed by 
an attractive well in the region of first neighbours. 

14.5.2 Diffractive scattering from two-component plasmas 

From the argument given in Sec. 4.3, the intensity of X-rays scattered from a 
liquid metal is 

Ix(k) = F((p(r)p(r>))) (14.39) 

where p(r) is the electron density operator and F denotes the Fourier transform 
with respect to r—r'. Egelstaff et al.515 assumed that the total electron density 
can be decomposed into the sum of contributions from core electrons and 
valence (conduction) electrons, i.e. p(r) = pc(r) + pv(r) with the core electrons 
being rigidly attached to their own nuclei. Introducing the core scattering 
factor /c(fc), Eq. (14.38) can be rewritten as 

Ix(k) = f?(k)S(k) + 2/c(fc)5te(fc) + F({pv(r)Pv(r'))) (14.40) 

where S(k) is the nucleus-nucleus structure factor, as directly accessible via 
neutron diffraction experiments, and Sie(k) results from interference between 
waves scattered by the ionic cores and by the valence electrons. The last term 
on the RHS of Eq. (14.40) is proportional to the valence electron structure 
factor, denoted by See(k). 

The idea behind the approach of Egelstaff et al. was that one could in 
principle extract the electronic correlation functions in a real liquid metal 
from three diffraction experiments using X-ray, neutron, and electron beams. 
Progress in implementing this proposal has been slow, but significant advance 
has come from the study of de Wijs et al.516 who used computer simulation 
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to obtain Sie(k) for liquid Mg and liquid Bi. In the case of liquid Mg a sim­
ple model can be constructed to give a good account of the simulation data, 
leading to 

•Sic(fc) 
S(k) 

= z1'2 
1 + (_LV 

\KTFJ 
cos(kRc) (14.41) 

where Z is the ionic valence (Z = 2 for Mg), KTP is the Thomas-Fermi inverse 
screening length (see Eq. (14.25)) and Rc is the radius of the ionic core. The 
results of the model are reproduced in Fig. 14.8. Notice that in the limit 
k -> 0 the exact property Sie(0) — Zll2S{Q) follows from perfect screening 
of the ions by the valence electrons, the corresponding result for the electron-
electron structure factor being See(0) = ZS(0). Of course, 5(0) is related to the 
isothermal compressibility of the liquid metal by Eq. (4.6), 5(0) = pk-QTE^. 

The liquid Bi data of de Wijs et al, on the other hand, are an exam­
ple of strong electron-ion interactions (for instance, Bi on freezing takes on 
semi-metallic character) and therefore the simple model used for Mg is not 

1 . 5 

CO 

0 . 5 -

- 0 . 5 u 

q (A • ) 

Fig. 14.8. Result of model in Eq. (14.41) for the ratio Sie(k)/S(k) in liquid Mg. 
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appropriate. In the case of Bi Sie(k) shows a positive peak in phase with the 
main peak in S(k), whereas in Mg it has a deep negative region in (anti)phase 
with S(k) (see Fig. 14.8). We are meeting again the structural features that 
were emphasised for two-component ionic fluids in Chap. 8, that is Coulomb 
ordering in liquid Mg and intermediate-range ordering in liquid Bi. 

14.5.3 Transport coefficients 

The electrical resistivity pe of simple liquid metals in an ideally pure state is 
determined by the quasi-elastic scattering of electrons on the Fermi surface 
against (screened) fluctuations in the ionic density. Baym517 expressed pe in 
terms of the nucleus-nucleus dynamic structure factor S(k, ui) by exploiting the 
fact that, in the regime of validity of the (weak scattering) Born approximation, 
the scattering cross-sections for electrons and neutrons are both proportional to 
S(k,uj). His expression for pe involves an integration over all energy transfers 
hw to the ionic system and, on account of the vast difference in the energy 
scales for ionic and electronic motions, this integration can be carried out to 
yield the result 

'^ii^f'Gs)1'5-™'™^)'1 <i442» 
where Vje(k) is the screened electron-ion potential. This formula goes back 
to Krishnan and Bhatia (1945) and was brought to full fruition by Ziman518 

(1961) using pseudopotentials to treat the bare electron-ion interaction. An 
example of the calculated electrical resistivity as a function of temperature, in 
comparison with experimental data, is shown in Fig. 14.9 for the liquid alkali 
metals. 

The electronic contribution is also dominant in the thermal conductivity 
K of liquid metals. Indeed, the Wiedemann-Franz law asserts the constancy 
of the quantity peK,/T. Theory relates this constant to the so-called Lorenz 
number L = 7T2fc|/3e2 through 

EY=L. (14.43) 

Empirically, this relation is well satisfied by a number of liquid metals near 
their freezing point, within a scatter of about ±10%. 

The electronic contribution is instead minor in determining the longitu­
dinal viscosity rji = |ry + C, with rj and £ the shear and bulk viscosities 
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Fig. 14.9. Electrical resistivity of liquid alkali metals as a function of temperature from 
electron-theory, compared with experimental data ( • and • ) . 

respectively, and hence the attenuation of sound waves propagating in the 
liquid metal. Treatment of the dynamic structure factor S(k,uj) within an 
electron-ion plasma model in the Green-Kubo limit leads to the result 

m p\ Mfi + —ZmvFe( (14.44) 

where M is the ionic mass, fi is an ionic friction coefficient, vp is the Fermi ve­
locity and £e the electronic mean free path. Numerical evaluation of Eq. (14.43) 
shows that the first term on its RHS is dominant, the electronic term being 
only a small correction to the ionic friction term. 

From Eq. (14.44) with r\i — \r\ + £ and rj » £, these results lend support 
to a formula proposed by Andrade519 for the shear viscosity of liquid metals 
at freezing (see Sec. 5.6.3). 
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14.6 Liquid Hydrogen Plasmas and the Giant Planets 

14.6.1 Exploring the phase diagram of hydrogen 

Hydrogen is the most abundant element in the Universe and, notwithstand­
ing the simplest constitution of the atom, has a very rich phase diagram of 
which nature provides various examples over a wide range of thermodynamic 
conditions.520 Cooling the gas of diatomic molecules under standard labora­
tory conditions brings hydrogen into a molecular liquid where the diatomic 
molecules are weakly coupled by interactions including a long-range quadrupo-
lar contribution, and then into a rotational crystalline solid in which the molec­
ular angular momentum remains a remarkably good quantum number in spite 
of the dense crystalline environment. Compression at low temperature even­
tually brings the rotational crystal into a new phase where the molecular rota­
tions are hindered, and ultimately leads into a further crystalline phase whose 
strong infrared activity indicates a mainly dipolar distortion of the electronic 
charge distribution. As hydrogen is brought into the region of high temperature 
and density which is of main interest to astrophysics, molecular dissociation 
can occur by thermal excitations or through compression, as the electrons are 
forced into high energy states by the increasing chemical potential. Dynamic 
compression experiments521 report densities corresponding to rs « 1.5 and 
temperatures of up to 4400 K in dense hydrogen, and to rs « 1.73 and even 
higher temperatures for deuterium. In these experiments a continuous transi­
tion from a semiconducting to a metallic state has been reported to occur at 
3000 K and 140 GPa. 

A theoretical approach to the prediction of the phases of fluid hydrogen has 
been to include several species, such as diatomic molecules, atoms, protons, and 
electrons, and to examine their chemical equilibria. In the model of Saumon 
and Chabrier,522 a first-order transition from a molecular phase to a partially 
ionised atomic gas has been predicted. A path-integral Monte Carlo study 
covering the density range 1.75 < rs < 2.2 has provided general support for 
these findings, although the quantitative details differ.523 This study shows, 
first of all, that a molecular gas forms spontaneously from a neutral system of 
protons and electrons as the temperature is lowered from 105 K to 5000 K, with 
a molecular bond length which contracts with increasing density apparently 
as a consequence of stiff intermolecular repulsions. Molecular dissociation is 
then seen to occur as the temperature is raised or as a result of isothermal 
compression. At high density (rs < 2.0) thermally activated dissociation is 
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Fig. 14.10. Computed pressure from simulation (o) and from chemical picture ( • ) versus 
temperature for hydrogen at rs = 2.0. — and show the corresponding results for 
phase coexistence. (Redrawn from Magro et al, Ref. 523.) 

accompanied by decreasing pressure, signalling the presence of a first-order 
transition and a critical point (see Fig. 14.10). A proposed explanation for 
this transition lies in the increase of electronic kinetic energy associated with 
bond formation: in essence, this increase derives from angular localisation as 
the electrons leave spherical atomic-like orbitals to go into molecular bonding 
orbitals. 

14.6.2 Hydrogen-helium mixtures and the constitution of 
giant planets 

The dissociation transformation revealed by these studies, in which molecular 
hydrogen transforms not directly into a fully ionised plasma but first into a 
partially ionised atomic fluid, is certainly relevant to modelling of the interior 
of the giant planets such as Jupiter or Saturn. However, the situation there 
is more complex because of the coexistence of hydrogen and helium as main 
component elements.524 

It is estimated that these two elements are subjected to pressures up to 
4500 GPa and temperatures up to 24000 K in Jupiter, and about 1000 GPa 
and 10000 K in Saturn. These planets are thought to consist of three main 
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layers: an outer layer of molecular hydrogen and atomic helium, a middle layer 
of metallised atomic hydrogen and helium, and a rocky core compressed to as 
high as 104 GPa at the centre of Jupiter. In Saturn an internal energy source 
has been proposed, associated with demixing and gravitational separation of 
the hydrogen-helium fluid at pressures below 1000 GPa. The existence of 
this phase transition is very sensitive to the equations of state for the two 
elements. 

Appendix 14.1 Density Profiles in the Perturbed 
Electron Gas 

We consider a one-dimensional box with free electrons moving between x = 0 
and x — L and having wave functions ipn(z) = {2/L)1/2 sva.{n-nx/L) with 
n = 1,2,3, The electron density p(x) associated with filling the lowest N 
levels singly is given by 

7 1 = 1 

The summation can be completed exactly as indicated, but as L gets very large 
we can replace the summation by an integration. The one-dimensional wave 
vector space is occupied from —kp to kp and the area of occupied phase space 
is 2kpL. Since each cell in phase space has area h and can accommodate one 
electron, the number of cells needed for N electrons in singly occupied levels 
is 2kyL/h = N. After integrating from —kp to kp, we obtain the result 

sin(2fcFa;) 
f \ N 

1 -
2kpx 

(A14.1.2) 

showing that oscillations of wavelength Tr/kp are induced in a free electron gas 
facing an impenetrable wall at x = 0. 

After this simple example we turn to the problem of the displaced elec­
tron density around a charged impurity in the three-dimensional electron gas 
(Sec. 14.3.2). The electron density to be used in the Poisson equation (14.23) 
is p(r) = 2 53k IV'kMI2, where the factor 2 comes from the spins and V'k(r) are 
one-electron orbitals obeying the Schrodinger equation 

VVk(r) + *-(£W V>k(r)=0. (A14.1.3) 
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V(r) is the effective potential generated by the impurity and we have imposed 
that the orbitals should reduce to plane waves with energy h2k2/2m far away 
from the impurity. A perturbative solution of Eq. (A14.1.3) is obtained by 
replacing ^k(r) in its second term by a plane wave exp(ik • r) (March and 
Murray493), with the result 

where j \ (x) = (sin x — x cos x)/x2 is a typical wave factor representing a diffrac­
tion process. The Poisson equation then is 

v,V{rc} . 2̂ fe" J^i'W'^I'vW (A14.1.5) 

and is to be solved subject to the conditions V(r) —> —Ze2/r for r —> 0 and 
V(r) —> 0 faster that r~l for r —> oo. 

The result in Eq. (14.24) is obtained from these equations if we assume that 
far away from the impurity V(r) varies sufficiently slowly that in Eqs. (A14.1.4) 
and (A14.1.5) V(r') may be replaced by V(r). Instead, the correct asymptotic 
solution is 

p ( r ) _ p K £ 2 f e ) (A14.1.6) 

and similarly for V(r). The phase shift in the asymptotic formula given in 
Eq. (14.27) arises by a full treatment going beyond perturbation theory. 
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