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22.101 Applied Nuclear Physics (Fall 2004) 
Lecture 1 (9/8/04) 

Basic Nuclear Concepts 

References --
P. Marmier and E. Sheldon, Physics of Nuclei and Particles (Academic Press, New York, 
1969), vol. 1. 

General Remarks: 

This subject deals with foundational knowledge for all students in NED. 
Emphasis is on nuclear concepts (as opposed to traditional nuclear physics), especially 
nuclear radiations and their interactions with matter.  We will study different types of 
reactions, single-collision phenomena (cross sections) and leave the effects of many 
collisions to later subjects (22.105 and 22.106).  Quantum mechanics is used at a lower 
level than in 22.51 and 22.106. 

Nomenclature: 

X A  denotes a nuclide, a specific nucleus with Z number of protons (Z = atomicz 

number) and A number of nucleons (neutrons or protons).  Symbol of nucleus is X.  

There is a one-to-one correspondence between Z and X, thus specifying both is actually 

redundant (but helpful since one may not remember the atomic number of all the 

elements.  The number of neutrons N of this nucleus is A – Z.  Often it is sufficient to 

specify only X and A, as in U235, if the nucleus is a familiar one (uranium is well known 

to have Z=92). Symbol A is called the mass number since knowing the number of 

nucleons one has an approximate idea of what is the mass of the particular nucleus.  

There exist uranium nuclides with different mass numbers, such as U233, U235, and U238; 

nuclides with the same Z but different A are called isotopes. By the same token, nuclides 

with the same A but different Z are called isobars, and nuclides with N but different Z are 

called isotones. Isomers are nuclides with the same Z and A in different excited states. 

We are, in principle, interested in all the elements up to Z = 94 (plutonium).  

There are about 20 more elements which are known, most with very short lifetimes; these 

are of interest mostly to nuclear physicists and chemists, not to nuclear engineers.  While 

each element can have several isotopes of significant abundance, not all the elements are 
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of equal interest to us in this class. The number of nuclides we might encounter in our 

studies is probably less than no more than 20. 

A great deal is known about the properties of nuclides.  It should be appreciated 

that the great interest in nuclear structure and reactions is not just for scientific 

knowledge alone, the fact that there are two applications that affects the welfare of our 

society – nuclear power and nuclear weapons – has everything to do with it.   

We begin our studies with a review of the most basic physical attributes of nuclides to 

provide motivation and a basis to introduce what we want to accomplish in this course 

(see the Lecture Outline). 

Basic Physical Attributes of Nuclides 

Nuclear Mass 

We adopt the unified scale where the mass of C12 is exactly 12. On this scale, one mass 

unit 1 mu (C12 = 12) = M(C12)/12 = 1.660420 x 10-24 gm (= 931.478 Mev), where M(C12) 

is actual mass of the nuclide C12. Studies of atomic masses by mass spectrograph shows 

that a nuclide has a mass nearly equal to the mass number A times the proton mass.  

Three important rest mass values, in mass and energy units, to keep handy are: 

                                 mu  [M(C12) = 12] Mev 

electron 0.000548597 0.511006 

proton 1.0072766 938.256 

neutron 1.0086654 939.550 

Reason we care about the mass is because it is an indication of the stability of the nuclide.  

One can see this from E = Mc2. The higher the mass the higher the energy and the less 

stable is the nuclide (think of nuclide being in an excited state). We will see that if a 

nuclide can lower its energy by undergoing distintegration, it will do so – this is the 

simple explanation of radioactivity.  Notice the proton is lighter than the neutron, which 

suggests that the former is more stable than the latter.  Indeed, if the neutron is not bound 
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in a nucleus (that is, it is a free neturon) it will decay into a proton plus an electron (and 

antineutrino) with a half-life of about 13 min. 

Nuclear masses have been determined to quite high accuracy, precision of ~ 1 part in 108 

by the methods of mass spectrograph and energy measurements in nuclear reactions.  

Using the mass data alone we can get an idea of the stability of nuclides.  Consider the 

idea of a mass defect by defining the difference between the actual mass of a nuclide and 

its mass number, ∆  = M – A , which we call the “mass decrement”.  If we plot ∆  versus 

A, we get a curve sketched in Fig. 1. When ∆  < 0 it means that taking the individual  

Fig. 1.  Variation of mass decrement (M-A) showing that nuclides with mass numbers in 

the range ~ (20-180) should be stable. 

nucleons when they are separated far from each other to make the nucleus in question 

results in a product that is lighter than the sum of the components.  The only way this can 

happen is for energy to be given off during the formation process.  In other words, to 

reach a final state (the nuclide) with smaller mass than the initial state (collection of 

individual nucleons) one must take away some energy (mass).  This also means that the 

final state is more stable than the initial state, since energy must be put back in if one 

wants to reverse the process to go from the nuclide to the individual nucleons.  We 

therefore expect that ∆  < 0 means the nuclide is stable.  Conversely, when ∆  > 0 the 

nuclide is unstable.  Our sketch therefore shows that very light elements (A < 20) and 

heavy elements (A > 180) are not stable, and that maximum stability occurs around A ~ 

50. We will return to discuss this behavior in more detail later.  
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Nuclear Size 

According to Thomson’s “electron” model of the nucleus (~ 1900), the size of a nucleus 

should be about 10-8 cm.  We now know this is wrong.  The correct nuclear size was 

determined by Rutherford (~ 1911) in his atomic nucleus hypothesis which put the size at 

about 10-12 cm. Nuclear radius is not well defined, strictly speaking, because any 

measurement result depends on the phenomenon involved (different experiments give 

different results). On the other hand, all the results agree qualitatively and to some extent 

also quantitatively.  Roughly speaking, we will take the nuclear radius to vary with the 

1/3 power of the mass number R = roA1/3, with ro ~ 1.2 – 1.4 x 10-13 cm.  The lower value 

comes from electron scattering which probes the charge distribution of the nucleus, while 

the higher value comes from nuclear scattering which probes the range of nuclear force.  

Since nuclear radii tend to have magnitude of the order 10-13 cm, it is conventional to 

adopt a length unit called Fermi (F), F ≡  10-13 cm. 

Because of particle-wave duality we can associate a wavelength with the momentum of a 

particle. The corresponding wave is called the deBroglie wave.  Before discussing the 

connection between a wave property, the wavelength, and a particle property, the 

momentum, let us first set down the relativistic kinematic relations between mass, 

momentum and energy of a particle with arbitrary velocity.  Consider a particle with rest 

mass mo moving with velocity v. There are two expressions we can write down for the 

total energy E of this particle.  One is the sum of its kinetic energy Ekin and its rest mass 

energy, E = m c 2 ,o o 

)E tot = Ekin + E = m ( c v 2 (1.1)o 

The second equality introduces the relativistic mass m(v) which depends on its velocity, 

2 −1/ 2 (1.2)m (v ) = γm , γ = (1− v / c 2 )o 

where γ  is the Einstein factor. To understand (1.2) one should look into the Lorentz 

transformation and the special theory of relativity in any text.  Eq.(1.1) is a first-order 
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relation for the total energy. Another way to express the total energy is a second-order 

relation 

E 2 2 2= c p + E 2 (1.3)o 

where p = m(v)v is the momentum of the particle.  Eqs. (1.1) – (1.3) are the general 

relations between the total and kinetic energies, mass, and momentum.  We now 

introduce the deBroglie wave by defining its wavelength λ  in terms of the momentum of 

the corresponding particle, 

λ = h / p (1.4)  

−where h is the Planck’s constant ( h / 2π = h = 10 055.1 27 erg sec). Two limiting cases x 

are worth noting. 

Non-relativistic regime:  
1/ 2Eo >> Ekin, p = (2 E m ) , λ = h / 2 E m kin = h / v m (1.5)o kin o o 

E 

Extreme relativsitic regime: 


kin >> E , p = Ekin / c , λ = hc / E (1.6)
o 

Eq.(1.6) applies as well to photons and neutrinos which have zero rest mass. The 

kinematical relations discussed above are general.  In practice we can safely apply the 

non-relativistic expressions to neutrons, protons, and all nuclides, the reason being their 

rest mass energies are always much greater than any kinetic energies we will encounter.  

The same cannot be said for electrons, since we will be interested in electrons with 

energies in the Mev region. Thus, the two extreme regimes do not apply to electrons, and 

one should use (1.3) for the energy-momentum relation.  Since photons have zero rest 

mass, they are always in the relativistic regime. 

 Nuclear charge 

The charge of a nuclide X A   is positive and equal to Ze, where e is the magnitude of the z 

electron charge, e = 4.80298 x 10-10 esu (= 1.602189 x 10-19 Coulomb).  We consider 
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single atoms as exactly neutral, the electron-proton charge difference is < 5 x 10-19 e, 

and the charge of a neutron is < 2 x 10-15 e. 

As to the question of the charge distribution in a nucleus, we can look to high-energy 

electron scattering experiments to get an idea of how nuclear density and charge density 

are distributed across the nucleus. Fig. 2 shows two typical nucleon density distributions 

obtained by high-electron scattering.  One can see two basic components in each 

distribution, a core of constant density and a boundary where the density decreases 

smoothly to zero.  Notice the magnitude of the nuclear density is 1038 nucleons per cm3, 

whereas the atomic density of solids and liquids is in the range of 1024 nuclei per cm3. 

What does this say about the packing of nucleons in a nucleus, or the average distance 

between nucleons versus the separation between nuclei?  The shape of the distributions 

Fig. 2. Nucleon density distributions showing nuclei having no sharp boundary. 

shown in Fig. 2 can be fitted to the expression, called the Saxon distribution, 

ρoρ(r) = (1.7)
1 + exp[(r − R) / a] 

where ρ  = 1.65 x 1038 nucleons/cm3, R ~ 1.07 A1/3 F, and a ~ 0.55 F. A sketch of thiso 

distribution, given in Fig. 3, shows clearly the core and boundary components of the 

distribution. 
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Fig. 3.  Schematic of the nuclear density distribution, with R being a measure of the 

nuclear radius, and the width of the boundary region being given by 4.4a. 

Detailed studies based on high-energy electron scattering have also rvealed that even the 

proton and the neutron have rather complicated structures.  This is illustrated in Fig. 4. 

Fig. 4.  Charge density distributions of the proton and the neutron showing how each can 

be decomposed into a core and two meson clouds, inner (vector) and outer (scalar).  The 

core has a positive charge of ~0.35e with probable radius 0.2 F.  The vector cloud has a 

radius 0.85 F, with charge .5e and -.5e for the proton and the neutron respectively, 

whereas the scalar clouid has radius 1.4 F and charge .15e for both proton and 

neutron[adopted from Marmier and Sheldon, p. 18].  

We note that mesons are unstable particles of mass between the electron and the proton: 

π -mesons (pions) olay an important role in nuclear forces ( mπ 270 ~ m ), µ ­e 

mesons(muons) are important in cosmic-ray processes ( m 207 ~ m ).µ e 
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Nuclear Spin and Magnetic Moment 

Nuclear angular momentum is often known as nuclear spin hI  ; it is made up of two 

parts, the intrinsic spin of each nucleon and their orbital angular momenta.  We call I the 

spin of the nucleus, which can take on integral or half-integral values.  The following is 

usually accepted as facts.  Neutron and proton both have spin 1/2 (in unit of h ). Nuclei 

with even mass number A have integer or zero spin, while nuclei of odd A have half- 

integer spin. Angular momenta are quantized. 

Associated with the spin is a magnetic moment µ 
I 
, which can take on any value because 

it is not quantized.  The unit of magnetic moment is the magneton 

e 
µ ≡ 

h 
=

µB = 0.505 x 10-23 ergs/gauss (1.8)n 2 c m 09. 1836 p 

where µB  is the Bohr magneton.  The relation between the nuclear magnetic moment and 

the nuclear spin is 

µ = γhI (1.9)
I 

where γ  here is the gyromagnetic ratio (no relation to the Einstein factor in special 

relativity).  Experimentally, spin and magnetic moment are measured by hyperfine 

structure (splitting of atomic lines due to interaction between atomic and nuclear 

magnetic moments), deflations in molecular beam under a magnetic field (Stern- 

Gerlach), and nuclear magnetic resonance 9precession of nuclear spin in combined DC 

and microwave field).  We will say more about nmr later. 

Electric Quadruple Moment 

The electric moments of a nucleus reflect the charge distribution (or shape) of the 

nucleus. This information is important for developing nuclear models.  We consider a 

classical calculation of the energy due to electric quadruple moment.  Suppose the 
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nuclear charge has a cylindrical symmetry about an axis along the nuclear spin I, see Fig. 

5. 

Fig. 5.  Geometry for calculating the Coulomb potential energy at the field point S1 due 

to a charge distribution ρ (r ) on the spheroidal surface as sketched. 

The Coulomb energy at the point S1 is 

ρ
(r )3r d θr V ,( 1 1 )
 ∫
= (1.10)
d 

where ρ(r )  is the charge density, and d =
 −
 We will expand this integral in a r r .1 

power series in 1/ r  by noting the expansion of 1/d in a Legendre polynomial series, 1 

n 
⎛
⎜⎜
⎝ 

∞

∑
⎞
⎟⎟


1 1 r 
r 1 

θP (cos )n (1.11) 
=

d r 1 ⎠
0n = 

where P0(x) = 1, P1(x) = x, P2(x) = (3x2 – 1)/2, …Then (1.10) can be written as 

θr V ,( 1 1 )

∞

∑ a n (1.12)=

1 
r 1 n = 

n 
0 r 1 
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3with a = ∫ r d ρ(r ) =  Ze  (1.13)o 

3a 1 = ∫ d rz ρ(r ) = electric dipole  (1.14) 

3 1 2a 2 = ∫ r d (3z 2 − r )ρ(r ) ≡ 
1 eQ (1.15)

2 2 

The coefficients in the expansion for the energy, (1.12), are recognized to be the total 

charge, the dipole (here it is equal to zero), the quadruple, etc.  In (1.15) Q is defined to 

be the quadruole moment (in unit of 10-24 cm2, or barns). Notice that if the charge 

distribution were spherically symmetric, <x2> = <y2> = <z2> = <r2>/3, then Q = 0.  We 

see also, Q > 0, if 3<z2> > <r2> and  Q <0, if 3<z2> < <r2> 

The corresponding shape of the nucleus in these two cases would be prolate or oblate 

spheroid, respectively (see Fig. 6). 

Fig. 6.  Prolate and oblate spheroidal shapes of nuclei as indicated by a  positive or 

negative value of the electric quadruple moment Q. 

Some values of the spin and quadruple moments are: 
2Nucleus  I  Q  [10-24 cm ] 

Pu
U
U

n 1/2 
p 1/2 
H2  1 
He4  0 
Li6  1 

233  5/2
235  7/2

241  5/2 

0 
0 
0.00274 
0 

-0.002 
3.4 

4 

4.9 
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22.101 Applied Nuclear Physics (Fall 2004) 
Lecture 2 (9/13/04) 

Schrödinger Wave Equation 

References --
R. M. Eisberg, Fundamentals of Modern Physics (Wiley & Sons, New York, 1961). 
R. L. Liboff, Introductory Quantum Mechanics (Holden Day, New York, 1980). 

With this lecture we begin the discussion of quantum mechanical description of 

nuclei. There are certain properties of a nucleus which can be described properly only by 

the use of quantum mechanics.  The ones which come to mind immediately are the 

energy levels of a nucleus and the transitions that can take place from one level to 

another. Other examples are the various types of nuclear radiation which are sometimes 

treated as particles and at other times as waves. 

It is not our goal in this subject to take up the study of quantum mechanics as a 

topic by itself. On the other hand, we have no reason to avoid using quantum mechanics 

if it is the proper way to understand nuclear concepts and radiation interactions.  In fact 

the serious students in 22.101 has little choice in deciding whether or not to learn 

quantum mechanics.  This is because the concepts and terminologies in quantum 

mechanics are such integral parts of nuclear physics that some knowledge of quantum 

mechanics is essential to having full command of the language of nuclear physics. The 

position we adopt throughout the term is to learn enough quantum mechanics to 

appreciate the fundamental concepts of nuclear physics, and let each student go beyond 

this level if he/she is interested.  What this means is that we will not always derive the 

basic equations and expressions that we will use; the student is expected to work with 

them as postulates when this happens (as always, with the privilege of reading up on the 

background material on his own). 

Waves and Particles 

We will review some basic properties of waves and the concept of wave-particle duality.  

,In classical mechanics the equation for a one-dimensional periodic disturbance ξ ( t x ) is 
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2 2∂ ξ 2 ∂ ξ 
= c (2.1)

∂t 2 ∂x 2 

which has as a general solution, 

i (kx −ωt ) 

,ξ ( t x ) = ξ e (2.2)o 

where ω = 2πν is the circular frequency, ν  the linear frequency, and k is the 

wavenumber related to the wavelength λ  by k = 2πλ . If (2.2) is to be a solution of 

(2.1), then k and ω must satisfy the relation 

ω = ck (2.3) 

So our solution has the form of a traveling wave with phase velocity equal to c, which we 


denote by v ph . In general the relation between frequency and wavenumber is called the 


dispersion relation.  We will see that different kinds of particles can be represented as


waves which are characterized by different dispersion relations. 


The solution (2.2) is called a plane wave.  In three dimensions a plane wave is of the form


exp( k i ⋅ r ) . It is a wave in space we can visualize as a series of planes perpendicular to 


the wavevector k; at any spatial point on a given plane the phase of the wave is the same.  

That is to say, the planes are planes of constant phase.  When we include the time 

(variation exp(− t i ω ) , then exp[ ki ⋅ r −ωt )]  becomes a traveling plane wave, meaning 

that the planes of constant phase are now moving in the direction along k at a speed of 

ω / k , the phase velocity of the wave. 

The wave equation (2.1) also admits solutions of the form 

ξ ( t x ) = a sin kx cosωt (2.4), o 

These are standing wave solutions.  One can tell a standing wave from a traveling wave 

by the behavior of the nodes, the spatial positions where the wave function is zero.  For a 
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standing wave the zeroes do not change with time, whereas for a traveling wave, (2.2), 

the nodes are x = (n π +ωt ) / k , which clearly are positions moving in the +x direction n 

with velocity dx / dt = ω / k . We will see below that the choice between traveling and 

standing wave solutions depends on the physical solution of interest (which kind of 

problem one is solving).  For the calculation of energy levels of a nucleus, the bound state 

problem, we will be concerned with standing wave solutions, while for the discussion of 

scattering problem (see the lecture on neutron-proton scattering) it will be more 

appropriate to consider traveling wave solutions. 

Our interest in the properties of waves lies in the fact that the quantum mechanical 

description of a nucleus is based on the wave representation of the nucleus.  It was first 

postulated by deBroglie (1924) that one can associate a particle of momentum p and total 

relativistic energy E with a group of waves (wave packet) which are characterized by a 

wavelength λ  and a frequency ν , with the relation 

λ = h / p (2.5) 

ν = E / h (2.6) 

and that, moreover, the motion of the particle is governed by the wave propagation of the 

wave packet. This statement is the essence of particle-wave duality, a concept which we 

will adopt throughout our study of nuclear physics [see, for example, Eisberg, chap 6]. 

It is important to distinguish between a single wave and a group of waves.  This 

distinction is seen most simply by considering a group of two waves of slightly different 

wavelengths and frequencies. Suppose we take as the wave packet 

, 2 ,Ψ( t x ) = Ψ ( t x ) + Ψ ( t x ) (2.7)1 , 

with 

1 ,Ψ ( t x ) = sin(kx −ωt ) (2.8) 
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, ( )Ψ2 ( t x ) = sin[ k k + x dk − (ω + dω)t] (2.9) 

Using the identity 

sin A + sin B = cos[( 2 A − B) / 2]sin[( A + B) / 2] (2.10) 

,we rewrite Ψ( t x ) as 

, )Ψ( t x ) = cos[( 2 dks − dωt) / 2] 2 sin{[( k + x dk − (2ω + dω)]t / }2 

≈ cos[( 2 dkx − dωt) / 2]sin(kx −ωt) (2.11)  

In this approximation, terms of higher order in dk / k or dω / ω are dropped. Eq. (2.11) 

shows the wave packet oscillates in space with a period of 2π / k , while its amplitude 

oscillates with a period of 2π / dk  (see Fig. 1). Notice that the latter oscillation has its  

Fig. 1. Spatial variation of a sum of two waves of slightly different frequencies and 

wavenumbers showing the wave packet moves with velocity g which is distinct from the 

propagation (phase) velocity w [from Eisberg, p. 144].  

own propagation velocity, dω / dk . This velocity is in fact the speed with which the 

associated particle is moving.  Thus we identify 
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g = dω / dk (2.12)  

as the group velocity. This velocity should not be confused with the propagation velocity 

of the wave packet, which we can calculate from 

w =νλ = E / p = c 1 + ( c m / p)2 (2.13)o 

Here mo is the rest mass of the particle and c the speed of light.  Thus we see the wave 

packet moves with a velocity that is greater then c, whereas the associated particle speed 

is necessarily less than c.  There is no contradiction here because the former is the phase 

velocity while the latter is the group velocity. 

In this class we will be dealing with three kinds of particles whose wave 

representations will be of interest.  These are nucleons or nuclides which can be treated as 

non-relativistic particles for our purposes, electrons and positrons which usually should 

be treated as relativistic particles since their energies tend to be comparable or greater 

than the rest-mass energy, and finally photons which are fully relativistic since they have 

zero rest-mass energy.  For a non-relativistic particle of mass m moving with momentum 
2 2p, the associated wavevector k is p = hk . Its kinetic energy is p 2 / 2m = h k / 2m . The 

wavevector, or its magnitude, the wavenumber k, is a useful variable for the discussion of 

particle scattering since in a beam of such particles the only energies are kinetic, and both 

momentum and energy can be specified by giving k . For electromagnetic waves, the 

associated particle, the photon, has momentum p , which is also given by hk , but its 

energy is E = hck = hp . Comparing these two cases we see that the dispersion relation is 
2ω = hk / 2m  for a non-relativistic particle, and ω = ck for a photon. The group 

velocity, according to9 (2.12), IS vg = hk / m = p / m and vg = c , respectively.  This is 

consistent with our intuitive notion about particle speeds. 

The Schrödinger Wave Equation 
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The Schrödinger equation is the fundamental equation governing the deBroglie 

wave with which we associate a particle.  The wave will be called the wave function, and 

,it will be denoted as a space- and time-dependent quantity, Ψ ( tr ) . One does not derive 

the Schrödinger equation in the same sense that one also does not derive Newton’s 

equation of motion, F = a m . The equation is a postulate which one can simply accept.  

Of course one can give systematic motivations to suggest why such an equation is valid 

[see Eisberg, chap 7 for a development].  We will write down the Schrödinger equation in 

its time-dependent form for a particle in a potential field V(r), 

h 2 , ⎡ ⎤
i h Ψ∂ ( t r ) 

= 
⎣
⎢− 

2m 
∇ 2 + V (r )⎥Ψ ( tr ) (2.14)

∂ t ⎦ 
, 

Notice that the quantity in the bracket is the Hamiltonian H of the system.  Its physical 

meaning is the total energy, which consists of the kinetic part p2/2m and the potential part 

V(r).  Appearance of the Laplacian operator ∇2  is to be expected, since the particle 

momentum p is an operator in configuration space, and it is represented as p = − i h∇ . 

For the same reason, H is an operator having the representation 

H = − 
h 2 

∇ 2 + V (r ) (2.15)
2m 

so another form of the Schrödinger equation is 

,i h ∂Ψ( t r ) 
= H Ψ ( tr ) (2.16)

∂ t 
, 

As a side remark we note that (2.14) is valid only for a non-relativistic particle, whereas 

(2.16) is more general if H is left unspecified.  This means that one can use a relativistic 

expression for H, then (2.16) would lead to the Dirac equation, which is what one should 

consider if the particle were an electron.  Compared to the classical wave equation, (2.1), 

which relates the second spatial derivative of the wave function to the second-order time 
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derivative, the time-dependent Schrödinger wave equation, (2.14) or (2.16), is seen to 

relate the spatial derivative of the wave function to the first-order time derivative.  This is 

a significant distinction which we do not go into in this class.  Among other implications 

is the fact that the classical wave is real and messurable (elastic strings and 

electromagnetic waves) whereas the Schrödinger wave function is complex (therefore not 

measurable). To ascribe physical meaning to the wave function one needs to consider 
* , , ,the probability density defined as Ψ* ( t r )Ψ( tr ) , where Ψ ( tr )  is the complex 

conjugate of the wave function. 

For almost all our discussions the time-independent form of the Schrödinger 

equation is needed. This is obtained by considering a periodic solution to (2.16) of the 

form 

, )Ψ( tr ) =ψ ( e r iEt / h (2.17)  

where E is a constant (soon to be identified as the total energy).  Inserting this solution 

into (2.16)gives the time-independent Schrödinger equation, 

Hψ (r) = Eψ (r) (2.18)  

We see that (2.18) has the form of an eigenvalue problem with H being the operator, E 

the eigenvalue, and ψ (r) the eigenfunction. 

It is instructive to recognize a certain similarity between the Schrödinger equation 

and the classical wave equation when the latter incorporates the concept of deBroglie 

waves.  To show this we first write the three-dimensional generalization (2.1) as 

2 , 2 2∂ ξ ( t r ) 
= v ph ∇ ξ ( tr ) (2.19)

∂t 2
, 

and use (2.13), 
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E E 
= = (2.20)

( 
v ph p 2 E m − V ) 

For periodic solutions, ξ ( tr ) = ς ( e r iEt / h , we see that one is led immediately to (2.19).  , ) 

Notice that the connection between the classical wave equation and the Schrödinger 

equation is possible only in terms of the time-independent form of the equations.  As 

mentioned above, the two equations, in their time-dependent forms, differ in important 

ways, consequently different properties have to be ascribed to the classical wave function 

and the Schrödinger wave function. 

Following our previous statement about the different types of wave solutions, we 

can ask what types of solutions to the Schrödinger equation are of interest.  To answer 

this question we will consider (2.18) in one dimension for the sake of illustration.  

Writing out the equation explicitly, we have 

2 
2d ψ (x) 

− = k ψ (x) (2.21)
dx 2 

[ 2where k 2 = 2 E m − V (x)] / h . In general k2 is a function of x because of the potential 

energy V9x), but for piecewise constant potential functions such as a rectangular well or 

barrier, we can write a separate equation for each region where V(x0 is constant, and 

thereby treat k2 as a constant in (2.21). A general solution (2.21) is then 

ψ (x) = Aeikx + Be− ikx (2.22)  

where A and B are constants to be determined by appropriate boundary conditions.  Now 

suppose we are dealing with finite-range potentials so that V (x) → 0 as x →∞ , then k 
2 )1/ 2becomes (2mE / h . For E > 0, k is real and Ψ , as given by (2.17), is seen to have 

the form of traveling plane waves.  On the other hand, if E < 0, k = iκ is imaginary, then 

≈ Ψ e−κ xe− iω t , and the solution has the form of a standing wave.  What this means is that 

for the description of scattering problems one should use positive-energy solutions (these 
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are called scattering states), while for bound-state calculations one should work with 

negative-energy solutions.  Fig. 2 illustrates the behavior of the two types of solutions.  

The condition at infinity, x ±∞ → , is that ψ  is a plane wave in the scattering problem, 

and an exponentially decaying function in the bound-state problem.  In other words, 

outside the potential (the exterior region) the scattering state should be a plane wave 

representing the presence of an incoming or outgoing particle, while the bound state 

should be represented by an exponentially damped wave signifying the localization of the 

particle inside the potential well.  Inside the potential (the interior region) both solutions 

are seen to be oscillatory, with the shorter period corresponding to higher kinetic energy 

T = E – V. 

Fig. 2.  Traveling and standing wave functions as solutions to scattering and bound-state 

problems respectively. 

There are general properties of Ψ  which we require for either problem.  These 

arise from the fact that we are seeking physical solutions to the wave equation, and that 
2 3ψ (r) r d  has the interpretation of being the probability of finding the particle in an 

2 2element of volume d3r about r. In view of (2.17) we see that ,Ψ( tr ) = ψ (r) , which 

means that we are dealing with stationary solutions.  Since a time-independent potential 

cannot create or destroy particles, the normalization condition 

2

∫ 3r d ψ (r) = 1 (2.23) 
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cannot be applied to the bound-state solutions with integration limits extending to 

infinity. However, for scattering solutions one needs to specify an arbitrary volume Ω 

for the normalization of a plane wave.  This poses no difficulty since in any calculation 

all physical results will be found to be independent of Ω . Other properties of Ψ , or ψ , 

which can be invoked as conditions for the solutions to be physically meaningful are: 

(i) finite everywhere 

(ii) single-valued and continuous everywhere 

(iii) first derivative continuous 

(iv) → Ψ 0 when V ∞ → 

Condition (iii) is equivalent to the statement that the particle current must be continuous 

everywhere.  The current is related to the wave function by the expression 

+j(r) = 
h [ψ + (r)∇ψ (r) −ψ (r)∇ψ (r)] (2.24)

2mi 

which can be derived directly from (2.18). 
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We will solve the Schrödinger wave equation in the simplest problem in quantum 

mechanics, a particle in a potential well.  The student will see from this calculation how 

the problem is solved by dividing the system into two regions, the interior where the 

potential energy is nonzero, and the exterior where the potential is zero.  The solution to 

the wave equation is different in these two regions because of the physical nature of the 

problem.  The interior wave function is oscillatory in the interior and exponential (non­

oscillatory) in the exterior.  Matching these two solutions at the potential boundary gives 

a condition on the wavenumber (or wavelength), which turns out to be quantization 

condition. That is, solutions only exist if the wavenumbers take on certain discrete values 

which then translate into discrete energy levels for the particle.  For a given potential well 

of certain depth and width, only a discrete set of wave functions can exist in the potential 

well. These wave functions are the eigenfunctions of the Hamiltonian (energy) operator, 

with corresponding energy levels as the eigenvalues.  Finding the wavefunctions and the 

spectrum of eigenvalues is what we mean by solving the Schrödinger wave equation for 

the particle in a potential well. Changing the shape of the potential means a different set 

of eigenfunctions and the eigenvalues. The procedure to find them, however, is the same. 

For a one-dimensional system the time-independent wave equation is 

h 2 2 

− 
d ψ (x) 

+ V (x)ψ (x) = Eψ (x) (3.1)
2m dx 2 

We will use this equation to investigate the bound-states of a particle in a square well 

potential, depth Vo and width L. The physical meaning of (3.1) is essentially the 

statement of energy conservation, the total energy E, a negative and constant quantity, is 

the sum of kinetic and potential energies.  Since (3.1) holds at every point in space, the 
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fact that the potential energy V(x) varies in space means the kinetic energy of the particle 

also will vary in space. For a square well potential, V(x) has the form 

(x V ) − = V − L / 2 ≤ x ≥ L / 2o 

= 0 elsewhere (3.2) 

as shown in Fig. 1. Taking advantage of the piecewise constant behavior of the potnetial,  

Fig. 1.  The square well potential centered at the origin with depth Vo and width L. 

we divide the configuration space into an interior region, where the potential is constant 

and negative, and an exterior region where the potential vanishes.  For the interior region 

the wave equation can be put into the standard form of a second-order differential 

equation with constant coefficient, 

2 
2d ψ (x ) 

+ k ψ (x ) = 0 x ≤ L / 2 (3.3)
dx 2 

( 2where we have introduced the wavenumber k such that k 2 = 2 E m + V ) / h  is always o 

positive, and therefore k is always real.  For this to be true we are excluding solutions 

where –E > Vo. For the exterior region, the wave equation similarly can be put into the 

form 
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2 
2d ψ (x) 

−κ ψ (x) = 0 ≥ L / 2 (3.4)x 
dx 2 

2 2where κ − = 2mE / h . To obtain the solutions of physical interest to (3.3) and (3.4), we 

keep in mind that the solutions should have certain symmetry properties, in this case they 

should have definite parity, or inversion symmetry (see below).  This means when x → -x, 

ψ (x)  must be either invariant or it must change sign.  The reason for this requirement is 

that the Hamiltonian H is symmetric under inversion (potential is symmetric with our 

choice of coordinate system (see Fig. 1).  Thus we take for our solutions 

ψ (x) = Asin kx x ≤ L / 2 

x= Be−κ   x  >  L/2  (3.5)

 = Ceκx   x  <  -L/2  

We have used the condition of definite parity in choosing the interior solution.  While we 

happen to have chosen a solution with odd parity, the even-parity solution, coskx, would 

be just as acceptable. On the other hand, one cannot choose the sum of the two, Asinkx + 

Bcoskx, since this does not have definite parity.  For the exterior region we have applied 

condition (i) in Lec2 to discard the exponentially growing solution.  This is physically 

intuitive since for a bound state the particle should be mostly inside the potential well, 

and away from the well the wave function should be decaying rather than growing. 

In the solutions we have chosen there are three constants of integration, A, B, and 

C. These are to be determined by applying boundary conditions at the interface between 

the interior and exterior regions, plus a normalization condition (2.23).  Notice there is 

another constant in the problem which has not been specified, the energy eigenvalue E.  

All we have said thus far is that E is negative.  We have already utilized the boundary 

condition at infinity and the inversion symmetry condition of definite parity.  The 
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condition which we can now apply at the continuity conditions (ii) and (iii) in Lec2.  At 

the interface, x ± = L / 2 , the boundary conditions areo 

ψ int (x ) =ψ (x )  (3.6)o ext o 

dψ int (x) dψ ext (x)
=  (3.7)

dx dxxo xo 

with subscripts int and ext denoting the interior and exterior solutions respectively. 

The four conditions at the interface do not allow us to determine the four 

constants because our system of equations is homogeneous.  As in situations of this kind, 

the proportionality constant is fixed by the normalization condition (2.23).  We therefore 

obtain C = -B, B = Asin(kL / 2)exp(κ L / 2) , and 

cot(kL / 2) = −κ / k (3.8)  

ψ 

with the constant A determined by (2.23).  The most important result of this calculation is 

(3.8), sometimes also called a dispersion relation.  It is a relation which determines the 

allowed values of E, a quantity that appears in both k and κ . These are then the discrete 

(quantized) energy levels which the particle can have in the particular potential well 

given, namely, a square well of width L and depth Vo. Eq.(3.8) is the consequence of 

choosing the odd-parity solution for the interior wave. For the even-parity solution, 

int (x) = A cos ' kx , the corresponding dispersion relation is 

tan(kL / 2) = κ / k (3.9)  

Since both solutions are equally acceptable, one has two distinct sets of energy levels, 

given (3.8) and (3.9). 

We now carry out an analysis of (3.8) and (3.9).  First we put the two equations 

into dimensionless form, 

4 



ξ cotξ = −η (odd-parity) (3.10) 

ξ tanξ =η  (even-parity) (3.11) 

where ξ = kL / 2 , η = κ L / 2 , and 

2 2 2ξ +η = 2 V mL / 4h 2 Λ ≡ (3.12)o

is a constant for fixed values of Vo and L. In Fig. 4 we plot the left- and right-hand sides 

of (3.10) and (3.11), and obtain from their intersections the allowed energy levels.  The 

graphical method of obtaining solutions to the dispersion relations reveals the following  

Fig. 4.  Graphical solutions of (3.10) and (3.11) showing that there could be no odd-

parity solutions if Λ is not large enough (the potential is not deep enough or not wide 

enough), while there is at least one even-parity solution no matter what values are the 

well depth and width. 

features. There exists a minimum value of Λ  below which no odd-parity solutions are 

allowed. On the other hand, there is always at least one even-parity solution.  The first 

even-parity energy level occurs at ξ < π / 2 , whereas the first odd-parity level occurs at 
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π / 2 < ξ < π . Thus, the even- and odd-parity levels alternate in magnitudes, with the 

lowest level being even in parity. We should also note that the solutions depend on the 

potential function parameters only through the variable Λ , or the combination VoL2, so 

that changes in well depth have the same effect as changes in the square of the well 

width. 

At this point it is well to keep in mind that when we consider problems in three 

dimensions (next chapter), the cosine solution to the wave function has to be discarded 

because of the condition of regularity (wave function must be finite) at the origin.  This 

means that there will be a minimum value of Λ  or VoL2 below which no bound states can 

exist. 

We now summarize our results for the allowed energy levels of a particle in a 

square well potential and the corresponding wave functions. 

ψ int (x) = Asin kx or A cos ' kx x < L / 2 (3.13) 

ψ ext (x) = Be−κx    x > L/2 

= Ceκx    x < -L/2 (3.14) 

where the energy levels are 

2 2 2h 2 k h κE − = V + − = (3.15)o 2m 2m 

The constants B and C are determined from the continuity conditions at the interface, 

while A and A’ are to be fixed by the normalization condition.  The discrete values of the 

bound-state energies, k or κ , are obtained (3.8) and (3.9).  In Fig. 5 we show a sketch of 

the two lowest-level solutions, the ground state with even-pairty and the first excited state 

with odd parity. Notice that the number of excited states that one can have depends on  
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Fig. 5.  Ground-state and first two excited-state solutions [from Cohen, p. 16] 

the value of Vo because our solution is valid only for negative E.  This means that for a 

potential of a given depth, the particle can be bound only in a finite number of states.  

To obtain more explicit results it is worthwhile to consider an approximation to 

the boundary condition at the interface.  Instead of the continuity of ψ  and its derivative 

at the interface, one might assume that the penetration of the wave function into the 

external region can be neglected and require that ψ  vanishes at x = ± L / 2 . Applying 

this condition to (3.13) gives kL = nπ , where n is any integer, or equivalently, 

2 2 2n π hE − = V + 
2mL2 , n = 1, 2, … (3.16)n o 

This shows explicitly how the energy eigenvalue En varies with the level index n, which 

is the quantum number.  The corresponding wave functions are 

ψ (x) = A cos(nπ x / L) , n = 1, 3, …n n 

= A ' sin(nπ x / L) n = 2, 4, … (3.17)n 

The first solutions in this approximate calculation are also shown in Fig. 5.  We see that 

requiring the wave function to vanish at the interface is tantamount to assuming that the 

particle is confined in a well of width L and infinitely steep walls (the infinite well 
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potential or limit of V ∞ → ). It is therefore to be expected that the problem becomes o

independent of Vo and there is no limit on the number of excited states.  Clearly, the 

approximate solutions become the more useful the greater is the well depth, and the error 

is always a higher energy level as a result of squeezing of the wave function (physically, 

the wave has a shorter period or a larger wavenumber). 
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We will now extend the bound-state calculation to three-dimensional systems.  

The problem we want to solve is the same as before, namely, to determine the bound-

state energy levels and corresponding wave functions for a particle in a spherical well 

potential. Although this is a three-dimensional potential, its symmetry makes the 

potential well a function of only one variable, the distance between the particle position 

and the origin. In other words, the potential is of the form 

oVr V − = )(  r < ro

 (4.1) 

= 0 otherwise 

Here r is the radial position of the particle relative to the origin.  Any potential that is a 

function only of r, the magnitude of the position r and not the position vector itself, is 

called the central-force potential.  As we will see, this form of the potential makes the 

solution of the Schrödinger wave equation particularly simple.  For a system where the 

potential or interaction energy has no angular dependence, one can reformulate the 

problem by factorizing the wave function into a component that involves only the radial 

coordinate and another component that involves only the angular coordinates.  The wave 

equation is then reduced to a system of uncoupled one-dimensional equations, each 

describing a radial component of the wave function.  As to the justification for using a 

central-force potential for our discussion, this will depend on which properties of the 

nucleus we wish to study. 
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We again begin with the time-independent wave equation 

⎡

⎢
⎣

−

h 2 

2m 
∇
2 +
 (r V )

⎤

(ψ⎥

⎦
( ) (4.2)ψ) E
r =
 r 

Since the potential function has spherical symmetry, it is natural for us to carry out the 

analysis in the spherical coordinate system rather than the Cartesian system.  A position 

vector r then is specified by the radial coordinate r and two angular coordinates, θ  and 

ϕ , the polar and azimuthal angles respectively, see Fig. 1.  In this coordinate system 

Fig. 1.  The spherical coordinate system.  A point in space is located by the radial 

coordinate r, and polar and azimuthal angles θ  and ϕ . 

the Laplacian operator ∇2 is of the form 

21 ⎡− L ⎤ 
∇ 2 =
D 2 (4.3)+
 ⎢

⎣

⎥
⎦


2 2r
hr 

where D 2 is an operator involving the radial coordinate,r 

1 ∂
 2 ∂⎡ ⎤
2D (4.4)=
 r 
∂⎢⎣ r ⎥⎦∂r 2 rr 
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and the operator L2 involves only the angular coordinates, 

2 ∂ 2L 1 1
− = (4.5)
h 2 2 2sinθ ∂

∂
θ ⎣
⎡
⎢ sinθ

∂
∂
θ ⎦
⎤
⎥ + 

sin θ ∂ϕ 

In terms of these operators the wave equation (4.2) becomes 

h 2 2⎡ ⎤ 
(⎢− 

2m
D 2 + 

L 
+ r V )⎥ψ (r θϕ ) = E ψ (r θϕ ) (4.6)r 

⎣ 2mr 2 
⎦ 

For any potential V(r) the angular variation of ψ  is always determined by the operator 

L2/2mr2. Therefore one can study the operator L2 separately and then use its properties to 

simplify the solution of (4.6).  This needs to be done only once, since the angular 

variation is independent of whatever form one takes for V(r).  It turns out that L2 is very 

well known (it is the square of L which is the angular momentum operator); it is the 

operator that describes the angular motion of a free particle in three-dimensional space. 

We first summarize the basic properties of L2 before discussing any physical 

interpretation.  It can be shown that the eigenfunction of L2 are the spherical harmonics 
mfunctions, Y l ( ϕθ ) ,, 

2 m , 2 ( l ,Y L l ( ϕθ ) = l l h + 1)Y m ( ϕθ ) (4.7) 

where 

m )! ⎤ 
1/ 2 

m ⎡ 2l + 1 (l − m im ϕ ,Y l ( ϕθ ) = ⎢ ⎥ P l (cosθ )e (4.8)
⎢ 4π (l + m )!⎥⎣ ⎦ 

and 
2 m / 2 d l+ m 

l(µ 2 − 1)  (4.9)
l l+ m Pl 

m (µ ) = 
(1− 

2 
µ 
l!
) 

d µ 

with µ = cosθ . The function Pm (µ )  is called the associated Legendre polynomials, l

which are in turn expressible in terms of Legendre polynomials P (µ ) ,l
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m 
mmPl (µ ) = (1− µ ) / 2 d P (µ ) (4.10)lmdµ 

with Po(x) = 1, P1(x) = x, P2(x) = (3X2 – 1)/2, P3(x) = (5x3-3x)/2, etc. Special functions 

like Yl
m and Pl

m  are quite extensively discussed in standard texts [see, for example, 

Schiff, p.70] and reference books on mathematical functions [More and Feshbach, p. 

1264]. For our purposes it is sufficient to regard them as well known and tabulated 

quantities like sines and cosines, and whenever the need arises we will invoke their 

special properties as given in the mathematical handbooks. 

,It is clear from (4.7) that Yl
m ( ϕθ ) is an eigenfunction of L2 with corresponding 

(eigenvalue l l + 1)h 2 . Since the angular momentum of the particle, like its energy, is 

quantized, the index l  can take on only positive integral values or zero, 

l  = 0, 1, 2, 3, … 

Similarly, the index m can have integral values from - l  to l , 

m  =  - l , - l +1, …, -1, 0, 1, …, l -1, l 

For a given l , there can be 2 l +1 values of m.  The significance of m can be seen from 

the property of Lz, the projection of the orbital angular momentum vector L along a 

certain direction in space (in the absence of any external field, this choice is up to the 

observer). Following convention we will choose this direction to be along the z-axis of 

our coordinate system, in which case the operator Lz has the representation, 

ih / ,L = ∂ ∂ − ϕ , and its eignefunctions are also Yl 
m ( ϕθ ) , with eigenvalues mh . Thez 

indices l  and m are called quantum numbers. Since the angular space is two-dimensional 

(corresponding to two degrees of freedom), it is to be expected that there will be two 

quantum numbers in our analysis.  By the same token we should expect three quantum 

numbers in our description of three-dimensional systems.  We should regard the particle 

as existing in various states which are specified by a unique set of quantum numbers, 
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each one is associated with a certain orbital angular momentum which has a definite 

magnitude and orientation with respect to our chosen direction along the z-axis.  The 

,particular angular momentum state is described by the function Yl
m ( ϕθ ) with l  known 

as the orbital angular momentum quantum number, and m the magnetic quantum number.  

,It is useful to keep in mind that Yl
m ( ϕθ )  is actually a rather simple function for low 

order indices.  For example, the first four spherical harmonics are: 

− iϕ iϕ0Y0 = 1/ 4π , Y1 
− 1 = 3/ 8π e sinθ , Y1

0 = 3/ 4π cosθ , Y1
1 = 3/ 8π e sinθ 

Two other properties of the spherical harmonics are worth mentioning.  First is 

,that {Yl 
m ( ϕθ ) }, with l  = 0, 1, 2, … and − l ≤ m ≤ l , is a complete set of functions in 

the space of 0 ≤ ≤ θ π and 0 ≤ ϕ ≤ 2π in the sense that any arbitrary function of θ  and 

ϕ  can be represented by an expansion in these functions.  Another property is 

orthonormality, 

π 2π 
m*sin θ θ ∫ Y d ( ϕθ )Y m ' ( ϕθ ) = δ δ (4.11)∫ d ϕ l , l ' , ll ' mm ' 

0 0 

where δ ll '  denotes the Kronecker delta function; it is unity when the two subscripts are 

equal, otherwise the function is zero. 

Returning to the wave equation (4.6) we look for a solution as an expansion of the 

wave function in spherical harmonics series, 

) l ,ψ (rθϕ ) = ∑ Rl ( Y r m ( ϕθ ) (4.12)  
l,m 

( 2Because of (4.7) the L2 operator in (4.6) can be replaced by the factor l l + 1)h . In 

view of (4.11) we can eliminate the angular part of the problem by multiplying the wave 
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equation by the complex conjugate of a spherical harmonic and integrating over all solid 

angles (recall an element of solid angle is sin d d θ θ ϕ ), obtaining 

2 2 

+
 (r V )
⎤

⎥
⎦

R
l 

⎡

⎢
⎣

−


(l l 1)+
h hD 2 
r +
 ERl (4.13)( ) ( )r r=
22m 2
mr 

This is an equation in one variable, the radial coordinate r, although we are treating a 

three-dimensional problem.  We can make this equation look like a one-dimensional 

problem by transforming the dependent variable Rl . Define the radial function 

rR( ) (r)  (4.14)u r =
l l 

Inserting this into (4.13) we get 

h
2 2u d 2⎡
 ⎤
( ) (l l 1)+
 hr 
+
 (r V ) Eul (4.15)−
 l ( ) ( )+
 u r r= ⎢

⎣ 
⎥
⎦


2 2 l2 dr 2
m mr 

We will call (4.15) the radial wave equation. It is the basic starting point of three-

dimensional problems involving a particle interacting with a central potential field. 

We observe that (4.15) is actually a system of uncoupled equations, one for each 

fixed value of the orbital angular momentum quantum number l . With reference to the 

wave equation in one dimension, the extra term involving l l + 1)  in (4.15) represents the ( 

contribution to the potential field due to the centrifugal motion motions of the particle. 

The 1/r2 dependence makes the effect particularly important near the origin; in other 

words, centrigfugal motion gives rise to a barrier which tends to keep the particle away 

from the origin.  This effect is of course absent in the case of l  = 0, a state of zero orbital 

angular momentum, as one would expect.  The first few l  states usually are the only 

ones of interest in our discussion (because they tend to have the lowest energies); they are 

given special spectroscopic designations with the following equivalence, 

notation: s, p, d, f, g, h, … 

l  = 0, 1, 2, 3, 4, 5, … 
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where the first four letters stand for ‘sharp’, ‘principal’, ‘diffuse’, and ‘fundamental’ 

respectively.  After f the letters are asigned in alphabetical order, as in h, i, j, …  The 

wave function describing the state of orbital angular momentum l  is often called the l th 

partial wave, 

ψ l ( )θϕr = (r R l )Y m 
l )(θϕ (4.16)  

notice that in the case of s-wave the wave function is spherically symmetric since Y0
0 is 

independent of θ  and ϕ . 

Interpretation of Orbital Angular Momentum  

In classical mechanics, the angular momentum of a particle in motion is defined 

as the vector product, p r L , where r is the particle position and p its linear = × 

momentum.  L is directed along the axis of rotation (right-hand rule), as shown in Fig. 2.   

Fig. 2.  Angular momentum of a particle at position r moving with linear momentum p 

(classical definition). 

L is called an axial or pseudovector in contrast to r and p, which are polar vectors. Under 

inversion, r − → r , and p − → p , but L → L . Quantum mechanically, L2 is an operator 

with eigenvalues and eigenfunctions given in (4.7).  Thus the magnitude of L is 

h l l + 1) , with l  = 0, 1, 2, …being the orbital angular momentum quantum number.  ( 

We can specify the magnitude and one Cartesian component (usually called the z-

component) of L by specifying l  and m, an example is shown in Fig. 3.  What about the 

x- and y-components?  They are undetermined, in that they cannot be observed  
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Fig. 3. The l l + 1) = 5 projections along the z-axis of an orbital angular momentum with ( 

l  = 2. Magnitude of L is 6 .h 

simultaneously with the observation of L2 and Lz. Another useful interpretation is to look 

at the energy conservation equation in terms of radial and tangential motions.  By this we 

mean that the total energy can be written as 

(1 2 2 L 2 

E = v m + vt 
2 ) + V = 

1 mv + 
2mr 2 + V (4.17)r r2 2 

where the decomposition into radial and tangential velocities is depicted in Fig. 4. 

Eq.(4.17) can be compared with the radial wave equation (4.15). 

Fig. 4. Decomposing the velocity vector of a particle at position r into radial and 

tangential components.  

Thus far we have confined our discussions of the wave equation to its solution in 

spherical coordinates. There are situations where it will be more appropriate to work in 

another coordinate system. As a simple example of a bound-state problem, we can 
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consider the system of a free particle contained in a cubical box of dimension L along 

each side.  In this case it is clearly more convenient to write the wave equation in 

Cartesian coordinates, 

h 2 2 ∂ 2⎡ ∂ ∂ 2 ⎤ 
+
∂y 2 + 2 ⎥ψ (xyz) = Eψ (xyz) (4.17)− 

2m ⎣
⎢∂x 2 ∂z ⎦ 

0 <x, y, z < L. The boundary conditions are ψ  = 0 whenever x, y, or z is 0 or L.  Since 

both the equation and the boundary conditions are separable in the three coordinates, the 

solution is of the product form, 

ψ (xyz) =ψ (x)ψ ny 
( y)ψ nz 

(z)nx 

3 / 2= (2 / L) sin(n πx / L)sin(nyπy / L)sin(n πz / L) (4.18)x z 

where nx, ny, nz are positive integers (excluding zero), and the energy becomes a sum of 

three contributions, 

E = E + E + En n n z nxx y ny nz 

2 
2 2= (hπ ) [n + n2 + nz ] (4.19)x y2mL2 

We see that the wave functions and corresponding energy levels are specified by the set 

of three quantum numbers (nx, nx, nz). While each state of the system is described by a 

unique set of quantum numbers, there can be more than one state at a particular energy 

level. Whenever this happens, the level is said to be degenerate. For example, (112), 

(121), and (211) are three different states, but they are all at the same energy, so the level 
2at 6(hπ ) / 2mL2  is triply degenerate.  The concept of degeneracy is useful in our later 

discussion of the nuclear shell model where one has to determine how many nucleons can 
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be put into a certain energy level. In Fig. 6 we show the energy level diagram for a 

particle in a cubical box.  Another way to display the information is through a table, such 

as Table I. 

Fig. 6. Bound states of a particle in a cubical box of width L. 

Table I. The first few energy levels of a particle in a cubical box which correspond to 

Fig. 6. 
2


nx  ny  nz 
2mL E degeneracy

2
(hπ )

_________ ________ _________ 


1 1 1 3 1 


1 1 2 6 3 


1 2 1 


2 1 1 


1 2 2, … 9 3 


1 1 3, … 11 3 


2 2 2 12 1 


2
The energy unit is seen to be ∆E = (hπ ) / 2mL2 . We can use this expression to estimate 

the magnitude of the energy levels for electrons in an atom, for which m = 9.1 x10-28 gm 

and L ~ 3 x 10-8cm, and for nucleons in a nucleus, for which m = 1.6x10-24 gm and L ~ 

5F. The energies come out to be ~30 ev and 6 Mev respectively, values which are typical 

10 



in atomic and nuclear physics.  Notice that if an electron were in a nucleus, then it would 

have energies of the order 1010 ev ! 

In closing this section we note that Bohr had put forth the “correspondence 

principle” which states that quantum mechanical results will approach the classical 

results when the quantum numbers are large.  Thus we have 

1ψ 2 = 
2 sin 2 (nπ x / L) → (4.20)n L L 

n →∞ 

What this means is that the probability of finding a particle anywhere in the box is 1/L, 

i.e., one has a uniform distribution, see Fig. 7. 

Fig. 7. The behavior of sin2nx in the limit of large n.   

Parity 

Parity is a symmetry property of the wave function associated with the inversion 

operation. This operation is one where the position vector r is reflected through the 

origin (see Fig. 1), so r − → r . For physical systems which are not subjected to an 

external vector field, we expect these systems will remain the same under an inversion 

operation, or the Hamiltonian is invariant under inversion.  If ψ (r)  is a solution to the 

wave equation, then applying the inversion operation we get 

Hψ (− r) = Eψ (− r) (4.21)  

11 



which shows that ψ (− r) is also a solution. A general solution is therefore obtained by 

adding or subtracting the two solutions, 

H [ψ (r) ±ψ (− r)] = E[ψ (r) ±ψ (− r)] (4.22)  

ψ

Since the function ψ + (r) =ψ (r) +ψ (− r)  is manifestly invariant under inversion, it is 

said to have positive parity, or its parity, denoted by the symbol π , is +1. Similarly, 

− (r) =ψ (r) −ψ (− r)  changes sign under inversion, so it has negative parity, or π  = -1. 

The significance of (4.22) is that a physical solution of our quantum mechanical 

description should have definite parity, and this is the condition we have previously 

imposed on our solutions in solving the wave equation (see Lec3).  Notice that there are 

functions who do not have definite parity, for example, Asinkx + Bcoskx.  This is the 

reason that we take either the sine function or the cosine function for the interior solution 

in Lec3. In general, one can accept a solution as a linear combination of individual 

solutions all having the same parity.  A linear combination of solutions with different 

parities has no definite parity, and is therefore unacceptable. 

In spherical coordinates, the inversion operation of changing r to –r is equivalent 

to changing the polar angle θ  to π −θ , and the azimuthal angle ϕ  to ϕ +π . The effect 
m imϕ m ,of the transformation on the spherical harmonic function Yl ( ϕθ ) ~ e Pl (θ ) is 

imϕ imϕ imπe → e e = (− 1)m eimϕ 

m l− mPl (θ ) → (− 1) Pm (θ )l 

l ,so the parity of Yl
m ( ϕθ ) is (− 1) . In other words, the parity of a state with a definite 

orbital angula momentum is even if l  is even, and odd if l  is odd. All eigenfunctions of 

the Hamiltonian with a spherically symmetric potential are therefore either even or odd in 

parity. 
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Barrier Penetration 
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We have previously observed that one can look for different types of solutions to 

the wave equation.  An application which will turn out to be useful for later discussion of 

nuclear decay by α -particle emission is the problem of barrier penetration.  In this case 

one looks for positive-energy solutions as in a scattering problem.  We consider a one-

dimensional system where a particle with mass m and energy E is incident on a potential 

barrier with width L and height Vo that is greater than E.  Fig. 1 shows that with the 

particle approaching from the left, the problem separates into three regions, left of the 

barrier (region I), inside the barrier (region II), and right of the barrier (region III). 

Fig. 1.  Particle with energy E penetrating a square barrier of height Vo (Vo > E) and 

width L. 

In regions I and III the potential is zero, so the wave equation (3.1) is of the form 

2 
2 2 2d ψ (x) 

+ k ψ (x) = 0 , k = 2mE / h (5.1)
dx 2 

where k2 is positive.  The wave functions in these two regions are therefore 

1 



ikx= e a + e b − ikx ≡ψ 1→ +ψ 1← (5.2)ψ 1 1 1 

ikx ikx= e a + e b − ≡ψ 3→ (5.3)ψ 3 3 3 

where we have set b3 = 0 by imposing the boundary condition that there is no particle in 

region III traveling to the left (since there is nothing in this region that can reflect the 

particle). By contrast, in region I we allow for reflection of the incident particle by the 

barrier which means that b1 will be nonzero.  The subscripts →  and ←  denote the wave 

functions traveling to the right and to the left respectively. 

In region II, the wave equation is 

2 
2d ψ (x) 

− ψ κ (x) = 0 , κ = 2 V m 2 ( − E) / h 2 (5.4)odx 2 

So we write the solution in the form 

ψ 2 = e a κ x + e b −κ x (5.5)2 2 

Notice that in region II the kinetic energy, E – Vo, is negative, so the wavenumber is 

imaginary in a propagating wave (another way of saying the wave function is 

monotonically decaying rather than oscillatory).  What this means is that there is no 

wave-like solution in this region.  By introducing κ  we can think of it as the 

wavenumber of a hypothetical particle whose kinetic energy is positive, Vo – E. 

Having obtained the wave function in all three regions we proceed to discuss how 

to organize this information into a useful form, namely, the transmission and reflection 

coefficients.  We recall that given the wave function ψ , we know immediately the 

particle density (number of particles per unit volume, or the probability of the finding the 
2particle in an element of volume d3r about r), ψ (r) , and the net current, given by (2.24), 

j = 
h (ψ * ∇ − ∇ ψ ψ ψ *) (5.6)

2mi 
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Using the wave functions in regions I and III we obtain 

[ 2j (x ) = a v 1 − 
2 ] (5.7)1 b 1 

2 (5.8)j (x ) = a v 3 3 

where v = hk / m  is the particle speed.  We see from (5.7) that j1 is the net current in 

region I, the difference between the current going to the right and that going to the left.  

Also, in region III there is only the current going to the right.  Notice that current is like 

the flux in that it has the dimension of number of particles per unit area per second.  This 
2 2is consistent with (5.7) and (5.8) since a  and b  are particle densities with the 

dimension of number of particles per unit volume.  From here on we can regard a1, b1, 

and a3 as the amplitudes of the incident, reflected, and transmitted waves, respectively.  

With this interpretation we define 

2 2 
a 3 b 1T = , R =  (5.9)
a 1 a 1 

Since particles cannot absorbed or created in region II and there is no reflection in region 

III, the net current in region I must be equal to the net current in region III, or j1 = j3. 

This means that the condition  

T + R = 1 (5.10)  

is always satisfied (as one would expect). The transmission coefficient is sometimes also 

called the Penetration Factor and denoted as P. 

To calculate a1 and a3, we apply the boundary conditions at the interfaces, x = 0 

and x = L, 

ψ 1 =ψ 2  , d ψ 1 =
d ψ 2  x = 0 (5.11)

dx dx 
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ψ 2 =ψ 3  , dψ 2 =
dψ 3  x = L (5.12)

dx dx 

These 4 conditions allow us to eliminate 3 of the 5 integration constants.  For the purpose 

of calculating the transmission coefficient we need to keep a1 and a3. Thus we will 

eliminate b1, a2, and b2 and in the process arrive at the ratio of a1 to a3 (after about a page 

of algebra), 

a1 = e (ik −κ ) L 
⎢
⎡1 

−
i 
⎜
⎛κ −

k ⎞⎤ (ik +κ ) L ⎡1 i ⎛κ −
k ⎞
⎟
⎤
⎥⎢ + ⎜ (5.13)

⎣2 4 ⎝ k κ ⎠
⎟
⎦
⎥ + e 

⎣2 4 ⎝ k κ ⎠⎦a3 

This result then leads to (after another half-page of algebra) 

22 a3 a3 1
= = ≡ P (5.14)2 a1a1 

Vo 
2

2 κ1 + sinh L 
(4 V E − E)o 

with sinh x = (e x − e−x ) / 2 . A sketch of the variation of P with κL  is shown in Fig. 2. 

Fig. 2.  Variation of transmission coefficient (Penetration Factor) with ratio of barrier 

width L to λ , the effective wavelength of the incident particle. 
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Using the leading expression of sinh(x) for small and large arguments, one can readily 

obtain simpler expressions for P in the limit of thin and thick barriers, 

Vo 
2

2 oP 1 ~ − (κ L ) = 1 − 
( L V )2 2m κL << 1 (5.15)

h 2(4 V E − E ) 4Eo 

P ~ 16E ⎜⎛ 1 − 
E ⎞⎟ e − 2κ L κL >> 1 (5.16)

Vo ⎝
⎜ Vo ⎠

⎟ 

Thus the transmission coefficient decreases monotonically with increasing Vo or L, 

relatively slowly for thin barriers and more rapidly for thick barriers. 

Which limit is more appropriate for our interest?  Consider a 5 Mev proton 

incident upon a barrier of height 10 Mev and width 10 F.  This gives κ ~ 5 x 1012 cm , or 

κL ~ 5. Using (5.16) we find 

1P 16 ~ x x 1 xe − 10 10 2 ~ − 4x 
2 2 

As a further simplification, one sometimes even ignores the prefactor in (5.16) and takes 

P ~ e −γ (5.17)  

with 

2L 
= 2 (κ γ L = 2 V m − E ) (5.18)

h o 

We show in Fig. 3 a schematic of the wave function in each region.  In regions I and III, 

ψ  is complex, so we plot its real or imaginary part.  In region II ψ  is not oscillatory. 

Although the wave function in region II is nonzero, it does not appear in either the 

transmission or the reflection coefficient. 

5 
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Fig. 3.  Particle penetration through a square barrier of height Vo and width L at energy E 

(E < Vo), schematic behavior of wave functions in the three regions. 

When the potential varies continuously in space, one can show that the 

attenuation coefficient γ  is given approximately by the expression 

22 x 

{ ( 1/ 2γ ≅ ∫ dx [2 x V m ) − E }] (5.19)
h x 1 

where the limits of integration are indicated in Fig. 4; they are known as the ‘classical 

turning points’.  This result is for 1D.  For a spherical barrier ( l = 0  or s-wave solution), 

Fig. 4.  Region of integration in (5.19) for a variable potential barrier.  

one has 
2r 

({ 1/ 2γ ≈ 
h 

2 
∫ dr [2 r V m ) − E }] (5.20)  
r 1 

We will use this expression in the discussion of α -decay. 
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“The investigation of this nuclear force has turned out to be a truly monumental 

task: Perhaps more man-hours of work have been devoted to it than any other scientific 

question in the history of mankind” – B. L. Cohen, Concepts of Nuclear Physics, p. 32. 

A direct way to study nuclear forces is to consider the simplest possible nucleus, which is 

a two-nucleon system – the deuteron H2 nucleus composed of a neturon and a proton.  

We will discuss two properties of this system using elementary quantum mechanics, the 

bound state of the nucleus (this lecture) and the scattering of a neutron by a proton (next 

lecture). The former problem is an application of our study of bound states in three-

dimensions, while the latter is a new application of solving the time-independent 

Schrödinger wave equation. From these two problems a number of fundamental features 

of the nuclear potential will emerge. 

Bound State of the Deuteron 

The deuteron is the only stable bound system of two nucleons – neither the di-neutron nor 

the di-proton are stable. Experimentally it is known that the deuteron exists in a bound 

state of energy 2.23 Mev. This energy is the energy of a gamma ray given off in the 

reaction where a thermal neutron is absorbed by a hydrogen nucleus, 

n + H 1 → H 2 + γ (2.23 Mev) 

The inverse reaction of using electrons of known energy to produce external 

bremsstrahlung for (γ , n) reaction on H2 also has been studied. Besides the ground state 
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no stable excited states of H2 have been found; however, there is a virtual state at ~ 2.30 

Mev. 

Suppose we combine the information on the bound-state energy of the deuteron 

with the bound-state solutions to the wave equation to see what we can learn about the 

potential well for neutron-proton interaction.  Again we will assume the interaction 

between the two nucleons is of the form of a spherical well, 

r V ) − = V r < ro( o

 = 0 r > ro 

We ask what is the energy level structure and what values should Vo and ro take in order 

to be consistent with a bound state at energy EB = 2.23 Mev. 

There is good reason to believe that the deuteron ground state is primarily 1s 

(n=1, l =0). First, the lowest energy state in practically all the model potentials is an s-

state. Secondly, the magnetic moment of H2 is approximately the sum of the proton and 

the neturon moments, indicating that s  and s p  are parallel and no orbital motion of the n 

proton relative to the neutron. This is also consistent with the total angular momentum of 

the ground state being I = 1. 

We therefore proceed by considering only the l  = 0 radial wave equation, 

2 ( ( ) (− 
h r u d ) 

+ r u r V ) = Eu (r ) (6.1)
m dr 2 

where E = - EB, and m is the neutron (or proton) mass.  In view of our previous 

discussions of bound-state calculations we can readily write down the interior and 

exterior solutions, 

1/ 2 / h(r u ) = A sin Kr K = [m (V − EB )] r < ro (6.2)o 

2 



(r u ) = Be−κr κ = mEB / h r >  ro (6.3) 

Applying the boundary condition at the interface, we obtain the relation between the 

potential well parameters, depth and width, and the bound-state energy EB, 

oK cot Kr − = κ , or tan Kr − = 
⎝

⎛
⎜⎜ 
V

E 
− 

B

EB 

⎠
⎟
⎞
⎟ 

1/ 2 

(6.4)o o 

To go further we can consider either numerical or graphical solutions as discussed before, 

or approximations based on some special properties of the nuclear potential.  Let us 

consider the latter option. 

Suppose we take the potential well to be deep, that is, Vo >> EB, then the RHS 

(right hand side) of (6.4) is large and we get an approximate value for the argument of the 

tangent, 

Kr ~ π / 2  (6.5)o

Then, 

K ~ mV / h ~ π / 2ro o 

2⎛π ⎞ 
2 
h or r V o 

2 ~ ⎜ ⎟ ~ 1 Mev-barn (6.6)o 
⎝ 2 ⎠ m 

We see that a knowledge of EB allows us to determine the product of r V 2 , and not Voo o 

and ro separately.  From a study of neutron scattering by a proton which we will discuss 

in the next chapter, we will find that ro ~ 2F. Putting this into (6.6) we get Vo ~ 36 Mev, 

which justifies our taking Vo to be large compared to EB. A sketch of the nuclear 

potential deduced from our calculation is shown in Fig. 1. 
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Fig. 1.  The nuclear potential for the neutron-proton system in the form of a spherical 

well of depth Vo and width ro. EB is the bound-state energy of the deuteron. 

We notice that since the interior wave function, sinKr, must match the exterior 

wave function, exp(−κ r) , at the interface, the quantity Kro must be slightly greater than 

π / 2  (a more accurate estimate gives 116o instead of 90o). If we write 

K = 2π / λ ~ π / 2ro

then the ‘effective wavelength’ λ  is approximately 4F, which suggests that much of the 

wave function is not in the interior region. The relaxation constant, or decay length, in 

the interior region can be estimated as 

1 h 
= ~ 4.3 F

κ mEB 

This means that the two nucleons in H2 spend a large fraction of their time at r > ro, the 

region of negative kinetic energy that is classically forbidden.  We can calculate the root-

mean-square radius of the deuteron wave function, 

∞ 
2 2 

3 2 R drr r 2 (r)
∫ rr d 2 R (r) ∫ 

R 2 = = 0 (6.7)rms 3rR d 2 (r) 2∫ ∞

∫ drR r 2 (r) 
0 
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If we take r R ) ~ e−κr for all r (this should result in an overestimate), we would obtain ( 

R 2 = 
h 

= 3Frms 2mEB 

This value can be compared with the estimate of nuclear radius based on the mass 

number, 

(radius)2 ~ (1.4xA1/3)2 ~ 3.1 F, or (1.2xA1/3)2 ~ 2.3 F 
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Appendix A: Concepts of Cross Sections 

Appendix B: Cross Section Calculation:  Method of Phase Shifts 


The method of phase shifts has been discussed in Appendix B.  Here we will summarize 

the key steps in this method, going from the introduction of the scattering amplitude 

f (θ )  to the expression for the angular differential cross section σ (θ ) . 

Expressing σ ( )θ in terms of the Scattering Amplitude f ( )θ 

We consider a scattering scenario sketched in Fig.B.1. 

Fig.B.1. Scattering of an incoming plane wave by a potential field V(r), resulting in 

spherical outgoing wave.  The scattered current crossing an element of surface area dΩ 

about the direction Ω  is used to define the angular differential cross section 

(dσ / dΩ ≡ σ θ ) , where the scattering angleθ  is the angle between the direction of 

incidence and direction of scattering. 

We write the incident plane wave as 

(i k�r −ωt ) (B.1)Ψ =  bein 
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where the wavenumber k is set by the energy of the incoming effective particle E, and the 

scattered spherical outgoing wave as 

(i kr  −ωt ) 

θ 
e

Ψ = f ( )b (B.2)sc r 

where f ( )θ is the scattering amplitude. The angular differential cross section for 

scattering through dΩ  about Ω  is 

J ⋅Ω 2scθ σ ) = =( f (θ ) (B.5)
J in 

where we have used the expression 

h
) ( *J = 

2µi ⎣
⎡Ψ*(∇Ψ − Ψ ∇Ψ )⎤ (B.3)⎦ 

Calculating f ( )θ  from the Schrödinger wave equation 

The Schrödinger equation to be solved is of the form 

h2⎛ 
( r r⎜ − 

2µ
∇2 + V r) ⎟

⎞
ψ ( )  = Eψ ( )  (B.6)

⎝ ⎠ 

where µ = m m2 /(m + m ) is the reduced mass, and E = µv2 / 2 , with v  being the relative1 1 2 

speed, is positive.  To obtain a solution to our particular scattering set-up, we impose  

the boundary condition 

ikr 
ikz rψ ( )  → e + f (θ ) 

e (B.7)k r >>ro r 

2 



where r  is the range of force, V(r) = 0 for r > ro. In the region beyond the force range theo 

wave equation describes a free particle, so the free-particle solution to is what we want to 

match up with the RHS of (B.7).  The most convenient form of the free-particle is an 

expansion in terms of partial waves, 

∞ 

( ,  )ψ r θ ) =∑R
l
(r  P  (cos  θ ) (B.8)

l 
l=0 

where P (cos θ )  is the Legendre polynomial of order l . Inserting (B.8) into (B.6), and 
l

setting u r( )  = rR  (r) , we obtain
l l 

⎛ d 
+ k 2 −

2µ
V ( )  −

l l +1) ⎞ 
u ( )  = 0 , (B.10)⎜ 

2 

h2 
r 

( 
⎟
⎠ 

l r
2

⎝ dr 2 r 

Eq.(B.10) describes the wave function everywhere.  Its solution clearly depends on the 

form of V(r).  Outside of the interaction region, r > ro, Eq.(B.10) reduces to the radial 

wave equation for a free particle, 

2 l l +1) ⎞ 
u ( )  = 0

⎛ d 
+ k 2 − 

( 
⎟ l r (B.11)⎜ 2

⎝ dr 2 r ⎠ 

with general solution 

( kr  kr  u r) = B  rj  ( )  +C  rn  ( )  (B.12)
l l l l l

where B  and C  are integration constants, and j  and n
l
 are spherical Bessel and

l l l

Neumann functions respectively (see Appendix B for their properties).   

Introduction of the Phase Shift δ l
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We rewrite the general solution (B.12) as 

u (r) → (B / k )sin(kr − lπ / 2) − (C / k )cos(kr − lπ / 2)
l kr >>1 l l 

= ( /a k  )sin[kr  − (lπ / 2) +δ ] (B.14)
l l 

where we have replaced B and C by two other constants, a and δ , the latter is seen to be 

a phase shift. Combining (B.14) with (B.8) the partial-wave expansion of the free-

particle wave function in the asymptotic region becomes 

ψ ( ,θ ) →kr >>1 ∑ a 
sin[kr − (lπ / 2) +δ ]

r l P (cos θ ) (B.15)
l 

l kr l 

This is the LHS of (B.7).  Now we prepare the RHS of (B.7) to have the same form of 

partial wave expansion by writing 

f ( )θ = ∑ (cos  )f  P  θ
l l  (B.16)  

l

and 
cos (2 1)ikre iθ = +∑ l l ( ) (cos )j  kr  P  θ

l l 
l 

1kr >>→ 
sin( / 2)

(2 1) 
kr

i 
kr 

π− 
+∑ l 

l 

l 
l (cos )P θ

l (B.17) 

Inserting both (B.16) and (B.17) into the RHS of (B.7), we match the coefficients of 

exp(ikr) and exp(-ikr) to obtain 

l l−if = 
1

( ) [a  eiδ l − i (2l + 1)] (B.18)
l 2ik l 
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a
l (2 1) ii e δ= + ll l  (B.19)  

Combing (B.18) and (B.16) we obtain 

∞ 

( )  (1/  )  (2  1)  sin  (cos  )if k e Pδθ δ θ= +∑ l 

l l
l  (B.20) 

0=l 

Final Expressions for σ ( )θ and σ 

In view of (B.20) (B.5), becomes 

2∞ 

σ θ iδ l( )  = D2 ∑ (2l +1)e sin  δ P (cos  θ ) (B.21)
l l  

l=0 

where D = 1/ k is the reduced wavelength. Correspondingly, 

∞ 
2 2σ = ∫ dΩσ θ( )  = 4πD ∑ (2l +1)sin  δ (B.22)

l 
l=0 

S-wave scattering 

We have seen that if kro is appreciably less than unity, then only the l = 0 term 

contributes in (B.21) and (B.22).  The differential and total cross sections for s-wave 

scattering are therefore 

2 2σ θ( )  = D sin  δ (k ) (B.23)o 

2 2σ = 4πD sin  δ (k ) (B.24)o 

Notice that s-wave scattering is spherically symmetric, or σ ( )θ  is independent of the 

scattering angle.  This is true in CMCS, but not in LCS.  From (B.18) we see 
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of = (eiδ sin  δ ) / k . Since the cross section must be finite at low energies, as k → 0 fo has o o 

to remain finite, or δ o k( )  → 0 . We can set 

[eiδ ( )olim k→0 
k sin δ (k )] = δ (k ) = −ak  (B.25)o o 

where the constant a is called the scattering length.  Thus for low-energy scattering, the 

differential and total cross sections depend only on knowing the scattering length of the 

target nucleus, 

σ θ( )  = a2 (B.26)  

2σ = 4πa (B.27)  

Physical significance of sign of scattering length 

Fig. B.2 shows two sine waves, one is the reference wave sin kr  which has not had 

Fig. B.2. Comparison of unscattered and scattered waves showing a phase shift δ in the o 

asymptotic region as a result of the scattering. 


any interaction (unscattered) and the other one is the wave sin(kr + δ ) which has suffered 
o 

a phase shift by virtue of the scattering. The entire effect of the scattering is seen to be 

represented by the phase shift δ , or equivalently the scattering length through (B.25).     o 

In the vicinity of the potential, we take kro to be small (this is again the condition of low­
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(energy scattering), so that uo ~ k r  − a) , in which case a becomes the distance at which 

the wave function extrapolates to zero from its value and slope at r = ro. There are two 

ways in which this extrapolation can take place, depending on the value of kro. As shown 

in Fig. B.3, when kro > π / 2 , the wave function has reached more than a quarter of its 

wavelength at r = ro. So its slope is downward and the extrapolation gives a distance a 

which is positive.  If on the other hand, kro < π / 2 , then the extrapolation gives a distance 

a which is negative.  The significance is that a > 0 means the potential is such that it can 

have a bound state, whereas a < 0 means that the potential can only give rise to a virtual 

state. 

Fig. B.3.  Geometric interpretation of positive and negative scattering lengths as the 

distance of extrapolation of the wave function at the interface between interior and 

exterior solutions, for potentials which can have a bound state and which can only virtual 

state respectively. 
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We continue the study of the neutron-proton system by taking up the well-known 

problem of neutron scattering in hydrogen.  The scattering cross section has been 

carefully measured to be 20.4 barns over a wide energy range.  Our intent is to apply the 

method of phase shifts summarized in the preceding lecture to this problem.  We see very 

quickly that the s-wave approximation (the condition of interaction at low energy) is very 

well justified in the neutron energy range of 1 - 1000 eV.  The scattering-state solution, 

with E > 0, gives us the phase shift or equivalently the scattering length.  This calculation 

yields a cross section of 2.3 barns which is considerably different from the experimental 

value. The reason for the discrepancy lies in the fact that we have not taken into account 

the spin-dependent nature of the n-p interaction.  The neutron and proton spins can form 

two distinct spin configurations, the two spins being parallel (triplet state) or anti-parallel 

(singlet), each giving rise to a scattering length.  When this is taken into account, the new 

estimate is quite close to the experimental value.  The conclusion is therefore that n-p 

interaction is spin-dependent and that the anomalously large value of the hydrogen 

scattering cross section for neutrons is really due to this aspect of the nuclear force.   

For the scattering problem our task is to solve the radial wave equation for s-wave 

for solutions with E > 0. The interior and exterior solutions have the form 

( )  = B sin(K  r  ) , r < ro  (8.1)u r  ' 

and u r( )  = C sin(kr  +δ ) , r > ro  (8.2)o 
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( 
o 

where K ' = m  V  + E) / h  and k = mE  / h . Applying the interface condition we obtain 

'K 'cot(K  r  ) = k cot(kr  +δ ) (8.3))o o o 

which is the relation that allows the phase shift to be determined in terms of the potential 

parameters and the incoming energy E.  We can simplify the task of estimating the phase 

shift by recalling that it is simply related to the scattering length by δ = −ak (cf. (B.25)).o 

Assuming the scattering length a is larger than ro, we see the RHS of (8.3) is 

approximately k cot(δ ) . For the LHS, we will ignore E relative to Vo in K', and at the 
o 

same time ignore EB relative to Vo in K. Then K' ~ K and the LHS can be set equal to 

−κ  by virtue of (6.4). Notice that this series of approximations has enabled us to make 

use of the dispersion relation in the bound-state problem, (6.4), for the scattering 

calculation. As a result, (8.3) becomes 

k cot(δ ) = −κ (8.4)o 

which is a relation between the phase shift and the binding energy. 

Once the phase shift δ  is known, the differential scattering cross section is then o 

given by (B.23), 

2 2( )  = (1/ k )sin  δ (8.5)σ θ o 

2 2A simple way to make use of (8.4) is to note the trigonometric relation sin x = 1 /(1 + cot x) , 

or 

1
sin2 δ = 

1 
= (8.6)o 2 21 cot  δ 1 +κ / k+ 2 

o 

Thus, 
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h2 h21 1
( )  ≈ = ≈ (8.7)σ θ  

2k 2 +κ m  E  + EB mEB 

The last step follows because we are mostly interested in estimating the scattering cross 

section in the energy range 1 - 100 eV.  Putting in the numerical values of the constants, 

h = 1.055 x 10-27 erg sec, m = 1.67 x 10-24 g, and and EB = 2.23 x 106 x 1.6 x 10-12 ergs, we 

get 

2σ = 4πh / mE ~ 2.3 barns (8.8)B 

This value is considerably lower than the experimental value of the scattering cross 

section of H1, 20.4 barns, as shown in Fig. 8.1. 

Fig. 8.1. Experimental neutron scattering cross section of hydrogen, showing a constant 

value of 20.4 barns over a wide range of neutron energy.  The rise in the cross section at 

energies below ~ 0.1 eV can be explained in terms of chemical binding effects in the 

scattering sample. 

The explanation of this well-known discrepancy lies in the neglect of spin-

dependent effects. It was suggested by E. P. Wigner in 1933 that neutron-proton 

scattering should depend on whether the neutron and proton spins are oriented in a 

parallel configuration (the triplet state, total spin angular momentum equal to h ) or in an 

anti-parallel configuration (singlet state, total spin is zero). In each case the interaction 
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potential is different, and therefore the phase shifts also would be different.  Following 

this idea, one can write instead of (8.7), 

1 1  2 3⎛( )  = 
2 ⎜ sin  δ + sin2 δ ot 

⎞
⎟ (8.9)σ θ osk ⎝ 4 4 ⎠

We have already mentioned that the ground state of the deuteron is a triplet state at E = ­

EB. If the singlet state produces a virtual state of energy E = E*, then (8.8) would 

become 

2πh ⎛ 3 1 ⎞
σ ≈ ⎜ + 

E* ⎟
⎠ 

(8.10) 
m ⎝ EB 

Taking a value of E* ~ 70 keV, we find from (8.10) a value of 20.4 barns, thus bringing 

the theory into agreement with experiment. 

In summary, experimental measurements have given the following scattering 

lengths for the two types of n-p interactions, triplet and singlet configurations, and their 

corresponding potential range and well depth. 

Interaction Scattering length a [F] ro  [F] Vo  [MeV} 

n-p (triplet) 5.4 2 36 

n-p (singlet) -23.7 ~ 2.5 18 

Notice that the scattering length for the triplet state is positive, while that for the singlet 

state is negative. This illustrates the point of Fig. 7.3. 

As a final remark, we note that experiments have shown that the total angular 

momentum (nuclear spin) of the deuteron ground state is I = 1, where I = L + S, with L 

being the orbital angular momentum, and S the intrinsic spin, S = sn + sp. It is also 

known that the ground state is mostly 1s ( l =0), therefore for this state we have S = 1 
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(neutron and proton spins are parallel). We have seen from Lec 6 that the deuteron 

ground state is barely bound at EB = 2.23 Mev, so all the higher energy states are not 

bound. The 1s state with S = 0 (neutron and proton spins antiparallel), is a virtual state; it 

is unbound by ~ 60 Kev. An important implication is that nuclear interaction varies with 

S, or, nuclear forces are spin-dependent. 

Effects of Pauli  Exclusion Principle 

One might ask why are the di-neutron and the di-proton unstable.  The answer lies 

in the indistinguishability of particles and the Exclusion Principle (no two fermions can 

occupy the same state).  Consider the two electrons in a helium atom.  Their wave 

function may be written as 

ψ ( 2 ,1 ) =ψ (r )ψ (r 2 )1 1 

sin r k 2 2= A 1 1 sin r k (8.11)
r1 r2 

where ψ 1 (r) is the wave functrion of electron 1 at r. But since we cannot distinguish 

between electrons 1 and 2, we must get the same probability of finding these electrons if 

we exchange their positions (or exchange the particles), 

2 2ψ ( 2 ,1 ) = ψ ( 1,2 ) ⇒ ψ ( 2 ,1 ) = ±ψ ( 1,2 )

For fermions (electrons, neutrons, protons) we must choose the (-) sign; because of 

Fermi-Dirac statistics the wave function must be anti-symmetric under exchange.  Thus 

we should modify (8.11) and write 

ψ ( 2 ,1 ) =ψ (r )ψ (r 2 ) - ψ 2 (r )ψ (r 2 ) ≡ ψ −1 1 2 1 1 

+ ψ + 
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If we now include the spin, then an acceptable anti-symmetric wave function is 

Ψ ( 2 ,1 ) =ψ χ (↑ )χ (↑ )− 1 2 

so that under an interchange of particles, 1 ↔ 2 , ψ ( 2 ,1 ) = −ψ ( 1,2 ) . This corresponds to 
S = 1, symmetric state in spin space.  But another acceptable anti-symmetric wave 
function is 

Ψ− ( 2 ,1 ) =ψ [χ (↑ )χ (↓ ) − χ (↓ )χ (↑ )]+ 1 2 1 2 

which corresponds to S = 0, anti-symmetric state in spin. 

For the symmetry of the wave function in configurational space we recall that we 
have 

m imϕψ (r) ~ 
ul (r) 

Pl (cosθ )e 
r 

which is even (odd) if l  is even (odd). Thus, since Ψ  has to be anti-symmetric, one can 

have two possibilities, 

l  even,  S  =  0 (space symmetric, spin anti-symmetric) 

l  odd,  S  =  1 (space anti-symmetric, spin symmetric) 

These are called T = 1 states (T is isobaric spin), available to the n-p, n-n, p-p systems.  

By contrast, states which are symmetric (T = 0) are 

l  even,  S  =  1 

l  odd, S = 0 

These are available only to the n-p system for which there is no Pauli Exclusion 

Principle. 

 The ground state of the deuteron is therefore a T = 0 state.  The lowest T = 1 state 

is l  = 0, S =0. As mentioned above, this is known to be unbound (E ~ 60 Kev).  We 

should therefore expect that the lowest T = 1 state in n-n and p-p to be also unbound, i.e., 

there is no stable di-neutron or di-proton. 
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Essential Features of Nuclear Forces 

In closing we summarize a number of important features of the nucleon-nucleon 

interaction potential, several of which are basic to the studies in this class [Meyerhof, 

Chap. 6]. 

1.	 There is a dominant short-range part, which is central and which provides the 

overall shell-model potential. 

2.	 There is a part whose range is much smaller than the nuclear radius, which tends 

to make the nucleus spherical and to pair up nucleons. 

3.	 There is a part whose range is of the order of the nuclear radius, which tends to 

distort the nucleus. 

4.	 There is a spin-orbit interaction. 

5.	 There is a spin-spin interaction. 

6.	 The force is charge independent (Coulomb interaction excluded). 

7.	 The force saturates. 
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There are similarities between the electronic structure of atoms and nuclear 

structure. Atomic electrons are arranged in orbits (energy states) subject to the laws of 

quantum mechanics.  The distribution of electrons in these states follows the Pauli 

exclusion principle.  Atomic electrons can be excited up to normally unoccupied states, 

or they can be removed completely from the atom.  From such phenomena one can 

deduce the structure of atoms.  In nuclei there are two groups of like particles, protons 

and neutrons. Each group is separately distributed over certain energy states subject also 

to the Pauli exclusion principle.  Nuclei have excited states, and nucleons can be added to 

or removed from a nucleus. 

Electrons and nucleons have intrinsic angular momenta called intrinsic spins.  The 

total angular momentum of a system of interacting particles reflects the details of the 

forces between particles. For example, from the coupling of electron angular momentum 

in atoms we infer an interaction between the spin and the orbital motion of an electron in 

the field of the nucleus (the spin-orbit coupling).  In nuclei there is also a coupling 

between the orbital motion of a nucleon and its intrinsic spin (but of different origin).  In 

addition, nuclear forces between two nucleons depend strongly on the relative orientation 

of their spins. 

The structure of nuclei is more complex than that of atoms.  In an atom the 

nucleus provides a common center of attraction for all the electrons and inter-electronic 

forces generally play a small role.  The predominant force (Coulomb) is well understood.  
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Nuclei, on the other hand, have no center of attraction; the nucleons are held together by 

their mutual interactions which are much more complicated than Coulomb interactions. 

All atomic electrons are alike, whereas there are two kinds of nucleons.  This 

allows a richer variety of structures.  Notice that there are ~ 100 types of atoms, but more 

than 1000 different nuclides. Neither atomic nor nuclear structures can be understood 

without quantum mechanics.   

Experimental Basis 

There exists considerable experimental evidence pointing to the shell-like 

structure of nuclei, each nucleus being an assembly of nucleons.  Each shell can be filled 

with a given number of nucleons of each kind.  These numbers are called magic numbers; 

they are 2, 8, 20, 28, 50, 82, and 126. (For the as yet undiscovered superheavy nuclei the 

magic numbers are expected to be N = 184, 196, (272), 318, and Z = 114, (126), 164 

[Marmier and Sheldon, p. 1262].)  Nuclei with magic number of neutrons or protons, or 

both, are found to be particularly stable, as can be seen from the following data. 

(i)	 Fig. 9.1 shows the abundance of stable isotones (same N) is particularly large 

for nuclei with magic neutron numbers. 

Fig. 9.1.  Histogram of stable isotones showing nuclides with neutron numbers 20, 28, 

50, and 82 are more abundant by 5 to 7 times than those with non-magic neutron numbers 

[from Meyerhof]. 
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(ii) Fig. 9.2 shows that the neutron separation energy Sn is particularly low for 

nuclei with one more neutron than the magic numbers, where 

(	 ( , )]S = [ A M − ,1 Z ) + M − c Z A M 2	 (9.1)n	 n 

This means that nuclei with magic neutron numbers are more tightly bound. 

Fig. 9.2.  Variation of neutron separation energy with neutron number of the final nucleus 

M(A,Z) [from Meyerhof]. 

(iii)	 The first excited states of even-even nuclei have higher than usual energies at 

the magic numbers, indicating that the magic nuclei are more tightly bound 

(see Fig. 9.3). 

Fig. 9.3.  First excited state energies of even-even nuclei [from Meyerhof]. 
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(iv)	 The neutron capture cross sections for magic nuclei are small, indicating a 

wider spacing of the energy levels just beyond a closed shell, as shown in Fig. 

9.4. 

Fig. 9.4.  Cross sections for capture at 1 Mev [from Meyerhof]. 

Simple Shell Model 

The basic assumption of the shell model is that the effects of internuclear 

interactions can be represented by a single-particle potential.  One might think that with 

very high density and strong forces, the nucleons would be colliding all the time and 

therefore cannot maintain a single-particle orbit.  But, because of Pauli exclusion the 

nucleons are restricted to only a limited number of allowed orbits.  A typical shell-model 

potential is 

V o(r V ) − =	  (9.1)
− ) /1 + exp[( a R r ] 

where typical values for the parameters are Vo ~ 57 Mev, R ~ 1.25A1/3 F, a ~ 0.65 F. In 

addition one can consider corrections to the well depth arising from (i) symmetry energy 

from an unequal number of neutrons and protons, with a neutron being able to interact 

with a proton in more ways than n-n or p-p (therefore n-p force is stronger than n-n and 

p-p), and (ii) Coulomb repulsion.  For a given spherically symmetric potential V(r), one 
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can examine the bound-state energy levels that can be calculated from radial wave 

equation for a particular orbital angular momentum l , 

2h d 2ul ( ( 
⎤

− +
⎡ l l + 1)h 

+ r V )⎥ u (r) = Eul (r) (9.2)2 l2m dr ⎣
⎢ 2mr 2 

⎦ 

Fig. 9.5 shows the energy levels of the nucleons for an infinite spherical well and a 

( 2 2harmonic oscillator potential, r V ) = mω r / 2 . While no simple formulas can be given 

for the former, for the latter one has the expression 

Eν = hω (ν + 3/ 2) = hω (n + ny + n + 3/ 2)  (9.3)x z 

where ν  = 0, 1, 2, …, and nx, ny, nz = 0, 1, 2, … are quantum numbers.  One should 

notice the degeneracy in the oscillator energy levels.  The quantum number ν  can be 

divided into radial quantum number n (1, 2, …) and orbital quantum numbers l  (0, 1, 

…) as shown in Fig. 9.5.  One can see from these results that a central force potential is 

able to account for the first three magic numbers, 2, 8, 20, but not the remaining four, 28, 

50, 82, 126. This situation does not change when more rounded potential forms are used.  

The implication is that something very fundamental about the single-particle interaction 

picture is missing in the description. 
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Fig. 9.5.  Energy levels of nucleons in (a) infinite spherical well (range R = 8F) and (b) a 

parabolic potential well. In the spectroscopic notation (n, l ), n refers to the number of 

times the orbital angular momentum state l  has appeared. Also shown at certain levels 

are the cumulative number of nucleons that can be put into all the levels up to the 

indicated level [from Meyerhof].  

Shell Model with Spin-Orbit Coupling 

It remains for M. G. Mayer and independently Haxel, Jensen, and Suess to show 

(1949) that an essential missing piece is an attractive interaction between the orbital 

angular momentum and the intrinsic spin angular momentum of the nucleon.  To take 

into account this interaction we add a term to the Hamiltonian H, 

2

H = 
p 

+ V (r ) + V ( s r ⋅ L (9.4))so2m 

where Vso is another central potential (known to be attractive).  This modification means 

that the interaction is no longer spherically symmetric; the Hamiltonian now depends on 

the relative orientation of the spin and orbital angular momenta.  It is beyond the scope of 

this class to go into the bound-state calculations for this Hamiltonian.  In order to 

understand the meaning of the results of such calculations (eigenvalues and 

eigenfunctions) we need to digress somewhat to discuss the addition of two angular 

momentum operators. 

The presence of the spin-orbit coupling term in (9.4) means that we will have a 

different set of eigenfunctions and eigenvalues for the new description.  What are these 

new quantities relative to the eigenfunctions and eigenvalues we had for the problem 

without the spin-orbit coupling interaction?  We first observe that in labeling the energy 

levels in Fig. 9.5 we had already taken into account the fact that the nucleon has an 

orbital angular momentum (it is in a state with a specified l ), and that it has an intrinsic 

spin of ½ (in unit of h ). For this reason the number of nucleons that we can put into each 

level has been counted correctly. For example, in the 1s ground state one can put two 
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nucleons, for zero orbital angular momentum and two spin orientations (up and down).  

The student can verify that for a state of given l , the number of nucleons that can go into 

that state is 2(2 l +1). This comes about because the eigenfunctions we are using to 

describe the system is a representation that diagonalizes the orbital angular momentum 

operator L2, its z-component, Lz, the intrinsic spin angular momentum operator S2, and its 

z-component Sz. Let us use the following notation to label these eigenfunctions (or 

representation), 

≡ Y ml χ ms (9.5)l, m , m s l , s l s 

where Yl 
ml  is the spherical harmonic we encountered in Lec4, and we know it is the 

eigenfunction of the orbital angular momentum operator L2 (it is also the eigenfunction of 
msLz). The function χ  is the spin eigenfunction with the expected properties,s

2 ms ( 2 msS χ = s s + 1)h χ , s=1/2  (9.6)s s 

ms msS χ = m hχ , − s ≤ m ≤ s (9.7)z s s s s 

msThe properties of χ  with respect to operations by S2 and Sz completely mirror the s

lproperties of Y m  with respect to L2 and Lz. Going back to our representation (9.5) wel 

see that the eigenfunction is a “ket” with indices which are the good quantum numbers 

for the problem, namely, the orbital angular momentum and its projection (sometimes 

called the magnetic quantum number m, but here we use a subscript to denote that it goes 

with the orbital angular momentum), the spin (which has the fixed value of ½) and its 

projection (which can be +1/2 or -1/2). 

The representation given in (9.5) is no longer a good representation when the 

spin-orbit coupling term is added to the Hamiltonian. It turns out that the good 

representation is just a linear combination of the old representation.  It is sufficient for 

our purpose to just know this, without going into the details of how to construct the linear 
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combination.  To understand the properties of the new representation we now discuss 

angular momentum addition. 

The two angular momenta we want to add are obviously the orbital angular 

momentum operator L and the intrinsic spin angular momentum operator S, since they 

are the only angular momentum operators in our problem.  Why do we want to add them? 

The reason lies in (9.4). Notice that if we define the total angular momentum as 

j = S + L (9.8)  

we can then write 

2 2 2S ⋅ L = ( j − S − L ) / 2 (9.9) 

so the problem of diagonalizing (9.4) is the same as diagonalizing  j2, S2, and L2. This is 

then the basis for choosing our new representation.  In analogy to (9.5) we will denote the 

new eigenfunctions by jm j ls , which has the properties 

2 2j jm j ls = j( j + 1)h jm j ls , l − s ≤ j ≤ l + s (9.10) 

j jm j ls = m j h jm j ls , − j ≤ m j ≤ j (9.11)z 

2L jm j ls = l l + 1)h 2( jm j ls , l  = 0, 1, 2, … (9.12) 

2S jm j ls = s s + 1)h 2( jm j ls , s = ½ (9.13) 

In (9.10) we indicate the values that j can take for given l  and s (=1/2 in our discussion), 

the lower (upper) limit corresponds to when S and L are antiparallel (parallel) as shown 

in the sketch. 
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Returning now to the energy levels of the nucleons in the shell model with spin-orbit 

coupling we can understand the conventional spectroscopic notation where the value of j 

is shown as a subscript. 

This is then the notation in which the shell-model energy levels are displayed in Fig. 9.6. 

Fig. 9.6.  Energy levels of nucleons in a smoothly varying potential well with a strong 

spin-orbit coupling term [from Meyerhof]. 
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For a given ( n, l, j ) level, the nucleon occupation number is 2j+1. It would appear that 

having 2j+1 identical nucleons occupying the same level would violate the Pauli 

exclusion principle.  But this is not the case since each nucleon would have a distinct 

value of mj (this is why there are 2j+1 values of mj for a given j). 

We see in Fig. 9.6 the shell model with spin-orbit coupling gives a set of energy 

levels having breaks at the seven magic numbers.  This is considered a major triumph of 

the model, for which Mayer and Jensen were awarded the Noble prize in physics.  For 

our purpose we will use the results of the shell model to predict the ground-state spin and 

parity of nuclei.  Before going into this discussion we leave the student with the 

following comments. 

1.	 The shell model is most useful when applied to closed-shell or near closed-shell 

nuclei. 

2.	 Away from closed-shell nuclei collective models taking into account the rotation 

and vibration of the nucleus are more appropriate. 

3.	 Simple versions of the shell model do not take into account pairing forces, the 

effects of which are to make two like-nucleons combine to give zero orbital 

angula momentum. 

4.	 Shell model does not treat distortion effects (deformed nuclei) due to the 

attraction between one or more outer nucleons and the closed-shell core.  When 

the nuclear core is not spherical, it can exhibit “rotational” spectrum. 

Prediction of Ground-State Spin and Parity 

There are three general rules for using the shell model to predict the total angular 

momentum (spin) and parity of a nucleus in the ground state.  These do not always work, 

especially away from the major shell breaks. 

1.	 Angular momentum of odd-A nuclei is determined by the angular momentum of 

the last nucleon in the species (neutron or proton) that is odd. 

2.	 Even-even nuclei have zero ground-state spin, because the net angular momentum 

associated with even N and even Z is zero, and even parity. 

10 



3.	 In odd-odd nuclei the last neutron couples to the last proton with their intrinsic 

spins in parallel orientation. 

To illustrate how these rules work, we consider an example for each case.  Consider 

the odd-A nuclide Be9 which has 4 protons and 5 neutrons.  Since the last nucleon is the 

fifth neutron, we see in Fig. 9.6 that this nucleon goes into the state 1p3 / 2 ( l =1, j=3/2). 

Thus we would predict the spin and parity of this nuclide to be 3/2-. For an even-even 

nuclide we can take A36, with 18 protons and neutrons, or Ca40, with 20 protons and 

neutrons. For both cases we would predict spin and parity of 0+. For an odd-odd nuclide 

we take Cl38, which has 17 protons and 21 neutrons.  In Fig. 9.6 we see that the 17th 

proton goes into the state 1d3 / 2 ( l =2, j=3/2), while the 21st neutron goes into the state 

1 f7 / 2 ( l =3, j=7/2). From the l  and j values we know that for the last proton the orbital 

and spin angular momenta are pointing in opposite direction (because j is equal to l -1/2).  

For the last neutron the two momenta are point in the same direction (j = l  +1/2). Now 

the rule tells us that the two spin momenta are parallel, therefore the orbital angular 

momentum of proton is pointing in the opposite direction from the orbital angular 

momentum of the neutron, with the latter in the same direction as the two spins.  Adding 

up the four angular momenta, we have +3+1/2+1/2-2 = 2.  Thus the total angular 

momentum (nuclear spin) is 2.  What about the parity?  The parity of the nuclide is the 

product of the two parities, one for the last proton and the other for the last neutron.  

Recall that the parity of a state is determined by the orbital angular momentum quantum 
lnumber l , π = (− 1) . So with proton in a state with l  = 2, its parity is even, while the 

neutron in a state with l  = 3 has odd parity. The parity of the nucleus is therefore odd. 

Our prediction for Cl38 is then 2-. The student can verify, using for example the Nuclide 

Chart, the foregoing predictions are in agreement with experiment. 

Potential Wells for Neutrons and Protons 

We summarize the qualitative features of the potential wells for neutrons and 

protons. If we exclude the Coulomb interaction for the moment, then the well for a 

proton is known to be deeper than that for a neutron. The reason is that in a given nucleus 
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usually there are more neutrons than protons, especially for the heavy nuclei, and the n-p 

interactions can occur in more ways than either the n-n or p-p interactions on account of 

the Puali exclusion principle.  The difference in well depth ∆ V is called the symmetry s 

energy; it is approximately given by 

∆ V ± = 27 (N − Z ) Mev (9.14)s A 

where the (+) and (-) signs are for protons and neutrons respectively.  If we now consider 

the Coulomb repulsion between protons, its effect is to raise the potential for a proton.  In 

other words, the Coulomb effect is a positive contribution to the nuclear potential which 

is larger at the center than at the surface. 

Combining the symmetry and the Coulomb effects we have a sketch of the 

potential for a neutron and a proton as indicated in Fig. 9.7.  One can also estimate the 

Fig. 9.7.  Schematic showing the effects of symmetry and Coulomb interactions on the 

potential for a neutron and a proton [from Marmier and Sheldon]. 

Well depth in each case using the Fermi Gas model.  One assumes the nucleons of a fixed 

kind behave like a fully degeneragte gas of fermions (degeneracy here means that the 

states are filled continuously starting from the lowest energy state and there are no 

unoccupied states below the occupied ones), so that the number of states occupied is 

equal to the number of nucleons in the particular nucleus.  This calculation is carried out 
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separately for neutrons and protons.  The highest energy state that is occupied is called 

the Fermi level, and the magnitude of the difference between this state and the ground 

state is called the Fermi energy EF. It turns out that EF is proportional to n2/3, where n is 

the number of nucleons of a given kind, therefore EF (neutron) > EF (proton).  The sum of 

EF and the separation energy of the last nucleon provides an estimate of the well depth.  

(The separation energy for a neutron or proton is about 8 Mev for many nuclei.)  Based 

on these considerations one obtains the results shown in Fig. 9.8.  

Fig. 9.8.  Nuclear potential wells for neutrons and protons according to the Fermi-gas 

model, assuming the mean binding energy per nucleon to be 8 Mev, the mean relative 

nucleon admixture to be N/A ~ 1/1.8m Z/A ~ 1/2.2, and a range of 1.4 F (a) and 1.1 F (b) 

[from Marmier and Sheldon]. 

We have so far considered only a spherically symmetric nuclear potential well.  

( 2We know there is in addition a centrifugal contribution of the form l l + 1)h 2 / 2mr and a 

spin-orbit contribution.  As a result of the former the well becomes narrower and 

shallower for the higher orbital angular momentum states.  Since the spin-orbit coupling 

is attractive, its effect depends on whether S is parallel or anti-parallel to L. The effects 

are illustrated in Figs. 9.9 and 9.10.  Notice that for l  = 0 both are absent. 

We conclude this chapter with the remark that in addition to the bound states in 

the nuclear potential well there exist also virtual states (levels) which are not positive 

energy states in which the wave function is large within the potential well.  This can 
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happen if the deBroglie wavelength is such that approximately standing waves are 

formed within the well.  (Correspondingly, the reflection coefficient at the edge of the 

potential is large.) A virtual level is therefore not a bound state; on the other hand, there 

is a non-negligible probability that inside the nucleus a nucleon can be found in such a 

state. See Fig. 9.11. 

Fig. 9.9.  Energy levels and wave functions for a square well for l  = 0, 1, 2, and 3 [from 

Cohen].. 

Fig. 9.10. The effect of spin-orbit interaction on the shell-model potential [from Cohen]. 
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Fig. 9.11.  Schematic representation of nuclear levels [from Meyerhof]. 
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The stability of nuclei is of great interest because unstable nuclei undergo 

transitions that result in the emission of particles and/or electromagnetic radiation 

(gammas).  If the transition is spontaneous, it is called a radioactive decay.  If the 

transition is induced by the bombardment of particles or radiation, then it is called a 

nuclear reaction. 

The mass of a nucleus is the decisive factor governing its stability.  Knowing the 

mass of a particular nucleus and those of the neighboring nuclei, one can tell whether or 

not the nucleus is stable.  Yet the relation between mass and stability is complicated.  

Increasing the mass of a stable nucleus by adding a nucleon can make the resulting 

nucleus unstable, but this is not always true.  Starting with the simplest nucleus, the 

proton, we can add one neutron after another.  This would generate the series, 

β −

2 3 4H + n → H (stable) + n → H (unstable) → He3 (stable) + n → He (stable) 

Because He4 is a double-magic nucleus, it is particularly stable.  If we continue to add a 

nucleon we find the resulting nucleus is unstable, 

4He4 + n → He5 → He , with t1/2 ~3 x 10-21 s 

He4 + H → Li 5 → He4 , with t1/2 ~ 10-22 s 

One may ask:  With He4 so stable how is it possible to build up the heavier elements 

starting with neutrons and protons? (This question arises in the study of the origin of 
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elements.  See, for example, the Nobel lecture of A. Penzias in Reviews of Modern 

Physics, 51, 425 (1979).) The answer is that the following reactions can occur 

He4 + He4 → Be8 

He4 + Be8 → C12 (stable) 

O

Although Be8 is unstable, its lifetime of ~ 3 x 10-16 s is apparently long enough to enable 

the next reaction to proceed. Once C12 is formed, it can react with another He4 to give 
16, and in this way the heavy elements can be formed. 

Instead of the mass of a nucleus one can use the binding energy to express the 

same information.  The binding energy concept is useful for discussing the calculation of 

nuclear masses and of energy released or absorbed in nuclear reactions. 

Binding Energy and Separation Energy 

We define the binding energy of a nucleus with mass M(A,Z) as 

( , ( ,Z A B ) ≡ [ZM + NM − Z A M )]c 2 (10.1)H n 

where MH is the hydrogen mass and M(A,Z) is the atomic mass.  Strictly speaking one 

should subtract out the binding energy of the electrons; however, the error in not doing so 

is quite small, so we will just ignore it. According to (10.1) the nuclear binding energy 

B(A,Z) is the difference between the mass of the constituent nucleons, when they are far 

separated from each other, and the mass of the nucleus, when they are brought together to 

form the nucleus.  Therefore, one can interpret B(A,Z) as the work required to separate 

the nucleus into the individual nucleons (far separated from each other), or equivalently, 

as the energy released during the assembly of the nucleus from the constituents. 

Taking the actual data on nuclear mass for various A and Z, one can calculate 

B(A,Z) and plot the results in the form shown in Fig. 10.1. 
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Fig. 10.1. Variation of average binding energy per nucleon with mass number for 

naturally occurring nuclides (and Be8).  Note scale change at A = 30. [from Meyerhof] 

The most striking feature of the B/A curve is the approximate constancy at ~ 8 

Mev per nucleon, except for the very light nuclei.  It is instructive to see what this 

behavior implies. If the binding energy of a pair of nucleons is a constant, say C, then for 

a nucleus with A nucleons, in which there are A(A-1)/2 distinct pairs of nucleons, the 

B/A would be ~ C(A-1)/2. Since this is not what one sees in Fig. 10.1, one can surmise 

that a given nucleon is not bound equally to all the other nucleons; in other words, 

nuclear forces, being short-ranged, extend over only a few neighbors.  The constancy of 

B/A implies a saturation effect in nuclear forces, the interaction energy of a nucleon does 

not increase any further once it has acquired a certain number of neighbors.  This number 

seems to be about 4 or 5. 

A

One can understand the initial rapid increase of B/A for the very light nuclei as 

the result of the competition between volume effects, which make B increase with A like 

A, and surface effects, which make B decrease (in the sense of a correction) with A like 
2/3. The latter should be less important as A becomes large, hence B/A increases (see 

the discussion of the semi-empiricial mass formula in the next chapter). At the other end 

of the curve, the gradual decrease of B/A for A > 100 can be understood as the effect of 
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Coulomb repulsion which becomes more important as the number of protons in the 

nucleus increases. 

As a quick application of the B/A curve we make a rough estimate of the energies 

release in fission and fusion reactions. Suppose we have symmetric fission of a nucleus 

with A ~ 240 producing two fragments, each A/2.  The reaction gives a final state with 

B/A of about 8.5 Mev, which is about 1 Mev greater than the B/A of the initial state.  

Thus the energy released per fission reaction is about 240 Mev.  (A more accurate 
2estimate gives 200 Mev.)  For fusion reaction we take H 2 + H → He4 . The B/A values 

of H2 and He4 are 1.1 and 7.1 Mev/nucleon respectively.  The gain in B/A is 6 

Mev/nucleon, so the energy released per fusion event is ~ 24 Mev. 

Binding Energy in Nuclear Reactions 

The binding energy concept is also applicable to a binary reaction where the 

initial state consists of a particle i incident upon a target nucleus I and the final state 

consists of an outgoing particle f and a residual nucleus F, as indicated in the sketch, 

We write the reaction in the form 

i + I → f + F + Q (10.2) 

where Q is an energy called the ‘Q-value of the reaction’.  Corresponding to (10.2) we 

have the definition 

Q ≡ [(M + M I ) − (M + M F )]c 2 (10.3)i f 
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where the masses are understood to be atomic masses.  Every nuclear reaction has a 

characteristic Q-value; the reaction is called exothermic (endothermic) for Q > 0 (<0) 

where energy is given off (absorbed).  Thus an endothermic reaction cannot take place 

unless additional energy, called the threshold, is supplied.  Often the source of this energy 

is the kinetic energy of the incident particle.  One can also express Q in terms of the 

kinetic energies of the reactants and products of the reaction by invoking the conservation 

of total energy, which must hold for any reaction, 

Ti + M ic 2 + TI + M I c 2 → T f + M f c 2 +T F +M F c 2 (10.4) 

Combining this with (10.3) gives 

Q = T + TF − (T + TI ) (10.5)f i 

Usually TI is negligible compared to Ti because the target nucleus follows a Maxwellian 

distribution at the temperature of the target sample (typically room temperature), while 

for nuclear reactions the incident particle would have a kinetic energy in the Mev range.  

Since the rest masses can be expressed in terms of binding energies, another expression 

for Q is 

( ( (Q = f B ) + B (F ) − i B ) − I B ) (10.6) 

As an example, the nuclear medicine technique called boron neutron capture therapy 

(BNCT) is based on the reaction 

10 7 4B + n →3 Li + He + Q (10.7)5

In the case, Q = B(Li)+B(α )-B(B) = 39.245+28.296-64.750 = 2.791 Mev. The reaction 

is exothermic, therefore it can be induced by a thermal neturon.  In practice, the simplest 

way of calculating Q values is to use the rest masses of the reactants and products.  For 
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many reactions of interest Q values are in the range 1 – 5 Mev.  An important exception 

is fission, where Q ~ 170 – 210 Mev depending on what one considers to be the fission 

products. Notice that if one defines Q in terms of the kinetic energies, as in (10.5), it may 

appear that the value of Q would depend on whether one is in laboratory or center-of-

mass coordinate system.  This is illusory because the equivalent definition, (10.3), is 

clearly frame independent. 

Separation Energy 

Recall the definition of binding energy, (10.1), involves an initial state where all 

the nucleons are removed far from each other.  One can define another binding energy 

where the initial state is one where only one nucleon is separated off.  The energy 

required to separate particle a from a nucleus is called the separation energy Sa. This is 

also the energy released, or energy available for reaction, when particle a is captured.  

This concept is usually applied to a neutron, proton, deuteron, or α -particle. The energy 

balance in general is 

, ' ( , ' ( , 2S = [M ( Z A ' ) + A M − Z A − Z ' ) − Z A M )]c (10.8)a a 

where particle a is treated as a ‘nucleus’ with atomic number Z’ and mass number A’.  

For a neutron, 

( ( , 2S = [M + A M − ,1 Z ) − Z A M )]cn n 

=  B(A,Z)  –  B  (A-1,  Z)  (10.9)  

Sn is sometimes called the binding energy of the last neutron. 

 Clearly Sn will vary from one nucleus to another.  In the range of A where B/A is 

roughly constant we can estimate from the B/A curve that Sn ~ Sp ~ 8 Mev. This is a 

rough figure, for the heavy nuclei Sn is more like 5 – 6 Mev.  It turns out that when a 

nucleus M(A-1,Z) absorbs a neutron, there is ~ 1 Mev (or more, can be up to 4 Mev) 

difference between the neutron absorbed being an even neutron or an odd neutron (see 
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Fig. 10.2). This difference is the  reason that U235 can undergo fission with thermal 

neutrons, whereas U238 can fission only with fast neutrons (E > 1 Mev).  

Fig. 10.2.  Variation of the neutron separation energies of lead isotopes with neutron 

number of the absorbing nucleus.  [from Meyerhof] 

Generally speaking the following systematic behavior is observed in neutron and proton 

separation energies, 

Sn(even N) > Sn(odd N) for a given Z 

Sp(even Z) > Sp(odd Z) for a given N 

This effect is attributed to the pairing property of nuclear forces – the existence of extra 

binding between pair of identical nucleons in the same state which have total angular 

momenta pointing in opposite directions.  This is also the reason for the exceptional 

stability of the α -particle. Because of pairing the even-even (even Z, even N) nuclei are 

more stable than the even-odd and odd-even nuclei, which in turn are more stable then 

the odd-odd nuclei. 
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Abundance Systemtics of Stable Nuclides 

One can construct a stability chart by plotting the neutron number N versus the 

atomic number Z of all the stable nuclides.  The results, shown in Fig. 10.3, show that N 

~ Z for low A, but N > Z at high A. 

Fig. 10.3. Neutron and proton numbers of stable nuclides which are odd (left) and even 

isobars (right). Arrows indicate the magic numbers of 20, 28, 50, 82, and 126.  Also 

shown are odd-odd isobars with A = 2, 6, 10, and 14. [from Meyerhof] 

Again, one can readily understand that in heavy nuclei the Coulomb repulsion will favor 

a neutron-proton distribution with more neutrons than protons.  It is a little more involved 

to explain why there should be an equal distribution for the light nuclides (see the 

following discussion on the semi-empirical mass formula).  We will simply note that to 

have more neutrons than protons means that the nucleus has to be in a higher energy 

state, and is therefore less stable.  This symmetry effect is most pronounced at low A and 

becomes less important at high A.  In connection with Fig. 10.3 we note: 

(i) In the case of odd A, only one stable isobar exists, except A = 113, 123. 

(ii) In the case of even A, only even-even nuclides exist, except A = 2, 6, 10, 

14. 
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Still another way to summarize the trend of stable nuclides is shown in the following 

table [from Meyerhof] 
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The binding energy curve we have discussed in the last chapter is an overall 

representation of how the stability of nuclides varies across the entire range of mass 

number A.  The curve shown in Fig. 10.1 was based on experimental data on atomic 

masses.  One way to analyze this curve is to decompose the binding energy into various 

contributions from the interactions among the nucleons.  An empirical formula for the 

binding energy consisting of contributions representing volume, surface, Coulomb and 

other effects was first proposed by von Weizsäcker in 1935.  Such a formula is useful 

because it not only allows one to calculate the mass of a nucleus, thereby eliminating the 

need for table of mass data, but also it leads to qualitative understanding of the essential 

features of nuclear binding. More detailed theories exist,  for example Bruecker et al., 

Physical Review 121, 255 (1961), but they are beyond the scope of our study. 

The empirical mass formula we consider here was derived on the basis of the 

liquid crop model of the nucleus. The essential assumptions are: 

1.	 The nucleus is composed of incompressible matter, thus R ~ A1/3. 

2.	 The nuclear force is the same among neutrons and protons (excluding 

Coulomb interactions). 

3.	 The nuclear force saturates (meaning it is very short ranged). 

The empirical mass formula is usually given in terms of the binding energy, 
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( (N − Z )2 

Z A B ) = A a − A a 2 / 3 − a Z Z 
1/ 

− 
3

1)
− a +δ (11.1)( , v s c aA A 

where the coefficients a are to be determined (by fitting the mass data), with subscripts v, 

s, c, and a referring to volume, surface, Coulomb, and asymmetry respectively.  The last 

term in (11.1) represents the pairing effects, 

δ = a / A even-even nuclei  p 

= 0 even-odd, odd-even nuclei 

= − a / A odd-odd nuclei p 

where coefficient a p is also a fitting parameter.  A set of values for the five coefficients in 

(11.1) is: 

a v a s a c a a a p 

16 18 0.72 23.5 11 Mev 

Since the fitting to experimental data is not perfect one can find several slightly different 

coefficients in the literature.  The average accuracy of (11.1) is about 2 Mev except 

where strong shell effects are present. One can add a term, ~ 1 to 2 Mev, to (11.1) to 

represent the shell effects, extra binding for nuclei with closed shells of neutrons or 

protons. 

A simple way to interpret (11.1) is to regard the first term as a first approximation 

to the binding energy. That is to say, the binding energy is proportional to the volume of 

the nucleus or the mass number A.  This assumes every nucleon is like every other 

nucleon. Of course this is an oversimplification, and the remaining terms can be regarded 

as corrections to this first approximation.  That is why the terms representing surface, 

Coulomb and asymmetry come in with negative signs, each one subtracting from the 
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R

volume effect.  It is quite understandable that the surface term should vary with A2/3, or 
2. The Coulomb term is also quite self-evident considering that Z(Z-1)/2 is the number 

of pairs that one can form from Z protons, and the 1/A1/3 factor comes from the 1/R.  The 

asummetry term in (11.1) is less obvious, so we digress to derive it. 

What we would like to estimate is the energy difference between an actual 

nucleus where N > Z and an ideal nucleus where N = Z = A/2. This is then the energy to 

transform a symmetric nucleus, in the sense of N = Z, to an asymmetric one, N > Z.  For 

fixed N and Z, the number of protons that we need to transform into neutrons is ν , with 

N=(A/2) + ν  and Z = (A/2) - ν . Thus, ν  = (N – Z)/2. Now consider a set of energy 

levels for the neutrons and another set for the protons, each one filled to a certain level.  

To transform ν  protons into neutrons the protons in question have to go into unoccupied 

energy levels above the last neutron.  What this means is that the amount of energy 

involved is ν  (the number of nucleons that have to be transformed) times ν∆ (energy 
2 2change for each nucleon to be transformed) = ν = ∆ (N − Z ) ∆ / 4 , where ∆  is the 

spacing between energy levels (assumed to be the same for all the levels) .  To estimate 

∆ , we note that ∆  ~ EF/A, where EF is the Fermi energy (see Figs. 9.7 and 9.8) which is 

known to be independent of A. Thus ∆  ~ 1/A, and we have the expression for the 

asymmetry term in (11.1).  

The magnitudes of the various contributions to the binding energy curve are 

depicted in Fig. 11.1. The initial rise of B/A with A is seen to be due to the decreasing 

importance of the surface contribution as A increases.  The Coulomb repulsion effect 

grows in importance with A, causing a maximum in B/A at A ~ 60, and a subsequent 

decrease of B/A at larger A.  Except for the extreme ends of the mass number range the 

semi-empirical mass formula generally can give binding energies accurate to within 1% 
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Fig. 11.1. Relative contributions to the binding energy per nucleon showing the 

importance of the various terms in the semi-empirical Weizsäcker formula.  [from Evans] 

of the experimental values [Evans, p. 382].  This means that atomic masses can be 

calculated correctly to roughly 1 part in 104. However, there are conspicuous 

discrepancies in the neighborhood of magic nuclei.  Attempts have been made to take 

into account the nuclear shell effects by generalizing the mass formula.  In addition to 

what we have already mentioned, one can consider another term representing nuclear 

deformation [see Marmier and Sheldon, pp. 39, for references]. 

One can use the mass formula to determine the constant ro in the expression for 

the nuclear radius, R = roA1/3. The radius appears in the coefficients a v and a s. In this 

way one obtains ro = 1.24 x 10-13 cm. 

Mass Parabolas and Stability Line 

The mass formula can be rearranged to give the mass M(A,Z), 

1/ 3 2M ( c Z A 2 ≅ M A c 2 − a + a + a / A ]+ xZ + yZ −δ (11.2), ) [ n v a s 
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where 

x a a 4− = ( nM− − HM ) c 2 
a a 4− ≅ (11.3) 

y =
4 
A 
a a + 3/1A 

a c (11.4)  

Notice that (11.2) is not exact rearrangement of (11.1), certain small terms having been 

neglected. What is important of about (11.2) is that it shows that with A held constant 

the variation of M(A,Z) with Z is given by a parabola, as sketch below. The minimum of 

this parabola occurs at an atomic number, which we label as ZA, of the stable nucleus for 

the given A.  This therefore represents a way of determining the stable nuclides. 

We can analyze (11.2) further by considering ∂ M / ∂ Z = 0 . This gives
Z A 

Z A − = x / 2 y ≈ 
A / 2 (11.5) 

1 + 
1 ⎛⎜ ac ⎟

⎞
⎟ A 2 / 3 

4 ⎝⎜ aa ⎠ 

Notice that if we had considered only the volume, surface and Coulomb terms in B(A,Z), 

then we would have found instead of (11.5) the expression 
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2 1/ 3 

Z A ≈
(M − M H ) A c 1/ 3 (11.6)n 9.0 ~ A 

2a c 

This is a very different result because for a stable nucleus with ZA = 20 the corresponding 

mass number given by (11.6) would be ~ 9,000, which is clearly unrealistic.  Fitting 

(11.5) to the experimental data gives a / 4a = 0.0078, or a a ~ 20 – 23 Mev. We see c a 

therefore the deviation of the stability line from N = Z = A/2 is the result of Coulomb 

effects, which favor ZA < A/2, becoming relatively more important than the asymmetry 

effects, which favor ZA = A/2. 

We can ask what happens when a nuclide is unstable because it is proton-rich.  

The answer is that a nucleus with too many protons for stability can emit a positron 

(positive electron e+ or β + ) and thus convert a proton into a neutron. In this process a 

neutrino (ν ) is also emitted.  An example of a positron decay is 

16 16 +F →8 O + β +ν (11.7)9 

By the same token if a nucleus has too many neutrons, then it can emit an electron (e- or 

β − ) and an antineutrino ν , converting a neutron into a proton.  An electron decay for the 

isobar A = 16 is 

16 16 −N →8 O + β +ν (11.8)7 

A competing process with positron decay is electron capture (EC).  In this process an 

inner shell atomic electron is captured by the nucleus so the nuclear charge is reduced 

from Z to Z – 1.  (Note: Orbital electrons can spend a fraction of their time inside the 

nucleus.) The atom as a whole would remain neutral but it is left in an excited state 

because a vacancy has been created in one of its inner shells. 

As far as atomic mass balance is concerned, the requirement for each process to 

be energetically allowed is: 
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   M(A, Z+1) > M(A,Z) + 2 me β + - decay (11.9) 

   M(A,Z) > M(A, Z+1) β −  - decay (11.10) 

   M(A, Z+1) > M(A,Z) EC (11.11) 

where M(A,Z) is atomic mass.  Notice that EC is a less stringent condition for the nucleus 

to decrease its atomic number.  If the energy difference between initial and final states is 

less than twice the electron rest mass (1.02 Mev), the transition can take place via EC 

whereas it would be energetically forbidden via positron decay.  The reason for the 

appearance of the electron rest mass in (11.9) may be explained by looking at an energy 

balance in terms of nuclear mass M’(A,Z), which is related to the atomic mass by M(A,Z) 

= Zme + M’(A,Z) if we ignore the binding energy of the electrons in the atom.  For β + -

decay the energy balance is 

, ,M ' ( Z A ) = M ' ( Z A − 1) + m +ν (11.12)e 

which we can rewrite as 

, ,Zm + M ' ( Z A ) = (Z − 1)m + M ' ( Z A − 1) + 2m +ν (11.13)e e e 

The LHS is just M(A,Z) while the RHS is at least M(A,Z-1) + 2me with the neutrino 

having a variable energy. Thus one obtains (11.9).  Another way to look at this condition 

is that is that in addition to the positron emitted the daughter nuclide also has to eject an 

electron (from an outer shell) in order to preserve charge neutrality. 

Having discussed how a nucleus can change its atomic number Z while preserving 

its mass number A, we can predict what transitions will occaur as an unstable nuclide 

moves along the mass parabola toward the point of stability.  Since the pairing term δ 

vanishes for odd-A isobars, one has single mass parabola in this case in contrast to two 

mass parabolas for the even-A isobars.  One might then expect that when A is odd there 
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can be only one stable isobar. This is generally true with two exceptions, at A = 113 and 

123. In these two cases the discrepancies arise from small mass differences which cause 

one of the isobars in each case to have exceptionally long half life.  In the case of even A 

there can be stable even-even isobars (three is the largest number found).  Since the odd-

odd isobars lie on the upper mass parabola, oue would expect there should be no stable 

odd-odd nuclides. Yet there are several exceptions, H2, Li6, B10 and N14. One 

explanation is that there are rrapid variations of the binding energy for the very light 

nuclides due to nuclear structure effects that are not taken into account in the sem-

empirical mass formula.  For certain odd-odd nuclides both conditions for β +  and β −

decays are satisfied, and indeed both decays do occur in the same nucleus.  Examples of 

odd- and even-A mass parabolas are shown in Fig. 11.2.    

Fig. 11.2.  Mass parabolas for odd and even isobars.  Stable and radioactive nuclides are 

denoted by closed and open circles respectively.  [from Meyerhof] 
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We begin with an experimental observation that in radioactive decay that the 

probability of a decay during a small time interval ∆ t, which we will denote as P( ∆ t), is 

proportional to ∆ t. Given this as a fact one can write 

P(∆t) = λ∆t (12.1) 

where λ  is the proportionality constant which we will call the decay constant.  Notice 

that this expression is meaningful only when λ ∆ t < 1, a condition which defines what 

we mean by a small time interval.  In other words, ∆ t < 1/ λ , which will turn out to be 

the mean life time of the radioisotope. 

Suppose we are interested in the survival probability S(t), the probability that the 

radioisotope does not decay during an arbitrary time interval t.  To calculate S(t) using 

(12.1) we can take the time interval t and divide it into equal small segments, each one of 

magnitude ∆ t. For a given t the number of such segments will be t / ∆ t = n. To survive 

the entire time interval t, we need to first survive the first segment ( ∆ t)1, then the next 

segment ( ∆ t)2, …, all the way up to the nth segment ( ∆ t)n. Thus we can write 

n 

t S ) =∏[1 − P((∆t) i )]( 
i=1 

n −λt= [1 − λ(t / n)] → e (12.2) 
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where the arrow indicated the limit of n →∞ , ∆ t → 0 . Unlike (12.1) (12.2) is valid for 

any t, and when λt  is sufficiently small compared to unity, it reduces to (12.1) as 

expected. Stated another way, (12.2) is extension of 1 – P(t) for arbitrary t.  One should 

also notice a close similarity between (12.2) and the probability that a particle will go a 

distance x without collision, e Σ − x , where Σ  is the macroscopic collision cross section 

(recall Lec1).  The role of the decay constant λ  in the probability of no decay in a time t 

is the same as the macroscopic cross section Σ  in the probability of no collision in a 

distance x.  The exponential attenuation in time or space is quite a general result (one 

encounters it frequently). There is another way to derive it.  Suppose the radioisotope has 

not decayed up to a time interval of t1, for it to survive the next small segment ∆ t the 

probability is just 1 - P( ∆ t) = 1 - λ ∆ t. Then we have 

( (t S 1 + ∆ t ) = t S 1 )[ 1 − λ∆ t ]] (12.3) 

which we can rearrange to read 

t S + ∆ t ) − t S ) 
− = λ (( ( t S ) (12.4)

∆ t 

Taking the limit of small ∆ t, we get  

dS (t ) 
− = λ  (12.5)

dt 

which we can readily integrate to give (12.2), since the initial condition in this case is 

S(t=0) = 1. 

The decay of a single radioisotope is described by S(t) which depends on a single 

physical constant λ . Instead of λ  one can speak of two equivalent quantities, the half 

life t1/2 and the mean life τ . They are defined as 

(t S 1/ 2 ) = 1/ 2 → t 1/ 2 = ln 2 / λ = 693.0 / λ (12.6) 
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∞ 

' ' (t S t dt ' )∫ 1and τ = 0 = (12.7)∞ λ
t S dt ' )' (∫ 

0 

Fig. 12.1 shows the relationship between these quantities and S(t). 

Fig. 12.1. The half life and mean life of a survival probability S(t). 

Radioactivity is measured in terms of the rate of radioactive decay.  The quantity 

λ N(t), where N is the number of radioisotope atoms at time t, is called activity. A 

standard unit of radioactivity has been the curie, 1 Ci = 3.7 x 1010 disintegrations/sec, 

which is roughly the activity of 1 gram of Ra226. Now it is replaced by the becquerel 

(Bq), 1 Bq = 2.7 x 10-11 Ci. An old unit which is not often used is the rutherford (106 

disintegrations/sec). 

Radioisotope Production by Bombardment 

There are two general ways of producing radioisotopes, activation by particle or 

radiation bombardment such as in a nuclear reactor or an accelerator, and the decay of a 

radioactive series. Both methods can be discussed in terms of a differential equation that 

governs the number of radioisotopes at time N(t).  This is a first-order linear differential 

equation with constant coefficients, to which the solution can be readily obtained.  

Although there are different situations to which one can apply this equation, the analysis 
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is fundamentally quite straightforward.  We will treat the activation problem first.  Let 

Q(t), the rate of production of the radioisotope, have the form shown in the sketch below.  

This means the production takes place at a constant Qo for a time interval (0, T), after 

which production ceases. During production, t < T, the equation governing N(t) is 

(dN (t ) 
= Q − λ t N ) (12.8)odt 

Because we have an external source term, the equation is seen to be inhomogeneous.  The 

solution to (12.8) with the initial condition that there is no radioisotope prior to 

production, N(t = 0) = 0, is 

t N ) = 
Qo ( 1 − e −λ t ) , t < T (12.9)( 
λ 

For t > T, the governing equation is (12.8) without the source term.  The solution is 

o −λ ( T t ) (12.10)t N ) = 
Q 

(1− e −λ T )e( − 

λ

A sketch of the solutions (12.9) and (12.10) is shown in Fig. 12.2.  One sees a build up of 

N(t) during production which approaches the asymptotic value of Q / λ , and aftero

production is stopped N(t) undergoes an exponential decay, so that if λT >>1, 
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t N ) ≈ 
Qo −λ (t − T )( e (12.11)
λ

Fig. 12.2. Time variation of number of radioisotope atoms produced at a constant rate 

Qo for a time interval of T after which the system is left to decay.  

Radioisotope Production in Series Decay 

Radioisotopes also are produced as the product(s) of a series of sequential decays.  

Consider the case of a three-member chain, 

λ 1 λ 2 

N1 → N 2 → N3  (stable) 

where λ1  and λ2  are the decay constants of the parent (N1) and the daughter (N2) 

respectively. The governing equations are 

dN1 (t) 
− = λ N1 (t) (12.12)

dt 1 

dN 2 (t) 
= λ N1 (t) − λ N (t) (12.13)2 2dt 1 
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dN3 (t) 
= λ N 2 (t) (12.14)

dt 2 

For the initial conditions we assume there are N10 nuclides of spcies 1 and no nuclides of 

species 2 and 3.  The solutions to (12.12) – (12.14) then become 

N1 (t) = N10 e
−λ 1t (12.15) 

λ t −λ 2t )N 2 (t) = N10 
λ 1 ( e− 1 − e (12.16)

λ 2 − λ 1 

−λ t −λ 2t ⎞λλ 2 ⎛ 1 − e 1 1 − e1N3 (t) = N10 λ 2 − λ ⎜⎜ λ 
−

λ 2 ⎠
⎟⎟ (12.17) 

1 ⎝ 1 

Eqs.(12.15) through (12.17) are known as the Bateman equations.  One can use them to 

analyze situations when the decay constants λ1  and λ2 take on different relative values. 

We consider two such scenarios, the case where the parent is short-lived, λ1  >> λ 2 , and 

the opposite case where the parent is long- lived, λ2 >> λ 1 . 

One should notice from (12.12) – (12.14) that the sum of these three differential 

equations is zero.  This means that N1(t) + N2(t) + N3(t) = constant for any t.  We also 

know from our initial conditions that this constant must be N10. One can use this 

information to find N3(t) given N1(t) and N2(t), or use this as a check that the solutions 

given by (12.15) – (12.17) are indeed correct. 

Series Decay with Short-Lived Parent 

In this case one expects the parent to decay quickly which means the daughter 

will build up quickly.  The daughter then decays more slowly which means that the grand 

daughter will build up slowly, eventually approaching the initial number of the parent.  

Fig. 12.3 shows schematically the behavior of the three isotopes.  The initial values of 

N2(t) and N3(t) can be readily deduced from an examination of  (12.16) and (12.17). 

6 



Fig. 12.3.  Time variation of a three-member decay chain for the case λ1  >> λ2 . 

Series Decay with Long-Lived Parent

 When λ1  << λ , we expect the parent to decay slowly so that the daughter and 2 

grand daughter build up slowly.  Since the daughter decays quickly the long-time 

behavior of the daughter follows that of the parent.  Fig. 12.4 shows the general behavior  

Fig. 12.4.  Time variation of a three-member chain with a long-lived parent. 

(admittedly the N2 behavior is not sketched accurately).  In this case we find 
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λt N ) ≈ N 10 
1 e −λt (12.18)(2 λ2 

( (or  λ2 t N ) ≈ λ t N ) (12.19)2 1 1 

The condition of approximately equal activities is called secular equilibrium.  

Generalizing this to arbitrary chain, we can say for the series 

N 1 → N 2 → N 3 → ...  

if  λ2 >> λ1 , λ3 >> λ1 , … 

then λ1 N 1 ≈ λ2 N 2 ≈ λ3 N 3 ≈ ... (12.20) 

This condition can be used to estimate the half life of a very long-lived radioisotope.  An 

example is U238 whose half life is so long that it is difficult to determine by directly 

measuring its decay.  However, it is known that U238 →  Th234 →  … →  Ra226 →  …, 

and in uranium mineral the ratio of N(U238)/N(Ra226) = 2.8 x 106 has been measured, with 

t1/2(Ra226) = 1620 yr. Using these data we can write 

238 ) 226 )U N 
=

N (Ra 238 ) = 2.8 x 106 x 1620 = 4.5 x 109 yr.
t 1/ 2

(
(U 238 ) t 1/ 2 (Ra 226 ) 

or t1/ 2 (U 

U

In so doing we assume that all the intermediate decay constants are larger than that of 
238. It turns out that this is indeed true, and that the above estimate is a good result.  For 

an extensive treatment of radioactive series decay, the student should consult Evans. 
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When a swift charged particle enters a materials medium it will interact with the 

electrons and nuclei in the medium and begins to lose energy as it penetrates into the 

medium.  The interaction can be generally thought of as collisions between the charged 

particle and either the atomic electron or the nucleus (considered separately).  The energy 

given off will result in ionization, production of ion-electron pairs, in the medium; also it 

can appear in the form of electromagnetic radiation, a process known as bremsstrahlung 

(braking radiation). We are interested in describing the energy loss per unit distance 

traveled by the charged particle, and the range of the particle in various materials, the 

latter being defined as the distance traveled from the point of entry to the point of being 

essentially rest. 

A charged particleis called ‘heavy’ if its rest mass is large compared to the rest 

mass of the electron.  Thus mesons, protons, α -particles, and of course fission fragments 

are all heavy charged particles.  By the same token, electrons and positrons are ‘light’ 

particles. 

If we ignore nuclear forces and consider only the interactions arising from 

Coulomb forces, then we can speak of four principal types of charged-particle 

interactions: 

(i) Inelastic Collision with Atomic Electrons.  This is the principal process of 

energy transfer, particularly if the particle velocity is below the level 

where bremsstrahlung is significant, it leads to excitation of the atomic 

electrons (still bound to the nucleus) and to ionization (electron stripped 

off the nucleus). Inelastic here refers to electronic levels. 
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(ii)	 Inelastic Collision with a Nucleus.  This process can leave the nucleus in 

an excited state or the particle can radiate (bremsstrahlung). 

(iii)	 Elastic Collision with a Nucleus. This process is known as Rutherford 

scattering. There is no excitation of the nucleus, nor radiation.  The 

particle loses energy only through the recoil of the nucleus. 

(iv)	 Elastic Collision with Atomic Electrons.  The process is elastic defection 

which results in a small amount of energy transfer.  It is significant only 

for charged particles that are low-energy electrons. 

In general interaction of type (i), which is sometimes simply called collision, is 

the dominant process of energy loss, unless the charged particle has a kinetic energy 

exceeding its rest mass energy in which case the radiation process, type (ii), becomes 

important.  For heavy particles, radiation occurs only at such kinetic energies, ~ 103 Mev, 

that it is of no practical interest. The characteristic behavior of electron and proton 

energy loss in a high-Z medium like lead is shown in Fig. 13.1 [Meyerhof Fig. 3.7]. 

Stopping Power: Energy Loss of Charged Particles in Matter 

The kinetic energy loss per unit distance suffered by a charged particle, to be 

denoted as –dT/dx, is conventionally known as the stopping powe. This is a positive 

quantity since dT/dx is <0. There are quantum mechanical as well as classical theories 

for calculating this basic quantity. One wants to express –dT/dx in terms of the 

properties specifying the incident charged particle, such as it velocity v and charge ze, 
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and the properties pertaining to the atomic medium, the charge of the atomic nucleus Ze, 

the density of atoms n, and the average ionization potential I . 

We consider only a crude, approximate derivation of the formula for –dT/dx.  We 

begin with an estimate of the energy loss suffered by an indicend charged particle when it 

interacts with a free and initially stationary electron.  Referring to the collision cylinder 

whose radius is the impact parameter b and whose length is the small distance traveled dx 

shown in Fig. 13.2 [Meyerhof Fig. 3-1], we see that the net momentum transferred to the  

 electron as the particle moves from one end of the cylinder to the other end is essentially 

entirely directed in the perpendicular direction (because Fx changes sign so the net 

momentum along the horizontal direction vanishes) along the negative y-axis.  So we 

write 

dtF (t) ≈ 0 (13.1)∫ x

p = ∫ F dt (t)e y 

2 dx = 
2 1/ 2 v∫ x 2 

ze 
+ b2 ( x + 

b
b2 ) 
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2b ze ∞ dx 2ze2 

v 
≅ ∫ 2 3 / 2 = 

vb 
(13.2) 

∞ − ( x + b2 ) 

The kinetic energy transferred to the electron is therefore 

2 )2 
ep 2 

=
2(ze (13.3)22m v b m 2 

e e 

If we assume this is equal to the energy loss of the charged particle, then multiplying by 

nZ (2π bdbdx) , the number of electrons in the collision cylinder, we obtain 

dT bmax 2 ⎛ ze2 ⎞ 
2 

− = ∫ nZ 2πbdb ⎜⎜ ⎟⎟ me ⎝ vb ⎠dx bmin 

2 2 
max= 4π (ze ) nZ 

ln⎜⎜
⎛ b 

⎟⎟
⎞ 

(13.4)2v m ⎝ bmin ⎠e 

where bmax and bmin are the maximum and minimum impact parameters which one should 

specify according to the physical description he wishes to treat. 

In reality the atomic electrons are of course not free electrons, so the charged 

particle must transfer at least an amount of energy equal to the first excited state of the 

atom.  If we take the time interval of energy transfer to be ∆ t ≈ b / v , then (∆ t) 1 ~ /ν ,max 

where hν ≈ I  is the mean ionization potential.  Then 

b ≈ I hv (13.5)/max 

An empirical expression for I  is I ≈ kZ , with k ~ 19 ev for H and ~ 10 ev for Pb. We 

estimate bmin by using the uncertainty principle to say that the electron position cannot 

be specified more precisely than it de Broglie wavelength in the relative coordinate 
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system of the electron and the charged particle.  Since electron momentum in the relative 

coordinate system is v m , we finde 

b min ≈ h / v m (13.6)e 

Combining these two estimates we obtain 

2 4 

− 
dT 

= 
4π e z nZ 

ln ⎜⎜
⎛ 2 v m 2 

⎟⎟
⎞e (13.7)2dx v m ⎝ Ie ⎠ 

In (13.7) we have inserted a factor of 2 in the argument of the logarithm, this is to make 

our formula agree with the result of quantum mechanical calculation which was first 

carried out by H. Bethe using the Born approximation. 

Eq.(13.7) describes the energy loss due to particle collisions in the nonrelativistic 

regime.  One can include relativistic effects by replacing the logarithm by 

2 ⎞ 2 

ln ⎜⎜
⎛ 2 v m ⎛ ve 

⎟⎟ − ln ⎜⎜ 1 − 
v 2 ⎞

⎟⎟ −2 2
⎝ I ⎠ ⎝ c ⎠ c 

This correction can be important in the case of electrons and positrons. 

Eq.(13.7) is a relatively simple expression, yet one can gain much insight into the 

factors that govern the energy loss of a charged particle by collisions with the atomic 

electrons. We can see why one can usually neglect the contributions due to collisions 

with nuclei.  In a collision with a nucleus the stopping power would increase by a factor 

Z, because of the charge of the target with which the incident charged particle is 

colliding, and decrease by a factor of me/M(Z), where M(Z) is the mass of the atomic 

nucleus. The decrease is a result of the larger mass of the recoiling target.  Since Z is 

always less than 102 whereas M(Z) is at least a factor 2 x 103 greater than me, the mass 

factor always dominates over the charge factor.  Another useful observation is that (13.7) 

is independent of the mass of the incident charged particle.  This means that 
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nonrelativistic electrons and protons of the same velocity would lose energy at the same 

rate, or equivalently the stopper power of a proton at energy T is about the same as that of 

an electron at energy ~ T/2000. This scaling is more or less correct as seen in Fig. 13.1. 

Fig. 13.2 shows an experimentally determined energy loss curve (stopping power) 

for a heavy charged particle (proton), on two energy scales, an expanded low-energy 

region where the stopping power decreases smoothly with increasing kinetic energy of 

the charged particle T below a certain peak centered about 0.1 Mev, and a more 

compressed high-energy region where the stopping power reaches a broad minimum 

around 103 Mev. Notice also a slight upturn as one goes to higher energies past the broad 

minimum which we expect is associated with relativistic corrections.  One should regard 

Fig. 13.2 as the extension at both ends of the energy of the curve for proton in Fig. 13.1.   

Fig. 13.2.  The experimentally determined stopping power, (-dT/dx), for protons in air, 

(a) low-energy region where the Bethe formula applies down to T ~ 0.3 Mev with I  ~ 80 

ev. Below this range charge loss due to electron capture causes the stopper power to 
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reach a peak and start to decrease (see Fig. 13.3), (b) high-energy region where a broad 

minimum occurs at T ~ 1500 Mev.  [from Meyerhof] 

Experimentally, collisional energy loss is measured through the number of ion pairs 

formed along the trajectory path of the charged particle.  Suppose a heavy charged 

particle loses on the average an amount of energy w in producing an ion pair, an electron 

and an ion, the residual nucleus which is now charged.  Then the number of ion pairs 

produced per unit path is 

i =

1
w 

dT⎛−⎜
⎝ dx 

⎞
⎟
⎠


(13.8) 


Eq.(13.7) is valid only in a certain energy range because of the assumptions we 

have made in its derivation.  We have seen from Figs. 13.1 and 13.2 that the atomic 

stopping power varies with energy in the manner sketched below.  In the intermediate  

energy region, 500
I
<
T
≤
Mc2 , where M is the mass of the charged particle, the 

stopping power behaves like 1/T, which is roughly what is predicted by (13.7).  In this 

region the relativistic correction is small and the logarithm factor varies slowly.  At 

higher energies the logarithm factor along with the relativistic correction terms give rise 

to a gradual increase so that a broad minimum is set up in the neighborhood of ~ 3 Mc2.  

At energies below the maximum in the stopping power, T < 500I , Eq.(13.7) is not valid 
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because the charged particle is moving slow enough to capture electrons and begin to lose 

its charge. Fig. 13.3 [Meyerhof Fig. 3-3] shows the correlation between the mean charge  

of a charged particle and its velocity.  This is a difficult region to analyze theoretically.  

For α -particles and protons the range begins at ~ 1 Mev and 0.1 Mev respectively [H. A. 

Bethe and J. Ashkin, “Passage of Radiation Through Matter”, in Experimental Nuclear 

Physics, E. Segrè, ed (Wiley, New York, 1953), Vol. I, p.166].  

Eq.(13.7) is generally known as the Bethe formula.  It is a quantum mechanical 

result derived on the basis of the Born approximation which is essentially an assumption 

of weak scattering [E. J. Williams, Rev. Mod. Phys. 17, 217 (1945)]. The result is valid 

provided 

2ze ⎛ e2 ⎞ z 
= ⎜ << 1 (13.9)⎜hv ⎝ hc ⎠⎟

⎟ 
v / c 

= 
137( 

z
v / c) 

On the other hand, Bohr has used classical theory to derive an expression for the stopping 

power, 

dT ⎞ 4π nZ e z ⎡ v M 2 v m 2 ⎤h e− ⎜
⎛

⎟ = 
2 4

2 ln⎢ (13.10)
⎝ dx ⎠ class v m ⎣ 2ze2 (m + M ) I ⎦

⎥ 
e e 

which holds if 
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2ze >> 1 (13.11)
hv 

Thus (13.7) and the classical formula apply to opposite conditions. Notice that the two 

expressions agree when the arguments of the logarithms are equal, that is, 2ze2 / hv = 1 , 

which is another way of saying that their regions of validity do not overlap.  According to 

Evans (p. 584), the error tends to be an overestimate, so the expression that gives the 

smaller energy loss is likely to be the more correct.  This turns out to be the classical 

expression when z > 137(v/c), and (13.7) when 2z < 137(v/c).  Knowing the charge of the 

incident particle and its velocity, one can use this criterion to choose the appropriate 

stopper power formula.  In the case of fission fragments (high Z nuclides) the classical 

result should be used. Also, it should be noted that a quantum mechanical theory has 

been developed by Bloch that gives the Bohr and Bethe results as appropriate limiting 

cases. 

The Bethe formula,(13.7), is appropriate for heavy charged particles.  For fast 

electrons (relativistic) one should use 

4 2dT 2π nZ e 
⎢
⎡ 
ln⎜
⎛ 

2 

T v m ⎞ 2 ⎤ − 
dx 

= 
v m ⎢ ⎝

⎜ I (1
e 

− β ) 
⎟⎟
⎠
− β ⎥

⎥ 
(13.12)2 2 

e ⎣ ⎦ 

where β = v / c . For further discussions see Evans. 
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The sudden deflection of an electron by the Coulomb field of the nuclei can cause 

the electron to radiate, producing a continuous spectrum of x-rays called bremsstrahlung. 

The fraction of electron energy converted into bremsstrahlung increases with increasing 

electron energy and is largest for media of high atomic number.  (This process is 

important in the production of x-rays in conventional x-ray tubes.) 

According to the classical theory of electrodynamics [J. D. Jackson, Classical 

Electrodynamics (Wiley, New York, 1962), p. 509], the acceleration produced by a 

nucleus of charge Ze on an incident particle of charge ze and mass M is proportional to 

Zze2/M. The intensity of radiation emitted is proportional to (ze x acceleration)2 ~ 

(Zz2e3/M)2 .  Notice the (Z/M)2 dependence; this shows that bremsstrahlung is more 

important in a high-Z medium and is more important for electrons and positrons than for 

protons and α -particles. Another way to understand the (Z/M)2 dependence is to recall 

the derivation of stopping power in Lec13 where the momentum change due to a collision 

between the incident particle and a target nucleus is (2ze2/vb) x Z.  The factor Z 

represents the Coulomb field of the nucleus (in Lec13 this was unity since we had an 

atomic electron as the target).  The recoil velocity of the target nucleus is therefore 

proportional to Z/M, and the recoil energy, which is the intensity of the radiation emitted, 

is therefore proportional to (Z/M)2. 

In an individual deflection by a nucleus, the electron can radiate any amount of 

energy up to its kinetic energy T. The specgtrum of bremsstrahlung wavelength for a 

thick target is of the form sketched below, with λ = T hc . This converts to a/min 

frequency spectrum which is a constant up the maximum frequency of ν = T / h . Themax 
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shape of the spectrum is independent of Z, and the intensity varies with electron energy 

like 1/T. 

In the quantum mechanical theory of bremsstrahlung a plane wave representing 

the electron enters the nuclear field and is scattered.  There is a small but finite chance 

that a photon will be emitted in the process.  The theory is intimately related to the theory 

of pair production where an electron-positron pair is produced by a photon in the field of 

a nucleus. Because a radiative process involves the coupling of the electron with the 

electromagnetic field of the emitted photon, the cross sections for radiation are of the 

order of the fine-structure constant [Dicke and Wittke, p. 11], e 2 / hc ( = 1/137), times the 

cross section for elastic scattering.  This means that most of the deflections of electrons 

by atomic nuclei result in elastic scattering, only in a small number of instances is a 

photon emitted.  Since the classical theory of bremsstrahlung predicts the emission of 

radiation in every collision in which the electron is deflected, it is incorrect.  However, 

when averaged over all collisions the classical and quantum mechanical cross sections are 

of the same order of magnitude, 

2
Z 2 ⎛

σ rad ~ ⎜⎜ 
e 2

2 ⎟⎟
⎞ 

cm2/nucleus (14.1)
137 ⎝ c m e ⎠ 

2where e 2 / c m = re = 2.818 x 10-13 cm is the classical radius of electron.  In the fewe

collisions where photons are emitted a relatively large amount of energy is radiated.  In 

this way the quantum theory replaces the multitude of small-energy losses predicted by 

the classical theory by a much smaller number of larger-energy losses.  The spectral 
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distributions are therefore different in the two theories, with the quantum description 

being in better agreement with experiments. 

Given a nucleus of charge Ze and an incident electron of kinetic energy T, the 

quantum mechanical differential cross section for the emission of a photon with energy in 

(h d ν ) about hν  is 

T + c m 2 1⎡ dσ ⎤ 2 e
⎢ ( 

(14.2)o
⎣ h d ν ) ⎥⎦ rad 

= σ BZ 
T hν 

2 2where σ = ( e / c m 2 ) /137 = 0.580 x 10-3 barns and B ~ 10 is a very slowly varyingo e 

dimensionless function of Z and T.  A general relation between the energy differential 

cross section, such as (14.2), and the energy loss per unit path length is 

dT T dσ
− = n∫ E dE (14.3)

dx 0 dE 

where dσ / dE  is the differential cross section for energy loss E.  Applying this to (14.2) 

we have 

dT ⎞ ⎡ dσ ⎤
− ⎜
⎛ 

⎟ = n
T 

∫ h d ν )hν
⎣ h d ν ) ⎥⎦ rad 

(
⎝ dx ⎠ rad 0 

⎢ ( 

= T n + c m )σ  ergs/cm (14.4)( 2 
e rad 

1 
2 2where σ rad = σ Z ∫ 

0 

d 
⎝
⎛
⎜ 

h
T 
ν
⎠
⎞
⎟ B ≡ σ B Z (14/5)o o 
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is the total bremsstrahlung cross section.  The variation of B , the bremmstrahlung cross 

section in units of Z 2 , with the kinetic energy of an incident electron is shown in the 

sketch for media of various Z [Evans, p. 605]. 

σ o

Comparison of Various Cross Sections 

It is instructive to compare the cross sections describing the interactions that we 

have considered between an incident electron and the atoms in the medium.  For 

nonrelativistic electrons, T ≤  0.1 Mev andβ
=
v /
c ≤
 5.0 , we have the following cross 

sections (all in barns/atom) [Evans, p. 607], 

⎛
⎜⎜

α
β

σ 2 Z 
ion 4 

T2 ⎞
⎟⎟
 ionization (14.6)ln=


I
⎝
 ⎠


α
β 

=σ Z 2 

nuc 4 4  backscattering by nuclei (14.7) 

elastic scattering by atomic electrons (14.8) 

 bremsstrahlung (14.9) 

α2 
β 

=σ Z 
el 4 

β 
α
π 

Z 28 
23 137 

1

=σ ' 

rad 
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2 2where α = 4π (e / c m 2 ) = 1.00 barn. The values of these cross sections in the case of e 

0.1 Mev electrons in air (Z = 7.22, I  ~ 100 ev) and in Pb (Z = 82, I  ~ 800 ev) are given 
'in the following table [from Evans, p.608].  The difference between σ rad and σ rad  is that 

the former corresponds to fractional of total energy, dT /(T + c m 2 ) , while the lattere 

corresponds to fractional loss of kinetic energy, dT/T. 

Mass Absorption

 Ionization losses per unit distance are proportional to nZ, the number of atomic 

electrons per cm3 in the absorber (medium). We can express nZ as 

)nZ = (ρN / Z A = ρN (Z / A) (14.10)o o 

where ρ  is the mass density, g/cm3, and No the Avogadro’s number. Since the ratio 

(Z/A) is nearly a constant for all elements, it means that nZ / ρ  is also approximately 

constant (except for hydrogen). Therefore, if the distance along the path of the charged 

particle is measured in units of ρdx ≡ dw (in g/cm2), then the ionization losses, -dT/dw 

(in ergs cm2/g) become more or less independent of the material.  We see in Fig. 14.1, the 

expected behavior of energy loss being material independent holds only approximately, 
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as -dT/dw actually decreases as Z increases. This is due to two reasons, Z/A descresing 

slightly as Z increases and I  increasingly linearly with Z. 

Fig. 14.1.  Mass absorption energy losses, -dT/dw, for electrons in air, Al, and Pb, 

ionization losses (upper curves) versus bremsstrahlung (lower curves).  All curves refer 

to energy losses along the actual path of the electron.  [Evans, p.609] 

We have seen that ionization losses per path length vary mainly as 1/v2 while 

radiative losses increase with increasing energy.  The two become roughly comparable 

when T >> Mc2, or T >> mec2 in the case of electrons.  The ratio can be approximately 

expressed as 

(dT / dx)
 ⎞
⎟
⎠


2 ⎛
⎜ 
⎝
⎜

T


1400 c m e 
2 

⎞
⎟ 
⎠
⎟  (14.11)
Z


⎛
⎜
⎝


mrad ≈)ion 

e 

(dT / dx M 

where for electrons, M →  me. The two losses are therefore equal in the case of electrons 

for T = 18 mec2 = 9 Mev in Pb and T ~ 100 Mev in water or air. 

Range, Range-Energy Relations, and Track Patterns 

When a charged particle enters an absorbing medium it immediately interacts 

with the many electrons in the medium.  For a heavy charged particle the deflection from 
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any individual encounter is small, so the track of the heavy charged particle tends to be 

quite straight except at the very end of its travel when it has lost practically all its kinetic 

energy. In this case we can estimate the range of the particle, the distance beyond which 

cannot penetrate, by integrating the stopping power, 

R 0 dT ⎞R = ∫ dx = ∫
⎛
⎜ 

dx ⎞
⎟ dT = 

T 

∫
⎛
⎜− 

dx ⎠
⎟
− 1 

dT (14.12) 
0 To

⎝ dT ⎠ 0 ⎝ 

where To is the initial kinetic energy of the particle.  An estimate of R is given by taking 

the Bethe formula, (13.7), for the stopping power and ignoring the v-dependence in the 

logarithm.  Then one finds 

To
2R ∝ ∫ TdT = T  (14.13)o

0

This is an example of range-energy relation.  Given what we have said about the range of 

applicability of (13.7) one might expect this behavior to hold at low energies.  At high 

energies it is more reasonable to take the stopping power to be a constant, in which case 

To

R ∝ ∫ dT = T  (14.14)o
0

We will return to see whether such behavior are seen in experiments.. 

Experimentally one can determine the energy loss by the number of ion pairs, 

positive and negative constituents which result from an ionization event, produced.  The 

amount of energy W required for a particle of certain energy to produce an ion pair is 

known. The number of ion pairs, i, produced per unit path length (specific ionization) of 

the charged particle is then 

1 dT ⎞i = ⎜
⎛− ⎟ (14.15)

W ⎝ dx ⎠ 
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The quantity W depends on complicated processes such as atomic excitation and 

secondary ionization in addition to primary ionization.  On the other hand, for a given 

material it is approximately independent of the nature of the particle or its kinetic energy.  

For example, in air the values of W are 35.0, 35.2, and 33.3 ev for 5 kev electrons, 5.3 

Mev alphas, and 340 Mev protons respectively. 

The specific ionization is an appropriate measure of the ionization processes 

taking place along the path (track length) of the charged particle.  It is useful to regard 

(14.15) as a function of the distance traveled by the particle.  Such results can be seen in 

Fig. 14.2, where one sees  a characteristic shape of the ionization curve for a heavy 

charged particle. Ionization is constant or increasing slowly during the early to mid 

stages of the total travel, then it rises more quickly and reaches a peak value at the end of 

the range before dropping sharply to zero. 

Fig. 14.2.  Specific ionization of heavy particles in air.  Residual range refers to the 

distance still to travel before coming to rest.  Proton range is 0.2 cm shorter than that of 

the α -particle [Meyerhof, p.80]. 

We have already mentioned that as the charged particle loses energy and slows 

down, the probability of capturing electron increases.  So the mean charge of a beam of 

particles will decrease with the decrease in their speed (cf. Fig. 13.3).  This is the reason 

why the specific ionization shows a sharp drop.  The value of –dT/dx along a particle 

track is also called specific energy loss.  A plot of –dT/dx along the track of a charged 

particle is known as a Bragg curve.  It should be emphasized that a Bragg curve differs 
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from a plot of –dT/dx for an individual particle in that the former is an average over a 

large number of particles.  Hence the Bragg curve includes the effects of straggling 

(statistical distribution of range values for particles having the same initial velocity) and 

has a pronounced tail beyond the extrapolated range as can be seen in Fig. 14.3.   

Fig. 14.3. Specific ionization for an individual particle versus Bragg curve [Evans, p. 

666]. 

A typical experimental arrangement for determining the range of charged particles 

is shown in Fig. 14.4. The mean range R is defined as the absorber thickness at which 

the intensity is reduced to one-half of the initial value.  The extrapolated range Ro is 

obtained by linear extrapolation at the inflection point of the transmission curve.  This is 

an example that I/Io is not always an exponential.  In charged particle interactions it is 

not sufficient to think of I / I = e−µ x , one should be thinking about the range R.o 

Fig. 14.4. Determination of range by transmission experiment [from Knoll]. 
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In practice one uses range-energy relations that are mostly empirically 

determined.  For a rough estimate of the range one can use the Bragg-Kleeman rule, 

R 
=
ρ1 A 

(14.16)
R1 ρ A1 

where the subscript 1 denotes the reference medium which is conventionally taken to be 

air at 15oC, 760 mm Hg ( A = 3.81, ρ  = 1.226 x 10-3 g/cm3). Then1 1

xR = 10 2.3 −4 A x Rair  (14.17)
ρ 

with ρ  in g/cm3. In general such an estimate is good to within about ±  15 percent. 

Figs. 14.5 and 14.6 show the range-energy relations for protons and α -particles in air 

respectively.  Notice that at low energy the variation is quadratic, as predicted by (14.13), 

and at high energy the relation is more or less linear, as given by (14.14).  The same trend 

is also seen in the results for electrons, as shown in Fig. 14.7.  

Fig. 14.5. Range-energy relations of α -particles in air [Evans, p. 650]. 
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Fig. 14.6. Range-energy relation for protons in air [Evans, p. 651]. 

Fig. 14.7.  Range-energy relation for electrons in aluminum [Evans, p. 624]. 

We have mentioned that heavy charged particles traverse essentially in a straight 

line until reaching the end of its range where straggling effects manifest.  In the case of 
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electrons large deflections are quite likely during its traversal, so the trajectory of electron 

in a thick absorber is a series of zigzag paths.  While one can still speak of the range R, 

the concept of path length is now of little value.  This is illustrated in Figs. 14.8 and 14.9.  

The total path length S is appreciably greater than the range R   

Fig. 14.8.  Distinction between total path length S and range R [Evans, p. 612] 
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Fig. 14.9. Comparing distributions of total path length and range for electrons in oxygen 

[Evans, p. 612]. 

The transmission curve I/Io for a heavy charged particle was shown in Fig. 14.4. 

The curve has a different characteristic shape for monoenergetic electrons, as indicated in 

Fig. 14.10, and a still different shape for β -rays (electrons with a distribution of 

energies), seen in Fig. 14.11. Although the curve for monoenergetic electrons depends to 

some extent on experimental arrangement, one may regard it as roughly a linear variation 

which is characteristic of single interaction event in removing the electron.  That is, the 

fraction of electrons getting through is proportional to 1 – P, where P is the interaction 

probability which is in turn proportional to the thickness.  For the β -ray transmission 

curve which essentially has the form of an exponential, the shape is an accidental 

consequence of the β -ray spectrum and of the differences between the scattering and 

absorption of electrons which have various initial energies [cf. Evans, p. 625].  It is found 

empirically that Rm is the same as Ro if the monoenergetic electrons are given the energy 

E = Emax, the maximum energy of the β -ray spectrum (the end-point energy).    

Fig. 14. 10. Transmission curve of monoenergetic electrons (sensitive to experimental 

arrangement) [Evans, p. 623]. 
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Fig. 14.11.  Transmission curve for β -rays [Evans, p.625]. 

Cerenkov Radiation 

Electromagnetic radiation is emitted when a charged particle passes through a 

medium under the condition 

v ≡ βc > v phase ≡ c / n (14.15)group 

where n is the index of refraction of the medium.  When βn  >1, there is an angle (a 

direction) where constructive interference occurs.  This radiation is a particular form of 

energy loss, due to soft collisions, and is not an additional amount of energy loss.  Soft 

collisions involve small energy transfers from charged particles to distant atoms which 

become excited and subsequently emit coherent radiation (see Evans, p. 589). 
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Since a neutron has no charge it can easily enter into a nucleus and cause reaction.  

Neutrons interact primarily with the nucleus of an atom, except in the special case of 

magnetic scattering where the interaction involves the neutron spin and the magnetic 

moment of the atomic.  Since we will not consider magnetic scattering in this class we 

can neglect the interaction between neutrons and electrons and think of atoms and nuclei 

interchangeably. Neutron reactions can take place at any energy, so one has to pay 

particular attention to the energy dependence of the interaction cross section.  In a nuclear 

reactor neutrons with energies from 10-3 ev (1 mev) to 107 ev (10 Mev) are of interest, 

this means we will be covering an energy of 1010. 

For a given energy region – thermal, epithermal, resonance, fast – not all the 

possible reactions are equally important.  What reaction is important depends on the 

target nucleus and the neutron energy. Generally speaking the important types of 

interactions, in the order of increasing complexity from the standpoint of theoretical 

understanding, are: 

(n,n) – elastic scattering. There are two processes, potential scattering which is 


neutron interaction at the surface of the nucleus (no penetration) as in billiard 


ball-like collision, and resonance scattering which involves the format and decay 


of a compound nucleus. 


(n,γ ) -- radiative capture.


(n,n’) -- inelastic scattering. This reaction involves the excitation of nuclear 


levels. 


 (n,p), (n, α ), … -- charged particle emission. 


1 



(n,f) -- fission. 

If we were interested in fission reactors, the reactions in the order of importance 

would be fission, capture (in fuel and other reactor materials), scattering (elastic and 

inelastic), fission product decay by β -emission as in decay neutrons and heat production. 

In this chapter we will mostly study elastic (or potential) scattering.  The other reactions 

all involve compound nucleus formation, a process we will discuss briefly around the end 

of the semester. 

The Q-Equation 

Consider the reaction, sketched in Fig. 15.1, where an incoming particle (labeled 

1) collides with a target nucleus (2), resulting in the emission of an outgoing particle (3), 

with the residual nucleus (4) recoiling.  For simplicity we assume the target nucleus to be  

Fig. 15.1.  A two-body collision between incident particle 1 and target particle 2, which 

is at rest, leading to the emission of particle 3 at an angle θ  and a recoiling residual 

particle 4. 

at rest, E2 = 0. This is often a good approximation because the target is at room 

temperature, which means E2 is 0.025 ev, and unless the incoming neutron is in the 

thermal energy region, E1 typically will be much greater than E2. We will derive an 

equation relating the outgoing energy E3 to the outgoing angle θ  using the conservation 

of total energy and linear momentum, and non-relativistic kinematics, 

2(E + c M 2 ) + c M = (E + c M 2 ) + (E + c M 2 ) (15.1)1 1 2 3 3 4 4 
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p = p + p (15.2)
1 3 4 

Rewriting the momentum equation as 

2p 4 = ( p 
1 
− p 

3
)2 

2= p + p 2 − 2 p p cosθ = 2 E M 4 (15.3)1 3 1 3 4 

and recalling 

) 2Q = (M + M 2 − M − c M 1 3 4 

= E 3 + E 4 − E 1 (15.4) 

we obtain 

⎛ M 3 ⎞ ⎛ ⎞ 2Q = E 3 ⎜⎜ 1 + ⎟⎟ − E 1 ⎜⎜ 1 − 
M 1 

⎟⎟ − E E M M 3 cosθ (15.5)
⎝ M 4 ⎠ ⎝ M 4 ⎠ M 4 

1 3 1 

which is known as the Q-equation.  Notice that the energies Ei and angle θ  are in the 

laboratory coordinate system (LCS), while Q is independent of coordinate system (since 

Q can be expressed in terms of masses which of course do not depend on coordinate 

system).  A typical situation is when the incident energy E1, the masses (and therefore Q-

value) are all known, and one is interested in solving (15.5) for E3 in terms of cosθ , or 

vice versa. 

Eq. (15.5) is actually not an equation for determining the Q-value, since this is 

already known in the sense that all four particles in the reaction and their rest masses are 

prescribed beforehand.  This being the case, what then is the quantity that one would 

solve (15.5) to obtain?  We can think of the Q-equation as a relation connecting the 12 

degrees of freedom in any two-body collision problem, where two particles collide (as 
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reactants) to give rise to two other particles (as products).  The problem is said to be 

completely specified when the velocities of the fours particles, or 12 degrees of freedom 

(each velocity has 3 degrees of freedom), are determined.  Clearly not every single degree 

of freedom is a variable in the situations of interest to us.  First of all the direction of 

travel and energy of the incoming particle are always given, thus eliminating 3 degrees of 

freedom.  Secondly it is customary to take the target nucleus to be stationary, so another 3 

degrees of freedom are removed.  Since conservation of energy and momentum must 

hold in any collision (three conditions since momentum and energy are related), this 

leaves three degrees of freedom in the problem.  If we further assume the emission of the 

outgoing particle (particle 3) is azimuthally symmetric (that is, emission is equally 

probably into a cone subtended by the angle θ ), only two degree of freedom are left. 

What this means is that the outcome of the collision is completely determined if we just 

specify another degree of freedom.  What variable should we take?  Because we are 

often interested in knowing the energy or direction of travel of the outgoing particle, we 

can choose this last variable to be either E3 or the scattering angle θ . In other words, if 

we know either E3 or θ , then everything else (energy and direction) about the collision is 

determined.  Keeping this in mind, it should come as no surprise that what we will do 

with (15.5) is to turn it into a relation between E3 andθ . 

Thus far we have used non-relativistic expressions for the kinematics.  To turn 

(15.5) into the relativistic Q-equation we can simply replace the rest mass Mi by an 
eff 2 2effective mass, M i = M i + Ti / 2c , and use the expression p 2 = 2MT + T / c 2  instead 

2of p 2 = 2ME . For photons, we take M eff = hν / 2c . 

Inspection of (15.5) shows that it is a quadratic equation in the variable x = E3 . 

An equation of the form ax 2 + bx + c = 0 has two roots, 

x± = [− b ± b2 4ac ]/ 2a (15.6) 

which means there are in general two possible solutions to the Q-equation, ± E3 . For a 

solution to be physically acceptable, it must be real and positive.  Thus there are 

4 



situations where the Q-equation gives one, two, or no physical solutions [cf. Evans, pp. 

413-415, Meyerhof, p. 178].  For our purposes we will focus on neutron collisions, in 

particular the case of elastic (Q = 0) and inelastic (Q < 0) neutron scattering.  We will 

examine these two processes briefly and then return to a more detailed discussion of 

elastic scattering in the laboratory and center-of-mass coordinate systems. 

Elastic vs. Inelastic Scattering 

Elastic scattering is the simplest process in neutron interactions; it can be 

analyzed in complete detail.  This is an important process because it is the primary 

mechanism by which neutrons lose energy in a reactor, from the instant they are emitted 

as fast neutrons as a result of a fission event to when they appear as thermal neutrons.  In 

this case, there is no excitation of the nucleus, Q = 0, whatever energy is lost by the 

neutron is gained by the recoiling target nucleus.  Let M1 = M3 = m (Mn), and M2 = M4 = 

M = Am.  Then (15.5) becomes 

⎛ 1 ⎞ ⎛ 1 ⎞ 2E3 ⎜ 1 + ⎟ − E1 ⎜ 1 − ⎟ − E E 3 cosθ = 0 (15.7)
⎝ A ⎠ ⎝ A ⎠ A 1 

Suppose we ask under what condition is E3 = E1? We see that this can occur only when 

θ  = 0, which corresponds to forward scattering (no interaction).  For all finite θ , E3 has 

to be less than E1. One can show that maximum energy loss by the neutron occurs at 

θ = π , which corresponds to backward scattering, 

⎛ A − 1⎞ 
2 

E3 = α E1 , α = ⎜ ⎟ (15.8)
⎝ A + 1⎠ 

Eq.(15.7) is the starting point for the analysis of neutron slowing down in a moderator 

medium.  We will return to it later in this chapter. 

Inelastic scattering is the process by which the incoming neutron excites the 

target nucleus so it leaves the ground state and goes to an excited state at an energy E* 

above the ground state. Thus Q = -E* (E* > 0).  We again let the neutron mass be m and 
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the target nucleus mass be M (ground state) or M* (excited state), with M* = M + E*/c2. 

Since this is a reaction with negative Q, it is an endothermic process requiring energy to 

be supplied before the reaction can take place.  In the case of scattering the only way 

energy can be supplied is through the kinetic energy of the incoming particle (neutron).  

Suppose we ask what is minimum energy required for the reaction, the threshold energy? 

To find this, we look at the situation where no energy is given to the outgoing particle, E3 

~0 and θ  ~ 0. Then (15.5) gives 

− E* − = Eth 
⎛
⎜⎜ 

M 4 − M1 ⎞
⎟⎟ , or Eth ~ E * (1+1/ A) (15.9)

⎝ M 4 ⎠ 

where we have denoted the minimum value of E1 as Eth. Thus we see the minimum 

kinetic energy required for reaction is always greater than the excitation energy of the 

nucleus. Where does the difference between Eth and E* go? The answer is that it goes 

into the center-of-mass energy, the fraction of the kinetic energy of the incoming neutron 

(in the laboratory coordinate) that is not available for reaction. 

Relations between Outgoing Energy and Scattering Angle 

We return to the Q-equation for elastic scattering to obtain a relation between the 

energy of the outgoing neutron, E3, and the angle of scattering, θ . Again regarding 

(15.5) as a quadratic equation for the variable E3 , we have 

2 A − 1E3 − E E 3 cosθ − E1 = 0 (15.10)
A + 1 1 A + 1 

with solution in the form, 

1/ 2 )E3 = 
1 E1 (cosθ + [A2 − sin 2 θ ] (15.11)

A + 1 

This is a perfectly good relation between E3 and θ  (with E1 fixed), although it is not a 

simple one.  Nonetheless, it shows a one-to-one correspondence between these two 
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variables.  This is what we meant when we said that the problem is reduced to only 

degree of freedom.  Whenever we are given either E3 or θ  we can immediately determine 

the other variable. The reason we said that (15.11) is not a simple relation is that we can 

obtain another relation between energy and scattering angle, except in this case the 

scattering angle is the angle in the center-of-mass coordinate system (CMCS), whereas θ 

is the scattering angle in the laboratory coordinate system (LCS).  To find this simpler 

relation we first review the connection the two coordinate systems. 

Relation between LCS and CMCS 

Suppose we start with the velocities of the incoming neutron and target nucleus, 

and those of the outgoing neutron and recoiling nucleus as shown in the Fig. 15.2.  

Fig. 15.2.  Elastic scattering in LCS (a) and CMCS (b), and the geometric relation 

between LCS and CMCS post-collision velocity vectors (c). 
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In this diagram we denote the LCS and CMCS velocities by lower and upper cases 

respectively, so Vi = vi – vo, where vo = [1/(A+1)]v1 is the velocity of the center-of-mass.  

Notice that the scattering angle in CMCS is labeled as θ . We see that in LCS the center-c

of-mass moves in the direction of the incoming neutron (with target nucleus at rest), 

whereas in CMCS the target nucleus moves toward the center-of-mass which is stationary 

by definition.  One can show (in a problem set) that in CMCS the post-collision velocities 

have the same magnitude as the pre-collision velocities, the only effect of the collision 

being a rotation, from V1 to V3, and V2 to V4. 

Part (c) of Fig. 15.1 is particularly useful for deriving relations between LCS and 

CMCS velocities and angles.  Perhaps the most important relation is that between the 

outgoing speed v3 and the scattering angle in CMCS , θ . We can write c

( 21 mv 3
2 = 

1 Vm 3 + v )o2 2 

2= V m 3 + v 2 + 2 v V cosθ ) (15.12)1
2 

( o 3 o c 

or 

E 3 =
1 E 1 [(1 +α )+ (1 −α )cosθ ] (15.13)c2 

2where α = [( A − 1) /( A + 1)] . Compared to (15.11), (15.13) is clearly simpler to 

manipulate.  The two relations must be equivalent since no approximations have been 

made in either derivation.  Taking the square of (15.11) gives 

E 3 = 
( A + 

1
1)2 E 1 (cos2 θ + A 2 − sin 2 θ + cos 2 θ[A 2 − sin 2 θ ]1/ 2 ) (15.14) 
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To demonstrate the equivalence of (15.13) and (15.14) one needs a relation between the 

two scattering angles, θ  and θ . This can be obtained from Fig. 15.1(c) by writing c

cosθ = (v + V3 cosθ )/ vo c 3 

1 + A cosθ c= (15.15)
A2 + 1 + 2A cosθ c 

The relations (15.13), (15.14), and (15.15) all demonstrate a one-to-one correspondence 

between energy and angle or angle and angle. They can be used to transform 

distributions from one variable to another, as we will demonstrate in the discussion of 

energy and angular distribution of elastically scattered neutrons in the following chapter. 
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We will use the expressions relating energy and scattering angles derived in the 

previous chapter to determine the energy and angular distributions of an elastically 

scattered neutron. The energy distribution, in particular, is widely used in the analysis of 

neutron energy moderation in systems where neutrons are produced at high energies 

(Mev) by nuclear reactions and slow down to thermal energies.  This is the problem of 

neutron slowing down, where the assumption of the target nucleus being initially at rest is 

justified. When the neutron energy approaches the thermal region (~ 0.025 ev), the 

stationary target assumption is no longer valid.  One can relax this assumption and 

derive a more general distribution which holds for neutron elastic scattering at any 

energy. This then is the result that should be used for the analysis of the spectrum 

(energy distribution) of thermal neutrons, a problem known as neutron thermalization.  

As part of this discussion we will have an opportunity to study the energy dependence of 

the elastic scattering cross section. 

We have seen from our study of cross section calculation using the method of 

phase shift that for low-energy scattering (kro << 1, which is equivalent to neutron 

energies below about 10-100 kev) only s-wave contribution to the cross section is 

important, and moreover, the angular distribution of the scattered neutron is spherically 

symmetric in CMCS. This is the result that we will make use of in deriving the energy 

distribution of the elastically scattered neutron. 
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Energy Distribution of Elastically Scattered Neutrons 

 We define P (Ω )  as the probability that the scattered neutron will be going in the c 

direction of the unit vector Ωc  (recall this is a unit vector in angular space).  We should 

also understand that a more physical way of defining P is to say that 

P (Ω )d Ω = the probability that the neutron will be scattered into an element ofc c 

solid angle d Ω  about Ωc c 

For s-wave scattering one has therefore 

d ΩcP (Ω )d Ω = (16.1)c c 4π

Notice that P (Ω )  is a probability distribution in the two angular variables, ϕ  and θ ,c c c 

and is properly normalized, 

2π π 

ddϕ cos θ θ P (Ω ) = 1 (16.2)∫ ∫  c c cc 
0 0 

Since there is a one-to-one relation between θ  and E3 (cf. (15.13)), we can transformc 

(16.1) to obtain a probability distribution in the outgoing energy, E3. To do this we first 

need to reduce (16.1) from a distribution in two variables to a distribution in the variable 

θ . Let us define G (θ ) as the probability of the scattering angle being θ . This quantity c c c 

can be obtained from (16.1) by simply integrating (16.1) over all values of the azimuthal 

angle ϕ ,c

2π 

G (θ )d θ = P d (Ω )sin θ θ (16.3)c c ∫ ϕ c cd c 
0 

1= sin θ θ d (16.4)c c2 

2 



Now we can write down the transformation from G( θ ) to the energy distribution in the c 

outgoing energy. For the purpose of general discussion our notation system of labeling 

particles as 1 through 4 is not a good choice.  It is more conventional to label the energy 

of the neutron before and after the collision as either E and E’, or vice versa.  We will 

therefore switch notation at this point and let E1 = E and E3 = E’, and denote the 

(probability distribution for E’ as E F → E ' ) . The transformation between G( θ ) andc 

(E F → E ' ) is the same as that for any distribution function, 

E F → E ' )dE ' = G (θ )d θ (16.5)( c c 

With G( θ ) given by (16.4) we obtainc 

d θ c (16.6)E F → E ' ) = G (θ )( c dE ' 

The Jacobian of transformation can be readily evaluated from (15.13) after relabeling E1 
and E3 as E and E’. Thus, 

(E F → E ' ) = 
1 αE ≤ E ' ≤ E 

E (1−α ) 

(16.7)

 = 0 otherwise 

The distribution, which is sketched in Fig. 16.1, is so simple that one can understand 

completely all its features.  The distribution is uniform in the interval (α E, E) because 

the scattering is spherically symmetric (independence of scattering angle translates into 

independence of outgoing energy because of the one-to-one correspondence).  The fact 

that the outgoing energy can only lie in a particular interval follows from the range of 

scattering angle (0, π ). Since α  depends on the mass of the target, being zero for 

hydrogen and approaching unity as M >> m, the interval can vary from (0, E) for 

hydrogen to a vanishing value as A >> 1. In other words, the neutron can lose all its 

energy in one collision with hydrogen, and loses practically no energy if it collides with a  
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Fig. 16.1.  Scattering frequency giving the probability that a neutron elastic scattered at 

energy E will have an energy in dE’ about E’. 

very heavy target nucleus.  Although simple, the distribution is quite useful for the 

analysis of neutron energy moderation in the slowing down regime.  It also represents a 

reference behavior for discussing conditions when it is no longer valid to assume the 

scattering is spherically symmetric in CMCS, or to assume the target nucleus is at rest.  

We will come back to these two situations later.  

Notice that F is a distribution, so its dimension is the reciprocal of its argument, 

an energy. F is also properly normalized, its integral over the range of the outgoing 

energy is necessarily unity as required by particle conservation.  Knowing the probability 

distribution F one can construct the energy differential cross section 

dσ s ) (=σ ( E F E → E ' ) (16.7)sdE ' 

such that 

dσ sdE ' =σ (E) (16.8)s∫ dE ' 

which is the ‘total’ (in the sense that it is the integral of a differential) scattering cross 

section. It is important to keep in mind that σ (E)  is a function of the initial (incoming) s 
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neutron energy, whereas the integration in (16.8) is over the final (outgoing) neutron 

energy. The quantity E F → E ' )  is a distribution in the variable E’ and also a function ( 

of E.  We can multiply (16.7) by the number density of the target nuclei N to obtain 

) (N σ ( E F E → E ' ) ≡ Σ (E → E ' ) (16.9)s s 

which is sometimes known as the scattering kernel.  As its name suggests, this is the 

quantity that appears in the neutron balance equation for neutron slowing down in an 

absorbing medium, 

E /α 

[Σ (E) Σ + (E )]φ(E ) = dE ' Σ (E ' → E )φ(E ' ) (16.10)s a ∫ s 
E 

where φ(E ) = vn (E )  is the neutron flux and n(E) is the neutron number density.  

Eq.(16.10) is an example of the usefulness of the energy differential scattering cross 

section (16.7). 

The scattering distribution E F → E ' )  can be used to calculate various energy­( 

averaged quantities pertaining to elastic scattering.  For example, the average loss for a 

collision at energy E is 

E EdE ' (E − E F E → E ' ) = (1−α ) (16.11)' ) (∫ 2αE 

For hydrogen the energy loss in a collision is one-half its energy before the collision, 

whereas for a heavy nucleus it is ~ 2E/A. 

Angular Distribution of Elastically Scattered Neutrons 

We have already made use of the fact that for s-wave scattering the angular 

distribution is spherically symmetric in CMCS.  This means that the angular differential 

scattering cross section in CMCS if of the form 
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c 

dσ 1 
= θ σ ) ≡σ (E) (16.12)s (s c sdΩ 4πc 

One can ask what is the angular differential scattering cross section in LCS?  The answer 

can be obtained by transforming the results (16.12) from a distribution in the unit vector 

Ω to a distribution in Ω . As before (cf. (16.5)) we write 

σ (θ )dΩ =σ (θ )dΩ (16.13)s s c c 

sin θ dθc cor θ σ ) = θ σ ) (16.14)( (s s c sin θ dθ 

From the relation between cosθ and cosθ , (15.15), we can calculate c

d (cosθ ) sin θ dθc c= 
d (cosθ ) sin θ θ dc 

Thus 

2 3 / 2
σ (E) (γ + 2γ cosθ + 1) 

(16.15)s cθ σ ) =(s 4π 1 + γ cosθ c 

with γ  = 1/A. Since (16.15) is a function of θ , the factor cosθ on the right hand sidec

should be expressed in terms of cosθ in accordance with (15.15). The angular 

distribution in LCS, as given by (16.15), is somewhat too complicated to sketch simply.  

From the relation between LCS and CMCS indicated in Fig. 15.2, we can expect that if 

the distribution is isotropic in LCS, then the distribution in CMCS should be peaked in 

the forward direction (simply because the scattering angle in LCS is always than the 

angle in CMCS).  One way to demonstrate that this is indeed the case is to calculate the 

average value of µ = cosθ , 
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1 1 

d µµσ (µ ) d µ σ µ µ µ )( ) (∫ ∫ 
= µ 

d 

d 

s 

s 

)( 

)(cos 
= 

Ω 

Ω 

∫ 
∫ 

θ σ 

θθσ 

d s 

s 

)( 
1 
1 

∫ 

− 

µµσ 

1= − 

d csc 

scc 

)( 
1 

∫ µ σ µ 

c 

A 3 
2 

= (16.16) 

1− 1− 

The fact that µ  > 0 means that the angular distribution is peaked in the forward direction.  

This bias becomes less pronounced the heavier the target mass; for A >> 1 the distinction 

between LCS and CMCS vanishes. 

Assumptions in Deriving E F → E ' )( 

In arriving at the scattering distribution (also sometimes called the scattering 

frequency), (16.7), we have made use of three assumptions, namely, 

(i) elastic scattering 

(ii) target nucleus at rest 

(iii) scattering is isotropic in CMCS (s-wave) 

These assumptions imply certain restrictions pertaining to the energy of incoming 

neutron E and the temperature of the scattering medium.  Assumption (i) is valid 

provided the neutron energy is not high enough to excite the nuclear levels of the 

compound nucleus formed by the target nucleus plus the incoming neutron.  On the other 

hand, if the neutron energy is high to excite the first nuclear energy level above the 

ground state, then inelastic scattering becomes energetically possible,  Inelastic 

scattering is a threshold reaction (Q < 0), it can occur in heavy nuclei at E ~ 0.05 – 0.1 

Mev, or in medium nuclei at ~ 0.1 – 0.2 Mev.  Typically the cross section for inelastic 

scattering, σ ( n n ') , is of the order of 1 barn or less.  In comparison elastic scattering, , 

which is always present no matter what other reactions can take place, is of order 5 – 10 

barns except in the case of hydrogen where it is 20 barns as we have previously 

discussed. 

Assumption (ii) is valid when the neutron energy is large compared to the kinetic 

energy of the target nucleus, typically taken to kBT assuming the medium is in 

equilibrium at temperature T.  This would be the case for neutron energies ~ 0.1 ev and 

above. When the incident neutron energy is comparable to the energy of the target 
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nucleus, the assumption of stationary target is clearly invalid.  To take into account the 

thermal motions of the target, one should know what is the state of the target since the 

nuclear (atomic) motions in solids are different from those in liquids, vibrations in the 

former and diffusion in the latter.  If we assume the scattering medium can be treated as 

a gas at temperature T, then the target nucleus moves in a straight line with a speed that is 

given by the Maxwellian distribution. In this case one can derive the scattering 

distribution which is an extension of (16.7) [see, for example, G. I. Bell and S. Glasstone, 

Nuclear Reactor Theory (Van Nostrand reinhold, New York 1970), p. 336].  We do not 

go into the details here except to show the qualitative behavior in Fig. 16.2.  From the 

way the scattering distribution changes with incoming energy E one can get a good 

(intuitive feeling for how the more general E F → E ' )  evolves from a spread-out 

distribution (the curves for E = kBT) to the more restricted form given by (16.7). 

Fig. 16.2.  Energy distribution of elastically scattered neutrons in a gas of nuclei with 

mass A = M/m at temperature T.  (from Bell and Glasstone) 

Notice that for E ~ kBT there can be appreciable upscattering which is not possible when 

assumption (ii) is invoked.  As E becomes larger compared to kBT, upscattering becomes 

less important.  The condition of stationary nucleus also means that E >> kBT. 

When thermal motions have to be taken into account, the scattering cross section 
2σ (E)  is also changed; it is no longer a constant, 4πa , where a  is the scattering length.  s 

This occurs in the energy region of neutron thermalization; it covers the range (0, 0.1 - 
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0.5 ev). We will now discuss the energy dependence of σ (E) . For the case of thes 

scattering medium being a gas of atoms with mass A and at temperature T, it is still 

relatively straightforward to work out the expression forσ (E) . We will give the s 

essential steps to give the student some feeling for the kind of analysis that one can carry 

out even for more complicated situations such as neutron elastically in solids and liquids. 

Energy Dependence of Scattering Cross Section σ (E)s 

When the target nucleus is not at rest, one can write down the expression for the 

elastic scattering cross section measured in the laboratory (we will call it the measured 

cross section), 

3vσ (v) = ∫ v V d −Vσ ( v −V ( ,) TVP ) (16.17)meas theo 

where v  is the neutron speed in LCS, V  is the target nucleus velocity in LCS, σ theo  is the 

scattering cross section we calculate theoretically, such as what we had previously 

studied using the phase-shift method and solving the wave equation for an effective one-

body problem (notice that the result is a function of the relative speed between neutron 

and target nucleus), and P is the thermal distribution of the target nucleus velocity which 

depends on the temperature of the medium.  Eq.(16.17) is a general relation between 

what is calculated theoretically, in solving the effective one-body problem, and what is 

measured in the laboratory where one necessarily has only an average over all possible 

target nucleus velocities.  What we call the scattering cross section σ (E) we means 

σ . It turns out that we can reduce (16.17) further by using for P the Maxwellian meas 

distribution and obtain the result 

σ (v) = σ so ⎡
⎢
⎛
⎜β 2 +

1 ⎞
⎟erf (β ) +

π 

1 βe−β 2 

⎥
⎤ (16.18)s 2β ⎣⎝ 2 ⎠ ⎦ 

where erf (x)  is the error function integral 
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x 

π
erf (x) = 

2 
∫ dte− t 2 

(16.19) 
0 

22 /and β = T k AE , and E = mv / 2 . Given that the error function has the limiting B 

behavior for small and large arguments, 

erf (x) ~ 2 (x − 
x3 

+ ...) x << 1 
π 3 

(16.20)  

⎛ ⎞1 − 
e− x2 

⎜ 1− 
1 

+ ...⎟ x >> 1 
x π ⎝ 2x2 ⎠ 

we obtain 

σ (v) ~ σ / v β << 1 (16.21)s so 

σ (v) ~ σ β >> 1 (16.22)s so 

The physical significance of this calculation is that one sees two limiting behavior for the 

elastic scattering cross section, a 1/v behavior at low energy (or how temperature) and a 

constant behavior at high energy. The expression (16.18) is therefore a useful expression 

giving the energy variation of the scattering cross section over the entire energy range 

from thermal to Mev, so far as elastic scattering is concerned.  On the other hand, this 

result has been obtained by assuming the target nuclei move as in a gas of noninteracting 

atoms.  This assumption is not realistic when the scattering medium is a solid or a liquid.  

For these situations one can also work out the expressions for the cross section, but the 

results are more complicated (and beyond the scope of this course).  We will therefore 

settle for a brief, qualitative look at what new features can be seen in the energy 

dependence of the elastic scattering cross sections of typical solids (crystals) and liquids. 
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Fig. 16.3 shows the total and elastic scattering cross sections of graphite (C12) 

over the entire energy range of interest to this class.  At the very low-energy end we see a 

number of features we have not discussed previously.  These all have to do with the fact 

that the target nucleus (atom) is bound to a crystal lattice and therefore the positions of 

the nuclei are fixed to well-defined lattice sites and their motions are small-amplitude 

vibrations about these sites.  There is a sharp drop of the cross section below an energy 

marked Bragg cutoff.  Cutoff here refers to Bragg reflection which occurs when the 

condition for constructive interference (reflection) is satisfied, a condition that depends 

on the wavelength of the neutron (hence its energy) and the spacing between the lattice 

planes in the crystal.  When the wavelength is too long (energies below the cutoff) for 

Bragg condition to be satisfied, the cross section drops sharply.  What is then left is the 

interaction between the neutron and the vibrational motions of the nuclei, this process 

involves the transfer of energy from the vibrations to the neutron which has much lower 

energy. Since there is more excitation of the vibrational modes at higher temperatures, 

this is reason why the cross section below the Bragg cutoff is very sensitive to 

temperature, increasing with increasing T. 

Above the Bragg cutoff the cross section shows some oscillations.  These 

correspond to the onset of additional reflections by planes which have smaller spacings.  

At energies around kBT the cross section smooths out to a constant and remains constant 

up to ~ 0.3 Mev. This is the region where our previous calculation of cross section would 

apply. Between 0.3 and 1 Mev the scattering cross section decreases gradually, a 

behavior which we can still understand using simple theory (beyond what we had 

discussed). Above 1 Mev one sees scattering resonances, a form which we have not yet 

discussed, and also there is now a difference between total and scattering cross sections 

(which should be attributed to absorption). 
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Fig. 16.3.  Total and elastic scattering cross sections of C12 in the form of graphite.  (from 

Lamarsh). 

Fig. 16.4 shows the measured total cross section of H2O in the form of water.  The 

cross section is therefore the sum of contributions from two hydrogen and an oxygen.  

Compared to Fig. 16.3 the low-energy behavior is quite different.  This is not unexpected 

since a crystal and a liquid are really very different with regard to their atomic structure 

and atomic motions.  In this case the cross section rises from a constant value at energies 

above 1 ev in a manner like the 1/v behavior given by (16.21).  Notice that the constant 

value of about 45 barns is just what we know from the hydrogen cross section σ  of 20so 

barns per hydrogen and a cross section of about 5 barns for oxygen.      
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Fig. 16.4.  Total cross section of water.  (from Lamarsh) 

The importance of hydrogen (water) in neutron scattering has led to another interpretation 

of the rise of the cross section with decreasing neutron energy, one which focuses on the 

effect of chemical binding.  The idea is that at high energies (relative to thermal) the 

neutron does not see the water molecule.  Instead it sees only the individual nuclei as 

targets which are free-standing and essentially at rest.  In this energy range (1 ev and 

above) the interaction is the same as that between a neutron and free protons and oxygen 

nuclei. This is why the cross section is just the sum of the individual contributions.  

When the cross section starts to rise as the energy decreases, this is an indication that the 

chemical binding of the protons and oxygen in a water molecule becomes to have an 

effect, to the extent that when the neutron energy is at kBT the neutron now sees the entire 

water molecule rather than the individual nuclei.  In that case the scattering is effectively 

between a neutron and a water molecule.  What this amounts to is that as the neutron 

energy decreases the target changes from individual nuclei with their individual mass to a 

water molecule with mass 18.  Now one can show that the scattering cross section is 

actually proportional to the square of the reduced mass of the scatterer µ , 

2 2mM A 
+
1


⎞
⎟
⎠ 

⎛ ⎞
 ⎛
⎜
⎝
A


µ∝σ 2 
s (16.23)
=⎟

⎠ 
⎜
⎝ 

= 
M
+
m 
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Thus one can define a free-atom cross section appropriate for the energy range where the 

cross section is a constant, and a bound-atom cross section for the energy range where the 

cross section is rising, with the relation 

2
⎛
⎜
⎝


A


+
1

⎞
⎟
⎠


free bound A
σσ (16.24)
=


For hydrogen these two cross sections would have the values of 20 barns and 80 barns 

respectively. 

We will end this chapter with a brief consideration of assumption (iii) used in 

deriving (16.7). When the neutron energy is in the 10 Kev range and higher, the 

contributions from the higher angular momentum (p-wave and above) scattering may 

become significant.  In that case we know the angular distribution will be more forward 

peaked. This means one should replace (16.1) by a different form of P(Ω ) . Withoutc 

going through any more details, we show in Fig. 16.5 the general behavior that one can 

expect in the scattering distribution F when scattering in CMCS is no longer isotropic.  

Fig. 16.5.  Energy distribution of elastically scattered neutrons by a stationary nucleus.  

(from Lamarsh) 
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We are interested in the interactions of gamma rays, electromagnetic radiations 

produced by nuclear transitions.  These are typically photons with energies in the range 

of ~ 0.1 – 10 Mev. The attenuation of the intensity of a beam of gamma rays in an 

absorber, sketched in Fig. 17.1, follows a true exponential variation with the distance of 

penetration, which is unlike that of charged particles, 

Fig. 17.1. Attenuation of a beam of gamma radiation through an absorber of thickness x. 

x I ) = e I −µx (17.1)( o 

The interaction is expressed through the linear attenuation coefficient µ  which does not 

depend on x but does depend on the energy of the incident gamma.  By attenuation one 

means either scattering or absorption.  Since either process will remove the gamma from 

the beam, the probability of penetrating a distance x is the same as the probability of 

traveling a distance x without any interaction, exp(-µ x). The attenuation coefficient is 
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therefore the probability per unit path of interaction; it is what we would call the 

macroscopic cross section Σ  in the case of neutron interaction. 

There are several different processes of gamma interaction.  Each process can be 

treated as occurring independently of each other; for this reason µ  is the sum of the 

individual contributions. These contributions, of course, are not equally important at any 

given energy. Each process has its own energy variation as well as dependence on the 

atomic number of the absorber .  We will focus our discussions on the three most 

important processes of gamma interaction, Compton scattering, photoelectric effect, and 

pair production. These can be classified by object with which the photon interacts and 

the type of process (absorption or scattering).  As shown in the matrix below, 

photoelectric is the absorption of a photon followed by the ejection of an atomic electron.  

Compton scattering is inelastic (photon loses energy) relativistic scattering by a free 

electron. Implication here is that the photon energy is at least comparable to the rest 

mass energy of the electron.  When the photon energy is much lower than the rest mass 

energy, the scattering by a free electron becomes elastic (no energy loss).  This is the 

low-energy limit of Compton scattering, a process known as Thomson scattering.  When 

the photon energy is greater than twice the rest mass energy of electron, the photon can 

absorbed and an electron-positron pair is emitted.   This process is called pair production.  

Other combinations of interaction and process in the matrix (marked x) could be 

discussed, but they are of no interest to this class.

   Interaction with  \ absorption  elastic scattering inelastic scattering

    atomic electron photoelectric Thomson Compton

 nucleus x x x 

electric field around pair production  x x 
the nucleus 

Given what we have just said, the attenuation coefficient becomes 

µ = µC + µτ + µ (17.1)κ 
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where the subscripts C, τ , and κ  denote Compton scattering, photoelectric effect, and 

pair production respectively. 

Compton Scattering 

The treatment of Compton scattering is similar to our analysis of neutron 

scattering in several ways. This analogy should be noted by the student as the discussion 

unfolds here. The phenomenon is the scattering of a photon with incoming momentum 

hk  by a free, stationary electron, which is treated relativistically.  After scattering at 

angleθ , the photon has momentum hk ' , while the electron moves off at an angle ϕ  with 

momentum p  and kinetic energy T, as shown in Fig. 17.1. 

Fig. 17.1. Schematic of Compton scattering at angle θ  with momentum and energy 

transferred to the free electron. 

To analyze the kinematics we write the momentum and energy conservation equations, 

hk = hk '+ p (17.2) 

hck = hck '+T (17.3) 

where the relativistic energy-momentum relation for the electron is 

2cp = T T = 2 c m ) (17.4)( e 
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with c being the speed of light.  One should also recall the relations, ω = ck and λν = c , 

with ω  and ν  being the circular and linear frequency, respectively ( ω = 2πν ), and λ 

the wavelength of the photon. By algebraic manipulations one can obtain the following 

results. 

λ '−λ = 
c 
− 

c 
= 

h ( 1 − cosθ ) (17.5)
ν ' ν c m e

ω ' 1 
=  (17.6)

ω 1 +α (1− cosθ ) 

α (1− cosθ ) (17.7)T = hω − hω ' = hω 
1 +α (1− cosθ ) 

θcotϕ = (1+α ) tan (17.8)
2 

In (17.5) the factor h/mec = 2.426 x 10-10 cm is called the Compton wavelength.  The gain 

in wavelength after scattering at an agle of θ  is known as the Compton shift.  This shift 

in wavelength is independent of the incoming photon energy, whereas the shift in energy 
2(17.7) is dependent on energy. In (17.6) the parameter α = hω / c m  is a measure of the e 

photon energy in units of the electron rest mass energy (0.511 Mev).  As α → 1, ω ' →ω 

and the process goes from inelastic to elastic.  Low-energy photons are scattered with 

only a moderate energy change, while high-energy photons suffer large energy change.  

For example, at θ = π / 2 , if hω = 10 kev, then hω ' = 9.8 kev (2% change), but if hω = 

10 Mev, then hω ' = 0.49 Mev (20-fold change). 

Eq.(17.7) gives the energy of the recoiling electron which is of interest because it 

is often the quantity that is measured in Compton scattering.  In the limit of energetic 

gammas, α  >> 1, the scattered gamma energy becomes only a function of the scattering 
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angle; it is a minimum for backward scattering ( θ =
π
), 
hω ' = c m e 
2 / 2 , while for 90o 

2scattering hω ' = c m . The maximum energy transfer is given (17.7) with θ = e π
, 


ω
hTmax =
 (17.9)
11 

2α 
+ 

Klein-Nishina Cross Section 

The proper derivation of the angular differential cross section for Compton 

scattering requires a quantum mechanical calculation using the Dirac’s relativistic theory 

of the electron. This was first published in 1928 by Klein and Nishina [for details, see W. 

Heitler].  We will simply quote the formula and discuss some of its implications. The 

cross section is 

22d C 

d 
σ ⎛

⎜
⎝


⎞
⎟
⎠ 

ω
ω 

' ω
ω ⎢⎣ ' 

ω
ω 

' 2⎡
 +
 cos 4 2 Θ

⎤

⎥⎦


(17.10)

r e − + = 

Ω 4 

where Θ  is the angle between the electric vector ε  (polarization) of the incident photon 

and that of the scattered photon, ε ' . 
The diagrams shown in Fig. 17.2 are helpful in 

visualizing the various vectors involved.  Recall that a photon is an electromagnetic wave   

Fig. 17.2. Angular relations among incoming and outgoing wave vectors, k  and k ' , of 

the scattered photon, and the electric vectors, ε  and ε ' , which are transverse to the 

corresponding wave vectors. 
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characterized by a wave vector k  and an electric vector ε  which is perpendicular to k . 

For a given incident photon with (k , ε ) , shown above, we can decompose the scattered 

photon electric vector ε '  into a component ε ' ⊥  perpendicular to the plane containing k 

and ε , and a parallel component ε ' C  which lies in this plane.  For the perpendicular 

component cosΘ⊥  = 0, and for the parallel component we notice that  

cosγ = cos⎜⎛
π 

Θ − C ⎟
⎞ = sin Θ C = sinθ cosϕ (17.11)

⎝ 2 ⎠ 

Therefore, 

2 2 2cos = Θ 1 − sin θ cos ϕ (17.12) 

The decomposition of the scattered photon electric vector means that the angular 

differential cross section can be written as 

d σ C ⎛ d σ C ⎞ ⎛ d σ C ⎞ = ⎜ ⎟ + ⎜ ⎟
d Ω ⎝ d Ω ⎠⊥ ⎝ d Ω ⎠ C 

2re ⎛ω ' ⎞ 
2 
⎡ω ω ' 2=

2 ⎝
⎜ 
ω ⎠
⎟ 
⎣⎢ω ' 

+ 
ω
− sin 2 θ cos2 ϕ⎤⎥ (17.14)

⎦ 

This is because the cross section is proportional to the total scattered intensity which in 
2 2 )2turn is proportional to (ε ' ) . Since ε ' ⊥ and ε ' C are orthogonal, (ε ' ) = ( ε ' )2 + ( ε ' ⊥ C 

and the cross section is the sum of the contributions from each of the components. 
2In the low-energy (non-relativistic) limit, hω << c m , we have ω ' ≈ω , thene 

2 2⎛ d σ C ⎟
⎞ 0 ~ , ⎛

⎜ 
d σ C ⎟

⎞ ~ r ( 1 − sin θ cos ϕ) (17.15)⎜ e 
2 

⎝ d Ω ⎝ d Ω ⎠ C⎠⊥ 
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This means that if the incident radiation is polarized (photons have a specific polarization 

vector), then the scattered radiation is also polarized. But if the incident radiation is 

d 

remember ε  is perpendicular to k ). Since 

σ dΩ  over all the allowed directions of εunplolarized, then we have to average /C 

d 

and ϕ , we can obtain the result for unpolarized radiation by averaging over ϕ . Thus, 

σ depends only on angles θdΩ( /C 

2 

d ⎛
⎜
⎝ 

ϕ 
πd C

d 
σ d C 

d 
σ1
⎛

⎜
⎝


⎞
⎟
⎠
unpol 

⎞
⎟
⎠∫= 

2 0πΩ Ω
 C 

2re 1(
 )
cos2 θ (17.16)+
= 
2 

2 / cm 2 = 2.818 x 10-13 cm, the classical radius of the electron (cf. (14.1)).ewith re ≡
e 

This is a well-known expression for the angular differential cross section for Thomson 

scattering. Integrating this over all solid angles gives 

σd 
d 

π8
3unpol 

⎛
⎜
⎝ 

Ω ⎞
⎟
⎠


2 

Ω 
Cσ = ∫ dC σ≡ o (17.17)re =


which is known as the Thomson cross section. 

Returning to the general result (17.14) we have in the case of unpolarized 

radiation, 

ω
ω 

2 

' 

2σd C 

d 
⎛
⎜
⎝


⎞
⎟
⎠ 

ω
ω 

' ω
ω

+ 
' 
−
sin 2 ⎞

⎟
⎠ 

θ⎛
⎜
⎝ 

re (17.18)=

Ω
 2


We can rewrite this result in terms of α  and cosθ  by using (17.6), 

2 

(

2 

1 [θ 
α 2 

2 ) 1 

2σd C 

d 
⎡
⎢
⎣

⎟⎟
⎠θ

1 
) 

⎤θ 
α 

cos ) 
(1 cos 

⎛
 ⎞
1 (1−)θre 2 (17.19)+
cos += ⎥
⎦θ )⎜⎜

⎝
 ]α (1 cosΩ
 2 1+
 −
 −
(1
+
 +
cos 
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The behavior of d σ C / d Ω is shown in Fig. 17.3. Notice that at any given α  the angular 

distribution is peaked in the forward direction.  As α  increases, the forward peaking 

becomes more pronounced.  The deviation from Thomson scattering is largest at large 

scattering angles; even at hω ~  0.1 Mev the assumption of Thomson scattering is not 

Fig. 17.3. Angular distribution of Compton scattering at various incident energies Er. 

All curves are normalized at 0o. Note the low-energy limit of Thomson scattering.  (from 

Heitler) 

valid. In practice the Klein-Nishina cross section has been found to be in excellent 
2agreement with experiments at least out to hω =10 c m .e 

To find the total cross section per electron for Compton scattering, one can 

integrate (17.19) over solid angles. The analytical result is given in Evans, p. 684.  We 

will note only the two limiting cases, 

26σ C = 1 − 2α + α 2 − ... α << 1 oσ 5 

(17.20)
2 ⎡3 c m 2hω 1 ⎤ e= ⎢ ln 2 + ⎥ α >> 1 

8 hω ⎣ c m 2 ⎦e 
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We see that at high energies ( ≥  1 Mev) the Compton cross section decreases with energy 

like 1/ hω . 

Collision, Scattering and Absorption Cross Sections 

In discussing the Compton effect a distinction should be made between collision 

and scattering. Here collision refers to ordinary scattering in the sense of removal of the 

photon from the beam.  This is what we have been discussing above. Since the electron 

recoils, not all the original energy hω  is scattered, only a fraction ω ' / ω is. Thus one 

can define a scattering cross section, 

scdσ 
=
ω ' dσ C (17.21)

dΩ ω dΩ 

This leads to a slightly different total cross section, 

σ sc 1 ~ − 3α + 4.9 α 2 − ... α << 1 (17.22)oσ 

Notice that in the case of Thomson scattering all the energy is scattered and none are 

absorbed. The difference between σ C  and σ  is called the Compton absorption crosssc 

section. 

Energy Distribution of Compton Electrons and Photons 

We have been discussing the angular distribution of the Compton scattered 

photons in terms of 
dσ C . To transform the angular distribution to an energy distribution 
dΩ

we need first to reduce the angular distribution of two angle variables, θ  and ϕ , to a 

distribution in θ  (in the same way as we had done in Chapter 15).  We therefore define 

dσ C dσ Cdσ C
2π 

dϕ sinθ = 2π sinθ (17.23)
dθ 

= ∫ 
0 dΩ dΩ 

9 



and write 

dσ C =
dσ C dθ (17.24)

dω ' dθ dω ' 

with ω ' and θ  being related through (17.6). Since we can also relate the scattering angle 

θ  to the angle of electron recoil φ  through (17.8), we can obtain the distribution of 

electron energy by performing two transformations, from θ  to φ  first, then from φ  to T 

by using the relation 

22α cos φT = hω (12.24)2 2 2(1+α ) −α cos φ 

as found by combining (17.7) and (17.8).  Thus, 

dσ C 2π sin φ φ = 
dσ C 2π sin θ θ (12.25)d d

dΩ dΩe 

dσ C =
dσ C 2π sinφ (12.26)

dφ dΩ e 

dσ C =
dσ C dφ (12.27)

dT dφ dT 

These results show that all the distributions are related to one another.  In Fig. 17.4 we 

show several calculated electron recoil energy distributions which can be compared with 

the experimental data shown in Fig. 17.5. 
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Fig. 17.4.  Energy distribution of Compton electrons for several incident gamma-ray 

energies. (from Meyerhof) 

Fig. 17.5. Pulse-height spectra of Compton electrons produced by 0.51-  and 1.28-Mev 

gamma rays.  (from Meyerhof) 

For a given incident gamma energy the recoil energy is maximum at θ = π , where hω ' is 

smallest.  We had seen previously that if the photon energy is high enough, the outgoing 

photon energy is a constant at ~0.255 Mev. In Fig. 17.4 we see that for incident photon 

energy of 2.76 Mev the maximum electron recoil energy is approximately 2.53 Mev, 

which is close to the value of (2.76 – 0.255).  This correspondence should hold even 

better at higher energies, and not as well at lower energies, such as 1.20 and 0.51 Mev.  
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We can also see by comparing Figs. 17.4 and 17.5 that the relative magnitudes of the 

distributions at the two lower incident energies match quite well between calculation and 

experiment.  The distribution peaks near the cutoff Tmax because there is an appreciable 

range of θ  near θ = π , where cosθ  ~ 1 (cosine changes slowly in this region) and so 

hω '  remains close to mec2/2. This feature is reminiscent of the Bragg curve depicting the 

specific ionization of a charged particle (Fig. (14.3)). 

dσ CFrom the electron energy distribution we can deduce directly the photon
dT 

dσ Cenergy distribution  from 
dω '

dσ C = 
dσ C dσ CdT 

= h (12.28)
dω ' dT dω ' dT 

since hω ' = hω − T . 
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Photoelectric Effect 

This is the predominant mode of γ - interaction in all medium, especially high-Z 

absorbers, at energies less than ~ 0.1 Mev. The process, sketched in Fig. 18. 1, is the 

interaction between the gamma and the entire atom (atomic electron cloud) that results in 

the absorption of the gamma and the ejection of an electron with kinetic energy 

T ~ hω − B (18.1)e

where B  is the electron binding energy. The recoiling atom is left in an excited state at e

an excitation energy of B ; it can de-excite by emitting x-rays or Auger electrons. e

Fig. 18.1.  Schematic of photoelectric effect, absorption of an incident gamma ray which 

results in the ejection of an atomic electron and excitation of the recoiling atom. 

1 



  Notice this is atomic and not nuclear excitation.  One can show that the incident γ 

cannot be totally absorbed by a free electron because momentum and energy 

conservations cannot be satisfied simultaneously, but total absorption can occur if the 

electron is initially bound in an atom.  The most tightly bound electrons have the greatest 

probability of absorbing the γ . It is known theoretically and experimentally that ~ 80% 

hω > B K
−
shell ) .of the absorption occurs in the K (innermost) shell, so long as (e 

Typical ionization potentials of K electrons are 2.3 kev ( A l ), 10 kev (Cu), and ~ 100 kev 

(Pb). 

 The conservations equations for photoelectric effect are 

hk =
 p (18.2)
+
p 
a 

hω = T T a B (18.3)
+
 +
 e 

where p  is the momentum of the recoiling atom whose kinetic energy is T . Since T  ~ a aa 

T (m / M ) , where M is the mass of the atom, one can usually ignore T .e a

The theory describing the photoelectric effect is essentially a first-order 

perturbation theory calculation (cf. Heitler, Sec. 21).  In this case the transition taking 

place is between an initial state consisting of two particles, a bound electron, wave 

= 0.529 x 10-8function ~ e −r / a , with a =
a o /

2Z , a  being the Bohr radius (= 2 /h m eo e 

e ⋅ r k i , and a final state consisting of a free cm), and an incident photon, wave function 
⋅ r p i / h . The interaction potential is of the form A ⋅
pelectron whose wave function is e , 

where A is the vector potential of the electromagnetic radiation and p  is the electron 

momentum.  The result of this calculation is 

7 / 22 5 2 sin 2 2⎛
⎜⎜


⎞
⎟⎟ ω 

στ 

Ω 

d 
4 2

d h 

Z


⎞
⎟
⎠ 

θ 

θ cos 

cos 

ϕ
r e m c 
(18.4)e =
 4 4(137)

⎜
⎝ 

v⎛ 1 − ⎝
 ⎠

c 
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where v is the photoelectron speed. The polar and azimuthal angles specifying the 

direction of the photoelectron are defined in Fig. 18.2.  One should pay particular notice 

to the Z5 and  

Fig. 18.2. Spherical coordinates defining the photoelectron direction of emission relative 

to the incoming photon wave vector and its polarization vector. 

(hω)− 7 / 2 variation. As for the angular dependence, the numerator in (18.4) suggests an 
2 ⋅origin in ( p ⋅ ε ) , while the denominator suggests k p . Integration of (18.4) gives the 

total cross section 

o Z 5 ⎛ c m 2 ⎞ 
7 / 2 

eστ = ∫ d Ω 
d στ = 4 2σ 

(137) ⎝ hω ⎠
⎟⎟ (18.5)4 ⎜⎜ d Ω 

where one has ignored the angular dependence in the denominator and has multiplied the 

result by a factor of 2 to account for 2 electrons in the K-shell [Heitler, p. 207]. 

In practice it has been found that the charge and energy dependence behave more like 

n 3στ ∝ Z /(hω) (18.6) 
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with n varying from 4 to 4.6 as hω  varies from ~ 0.1 to 3 Mev, and with the energy 
2exponent decreasing from 3 to 1 when hω ≥ c m . The qualitative behavior of thee 

photoelectric cross section is illustrated in the figures below. 

Fig. 18.3. Variation with energy of incident phton of the exponent n of Z in the  total 

cross section for photoelectric effect.  (from Evans) 

Fig. 18.4. Photoelectric cross sections showing approximate inverse power-law behavior 

which varies with the energy of the incident photon.  (from Evans) 
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Fig. 18.5. Angular distribution of photoelectrons for various incident photon energies.  

The peak moves toward forward direction as the energy increases, a behavior which can 

be qualitatively obtained from the θ -dependence in Eq. (18.4). (from Meyerhof) 

Edge Absorption 

As the photon energy increases the cross section σκ  can show discontinuous 

jumps which are known as edges. These correspond to the onset of additional 

contributions when the energy is sufficient to eject an inner shell electron. The effect is 

more pronounced in the high-Z material.  See Fig. 18.13 below. 

Pair Production 

In this process, which can occur only when the energy of the incident γ  exceeds 1.02 

Mev, the photon is absorbed in the vicinity of the nucleus, a positron-electron pair is 

produced, and the atom is left in an excited state, as indicated in Fig. 18.6.  The 

Fig. 18.6.  Kinematics of pair production. 
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conservation equations are therefore 

hk = p 
+
+ p (18.7)

− 

2 2hω = ( T _ c m )+ ( T− + c m ) (18.8)+ e e 

One can show that these conditions cannot be satisfied simulataneously, thus the presence 

of an atomic nucleus is required.  Since the nucleus takes up some momentum, it also 

takes up some energy in the form of recoil. 

The existence of positron is a consequence of the Dirac’s relativistic theory of the 

electron which allows for negative energy states, 

2 2 2 4 1/ 2
E ± = ( c p + m c ) (18.9)e 

One assumes that all the negative states are filled; these represent a “sea” of 

electrons which are generally not observable because no transitions into these states can 

occur due to the Exclusion Principle.  When one of the electrons makes a transition to a 

positive energy level, it leaves a “hole” (positron) which behaves likes an electron but 

with a positive charge.  This is illustrated in Fig. 18.7.  In other words, holes in the 

Fig. 18.7.  Creation of a positron as a “hole” as in the filled (negative) energy states and 

an electron as a particle in the unfilled energy state.  (from Meyerhof) 
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negative energy states have positive charge, whereas an electrons in the positive energy 

states have negative charge.  The “hole” is unstable in that it will recombine with an 

electron when it loses most of its kinetic energy (thermalized).  This recombination 

probess is called pair annihilation.  It usually produces two γ  (annihilation radiation), 

each of energy 0.511 Mev, emitted back-to-back.  A positron and an electron can form an 

atom called the positronium.  It’s life time is ~ 10-7 to 10-9 sec depending on the relative 

spin orientation, the shorter lifetime corresponding to antiparallel orientation.  

Pair production is intimately related to the process of Bremsstrahlung in which an 

electron undergoes a transition from one positive energy state to another while a photon 

is emitted.  One can in fact take over directly the theory of Bremsstrahlung for the 

transition probability with the incident particle being a photon instead of an electron and 

using the appropriate density of states for the emission of the positron-electron pair 

[Heitler, Sec. 26].  For the positron the energy differential cross section is 

22 2 

)ω 

− 

( 

++T T 
3

h 

−
 +T T 
3 ⎛

⎜ 
⎝ 

⎡ 
n ⎜

⎤d 
σ4 o = 

dT + 

σκ Z 2
⎞
⎟ 
⎠ 

1 
⎟ −

−+2 T T − 

(18.10)
⎢
⎢⎣

l
 ⎥

⎥⎦

2ωh c m e 2 

2 = 5.8 x 10-4 barns. This result holds under the conditions of Borne 

approximation, which is a high-energy condition ( 

σ owhere /137= r 

Ze 2 / hv ± << 1 ), and no screening, 

−+which requires 2 T T / 2 1/ 3hω c m << 137 / Ze . 
By screening we mean the partial reduction 

of the nuclear charge by the potential of the inner-shell electrons.  As a result of the Born 

approximation, the cross section is symmetric in T+ and T-. Screening effects will lead to 

a lower cross section. 

To see the energy distribution we rewrite (18.10) as 

2Z o = 
+ 

σκd 
dT 

σ
ωh − 2 c m e 

2 P (18.11) 
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where the dimensionless factor P is a rather complicated function of hω  and Z; its 

behavior is depicted in Fig. 18.8.  We see the cross section increases with increasing 

Fig. 18.8.  Calculated energy distribution of positron emitted in pair production, as 

expressed in Eq.(18.11), with correction for screening (dashed curves)  for photon 

energies above 10 c m 2 . (from Evans) e 

energy of the incident photon.  Since the value is slightly for Al than for Pb, it means the 

cross section varies with Z somewhat weaker than Z2. At lower energies the cross section 

favors equal distribution of energy between the positron and the electron, while at high 

energies a slight tendency toward unequal distribution could be noted.  Intuitively we 

expect the energy distribution to be biased toward more energy for the positron than for 

the electron simply because of Coulomb effects, repulsion of the positron and attraction 

of the electron by the nucleus.  

The total cross section for pair production is obtained by integrating (18.11).  

Analytical integration is possible only for extremely relativistic cases [Evans, p. 705], 

⎡
 ⎤⎛
⎜⎜

⎞
⎟⎟

σ κd ⎛
⎜⎜


⎞
⎟⎟


ω2h28 218 
=
 σ Z 2 

o +∫=σκ dT − , no screening (18.12)⎢
⎢⎣ 

ln ⎥
⎥⎦ 

2
⎠+dT 9
 27c m e ⎝
 ⎝
 ⎠ 

⎡28
 ⎛
⎜
⎝


183


Z
1/ 3 
⎞
⎟
⎠

−


2
⎤
=
 σ Z 2 
o complete screening (18.13)ln ⎢

⎣

⎥
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,
9 27 
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2 −1/ 2 andMoreover, (18.12) and (18.13) are valid only for c m 2 << hω << 137 Z c m e e 

2hω >> 137 Z c m −1/ 2 respectively. The behavior of this cross section is shown in Fig. e 

18.9, along with the cross section for Compton scattering.  Notice that screening leads to 

a saturation effect (energy independent), but it is insignificant below hω ~ 10 Mev 

Fig. 18.9.  Energy variation of pair production cross section in units of σ Z 2 .o

Mass Attenuation Coefficients 

As we mentioned before, the total linear attenuation coefficient µ  for γ ­

interaction will be taken to be the sum of contributions from Compton scattering, 

photoelectric effect, and production, with µ = Nσ , where N is the number of atoms per 

cm3.  Since N = N ρ / A , where No is Avogardro’s number and ρ  the mass density of o 

the absorber, it is again useful to express the interaction in terms of the mass attenuation 

coefficient µ / ρ , which is essentially independent of the density and physical state of the 

absorber (recall our observation in the case of charged particle interactions that Z/A is 

approximately constant for all elements).  Thus we write 

µ = µC + µτ + µ (18.14)κ 

)µ / ρ = (N / Z A σ C , σ C 1 ~ / hω per electron (18.15)C o 
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µ / ρ = ( N / A )σ , στ ~ Z 5 /( hω) 7 / 2 per atom (18.16)τ o τ 

2 2µ / ρ = ( N / A )σ , σκ ~ Z ln ( 2hω / c m ) per atom (18.17)κ o κ e 

It should be quite clear by now that the three processes we have studied are not 

equally important for a given region of Z and hω . Generally speaking, photoelectric 

effect is important at low energies and high Z, Compton scattering is important at 

intermediate energies ( ~ 1 – 5 Mev) and all Z, and pair production becomes at higher 

energies and high Z. This is illustrated in Fig. 18.10. 

We also show several mass attenuation coefficients in Figs. 18.11 – 18.13.  One 

should make note of the magnitude of the attenuation coefficients, their energy 

dependence, and the contribution associated with each process.  In comparing theory with 
2experiment the agreement is good to about 3 % for all elements at hω < 10 c m . Ate 

higher energies disagreement sets in at high Z (can reach ~ 10% for pb), which is due to 

the use Born approximation in calculating σκ . If one corrects for this, then agreement to 

within ~ 1% is obtained out to energies ~ 600 c m 2 .e 

Fig. 18.10.  Regions where one of the three γ -interactions dominates over the other two. 

(from Evans) 
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Fig. 18.11.  Mass attenuation coefficient for photons in air computed from tables of 

atomic cross sections.  (from Evans) 

Fig. 18.12.  Mass attenuation coefficients for photons in water.  (from Evans) 
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Fig. 18.13.  Mass attenuation coefficients for photons in Pb.  (from Evans) 
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We have just concluded the study of radiation interaction with matter in which the   

basic mechanisms of charged particle, neutron and gamma interactions were discussed 

separately. A topic which makes use of all this information is the general problem of 

detection of nuclear radiation detection. Although this subject properly belongs to a 

course dealing with experimental aspects applied nuclear physics, it is nevertheless 

appropriate to make contact with it at this point in the course.  There are two reasons for 

this. First, radiation detection is a central part of the foundational knowledge for all 

students in the department of Nuclear Engineering (soon to be renamed Nuclear Science 

and Engineering). Even though we cannot do justice to it in view of the limited time 

remaining in the syllabus, it is worthwhile to make some contact with it, however briefly.  

Secondly, an analysis of the features observed experimentally in pulse-height spectra of 

gamma radiation is timely given what we have just learned about the γ -interaction 

processes of Compton scattering, photoelectric effect and pair production. 

We first remark that regardless of the type of nuclear radiation, the interactions 

taking place in a material medium invariably result in ionization and excitation which 

then can be detected. Heavy charged particles and electrons produce ion pairs in 

ionization chambers, or light emission (excitation of atoms) in scintillation counters, or 

electron-hole pairs in semiconductor detectors.  Neutrons collide with protons which 

recoil and produce ionization or excitation.  In the case of gammas, all 3 processes we 

have just discussed give rise to energetic electrons which in turn cause ionization or 

excitation. Thus the basic mechanisms of nuclear radiation detection involve measuring 

the ionization or excitation occurring in the detector in a way that one can deduce the 

energy of the incoming radiation.  A useful summary of the different types of detectors 

and methods of detection is given in the following table  [from Meyerhof, p. 107]. 
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We now focus on detection of γ  radiation. We are concerned with the 

measurement of two γ  rays, at energies 1.37 Mev and 2.75 Mev, emitted from 

radioactive Na24. The measurements are in the form of pulse-height spectra, number of 

counts per channel in a multichannel analyzer plotted against the pulse height.  Fig. 19.1 

shows the results measured by using a Na-I scintillation detector.  The spectra consist of 

two sets of features, one for each incident γ . By a set we mean a photopeak at the 

incident energy, a Compton edge at an energy approximately 0.25 Mev (mec2/2) below 

the incident energy, and two so-called escape peaks denoted as P1 and P2. The escape 

peaks refer to pair production processes where either one or both annihilation photons  

Fig. 19.1.  Pulse-height spectra of 1.37 Mev and 2.75 Mev γ  obtained using a Na-I 

detector. (from Meyerhof) 
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leave the counter. Thus, P1 should be 0.511 Mev below the incident energy and P2 

should be 0.511 Mev below P1. The other features that can be seen in Fig. 19.1 are a 

peak at 0.511 Mev, clearly to be identified as the annihilation photon, a backscattered 

peak associated with Compton scattering at θ = π  which should be positioned at mec2/2, 

and finally an unidentified peak which we can assigned to x-rays emitted from excited 

atoms. 

One can notice in Fig. 19.1 that the various peaks are quite broad.  This is a 

feature of scintillation detector, namely, relatively poor energy resolution.  In contrast, a 

semiconductor detector, such Li-drifted Ge, would have much better energy resolution, as 

can be seen in Fig. 19.2. In addition to the sharper lines, one should notice that the peaks 

measured using the semiconductor detector have different relative intensities compared 

the peaks measured by using a scintillation detector.  In particular, looking at the relative 

intensities of P1 and P2, we see that P1 > P2 in Fig. 19.1, whereas P2 > P1 in Fig. 19.2.     

Fig. 19.2.  Same as Fig. 19.1 a semiconductor detector is used.  (from Meyerhof) 
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This difference can be explained by noting that the scintillation detector is physically 

larger than the semiconductor detector, in this case the former is a cylinder 7.6 cm in 

diameter and 7.6 cm in length, whereas the latter is 1.9 cm in diameter and 0.5 cm in 

height. Thus one can expect that the probability that a photon will escape from the 

detector can be quite different in these two cases. 

To follow up on this idea, let us define P as the probability of escape.  In a one-

dimensional situation P ~ e−µx , where µ  is the linear attenuation coefficient and x is the 

dimension of the detector.  Now the probability that one of the two annihilation gammas 

will escape is P1 = 2P(1-P), the factor of 2 coming from either gamma can escape.  For 

both gammas to escape the probability is P2=P2. So we see that whether P1 is larger or 

smaller than P2 depends on the magnitude of P.  If P is small, P1 > P2, but if P is close to 

unity, then P2 > P1.  For the two detectors in question, it is to be expected that P is larger 

for the semiconductor detector.  Without putting in actual numbers we can infer from an 

inspection of Figs 19.1 and 19.2 that P is small enough in the case of the scintillation 

detector for P1 to be larger than P2, and also P is close enough to unity in the case of the 

semiconductor detector for P2 to be larger than P1. 
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A nucleus in an excited state is unstable because it can always undergo a 

transition (decay) to a lower-energy state of the same nucleus. Such a transition will be 

accompanied by the emission of gamma radiation.  A nucleus in either an excited or 

ground state also can undergo a transition to a lower-energy state of another nucleus. 

This decay is accomplished by the emission of a particle such as an alpha, electron or 

positron, with or without subsequent gamma emission.  A nucleus which undergoes a 

transition spontaneously, that is, without being supplied with additional energy as in 

bombardment, is said to be radioactive.  It is found experimentally that naturally 

occurring radioactive nuclides emit one or more of the three types of radiations, 

α − particles, β − particles, and γ − rays. Measurements of the energy of the nuclear 

radiation provide the most direct information of the energy-level structure of nuclides.  

One of the most extensive compilations of radioisotope data and detailed nuclear level 

diagrams is the Table of Isotopes, edited by Lederer, Hollander and Perlman. 

In this chapter we will supplement our previous discussions of beta decay and 

radioactive decay by briefly examining the study of decay constants, selection rules, and 

some aspects of  α − , β − , and γ − decay energetics. 

Alpha Decay 

Most radioactive substances are α − emitters.  Most nuclides with A > 150 are 

unstable against α − decay. On the other hand, α − decay is very likely for light 

nuclides. The decay constant decreases exponentially with decreasing Q-value, here 

called the decay energy, λα exp( ~ − c / v) , where c is a constant and v the speed of the 
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α − particle, v ∝ Qα . The momentum and energy conservation equations are quite 

straightforward in this case (see Fig. 20.1) 

Fig. 20.1.  Particle emission and nuclear recoil in α - decay . 

p
D 
+ p

α
= 0 (20.1) 

2 2 2M Pc = (M c + TD ) + (Mα c + Tα ) (20.2)D 

Both kinetic energies are small enough that non-relativistic energy-momentum relations 

may be used, 

2TD = p 2 / 2M D = p / 2M = ( M / M ) T (20.3)D α D α D α 

Treating the decay as a reaction the corresponding Q-value becomes 

2Q = [ M − (M + Mα )] cα P D 

= TD + Tα

=
M D + Mα A (20.4)

M D 

Tα ≈ 
A − 4 

Tα 

which shows that the kinetic energy of the α -particle is always less than Qα . Since Qα

> 0 (Tα  is necessarily positive), it follows that α -decay is an exothermic process.  The 
various energies can be displayed in an energy-level diagram shown in Fig. 20.2.  One 
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Fig. 20.2.  Energy-level diagram for α -decay. 

can see at a glance how the rest masses and the kinetic energies combine to ensure energy 

conservation.  We will see later that energy-level diagrams are also useful in depicting 

collision-induced nuclear reactions.  The separation energy Sα  is the work necessary to 

separate an α -particle from the nucleus, 

( ( , )]S α = [ A M − ,4 Z − 2) + M − c Z A M 2 
α 

= Z A B ) − A B − ,4 Z − 2) − B ( 2 ,4 )  = − Q (20.5)( , ( α

One can use the semi-empirical mass formula to determine whether a nucleus is stable 

against α -decay. One finds Q  > 0 for A > 150. Eq.(20.5) also shows that when theα

daughter nucleus is magic, B(A-4,Z-2) is large, and Q  is large. Conversely, Q  is small α α

when the parent nucleus is magic. 

Estimating α -decay Constant 

An estimate of the decay constant can be made by treating the decay as a barrier 

penetration problem, an approach proposed by Gamow (1928) and also by Gurney and 

Condon (1928). One assumes that the α -particle already exists inside the daughter 

nucleus and it is confined by the Coulomb potential, as indicated in Fig. 20.3.  The decay 

constant is then the probability per unit time that the particle can tunnel through the 

potential, 
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Fig. 20.3.  Tunneling of an α − particle through a nuclear Coulomb barrier. 

λ ~ ⎛⎜ 
v ⎞ 
⎟ P (20.6)α

⎝ R ⎠ 

where v  is the relative speed of the α  and the daughter nucleus, R is the radius of the 

daughter nucleus, and P the transmission coefficient.  Recall from our study of barrier 

penetration (cf. Chap 5, eq. (5.20)) that the transmission coefficient can be written in the 

form 

P ~ e −γ  (20.7)  

22 r 

[ ( 1/ 2γ = ∫ dr ( 2 r V m ) − E ])
h r 1 

2 b ⎡ ⎛ 2 e Z 2 ⎞⎤ 
1/ 2 

Ddr ⎢ 2µ⎜⎜ − Q α ⎟⎥ (20.8)= ∫ ⎟r ⎠⎦⎥h R ⎣⎢ ⎝ 

with µ = M α M D /(M + M D ) . The integral can be evaluated, α 

Dγ = 
8 e Z 2 [ cos− 1 y − y (1− y )1/ 2 ] (20.9)
hv 
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2where y = R/b = Q /B, B = 2ZDe2/R, Q α = µv / 2 = 2 e Z 2 / b . Typically B is a fewα D 

tens or more Mev, while Q  ~ a few Mev, one can therefore invoke the thick barrier α

approximation, in which case b >> R (or Q  << B), and y << 1. Thenα

−1 πcos y ~ − y − 1 y 3 / 2 − ... (20.10)
2 6 

the square bracket in (20.9) becomes 

3 / 2 )([ ]~ π − 2 y + y O (20.11)
2 

and 
2 ⎛ R ⎞

1/ 224π e Z 16 e Z D Dγ ≈ − ⎜ ⎟ (20.12)
hv hv ⎝ b ⎠ 

So the expression for the decay constant becomes 

2 

⎢ 
D 8 2 1/ 2 ⎤ 

D ⎥ (20.13)λ ≈ 
v exp 

⎡
−

4π e Z 
+ ( e Z µR )α 

hv h ⎦R ⎣ 

where µ  is the reduced mass.  This result has a simple interpretation - the prefactor 

represents the attempt frequency for the existing α -particle to tunnel through the nuclear 

barrier, and the exponential is the transmission probability  Since Gamow was the first 

to study this problem, the exponent is sometimes known as the Gamow factor G. 

To illustrate the application of (20.13) we consider estimating the decay constant 

of the 4.2 Mev α -particle emitted by U238. Ignoring the small recoil effects, we can 

write 

T α ~ 1 µv 2 → v ~ 1.4 x 109 cm/s,   µ  ~ M α2 

R ~ 1.4 (234)1/3 x 10-13 ~ 8.6 x 10-13 cm 
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2 8 2 1/ 2
− 

4π e Z D − = 173 , ( e Z D µ R ) = 83 
hv h 

Thus 
39P = e − 90 10 ~ − (20.14) 

As a result our estimate is 

-1 
α xλ 10 7.1 ~ − 18 s , or t1/2 ~ 1.3 x 1010 yrs 

The experimental half-life is ~ 0.45 x 1010 yrs. Considering our estimate is very rough, 

the agreement is rather remarkable.  In general one should not expect to predict λα  to be 

better than the correct order of magnitude (say a factor of 5 to 10).  Notice that in our 

example, B ~ 30 Mev and Q  = 4.2 Mev. Also b = RB/ Q = 61 x 10-13 cm.  So the thick α α

barrier approximation, B >> Q  or b >> R, is well justified. α

The theoretical expression for the decay constant provides a basis for an empirical 

relation between the half-life and the decay energy.  Since t1/2 = 0.693/α , we have from 

(20.13) 

/ 2 2 1/ 2(l t n 1/ 2 ) = ln ( 693.0 v R )+ 4π e Z / hv − 
8 ( e Z µ R ) (20.15)D D
h 

1/ 3 2 / 3We note R ~A1/3 ~ Z D , so the last term varies with ZD like Z D . Also, in the second 

trerm v ∝ Q . Therefore (20.15) suggests the following relation,α

blog(t 1/ 2 ) = a + (20.16)
Q α
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with a and b being parameters depending only on ZD. A relation of this form is known as 

the Geiger-Nuttall rule. 

We conclude our brief consideration of α -decay at this point.  For further 

discussions the student should consult Meyerhof (Chap 4) and Evans (Chap 16). 

Beta Decay 

Beta decay is considered to be a weak interaction since the interaction potential is 

~ 10-6 that of nuclear interactions, generally regarded as strong.  Electromagnetic and 

gravitational interactions are intermediate in this sense.   β -decay is the most common 

type of radioactive decay, all nuclides not lying in the “valley of stability” are unstable 

against this transition.  The positrons or electrons emitted in β -decay have a continuous 

energy distribution, as illustrated in Fig. 20.4 for the decay of Cu64, 

Fig. 20.4. Momentum (a) and energy (b) distributions of beta decay in Cu64. (from 

Meyerhof) 

Cu 64 +→30 Zn64 + ν β , T-(max) = 0.57 Mev 29 

+→28 Ni 64 + β +ν , T+ (max) = 0.66 Mev 
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The values of T± (max) are characteristic of the particular radionuclide; they can be 

considered as signatures.. 

If we assume that in β -decay we have only a parent nucleus, a daughter nucleus, 

and a β -particle, then we would find that the conservations of energy, linear and angular 

moemnta cannot be all satisfied.  It was then proposed by Pauli (1933) that particles, 

called neutrino ν  and antineutrino ν , also can be emitted in β -decay. The neutrino 

particle has the properties of zero charge, zero (or nearly zero) mass, and intrinsic angular 

momentum (spin) of h / 2 . The detection of the neutrino is unusually difficult because it 

has a very long mean-free path.  Its existence was confirmed by Reines and Cowan 
−(1953) using the inverse β -decay reaction induced by a neutrino, p +ν → n + β . The 

emission of a neutrino (or antineutrino) in the β -decay process makes it possible to 

satisfy the energy conservation condition with a continuous distribution of the kinetic 

energy of the emitted β -particle. Also, linear and angular momenta are now conserved. 

The energetics of β -decay can be summarized as 

p
D
+ p + p = 0 (20.17)

β ν 

2 2M Pc = M Dc + Tβ + Tν electron decay (20.18) 

M Pc 2 = M Dc 2 + T + + Tν + 2 c m 2 positron decay (20.19)eβ

where the extra rest mass term in positron decay has been discussed previously in Chap 

11 (cf. Eq. (11.9)). Recall also that electron capture (EC0 is a competing process with 

β -decay, requiring only the condition MP(Z) > MD(Z-1). Fig. 20.4 shows how the 

energetics can be expressed in the form of energy-level diagrams. 
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Fig. 20.5. Energetics of β − decay processes. (from Meyerhof) 

Typical decay schemes for β -emitters are shown in Fig. 20.6.  For each nuclear level 

there is an assignment of spin and parity.  This information is essential for determining 

whether a transition is allowed according to certain selection rules, as we will discuss 

below. 

Fig. 20.5.  Energy-level diagrams depicting nuclear transitions involving beta decay.  

(from Meyerhof) 
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Experimental half-lives of β -decay lied in a wide range, from 10-3 sec to 1016 yrs. 
5Generally, λ ~ Qβ . The decay process cannot be explained classically.  The theory of β

β -decay was developed by Fermi (1934) in analogy with the quantum theory of 

electromagnetic decay.  For a discussion of the elements of this theory one should consult 

Meyerhof and references therein.  We will be content to show one aspect of the theory 

which concerns the statistical factor describing the momentum and energy distributions 

of the emitted β  particle. Fig. 20.5 shows the nuclear coulomb effects on the momentum 
−distribution in β -decay in Ca (Z = 20).  One can see an enhancement of the β -decay 

+and a suppression of β -decay at low momenta.  Coulomb effects on the energy 

distribution are even more pronounced. 

Fig. 20.5. Momentum distributions of β -decay in Ca. 

Selection Rules for Beta Decay 

Besides energy and linear momentum conservation, a nuclear transition must also 

satisfy angular momentum and parity conservation.  This gives rise to selection rules 

which specify whether a particular transition between initial and final states, both with 

specified spin and parity, is allowed, and if allowed what mode of decay is most likely.  

We will work out the selection rules governing β − and γ -decay. For the former 

conservation of angular momentum and parity are generally expressed as 
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I P = I D + Lβ + S β (20.17) 

π P = π (−1)Lβ (20.18)D 

where Lβ  is the orbital angular momentum and Sβ  the intrinsic spin of the electron-

antineutrino system.  The magnitude of angular momentum vector can take integral 

values, 0, 1, 2, …, whereas the latter can take on values of 0 and 1 which would 

correspond the antiparallel and parallel coupling of the electron and neutrino spins.  

These two orientations will be called Fermi and Gamow-Teller respectively in what 

follows. 

In applying the conservation conditions, one finds the lowest value of Lβ  that will 

satify (20.17) for which there is a corresponding value of Sβ  that is compatible with 

(20.18). This then identifies the allowed transition that is most likely, other allowed 

transitions with higher values of Lβ  will be significantly less likely.  This is because the 

decay constant is governed by the square of a transition matrix element, which in term 

can be written as a series of contributions, one for each Lβ  (recall the discussion of 

partial wave expansion in cross section calculation, Appendix B), 

2 2 22λβ ∝ M = (L M β = 0) + (L M β = 1) + (L M β = 2) + ... (20.19) 

Transitions with Lβ  = 0, 1, 2, … are called allowed, first-borbidden, second-

forbidden,…respectively. … The magnitude decrease of the square of the matrix element 

from one order to the next higher order is at least two orders of magnitude.  For this 

reason one generally is interested only in the first allowed transition. 

To illustrate how the selection rules are determined, we consider the transition 

+ +He6 (0 )→ Li 6 (1 )2 3 
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To find the combination of Lβ  and Sβ  we note first that parity conservation requires Lβ

to be even. Then we see that Lβ  = 0 plus Sβ  = 1 would satisfy both (20.17) and (20.18).  

Thus the most likely transition is allowed, G-T. Following this line of argument, one can 

readily arrive at the following assignments. 

O14 + +(0 )→ N 14 (0 ) allowed, F8 7 

+ +n1 (1/ 2 )→ H 1 (1/ 2 ) allowed, G-T and Fo 1 

Cl38 +(2− )→ A38 (2 ) first-borbidden, GT and F17 18 

Be10 + +(3 )→ B10 (0 ) second-forbidden, GT4 5 

Parity Non-conservation 

The presence of neutrino in β -decay leads to a certain type of non-conservation 

of parity. It is known that neutrinos have instrinsic spin antiparallel to their velocity, 

whereas the spin of antineutrino is parallel to their velocity (keeping in mind that ν  and 

ν  are different particles).  Consider the mirror experiment where a neutrino is moving 

toward the mirror from the left, Fig. 20.6.  Applying the inversion symmetry operation  

Fig. 20.6.  Mirror reflection demonstrating parity non-sonserving property of neutrino.  

(from Meyerhof) 
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( x − → x ), the velocity reverses direction, while the angular momentum (spin) does not.  

Thus, on the other side of the mirror we have an image of a particle moving from the 

right, but its spin is now parallel to the velocity so it has to be an antineutrino instead of a 

neutrino. This means that the property of ν  and ν , namely definite spin direction 

relative to the velocity, is not compatible with parity conservation (symmetry under 

inversion). 

For further discussions of beta decay we again refer the student to Meyerhof and 

the references therein. 

Gamma Decay 

An excited nucleus can always decay to a lower energy state by γ -emission or a 

competing process called internal conversion.  In the latter the excess nuclear energy is 

given directly to an atomic electron which is ejected with a certain kinetic energy.  In 

general, complicated rearrangements of nucleons occur during γ -decay. 

The energetics of γ -decay is rather straightforward.  As shown in Fig. 20. 7 a γ 

is emitted while the nucleus recoils. 

Fig. 20.7. Schematics of γ -decay 

hk + p = 0 (20.20)
a 

2 2M * c = Mc + Eγ + T (20.20)a

The recoil energy is usually quite small, 
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2 2 2T = p / 2M = h 2 k / 2M = Eγ / 2Mc 2 (20.21)a a 

Typically, Eγ  ~ 2 Mev, so if A ~ 50, then Ta ~ 40 ev.  This is generally negligible. 

Decay Constants and Selection Rules 

Nuclear excited states have half-lives for γ -emission ranging from 10-16 sec to > 

100 years. A rough estimate of λγ  can be made using semi-classical ideas.  From 

Maxewell’s equations one finds that an accelerated point charge e radiates 

electromagnetic radiation at a rate given by the Lamor formula (cf. Jackson, Classical 

Electrodynamics, Chap 17), 

2 2dE 2 a e 
=  (20.22)3dt 3 c 

where a is the acceleration of the charge.  Suppose the radiating charge has a motion like 

the simple oscillator, 

t x ) = x cosω t (20.23)( o 

2 2where we take x 2 + y + z 2 = R , R  being the radius of the nucleus.  From (20.23) we o o o 

have 

t a ) = Rω cosω t (20.24)( 2 

To get an average rate of energy radiation, we average (20.22) over a large number of 

oscillation cycles, 

2 4 2 2 4 2⎛ dE ⎞ 2 R ω e
⎜ ⎟ = 

2 R ω e ( cos ω t ) ≈ 
3c3 (20.25)3 avg

⎝ dt ⎠ avg 3 c 

Now we assume that each photon is emitted during a mean time interval τ . Then, 
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⎛ dE ⎞ hω
⎜ ⎟ = (20.26)
⎝ dt ⎠ avg τ 

Equating this with (20.25) gives 

2 2 3E R e γλγ ≈  (20.27)33h 4 c 

If we apply this result to de-excitation of an atom by electromagnetic emission, we would 

take R ~ 10-8 cm and Eγ  ~ 1 ev, in which case (20.27) gives 

6 − 1λγ 10 ~ sec , or t1/ 2 ~ 7 x 10-7 sec 

On the other hand, if we apply (20.27) to nuclear decay by taking R ~ 5 x 10-13 cm, and 

Eγ  ~ 1 Mev, we would obtain 

λγ 10 ~ 15 sec-1, or t1/ 2 ~ 3 x 10-16 sec 

These result only indicate typical orders of magnitude.  What Eq.(20.27) does not explain 

is the wide range of values of the half-lives that have been observed. 

Turning to the question of selection rules for γ -decay, we again write down the 

conservation of angular momenta and parity in a form similar to (20.17) and (20.18), 

I i = I f + Lγ (20.28) 

π i = π f πγ  (20.29) 
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Notice that in contrast to (20.27) the orbital and spin angular momenta are both 

represented by Lγ (which plays the role of the total angular momentum).  Since the 

photon has spin h  [for a discussion of photon angular momentum, see A. S. Davydov, 

Quantum Mechanics (1965(, pp. 306 and 578], the possible values of Lγ are 1 

(corresponding to the case of zero orbital angular momentum), 2, 3, …For the parity 

conservation the parity of the photon of course depends on the value of  Lγ . There are 

now two possibilities because we are considering photon emission as the process of 

electromagnetic multipole radiation, in which case one can have either electric or 

magnetic multipole radiation, 

π γ = (− 1)Lγ electric multipole 

− − 1)Lγ  magnetic multipole (

Thus we can set up the following table, 

Radiation Designation Value of Lγ π γ

electric dipole E1 1 -1 

magnetic dipole M1 1 +1 

electric quadrupole E2 2 +1 

magnetic quadrupole  M2 2 -1 

electric octupole E3 3 -1 

etc. 

Similar to the case of β -decay, the decay constant can be expressed as a sum of 

contributions from each multipole [cf. Blatt and Weisskopf, Theoretical Nuclear Physics, 

p. 627], 

λγ = λγ (E1) + λ (M1) + λ (E2) + ... (20.30)γ γ 
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provided each contribution is allowed by the selection rules.  Once a contribution is 

allowed, one generally does not bother with the higher-order terms because they are 

much smaller in magnitude.  Take, for example, a transition between an initial state with 

spin and parity of 2+ and a final state of 0+. This transition requires the photon parity to 

be positive, which means that for an electric multipole radiation Lγ would have to be 

even, and for a magnetic radiation it has to be odd.  In view of the initial and final spins, 

we see that angular momentum conservation (20.28) requires Lγ to be at least 2. Thus, 

the most likely mode of γ -decay for this transition is E2, although M3 is also allowed.  A 

few other examples are: 

+ +1 → 0 M1 

1 +1 − 

2 2 
→ E1 

1 −9 + 

→ M4 
2 2 
+ +0 → 0 no γ -decay allowed 

We conclude this discussion of nuclear decays by the remark that internal 

conversion (IC) is a competing process with γ -decay. The atomic electron ejected has a 

kinetic energy given by (ignoring nuclear recoil) 

T = E − E f − E (20.31)e i B 

where Ei − E is the energy of de-excitation, and EB  is the binding energy of the atomic f 

electron. If we denote by λ  the decay constant for internal conversion, then the total e 

decay constant for de-excitation is 

λ = λγ + λ (20.32)e 
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Nuclear Reactions: Energetics and Compound Nucleus 

References: 

W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 5. 

Among the many models of nuclear reactions there are two opposing basic 

models which we have encountered. These are (i) the compound nucleus model proposed 

by Bohr (1936) in which the incident particle interacts strongly with the entire target 

nucleus, and the decay of the resulting compound nucleus is independent of the mode of 

formation, and (ii) the independent particle model in which the incident particle interacts 

with the nucleus through an effective averaged potential.  A well-known example of the 

former is the liquid drop model, and examples of the latter are a model proposed by 

Bethe (1940), the nuclear shell model with spin-orbit coupling (cf. Chap 9), and a model 

with a complex potential, known as the optical model, proposed by Feshbach, Porter and 

Weisskopf (1949). Each model describes well some aspects of what we now know about 

nuclear structure and reactions, and not so well some of the other aspects.  Since we have 

already examined the nuclear shell model is some detail, we will focus in the brief 

discussion here on the compound nucleus model.  As we will see, this approach is well 

suited for describing reactions which show single resonance behavior, a sharp peak in the 

every variation of the cross section.  In contrast, the optical model, which we will not 

discuss in this course, is good for gross behavior of the cross section (in the sense of 

averaging over an energy interval). 

Energetics 

Before discussing the compound nucleus model we first summarize the energetics 

of nuclear reactions. We recall the Q-equation introduced in the study of neutron 

interactions (cf. Chap 15) for a general reaction depicted in Fig. 21.1, 
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Fig. 21.1. A generic two-body nuclear reaction with target nucleus at rest. 

⎛ M 3 ⎞ ⎛ ⎞ 1/ 2Q = T 3 ⎜⎜1 + ⎟⎟ − T 1 ⎜⎜1 − 
M 1 

⎟⎟ − 
2 ( T T M M ) cosθ  (21.1)

⎝ M 4 ⎠ ⎝ M 4 ⎠ M 4 
1 3 1 3 

Since Q = T3 +T4 – T1, the reaction can take place only if M3 and M4 emerge with 

positive kinetic energies (all kinetic energies are LCS unless specified otherwise), 

T 3 + T 4 ≥ 0 , or Q + T 1 ≥ 0 (21.2) 

We will see that this condition, although quite reasonable from an intuitive standpoint, is 

necessary but not sufficient for the reaction to occur. 

We have previously emphasized in the discussion of neutron interaction that a 

fraction of the kinetic energy brought in by the incident particle M1 goes into setting the 

center-of-mass into motion and is therefore not available for reaction.  To see what is the 

energy available for reaction we can look into the kinetic energies of the reacting 

particles in CMCS. First, the kinetic energy of the center-of-mass, in the case where the 

target nucleus is at rest, is 

T = 1
2 

(M 1 + M 2 )v 2 (21.3)o o 

where the center-of-mass speed is v = [M /(M + M 2 )]v 1 , v1  being the speed of theo 1 1 

incident particle.  The kinetic energy available for reaction is the kinetic energy of the 
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incident particle T1 minus the kinetic energy of the center-of-mass, which we denote as 

Ti, 

Ti = T1 − T = 
M 2 T1o M1 + M 2 

1 2= V M 1
2 +

1 v M (21.4)
2 2 o2 1 

The second line in (21.4) shows that Ti is also the sum of the kinetic energies of particles 

1 and 2 in CMCS (we follow the same notation of using capital letters to denote velocity 

in CMCS). In addition to the kinetic energy available for reaction, there is also the rest-

mass energy available for reaction, as represented by the Q-value.  Thus the total energy 

available for reaction is the sum of Ti and Q.  A necessary and sufficient condition for 

reaction is therefore 

Eavail = Q + T ≥ 0 (21.5)i 

We can rewrite (21.5) as 

M 1 + M 2T1 − ≥ Q (21.6)
M 2 

If Q > 0, (21.6) is always satisfied which is expected since the reaction is exothermic.  

For Q < 0, (21.6) shows that the threshold energy, the minimum value of the incident 

particle kinetic energy for reaction, is greater than the rest-mass deficit.  The reason for 

needing more energy than the rest-mass deficit, of course, is that some energy is needed 

to put into the center-of-mass. 

At threshold, Q + Ti = 0. So M3 and M4 both move in LCS with speed vo (V3 and 

V4 = 0). At this condition the total kinetic energies of the reaction products is 

3 



2(T +T4 ) = 
1
2 
(M 3 + M 4 )v (21.7)3 thres o 

Since we have M3V3 = M4V4 from momentum conservation, we can say in general 

1 3 3
2 

Q +T = V M 3
2 + 

1 ( V M ) 
(21.8)i 2 3 2 M 4 

With Q and T1 given, we can find V3 from (21.8) but not the direction of V3. It turns out 

that for T1 just above threshold of an endothermic reaction, an interesting situation exists 

where at a certain scattering angle in LCS one can have two different kinetic energies in 

LCS, which violates the one-to-one correspondence between scattering angle and 

outgoing energy. How can this be?  The answer is that the one-to-one correspondence 

that we have spoken of in the past applies strictly only to the relation between the kinetic 

energy T3 and the scattering angle in CMCS (and not with the scattering angle in LCS). 

Fig. 21.2 shows how this special situation, which corresponds to the double-valued 

solution to the Q-equation, can arise. 

Fig. 21.2.  A special condition where a particle can be emitted with two different kinetic 

energies at the same angle (in LCS only). 
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Energy-Level Diagrams for Nuclear Reactions 

We have seen in the previous chapter how the various energies involved in 

nuclear decay can be conveniently displayed in an energy-level diagram.  The same 

argument can be applied to nuclear reactions.  Fig. 21.3 shows the energies involved in an 

Fig. 21.3. Energy-level diagram for an endothermic reaction. 

endothermic reaction.  In this case the reaction can end up in two different states, 

depending on whether the product nucleus M4 is in the ground state or in an excited state 

(*). Tf denotes the kinetic energy of the reaction products in CMCS, which one can write 

as 

Tf = T Q + i 

1 = V M 3
2 + 

1 V M 4
2 (21.9)

2 42 3 

Since both Ti and Tf can be considered kinetic energies in CMCS, one can say that the 

kinetic energies appearing in energy-level diagram should be in CMCS. 

Compound Nucleus Reactions 

The concept of compound nucleus model for nuclear reactions is depicted in Fig. 

21.4. The idea is that an incident particle reacts with the target nucleus in two ways, a 

scattering that takes place at the surface of the nucleus which is, properly speaking, not a 

reaction, and a reaction that takes place after the incident particle has entered into the 

nucleus. The former is what we have been studying as elastic scattering, it is also known  
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Fig. 21.4.  Compound nucleus model of nuclear reaction – formation of compound 

nucleus (CN) and its subsequent decay are assumed to be decoupled. 

shape elastic or potential scattering.  This part is always present, we will leave it aside in 

the present discussion.  The interaction which takes place after the particle has penetrated 

into the target nucleus can be considered an absorption process, leading to the formation 

of a compound nucleus (this need not be the only process possible, the others can be 

direct interaction, multiple collisions, and collective excitations).  This is the part that we 

will now consider briefly. 

In neutron reactions the formation of compound nucleus (CN) is quite likely at 

incident energies of ~ 0.1 – 1 Mev. Physically this corresponds to a large reflection 

coefficient in the inside edge of the potential well.  Once CN is formed it is assumed that 

it will decay in a manner that is independent of the mode in which it was formed 

(complete loss of memory).  This is the basic assumption of the model because it then 

allows the formation and decay to be treated as two separate processes.  The 

approximation can be expressed by writing the interaction as a two-stage reaction,  

+ +X a → C * → Y b 

the asterisk indicating that the CN is in an excited state.  The first arrow denotes the 

formation stage and the second the decay stage.  For this reaction the cross section 

σ (a , b )  may be written as 
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) (σ (a ,b ) = σ C ( E P T ) (21.10)i b 

whereσ C (T )  is the cross section for the CN formation at kinetic energy Ti, which is thei 

available kinetic energy for reaction as discussed above, and Pb(E) is the probability that 

the CN at energy level E will decay by emission of particle b.  It is understood that σ C

and Pb can be evaluated separately since the formation and decay processes are assumed 

to be decoupled. The energy-level diagram for this reaction is shown in Fig. 21.5 for an 

endothermic reaction (Q < 0).  Notice that E is the CN excitation and it is measured  

Fig. 21.5. Energy-level diagram for the reaction a + X →  b + Y via CN formation and 

decay. 

relative to the rest-mass energy of the nucleus (a+X).  If this nucleus should have an 

excited state (a virtual level) at E* which is close to E, then one can have resonance 

condition. If the incoming particle a should have a kinetic energy such that the kinetic 

available for reaction has the value Ti*, then the CN excitation energy matches an excited 

level of nucleus (a+X), E = E*.  Therefore the CN formation cross section σ C (T ) willi 

show a peak in its variation with Ti, an indication of a resonance reaction. 

The condition for a reaction resonance is essentially a relation between the 

incoming kinetic energy and the rest-mass energies of the reactants.  Fig. 21.5 shows that 

this relation can be stated as Ti = Ti*, or 
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(M + M X )c 2 + Ti 
* = M a+X c 2 + E * (21.11)a 

Each virtual level E* has a certain energy width, denoted as Γ , which corresponds to a 

finite lifetime of the state (level),  τ = h / Γ . The smaller the width means the longer the 

lifetime of the level. 

The cross section for CN formation has to be calculated quantum mechanically 

[see, for example, Burcham, Nuclear Physics, p. 532, or for a complete treatment Blatt 

and Weisskopf, Theoretical Nuclear Physics, pp. 398]. One finds 

Γ Γ2 aσ (T ) = π D g 
( T − Ti ) Γ + 2 / 4 

(21.12)C i J * 2 
i 

2J + 1where g = ( 2I + 2 1 I X + 1) and J = I a + I + La . In this expression D  is theXJ )(a 

reduced wavelength (wavelength/2π ) of particle a in CMCS,  J is the total angular 

momentum, the sum of the spins of particles a and X and the orbital angular momentum 

associated with particle a (recall particle X is stationary), Γ  is the energy width (partial a

width) for the incoming channel a+X, and Γ  (without any index) is the total decay width, 

the sum of all partial widths.  (The idea here is that CN formation can result from a 

number of channels, each with its own partial width.  In our case the channel is reaction 

with particle a with partial width Γ .). Given our relation (21.11) we can also regard the a

CN formation cross section to be a function of the excitation energy E, in which case 

* ) 2σ C (E) is given by (21.12) with ( E − E *) 2 replacing the factor ( T −T in thei i 

denominator. 

To complete the cross section expression (21.10) we need to specify the 

probability for the decay of the compound nucleus.  This is a matter that involves the 

excitation energy E and the decay channel where particle b is emitted.  Treating this 

process like radioactive decay, we can say 
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P (E) = Γ (E) / Γ (E) (21.13)b b 

where Γ (E) Γ = (E) Γ + (E) + width of any other decay channel allowed by the a b 

energetics and selective rules.  Typically one includes a radiation partial width Γγ  since 

gamma emission is usually an allowed process.  Combining (21.12) and (21.13) we have 

the cross section for a resonance reaction.  In neutron reaction theory the result is 

generally known as the Breit-Wigner formula for a single resonance.  There are two 

cross sections of interest to us, one for neutron absorption and another for neutron elastic 

scattering, 

Γ Γγ2 nσ (n,γ ) = π D g 
( T − Ti ) Γ + 2 / 4 

(21.14)J * 2 
i 

*Γ 2 ( T − Ti ) (21.15)2 2 n iσ ( n n ) = 4π a +π D g 
( T − Ti ) Γ + 2 / 4 

+ 4π Dg aΓ
( T − Ti ) Γ + 2 / 4 

, J * 2 J n * 2


i i


In σ ( n n ) the first term is the potential scattering contribution, what we had previously , 

called the s-wave part of elastic scattering, with a being the scattering length.  The second 

term is the compound elastic scattering contribution.  The last term represents the 

interference between potential scattering and resonant scattering.  Notice the interference 

is destructive at energy below the resonance and constructive above the resonance. In 

Fig. 21.6 we show schematically the energy behavior of the absorption cross section in 

the form of a resonance peak.  Below the peak the cross section varies like 1/v as can be 

deduced from (21.14) by noting the energy dependence of the various factors, along with 

Γ ~ T , and Γγ ~ constant. Notice also the full width at half maximum is governed by n 

the total decay width Γ . Fig. 21.7 shows a well-known absorption peak in Cd which is 

widely used as an absorber of low-energy neutrons.  One can see the resonance behavior 

in both the total cross section, which is dominated by absorption, and the elastic 

scattering cross section. 
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Fig. 21.6. Schematic of Breit-Wigner resonance behavior for neutron absorption. 

Fig. 21.7.  Total and elastic neutron scattering cross sections of Cd showing a resonant 

absorption peak and a resonant scattering peak, respectively. 

We conclude our brief discussion of compound nucleus reactions by noting an 

interesting feature in the elastic scattering cross section associated with the interference 

effect between potential scattering and resonance scattering.  This is the destructive effect 

of interference in the energy region just below the resonance and the constructive effect 

just above the resonance. Fig. 21.8 shows this behavior schematically, and Fig. 21.9 

shows that such effects are indeed observed.  Admittedly this is generally not so obvious, 

so the present example is carefully chosen and should not be taken as being typical. 
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Fig. 21.8.  Interference effects in elastic neutron scattering, below and above the 

resonance. 

Fig. 21.9. Experimental scattering cross section of Al27 showing the interference effects 

between potential and resonance scattering, and an asymptotically constant value 

(potential scattering) sufficiently far away from the resonance.  (from Lynn) 
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22.101 Applied Nuclear Physics (Fall 2004) 

Problem Set No. 1 Due: Sept. 15, 2004 

Problem 1 

(i)  A thermal neutron in a reactor is a neutron with kinetic energy equal to kBT, 

where kB is the Boltzmann’s constant and T is the temperature of the reactor.  

Explain briefly the physical basis of this statement.  Taking T to be the room 

temperature, 20C, calculate the energy of the thermal neutron (in units of ev), 

and then find it speed v (in cm/sec) and the corresponding de Broglie 

wavelength λ  (in A). Compare these values with the energy, speed, and 

interatomic distance of the atoms in the reactor.  What is the significance of 

comparing the neutron wavelength with typical atomic separations in a solid? 

(ii) Consider a 2 Kev x-ray, calculate the frequency and wavelength of this 

photon. What would be the point of comparing the x-ray wavelength with that 

of the thermal neutron?  If we have an electron whose wavelength is equal to 

that of the thermal neutron, what energy would it have? 

(iii) The classical radius of the electron, defined as 2e 2/ c m e , with e  being the 

electron charge, em  the electron rest mass, and c the speed of light, has the 

value of 2.818 x 10-13 cm. Use this fact to calculate the Coulomb repulsion 

energy between two protons at a distance of 1 F.  On the basis of this result 

what can you conclude about the energy that is holding together a nucleus of  

several protons and neutrons? 

Problem 2 

Write a paragraph or two (no more than two pages) summarizing the major information 

contained in the Chart of Nuclides that is beyond the Periodic Table.  Include a diagram 

or two showing how the information is labeled in the Chart.  

Problem 3 

Consider the absorption of a thermal neutron by a hydrogen atom to form a deuteron, 

with a gamma ray given off as a result.  Find the energy of this gamma ray assuming that 

the kinetic energies of the neutron, the hydrogen, and the deuteron are all negligible.  

Why is the deuteron considered to be in a bound state (is the deuteron stable)?  What is 

the energy of this bound state? 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 2 Due: Sept. 22, 2004 

Problem 1 

(a) Starting with the time-dependent Schrödinger wave equation, derive an equation 

( , , ,for the probability density trP ) Ψ = + ( tr )Ψ( tr )  in the standard form of the 

continuity equation, and in this way obtain the expression for the particle current 

which is quoted in Lec2, Eq. (2.24). 

(b) Apply (2.24) to a plane wave, exp[ ki ⋅ r] , where k is the wave vector, then give a 

physical interpretation of your result. How does the current differ from the flux 

which is defined as the particle number density times the particle speed (as in a 

beam of particles of a given flux)? 

Problem 2 

Solve the 1D time-independent Schrödinger wave equation for a particle in a square well 

by applying the BC for an infinite well. Sketch and discuss the first three eigenvalues 

and eigenfunctions, and then indicate in your sketch how the solutions are affected if the 

well were instead very steep but not infinite. 

Problem 3 

(a) Write down the time-independent Schrödinger wave equation of a system of 

two particles, mass m1 and m2, interacting through a central potential V(r), 

where r is the separation distance between the two particles, r = .r1 − r 2 

Introduce the center-of-mass R = [ r m /(m + m2 ) + r m /(m + m2 )] and1 1	 1 2 2 1 

relative r = r1 − r  coordinates and show that the wave equation for two 2 

particles naturally separates into two equations, one for the center-of-mass 

coordinate and another for the relative coordinate.  Discuss what is interesting 

about each equation. What do your results say about the reduction of a 2­

body collision problem into an effective one-body problem of a particle 

moving in a potential field? 

(b)	 Carry out the same reduction for the Newton’s equation.of motion for the 

system of two colliding particles.  [Note: This part is for extra credit.] 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 3 Due: Sept. 29, 2004 

Problem 1 

Derive the l =0 (s-wave) radial wave equation from the time-independent Schrödinger 

wave equation for a particle in a spherical well of width ro and depth Vo. Solve this 

equation for the ground state wave function and the corresponding bound-state energy. 

Sketch and discuss briefly your results and then indicate what changes would occur if the 

well were to become very steep and very narrow. 

Problem 2 

In classical mechanics a particle incident upon a potential with range ro at an impact 

parameter b would be scattered if b < ro, but if b were greater than ro then there would be 

no interaction.  Use this simple picture to show that in the scattering of a neutron at low 
2energy, by which we mean kro <<1, with E = h2k / 2m , only the s-wave interaction is 

important. Take ro = 1.5 F, what is the range of neutron energy where this approximation 

is valid? 

Problem 3 

Consider the one-dimensional problem of a particle of mass m and energy E incident 

upon a potential barrier of height Vo and width L (Vo >E) going from left to right.  Derive 

the following expression for the transmission coefficient 

⎡ Vo 
2

2 ⎤
−1 

T = ⎢1 + sinh κL⎥(⎣ 4 V E − E)o ⎦ 

(where κ = 2 V m − E) / h . Sketch the variation of T with κL . What physical o 

interpretation can you give for the dimensionless quantity κL ?  For nuclear physics 

problems which is the more realistic limit between thin barrier and thick barrier (why)?  



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 4 Due: Oct. 6, 2004 

Problem 1 

(a) Using a sketch explain the physical meaning of the angular differential neutron 

scattering cross sectionσ (θ ) ≡ dσ / dΩ . 

(b) Let P(Ω )  be the probability distribution defined as 

P(Ω )dΩ = probability that the scattered neutron 
goes in the direction dΩ about Ω 

How would you express σ (θ )  in terms of P(Ω ) ? 

(c) 	If you were told that the scattering distribution is spherically symmetric, what 
would you write forσ (θ ) ? 

Problem 2 

Derive the expression for the angular differential scattering cross section σ (θ ) for s-

wave scattering, then obtain the expression for the scattering cross section σ . 

Problem 3 

Calculate the neutron scattering cross section of C12 for thermal neutrons.  Assume a 

potential well with depth Vo = 36 Mev and range ro = 1.4xA1/3 F and consider only the s-

wave contribution. Compare your result with the experimental value (σ  = 5 barns) and 

discuss any significance. 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 5 Due: Oct. 25, 2004 

Problem 1 

(a) Sketch the energy levels of nucleons as given by two central force potentials, an 
infinite spherical well and a parabolic well (see Fig. 9.5).  Explain the 
spectroscopic notation used in labeling each level, and how is degeneracy of each 
level determined.  What is the significance of these results concerning the 
stability of nuclei? 

(b) Sketch the energy levels of nucleons given by a shell-model potential with spin-
orbit coupling (see Fig. 9.6), and explain the notation.  What new features do you 
get with this model compared to the two models in part (a)? 

Problem 2 

Explain the operation of angular momentum addition in general, where one adds two 

angular momentum operators, L and S, to form a total angular momentum operator j, j = 

L + S. Apply your explanation to the particular case where L and S are the orbital and 

spin angular momentum operators of a nucleon respectively.    

Problem 3 

On the basis of the single-particle shell model with spin-orbit coupling (Fig. 9.6), predict 

the ground-state spin and parity of the following nuclides: 

Bi209  Li6, N14, Mn55, Nb93, Xe131, Au197, Pb207, 

Compare your results with experimental data (e.g., Nuclide Chart); in the case of any 

discrepancy between your predictions and experiments, give an explanation. 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 6 Due: Nov. 1, 2004 

Problem 1 

Use the semiempirical mass formula to calculate the mass of C12 and Bi209. Tabulate the 

individual percentage contribution to the average binding energy per nucleon from the 

volume, surface, Coulomb, asymmetry, and pairing terms.  Compare your mass and B/A 

results with experimental values from the Nuclide Chart. 

Problem 2 

Use the semi-empirical mass formula to determine which isobars with A = 140 should be 

stable. Indicate the various modes of decay and the predicted stable isotope.  Compare 

your results with experimental data.   

Problem 3 

(a) You are given the series disintegration A → B → C → D  (stable), with decay 

constants λA ,λ , λ respectively. Find the number of atoms of B, C, and D B C 

collected in a time t if the activity of A is held constant.  (This is the 

approximation for a very long-lived source). 

(b) Tellurium is bombarded by deuterons in a cyclotron, the reaction being 

131 → I 131Te130 ( Te p d → Xe131  (stable) , ) 

with both decays being β − , and the half lives are 30 hours and 8 days 

respectively. The bombardment conditions are such that the (d,p) reaction is 

equivalent to a source strength of 2 mCi. Find 

(i) the initial rate of I131 production, in µCi  per hour, 

(ii) the number of Xe131 atoms produced during a single 6-hour 

bombaqrdment, 

(iii) the total number of Xe131 atoms obtained eventually if the target were 

allowed to stand undisturbed for several months following a 6-hour 

bombardment. 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 7 Due: Nov. 8, 2004 

Problem 1 

Give a derivation of the Rutherford scattering cross section 

2σ 
Ω 

d
d 

=

⎛
⎜⎜


⎞
⎟⎟


1 zZe 1 
2 sin 44 ( / 2)θ⎝ mv ⎠


Define all the quantities. State the physical meaning of this formula and its significance 

regarding charged particle interactions with matter.  (Note: You are expected to consult a 

reference book for this problem.  You should cite your reference and give enough details 

in your derivation to demonstrate that you have worked through all the steps.) 

Problem 2 

The range-energy relationship for protons in air at 1 atm. and 15o C is given in Fig. 3.9 of 

Meyerhof as well as in Lec14. From this curve deduce the energy loss (in Mev cm2/gm) 

curve for the same energy range.  Compare your result with Fig. 13.2 in the Lecture 

Notes as well as analyze your result using the Bethe formula. 

Problem 3 

Estimate the contributions to the stopping power due to ionization and to radiation for the 

passage of electrons with energy E in aluminum.  Consider E = 0.1, 0.5, 1, 2, and 4 Mev.  

Express your results in both Mev/mm and Mev cm2/gm, and compare your values with 

those given in the Lec14. Discuss the significance of your results and the comparison. 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 8 Due: Nov. 24, 2004 

Problem 1 

(a) Show that the conservation of kinetic energy and linear momentum during an 

elastic collision requires that in the CMCS the speed of each particle is the same 

before and after the collision. 

(b) Does the relative speed of particle 1 with respect to particle 2 change during an 

elastic collision, (1) in the CMCS and (2) in LCS? 

Problem 2 

Consider the problem of neutron elastic scattering in the notation as used in class.  

(a) Find an expression for E4 involving E1 and angle γ  (the angle between the recoil 

direction of M4 and the x-axis).  Is there a one-to-one relation between E4 and γ ? 

(b) Eliminate γ  in favor of θ  in your result in (a), then use the fact that the c

scattering is isotropic in CMCS to find the distribution P(E4), the probability per 

unit energy that the recoil nucleus will have energy E4. 

(c) How would you obtain P(E4) directly from the result for E F '→ E) derived in(


class?  How general is your relation between P and F?


Problem 3 

Verify the relation between the angular differential cross sections for neutron elastic 

scattering in LCS and CMCS, σ (θ ) and σ (θ ) , as discussed in class.  Use this relation to c

discuss the behavior of µ  and µ , where µ = cosθ ?c 



22.101 Applied Nuclear Physics 

(Fall 2004) 

Problem Set No. 9 Due: Dec. 6, 2004 

Problem 1 

Consider Compton scattering of a photon. Derive the four expressions stated in 

the Lecture Notes for (i) the Compton shift, (ii) energy of the scattered photon, (iii) 

energy of the recoiling electron, and (iv) the relation between the angles of the scattered 

photon and the recoiling electron. 

Problem 2 

Calculate the energy distribution of Compton electrons for an incident photon of 

energy 1.20 Mev. Give your results as the energy differential cross section, dσ / dT , in 

units of 10-25 cm2/Mev, at electron energies 0.25, 0.5, 0.75, 0.9 and 0.99 Mev. Make a 

sketch of dσ / dT  and compare with the corresponding figure in the Lecture Notes. 

Problem 3 

A sodium iodide detector in the shape of a 7 cm cube is bombarded by a beam of 

2.8 Mev gamma radiation normal to one face of the cube. 


(a) What fraction of the gamma radiation is detected?


(b) What fraction of the detected gamma appears in the photo peak, the Compton 


distribution, and the pair peaks, assuming no re-absorption of Compton gamma or 


annihilation quanta?


(c) Make a rough estimate of the relative fraction of pair events that appear in the full-


energy (photo) peak, in the one-escape peak, and in the two-escape peak.  Compare your 


result with the figure given in the Lecture Notes. 


(Note: The attenuation coefficients that you will need can be found in Evans, Chap. 25, 


Sec.1. For 0.51 Mev photons, µ = 0.33 cm-1. For 2.8 Mev photons, µ = 0.135 cm-1, 

-1µτ = 2.5 x 10-3 cm , µC = 0.113 cm-1, µκ = 0.020 cm-1.) 



22.101 Applied Nuclear Physics (Fall 2004) 

Appendix A: Concepts of Cross Sections 

It is instructive to review the physical meaning of a cross section σ , which is a 

measure of the probability of a reaction.  Imagine a beam of neutrons incident on a thin 

sample of thickness ∆x  covering an area A on the sample.  See Fig. A.1. The intensity 

of the beam hitting the area A is I neutrons per second.  The incident flux is therefore I/A. 

Fig. A.1. Schematic of an incident beam striking a thin target with a particle emitted into 

a cone subtending an angle θ  relative to the direction of incidence, the 'scattering' angle.  

The element of solid angle dΩ  is a small piece of the cone (see also Fig. A.2). 

If the nuclear density of the sample is N nuclei/cm3, then the no. nuclei exposed is 

NA ∆x  (assuming no shaowing effects, i.e., the nuclei do not cover each other with 

respect to the incoming neutrons).  We now write down the probability for a collision-

induced reaction as 

{reaction probability} = Θ / I = ⎛⎜ 
NA∆x ⎞

⎟ •σ (A.1)
⎝ A ⎠

where Θ  is the no. reactions occurring per sec.  Notice that σ  simply enters or appears 

in the definition of reaction probability as a proportinality constant, with no further 

justification. Sometimes this simple fact is overlooked by the students.  There are other 

ways to introduce or motivate the meaning of the cross section; they are essentially all 

equivalent when you think about the physical situation of a beam of particles colliding 

with a target of atoms.  Rewriting (A.1) we get 
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σ  = {reaction probability} / {no. exposed per unit area} 

Θ 1 ⎡ Θ ⎤ = 
IN ∆x 

= 
I ⎣⎢N ∆x ⎦⎥∆x→0 

(A.2)  

Moreover, we define Σ = Nσ , which is called the macroscopic cross section.  Then (A.2) 

becomes 

Θ
Σ∆x = 

I 
, (A.3) 

or Σ ≡  {probability per unit path for small path that a reaction will occur} (A.4) 

Both the microscopic cross section σ , which has the dimension of an area (unit of σ  is 

the barn which is 10-24 cm2 as already noted above) , and its counterpart, the 

macroscopic cross section Σ , which has the dimension of reciprocal length, are 

fundamental to our study of neutron interactions.  Notice that this discussion can be 

applied to any radiation or particle, there is nothing that is specific to neutrons.  

We can readily extend the present discussion to an angular differential cross 

section dσ / d Ω . Now we imagine counting the reactions per second in an angular cone 

subtended at angle θ  with respect to the direction of incidence (incoming particles), as 

shown in Fig. A.1. Let dΩ  be the element of solid angle, which is the small area through 

d  d  which the unit vector Ω  passes through (see Fig. A.2). Thus, dΩ = sinθ θ ϕ . 
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Fig. A.2. The unit vector Ω  in spherical coordinates, with θ and ϕ being the polar and 

azimuthal angles  respectively (R would be unity if the vector ends on the sphere). 

We can write 

1 ⎛ dΘ ⎞ ⎛ dσ ⎞= ∆⎜ ⎟ N x  ⎜ ⎟ (A.5)
I dΩ ⎠ ⎝ dΩ ⎠⎝ 

Notice that again dσ / d Ω  appears as a proportionality constant between the reaction rate 

per unit solid angle and a product of two simple factors specifying the interacting system 

- the incient flux and the no, nuclei exposed (or the no, nuclei available for reaction). 

Note the condition ∫d dσ dΩ =σ , which makes it clear why dσ / dΩ  is called the Ω( / )  

angular differential cross section. 

Another extension is to consider the incoming particles to have energy E and the 

particles after reaction to have energy in dE' about E'.  One can define in a similar way as 

above an energy differential cross section, dσ / dE  ' , which is a measure of the probability 

of an incoming with incoming energy E will have as a result of the reaction outgoing 

energy E'.  Both dσ / dΩ  and dσ / dE  '  are distribution functions, the former is a 

distribution in the variable Ω , the solid angle, whereas the latter is a distribution in E', the 

energy after scattering. Their dimensions are barns per steradian and barns per unit 

energy, respectively.   

Combining the two extensions above from cross section to differential cross 
2sections, we can further extend to a double differential cross section d σ / dΩdE  ' , which 

is a quantity that has been studied extensively in thermal neutron scattering.  This cross 

section contains the most fundamental information about the structure and dynamics of 
2the scattering sample. While d σ / d ΩdE  ' is a distribution in two variables, the solid 

angle and the energy after scattering, it is not a distribution in E, the energy before 

scattering. 
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In 22.106 we will be concerned with all three types of cross sections, σ , the two 

differential cross sections., and the double differential cross section for neutrons, whereas  

the double differential cross section is beyond the scope of 22.101. 

There are many important applications which are based on neutron interactions 

with nuclei in various media.  We are interested in both the cross sections and the use of 

these cross sections in various ways. In diffraction and spectroscopy we use neutrons to 

probe the structure and dynamics of the samples being measured.  In cancer therapy we 

use neutrons to preferentially kill the cancerous cells.  Both involve a single collision 

event between the neutron and a nucleus, for which a knowledge of the cross section is 

all that required so long as the neutron is concerned.  In contrast, for reactor and other 

nuclear applications one is interested in the effects of a sequence of collisions or multiple 

collisions, in which case knowing only the cross section is not sufficient.  One needs to 

follow the neutrons as they undergo many collisions in the media of interest.  This then 

requires the study of neutron transport - the distribution of neutrons in configuration 

space, direction of travel, and energy. In 22.106 we will treat transport in two ways, 

theoretical discussion and direct simulation using the Monte Carlo method, and the 

general purpose code MCNP (Monte Carlo Neutron and Photon). 
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22.101 Applied Nuclear Physics (Fall 2004) 


Appendix B: Cross Section Calculation - Method of Phase Shift 


References --

P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 1965), Chap 3. 

A. Foderaro, The Elements of Neutron Interaction Theory (MIT Press, 1971), Chap 4. 

We will study a method of analyzing potential scattering; it is called the method 

of partial waves or the method of phase shifts.  This is the quantum mechanical 

description of the two-body collision process.  In the center-of-mass coordinate system 

the problem is to describe the motion of an effective particle with mass µ , the reduced 

mass, moving in a central potential V(r), where r is the separation distance between the 

two colliding particles.  We will solve the Schrödinger wave equation for the spatial 

distribution of this effective particle, and extract from this solution the information 

needed to determine the angular differential cross section σ ( )θ . For a discussion of the 

concepts of cross sections, see Appendix A. 

The Scattering Amplitude f ( )θ 

In treating the potential scattering problem quantum mechanically the standard 

approach is to do it in two steps, first to define the cross section σ ( )θ  in terms of the 

scattering amplitude f ( )θ , and then to calculate f ( )θ by solving the Schrödinger equation. 

For the first step we visualize the scattering process as an incoming beam impinging on a 

potential field V(r) centered at the origin (CMCS), as shown in Fig. B.1.  The incident 

beam is represented by a traveling plane wave, 

(i k�r −ωt ) (B.1)Ψ =  bein 

where b is a coefficient determined by the normalization condition, and the wave vector 

k k  z  ˆ  is directed along the z-axis (direction of incidence).  The magnitude of k is set by =

2 2the energy of the effective particle E = h k / 2µ = hω (the relative energy of the colliding 
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particles). For the scattered wave which results from the interaction in the region of the 

potential V(r), we will write it in the form of an outgoing spherical wave, 

(i kr  −ωt ) 

θ 
e

Ψ = f ( )b (B.2)sc r 

where f ( )θ , which has the dimension of length, denotes the amplitude of scattering in a 

direction indicated by the polar angle θ  relative to the direction of incidence (see Fig. 

B.1). It is clear that by representing the scattered wave in the form of (B.2) our 

intention is to work in spherical coordinates. 

Once we have expressions for the incident and scattered waves, the corresponding 

current (or flux) can be obtained from the relation 

h * ( ) ( *J = 
2µi

⎡⎣Ψ ∇Ψ −Ψ ∇Ψ )⎤ (B.3)⎦ 

2The incident current is J = v b  , where v = hk / µ is the speed of the effective particle.in 

Fig.B.1. Scattering of an incoming plane wave by a potential field V(r), resulting in 

spherical outgoing wave.  The scattered current crossing an element of surface area dΩ 

about the direction Ω  is used to define the angular differential cross section 

(dσ / dΩ ≡ σ θ ) , where the scattering angleθ  is the angle between the direction of 

incidence and direction of scattering. 

2 



For the number of particles per sec scattered through an element of surface area dΩ  about 

the direction Ω  on a unit sphere, we have 

2J ⋅Ω d = Ω f v (θ ) dΩ (B.4) 

The angular differential cross section for scattering through dΩ  about Ω  is therefore (see 

Appendix A), 

J ⋅Ω 2θ σ ) = =( f (θ ) (B.5)
J in 

This is the fundamental expression relating the scattering amplitude to the cross section; 

it has an analog in the analysis of potential scattering in classical mechanics.  

Method of Partial Waves 

 To calculate f ( )θ from the Schrödinger wave equation we note that since this is 

not a time-dependent problem, we can look for a separable solution in space and 

r t) =ψ (r)τ (t) , with τ ttime, Ψ ( ,  ( )  = exp(− itE / h) . The Schrödinger equation to be solved then 

is of the form 

h2⎛ 
( r r∇  +  V r) ⎟ψ ( )  = Eψ ( )  (B.6)⎜ − 

2µ 
2 ⎞ 

⎝ ⎠ 

For two-body scattering through a central potential, this is the wave equation for an 

effective particle with mass equal to the reduced mass, µ = m m2 /(m + m ) , and energy E1 1 2 

equal to the sum of the kinetic energies of the two particles in CMCS, or equivalently 

E = µ v2 / 2 , with v  being the relative speed.  The reduction of the two-body problem to 

the effective one-body problem (B.6) is a useful exercise, although quite standard.  For 
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those in need of a review, a discussion of the reduction in classical as well as quantum 

mechanics is given at the end of this Appendix. 

As is well known, there are two kinds of solutions to (B.6), bound-state solutions 

for E < 0 and scattering solutions for E > 0. We are concerned with the latter situation. 

In view of (B.2) and Fig. B.1, it is conventional to look for a particular solution to (B.6), 

subject to the boundary condition 

ikr 
ikz rψ ( )  → e + f (θ ) 

e (B.7)k r >>ro r 

where r  is the range of force, V(r) = 0 for r > ro. The subscript k is a reminder that the o 

2 2entire analysis is carried out at constant k, or at fixed incoming energy E = h k / 2µ . It 

also means that f ( )θ  depends on E, although this is commonly not indicated explicitly.  

For simplicity of notation, we will suppress this subscript henceforth.  

According to (B.7) at distances far away from the region of the scattering 

potential, the wave function is a superposition of an incident plane wave and a spherical 

outgoing scattered wave. In the far-away region, the wave equation is therefore that of a 

free particle since V(r) = 0.  The free-particle solution to is what we want to match up 

with (B.7). The form of the solution that is most convenient for this purpose is the 

expansion of ψ r( )  into a set of partial waves.  Since we are considering central potentials, 

interactions which are spherically symmetric, or V depends only on the separation 

distance (magnitude of r ) of the two colliding particles, the natural coordinate system in 

r θ ,ϕ ) . The azimuthal angle ϕ  iswhich to find the solution is spherical coordinates, r → ( ,  

an ignorable coordinate in this case, as the wave function depends only on r and θ . The 

partial wave expansion is 

∞ 

r )ψ ( ,θ ) =∑ R (r  P  (cos  θ ) (B.8)
l l 

l=0 
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where P (cos θ )  is the Legendre polynomial of order l . Each term in the sum is a partial 
l

wave of a definite orbital angular momentum, with l  being the quantum number.  The set 

of functions { (P x)}  is known to be orthogonal and complete on the interval (-1, 1).  Some 
l

of the properties of P x( ) are: 
l 

1 2dxP x P x ( )  ( )  = δll  'l '∫ l 2l +1−1 

( 1 (P (1) =1, P − ) = −1)l (B.9)
l l

0 ( )  1( ) = x P x  3 ( )  = (5x3 − 3x) / 2P x =1 , P x  2 ( )  = (3x2 −1) / 2 P x  

Inserting (B.8) into (B.6), and making a change of the dependent variable (to put the 3D 

problem into 1D form), u r  (( )  = rR  r  ) , we obtain
l l 

2⎛ d ( 
u  r  + k 2 −

2µ
( )  −

l l  +1) ⎞ 
( )  = 0 , r < ro (B.10)⎜ 

h2 
V r  ⎟ l2

⎝ dr 2 r ⎠

This result is called the radial wave equation for rather obvious reasons; it is a one-

dimensional equation whose solution determines the scattering process in three 

dimensions, made possible by the properties of the central potential V(r).  Unless V(r) has 

a special form that admits analytic solutions, it is often more effective to integrate (B.10) 

numerically.  However, we will not be concerned with such calculations since our interest 

is not to solve the most general scattering problem. 

Eq.(B.10) describes the wave function in the region of the interaction, r < ro, 

where V(r) = 0, r > ro. Its solution clearly depends on the form of V(r).  On the other 

hand, outside of the interaction region, r > ro, Eq.(B.10) reduces to the radial wave 

equation for a free particle. Since this equation is universal in that it applies to all 

scattering problems where the interaction potential has a finite range ro, it is worthwhile 
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⋅ ⋅  

⋅ ⋅ 

to discuss a particular form of its solution.  Writing Eq.(B.10) for the exterior region this 

time, we have 

⎛ d l l  +1) ⎞ 

⎝ dr 

2

2 
+ k 2 − 

( 
r ⎟

⎠ 
l ( )  = 0 (B.11)u r  ⎜ 2 

which is in the standard form of a second-order differential equation whose general 

solutions are spherical Bessel functions.  Thus, 

u r) = B rj ( )  +C rn kr( kr ( )  (B.12)
l l l l l

where B and C  are integration constants, to be determined by boundary conditions, and 
l l

j and n  are spherical Bessel and Neumann functions respectively.  The latter are
l l

tabulated functions; for our purposes it is sufficient to note the following properties. 

j x  /  ( )  = −cos  x x  ( )  = sin  x x  , n x  /o o

sin x cos x cos x sin x
j x  ( )  = −  −( )  = − , n x1 1 2x x x x 

l 

( )  → 
x 

( )  → 
1 3  5...(2l −1) (B.13)

l x→0 l l+1
j x  

1 3 5...(2 l +1) 
n x  x→0 x

1 1
( )  ( )j x →x>>1 sin(x − lπ / 2) n x →x>>1 − cos(x − lπ / 2)

l l x x 

The Phase Shift δ 
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Using the asymptotic expressions for j  and n
l we rewrite the general solution 

l

(B.12) as 

u (r ) → (B / k )sin(kr − lπ / 2) − (C / k )cos(kr − lπ / 2)
l kr >>1 l l 

= ( /a k  )sin[kr  − (lπ / 2) +δ ] (B.14)
l l 

The second step in (B.14) deserves special attention.  Notice that we have replaced the 

two integration constant B and C by two other constants, a and δ , the latter being 

introduced as a phase shift. The significance of the phase shift will be apparent as we 

proceed further in discussing how one can calculate the angular differential cross section 

through (B.5). In Fig. B.2 below we give a simple physical explanation of how the sign 

of the phase shift depends on whether the interaction is attractive (positive phase shift) or 

repulsive (negative phase shift). 

Combining (B.14) with (B.8) we have the partial-wave expansion of the wave 

function in the asymptotic region, 

ψ ( ,θ ) →kr >>1 ∑ a 
sin[kr − (lπ / 2) +δ ]

r l P (cos θ ) (B.15)
l 

l kr l 

This is the left-hand side of (B.7).  Our intent is to match this with the right-hand side of 

(B.7), also expanded in partial waves, and thereby relate the scattering amplitude to the 

phase shift. Both terms on the right-hand side are seen to depend on the scattering 

angleθ . Since the scattering amplitude is still unknown, we can simply expand it in 

terms of partial waves, 

θf ( )  =∑ f  P  (cos  θ ) (B.16)
l l  

l

where the coefficients f  are the quantities to be determined in the present cross section 
l

calculation.  The other term in (B.7) is the incident plane wave.  It can be written as 
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ikr cosθ )e =∑ il (2l + 1) j (kr  P  (cos θ )
l l 

l 

→kr >>1 ∑ il (2l + 1)
sin( kr − lπ / 2) 

P (cos θ ) (B.17) 
l kr l 

Inserting both (B.16) and (B.17) into the right-hand side of (B.7), we see that terms on 

both sides are proportional to either exp(ikr) or exp(-ikr).  If (B.7) is to hold in general, 

the coefficients of each exponential have to be equal.  This gives 

l l−if = 
1

( ) [a  eiδ l − i (2l + 1)] (B.18)
l 2ik l 

la = i (2l + 1)eiδl (B.19)
l 

Eq.(B.18) is the desired relation between the l -th component of the scattering amplitude 

and the l -th order phase shift. Combining it with (B.16), we have the scattering 

amplitude expressed as a sum of partial-wave components 

∞ 

θ iδ lf ( )  = (1/ k )∑ (2l + 1)e sin  δ P (cos  θ ) (B.20)
l l  

l=0 

This expression, more than any other, shows why the present method of calculating the 

cross section is called the method of partial waves.  Now the angular differential cross 

section, (B.5), becomes 

2∞ 

σ θ iδ l( )  = D 2 ∑ (2l + 1)e sin  δ P (cos  θ ) (B.21)
l l  

l=0 

where D = 1/ k is the reduced wavelength. Correspondingly, the total cross section is 

8 



∞ 
2 2σ = ∫ dΩσ θ( )  = 4πD ∑ (2l +1)sin  δ (B.22)

l 
l=0 

Eqs.(B.21) and (B.22) are very well known results in the quantum theory of potential 

scattering. They are quite general in that there are no restrictions on the incident energy.  

Since we are mostly interested in calculating neutron cross sections in the low-energy 

regime (kro << 1), it is only necessary to take the leading term in the partial-wave sum. 

The l = 0 term in the partial-wave expansion is called the s-wave.  One can make 
2 2a simple semiclassical argument to show that at a given incident energy E = h k / 2µ , only 

those partial waves with l  < kro make significant contributions to the scattering.  If it 

happens that furthermore kro << 1, then only the l  = 0 term matters.  In this argument 

one considers an incoming particle incident on a potential at an impact parameter b.  The 

angular momentum in this interaction is hl  = pb, where p = hk  is the linear momentum 

of the particle. Now one argues that there is appreciable interaction only when b <  ro, the 

range of interaction; in other words, only the l  values satisfying b = l /k < ro will have 

significant contriubution to the scattering.  The condition for a partial wave to contribute 

is therefore l  < kro 

S-wave scattering 

We have seen that if kro is appreciably less than unity, then only the l  = 0 term 

contributes in (B.21) and (B.22).  What does this mean for neutron scattering at energies 

around kBT ~ 0.025 eV? Suppose we take a typical value for ro at ~ 2 x 10 -12 cm, then 

we find that for thermal neutrons kro ~ 10-5. So one is safely under the condition of low-

energy scattering, kro << 1, in which case only the s-wave contribution to the cross 

section needs to be considered.  The differential and total scattering cross sections 

become 

2 2σ θ( )  = D sin  δ (k ) (B.23)o 
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2 2σ = 4πD sin  δ (k ) (B.24)o 

It is important to notice that s-wave scattering is spherically symmetric in that σ ( )θ  is 

manifestly independent of the scattering angle (this comes from the property Po(x) = 1). 

One should also keep in mind that while this is so in CMCS, it is not true in LCS.  In both 

(B.23) and (B.24) we have indicated that s-wave phase shift δ  depends on the incoming o

oenergy E. From (B.18) we see that f = (eiδ sin  δ ) / k . Since the cross section must be o o 

finite at low energies, as k → 0 fo has to remain finite, or δ k( )  → 0 . Thus we can set o 

[eiδ ( )olim k→0 
k sin δ (k )] = δ (k ) = −ak  (B.25)o o 

where the constant a is called the scattering length.  Thus for low-energy scattering, the 

differential and total cross sections depend only on knowing the scattering length of the 

target nucleus, 

σ θ( )  = a2 (B.26)  

2σ = 4πa (B.27)  

We will see in the next lecture on neutron-proton scattering that the large scattering cross 

section of hydrogen arises because the scattering length depends on the relative 

orientation of the neturon and proton spins. 

Physical significance of sign of scattering length 

One can ask about the physical meaning of the scattering length a.  Although the 

sign of a does not affect the magnitude of the cross sections, it carries information about 

the scattering potential.  This is readily seen from the geometric significance of a.  Fig. 

4.2 shows two sine waves, one is the reference wave sin kr  which has not had any 

10 



Fig. 4.2. Comparison of unscattered and scattered waves showing a phase shift δ in the o 

asymptotic region as a result of the scattering. 

interaction (unscattered) and the other one is the wave sin(kr + δ ) which has suffered a o 

phase shift by virtue of the scattering. The entire effect of the scattering is seen to be 

represented by the phase shift δ , or equivalently the scattering length through (B.25).  o 

Thus in s-wave scattering the angular differential and total scattering cross sections 

depend only on knowing the scattering length a. The scattered wave, written in the form 

(of uo ~ sin k r − a) , suggests a simple but revealing geometric construction.  In the 

vicinity of the potential, we can take kro to be small (this is agin the condition of low­

(energy scattering), so that uo ~ k r − a) , in which case a becomes the distance at which the 

wave function extrapolates to zero from its value and slope at r = ro. There are two ways 

in which this extrapolation can take place, depending on the value of kro. As shown in 

Fig. B.3, when kro > π / 2 , the wave function has reached more than a quarter of its 

wavelength at r = ro. So its slope is downward and the extrapolation gives a distance a 

which is positive.  If on the other hand, kro < π / 2 , then the extrapolation gives a distance 

a which is negative.  The significance is that a > 0 means the potential is such that it can 

have a bound state, whereas a < 0 means that the potential can only give rise to a virtual 

state. 

11 



Fig. B.3.  Geometric interpretation of positive and negative scattering lengths as the 

distance of extrapolation of the wave function at the interface between interior and 

exterior solutions, for potentials which can have a bound state and which can only virtual 

state respectively. 

Reduction of two-body collision to an effective one-body problem  

We conclude this Appendix with a supplemental discussion on how the problem 

of two-body collision through a central force is reduced, in both classical and quantum 

mechanics, to the problem of scattering of an effective one particle by a potential field 

V(r) [Meyerhof, pp. 21]. By central force we mean the interaction potential is only a 

function of the separation distance between the colliding particles.  We will first go 

through the argument in classical mechanics.  The equation describing the motion of 

particle 1 moving under the influence of particle 2 is the Newton's equation of motion, 

m r&&1 = F (B.28)1 12  

where r is the position of particle 1 and F 12 is the force on particle 1 exerted by particle1 

2. Similarly, the motion of motion for particle 2 is 

2 &&2 = F 21  =  −  F (B.29)m r  12  

where we have noted that the force exerted on particle 2 by particle 1 is exactly the 

opposite of F 12 . Now we transform from laboratory coordinate system to the center-of-

mass coordinate system by defining the center-of-mass and relative positions, 

12 



m r1 + m  r  2 2 =r = 1 , r r1 − r	 (B.30)c 2 m m2+1 

Solving for r1 and r 2 we have 

m1r1 = rc +	
m2 r , r 2 = rc − r (B.31)
+ 1 +m m2	 m m21 

We can add and subtract (B.28) and (B.29) to obtain equations of motion for r  and r . c 

One finds 

(m + m )r&& = 0	 (B.32)1 2 c 

µ &&r = F =  −  dV  r  ( ) /  d r	 (B.33)12 

with µ = m m  
2 

/(m + m ) being the reduced mass.  Thus the center-of-mass moves in a 
1 1 2 

straight-line trajectory like a free particle, while the relative position satisfies the equation 

of an effective particle with mass µ  moving under the force generated by the potential 

V(r). Eq.(B.33) is the desired result of our reduction.  It is manifestly the one-body 

problem of an effective particle scattered by a potential field.  Far from the interaction 

field the particle has the kinetic energy E = µ r&( )2 / 2 

The quantum mechanical analogue of this reduction proceeds from the 

Schrödinger equation for the system of two particles, 

h2 ⎞⎛ 2 h2 
2 (⎜ − ∇  −  ∇  +  V r1 − r 1,) ⎟Ψ(r  r  ) = (E + E2 )Ψ(r  r  ) (B.34)2 1, 2 1 22

⎝ 2m1 
1 2m2 ⎠ 

Transforming the Laplacian operator ∇2  from operating on ( r , r ) to operating on ( ,r r) ,1 2 

we find 

13 

c 



⎞ 
⎜ − 

h2
2∇ −  ∇ +  V r ⎟ , + , 

⎛ h2 
2 ( )  Ψ(r r  ) = (E  E  )Ψ(r r  ) (B.35)c c

⎝ 2(m m  2µ ⎠ 
c 

1 + 2 
c 

Since the Hamiltonian is now a sum of two parts, each involving either the center-of-

mass position or the relative position, the problem is separable.  Anticipating this, we 

have also divided the total energy, previously the sum of the kinetic energies of the two 

particles, into a sum of center-of-mass and relative energies.  Therefore we can write the 

wave function as a product, Ψ( ,r r) =ψ (r )ψ (r) so that (B.35) reduces to two separatec c c 

problems, 

h2 
2 r r− ∇ ψ ( )  = Eψ ( )  (B.36)  

1 + 2 
c  c  c2(m m ) c c c 

h2⎛ 
∇ +  V r) ψ ( )  = E r( ⎟ r ψ ( )  (B.37)⎜ − 

2µ 
2 ⎞ 

⎝ ⎠ 

It is clear that (B.36) and (B.37) are the quantum mechanical analogues of (B.32) and 

(B.33). The problem of interest is to solve either (B.33) or (B.37).  As we have been 

discussing in this Appendix we are concerned with the solution of (B.37).  
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Sample questions for Quiz 1, 22.101 (Fall 2004) 

Following questions were taken from quizzes given in previous years by S. Yip.  They 
are meant to give you an idea of the kind of questions (what was expected from the class 
in previous times) that have been asked in the past.  Percentage credit is indicated for 
each question, total for the 90-min Quiz (closed book) is 100%.    

You will have to decide for yourself what connections, if any, there may be between 
these questions and the Quiz 1 that will be conducted on Oct. 13, 2004. 

Problem 1  (25%) 

Consider a beam of particles, each of mass m and having kinetic energy E, incident from 
the left upon a square barrier of height Vo and width L, with E < Vo. Inside the barrier 
the wave function is of the form 

κxψ (x) = ae + be− κx 

where you are given the result 

a 1 + ik / κ −2κ L= e
b 1 − ik / κ 

with h 2k2 / 2m = E  and h 2κ 2 / 2  m = V − E .o 

(15%) (a) Using the information given on ψ ( x)  inside the barrier, derive an 
approximate expression for the transmission coefficient T for the case of thick barriers, 
κL >> 1 . 

(10%) (b) Sketch qualitatively the absolute square of the wave function ψ (x )2 

everywhere and indicate the spatial dependence of ψ (x )2  wherever it is known. Does 
ψ (x )2  vanish at any point? 

Problem 2 (35% total) 

Consider the scattering of low-energy neutrons by a nucleus which acts like an 

impenetrable sphere of radius R. 


(20%) (a) Solve the radial wave equation to obtain the phase shift δ .
o 

(10%) (b) Given that the angular differentil scattering cross section for s-waves is 
(dσ / dΩ) = (1 / k 2 )sin2 δ ( k) , use your result from (a) to find the total scattering cross o o 



section σ . Suppose we apply this calculation to n-p scattering and use for R the radius o 

of the deuteron, R = h m EB , where mn is the neutron mass and EB is the ground staten

energy of the deuteron. Find R in unit of F (1 F = 10-13 cm), and σ in barns.o

(5%) (c) Does your result agree with the experimental value of neutron scattering cross 
section of hydrogen?  If not, explain the reason for the discrepancy. 

Problem 3  (25%) 

(a) Calculate the phase shift δ o  for s-wave scattering of a particle of mass m and incident 
energy E by a potential barrier V(r) = Vo, r < ro, and V(r) = 0, r > ro, with E < Vo. 

(b) Simplify your result by going to the limit of low-energy scattering.  Examine the total 
scattering cross section σ = (4π sin2 δ o ) /  k2  in this limit.  Sketch σ  as a function of k ro ,o

where k 2 = 2mV / h2  and indicate the value of σ  in the infinite barrier limit, k r → ∞ .o o o o 

Problem 4 (25%) 


Consider a one-dimensional wave equation with the potential 


-Vo − L1 ≤ x ≤ L1    (region 1) 

V(x) = V1 − L2 ≤ x ≤ − L1 , L1 ≤ x ≤ L2 (region 2) 

0 otherwise    (region 3) 

(a) Find the x-dependence of the wave function in each of the 3 regions for E < 0 

(b) What are the boundary conditions to be applied at the interface? (You are asked    
to state the boundary conditions, but not to apply them.)  

Problem 5 (20%) 


A particle of mass m is just barely bound by a one-dimensional potential well of width L.  

Find the value of the depth Vo. 


Problem 6 (25%) 


Suppose you are given the result for the transmission coefficient T for the barrier 

penetration problem, one-dimensional barrier of height Vo extending from x=0 to x=L, 


oT = ⎢
⎡ 
1 + 

V 2 

sinh 2 KL⎥
⎤
− 1 

(⎣ 4 V E − E)o ⎦ 



(where K 2 = 2 V m − E ) / h 2  is positive (E < Vo).o 

(a)	  From the expression given deduce T for the case E > Vo without solving the 
wave equation again. 

(b) Deduce T for the case of a square well potential from the result for a square 
barrier. 



Sample questions for Quiz 2, 22.101 (Fall 2004) 

Following questions were taken from quizzes given in previous years by S. Yip.  They 
are meant to give you an idea of the kind of questions (what was expected from the class 
in previous times) that have been asked in the past.  Percentage credit is indicated for 
each question based on 100% for a 90-min Quiz (closed book).  Problem numbering 
means nothing here.    

You will have to decide for yourself what connections, if any, there may be between 
these questions and the Quiz 2 that will be conducted on Nov. 10, 2004. 

Problem 1 (20%) 

The reaction, 3H+1H→2
3He + n  , has a Q-value of -0.764 Mev. Tritium 3H  also 

undergoes β−  decay with end-point energy of 0.0185 Mev.  Find the difference between 
the neutron and hydrogen mass in Mev.  Draw an energy level diagram showing the 
levels involved in the reaction and the β−  decay, then indicate in your diagram the proton 
separation energy Sp, the Q-value, and the end-point energy Tmax. 

Problem 2 (35%) 

(a) (10%) Among the energy levels of a central force potential is a level labeled 1d.  
Suppose we now add a spin-orbit interaction term to the Hamiltonian such as in the shell 
model. Using the spectroscopic notation, label the new levels that evolve from this 1d 
level. Specify how many nucleons can go into each of the new levels, and explicitly 
write out the quantum numbers specifying the wave function of each nucleon. 

(b) (7%) In an odd-odd nucleus the last neutron and proton go into a 1d3/2 and a 1g9/2 
level respectively.  Use the shell model to predict the spin and parity of this nucleus. 

(c) (8%)  A beta decay occurs between initial state (3-) and final state (3+), while a 
gamma decay occurs between (2-) and (4+) . What is the dominant mode of decay in each 
case? 

(d) (10%)  The binding energy per nucleon of 3
6 Li  is about 5.3 Mev while that of 2

4 He  is 
7.1 Mev. Does this mean that the former is unstable against α − decay?  Explain.  (Note: 
The binding energy of the deuteron 2H  is 2.25 Mev.) 

Problem 3 (20%) 
In the derivation of the Bethe-Bloch formula for the energy loss per unit path length of a 
charged particle (ze) moving with speed v, it was shown that an atomic electron in the 
medium would gain an amount of kinetic energy 



pe 
2 22(ze)

T = = 
2m mv2b2 

where m is the electron mass and b the impact parameter.  Suppose one can ignore the 
binding energy of the atomic electrons so that each electron is ejected, find the number of 
electrons per unit path length with kinetic energy in dT about T. (Hint:  Think of the 
number of electrons in a collision cylinder, with radius b, thickness db, and length ∆ x.) 

Problem 4  (15%) 

Sketch the energy variations of the stopping power (energy loss per unit path) of both 
electrons and protons in lead (in the same figure).  Discuss all the features of these two 
curves that you know. 

Problem 5  (20%) 

On the basis of the Bethe-Bloch formula, the stopping power of a material for incident 
electrons (with kinetic energy Te ) can be related to that for incident alpha particles (with 
kinetic energy Tα ). Denoting the two by −(dT / dx)  and −( dT / dx)α  respectively,e

sketch the two curves on the same graph to show how knowing one allows you to find the 
other. 

Problem 6  (15%) 

At time t = 0 you are given an atom that can decay through either of two channels, a and 
b, with known decay constants λ  and λb . Find the probability that it will decay by a

channel a during the time interval between t1  and t2 , with t1  and t2  arbitrary.  Interpret 
your result. 

Problem 7 (40%) 

Discuss briefly the significance of each of the following.  Give a definition whenever it is 
appropriate. (If you use the same notation as the Lecture Notes, you may assyme the 
symbols are already defined in the Notes.) 

(a) The asymmetry term in the empirical mass formula. 
(b) Mass parabolas for isobars for even A (give a sketch). 
(c) Mass or energy requirements for electron capture. 
(d) Secular equilibrium in radioactive decay. 
(e) Bragg curve for charged particles (give sketch). 
(f) Bethe formula for stopping power and its relativistic corrections. 
(g) Charge and mass dependence of bremstrahlung intensity. 
(h) Mass absorption coefficient for charged particles. 



Sample questions for Quiz 3, 22.101 (Fall 2004) 

Following questions were taken from quizzes given in previous years by S. Yip.  They 
are meant to give you an idea of the kind of questions (what was expected from the class 
in previous times) that have been asked in the past.  Percentage credit is indicated for 
each question based on 100% for a 90-min Quiz (closed book).  Problem numbering 
means nothing here.    

You will have to decide for yourself what connections, if any, there may be between 
these questions and the Quiz 3 that will be conducted on Dec. 8, 2004. 

Problem 1 (20%) 

Define concisely what is Compton scattering.  Derive the relation between incident 
gamma energy hω  and scattered gamma energy hω'  for Compton scattering which also 
involves the scattering angle θ . What is the similarity (and difference) between this 
relation and the corresponding relation involving incident and scattered energies in 
neutron elastic scattering? 

Problem 2  (30%) 

Consider the measurement of monoenergetic gammas (energy hω ) in a scintillation 
detector whose size is small compared to the mean free path of the secondary gammas 
produced by interactions of the incident (primary) gammas in the detector. 

(10%) (a) Sketch the pulse-height spectrum of low-energy gammas, say hω  < 500 kev. 
Explain briefly the important characteristics of this spectrum in terms of the different 
interactions that can take place. 

(10%) (b) Repeat (a) for higher-energy gammas, hω  > 2 Mev. 

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were 
not small?  Give a sketch and explain briefly. 

Problem 3 (30%) 

(15%) (a) You are told the reaction 13C(d , p)14 C  has a resonance at a deuteron energy Ed 
(LCS), and following this, 14C  undergoes β −  decay to 14N . Draw the energy level 
diagram for this situation in which you show explicitly how the following energies can be 
calculated in terms of known masses and Ed: (1) kinetic energy available for reaction To, 
(2) Q value for the reaction, (3) deuteron separation energy, (4) proton separation energy, 
and (5) Qβ . 

(15%) (b) On the basis of (a), predict whether or not the reaction 11B(α ,n)14 N  will have a 
resonance, and if so, at what energy of the α  particle this will occur.  (Since you are not 



given numerical values, you should leave your answer in terms of defined quantities such 
as masses and various energies.) 

Problem 4 (20%) 

Sketch the energy variation of an observed resonance in (a) neutron elastic scattering 
(resonance scattering in the presence of potential scattering), and (b) neutron inelastic 
scattering. Comment on the characteristic features in the cross sections, especially the 
low-energy behavior below the resonance. What is the connection between the energy at 
which the observed cross sections show a peak and the energy of the nuclear level 
associated with the resonance?  (You may assume it is the same level in both cases.) 

Problem 5 (20%) 

Sketch of the peaks that one would observe in the pulse-height spectra of a small detector 
in the presence of a 2-Mev gamma ray source, including any radiation from the 
background. For each peak identify the radiation interaction process that gives rise to it 
and indicate the energy at which this peak would appear.   

Problem 6 (25%) 

Consider the compound nucleus reaction of inelastic scattering of neutrons at energy T1 
(LCS) by a nucleus Z

AX . 

(a) Draw the energy level diagram showing the different energies that one can use to 
describe this reaction (including the Q value). 

(b) Write down the corresponding Breit-Wigner cross section in terms of some of the 
energies shown in (a). Define all the  parameters appearing in your expression. 

Problem 7  (10%) 


Consider the reaction a + b → c + d , where Q is nonzero and particle b is stationary.  

What can you say about the magnitude and direction of the velocity of the center-of-mass 

before and after the reaction? 


Problem 8 (20%) 


The decay scheme of 80 Br  is shown below. Classify the various decay modes and 

estimate all the decay constants that you can. 


(energy level diagram shown separately – not available for the sample) 


Problem 9  (15%) 




At time t = 0 you are given an atom that can decay through either of two channels, a and 
b, with known decay constants λ  and λb . Find the probability that it will decay by a

channel a during the time interval between t1  and t2 , with t1  and t2  arbitrary.  Interpret 
your result. 

Problem 10  (20% total) 

Consider a beam of collimated, monoenergetic neutrons (energy E) incident upon a thin 
target (density N atoms per cc) of area A and thickness ∆x  at a rate of I neutrons/sec. 
Assume the cross sectional area of the beam is greater than A.  An energy sensitive 
detector subtended at an angle θ  with respect to the incident beam direction is set up to 
measure the number of neutrons per second scattered into a small solid angle dΩ  about 
the direction Ω  and into a small energy interval dE’ about E’.  Let this number be 
denoted by Π . 

(a) (15%) 	Define the double (energy and angular) differential scattering cross section 
d 2σ / dΩdE' in terms of the physical situation described above such that you relate 
this cross section to the scattering rate Π  and any other quantity in the problem.   
(You may find it helpful to draw a diagram of the specified arrangement.) 

(b) (5%) 	How is d 2σ / dΩdE'  related to the angular and energy differential cross 
sections, dσ / dΩ  and dσ / dE' , respectively (no need to define the latter, assume 
they are known)? 

Problem 11  (25%) 

In neutron elastic scattering by hydrogen where the target nucleus is assumed to be at 
rest, the ratio of final to initial neutron energy is E’/E = (1/2)(1 + cos θc ), where θ  is the c

scattering angle in CMCS.  Suppose you are told the angular distribution of the scattered 
neutrons is proportional to cos θ  for 0 ≤ θ ≤ π / 2  and is zero for all other values of θ .c c 

Find the corresponding energy distribution F( E → E' ) . Sketch your result and discuss 

how it is different from the case of isotropic angular distribution. 


Problem 12  (20% total)


Give a brief and concise answer to each of the following. 


(a) (7%)  What is the physical picture of the model used to estimate the decay constant in 
alpha decay (give sketch).  Why does the model give an upper limit for the decay 
constant?. 

(b) (4%)  What is electron capture and with what process does it compete? 

(c) (4%) What is internal conversion and with what process does it compete? 

c 



(d) (5%) Give a sketch of the variation of the neutron cross section of C in the energy 
region below 0.1 Mev and explain the features. 
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Fall 2004 

QUIZ No. 1 (closed book) 	 October 13, 2004 

Problem 1 (10%) 

Suppose you do not know the gamma ray energy that is given off when the proton 
absorbs a neutron, but you have the Chart of Nuclides.  How would you go about 
determining the energy of the gamma (state the steps but do not do the math)?  Can you 
also find out the cross section value for this reaction? 

Problem 2 (25%) 

In a one-dimensional system with a square well potential, depth Vo and range ro, is it 
possible to have at least one bound state no matter what the values of Vo and ro? What 
happens in three dimensions with a spherical well potential, depth Vo and range ro? In 
each case, explain your answer with a sketch of the wave function.  [Note: you should 
answer this question without going through any derivation.] 

Problem 3 (25%) 

Consider the reflection of a particle with mass m and energy E incident from the left upon 
a 1D potential barrier, V(x) = Vo, x > 0, and V(x) = 0, x < 0. Find the reflection 
coefficient R for E > Vo. Investigate the limit of E → V .o 

Problem 4 (40%) 

Consider the scattering of a particle of mass m and incident kinetic energy E by a 
spherical well potential, depth Vo and range ro. You are given the following information. 

2 2The s-wave scattering cross section is σ = (4π / k )sin δ (k) , where δ (k) is ano	 o o

energy-dependent phase shift.  In the case of low-energy scattering, i.e., kro << 1,  δ (k)o

is given by 

tan δ (k) ~ (k / K cot Kr )(1− Kr cot Kr )	 (*)o	 o o o 

K 2	 2where h 2 / 2m = V , and h 2 k / 2m = E .o

(a)  (8%) Define the scattering length a and express σ  in terms of a.o 

(b) (20%) Find a from eq.(*) [hint:  you can take δ (k )  to be small.].  Discuss (and o

give a sketch) the behavior of σ o as a function of Kro. Do you see a connection 
between the behavior of σ and the calculation of bound states in a deep spherical o 

well potential? 
(c) (12%) 	What changes do you expect if the scattering is by a spherical barrier of 

height Vo with the same range (give a sketch)?  
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QUIZ No. 2 (closed book) November 10, 2004 

Problem 1 (10%) 

+Explain briefly what is the reason for introducing the total momentum, j = SL , in the 
Nuclear Shell model.  How does this affect the labeling of the states? 

Problem 2 (15%) 

Since the binding energy per nucleon (B/A) of 2 He4 , at 7.07 Mev, is higher than that of 

3 Li , at 5.33 Mev, it may appear that the former is more stable than the latter and 
therefore Li6 should spontaneously undergo α -decay, 

6 4 2Li →2 He +1 H3 

2where the B/A of 1 H  is 1.11 Mev. Determine whether this is indeed the case. 

Problem 3 (15%) 

The basic idea underlying the C14 dating method is that radioactive C14 is produced 
continuously in the atmosphere by cosmic rays and finds its way into living plants and 
animals by carbon exchange.  When the plant or animal dies the exchange process stops.  
How would you use this idea to determine the age of an antique wooden chair (when the 
tree was cut), that is, what activity would you measure and how would you interpret the 
data?  Give a sketch of your method. (Note:  The equilibrium concentration of C14 in the 
air is a known constant. C14 undergoes β -decay to N14 which is stable.) 

Problem 4 (20%) 

In analyzing the energy loss per unit path length of a charged particle (ze) moving with 
speed v, an atomic electron in the medium located at an impact parameter b will gain an 
amount of kinetic energy equal to 

2 

T = 
2(ze 

2

2 )
2
b mv


from collision with the charged particle, where m is the electron mass.  Suppose you are 
told to ignore the binding energy of the atomic electrons, so that all the electron in a 
collision cylinder of radius b, thickness db, and length ∆ x are ejected. Find the number 
of electrons per unit path length ejected with kinetic energy in dT about T.  (Hint: Think 
of this number as a distribution.) 

(continue to next page) 1/2 



22.101 (Fall 2004) 
Quiz 2 – cont’d 

Problem 5 (40% total, 8% each) 

Give a short and concise answer to each of the following questions. 

(a) Derive using a sketch the asymmetry term in the empirical mass formula. 

(b) Explain what isβ + -decay, then state and justify the energy condition for this 
process. 

(c) Sketch schematically the curve for the stopping power of a heavy charged particle 
in a high-Z medium in the energy range, zero to three times its rest mass energy.  
Label all the characteristic energies that you know, and explain what physical 
processes are represented in the curve. 

(d)  Show that the range of anα -particle and a proton, both having the same initial 
speed, will be approximately the same. 

(e) Is bremsstrahlung an elastic or inelastic process (explain)?  Why is this process 
more important for electron than for proton in problems of interest to the class. 
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