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PREFACE 

Just like its ten predecessors, the present volume of PROGRESS IN OPTICS 
reviews research activities in various branches of modern optics and related 
fields. 

In the opening article G. A. Agarwal presents an account of the master 
equation techniques that are more and more frequently being applied to 
problems arising in the theory of the laser and of the interaction between 
laser beams and atomic systems. In the second article, H. Yoshinaga des- 
cribes developments in the spectroscopic techniques in the far infrared. In 
the next article E. G. Lean discusses two main areas in the field of the inter- 
action of light and acoustical waves: light diffraction by acoustic surface 
waves and the interaction of optical guided waves and acoustic surface wa- 
ves. An article by 0. Bryngdahl presents an account of the theory and novel 
uses of evanescent waves. These waves, whose amplitudes decay in space 
with position, are usually generated at sharp boundaries, or in the process of 
interaction of ordinary waves with a material medium. In the fifth article, 
A. V. Crewe discusses the production of electron probes using a field emis- 
sion source. Probes of this kind, based on the quantum mechanical tunnel- 
ling process of electrons that arises close to a metal surface, are finding good 
uses in scanning microscopes and microanalysis. In the subsequent article 
J. A. Arnaud discusses novel methods for the theoretical analysis of optical 
beams. In the concluding article E. W. Marchand reviews the theory 
of lenses formed by inhomogeneous media. Until recent times lenses of 
this kind were largely regarded by lens designers as mathematical curiosities. 
However, modern technological developments promise practical realization 
of such optical elements. 

Department of Physics and Astronomy 
University of Rochester, N.Y., 14627 
April 1973 

EMIL WOLF 
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8 1. Introduction 

In recent years increasing use has been made of methods of quantum 
statistical mechanics and stochastic processes in treatments of various 
problems in quantum optics. This is seen from a large number of publica- 
tions dealing with the theory of lasers (GORDON [1967], HAKEN [1970], 
LAX [1966c, 1968a1, SCULLY and LAMB [1967]), with superradiance 
(AGARWAL [1970; 1971b, c, el, BONIFAC~O et al. [1971a, b]), with problems 
in nonlinear optics such as parametric oscillators (GRAHAM [ 19681). More- 
over some of the methods were specifically developed to treat the problems 
in quantum optics. These include the well known phase space methods 
(GLAUBER [ 1963, 19651, SUDARSHAN [ 19631, CAHILL and GLAUBER [ 1969a, b], 
AGARWAL and WOLF [1968, 1970a, b, c], LAX [1968b]). In phase space 
methods the c-number distribution functions for quantum systems are 
introduced, which in many physical situations are found to obey equations 
of the Fokker-Planck type. One may then use the language of stochastic 
processes to study various quantum systems. In quantum optics, one is 
usually concerned with the study of a subsystem which is a part of a large 
system, for example, in case of the laser one is mainly interested in the 
statistical properties of the emitted radiation. In this context master equation 
methods have played a very important role. 

Master equation methods have found applications in many branches of 
physics such as in the theory of relaxation processes (BLOCH [1956, 19571, 
REDFIELD [1957, 19651, ABRAGAM [1962], ARGYRES and KELLEY [1964]), 
anharmonic interaction in solids (BROUT and PRIGOGINE [ 19561, PRIGOGINE 
[ 19621, CARRUTHERS and DY [ I966]), superfluids (LANCER [ 1969]), transport 
phenomenon (CHESTER and THELLUNG [1959], VANHOVE [1959], KOHN and 
LUTTINGER [ 19571, ARGYRES [ 1966]), optical pumping (WILLIS [ 1970]), 
superradiance (ACARWAL [1970, 1971b, c, el, BONIFACIO et al. [1971a, b]), 
Brownian motion of a quantum oscillator (AGARWAL [1971d]), in the 
quantum theory of damping (LOUISELL and MARBURGER [ 19671, AGARWAL 
[ 1969]), in the kinetic theory of gases (see, for example, PRIGOGINE [1962]), 
in the theory of lasers (LAX [ 1966~1, HAAKE [ 1969b1, HAKEN [ 1970]), etc. 

3 
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We start by giving a brief history of the subject. A master equation was 
first obtained by PAULI [1928]. He obtained an equation of motion for the 
diagonal elements pnn of the density operator by making the statistical 
hypothesis of random phases at all times. Pauli’s master equation has the 
form 

where ynm is the transition probability per unit time for the system to make 
a transition from the state Irn) to the state In). It should be noted that pnn 
is the probability that the system be found in the state In) and, therefore, 
(1.1) is of the form of a rate equation. An equation of the type (1.1) for 
P . , ~  is also expected from the principle of detailed balance. 

We will now outline Pauli’s derivation. Our presentation follows that of 
VAN HOVE [1962]. We write the Hamiltonian of the system as 

H = Ho+gH,,  (1.2) 

where H,, is the unperturbed Hamiltonian and gH, is a small perturbation. 
We work in a representation in which Ho is diagonal, with eigenfunctions 
I$,,) and eigenvalues En. The state of the system at time t + A t  is related 
io the state at time t by the unitary transformation 

I$(t+At)) = exp {-i(Ho+gH,)At}l$(t)), (1.3) 

where h has been put equal to unity and this we do throughout this article. 
On expanding I$(t+ At)) and I$ ( t ) )  in a complete set of states 

Pauli made the statistical assumption of random phase at all times. This 
assumption enables us to ignore all the terms in (1.5) with rn # 1. In fact 
the assumption of random phases implies that the terms in (1.5) with 
rn # I oscillate very rapidly and so they average out to zero. Eq. (1.5) then 
reduces to 

Pn(t+Al) = C I($nI ~ X P  {-i(Ho+gH,)At}Ill/m)12pm(t). (1.6) 
m 
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Since At is small enough the expression I($"[ exp { -i(Ho+gHl)At}l$,)lZ 
for n # m is easily evaluated by first order perturbation theory and one 
finds that 

I($nI ~ X P  {-i(H~+gH,)At)Icl/m)IZ = YnmAt, (a # m), (1.7) 

Ynm = 2ng2a(En - E m ) I  <$nI I$m) I (1.8) 

where 

Equation (1.6) in the limit At  -+ 0 leads to the Pauli master equation (1.1) 
if use is also made of the following identity 

c 1($,1 exp {-i(H0+g~,)At)l$,)lZ = 1- (1.9) 
m 

In the derivation it has also been assumed that the spectrum is continuous. 
Pauli's equation is valid for times such that z, << t << irelax, where z, is 
the interaction time and trelax is the relaxation time. The 'interaction time' 
for the problem of anharmonic interaction in solids, for example, is of the 
order of (coo)-', where wD is the Debye frequency (see e.g. PRIGOCINE 
[ 19621). 

In the past two decades, there has been revival of interest in deriving the 
master equations by making far less reaching assumptions than Pauli did. 
The work on the derivation of the master equations can mainly be divided 
into three groups: (i)  VAN HOVE [1955, 1957, 19621, (ii) Prigogine and his 
co-workers (see e.g. PRIGOCINE [1962]) and (iii) ZWANZIG [1961a, 19641. 
VanHove appears to have been the first to give a rigorous derivation of the 
Pauli equation. He also derived master equations to all orders in perturba- 
tion. Prigogine et al. made extensive use of diagrammatic methods to derive 
master equations. Zwanzig developed very elegent projection operator 
methods for deriving the master equations to all orders in perturbation and 
also established the identity of various other master equations (MONTROLL 
[196I], PRIGOGINE and RESIBOIS 119611). 

In the present article we will not be concerned with rigorous derivation 
of master equations but rather in reviewing research that demonstrates the 
power of the master equation approach in the study of many problems in 
quantum optics (for rigorous derivation of master equations see for example, 
VAN KAMPEN [1954], VAN HOVE [1955, 19571, EMCH and SEWELL [1968]). 
We will show how these techniques may be employed in studies of the 
relaxation of oscillators and spin systems (two-level atomic systems), of 
lasers and of superradiance. We will make use of Zwanzig's projection 
operator techniques to obtain master equations for a wide variety of systems. 

The density operator p characterizing the state of a quantum mechanical 
system satisfies the equation of motion 
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aplat = - i 2 p ,  (1.10) 

9 = [H,  1. (1.11) 

where the Liouville operator 3 is given by 

Zwanzig noted that the part of the density operator which is of interest 
can be obtained from the total density operator by suitably projecting it. 
To obtain an equation of motion for the diagonal elements of p ZWANZIG 
[1961a, 19641 introduced the following projection operator 

p r n n m f n ,  = a m ,  a m m ?  am, 4 
(1.12) 

Zwanzig regarded 9 and B tetradics. However, there is no need for 
introducing the notion of a tetradic, one may very well work instead 
with the projection operator 

9. . . = c 9,, Tr  {B,, . . .}, (1.13) 
m 

where 8, is the projection operator onto the state Im), i.e. 

Pm = Im)(ml. (1.14) 

It is seen from (1.13) that B projects out the diagonal elements of p, since 
the off diagonal elements of the operator 8 p  are identically equal to zero. 

We can treat both classical and quantum systems by using the projection 
operator methods. In classical statistical mechanics the distribution function 
@ N ( { q } ,  { p } ;  t )  satisfies the Liouville equation of motion 

(1.15) 

which can be rewritten in the form 

aaNjat = - i m j N ,  (1.16) 

where the Liouville operator 9 is given by 

(1.17) 

In many problems one is only interested in the momentum’ distribution 
function aN({p}; t )  which is obtained from @ N ( ( q } ,  { p } ;  t )  by integrating 
over the volume V of the system: 

r r  
(1.18) 
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The relation (1.18) can be written as 

7 

(1.19) 

where 2' is the projection operator 

9.. . = '1.. ./d({q}). . .. (1.20) 
V N  

In other problems, such as anharmonic interaction in solids, one is interested 
in calculating the energy distribution. In this case one introduces the action- 
angle variables Ji and pi and regards the distribution as a function of { J i }  
and (qi>. Then the energy distribution is given by 

(1.22) 

In case of a system interacting with stochastic perturbations, such as a 
randomly modulated harmonic oscillator, the density operator of the 
distribution function becomes a random function. It is then preferable 
to work with the ensemble average of the density operator. The appropriate 
projection operator for this problem is 

P G  = e, (1.23) 

where the bar denotes the ensemble average with respect to  the distribution 
of stochastic perturbations. Other examples of the projection operator will 
be given in subsequent sections. 

We begin in 9 2  with a brief account of the phase space methods. We 
introduce the concept of phase space distribution functions for quantum 
systems, a concept which was originally introduced by WIGNER [I9321 and 
later studied in great detail and generalized by a large number of workers 
(MOYAL [1949], GROENEWOLD [1946], GLAUBER [1963], SUDARSHAN [1963], 
MEHTA and SUDARSHAN 119651, CAHILL and GLAUBER [1969a, b], AGARWAL 
and WOLF [1968, 1970a, b, c]). We also give in 8 2 the equations of motion 
for these phase space distribution functions. In $5 3-5 master equations for 
both classical and quantum systems are obtained. The application of these 
master equations to various problems in quantum optics is considered in 
9 4 and $4 6-12. The problems treated in detail include relaxation of an 
oscillator and an atom, Brownian motion of a quantum oscillator, super- 
radiance and relaxation of spin systems, theory of a single mode laser, 
systems interacting with intense external fields, parametric frequency conver- 
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sion, parametric oscillator and a related problem of anharmonic interaction 
in solids. Finally an appendix is devoted to the study of the properties of 
the Fokker-Planck equations. 

5 2. Phase Space Methods 

In this section we present a summary of phase space methods in quantum 
mechanics. Consider a quantum mechanical system with one degree of 
freedom. Let a and a+ be the annihilation and the creation operators* satia- 
fying the boson commutation relations, i.e. 

[a, a+]  = 1 ,  [a, a] = [a+, a+ ]  = 0. (2.1) 

Let p be the density operator characterizing the state of the system under 
consideration. It is possible to introduce a c-number distribution function, 
which we call the phase space distribution function, corresponding to the 
given density operator. The c-number distribution function is not unique. 
It depends on the rule of mapping that is adopted to map the operators 
onto c-numbers and vice versa. For a given rule of mapping, there is one and 
only one distribution function corresponding to a given density operator. 
In what follows, we will be considering only the normal, the antinormal 
and the Weyl rules of mapping (for a general theory see AGARWAL and 
WOLF [1968, 1970a, b, c]; see also LAX [1968b], CAHILL and GLAUBER 
[ 1969a, b]). 

Let Q be a linear mapping operator that transforms an arbitrary function 
of the c-numbers z and z* (z* being the complex conjugate of z )  onto an 
operator function of a and a+ and let 0 be the linear mapping operator, 
inverse to Q, which transforms an arbitrary function of the operators a 
anda' onto a c-number function of z and z*. Here z and z* are the c-numbers 
onto which the operators a and a+ are mapped, i.e. 

z e a ,  z * e a + .  (2.2) 

The mapping operators for the normal, the antinormal and the Weyl rules 
are now given by 

e ( N )  
Z * m Z n  2 a + m a n  --f z*mzn, 

@(A) 

(2.4) 

(2.5 1 

Z * m Z n  2 .na+m - Z * m  n 
Z ,  

new, @(W, 

Z * m ~ n  + (a+man)w -----f Z*m Z ,  

where the superscripts N, A and W on R and 0 stand for the normal, 
the antinormal and the Weyl rules of mapping. In eq. (2.5) ( U + " U " ) ~  denotes 

* The superscript + denotes the Hermitean adjoint throughout this article. 
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the Weyl symmetrized product, i.e. ( U + ~ U ” ) ~  is equal to the sum of all possible 
products involving m u+’s and IZ a’s divided by the total number of such 
terms. It is thus seen from (2.3) and (2.4) that the normal (antinormal) 
rule brings all the creation (annihilation) operators to the left of all the 
annihilation (creation) operators. 

Let @(*)(z, z*) be the phase space distribution function associated with 
the density operator according to a particular rule. It is obtained from p/n 
by the 0 rule of mapping, i.e. 

P *  * Q P  - - @(Q)(z, z ) - 

71 71 

The phase space distribution function so obtained is not necessarily non- 
negative and may even be singular, and must, in general, be regarded as 
a function in the sense of generalized function theory. We give below 
explicit expressions for the distribution functions @(w), @(*) and @(N). 

The distribution function GtW), which is obtained from p via the Weyl 
rule of mapping, is known as the Wigner distribution function. In coordinate- 
momentum representation it was first introduced by WIGNER [1932] and 
studied extensively by MOYAL [1949] and GROENEWOLD [1946] (see also 
KUBO [1964]). For a given density operator the Wigner distribution function 
always exists. The following explicit expression in terms of coherent states 
was given by AGARWAL and WOLF [1970a] 

s 2 

n2 
@‘w’(z, z*) = - exp (21~1~)  ( -a lp la)  exp { -2(az*-a*z)}d2a, (2.7) 

where the integration extends over the whole complex a-plane. In eq. (2.7) 
la> is a coherent state (for properties of coherent states, see GLAUBER [1963], 
KLAUDER and SUDARSHAN [I968]); it is an eigenstate of the annihilation 
operator a with the eigenvalue a. Coherent states ]a)  are known to form 
a complete set (KLAUDER [1960]) but are not orthogonal, more precisely 

JJla>(ald’a = 1, (a’la> = exp { G I ’ * ~ - + I ~ ~ ~ - ~ ~ c L ’ I ~ } .  (2.8) 

We will refer to the distribution function @(*), obtained from p via the 
antinormal rule of mapping, as the Sudarshan-Glauber distribution function 
(SUDARSHAN [1963], GLAUBER [1963]). It is often referred to as the P- 
representation of the density operator. In terms of @(*) the density operator 
admits the following representation 

7t 

p = dA)(z ,  z*)lz>(zld2z. s 
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The relation (2.9) has been inverted by MEHTA [1967] to obtain the following 
formula for @(A) 

s 1 
@(A)(~ ,  z*) = exp ( 1 ~ 1 ~ )  ( -a lp la)  exp {Ia12-(az*-u*z)}d2u. (2.10) 

71 

The distribution function @(N), obtained from p via the normal rule of 
mapping is given by (MEHTA and SUDARSHAN [1965], GLAUBER [1965]) 

1 
@(N)(z, z*) = - (zlplz). 

71 
(2.11) 

This function has the interesting properties that it exists for all class of 
density operators and is non-negative. These two properties make it very 
attractive to use in physical problems. This distribution function is thus 
closest to the classical distribution functions. 

In calculations, we also need the c-number functions associated with 
any general operator G. Let FAD) be the "a-equivalent" of G, obtained from 
G via the 0 rule of mapping i.e. 

8 R 
G - Fk') - G. (2.12) 

The functions FLw), FAA) and FAN) are given in terms of the operator G by 
the relations (2.7), (2.10) and (2.1 1) with p/n replaced by G.  

The phase space distribution functions are very useful in computing the 
expectation values. It is easily shown that the expectation value of an 
operator may be expressed in the forms (AGARWAL and WOLF [1970b]; 
see also LAX and LOUISELL [1967]) 

P 

(G) = Tr  (pG)  = J @(w)(z, z*)FLW)(z, z*)d2z (2.13) 

= /cD(~)(z, z*)FL"(z, z*)d2z (2.14) 

= 1 @(N)(z, z*)FLA)(z, z*)d2z. (2.15) 

We have thus expressed the quantum mechanical expectation values in the 
same form as the averages occurring in classical statistical mechanics, i.e. 
averages are given as integrals over the phase space. In quantum optics, 
one often wishes to compute the expectation values of operators that are 
already in some ordered form for example the normally ordered correlation 
functions of the form, ( U + ~ U " ) .  In this case we have from (2.14) 

(u+"a") = /@("'(z, z*)z*rnznd2z. (2.16) 
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This formula brings into evidence even more clearly the formal analogy 
between the phase space representations and classical statistical mechanics. 
It should be noted that if we use (2.13) or (2.15), then we obtain instead 
of (2.16) (for n = m )  

(2.17) 

= (- +)mJ@(W)(z, z*)L,,,(21~1~)d*z, (2.18) 

where L, is the Laguerre polynomial of order m. We emphasize that for 
practical calculations, one may use any of the phase space distribution 
functions and in some cases we may be naturally led to use one particular 
distribution function. 

We now consider the dynamic aspects of phase space methods (AGARWAL 
and WOLF [1968, 1970b, c]). The phase space distribution functions @(n) 
are now time dependent and an equation of motion for @(*) is obtained 
from eq. (1.10) by applying the mapping operator 0 to both sides of (l.lO), 
i.e. 

(2.19) 

The right hand side of (2.19) may be expressed in terms of @(') and F r )  
and their derivatives as follows 

(2.20) 

where the operators 9(l) and .9(2) are given by (cf. AGARWAL and WOLF 
[ 1968, 1970bl) 

+ +  + - +  

= exp (A++)- a a  - +(A-+) -- a - " ) ,  i aZ az* az* aZ 
(2.21) 

(2.22) 

In eqs. (2.21) and (2.22) the arrow pointing to the left (right) indicates 
that the differential operator below it operates on quantities on the left 
(right) of the operators W) and 9(2). In eq. (2.20) L2 refers to any of the 
three rules of mapping and A takes values 0, 4, and -4 corresponding 
to the Weyl, the normal and the antinormal rules of mapping. Eq. (2.20) 
can also be written in the form 
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at 
(2.23) 

wht..? the Liouville operator 9(*) is now given by 

g(") = p ) { ~ c l ) - @ z ) } *  H (2.24) 

Let K"'(z, z*, tlz,, z x ,  to)  be the Green's function associated with eq. 
(2.23). The Green's function K(*) is the solution of (2.23) with the initial 
condition 

K(")(Z, z*, to l zo ,  z:, t o )  = P ( Z - Z o ) .  (2.25) 

The Green's function is useful in the calculation of the multitime correlation 
functions (LAX [1968b], GRAHAM et al. [1968], AGARWAL and WOLF [197Oc]). 
In particular the normally-ordered time-ordered correlation functions de- 
fined by 

rp  = <[u+(t1)]'1.. . [u+(t,>]y-u(t,)]'". . . [u(t ,) l ' l ) ,  

(tn 2 t n - l  2 . . . 2 t l ) ,  (2.26) 

where u(t)  and a+(t )  are operators in the Heisenberg picture, may be shown 
to be expressible in the form 

Next we give some identities which are useful in obtaining the operator 
form of the phase space equations of motion. Some of these identities, which 
are easily proved by using the general theory developed by AGARWAL and 
WOLF [1970b], are given by 

!?(A) 1 

aZ x aZ n 
a "(A) 1 - a ( z * @ ( ~ ) )  --f - - [ a+ ,  pa+] ,  (2.28) 
- ( Z @ ( A ) )  --f - - [ u  +, up] ,  

The results, which we have so far presented, are easily generalized to 
boson systems with many degrees of freedom (AGARWAL and WOLF [1970b]). 
One may develop a phase space theory for a system of fermions along similar 
lines. AGARWAL [1969] for example, has made use of the Schwinger's boson 
representation to deal with two-level atoms. The phase space theory for 
a system of fermions will not be discussed here. 
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Finally we introduce the action and angle variables J and cp defined by 

1 

2i 
J = 1zI2, cp = - in (z/z*). (2.30) 

The transformation laws are given by 

a i a  

aJ 25 acp 
a i a  - + - -), (2.31) 
aJ 25 dcp az* 

- -  
az 

and 

(2.32) 

In the case when the Hamiltonian His  equal to wa+u the Liouville operator 
Yp(n) is found, from (2.24) and (2.31), to be given by 

(2.33) 

For a system with many degrees of freedom and with Hequa1 to x k w k a :  a k ,  

the Liouville operator is 

(2.34) 

The operator Y(’) has the following eigenfunctions and eigenvalues 

$( { v k } )  = (2n)-”* exp (-i v k  ( P k )  E ( { V k } )  = vk w k  (2’35) 
k k 

where v k  vary over all positive and negative integers. The eigenfunctions 
$ ( ( v k } )  are orthogonal and play a very important role in the perturbation 
expansions of the distribution functions in interaction problem (cf. 8 12; 
for the use of eigenfunctions I,$( { v k } )  in problems in classical statistical 
mechanics, see PRIGOCINE [ 19621). 

0 3. Master Equation for a General System 

We have seen that the basic equation of motion for both classical and 
quantum systems can be written in the form 

aflat = -iYx (3.1) 

where 2 is the appropriate Liouville operator and f represents the state of 
the system. Table 1 gives the form of the Liouville operator 2’ and f for 
both classical and quantum systems. The master equation is an equation 



TABLE 1 

The form of the Liouville operator 9, the distribution f and the commonly employed projection operators B for both classicaland quantumsystems 

c 
4 

The distribution The Liouville operator 
f 9 

Commonly employed 
projection operators 
B 

Classical systems: 

Quantum systems: 

Operator treatment p CH7 1 

Pm Tr {qm. . .) 
m 

pR(O)TrR . . . (Cf. eq. (5.7)) 
- 
. . . (cf. eq. (1.23)) 

Quantum systems: I @){cp)- G p )  

a a  [A++)- ~ azi az; 

+ - +  + +  
(cf. eq. (5 .8 ) )  

. . .  Phase space treatment @'"'({zi}, {z;} ,  t )  i 

(A++)- a a  - +(A-+)- a a  -} (L)NJ..  . S d ( { V i } ) -  - .  
i aZ: azi azi  aZ: 2n 
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of motion for 9J where 9 is the projection operator which projects out 
the relevant part of$ We will refer to f as the distribution function, with 
the understanding that in the operator treatment of quantum systems it 
represents the density operator. In Table 1, we have also listed the form of 
commonly used projection operators. To obtain an equation for .PA we 
writefin the form 

f = Y f  + (1 - ?Y)J 

PC(P> - f ( O )  = - iUC(B), 

(3.2) 

(3.3) 

On taking the Laplace transform of (3. I ) ,  we obtain 

where C(p) is the Laplace transform off(t), i.e. 

C(p) = Sme-’Bf(t)dt, 0 (Re p 2 0), (3.4) 

and where we have assumed that 9 is explicitly time independent. On 
multiplying (3.3) by 9 and (I  - 9) respectively, we obtain the equations 

a( 1 - .Y)c(p) - ( I  - .Y)f(O) 

= -i(L-5j)99C(p)-i(l -.“p)P(I-P)C(fl). (3.6) 

The solution of (3.6) is 

(1 - W ( P )  
= (P+i( 1 - ,Y)P}- { -i(I -~T)A?PC(~~)+ (1 -.P)f(O)}. (3.7) 

We substitute (3.7) in (3.5) and take the inverse Laplace transform. Then 
we obtain the following equation for .Pf (ZWANZIG [1961a], ACARWAL 
[ 19691) 

a 
at 
- [ Y f ( t ) ]  +i.YY[Pf( t ) ]  + i 9 9  exp { -i(l - 9 ) 9 t } (  1 - P)f(O) 

rt 

P 9 e x p  {- i ( l - -P)9T}( l  -P)9[ .Pf ( t -~) ]dz  = 0. (3.8) + J o  
Equation (3.8) is the muster equation for the relevant part of the distribution 
function. It should be noted that eq. (3.8) is an integro-differential equation 
and is an exact consequence of the dynamics of the system. Further simplifi- 
cation can be made depending on the form of the Hamiltonian and the 
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initial condition. In most of the physical applications the initial condition 
will be such that 

(1  - S ) f ( O )  = 0. (3.9) 

This condition is usually referred to as the assumption of initial random phase. 
We now obtain the explicit form of (3.8) in case when the projection 

operator 9 is given by eq. (1.13), i.e. we obtain the equation of motion 
for the diagonal elements of p .  The condition (3.9) in this case implies that 
the density operator is initially diagonal. Let the Hamiltonian of the system 
be written as 

H = Ho+gH, ,  (3.10) 

where g H ,  is a small perturbation. We work in a representation in which 
Ho is diagonal and H ,  has no diagonal elements. Then the Liouville operator 
is given by 

9 = 9 , + g 9 1 ,  9 0  = [Ho,  1, 9, = [ H i ,  1. (3.11) 

It is easily verified from (1.13) and (3.1 1) that 

gg0 = 9 , B  = 0. (3.12) 

Moreover since .Pp has no off-diagonal elements it follows that 

? Y 9 1 [ P p ( t ) ]  = 0. (3.13) 

On combining eqs. (3.9)-(3.13), eq. (3.8) reduces to 

(3.14) 

where the kernel K(z )  is given by 

K ( z )  = 99, exp {- i ( I -P)9(1-9)r}( l -B)9, .  (3.15) 

Equation (3.14) leads to the following equation for pnn 

(3.16) 

where 

k,,(z) = (ml[H, ,  exp (-iH,r)(l-B)[H, g n ]  exp WBz)]Im), 

and where H ,  is given by 

(3.17) 

If, = H 0 + g ( l - 9 ) H 1 ( 1 - 8 ) .  (3.18) 
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From the completeness of states In), it follows that 

1 krnn(T) = 0. (3.19) 
n 

On using (3.19), we can write (3.16) in the form 

ap,m at = -9’ n # m  ~ { k r n n ( r ) p n n ( t - r ) - k r n n ( ~ ) p r n m ( t - ~ ) } d ~ .  0 (3.20) 

It should be noted that so far we have made no assumption about the 
strength of the perturbation, i.e. (3.20) holds to all orders in perturbation. 
We only assumed that p is initially diagonal. The master equation (3.20) 
is in the form of the rate equation since the first term on the right hand 
side represents the transitions from all other states In) to the state Im) and 
the second sum represents the transitions from the state Im) to all other 
states. ZWANZIG [1964] used the expression (3.15) for the kernel K ( T )  to 
establish the identity of the master equation (3.20) with the master equations 
of MONTROLL [1962] and of PR~GOGINE and RESIBOIS [1961]. 

The exact expression for the kernel k,,(z) is rather complicated. In the 
lowest order in perturbation (the Born approximation) we can replace 
H9 by H , ,  and we then obtain the following expression for k r n n ( ~ )  

krnn(T) = - ~ I ( ~ I H , I ~ ) I ’  cos [ (En-Em)~l-  (3.21) 

To obtain higher order terms, we take the Laplace transform of K ( T )  and 
expand it in  powers of 9,. We then obtain the following series expansion 
(ZWANZIG [1961a]) 

K(j3) = PLYl Go( 1 - P)LYl -ig.991 Go( 1 - .Y)6p1 Go( I - 9)Y1 

+ (ig)’9Y1 Go( 1 - 8)2’1 Go( I - .p)diol Go( 1 - 9 ) 6 p ,  + . . ., (3.22) 

where 
Go = (fl+i-Yo)-’ (3.23) 

The Pauli equation 
following limits (VAN 
PRIGOGINE [ 19621): 

may be obtained from (3.20) and (3.21) in the 
HOVE [1955, 19571, MONTROLL [1961], see also 

(i) N = number of degrees of freedom of the system + co, and V = volume 
of the system + 03, such that N / V  = constant, 
(ii) g -, 0, t -+ co such that (g’t) = constant. In these limits it is possible 
to replace pnn(t-.t) in eq. (3.20) by pnn(t)  and extend the upper limit of 
integration to co (for details see MONTROLL 119611) and we then find that 
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'5 = 2 / o m 2 g 2 ~ < m ~ ~ l ~ n ) ~ z  cos [ ( ~ n - ~ m ) z l d z { P n n ( t ) - P m m ( t ) ) .  (3-24) 
d t  n + m  

On simplification, eq. (3.24) leads to the Pauli equation (1.1). 

The Pauli equation is easily generalized to open systems, i.e. a small 
system coupled to a large system usually called a reservoir. (Open systems 
will be discussed in detail in $5.)  For such systems n and m in Pauli equation 
refer to the states of small system and the transition probabilities are no 
longer symmetric, i.e. ynm # y m n .  In fact if the relaxation towards thermal 
equilibrium at temperature T is assumed, then one finds that 

Y n m P I m n  = exp {P(Em-En)l, (3.25) 

where p = l /KBT and KB is the Boltzmann constant. Eq. (3.25) is merely 
a statement of the principle of detailed balance*. General properties of the 
Pauli equation are discussed in great detail in a recent review by OPPENHEIM 
et al. [1967]. The Pauli's master equation can be written in the form 
( MONTROLL [ 196 1 1) 

(3.26) 

where 

dFnIdt = C b n m  F m  9 

Bfl = P n n  exp (t.PEn), 

m 

(3.27) 

(3.28) 

l + n  

It is seen from the definition of the matrix b and the fact that ynm are the 
transition probabilities, that the matrix b is a semi-negative definite matrix 
which is also symmetric (SHULER [1958]). Therefore the eigenvalues i l k  of 
b are real and 1.k 5 0. The solution of the master equation is then given as 

pn(t) = C ~ X P  {+P(Em-En))unt Ukpm(O)exp ('1 t > ,  (3.29) 
m .  1 

where U is the orthogonal matrix which diagonalizes the matrix b. Finally 
it should be noted that the present analysis is not restricted to the relaxation 
towards thermal equilibrium and the general case is obtained by the replace- 
ment exp { -BE,} --* pn(03), where p,(m) is the steady state solution. 

8 4. Master Equations for Systems Interacting with Stochastic Perturbations 

We consider a system which is interacting with stochastic perturbations. 
The stochastic perturbation may, for example, be the coupling of a spin 

* For an explicit proof of the fact that (3.25) follows from microreversibility see 
AGARWAL [1973b]. 
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with a fluctuating magnetic field or the dipole-dipole coupling between two 
spins (SLITCHER [1963], ABRAGAM [1961]). A simpler example of stochastic 
perturbation is a frequency modulated harmonic oscillator. We will now 
use the projection operator technique to obtain the master equation for 
such systems. 

Let the Hamiltonian of the system be given by 

H = Ho+gH,,  (4.1) 
where H ,  represents the random perturbation. We assume that H ,  is time 
independent and is not stochastic in nature. Let the perturbation be of 
the form 

HI = c Fa(t)G,,  ( 4 4  
a 

where F,(t) are the random forces and G, are the system operators. If (7,'s 
are not hermitian operators, then (4.2) can be made hermitian by the con- 
vention 

We further assume that the random forces Fa(t) are the stationary random 
functions with zero ensemble mean value. Let sap be the cross spectral 
density defined as 

F-,(t)  = F,*(t), G - ,  = G: .  (4.3) 

S,~(O) = ei"'F,(t)Fp(t-z)dz. (4.4) IOrn 
Since the Hamiltonian is now explicitly time dependent, it is convenient 

to work in the interaction picture. Various operators and c-numbers in the 
interaction picture will be distinguished from those in the Schrodinger 
picture by a subscript I. In the interaction picture we have 

where 
aPlm = -is[H,(O, PI17 (4.5) 

(4.6) 

a f i p t  = -ig2?l(t)fi. (4.7) 

H , ( t )  = exp {iH, t } H ,  exp { -iH,t}, 

p ,  = exp {iHo t } p  exp { -iff, t} .  

Hence the basic equation of motion in the interaction picture is of the form 

To obtain the master equation, we multiply both sides of (4.7) by B and 
(1 - 9) respectively 
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The solution of (4.9) is given by 
rt 

(1 --9p)f,(t) = @(t,0)[(1 - m X O ) l -  igJ @ ( h  T)(l -~P)9,(7)C9%(4ldT. 
0 (4.10) 

where 

??( t ,  T) = T exp -ig ( I  -B)2Fl(t’)dt’ , (4.1 1)  

and where T is Dyson’s time ordering operator. On substituting from (4.10) 
into (4.8), we obtain the following master equation (AGARWAL [1969]) 

a 
- [.9fI(t)] + igY91(t)[gdfi(t)l + isppl( t )@(t ,  0)[(1- p)fi(O)l 
a t  

s: 1 

For the problem under consideration the projection operator is given by 

.PG = G, (4.13) 

where the bar denotes the ensemble average with respect to the distribution 
of the random forces Fa(t). On making use of the condition of initial random 
phase (eq. (3.9)) and of the property of the random forces F,(t), assumed 
above, eq. (4.12) reduces to 

eq. (1.23), viz. 

'fro + g2 [ Y ~ ( t ) F a ( t ) @ ( ? ,  t - r)FB(t - 7 ) p p ( t  - ~ ) f , ( t  - t)dr = 0, (4.14) 
a t  a. B 0 

where 2Fa(t) is the Liouville operator corresponding to the operator 
G,(t) .  We have not made any assumption about the strength of the inter- 
action and eq. (4.14) is therefore a master equation to all orders in the 
coupling coefficient g for systems interacting with stochastic perturbations. 

We now make the commonly used approximations (ABRACAM [1961], 
BLOCH [1956], REDFIELD [1957, 19651, SLITCHER [1963]): (i) Born approx- 
imation in which we replace @(t, T) by unity, (ii) short memory approx- 
imation in which we replacef,(t-t) under the integral sign in (4.14) by 
fi(t) and (iii) take the long time limit. The master equation (4.14) then 
reduces to 

- 

On taking the matrix elements with respect to the unperturbed states, this 
equation reduces to REDFIELD’S [ 1957, 19651 master equation. 
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We now discuss two applications of the master equation (4.14). We first 
consider an elementary model of a laser, known as the phase diflusion model 
(GLAUBER [ 19651, LAMB [ 19651, KLAUDER and SUDARSHAN [ 1968, p. 2281; 
a more realistic model of the laser will be discussed in Q 10). Let us consider 
a randomly modulated* harmonic oscillator for which the Hamiltonian is 
given by 

H = wa+a+gF(t)a+a, (4.16) 

where F( t )  is the random force. We assume that F ( t )  is a real delta correlated 
Gaussian random process (cf. STRATONOVICH [1963]) with zero mean, i.e. 
one for which 

(4.17) 
2 0  . 

9 

- 
F ( t )  = 0, F(fl)F(f2) = + ( t , - t t , ) .  

For the Hamiltonian (4.16), it is easily seen from eq. (2.20) that the 
Sudarshan-Glauber distribution function in the interaction picture satisfies 
the equation 

where 

(4.18) 

(4.19) 

and where we have dropped the superscript A from d A ) .  On substituting 
(4.19) in (4.14) and on using the properties of the random force F(t ) ,  
we find that satisfies the following (exact) master equation 

(4.20) 

On introducing the polar coordinates r and 6 ( z  = re"), eq. (4.20) becomes 

a, a', 
at a6 * 
- -  - D - - .  (4.21) 

It should be noted that (4.21) is just the diffusion equation for diffusion 
on a circular ring. It is easily seen that the Green's function associated with 
(4.21) is given by the expression 

+ m  1 - 
&(r, 8, f \ r o ,  O 0 ,  0 )  = - 6 ( r - r o )  exp (in(6-6,)-Dn2?). (4.22) 

27tr n = - m  

Various normally-ordered time-ordered correlation functions can be 
calculated by using (4.22) and (2.27). In particular one finds that 

* Generalizations of this kind of stochastic processes have been treated by FOX [1972]. 
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( a + ( t ) u ( ~ ) )  = ( a  +(0)u(O))eimt-Dt, (4.23) 

which obviously corresponds to a Lorenztian spectrum with half width 
equal to D .  It should also be noted that there are no amplitude fluctuations 
in this model and it is often used to describe the behavior of a laser beam 
far above threshoId. 

Next we use the master equation (4.15) to obtain Bloch‘s phenomeno- 
logical equations (see, for example, ABRAGAM [1961]). In problems of 
relaxation Redfield’s equation leads to relaxation at infinite temperature. 
This is so because the heat bath has been treated classically. The correct 
relaxation behavior is obtained by replacing fi(t) in (4.15) by fi(t)-xh, 
wheref;, is the equilibrium distribution function at temperature T and is 
given by 

Pth = exp ( -HO/KB Tr lexp ( -HO/KB (4.24) 

The Hamiltonian for the case of spin relaxation can be written as 

Ho = -COWS’, g H ,  = - y ( S + F + ( t ) + S - F - ( t ) + S ’ F ” ( t ) ) .  (4.25) 

We assume that the random forces are such that 

s + +  = s - -  = s + ,  = S - ,  = 0, s + -  # 0, s,, # 0, (4.26) 

where sas are defined by eq. (4.4). On substituting (4.25) and (4.26) in 
eq. (4.15), we find the following master equation 

-y2s f  -(o)[s-, [s’, P,-Pth]]-r2sz,(o)[sZ, CSz, PI]]. (4.27) 

Equation (4.27) leads to the following equations of motion for the macro- 
scopic mean values 

where 
(SZ)th = Tr {szpth}* (4.30) 

In deriving (4.28) and (4.29) we have also assumed that the spin system 
under consideration is a spin-+ system. Let TI and T2 be the longitudinal 
and transverse relaxation coefficients. Then eqs. (4.28), (4.29) are the Blochs 
phenomenological equations, with 
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TI-' = 4y2 Re (s+-(o)}, T;' = y 2 { 2  Re s+-(w)+s,,(O)}. (4.31) 

It should be noted that the imaginary part of s+ - ( w )  causes the frequency 
shift. Bloch equations are extensively used in optical problems such as in 
connection with self-induced transparency (MCCALL and HAHN [1969]). 

5 5. Master Equations for Open Systems 

We have already defined an open system as a system which is coupled 
to another large system, usually called reservoir. Most of the systems which 
we encounter in physics are open systems. Some of the problems, involving 
open systems, in quantum optics are those of lasers, relaxation of oscillators 
and two-level atoms, superradiance, parametric oscillators. In problems 
like superradiance the radiation field plays the role of the reservoir. In this 
section we obtain the master equation for the reduced density operator 
(phase space distribution function) of the sub-system of interest. 

We denote the system of interest by S and the reservoir by R. We write 
the total Hamiltonian of the open system as 

H = HSfHRfHRs, (5.1) 

where Hs and HR are the unperturbed Hamiltonians of the system S and of 
the reservoir R respectively and HRS is the interaction Hamiltonian between 
the system and the reservoir. We assume, for the sake of simplicity, that 
the Hamiltonian is explicitly time independent. Let PS+R{@S+R({ZS}, {z:}; 
{zR}, {zi); t ) }  be the density operator {phase space distribution function} 
for the combined system. The reduced density operator corresponding to 
the system S is given by 

where Tr, indicates the trace over the reservoir variables. The reduced phase 
space distribution function is given by 

@S(fZS>t : z s * ) ;  l) = @S+R({ZS), f Z s * ) ;  {zR>, {zR*} ;  f)d2((ZR})* (5*3) 

We make the following two assumptions: 

(i) The reservoir is initially in a state of thermal equilibrium at temperature 
T i.e. pR(0) is given by 

PR(O) = exp { -H,/KB T} /  Tr  ~ X P  (-HR/KB (5.4) 

or, more generally, pR(0) is a function of HR only. 
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(ii) The system S and the reservoir R are initially uncorrelated, i.e. 

P S  + R(O) = PS(O)PR(O)* (5.5) 

The first assumption is not necessary but has been made for the sake of 
simplicity (for a rigorous treatment of open systems see, for example, 
EMCH and SEWELL [1968]). 

It is clear from (5.2) that the reduced density operator can be obtained 
from the total density operator by suitably projecting it, i.e. 

ppPS + R(?) = pR(0)pS(r), (5.6) 

where the projection operator 9 is given by (ARGYRES and KELLEY [1964]; 
ARGYRES [ 19661) 

-9. . = ~IR(O)T~R. . .. (5.7) 

The corresponding projection operator for the phase space distribution 
functions is given by (AGARWAL [1969]) 

B .  . . = @R(0)~dz({zR}).  . ., 

where QR(0) is the phase space distribution function corresponding to the 
density operator pR(0). The Liouville operator 2’ may be written as 

2’ = 9’s+9R+2’Rs.  (5.9) 

It is easily verified from (5.5)-(5.9) that the projection operator B has the 
properties 

92’s = LYs9, B 2 ’ R  = 2 ’ R B  = 0, (l-B)fs+R(O) = 0. (5.10) 

On using (3.8), (5.9) and (5. lo), we find that gfsatisfies the master equation 

92’ exp [ - i T ( l -  B)2’](1- B)9[9f( t  - ?)Id? = 0. (5.1 1) 
+ J o  

Eq. (5.11) may be transformed in the standard fashion (see for example, 
EMCH and SEWELL [1968]) to the following form 

i 2 ’ S [ g f (  t)] -i92’RS[9.f(r>l - [.Yf(t)] = - a 
at 

(5.12) 
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where the kernel K(T) is given by 

K(T) = fYL?Rs U ~ ( Z ) (  1 - P ) U ( T ) ~ R R ~ .  (5.13) 

In eq. (5.13) Uo(t )  and U ( t )  are the time development operators defined by 

(5.14) U o ( t )  = exp { -i(L?R+9s)i}. 

( l - .Y)Uo( -~ )L?~~Uo(~) ( l - .Y)d~  

where T is Dyson's time ordering operator. 
Equation (5.12) is the desired master equation for the reduced density 

operator (or the phase space distribution function). This master equation 
is exact and is an integro-differential equation. The first term on the right 
hand side of (5.12) describes the unperturbed motion of the system S. The 
second term describes the effect of the reservoir R to first order in the 
interaction HRs and its effect can generally be taken into account by a 
simple renormalization of the energy levels of the system S. The last term 
describes the effect of the reservoir to all other orders in perturbation HRs. 
In the case when (5.12) is the master equation for the phase space distribu- 
tion function, it is a c-number differential equation and as we will see later, 
its Markovian form is useful in establishing connection with the Fokker- 
Planck equations of the stochastic processes. 

In applications it is preferable to employ the master equation for the 
distribution function f in the interaction picture. On transforming (5.12) 
to the interaction picture we obtain the equation 

a 
- [ 9 p f , ( i ) ]  + i ~ ~ R s I ( r ) [ . ~ f l ( t ) ]  
a t  

where 

@(t ,  7) = T eXp ( -ijrtdt((l - , p ) L ? R S [ ( i ) ( 1 - * 9 ) )  . (5.17) 

In eq. (5.16) YRSl(t) is the Liouville operator 6RRs in the interaction picture, 
i.e. 

y R S l ( t )  = exp {i(=.YR+9s)~}9Rsexp { -i(6RR+L?s)r}. (5.18) 

We now consider the case of the system S interacting weakly with the 
reservoir R. In the lowest Born approximation we replace @ ( t ,  T)  by unity. 
We further assume that the properties of the reservoir are such that 
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~ z R s I ( t ) ~ . f I ( ~ )  = 0- (5.19) 

In most of the applications which we will be considering this condition 
will be satisfied (if it is not, its effect can be taken into account by 
renormalization). Then (5.16) reduces to 
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where, for the sake of brevity, we have suppressed the subscript I. The 
Markovian form of the approximate master equation (5.20) will be the basis 
for all the applications which we consider in the rest of the article. 

We write the explicit form of (5.20) whenfis the phase space distribution 
function and when H R S  is of the form 

(5.21) 

where G R k ( G s k )  is an operator acting on the reservoir (system) variables 
alone. In the interaction picture we have 

(5.22) 

The Liouville operator z R S ( t )  is then given by (cf. eq. (2.24)) 

p,s(  t )  = 1 ( $ R k ( t ) g r  ’$sk( f)gi’ ) + $&(i)gg ’$Sk( t>gi’’+ C.C. >, (5.23) 
k 

where $Rk(t) is the a-equivalent of GRk(t) and $ s k ( t )  is the &equivalent of 
GSk(t). On substituting from (5.23) in (5.20), we obtain the equation 

(5.24) 

where 
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In eq. (5.25) rf,R(l, T )  are the elements of the reservoir correlation matrix 
defined by 

We now discuss the effect of the weak external field on the system S 
which is interacting with a reservoir. Let the effect of the external field be 
represented by the Hamiltonian HeXt(r). Then the master equation (5.24) 
is modified, having the form 

(5.27) 

and all the quantities are in the interaction picture. 

8 6. Relaxation of a Harmonic Oscillator 

We first apply the theory developed in Q 5 to the problem of a harmonic 
oscillator interacting with a reservoir. We present a fairly detailed treatment 
of this problem because this elementary example illustrates very clearly 
the techniques developed in previous sections. Our presentation follows 
closely that of AGARWAL [1969] (for various other treatments see MONTROLL 
and SHULER [ 19571, SENITZKY [ 1960, 196 1 1, LOUISELL and WALKER [ 19651, 
WEIDLICH and HAAKE [1965], LOUISELL and MARBURGER [1967], OPPEN- 
HEIM, SHULER and WEISS [1967], LAX [1966~]). 

The Hamiltonian of the total system consisting of the oscillator S and 
the reservoir R is assumed to be given by 

where we have also assumed, for the sake of simplicity, that the reservoir 
is made up of harmonic oscillators. The operators a, a', ak and a: satisfy 
the commutation relations 

[a ,  a ' ]  = 1, [ak? a:] = 1, (6.2) 
and all other commutators vanish. We first obtain the master equation for 
the reduced phase-space distribution function which is obtained from the 
density operator by the normal rule of mapping. The functions $kR and 
l/lks for the problem under consideration are given by 

$kR(l) = gkZk exp {-imkf}, $ k s ( f )  = exp {-iwt>. (6.3) 
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The operators 9:‘) and 9i2) (defined by eqs. (2.21) and (2.22) respectively) 
for the normal rule of mapping are given by 

+ +  

and the correlation matrix rf(t, z) is easily seen to be given by 

(6.5) 

In eq. (6.5) (Hk) is the average occupation number for the kth mode of 
the oscillator of the heat bath and is equal to 

(nk) = (exp {fiwk}-1)-19 P = l/KBT, (6.6) 

where KB is the Boltzmann constant and T is the temperature of the heat 
bath. On substituting eqs. (6.3)-(6.6) in eq. (5.24), we find that @:”(z, z* )  
satisfies the following master equation 

@ “ ’ ( t - ~ )  +C.C. dr, (6.7) 
( Z @ ‘ ” ( t - T ) ) + ( 1 + < n k ) ) ~  azaz* 1 1  

where @“)(f) corresponds to the density operator in the interaction picture 
and where, for the sake of brevity, we have dropped the subscript S from 
!PiN). It is seen that (6.7) is a non-Markovian equation, i.e. the time rate 
change of QCN) at time t depends on the values of @(N) at all earlier times. 
The equation (6.7) can be solved exactly by taking its Laplace transform. 
However, in what follows we consider only the Markovian behavior of 
an oscillator interacting with the heat bath (for some of the non-Markovian 
effects associated with (6.7) see HAAKE [ 1969al and for a general discussion 
of non-Markovian effects see ZWANZIG [ 1961 b], AGARWAL [ 1973~1). 

We assume that the bath oscillators are closely spaced in frequency so 
that can be replaced by jdwkh(wk). . ., where h(wk)dwk is the number 
of oscillators with frequencies lying between wk and wk + dw,. Moreover 
we assume that the reservoir correlations have a short correlation time T ,  

so that for t >> z, we can replace @“’(t-z) in (6.7) by @“’(t) and extend 
the upper limit of integration to infinity (short memory approximation). 
Then eq. (6.7) reduces to 
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a a2qj") 

~ = (y+iAw) - (z@"))+y(l + ( n ( o ) ) )  ~ 

a@(N) 
at az azaz * 
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+C.C., (6.8) 

where 

Y = nh(w)lg(o)12, A 0  = p do,  h(Wk) Ig (Wk) l2 (W- -k ) - ' ,  (6.9) 

and where P denotes the Cauchy principal value of the integral. The distribu- 
tion function dN) in (6.8) corresponds to  the density operator in the inter- 
action picture and on transforming to the Schrodinger picture (cf. AGARWAL 
[1971d, Appendix A])  we find that @(N) satisfies the following master 
equation 

I 

j 2@(N)  

+C.C.. (6.10) a?!!?! = (i(w+Aw)+y} - (z@"')+y(l + ( n ( o ) > )  ~ 

a 
ar az azaz* 

It is seen from (6.10) that A o  causes the frequency shift and its effect can 
be taken into account by frequency renormalization*. In what follows 
we will ignore the effect of this term. We may similarly obtain the master 
equation for the Wigner distribution function and the Sudarshan-Glauber 
distribution function. We write collectively these master equations as 
follows 

where we recall that A is +I for the normal rule of mapping, -4 for the 
antinormal rule of mapping and is zero for the Weyl rule of mapping. 

It should be noted that the master equation under the approximations 
discussed above, is of the form of a Fokker-Planck equation and we can 
now use the methods of the stochastic processes to study the dynamics 
of our system. The stochastically equivalent Langevin equations corre- 
sponding to the Fokker-Planck process (6.1 1 )  are given by (cf. eq. (A.35)) 

i = - ioz -yz+F(r) ,  i* = iwz*-yz*+F*(t), (6.12) 

where F ( t )  is a delta correlated complex Gaussian random process with the 
properties 

( F ( r ) )  = ( F * ( t ) )  = ( F ( t ) F ( t ' ) )  = ( F * ( r ) F * ( t ' ) )  = 0, 

(6.13) 

and all the higher order linked moments (cumulants) of F ( t )  vanish. For 
the calculation of the moments one can use either the Fokker-Planck 
equation (6.11) or the Langevin equations (6.12). Since the Langevin 

( F ( t ) F * ( t ' ) )  = 2y(A+t+ (n (w) ) )d ( t -  z'), 

* Cf. footnote on p. 45. 
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equations (6.12) correspond to the quantum system, it is clear that the 
moments calculated from (6.12) would correspond to normally ordered 
moments (af'"a") for A = -3, to anti-normally ordered moments (a"af'") 
for I = 4 and to Weyl ordered moments ((afma"),) for 3, = 0. The solution 
of (6.12) is given by 

z(t) = z(0)e-i"'-Y'+ F(t-z)e-i"'-Y'd,r. (6.14) 1: 
On using (6.13) and (6.14) it follows that 

( z* ( t ) z ( t ) )  = (z*(0)z(O))e-2Y'+ (A + 4 + (n(w)))( 1 - e-'?'), (6.15) 

and, therefore, for A = - +, (6.15) leads to 

(a+(t)a(t))  = (a+(0)a(O))e-2P + (n(w)) ( l  -e")"). (6.16) 

It is seen from (6.16) that the average occupation number at  time t is a 
sum of two terms: a term which depends on the initial occupation number 
and a term which depends on the temperature of the reservoir and which 
vanishes as the temperature -, 0. 

The equation of motion for the diagonal elements pnn of the reduced 
density operator can be obtained by using the relation (which can be 
obtained from eq. (2.9) by taking the diagonal matrix elements with respect 
to the Fock state In)) 

(6.17) 

and the eq. (6.11) for A = -4. A straightforward calculation shows that 
the diagonal elements satisfy the master equation 

- 2y{n(l+ 2<n(w))) + (n(w))lPnn * (6.18) 

The master equation (6.18) is of the form of the Pauli equation. The flow 
of the probability is schematically represented in Fig. 1. It is seen from this 
figure that the steady state solution is given by 

2y(n + l)<n(w))~nn = 2 y ( n  +1)(1+ (n(w)))~n+ 1 n +  1 3 (6.19) 

which leads to the Bose-Einstein distribution for pnn 

Pnn = <n(o)>"/( l+ <n(w)>>.+ ' 0  (6.20) 

The operator form of the master equation is easily obtained by using (6.1 1 )  
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Fig. 1 .  Schematic representation of eq. (6.18). 

for 1 = -3 and by using the identities (2.28). The reduced density operator 
satisfies the master equation 

2 = - io [a+a ,  p]-y{u+ap-2apa+ +pa+a)-2y(n(o)>[a+, [a, PI]. 
at 

(6.21) 

We now present the solution of the relaxation eq. (6.11). It should be 
noted that (6.11) is of the form of a linearized Fokker-Planck equation. 
From the solution (A.24) of the linearized Fokker-Planck equation it can be 
shown that the Green's function K(O)(z, z*, tlz,, z8,O) associated with 
eq. (6.1 I )  is given by 

K'*'(z, z*, tlz,, z,*, 0) = (n(1 -e-2Y')(1+~+(n(w))))-' 

xexp [ - ~ ~ - z ~ e - ~ ' - ' ~ ' ~  I { (1 - e-2y')(A + 3 + (n(o)))}-']. (6.22) 

The distribution function @(*) is then obtained from the relation 

@(*'(z, z*, t )  = K'*'(z, z*, t l z ,  , z,*, O ) @ ( R ) ( ~ o ,  z,*, O)dZzo, (6.23) 

where @(*'(zo. z z ,  0) is the distribution function at time t = 0 and K(*) 
is given by (6.22). If the initial state of the oscillator is a coherent state then 
@(A)(z, z*, t )  is given by (6.22) with 1 = -4. In addition if the reservoir is 
at zero temperature (n(w))  --t 0, then @(A) is given by 

~ ( ~ ' ( z ,  z*, t )  = 6(2)(2 - zo e- io ' - -yf ) .  (6.24) 

The result (6.24) shows that if the oscillator is initially in a coherent state 
then it remains in a coherent state with exponentially decaying amplitude. 
A similar result was found for closed systems, characterized by the Hamil- 
tonian of the form (6.1), by MEHTA and SUDARSHAN [1966]. 

s 
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The multi-time correlation functions are easily computed by using (6.22) 

( a + ( t ) a ( ~ ) )  = (a+(0)a(O))e'w'-Y', (6.25) 

and (2.27). In particular it can be shown that 

( a  ' (0)a +(t)a(t)a(o)) = ( a + ( ~ ) u ( ~ ) > ( n ( o ) ) (  1 - e-2yr) 

+ ( (a  '(0))2(a(0))2)e-2Y'. (6.26) 

One may also compute a time dependent entropy (AGARWAL [1971a]) 
for the oscillator system. It can be shown that the quantum entropy S for 
the oscillator system, if initially it was in a coherent state, is given by 

S = K,{(o+ 1) In (o+ 1)-o In o}, (6.27) 
where 

o = ( n ( w ) ) ( ~  -e-2Yt). (6.28) 

Thus one may introduce the concept of a time dependent temperature 
T ( t )  by (see also LOUISELL and WALKER [1965]) 

T( t )  = o { K ,  ln( l+o- ' )}- ' .  (6.29) 

In fact the reduced density operator p ( t )  which is obtained from the solution 
of (6.21) under the initial condition p(0) = Izo)(zol is given by 

where 
P ( t )  = o ( K B T ( t ) } - ' .  (6.31) 

Thus the oscillator system at time t is found in thermal equilibrium (in terms 
of displaced coordinates) at a time dependent temperature T ( t )  given by 
eq. (6.29). 

We now present the solution of the Pauli equation (6.18). We introduce 
the generating function Q(x, t )  defined by 

00 

Q(x, t )  = C(1 -xY'Pnn(t). (6.32) 

It is easily shown that Q(x, t )  satisfies the following first order differential 
equation 

dQ/ar = - 2y(n(w))xQ - 2y[ I + (n(o))x]x8Q/ax. (6.33) 

This equation is easily solved by the method of characteristics (SNEDDON 
[1957, Chap. 111) and the solution is 

Q(x, t )  = ( l + ( n ( ~ ) ) x ( l  -e-z7r)}-'Qo[xe-2Y'{1 +(n(o))x(l -e--2yt)}-'], 

0 

(6.34) 



TABLE 2 

The time dependence of the diagonal elements pn, , , ( r ) ,  for the problem of harmonic oscillator relaxation, for a class of initial distributions 

Initial 
distribution p n .  Qo(x> P f l , n ( t >  Remarks 

Bose-Einstein 
distribution 

h"/(t  +By+' 
(1 t Ex)- 

6 = (n(w) )+( i i - (n(w)>)e-2yr  

Poisson 
distribution 
(coherent 
state) 

Fock state 

lm> 

n! 

'n. m 

e - R x  

The distribution remains Bose-Einstein 

This distribution corresponds to a @(A) which 
is equal to the convolution of two probability 
distributions, one corresponding to a coherent 
state and the other to thermal equilibrium 

This distribution at  zero temperature becomes 
the binomial distribution with parameter 
exp(G22yO 

w 
W 
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where Qo(x) is the generating function at time t = 0. The time dependence 
of the diagonal elements of p is then calculated from 

(6.35) 

In Table 2, we give the values of p,,(t) for several important initial distribu- 
tions. At zero temperature ( (n (w) )  = 0) ,  eqs. (6.34) and (6.35) lead to the 
following result for the time dependence of p,,(t) 

(6.36) 

We next consider the effect of a weak external field on the relaxation of 
the oscillator. The Hamiltonian of our system in the presence of an external 
field is given by 

H = w U + U +  wka:ak+ ~ ( g k a : u + H . C . ) + g , [ E * ( t ) a + H . C . ] ,  (6.37) 
k k 

where E ( t )  is a c-number driving field. The reduced phase space distribution 
function satisfies the master equation 

a2@(W 
+ C.C. - @(') = (iw + y )  - (zd')) +ic(t)g, - @ ( " + y ( ~  + + + (n(w)>) ~ 

a a a 
at az az azaz* 

(6.38) 

The Fokker-Planck equation (6.38) is stochastically equivalent to the 
Langevin equations 

i = -iwz-yz-ie(t)+F(t), i* = iwz*-yz*+i&*(t)+F*(t), (6.39) 

where F( t )  is a delta correlated complex Gaussian random process with 
properties given by eq. (6.13) and where we have set ge = 1. Eq. (6.38) has 
the form of a linearized Fokker-Planck equation and the Green's function 
associated with (6.38) is, therefore, given by 

(6.40) 
where 

(6.41) 

On comparing (6.22) and (6.40), we find that the effect of the external 
field is to displace the center of the Gaussian distribution. The other 
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dynamical properties may be calculated from (6.40) and we will not discuss 
them here (they are considered in LOUISELL and MARBURGER [1967]). 

SCHWINGER [1961] has discussed the problem of the relaxation of the 
oscillator from a different standpoint. He considers the augmented Hamil- 
tonian 

H = Ho+K*(t)a+K(t)a+,  (6.42) 

where Ho is given by (6.1) and K ( t )  is an external force. He introduced 
the functional (see also SCULLY and WHITNEY [1972]) 

z = Tr {uT(t, to)U+(t, t O ) P ( t O ) } ,  (6.43) 
where 

U ? ( t ,  to) = Yexp i s,: (K i ( t )u ( t )+K- ( r )u+(r ) )dr )  , (6.45) 

and T and are the operators for the chronological and the antichrono- 
logical orderings respectively. The operators a( t ) ,  a+ (t) are in the interaction 
picture with respect to Ho.  The variation of the functional Z is given by 

where 
. S l n Z  

dT(t) 3 1 - ~ ,  
SKT(z ) '  d K + ( t )  

. S l n Z  
d + ( T )  1 ~ 

S In Z dE(t) z -i- . S l n Z  
d-(t) = -1-- 

SK*_(t) ' S K - ( z ) '  

Thus the functional .d*+ ( t )  is given by 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

The functionals de"(t), . d - ( r ) ,  d+(t) are given by expressions similar to 
(6.49). The functional Z is then calculated by using the equations of motion 
for the functional d+(t), dT(t). The correlation functions are obtained 
from 2 by the functional differentiation of 2. (The details can be found 
in a recent review article by SCULLY and WHITNEY [1972].) 
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The functional 2 is closely related to the phase space distribution func- 
tions. For example when K + ( r )  = K * ( t )  = 0 then (6.43) reduces to 

Z = ( q( exp i jr: K-(r)u+(r)dr) T exp (ij,:K:(r)u(r)dr)) , (6.50) 

which is seen to be the generating functional for the normally-ordered time- 
ordered correlation functions of the form (2.26). Moreover, in the special 
case when 

K - ( t )  = -ictd(r-t), K Z ( r )  = i ~ * d ( ~ - f ) ,  (6.51) 

(6.50) reduces to 

z = (exp (aa +) exp ( - M*u)) ,  (6.52) 

and the Fourier transform of (6.52) is just the Sudarshan-Glauber distribu- 
tion function. 

The model which we have discussed in this section is of great value in 
quantum optics. It is used to describe the damping of the field mode. 
Consider a nonlinear process in which several field modes are interacting 
with each other and let this interaction be described by the Hamiltonian H .  
The equation of motion for the Sudarshan-Glauber distribution function 
in the absence of losses is of the form (2.23). The losses are taken into 
account by assuming that each field mode is interacting with its own reservoir 
characterized by the parameters yi and (a i ) .  Then the equation of motion 
for @ ( A ) ,  when losses are taken into account, is of the form 

(6.53) 

We apply this procedure to obtain the Fokker-Planck equation for the 
parametric oscillator. The Hamiltonian for this system, in the interaction 
picture, is given by 

H = (iXa:ala, +H.C,)-i(F;(t)a3 -H.C.), (6.54) 

where we have ignored the effects of detuning. The parameter x is related 
to the nonlinear susceptibility of the medium (for the form of x see 
GRAHAM [1968]). In (6.54) Fp(r) is the external pump field. On using (6.54) 
and (2.24) generalized to the case of many degrees of freedom (see Table 1) 
L?p(A) is easily calculated. On using this value of Y(A) and (6.53), we obtain 
the Fokker-Planck equation 
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(6.55) 

(6.55) is the basic equation of GRAHAM [1968]. Below and above threshold, 
this equation can be solved by linearization and by quasilinearization 
procedures respectively. 

7. Brownian Motion of a Quantum Oscillator 

In this section we treat the problem of the Brownian motion of a quantum 
oscillator. Our approach is based on the master equation satisfied by the 
distribution function corresponding to the oscillator system alone. The 
treatment presented here follows closely the one given by AGARWAL [ 197 Id] 
(for various other approaches see SCHWINGER [I961 1, ULLERSMA [1966a, b]). 
The Brownian motion of a classical oscillator is discussed in great detail 
in the papers of KRAMERS [1940], CHANDRASEKHAR [I9431 and WANG and 
UHLENBECK [1945]. 

The displacement q(t) of the oscillator satisfies the equation of motion 

dZq/dt2 + 2y dqldt +w2q = F(t)/m, (7.1) 

where 2y is the phenomenological damping coefficient, w is the natural 
frequency of oscillation and m is the mass of the particle. F(t )  is a random 
force which is assumed to be a delta correlated real Gaussian process with 
zero mean, i.e. 

( F ( t ) )  = 0, ( F ( t ) F ( t ’ ) )  = 2Dd(t-t’), (7.2) 

where D is the diffusion coefficient. Eq. (7.1) is equivalent to the following 
two first order differential equations 

q = plm, p = -2yp-mw2q+F(t), (7.3) 

where p is the momentum of the particle. Equations (7.3) are the Langevin 
equations describing the Brownian motion of a classical oscillator and the 
corresponding random process is a two dimensional Gaussian Markov 
process (cf. Appendix and also STRATONOVICH [ 19631). 

We now discuss the Brownian motion of a quantum oscillator. The 
Brownian motion is described by a model Harniltonian which is taken to be 
the one describing the interaction between the oscillator and the reservoir 
at  temperature T. This Hamiltonian is given by 
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H = W U + U +  ~ o ~ u ~ u ~ +  { g j ( a + a + ) a f + H . C . } ,  (7.4) 
j j 

where contrary to the case discussed in $6 ,  we have retained the terms of 
the form aaj and a'af. We use the Hamiltonian (7.4) and make approxima- 
tions similar to the ones made in 9 6. We then find that @'*)(z, z*; r ) ,  
which is the reduced phase space distribution function, satisfies the master 
equation (AGARWAL [ 197 Id]) 

(:-a2 +c.c. I @("). (7.5) 

The parameters y and ( n ( w ) )  are defined by (6.9) and (6.6) respectively. 
We also recall that the parameter A is -f for the Sudarshan-Glauber 
distribution function, f for the distribution function obtained with the 
normal rule of mapping and is zero for the Wigner distribution function. 
We make the transformation to the real variables q and p defined by 

Then the Fokker-Planck equation (7.5) transforms into the equation 

The Fokker-Planck equation (7.7) is stochastically equivalent to the 
Langevin equations (cf. Appendix) 

q = p/m, p = -2yp-mo2q+ F(t), (7.8) 

( F ( t ) )  = 0, (F(f )F( t ' ) )  = 2D6(t-r'). (7.9) 

where F( t )  is a real Gaussian random process with the properties 

Here the diffusion coefficient D is given by 

D = 2 m w y ( ( n ( ~ ) ) + 2 + f ) .  (7.10) 

It should be noted that the Langevin equations (7.8) are of the same form 
as the equations (7.3) describing the Brownian motion of a classical 
oscillator. It should be borne in mind that in the classical case q and p are 
the position and momentum variables whereas in the quantum case 4 and p 
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are the c-number variables onto which the operators q and p are mapped 
by the SZ-rule of mapping. Since we are dealing with a quantum system 
certain care should be exercised in the proper interpretation of moments 
calculated from (7.8). It is convenient to transform to the complex variables 
z and 2'. We then obtain the following Langevin equations (which are 
stochastically equivalent to the Fokker-Planck equation (7.5)) 

i = - i m - y ( z - z * ) + P ( t ) ,  i* = ~ w ~ * - y ( z * - z ) + F * ( t ) ,  ' (7.11) 

where P(t) is a complex Gaussian random process with the propertizs 

(.F(t)) = (F*(t)) = 0, (F(t)F*(t')) = -(F(t)F(t')) 
= - (F*(t)F*(t')) = +2y((n(w))  + A + + ) d ( t - t ' ) .  (7.12) 

As remarked earlier in 6 6,  the moments calculated from (7.1 1) correspond 
to the normally ordered moments ( U + ~ U " )  for I = -3, to antinormally 
ordered moments ( U " U + ~ )  for A = +3 and to Weyl ordered moments 
( ( U + ~ U " ) ~ )  for I = 0. It should also be noted that the diffusion coefficient 
D ,  given by (7.10), in the high temperature limit goes over to the classical 
value, viz. 

D,, = 2ymK,T. (7.13) 

The Green's function K("'(z, z*, tlz,, zg , 0 )  corresponding to the Fokker- 
Planck equation (7.5), which is in the form of a linearized Fokker-PIanck 
equation, is easily seen to be given by 

K y z ,  z*, tlz,, z:, 0 )  = (7c2do)-* 

x exp (Ao *[&* - <z*(t)>)'+p*(z- <z(t)>)'-zl(z- (Z(t)))12}, (7.14) 

where 

Y 

0 0  

iw 

w0 
cos wo t - - sin wo t z o  e-"'+ - sin coo t z:e-", (7.15) 

iw 

w0 

((n(w))+A++)sinw,t coswot- - s h o o t  

z = ( ( n ( w ) ) + I + f )  

and 
0 0  = (w2-y2)+, A ,  = (z2-4pp*). (7.18) 

The Green's function (7.14) is in the form of complex Gaussian distribution 
which is centered at  z = ( ~ ( t ) ) .  The steady state solution of (7.7) is given by 
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@it"' = {n((n(w)>+A+f)}- '  exp { - I ~ l ~ ( ( n ( w ) > + A + f ) - ~ } ,  (7.19) 

which corresponds to an oscillator in thermal equilibrium at temperature T. 
We conclude this section by giving the operator form of the master 

equation (7.5). This is easily obtained from (7.5) by the substitution 2 = -+ 
and by using the identities (2.28). The result is 

* = - iw[a+a, p]  - y(a+ up - 2apa+ +pa  + a  + a2p - apa - a +pa + + pa + 2) 
at 

-y<n(w)>(2[a+, [a ,  p ] ] + [ a + ,  [ a + ,  pll+[a, [a ,  PI]). (7.20) 

0 8. Relaxation of an Atom 

We next consider the relaxation of an atom with unperturbed energy 
eigenvalues El  and eigenfunctions I[>. We write the Hamiltonian of the atom 
interacting with the reservoir in the form 

where the operators A, ,  are given by 

= l k ) ( / l .  (8.2) 

The UkI'S in eq. (8.1) are the functions of the reservoir operators. We leave 
uk l  arbitrary. The Liouville operator in  the interaction picture is given by 
the expression 

-EpRS(t) = 1 Ukl(t)Akl exp (iWklt) ,  (8.3) 
k l  

where 

wkf = (Ek-El), o k f ( t )  = exp {iH,t}oklexp {-iHRt}. (8.4) 

We assume that the condition of the initial random phase and the condi- 
tion (5.19) are satisfied. Then on combining (8.3) and (5.20), we find that 
the reduced density operator corresponding to the atomic system alone 
satisfies the master equation 

' = 1 pAkl -Akn p61m)y:rnn 
d t  kfmn 

+(AkfpAmn-pAmf 6 n k ) ? i n k l }  exp {i(Wkl+Wmn>t>t (8.5) 

where we have, for the sake of brevity, suppressed the subscript S from p. 
The density operator p,  in (8.5), is in the interaction picture. yk:mn and Y i n k f  

are given by (LOUISELL [1969], LAX [1966c]) 
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Ymnkl  = <umn(o)Ukl(t)> exp { - iwmn t}dt (8.7) 

= ( Y i n m ) * .  (8.8) 

- 

In eqs. (8.6) and (8.7) ( U k l ( t ) U m n ( O ) )  and ( u m n ( o ) u k l ( t ) )  are the reservoir 
correlation functions. In deriving (8.5) we also made the Markovian 
approximation which is justified for times t >> T~ where T~ is the reservoir 
correlation time which is assumed to be very short. We also make the 
rotating wave approximation, i.e. we drop the rapidly oscillating terms in 
(8.5). Eq. (8.5) then reduces to 

' = c { ( A m n ~ A k l - A k n ~ 6 1 ~ ) ~ ~ m n $ - ( A k l P A m n - P A m 1 8 n k ) Y ~ n k l ) ~  (8*9) 
d t  k lmn 

where summation in (8.9) is over those values of k ,  1, m, n which satisfy 
the relation 

W m n + O k ~  = 0, i.e. E m - E n + E k - E ,  = 0. (8.10) 

We assume that the energy levels of the atom are non-degenerate and are 
unevenly spaced (the case of evenly spaced energy levels is treated in Q 9). 
Then (8.10) will be satisfied in the following three cases 

(i) k = n , m = i ;  (ii) k = I , m = n ;  (iii) k = I = m = n .  (8.11) 

On grouping the terms in eq. (8.9) according to (8.1 l), we find that (8.9) 
reduces to 

(8.12) 
where we have set 

(8.13) 

where the last relation follows on combining eqs. (8.6), (8.7) and (8.13). 
Eq. (8.12) is the desired master equation for the reduced density operator 
p (in the interaction picture) describing the relaxation of the atom. On 
taking the matrix elements of both sides of (8.12), we obtain the equation 
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(8.15) 

where r;j is defined by 

C j  = - ( ~ i j j + ~ i j j ) +  C ( Y i : l j + Y i i ) *  (8.16) 

It is easily seen from (8.14) that y l k  is the transition probability per unit 
time that the atom makes a transition from the state Ik) to the state Il). 
For a reservoir in thermal equilibrium at temperature T, one can further 
show that 

Y k l  = Ylkexp ( P O l k ) .  (8.17) 

Let us denote by T i j  the real part of r;j. Then it is easy to show (LOUISELL 
[1969]) that T i i  is the transition probability that the reservoir causes the 
atom to make the transition from a state ti) to all other states, i.e. 

1 

r i i  = C Y k i .  
k f i  

(8.18) 

Moreover from the definition (8.16), the following relation is easily 
established 

rij = $(rii+rjj)+r;’, (8.19) 

where $‘ is given by (LOUISELL [1969]) 

riPjh = 7’C c I(ERl”ii-”jjIER)12PR(ER), (8.20) 

and where E R  and IER) are the energy eigenvalues and the energy eigen- 
functions of H R  and the pR(0) i s  assumed to be a function of HR only. 
It should be noted that rf’ appears only in the equations of motion for the 
off-diagonal elements and this term describes the damping by virtual 
processes. On putting i = j in (8.15), we obtain the Pauli type equation 

ER 

a p i i / a t  = c ( Y i k  P k k  - Y k i  P i i ) ,  (8.21) 
k # i  

where use has been made of the relation (8.18). 
So far our discussion for the relaxation of an atom has been quite general. 

We now specialize to the case of a two-level atom. Let 11) and 12) be the 
ground and the excited states of the atom respectively. The operators 
are then related to the spin angular momentum operators for spin *-value 
(cf. FEYNMAN, VERNON and HELLWARTH [1957]) by the equation 

A , ,  12)(11 = S’, A , ,  11)(21 = S - ,  Q ( A , , - A , , )  = S”. (8.22) 
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The relaxation equation (8.12) in case of a two-level atomic system can be 
written in the form (see also RISKEN [1970]) 

2 = fylz(2S-pS+ -ps+s- - s+s-p)++yzl (2s+ps-  -ps-s+ -S-s'p) 
at 

+ r:;(2s=psZ - pS'SZ - S'S'p). (8.23) 

Equation (8.23) leads to the following equations for the macroscopic 
mean values 

d 
- (S ' )  = iw(S+)- (S ' ) /T , ,  
at 

(8.24) 

where 
w = Ez-El, (8.26) 

and T, and T, are the longitudinal and transverse relaxation times defined by 

T;' = (y 1 2 + Y 2 1 ) r  T2-I = ( f Y I z + 9 Y Z l + m .  (8.27) 

In eq. (8.25) (Sz)sI is the steady state value of (S') and is given by 

( s= ) s I  = - f ( Y 1 2 - Y z l ) / ( Y l 2 + Y 2 1 ) ~  (8.28) 

which in case of thermal reservoir reduces to 

(Sz)qI = -4  tanh($/3w), (8.29) 

where use of (8.17) has also been made. Equations (8.24) and (8.25) are 
recognized to be the familiar Bloch equations which predict the correct 
steady state behavior, i.e. relaxation at a finite temperature Trather than at  
infinite temperature which was found in the semiclassical treatment given 
in $4.  

Finally we mention that if the reservoir is made up of harmonic oscillators 
and is initially in a state of thermal equilibrium, then one finds the following 
expression for the transition probabilities (AGARWAL [ 19691, LOUISELL 

YlZ = 2.h(W)ls(W)l2(<n(W)>+ 11, (8.30) 

721 = 2.h(~)lg(w)12(44>. (8.31) 

and I'y; is zero since the atom is assumed to have no permanent dipole 
moment. <n(w)> is given by eq. (6.6) and g(w), h ( o )  have the same meaning 
as in Q 6. 

[ 1 969 I) 
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We have considered here the relaxation of an atom whose energy levels 
are unevenly spaced and are non-degenerate*. For the case of a two-level 
atom, the problem was equivalent to the relaxation of a spin -+ system. 
In the next section we consider the problem of relaxation of N two-level 
atoms. The problem of relaxation of general spin systems is treated in 
papers of BLOCH [1956, 19571, REDFIELD [1957, 19651 and in the book of 
ABRAGAM [1961]. 

0 9. Incoherent and Coherent (Superradiance) Spontaneous Emission 

In this section we consider the spontaneous emission from a collection 
of N identical two-level atoms, using the master equation techniques. This 
system was originally studied by DICKE [1954], who found that under 
certain conditions the radiation rate is proportional to the square of the 
number of atoms. This coherent emission of radiation is known as super- 
radiance and has recently been the subject of many investigations (DILLARD 
and ROBL [ 19691, LEHMBERG [197Oa], DIALETIS [1970], AGARWAL [1970, 
197 1 b, c, el, REHLER and EBERLY [ 197 I], BONIFACIO, SCHWENDIMAN and 
HAAKE [1971a, b], WILLIS and PICARD [1973]). 

The Hamiltonian for a collection of N identical two-level atoms interacting 
with a quantized radiation field can be shown to b: given by (see e.g. 
HAKEN [ 19701) 

In deriving (9.1), the nonresonant terms have been ignored, i.e. we have 
made the rotating wave approximation. In eq. (9.1) a,, and are the 
annihilation and the creation operators associated with the ks mode of 
the radiation field and SF, ,$are the components of the spin angular momen- 
tum operator (corresponding to spin -+  value) associated with the j th 
atom (cf. eq. (8.22); FEYNMAN, VERNON and HELLWARTH [1957]). gjks is 
the coupling constant and is given by 

gjks = (-iw/c)(2nc/13))k-)(eks * d )  exp (ik * Rj), ( 9 4  

where R j  is the position vector of thejth atom and d is the dipole moment 
matrix element. All other symbols have the usual meaning. 

Since we are studying spontaneous emission, the initial state of the system 
is given by 

P S + R ( O )  = P@)I (O)><(O>ll (9.3) 

* The equation (8.15) at zero temperature and its generalizations describe spontaneous 
emission from multi-level atoms, AGARWAL [1973a]. 
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where l(0)) is the vacuum state of the radiation field and p s ( 0 )  is the initial 
state of the atomic system which we leave arbitrary. It is clear that the 
radiation field in the vacuum state interacting with atoms behaves as a 
reservoir at zero temperature interacting with the atomic system. The 
problem of spontaneous emission thus reduces to that of relaxation at 
zero temperature. We can now use the master equation techniques of 4 5 
to obtain the equation of motion for the reduced density operator corre- 
sponding to  the atomic system alone. It is found that, in the Born approxima- 
tion and in the Markovian approximation, the reduced density operator 
satisfies the master equation (ACARWAL [ 19701) 

where* 

21t2O2 3 Id .  klz ~ ( ~ c - o I )  

y i j  = (-)(L) c 27c Sd'k exp {ik . ( R i - R j ) )  (ld12- -1 Ikl2 k ' 

3 

A i j  = (F2)(i) 
x P d3k exp {ik - ( R i - R j ) )  Id!'- k-'(w-kc)-', (9.6) s ( k  

and where P denotes the Cauchy principal part. In (9.4) p refers to the 
reduced density operator in the interaction picture and we have dropped 
the subscript S on ps .  The master equation (9.4) is valid both for small 
and for large systems. By a small system we mean a system whose linear 
dimensions are small compared to  a wavelength. In what follows we consider 
mainly small systems. For such systems y i j  -+ y, independent of the indices 
i andj .  On evaluation y is found to be 

y = (2W31dI2)/(3C3), (9.7) 
and the coefficient dii is related to the frequency shifts; its value may be 
obtained by renormalization. The various results on coherent and incoherent 
spontaneous emission follow from the master equation (9.4). In  what 
follows, we will also ignore the effect of the frequency shift terms involving 
A i j .  

For one two-level atom, eq. (9.4) is easily solved and one finds that 

(Sf(f)) = (S+(0))ei"t-yt, ( s ' ( t )> = -~+(S(0)++)e-2".  (9.8) 
* The correct value of A , ,  is obtained by making rotating wave approximation on the 

master equation rather than the Hamiltonian itself (AGARWAL [1973a]). 
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It should be noted that the results (9.8) correspond to the well known 
'exponential decay' (WEISSKOPF and WIGNER [1930]). 27 is equal to the 
inverse life time of a single atom. The density operator p is given by 

p = ~ + 2 ( S ' ) S ' + ( S + ) S -  +(s-)s+. (9.9) 

It is easily deduced from (9.8) and (9.9) that p2 # p,  i.e. because of sponta- 
neous emission the atom is left in a mixed state unless t = co. 

For the case of two atoms the master equation (9.4) can be easily solved. 
Here we only give the time dependence of the total energy W(t)  = ,($') 
(in units of w )  

~ ( t )  = ( W(O) +t + (S, * s,), +~~~(s:sIs:s;),)~-~~'-(~+ (S, * SJ,), 

(9.10) 

where ( ), refers to the mean value at time t = 0. It is seen from (9.10) that 

w ( t ) Z  - (4 3 + (S, * S,)O), (9.11) 

which shows that the atoms are left in a state which is determined from 
the initial state. If the atoms are initially excited to a permutationally 
symmetric state ( ( S ,  . S,), = $), then only each atom will be found in its 
ground state. 

We now consider the general problem of N two-level atoms. It is easily seen 
from (9.4) that the mean energy (S:) of the ith atom obeys the equation 

(9.12) 

The radiation rate, which we denote by I (?) ,  is defined as the time rate 
change of the total energy of the system. Evidently 

a 
- (S;)+yc((s+SJ)+c.c.) = 0. 
at j 

a 
I ( t )  = -w c - (Sf) = 2yw c <s;s,:>, 

j d t  i j  
(9.13) 

where the correlation (S+SJT) is to be obtained from the solution of the 
master equation (9.4). A perturbation theoretic result is obtained by 
replacing p ( t )  in (9.13) by p(0) and is given by 

I ,  = 2yw 1 tr (p(o)s+SJ;). (9.14) 

We now assume that the system was initially excited to a state of the form 

~ ( 0 )  = n 100 9 q 0 ) i  i ( 0 0  > vOI ,  (9.15) 

i j  

where 
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lo,, 4 0 ~ ) ~  = cos (+Oo)eiqo/21-)i+ sin (+Oo)e-iqo/21 +)i, (9.16) 

and where I + ) i  and I - ) i  are the excited and ground states of the ith atom. 
The state (9.15) is characterized by two parameters Oo and 'po and can be 
obtained by exciting the atomic system by an external field (see e.g. 
DIALETIS [1970]). On substituting (9.15) and (9.16) in (9.14), we find that 
I ,  is given by 

I ,  = 2yoN sin2 (+eo){ 1 + (N- 1) cos2 (+Oo)>,  (9.17) 

which in the special cases leads to 

(9.18) 

A system excited to a state of the form (9.16) with Oo = 4. gives, therefore, 
rise to superradiant emission (DICKE [1954]) even though there are no 
correlations among different atoms. One should note that in this case the 
dipole moment is maximum. The author has referred to this type of super- 
radiance as the superradiance of first kind (AGARWAL [1971c]). 

To study the collective behavior of the system, we introduce, following 
DICKE [1954], the operators S * ,  S" defined by 

(9.19) 

In terms of the collective variables, the master equation (9.4) becomes 

aplat = -y(s+s-p-2s-ps+ +ps+s-). (9.20) 

Starting from a different standpoint the master equation (9.20) has also been 
obtained by BONIFACIO, SCHWENDIMANN and HAAKE [ 1971al. The perturba- 
tion theoretic result (9.14) in terms of the collective variables may be 
written as 

I ,  = 2yw tr ( p ( O ) S + S - } .  (9.21) 

If we assume that the system was initially excited to the state 1+N, m ) ,  
(Dicke state, which is the simultaneous eigenstate of the operators S 2  and 
S" with eigenvalues J N ( ) N +  1 )  and m respectively) then (9.21) reduces to 

I,  = 2yw{-)~(+N+ 1 ) - m 2 + m } .  (9.22) 

It is seen from (9.22) that for large N 

(9.23) 

We conclude from (9.23) that a system excited to a state l@V, 0) leads 
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to the superradiant emission (DICKE [1954]). We refer to this type of 
superradiance as the superradiance of second kind (AGARWAL [ 1971~1). 
One may further show that l+N, 0) is a state in which the dipole moment 
is zero and in which there are correlations among different atoms, one has, 
for example, 

(9.24) 

It is, therefore, clear that the atomic correlations play an important role 
in the superradiant emission of the second kind. The radiation from the 
state 1$N, + N )  is incoherent to start with but, as we will see, it becomes 
superradiant as the system develops in time. This is another example of the 
superradiant emission of the second kind, since the dipole moment of the 
system is found to be zero (cf. eq. (9.31)). 

To obtain the time dependence of the radiation rate one must solve 
either the master equation (9.4) or (9.20). For small systems S2 is a constant 
of motion. On taking the matrix elements of both sides of (9.20), we obtain 
the equation 

(SfS5) - (Sf)(Sf) = - {4(N - I ) }  - 

8 P m n i a f  = 2A(vm+ 1 vn+ I)'prn+ 1 ,  n +  1 -Hvm+vn)prnzz}, (9.25) 
where 

P m n  = (S, mlplS, n), (9.26) 

and IS, m )  is the eigenstate of the operators S2 and S', with eigenvalues 
S(S+ 1 )  and m respectively. In the theory of superradiance S is referred to as 
'cooperation number'. In eq. (9.25) 2yvm is the transition probability that 
the atomic system makes a transition from the state Im) to the state Im- I )  
and is given by 

v, = ( S - m + l ) ( S + m ) .  (9.27) 

For the diagonal elements eq. (9.25) is an equation of the Pauli type. The 
exact solution of (9.25) is given by (AGARWAL [1970]) 

1 1 

p m , n ( p )  = { f l ( v m + k V n + k ) ' } {  n [ ~ + f ( V m + k + V n + k ) ] - l } ~ m + l , n + l ( o ) ~  (9'28) 
120 k = l  k = O  

where pm, .(/I) is the Laplace transform of pm, n(t )  defined by a relation of 
the form (3.4). It is seen from (9.28) that the steady state solution is given by 

P m , n ( a )  = 6 m , n 6 m ,  -sy (9.29) 

where S is the cooperation number. Thus the steady state value of the 
energy is 

W ( a ) =  -s. (9.30) 
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A special case of (9.30) is given by eq. (9.11). It should be noted that the 
cooperation number takes only the integer or half integer values. 

From (9.28) one may deduce that 

( ~ ' ( t ) )  = o if p(0) = IS, r n ) ( ~ ,  rnl, (9.31) 

i.e., a system which starts in a state with zero dipole moment remains in a 
state with zero dipole moment and such a system will, therefore, not show 
superradiance of the first kind. 

The analytic solution (9.28) is too involved for practial calculations, 
unless N is a small number. For large values of N,  we may resort to approx- 
imate methods. Before discussing the approximate methods, we will discuss 
another exactly soluble model. We will consider what happens if each two-level 
atom is replaced by a harmonic oscillator. The superradiant emission from 
a system of harmonic oscillators has been studied in detail by AGARWAL 
[1970, 1971bl. 

For studying the oscillator system it is convenient to work with the phase 
space distribution functions. The spontaneous emission from a collection 
of identical harmonic oscillators is described by the following master 
equation for Sudarshan-Glauber distribution function 

a d A '  ~ = yC (-(zjo(*')+c.c.). a 
at i j  azi 

(9.32) 

The Green's function corresponding to eq. (9.32) is given by 

N 

K'*'({Zi}, ( z ? } ,  tl{zP}, {ZP*}, 0) = n 8(2)(2i--i) ,  (9.33) 
i =  1 

where 
N 

1 

N j =  1 
- (I -e-yfN) 1 zy (9.34) 

We assume that each of the oscillators was initially excited to a coherent 
state I$>. Then the radiation rate from such a system is given by 

N 

Z ( t )  = 2yoe-2y"~ C zP12, 
i =  1 

(9.35) 

and is proportional to N 2  if 2: = zo and the decay constant is N times 
larger than that due to a single oscillator. The coherent state I ( z o } )  is thus 
a superradiant state for the oscillator system and this is an example of the 
superradiance of the first kind. The enhanced decay rate for the case of 
two classical oscillators has been observed in a recent experiment by LAMA, 
JODOIN and MANDEL [1972]. The steady state solution is given by 
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N 

dA)({z i} ,  {z:}, 00) = n6‘’’ [q- (&’- 
i =  1 N j = 1  

which shows that, in the steady state, each oscillator is not necessarily left 
in its ground state. 

It should also be noted that for the initial coherent state excitation, 
no correlations are induced among different oscillators. However, if the 
system is initially excited to an incoherent state, such as a Fock state, then 
correlations are induced among different oscillators because of spontaneous 
emission (AGARWAL [1971b]). 

We now discuss approximate expressions for the radiation rate from a 
collection of two-level atoms. We have seen that the radiation rate can be 
calculated if the time dependence of the correlation function (S:SJ:) is 
known. The equation of motion for (S:SJy) is coupled to the higher order 
correlation function of the form (S:SJTSi) (see AGARWAL [1970]). So in 
order to obtain the radiation rate one has to solve the whole hierarchy of 
equations. The approximate result is obtained by closing the hierarchy of 
equations, making suitable approximations on the higher order correlation 
functions. Various approximate procedures are discussed in AGARWAL 
[1971c, el. From the permutation symmetry of the problem it follows that 
(Si  * S j )  = +, if the system is initially excited to a permutationally symmetric 
state. This relation enables us to express ( S: SJr ) in terms of (S,? S; Sj’ SJ-), 
i.e. 

(<s+sJ)+c.c.) = ~{(s+s~)-<s+s;s~’sJ)}, ( i  z j ) .  (9.37) 

On using (9.37), eq. (9.12) may be written as 

d 
- (Si>+2yN(S+S;)-2y(N-l)(S:SfS;SJ) = 0, ( i  # j ) .  (9.38) 
at 

Our approximate procedure consists of expressing (S: S; Sj’ S,:) in terms 
of the one-particle mean values. The nature of the approximation depends 
on the initial excitation. 

We assume that the atomic system was initially excited to a state of the 
form (9.15) with do < 71. We make an “Hartree type” of approximation 
on the two-particle mean value 

( s+s;s~s; )  E (s’s;)(s~’sJ), ( i  # j). (9.39) 

On substituting (9.39) in (9.38), we obtain a simple equation for (S; )  
which is easily solved. We then find the following expression for the radiation 
rate 
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. (9.40) o y N 3  sech2(Ny(t-z)), z = (2Ny)-’ ln 
N-1 

Z ( t )  = ~ 

2(N-1) N cot2 (too) + 1 

A similar result has been obtained by REHLER and EBERLY [1971]. The 
result (9.40) agrees well with the numerical solution of the master equation 
(9.20) (BONIFACIO, SCHWENDIMAN and HAAKE [ 1971bl). A possible experi- 
mental observation of the superradiant decay has been made by COMPAAN 
and ABELLA [1971]. The approximation (9.39) was analyzed in AGARWAL 
[1971e], where an improved result for the radiation rate was also given. 

Superradiance of the second kind is much more complicated because one 
must take into account the atomic correlations. The two cases corresponding 
to the initial excitations I+N, 3 N )  and l+N, 0) are discussed by AGARWAL 
[1971c, el and by BONIFACIO, SCHWENDIMAN and HAAKE [1971b]. 

We conclude this section by making some remarks about the relaxation 
of an atom with equidistant energy levels. It is clear that (9.20) describes 
the relaxation at zero temperature of a spin (spin value S )  or the relaxation 
of an atom with (2S+ 1)  equidistant energy levels. It can be easily shown that 
the relaxation, at finite temperature T, of an atom with (2S+ 1)equidistant 
energy levels is described by the equation* 

2 = -y ( l+ (n (w) ) ) {S+S-p-2S-pS++ps+S- )  

- y( n(o) ){  s- S +  p - 2 s + p s -  + ps-s +}, (9.41) 

where (n(w))  is defined by (6.6). The master equation for the diagonal 
elements is given by 

a P m , m  - 
- 2 ~ ( 1 +  < n ( w ) > > ( v m  + 1 P m +  1, m +  1 - v m  P m ,  m )  

(9.42) 
at 

- 2 ~ < n ( a ) ) ( v m +  1 P m ,  m - v m  P m -  1 ,  m -  1). 

I m + l >  

27(1+ (n(u)  ))‘m+lp,+I,m+l 27 W w )  )um+l  pm,m 

* This master equation may be used to study spontaneous emission in presence of 
black body radiation (AGARWAL [1973a]). 
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This rate equation is schematically represented in Fig. 2 and has the 
following steady state solution 

0 10. Laser Master Equation 

We use the techniques developed in previous sections to obtain the 
master equation for a single mode laser (for various theories of lasers see, 
for example, LAX [1966c, 1968a1, LAX and LOUISELL [1969], LAMB [1964, 
19651, LAMB and SCULLY [1967], HAKEN [1970], RISKEN [1970]). A laser 
system typically consists of active atoms, electromagnetic field and pump 
and loss mechanisms. We assume that each atom is a two-level system and 
that each atom and the field mode is coupled to its own reservoir. The 
reservoirs describe the effects of loss mechanism and the pump. We have 
already treated the effect of reservoirs on each atom and on an oscillator 
(which is the electromagnetic field mode in the present case) in QQ 6, 8 (see 
eqs. (6.21), (8.23)). The density operator p corresponding to the coupled 
atoms-field system satisfies the equation 

a p p t  = - iYp,  (10.1) 

where Z is the effective Liouville operator and is non-Hermitian since 
we have already taken into account the effects of loss and pump mechanisms. 
9, therefore, consists of two parts: a reversible part and an irreversible part. 
The reversible part of Y may be written as 

-kpre, = 9, + 9 F  + Z A F  9 
(10.2) 

where ZA+ZF describe the unperturbed motion of the atoms and the 
field and ZAF describes the interaction between the active atoms and the 
field. The corresponding Hamiltonians are given by 

N N 

H A  = 1 ~ j S 5 ,  HF = wa'u, HA, = C gj(Sja++H.C.). (10.3) 
j =  1 j =  1 

The irreversible part of the Liouville operator is given by 

Zirr = in, + inA , (10.4) 

where the operators A F  and A A  are given by (see eqs. (6.21), (8.23)) 
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AF G = y{[aG,  a'] + [a ,  Ga'] +2(n(o)>[[a, GI, a']}, (10.5) 
N 

AAG = C ($~i2{[S,', G S i ] + [ S T G ,  S,']> 
j =  1 

+ +y { [ S; , G S  + [ S; G, S i ] }  + r$ { [ Sg , GSf] + [ Sf G ,  Sf]}). (10.6) 

Let y , ,  and y L  be the inverses of the longitudinal and transverse relaxation 
times T I  and T2 respectively, given by 

YII = Y l Z + Y 2 1 >  YL = +(Y12+Y21+2r3 (10.7) 

and let u be the unsaturated inversion defined by 

0- = (Y21-Y12) / (Y12+Y21) .  (10.8) 

The master equation (I0.l)contains both the atomic and the field variables. 
Many of the experiments on lasers concern the statistical properties of the 
laser light and it is, therefore, appropriate to obtain an equation of motion 
involving the field variables only. Let pF be the reduced density operator 
corresponding to the field alone. It is defined in the usual way, viz. 

PF = TrAp? (10.9) 

where TrA denotes the trace over the atomic variables. Various methods 
have been developed to eliminate the atomic variables from the original 
master equation (see LAX and LOUISELL [1967, 19691, ARZT et al. [1966], 
GORDON [1967], and HAAKE [1969b]). Here we discuss the method due to 
Haake who used the projection operator techniques to eliminate the atomic 
variables from the master equation (10.1). 

It is easily seen that the derivation given in P 3 goes through even if 9 
is non-Hermitian or non-real so that Ppp satisfies equations of the form given 
by (3.8), viz. 

a 
~ [ . 9p ( t ) ]+ i9y [9p( t ) ]+ iP2  exp [-i(1-9)9t](l-P)pp(O) 

rt 
at 

where 9 is given by the sum of (10.2) and (10.4). For the purpose of 
eliminating the atomic variables, the projection operator is given by 

9 . .  . = GATrA.. ., (10.1 1) 

2AGA = A A G A  = 0 ;  TC GA = 1. (10.12) 

where the operator GA will be chosen such that 
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It is easily checked that a possible choice of GA is 

N 

GA = (4 + 
i = l  

(10.13) 

where CT is the unsaturated inversion given by (10.8). The choice of the 
operator G A  of the form (10.13) is motivated by the fact that for a reservoir, 
in thermal equilibrium, and made of two-level atoms, the appropriate G, 
is equal to GA = l'-If= (3 - tanh(3po)S;). The reduced dznsity operator 
pF is then given by 

PF = TrA (sP)* (10.14) 

It is also easily verified that the projection operator B defined by (10.1 1) 
and (10.13) satisfies the identifies 

where the inhomogeneous term Z ( t )  and the kernel K ( t )  are given by 

I (?)  = i TrA P A F  exp { -i(l-9)=!?t>(l-P)p(O), 

K ( t )  = TrA S ' A F  exp { -i(l- 9 ) P t ) Z A F  G A  . 

(10.17) 

(10.18) 

The inhomogeneous term Z ( t )  in (10.16) depends on how the laser system 
has been initially turned on and is important only in the study of its transient 
behavior. In what follows we consider only the steady state properties and 
therefore we ignore the term Z(t ) .  The kernel K ( t )  can be simplified in the 
standard manner (cf. Q 5 )  and may be written in the form 

K(  t )  = T ~ A  Z A F  uo(t)( 1 - 9) U( ~)PAF GA (10.19) 

U,(t)  = exp (-i(dPF+i/iF+PA+i/iA)t},  (10.20) 
where 

On using the identities (10.15), the K ( t )  may be rewritten as (cf. eq. (3.22)) 



X {U,(t-?,)(I-P)dPAF U ~ ( Z ~ - Z ~ ) ( I - P ) ~ P A F  * * 

* * * S A F  u0(72n)(l -P)-EPAFGA). (10.22) 

Eq. (10.16) is stillexact, i.e. it contains the effect of the coherent interaction 
HAF to all orders. Further simplification can be made by terminating the 
series (10.22). It is well known in the theory of lasers that the Born approx- 
imation is inadequate (LAMB [1964]), since in the Born approximation one 
is taking into account the effect of the atoms on the field but not the effect 
of the field back on atoms. In order to describe the saturation effects in the 
atomic system, which are of great importance in the operation of lasers, it 
turns out sufficient to retain the first two terms in (10.22). As remarked by 
Haake, this approximation contains the hitherto known theories of the laser. 

For the sake of simplicity, we consider only the case of homogeneous 
line at resonance i.e. g j  = g, wj  = w. We also assume that the field damping 
y is much smaller than yII and yI. This assumption is justified for most gas 
lasers. We apply the mapping operator to both sides of (10.16) and 
use eqs. (10.3)-(10.6), and (10.22) (which is terminated at n = 1) .  We then 
find that the Sudarshan-Glauber distribution function satisfies the equation 
( HAAKE [ 1969bl) 

a a " ] &A) - z +  - z"+2(n(w))- 
a 

at aZ az* aZ az* 

+ k ( t ) d A ' ( t  - t)dt, (10.23) J, 
where the kernel k ( t )  is given by 

In eq. (10.24) cti, ani and q are the linear gain, nonlinear gain and fluctuation 
respectively, defined by 

and $l(z) and G2(2) are the retardation functions defined by 

Icll(4 = Y l  exp (-YL49 (10.26) 
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In writing (10.24) we have also ignored certain correction terms. These 
terms are of the order of (a,&)*, which is quite small in the threshold 
region. These correction terms are of purely quantum mechanical origin 
and are discussed in detail in a recent review article by RISKEN [1970]. 
Since we ignore such quantum mechanical corrections, we will from now 
on regard the field variable as a c-number variable and the distribution 
@(A) as a classical distribution, denoted by @. The master equation (10.23) 
is still an integro-differential equation. We now make the Markovian 
approximation (adiabatic approximation), which is made in most theories 
of the laser. Under this approximation (10.23) reduces to 

- = - C Z ( Y  + iw - a1 + unl z*z)@} + (y<n(o) )  + 2q) __ d2@ +c.C.. (10.28) 
a@ a 
at aZ a z  az* 
We introduce the normalized variables, defined by 

(10.29) --Y+a, b = (7) z ,  z = (qanl)*r, p = ___ 
jt 

(qunl)+ ’ 
and we ignore the relatively small term (n(w))y ,  eq. (10.28) then reduces to 

(10.30) 
a a - - - [(p-b*b)b@]- :[(~-b*b)b*@]+4--- 

a@ - _  
at ab db ab db* ’ 

where @ refers to the distribution function in the interaction picture. Eq. 
(10.30) is the well known Fokker-Planck equation describing the behavior 
of a single mode laser. This Fokker-Planck equation is very basic in the 
theory of the laser and has been studied in great detail (RISKEN [1970], 
LAX and LOUISELL [1967], RISKEN and VOLLMER [1967a, b], HEMPSTEAD 
and LAX [1967]). The Fokker-Planck equation (10.30) is stochastically 
equivalent to the Langevin equations 

b = (P-b*b)b+F(t), b* = (p-b*b)b*+F*(t), (10.31) 

where F ( t )  is a delta correlated Gaussian random process with the 
properties 

( F ( t ) )  = ( F * ( t ) )  = 0, (F(t)F(t’))  = (F*( t )F*( t ’ ) )  = 0, 

(F(t)F*(t’))  = 46(t-t’). (10.32) 

It should be noted that the eq. (10.31), without fluctuations, is the same as 
that for a rotating wave Van der Pol oscillator (see e.g. DAWS [1962]) and 
that is why this theory is also referred to as the Van der Pol oscillator model 
of laser light. For this model it is easily verified that the detailed balance 
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condition (A1 I )  is satisfied and, therefore, the steady state solution is given 
by 

(10.33) 

where .N is the normalization constant. Thus the mean amplitude of the 
field is zero. This is contrary to the result obtained by ignoring the fluctua- 
tions (LAMB [1964]). The stationary distribution (10.33) is Gaussian centered 
at (biz = p ,  in the variable [biz and is truncated at 161' = 0. From (10.33) 
it is easily shown that the cumulants K J p )  of the intensity distribution are 
given by (RISKEN [1970]) 

where erf (x) is the error function of x. 
It does not seem possible to obtain an analytic expression for the Green's 

function associated with eq. (10.30). Numerical computations of the various 
statistical properties of the laser light, which follow from (10.30), have been 
carried out by RISKEN and VOLLMER [1967a, b] and by HEMPSTEAD and 
LAX [1967]. An excellent treatment of the statistical properties of the laser 
light is given in a recent review article by RISKEN [1970]. 

Recently the steady state distribution function (10.33) has attracted a 
great deal of attention i n  connection with the analogy between the laser 
threshold region and the second order phase transitions (GRAHAM and 
HAKEN [ 19701, SCULLY and DIGIORGIO [1970], GROSSMAN and RICHTER 
[1971]), for there is a close correspondence between (10.33) and the log+ 
rithm of Ginzburg-Landau energy functional (GINZBURG and LANDAU 
[1950]). We consider here the effect of a weak external field of the form 
Eoe- i v f  and make the rotating wave approximation. The Langevin equations 
(10.31) are then modified to (g = coupling constant between the laser field 
and external field) 

i ,  = - ( p - x : - x : ) x 1 + F ,  +Reig  eoe-i"'fiW', (10.35) 

3 ( 1 0.3 6) i 2  = - ( p - x x : - x : ) x 2 + F 2 +  ig Eo e- i v l f  i o t  

where we have introduced the real variables defined by b = x, +ix2, 
F ( t )  = F,(r )+iF, ( t ) .  We define the linear susceptibility x i j ( v )  by 

< x i )  = Re Xij(v)eivtei, (10.37) 
i 

where el = igEO, e2 = -gEO. Then it may be shown on using the properties 
of the Fokker-Planck equation (10.30) that (AGARWAL [1972]) 
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x12(v) = X&) = 0, (10.38) 

xll (v)  = x Z ~ ( V )  = f K , t ~ )  C JGJ-~m(J-lm+iv)-l, (10.39) 

where V i  and A,, are the well known matrix elements and the eigenvalues 
respectively (RISKEN [1970]). From the behavior of V i ,  A l m  and K, as a 
function of the pump parameter p (see Figs. 2, 4 of RISKEN [1970]) it is 
found that xll(v) and xZ2(v) are continuous functions of the pump param- 
eter. This result disagrees with a prediction of the theory of DICIORGIO and 
SCULLY [1970], who found that the static susceptibility diverges both from 
above and from below as 1pI-l at threshold. The reason for this disagreement 
is that Digiorgio and Scully have ignored the statistical fluctuations and 
it is the neglect of these fluctuations that leads to the singular behavior of 
the susceptibility. 

W 

m = O  

0 11. Master Equations for Strongly Interacting Quantum Systems 
in Contact with Heat Baths 

In this section we obtain the master equations for strongly interacting 
quantum systems in contact with heat baths. An example of such systems 
is that of the relaxation of a spin system interacting with strong external 
fields. The theory for the relaxation of spin systems in presence of external 
fields has been developed by BLOCH [1957], REDFIELD [1957, 19651 and by 
others (see e.g. ARGYRES and KELLEY [1964]). This theory also enables 
to study spontaneous emission in the presence of strong external fields. 

We write the total Hamiltonian of the system in the form 

= HS + H R  + H R S  + t ) ,  (11.1) 

where H,,,(t) is the interaction Hamiltonian due to the external field acting 
on the system S .  Let Ho, and Ho2 be defined by 

HO, = H s + H R ,  ffoz = Hs+ffR+H,,,( t) .  (11.2) 

It is clear from (11.2) that H,, and H,, are the unperturbed parts of H 
with respect to the interaction Hamiltonians HRS+HeXc(t)  and HRS respec- 
tively. We introduce the operators al(t) and az(t )  defined by 

ai(t> = ~o+ii(t, O)p(t)Uoi(t, o), (i = 1,2), (11.3) 

where the time evolution operators Uo, are given by 

Uoi(t, T) = T exp -i dt’Hoi(t’) , 1 s: 1 (11.4) 
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and where Hoi  is given by (11.2). The unitary transformations, given by 
U,, and UO2, lead to two interaction pictures to which we will refer as the 
interaction picture [ l ]  and the interaction picture [2] respectively. It should 
be noted that the interaction picture [2], as defined here, is known as the 
Furry picture in quantum electrodynamics (see e.g. SCHWEBER [ 1961; § 15gl). 

It is easily seen that Uo, and Uoz are related by 

U02(t, 7) = UOl(t, O)V(t, T>U,',(Z, O), (11.5) 
where 

(11.6) 

In eq. (11.6) He,, I ( t )  is the operator H,,,(t) in the interaction picture [ I ]  i.e. 

H e x ,  l(t)  = U,:(t, O)ff, , , ( t)UO,(t ,  0). (11.7) 

It should also be noted that al(t) and a2(t) are related by 

a2(t) = V'(t, O)a,(t)V(t, 0). (11.8) 

From the definition (1 1.3), it is clear that az(t) satisfies the equation 

(11.9) aa,/at = - i[HRS2(t), a2] = - iLZas2(t)a2 , 
where 

HRSZ(t) = u:2(t9 O)HRS U02(f, O), (11.10) 

and where . 9 R S 2 ( t )  is the Liouville operator in the interaction picture [2]. 
The Liouville equation (1 1.9) contains both the system variables and the 
reservoir variables. The master equation is obtained from (11.9) by the 
elimination of the reservoir coordinates. By applying the projection operator 
9 to both sides of (1  1.9) and by using the procedure of D 5, we obtain the 
master equation (cf. eq. (5.16)) 

a 
- [g'a2(t)1 +i9LZRSZ(f)[gu2(t)] 
at 

+ r d T g 9 ~ ~ 2 ( t )  %(t,  ~ ) ( I - ~ ) ~ R S ~ ( T ) [ ~ ~ ~ ( T ) ]  = 0, (11.11) 
0 

where 

and where the projection operator 9 is given by (5.7). The master equation 
( 1  1.1 1) contains the effect of the reservoir interaction to all orders. We again 
consider the approximate master equation obtained from (1 1. I 1) by making 
the Born approximation and the Markovian approximation (for some of 
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the non-Markovian effects in spin resonance saturation see ARGYRES and 
KELLEY [1964]). Under these approximations we recover the theory of 
Bloch and Redfield. The equation so obtained will be valid for z, << t 5 T~ 
where T, and 2, are the typical reservoir correlation time and the relaxation 
time respectively. The master equation (1 I .  11) in these two approximations 
reduces to 

In deriving (1 1.13) we have also assumed that the properties of the reservoir 
are such that 

g g p R s z ( t ) Y O 2 ( f )  = 0. (11.14) 

On using ( I  1.8) and (11.13), we obtain the following master equation 

=PO, ( t )  

(1 1.15) 

Eq. (1 1.15) is a basic equation for the description of strongly driven quantum 
systems. We now use eq. (11.15) to study spontaneous emission in presence 
of strong fields. 

We assume that the atoms (two-level) are driven by a resonant optical 
field of the form 

(1 1.16) ~ ( t )  = &(A cos wt+9  sin wt). 

H e x t ( f )  then is given by 

H,,,(t)  = - + l d l ~  1 (Sfe-'"'+H.C.). (11.17) 
j 

The Hamiltonian Hs+HR+HRs  is given by eq. (9.1). For the system under 
consideration .we have 

(1 1.18) 

HRSl(t) = (Sfaksgks exp { -iWks t +iot} + H.C.), (1 1.19) 
j k s  

N 

v(t, T )  = n exp {PldlEi(sf +s , : ) ( z -T)} .  (1  1.20) 
j =  1 
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On using the properties of the spin angular momentum operators, it is 
easy to show that 

v(t, f - T ) H R S I ( f - T ) V + ( t ,  2 - T )  = c [gksaks exp { -i(f-T)aks} 
j k s  

x (cos' (3wl z)Sf +sin2 ( t w ,  7)s; -2i sin (Sw, 7) cos (to1 .)Sf} + H.C.], 

where 
0 1  = Id[&. 

(1 1.21) 

(1 1.22) 

On substituting (11.21) and (11.19) in (11.15), we find that the reduced 
density operator p( t ) ,  for the atomic system, in the interaction picture [ l ]  
satisfies the master equation 

a_p -i 1 (+Wl)[Sf +sf, p]+ 1 {$(2K-+K+)[S,?, s i p ]  
at j i j  

+$(2K-K+)[S:, Sfp]+tK-[S', S;p]+H.C.} = 0, (11.23) 

K = y-ifl ,  K *  = K ( W + O ~ ) ~ K ( O - - ~ ) ,  (1 1.24) 
where 

and where (cf. eqs. (9.5), (9.6)) 

?(a) = 1 lclgkslzs(w-~ks), = Igks12P(wks-wW)-1* (11'25) 
ks ks 

The master equation ( 1  1.23) should be compared with the one for weak 
external fields (cf. eqs. (5.27) and eq. (9.4)), 

3 -i c ( S w , ) [ S ~  +ST, p ] +  1 {K[S', Sfp]+H.C.} = 0, (11.26) 

which can be obtained from (11.23) by the approximation K+ x 2rc, 
K- z 0. The master equation ( 1  1.23) leads to the following equation for 
the macroscopic mean value of an operator Q (in the rotating coordinate 
frame) 

c? 
- (Q> + i 1 ( h i  )([ST + Sf 7 Q]> + 1 { - & ( 2 ~  + K + )<[$, QIS; ) 

at j i j  

at j i j  

- $(2K - K+)([S+,  Q]Sf> - +K-( [S,?,  Q]Sf) + &(2K* + KS)(S+[Sf, Q]) 

+$(2K*-K*,)(S,r[Si, Q])+$K?(sf[S,y, Q])} = 0. (11.27) 

The master equation ( 1  1.23) or the mean value eq. (1 1.27) is too complicated 
to be solved for the case of N two-level atoms. We present its solution for 
the case of one two-level atom. For one atom we have 
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a 
at 
- ( S -  ) = -iwl(S') -#(2rc+ K + ) ( S - )  + t ( 2 ~  - K + ) ( S + )  + 97- , (1 1.28) 

a 
at 
- (s') = iio, (s+ - S - )  + +K-<s+) + &T(s-) - i(2y + y + ) ( ~ ' +  )>. 

(1 1.29) 

Eqs. (1 1.28) and (1 1.29) have been recently obtained by LEHMBERG [ 1970bl. 
Similar equations have been derived by BLOCH [1957] and by others in 
connection with spin resonance saturation. If we ignore the frequency shifts, 
the steady state solution of eqs. (1 1.28) and (1 1.29) is given by 

+ 1 7 -  w d 
Re(S  ) = - - = A  - hy(w);  Im ( S + )  x - 

2 y +  2 dw 

(S ' )  = -f{l+2(w,/2y)2}-1, (1 1.30) 

where in obtaining (11.30) we also assumed that w1 << w so that K, x 2 ~ ,  
K- x 2w, drcldw. Hence Re ('3') % (3w1/2w) and thus the in-phase 
component continues to increase as the strength of the external field 
increases. The out of phase components saturates and then decreases. 
Lehmberg has noted that this effect can result in enhanced coherent 
scattering and fluorescence. 

We now consider another example of strongly interacting quantum 
systems. We discuss the parametric frequency conversion in a medium 
with losses. In the absence of losses, the frequency conversion is described 
by the model Hamiltonian 

H = o , a + a + w b b f b + g ( U b + + H . C . ) ,  (11.31) 

where a and b are the annihilation operators associated with two field 
modes. We have assumed that the pump field is very strong, so that it can 
be treated as a c-number. The losses in the medium can bt: taken into 
account by using the prescription given in § 6 (cf. eq. (6.53)), i.e. by assuming 
that each field mode is interacting with its own reservoir. From (11.31), 
(6.53) and (2.24), we obtain the following equation for the Sudarshan- 
Glauber distribution function @(A)(a, a*, p, p*; t )  

a a a a a2 
- (iw,+y,)-a+((iw,+y,)-~+ig--+ig -p+y,(n,) - 

a@(A) p - 1  at aa afl ap aa aa aa* 

In order to keep the analysis as simple as possible, we also assume that 
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yu = yb = y ,  (n,) = (nb) = (n), wa = wb = 0. The Green's function 
associated with ( 1  1.32) (which is in the form of a linearized Fokker-Planck 
equation) is given by (WALLS [1970]) 

~ ( * ) ( a ,  a*, /I, /I*, t la, ,  ax, p o ,  /I,*, 0 )  = {n(n)(l -e-2yt)}-2 x (1 1.33) 
I +1(a-p)--(a,-/1~)e-'"'+'8'-~' 2 ' I]. -*(I(. + p) - (ao +Po)e-i"'-i8'-Y' 

(n)( l  -e-'?') 
exp [ 
The steady state solution is, therefore, given by 

@It"' = (.<n>)-' exp {-(la12+ IPI2)/(n>}, (11.34) 

which implies that 

It is seen that ( I  1.35) is not consistent with the Hamiltonian (11.31). This 
is due to the fact that the interaction between the two modes has not been 
treated properly when we assumed that each mode is interacting with its 
own reservoir. The effect of the coupling can be taken into account in the 
irreversible part of the master equation by using a procedure similar to 
that used in connection with interactions with strong external fields. We 
write the total Hamiltonian in the form 

H = Ha+ H b +  HR,, + H R ,  + HaR,+ HbRb 3 (11.36) 

where HoRn and HbR, are the interaction Hamiltonian between the mode 
a and the reservoir R, and the mode b and the reservoir Rb respectively. 
The reduced density operator, in the interaction picture, satisfies the master 
equation 

3 +iCHub(t), PI + T ~ R ~ / ~ [ H , , R ~ ( ~ ) ,  r q t ,  t - T ) H ~ ~ , ( ~  -TI 
at 0 

v+(t, - T ) 7  pRa(0)p(t)lldT + TrRbJom[HbRb(c)9 [v(t, t-')HbRj,( t - T )  

V + ( t ,  t-t), pRb(0)p(t)]]d' = O, (11.37) 

HaR,(t) = ~ g i a a + a j e x p  {-iwjt+iw,t}+H.C., (11.38) 

HbRb(f) = Sib b+bj  eXp { -iwjt+iwbt)+H.C., (11.39) 

where 

i 

i 
and 

V(t,  7) = exp {-i(t--)g(a+b+ab+)}. (11.40) 
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In deriving (1 1.37) we made use of our conventional Born and short memory 
approximations. On simplifying ( 1  1.37) and on making the transformation 
to the Schrodinger picture we obtain the master equation 

yik = +(y(wi+g)+y(wi-g)), 

ri* = y(wi+g)(n(mi+g)) +y(wi-g)(n(oi-g)) ,  (11.42) 

and y(w) and ( n ( w ) )  are given by eqs. (6.9) and (6 .6)  respectively. This de- 
rivation of (1  1.41) differs from that of WALLS [ 19701, who considered the 
interaction of each of the normal modes of the Hamiltonian (11.31) with 
the heat bath. The Sudarshan-Glauber distribution function now satisfies 
the equation 

(1 1.43) 

where we have again specialized to the case where o, = wb. Eq. (11.43) 
is in the form of a linearized Fokker-Planck equation and is easily solved 
by using the result given in Appendix. The steady state solution of ( 1  1.43) is 

Q:;) = (.'<n(o+g))(n(w-g)))-' exp {-+(<n(w+g)>-' +(n(w-g)>- '>  

x (laI2 + IBI')-t(<n(w+s)>-' - <n(w-s>>- ')@*8+a8*)1. (11.44) 

which implies that* 

ps, a exp { - ( o a + a + w b + b + g ( a + b + a b + ) ) / ( K ~ T ) ) .  (11.45) 

This analysis shows that the system relaxes towards the correct steady state 
which corresponds to the total Hamiltonian Ha+ Hb+Hab, rather than the 
free Hamiltonian H,+ffb. Of course in the weak coupling limit g --* 0, 
the master equation (1 1.43) reduces to (1 1.32). This result is the analog of 
the well known result in magnetic resonance, where a strongly driven spin 

The operator eq. ( 1  1.41) may be solved directly by using detailed balance (AGARWAL 
[1973b]). 
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system tends to relax along the instantaneous total field rather than along 
the static portion of the field. 

0 12. An Application of Phase Space Techniques 
to a Problem in Solid State Physics 

In this section we consider a related problem namely the problem of 
anharmonic interaction in solids. This problem belongs to the domain of 
solid state physics, but we will discuss it here since it may be treated by 
methods that were specifically developed for treatments of problems in 
quantum optics. The classical treatment of this problem is given in detail 
in the book by PRIGOGINE [1962] ;  our quantum treatment follows closely 
that of CARRUTHERS and DY [ I 9661  though our derivation of the master 
equation is different. We will in particular obtain the quantum analog of 
the BROUT-PRIGOGINE equation [ 19561. 

We write the Hamiltonian in the form 

H = W k a C a k -  1 ( W k W k ’ W k ” ) - ’ ( v k k ‘ - k ” a ~ , a k ’ U k + H . C . ) ,  (12.1) 
k kk’k” 

where we have ignored the energy non-conserving terms and where Vkr-kPr 

are the coupling coefficients. For our purpose their specific form is not 
needed. On using (12. I )  and (2.20) (generalized to the case of many degrees 
of freedom), we find that the distribution function @(N)({Zk}, { z : } ;  t )  
satisfies the equation 

On transforming to the action angle variables Jk, rp, defined by (2.30), 

eq. (12.2) reduces to 

+C.C.  d”. (12 .3 )  I 
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The energy distribution @ ( N ) ( { f k } )  is obtained from @ ( N )  by integrating 
over the phase variables ( P k ,  i.e. 

The projection operator 9 is given by eq. (1.22), which can also be written as 

9 * * . = $({O))($({O)), * * .I, (12.5) 

where $ ( { v k ) )  are the eigenfunctions given by (2.35). The master equation 
for @ ( N ) ( { J k ) ;  t )  in Born and in Markovian approximations, is obtained 
from (4.12) and is given by 

($({O}), 91(t)-r;",(t-z)$({O)))@"'dz = 0. (12.6) L!?? at +I: 
In deriving (12.6) we assumed that the distribution function at time t = 0 
is independent of the phases (Pk so that ( 1  - g ) @ ( N ) ( { f k ) ?  { ( D k } ;  0) = 0. 
We also made use of the relation 991(t)S@") = 0, which is easily proved 
from the form of ZR1 as given by the second term on the right-hand side 
of (12.3). On introducing a complete set of states (12.6) can be written as 

+ ~/owdr($({O}), e+i reo t91  e-ireot$({vk})) 
at  

x ( $ ( { v k } ) e + i y o ( r - T ) 9  l e- ' " " " ~ " $ ( { ~ } ) ) @ ~ " ~ ( { ~ ~ } ~  #) = 0, (12.7) 

which on simplification leads to 

a@(" 
__ + c (@({o})91 $ ( { v k } ) ) ( $ ( { v k } ) 2 1  $({O}))s-( V k W k ) @ ( N )  = 

at i V )  
(12.8) 

The equation (12.8) is not valid for time intervals given by 0 5 t 2 
where wD is the Debye frequency. It is easily shown from (12.3) that the 
only non vanishing elements of .=Y1 are ( $ ( { O } ) z 1 $ ( {  - I , ,  - I , . ,  lKr,;  0} ) ) ,  
( $ ( { O } ) 9 1 $ ( { l K ,  l K , ,  - lx , , ,  0))) and their complex conjugates. These 
matrix elements are easily computed and (12.8) then reduces to (CARRUTHERS 
and DY [1966])* 

* One may similarly show that satisfies (12.9) with the signs of second order de- 
rivatives in (. . .) changed. 
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This equation should be compared with the Brout-Prigogine equation for 
the classical distribution function QC,( ( J k }  ; 1 ) :  

a I vkk’-k*‘12 - @cl = 2n 
at kk‘k” ( w k  w k ’  - k ” )  

6 ( w k  + w k ‘  - w k ” )  

It is seen that (12.9) differs from (12.10) by the presence of second order 
derivatives which give rise to spontaneous decay of phonons. From eq. (12.9) 
we can easily establish the PEIERLS [1929] equation for the rate of change 
of phonons in the mode k: 

Finally we mention that we have not reviewed the related problems of 
optical pumping and resonant scattering of photons. Optical pumping 
has been treated by WILLIS [1970] using the master equation methods. In 
the theory of resonant scattering of photons methods related to master 
equation techniques have been employed by VDOVIN and GALITSKI [ 19651. 

Appendix 

Some Properties of the Fokker-Planck Process 

We discuss in this appendix the properties of the Fokker-Planck process 
(for discussions of the properties of the Fokker-Planck process see, for 
example STRATONOVICH [1963] or LAX [1966a, b; 1968al). Consider the 
Fokker-Planck equation 

ap a a2 
- = - C- (Ail‘)+ C - ( D i j P ) ,  
at i axi  i j  d x i d x j  

where A i  and D i j  are the drift and the diffusion coefficients respectively, 
given by 
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In eqs. (A.2) and (A.3) P({xil}, tl{xio}, 0) is the conditional distribution 
function for the Fokker-Planck process and is the solution of (A.1) subject 
to the initial condition 

N 

The N-time joint probability distributions can, of course, be determined 
from P( {xil}, tl {xio}, 0) by using the Markoff property of the stochastic 
process under consideration. The drift coefficients in (Al) give the rate of 
change of the mean value of the variable xi(t), i.e. 

( A 4  
a 
at  
- (Xi(t)> = (Ai({xi}))* 

The diffusion coefficients Dij give rise to the fluctuations in the mean value 
and form a semi-positive definite matrix. In the present article, we considered 
mainly quantum systems. The Fokker-Planck equation was then, an 
equation of motion for the phase space distribution function associated 
with the density operator. In such cases the diffusion matrix need not be 
semi-positive definite. However in most of the physical situations, the 
diffusion matrix is a semi-positive definite matrix and we assume it to be 
SO throughtout this appendix. 

It is known (BHARUCHA-REID [ 19601) that the conditional probability 
distribution function P({xil}, t l { x i o } ,  t o )  regarded as a function of {xio} 
and to satisfies the following Kolmogorov equation 

Eq. (A.6) is the adjoint ofeq. (A. 1). Eq. (A.6)is also known as the “backward 
equation” and eq. (A. 1 )  as the “forward equation”. 
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Eq. (A.1) can be rewritten in the form 

aplat+ c aJilaxi = 0, 
i  

where J i  is the ith component of the probability current given by 

Eq. (A.7) can be interpreted as the equation for the conservation of the 
probability. The steady state solution of (A.7) is given by aP/dt = 0. In 
many physical problems the principle of detailed balance will be obeyed, 
i.e. Ji = 0. Then the steady state solution, denoted by P,,, is given by 

From (A.9) and the relation 

a2P/axi axj  = a2P/axj axi, 

it is seen that detailed balance is possible only if 

(A.lO) 

The condition (A. 11)  is known as the potential condition (STRATONOVICH 
[ 19631). The connection of potential condition to the microscopic reversibility 
is well known* (see, for example LAX [1968a]). One may show that the 
potential condition is satisfied for the Van der Pohl oscillator model of laser 
light and eq. (A.9) then leads to the steady state solution given by eq. (10.33). 

One may also prove an “H-theorem’’ for the Fokker-Planck process. 
We introduce the “H-function” defined by 

It followj from the positive definiteness of P and the inequality x In x--x In y 
- x + y  2 0 that H ( t )  2 0. Moreover on using (A.12) and (A.9), one may 
show that the rate of change of the “H-function” is given by 

* In our treatment we have assumed that the reversible part of the drift vector is zero 
(for generalizations see GRAHAM and HAKEN [1971]). 
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From eq. (A. 13) and from the positive definiteness of the diffusion matrix 
it follows that 

dH/dt 0, (A. 14) 

which is the "H-theorem" for the multidimensional Fokker-Planck process. 
We now discuss the eigenfunctions and the eigenvalues of the Fokker- 

Planck operator 

a a2 
9= - C - A i + C -  Dij 7 

i axi i j  dxidxj 
(A.15) 

91ji = - t I i l c l i .  (A. 16) 

In general the operator 9 is not Hermitian. Eq. (A. 16) can be changed into 
a self adjoint equation by the transformation of the eigenfunctions t,hi 

lcli  = ~ X P  {x>Vi. (A.17) 

We then obtain the eigenvalue equation (LOUISELL [1969]) 

9 ' ( p i  = -tIiqi, 
where 

(A. 18) 

- + A i  ") , (A.19) 
axi axi 

and the function x is given by 

a x / a X i  = -4 C (D-')ij( C aDjk/dxk-Aj). (A.20) 

Since 9' is a self-adjoint operator its eigenfunctions and eigenvalues form 
a complete set: 

i k 

C $i({xi1lMi({xiO}) ~ X P  (-22) = I1 d ( X i 1  -xio>, (A.21) 
i i 

and the conditional distribution function is then given by 

P({xil>, tI{xio>, to) = C e-" i ( f - fo ' lc l i ( {X i l } ) lc l i ( {X io>)  ~ X P  ( - 2 ~ ) .  (A.22) 
i 

Some examples of the eigenfunction expansion are given in the book by 
STRATONOVICH [1963]. On comparing (A.20) and (A.9) it is seen that 
x = 4 In Pst .  

The conditional distribution function P, for the special case when the 
drift coefficients are linear in { x i }  and the diffusion coefficients Di j  are 
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independent of random variables, is well known (WANG and UHLENBECK 
[1945]). If we set 

Ai = C B i j x j ,  (A.23) 
i 

then the solution is 

where Xo and X are the column matrices 

and the superscript T denotes the transpose of the matrix. The parameters 
b ( t )  and a(t) are given by 

b(t)  = est, a(t) = a(cn)-b(t)a(cn)bT(t), (A.25) 

and a(w) is the solution of 

flu( m) + a( w)p’ = -20. (A.26) 

The linearized Fokker-Planck equations, i.e. the eq. (A.l) with A i  given by 
(A.23) and with the diffusion constants independent of (xi>, occur in many 
physical examples such as in Brownian motion of an oscillator (eq. (7.7); 
WANG and UHLENBECK [1945], AGARWAL [1971d]); in the theories of 
relaxation of an oscillator (eq. (6.1 1); LOUISELL and MARBURGER [1967], 
AGARWAL [1969]), parametric frequency conversion (eq. (1 1.43); WALLS 
[1970]), parametric oscillator (GRAHAM [ 19681) oscillating below or above 
threshold and a laser (RISKEN et al. [1966]) oscillating below or above 
threshold. 

We next consider the Langevin treatment of the Fokker-Planck process. 
We will only quote the main result (for details see LAX [1966b], STRATONO- 
VICH [19631). Consider a nonlinear Langevin process defined by 

dxi/dt = pi+ C ai ,Fj ( t ) ,  ( i  = I ,  2,.  . ., N ) ,  (A.27) 

where F’(t) are independent delta correlated Gaussian random processes, i.e. 

( F j ( t ) )  = 0, ( F i ( t ) 5 ( t ’ ) )  = 26,6(t-t’), (A.28) 

and all the higher order linked moments (cumulants) vanish. Then the 
Langevin process (A.27) is equivalent to the Fokker-Planck process (A.1) 
with 

j 
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and 

(A.29) 

(A.30) 

Conversely if a Fokker-Planck process is given, we can construct a Langevin 
process since the diffusion matrix is a symmetric and positive definite matrix 
and necessarily possesses a square root. 

It is easily seen that the linearized Fokker-Planck equation is equivalent 
to the Langevin equations 

dxj/dt = C p i j x j + F j ( t ) ,  ( i  = 1,2,. . ., N ) ,  (A.31) 
j 

where 
( F j ( t ) )  = 0, (Fi(t)Fj(f’)> = 2Dijd(+f’), (A.32) 

and all the higher order linked moments of the random force F i ( t )  vanish. 
It is easily seen from (A.31) that the random variables ( x i >  constitute a 
Gaussian Markov process. It is also clear from (A.31) that the autocorrelation 
function of the process X ( t )  is given by 

<X(t)X’(O)> = exp (p~)<x(o)x’(o)>. (A.33) 

We therefore obtain Doob’s theorem (WANG and UHLENBECK [1945]): 
A random process that is stationary, Gaussian and Markovian, possesses 
an autocorrelation function of the form (A.33). 

In the text of the present article we have written the Fokker-Planck 
equations in terms of the complex coordinates z and z* in the form* 

a2P +C.C. ]  . (A.34) 
aZ az* 

This Fokker-Planck equation is equivalent to the following Langevin 
equations 

(A.35) 

where F ( t )  is a complex delta correlated Gaussian random process with 
zero mean, i.e. 

i = - A ( z ) + F ( t ) ,  i* = - [ A  ( z )  I* + F* ( t ) ,  

( F ( t ) )  = 0, ( F ( t ) F ( t ’ ) )  = 2DZ,6( t - t ’ ) ,  

(F( t )F*( t ’ ) )  = 20,,*d(t-t’), (A.36) 

and all the higher order linked moments of the complex force F ( t )  vanish. 

* We have assumed for the sake of simplicity that D’s are constants. 
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Note added in proof: 
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RISKEN [1972], AGARWAL [1972, 1973b, c], VAN KAMPEN [1971]). 
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0 1. Introduction 

The boundary of the far infrared region is not well defined. In the region 
beyond 20-25 pm, suitable materials for prisms are difficult to find, and 
gratings have been used as dispersion devices. Measurements using optical 
methods have been extended up to a few mm region at  present. So in this 
article the far infrared region is defined as the region from 20-25 pm to a 
few mm, and recent developments in spectroscopic techniques in this region 
will be described. Of course, the techniques used in the infrared region 
below 20 pm, which may be available in the far infrared region in principle, 
will be discussed in this article. 

0 2. Conventional Far Infrared Spectroscopic Instruments 

Dispersion-type instruments using prisms and/or gratings have been used 
in the far infrared region. Newly developed elements of such instruments 
and interferometric instruments will be explained in this paragraph. 

2.1. DISPERSION-TYPE SPECTROMETERS 

In the far infrared region, prisms of KRS-5, CsBr or CsI have been used, 
but their resolution is poor and these prisms act now only as supplementary 
elements in dispersion-type instruments. Gratings of the Echelette type are 
the main dispersive elements, but elimination of higher order spectra 
which overlap the first order spectrum is troublesome for grating in- 
struments. It is very important to find sharp cutoff filters to eliminate higher 
order spectra in various wavelength regions. For this purpose, grating filters, 
metal mesh filters and Reststrahlen powder filters have been used. The last 
filters are used widely in grating instruments, and recent developments in 
their use, especially at low temperatures, will be described. 

High pressure mercury lamps are still the only radiation source in the far 
infrared region, and the available energy from this source is not sufficient 
for obtaining measurements of high resolution. So very sensitive detectors 
are extremely important. 
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Fig. 2.1. Transmittance of Reststrahlen powder filters at various temperatures 
(SAKAI et al. [1965]). 

2. I .  1 .  Reststrahlen powder $filters 

Transmission filters of polyethylene sheet, containing Reststrahlen crystal 
powders, have been developed in our laboratory (YAMADA, MITSUISHI and 
YOSHINACA [1962]). The sharp cut-off characteristics of these filters depend 
upon the fineness and the high concentration of the crystal powders and the 
thinness of the polyethylene sheet. Fig. 2.1 (SAKAI, NAKACAWA and YOSHI- 
NAGA [1968]) shows the cut-off characteristic curves of these filters at  room, 
liquid nitrogen and liquid helium temperatures. The data at  liquid helium 
temperature were obtained for these filters in a light pipe inserted into a 
cryostat. The sharpness of cut-off characteristics of all filters increases with 
the decrease of temperature, and the maximum transmittance measured in 
a light pipe at liquid helium temperature is higher than that measured for a 
parallel beam at room and liquid nitrogen temperatures. Such filters are also 
important as cooled filters for low temperature detectors. 

Beyond 250 pm, there is no Reststrahlen crystal suitable for making such 
filters, and metal wire-cloth meshes are used as reflection filters in the long 
wavelength side of the region (MITSUISHI, OHTSUKA, FUJITA and YOSHINAGA 
[ I  9631). Interference filters of multi-layers are superior to Reststrahlen crys- 
tal filters under 30 pm. 
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2.1.2. Detectors 

It is important that in detectors used in far infrared spectroscopic in- 
struments the value of the noise equivalent powder (NEP) be as low as 
possible. Also the size of the receiving area of detectors must be considered 
because it is difficult to focus the radiation falling on detectors in a light pipe 
to a very small area. Recently impurity doped Ge bolometers cooled by 
liquid helium have been commonly used in far infrared spectrometers. The 
value of the NEP of such bolometers decreases at  lower temperatures. A 
typical large (-6 mm3) Ge (RICHARDS [1970a]) bolometer for far infrared 
use with a sink temperature of 1.1"K and NEP N lo-'' W / J E ,  which 
has been commonly used, would correspond to - 3  x W/JHz at 
0.37"K and - 4 x  10- W / J E  at 0.02"K. A temperature of 0.02"K or 
less can be reached by reliable techniques of modern low temperature 
physics, such as 3He-4He dilution refrigerators or adiabatic demagnetiza- 
tion. Severs et al. have developed such a bolometer (DREW and SIEVERS 
[1969]). P-type Ge doped with In and Sb (6 x 1016 and 2.4 x 10l6 atoms/cm3 
respectively) or Ga doped Ge is used as the detector element. Fig. 2.2 shows 
the construction of the cryostat for the bolometer, which is cooled with 3He. 
The NEP value is 3 x 10- l 4  W / J E  at 0.37"K and the response time is 

._ 

Fig. 2.2. Schematic diagram of Ge bolometer cooled by jHe and sample chamber 
(DREW and SIEVERS [1969]). 
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lo-’ sec. This bolometer is probably the most sensitive detector of far 
infrared radiation developed until now. 

To cool detectors with liquid helium is not handy for use, especially in 
commercial instruments, and detectors used at room temperature are much 
more convenient. So a Golay detector has been used instead of its actual 
NEP value of - lo-’’ W/J%. Recently a pyroelectric detector using 
T.G.S. or S.B.N. has been developed (PUTLEY [1970]). The NEP value will 
approach the value of the Golay detector in the future and the response 
time is much faster than that of Ge bolometers. 

The detectivity of those detectors described above is non-selective for wave- 
lengths. Heterodyne detection of low-level coherent radiation will be impor- 
tant even for spectroscopic purposes in the future. A measurement of the 
signal-to-noise ratio and minimum detectable power for heterodyne detec- 
tion of scattered radiation at 10.6 pm of CO, laser has been developed (TEICH, 
KEYES and KINGSTON [1966]). Using photoconductive Ge doped with Cu as 
the detector, the observed minimum detectable power, at a frequency of 70 
kHz and in a bandwidth of 270 kHz, is 3.5 x W. This corresponds 
to a minimum detectable power of 1.3 x W in a I-Hz bandwidth. 
Also heterodyne detection with a Bi thin film bolometer is reported (CON- 
TRERAS and CADDY [1971]), but the minimum detectable power is much 
poorer than the Ge photoconductive detector doped with Cu. 

In these developments of elements of far infrared spectroscopic instru- 
ments, resolution and rapid measurement are limited owing to the shortage 
of available far infrared energy. The present tendency of the development 
of far infrared dispersion-type spectroscopic instruments is to simplify the 
construction and to  adapt the mechanism to a special purpose, especially 
for commercial instruments. 

2.2. INTERFEROMETRIC SPECTROMETERS 

Interferometric spectrometers compared with dispersion-type ones have 

a) faster optical system (Jacquinot’s effect), 
b) simultaneous measurement for the whole wavelength region, which 

increases the efficiency of utility of radiation energy (Ferrgett’s effect). 
Owing to these advantages, interferometric spectrometers are superior to  
dispersion-type ones, especially in the long wave side of the far infrared 
region, where available radiation energy from the source is very low. There 
are two types of interferometric instruments, i.e., the Michelson-type inter- 
ferometer and the Laminar-type interferometer, and the latter is more effi- 
cient in the long wave side of the region, which does not need the beam 

advantages as follows: 
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splitter. Recent tendencies in the development of far infrared interferometric 
spectrometers will be described below. 

2.2.1. High resolution 

As is well known, the resolution is reciprocally proportional to the max. 
imum path difference of two beams of the interferometer. The highest resolu- 
tion of far infrared interferometric spectrometers is 0.05 cm- for the maxi- 
mum path difference of 20 cm (SANDERSON and SCOTT [1971]); this value is 
much better than that obtained with dispersion type spectrometers. Fig. 2.3 
shows the spectra of water vapor at various path differences (DOWLING 
[1970]). Spurious spectral lines are fairly dominant in the spectrum for 
short path differences, but they become weaker and the spectral linewidth 
narrower with the increase of path difference without any apodization. 
Finally the spectral linewidth is very sharp and spurious spectral lines can 
not be seen, except noise. Fig. 2.4 shows the spectrum of water vapor in the 

L2=3.952crn 

L3=7.904crn 

u 
L,= 15.808cm 

i 5  6 0  65 70 75 80 
(cm I )  

Fig. 2.3. Spectra of water vapor between 54 and 84 cm-I at various path differences 
(DOWLING [1970]). 
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Fig. 2.4. Highly resolved water vapor absorption lines in the far infrared region 
(DOWLING 119701). 

far infrared region obtained with an interferometric instrument (DOWLING 
[ 19701). There are six absorption lines near 35-40 cm- *, and these lines are 
resolved completely in this spectrum, but the two center lines are difficult to  
resolve completely with dispersion-type spectrometers. 

Connes and his coworker have obtained a resolution of 0.005 cm-' for 
a path difference of 200 cm in the middle infrared region (CONNES [1970]). 
The mechanical accuracy of the far infrared interferometer needs to be much 
lower than that of the interferometer in the middle infrared region, say in 
the 10 pm region, because such inaccuracy needs to  be proportional to the 
wavelength measured. The signal-to-noise ratio of the interferogram in the 
far infrared region is much smaller than that in the middle infrared region 
and the resolution does not increase with increase of path difference when 
the path difference becomes large. This is the reason that the highest resolu- 
tion in the far infrared region is poorer than that in  the middle infrared 
region. 

An asymmetric-type interferometer developed by Bell (BELL [ 19661, [ 19701) 
measures the amplitude of light instead of the strength of light. So this 
spectrometer can obtain the very accurate index of refraction of gases shown 
in Fig. 2.5. But the sample should be inserted in one of the two beams of 
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Fig. 2.5. Index of refraction of HCl absorption lines. The solid line and circles show 
calculated and experimentally determined values (BELL [ 19701). 

the interferometer. So there is no trouble for gas or liquid samples but it is 
in general difficult to measure solid samples. 

2.2.2. Double beam type 

Double beam spectrometers are now common among dispersion-type in- 
frared spectrometers. For interferometric spectrometers a double beam sys- 
tem has not much benefit compared to dispersion type spectrometers, and 
is not so common. Two examples of this type will be described below. 

Dowling started the optical arrangement of the sample-in and sample-out 
system (HALL, VRABEC and DOWLING [1966]). Let the output of the detector 
for the period of sample-out and sample-in be Fo and F, respectively, and 
the spectral intensity in the cases of sample-out and sample-in I, and I ,  
respectively. Then the next two formulae are obtained for the Fourier 
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transformation: 
m 

Fo(x) = +Fo(0)+ Io(v) cos (27cvx)dv, 

F,(x) = t F , ( O ) +  1 I,(v) cos (2nvx)dv, 

0 

m 

0 

where x is the path difference. Then 

The value of Fo(x)  - F,(x) is obtained at the path difference x. Simple Fourier 
transformation gives the value of Zo(v) - Z,(v), which shows the difference 
between spectral intensity in the cases of sample-out and sample-in. So the 
[Zo(v)-Is(v)] : v curve is just like a curve of emission spectrum, as shown in 

Detector 
output 

Time 4 

A-B 

I 
h 2 f 7  I 

Command pulse from interferometer 
step drive controller 

operating at  f 

converter 

\ I  

- and demodulator 

Broad- band Sum and 
Golay A.C. difference 

detector amplif ier amplifiers 
- 

Tuned filter 

operating at  2f A f B  Punch 

Fig. 2.6. Schematic representation of two signals and electronic devices to obtain each 
value of these two signals (THORPE et al. 119691). 
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Fig. 2.4. Of course the transmittance of the sample can be obtained from 
the ratio Is(v)/Zo(v), but unwanted effects like channel spectra of the plane- 
parallel sample, transmission filters and windows can be avoided in the 
curve of [I , (v)-I , (v)]  : v. 

Milward et al. have developed a double-beam system as follows (THORPE, 
MILWARD, HAYWARD and YEWEN [1969]). It is arranged that reference (A) 
and sample (B) channels are allowed to fall on the detector for equal and 
alternate periods of time with an equal blank period between each, as illus- 
trated in Fig. 2.6. If this period is of duration, say, $S, then it is obvious that 
a measure of the difference ( A  - B )  between the two channels is given by the 
amplitude of the periodic signal of frequency$ Similarly a measure of the 
sum of the two channels ( A  + B )  might be obtained from the amplitude of 
the periodic signal of frequency 2f.  The square waveforms shown in Fig. 2.6 
may be expressed by complex Fourier series. The amplitudes of the funda- 
mental wave and its second harmonic are related to the amplitudes A and 
B as follows: 

c ,  = ( n / J 2 ) - ' ( A - B ) ,  

c ,  = ( 2 x ) - ' ( A + B ) .  

A = 'C[C2+Cl /J2 ] ,  

B = n [ C 2 - C , / J 2 ] .  

These simultaneous equations can be solved to give 

C ,  and C2 are proportional to the outputs from the channels f and 2f 
respectively, for the same frequency bandwidth and for a detector of uni- 
form frequency response. The electronic system devised for this purpose is 
depicted in Fig. 2.6. 

For interferometric spectroscopy, Fourier transform is a troublesome pro- 
cess and such a system as the double-beam type causes more trouble with 
complicated Fourier transform calculations. So interferometric spectrom- 
eters with a double-beam system are not yet widely used. 

2.2.3. Real-time on-line computers 

Interferometric instruments have the advantages described above, but have 
the disadvantage that the propriety of the measuring condition is found 
only after vast calculations of Fourier transforms. 

In conventional Fourier spectroscopy spectral intensity I(v) is calculated 
after the interferogram has been measured and the spectrogram, i.e., the 
curve of I(v) : v is obtained. If a special computer is connected to the inter- 
ferometer, the next operation may be possible. When the intensity F ( x )  of 
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Fig. 2.7. Water vapor absorption curves displayed with a synchroscope during the scan 
of the interferogram (LEVY et al. [1970]). 

the interferogram at the path difference x is obtained, the values of F ( x )  
cos(2nvx)Ax for all v are calculated and these values are added to the value 
of c:=$” F(x) cos(2nvx)Ax stored in the computer and then the results are 
stored again. This process is repeated for each path difference. After the 
interferogram has been measured, the values stored in the computer are re- 
corded and give the spectrogram. If these values are displayed with a synchro- 
scope while scanning the interferogram, the curve displayed gives the spectro- 
gram for the maximum path difference x. An interferometer with such a 
real-time on-line computer, which may be called a kind of multichannel 
spectrometer, has been developed in our laboratory (YOSHINAGA, FUJITA, 
MINAMI et al. [ 19661). Fig. 2.7 shows the spectra of far infrared water vapor 
absorption at various path differences found by Milward and his coworkers 
(LEVY, MILWARD, BRAS and LE TOULLEC [1970]) using the same method as 
ours. The fine structure of the spectrum can be seen more and more with 
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Fig. 2.8. Number of output samples for input sample rate of various real-time on-line 
computers (CONNES et al. [1970]). 

the increase of path difference. Connes and his co-researchers have con- 
structed a large computer of real-time on-line type and are constructing 
another larger one (CONNES and MICHEL [ 19701). Fig. 2.8 shows the charac- 
teristics, i.e., the relation between inputlsec and output of various real-time 
on-line computers constructed until now. The curve ‘Lac’ in the figure is for 
the computer already constructed and the broken line for the computer 
under construction by Connes et al. The curve given in Fig. 2.9 is the spectra 
of N20 in the infrared region obtained by Connes with the computer and 
shows very high resolution (CONNES and MICHEL [I970]). 

C 

I I I I 1 I 1 

4700 47 10 4720 4730 4740 4750~11-’ 

Fig. 2.9. N20 spectra at various path differences with a real-time on-line computer 
(CONNES et al. [1970]). 
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Now we may understand that real-time on-line computers can not only 
avoid the disadvantage of interferometric spectrometers described above 
but can catch the rough spectrum immediately after starting the scan of 
the interferogram, compared with a dispersion type spectrometer with 
which it takes a long time to see the spectrum for the whole wavelength 
region in the far infrared region. 

The computer memory needs to be large for obtaining a spectrum of 
high resolution. Because an interferogram can not be scanned so rapidly 
to avoid the decrease of signal-to-noise ratio of the interferogram, the speed 
of calculation does not need to be so high even for the computer with a 
large memory. So a big real-time on-line computer for Fourier spectroscopy 
seems to be not so difficult to construct in light of the recent development 
of elements of electronic computers. A very simple computer is satisfactory 
for an interferometer of the same resolution as that obtained with a disper- 
sion-type spectrometer. As described above, interferometric spectrometers 
in the far infrared region have advantagzs which dispersion-type spectro- 
meters have not, and become more and more useful in academic and also 
industrial measurements. 

8 3. New Spectroscopic Methods 

In conventional spectroscopic methods, radiation sources and detectors 
are non-selective for some wavelength region. So some device to select 
monochromatic radiation in continuous radiation emitted from the radiation 
source, for example, a monochromator, is necessary. If a monochromatic 
and tunable (for wavelength) radiation source or a monochromatic and 
tunable detector could be developed, the device described above would not 
be needed, and spectroscopic methods would be very simple. Of course, 
such a monochromatic and tunable detector is available for emission and 
absorption spectroscopic methods, and such a monochromatic and tunable 
radiation source is available only for absorption spectroscopic methods. 

[n this paragraph, the present situation of the development of such 
detectors and radiation sources will be described, and their application for 
spectroscopic measurements will be explained. 

3.1. MONOCHROMATIC AND TUNABLE DETECTORS 

3.1.1. InSb cyclotron re3onance detector 

The conduction and valence bands of InSb split into discrete Landau 
levels with the application of a magnetic field. The energy of Landau levels 
is given by the expression 
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h2k2 heH 

2m* m*c 
E = - -  +(N+3)-- 3 

where m* is the effective mass of electrons, His the magnetic field, and k 
and N are quantum numbers ( N  shows the number of Landau levels). The 
transition between successive Landau levels (i.e., AN = k l )  gives the 
cyclotron resonance transition, of which the frequency w, is as follows: 

o, = eH/m*c. (3.2) 

If InSb material contains impurity atoms, the energy levels of impurity 
atoms which belong to each Landau level, may appear. So the cyclotron 
resonance frequency of the transition between Landau levels or two impurity 
levels belonging to successive Landau levels is proportional to the magnetic 
field. 

If the spin effict is considered, g , P H M j  should be added to the right side 
of eq. (3.1) as a third term. g, is the effective g factor, j = eh/2m* is the 
Bohr magneton, and M j  is a quantum number, being $ or -4. This spin 
effect is important for the tunable lasers described below. 

Fig. 3. I (YAMAMOTO and YOSHINAGA [ 19691) is a schematic diagram of 
energy levels of InSb with hydrogen like impurity atoms in a magnetic 
field and of optical transitions among those levels. The transition B shows 

c : (000)-(010) 

Wavelength 

Fig. 3.1.  Schematic diagram of energy levels of InSb, optical transitions (left), and spectral 
photo-response (right) (YAMAMOTO et al. 119691). 
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the cyclotron resonance absorption between Landau levels ( N  = 0 and 1) 
in the conduction band, and the transition C shows the cyclotron resonance 
absorption from the ground state of the impurity levels. The transition A 
gives absorption in the millimeter wave region from the ground state to  
excited impurity levels. The curve on the right gives the spectral photo- 
response of transition B and C in the submillimeter region. 

InSb detector elements must be cooled with liquid helium and be used 
with a magnetic field. The construction of the cryostat for such a purpose 
is shown in Fig. 3.2. 

Corner mirror 

Brass light pi$ 

Cupro-nickel light pipe- 

Liq. NZ  

Liq. He 

T Light cone 

Superconducting magnet A 
1 Cooled filter 

T lnSb element 

Fig. 3.2. Cryostat for InSb photoconductive detector (YAMAMOTO et al. [1969]). 

Fig. 3.3(a) (YAMAMOTO and YOSHINAGA [1969]), shows the normalized 
photo-response for various magnetic fields. The width of photo-response 
becomes narrower with an increase of magnetic field, because Landau 
levels become sharper in a higher magnetic field. The photo-response in a 
weak magnetic field given in Fig. 3.3(b) shows diffuse resonance and finally 
the maximum of photo-response can not be seen (Putley detector). The 
photo-response shifts toward shorter wavelengths in a higher magnetic 
field. The maximum photo-response is at 35 pm for 50 kG, and at  17 pm 
for 100 kG. Of course an InSb crystal has lattice vibrations at about 54 pm, 
SO an InSb detector is not available in  this wavelength region. 
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Fig. 3.3. Spectral responsivity of InSb detector at various magnetic fields. (a) strong 
field (normalized), (b) weak field (YAMAMOTO et al. [1969]). 

In a monochromatic detector, it is desirable that the width of the spectral 
photo-response be as narrow as possible. Fig. 3.4 (YAMAMOTO and 
YOSHINAGA [ 19691) shows the photo-response at various temperatures. At 
lower temperatures, the transition B diminishes and the photo-response 
curve becomes narrower. The photo-response for two InSb samples with 
different impurity concmtrations (1.4-2.8 x l O I 3  and 2.4-2.7 x l O I 4  ~ m - ~ )  
is given in Fig. 3.5 (YAMAMOTO and YOSHINAGA [1969]), which shows that 
the purer sample has a much narrower photo-response. So it is better to 
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Fig. 3.4. Spectral photo-response of InSb detector at various temperatures in constant 
magnetic field (YAMAMOTO et al. [1969]). 
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Fig. 3.5. Spectral photo-response for InSb samples of two different carrier concentrations 
and two temperatures (YAMAMOTO et al. [1969]). 

use purer InSb material at lower temperatures for a monochromatic detector. 
The present InSb cyclotron resonance detector is not so monochromatic 

for spzctroscopic use without a monochromator. But such a detector has 
some benefit compared with a non-selective detector. The following two 
spectroscopic devices will be compared (YAMAMOTO [1971]): 
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(a) grating, cut-off filters of higher order spectra and non-selective 

(b) grating and InSb detector. 
detector, 

If we use a thermal radiation source, the energy at wavelength d is given 
by the following Rayleigh Jeans formula: 

B,  = C ,  Ct'A-4T. 

B ,  = m 4 ~ ,  , 

where m is the number of higher order spectra, B ,  and B, are the energy 
of the first and the mth order spectra respectively. The energy passing 
through a monochromator is as follows: 

E = BslT ,Af -2Ad ,  (3 .5)  

where s is the slitwidth, 1 is the slitlength, T, is the transmittance of the 
monochromator at I ,  A is the grating area and f is the focal length. Ad is 
given by sd cos e /mL where d is the grating constant and 0 is the diffraction 
angle. T, is assumed to be constant. Then, 

(3 .6)  
3 Em = m E l .  

The output of a detector is expressed as follows: 

V, = RAE,, 

where R,  is the spectral response. For a thermal detector, 

V, = R,E,  = R,m3E,  = m 3 V 1 .  

For the total output of the detector, 

v = v, + v, + v3 
= ( 1 3 + 2 3 + 3 3 +  . . . )V, .  

For a Putley type detector, 

(3 .7)  

R ,  = ciz(c: proportional constant) 

R ,  = C ( l , / m ) '  = R , / m 2 .  

So, V, = ( R , / m 2 ) m 3 E ,  = m V ,  

V = ( 1 + 2 + 3 +  . . . ) V l .  ( 3 . 8 )  

An InSb detector is assumed to have some photo-conductive effect simul- 
taneously with cyclotron resonance absorption. The output of an InSb 
detector is given as follows: 



11, I31 N E W  S P E C T R O S C O P I C  M E T H O D S  91 

nV,+V,+l/ ,+ . . . = ( n + 2 + 3 +  . . .)Vl (3.9) 

where n is the increase of photo-response by  resonance absorption. To keep 
the influence by higher order spectra less than 1 %, 

n 2 100(2+3+ . . .). (3.10) 

Now let a thermal detector, for example, a Ge bolometer, and an InSb 
detector be compared with each other. For the Ge bolometer, 

loot 19.5kOe loot 17.1 kOe loot 14.6kOe 

Wavelength ( p m )  Wavelength ( p m )  Wavelength (am) 

100 

-It- 
80 7 3 2 k @ e  

loo 122kOe 
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-1C ' ' I  I I I I 1  I I 1  1 ,  I I I 1  I 

100 110 120 130 140 150 110 120 130 140 150 160 170 180 150 160 170 180 190 200 210 220 

Wavelength ( p m )  Wavelength (prn) Wavelength (pm) 

Fig. 3.6. Spectra of water vapor absorption in the far infrared region in various magnetic 
fields (YOSHINAGA et al. [1969]). 
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(3.11) 

where p l ,  p 2 ,  p 3  are the transmittance of the cut-off filter for the first, 
the second and the third order spectra respectively. For the InSb detector, 
eq. (3.10) must be satisfied. Of course, T, is not constant, especially for 
echelette gratings, and the transmittance of light pipes is lower in the shorter 
wavelength region. But these factors influence both detectors in the same 
way. As a conclusion, a Ge bolometer is desired to have as low a NEP value 
as possible to cover the energy loss by cut-off filters. For an InSb detector, 
its photo-conductivity should be as small as possible, and it is desired to 
use InSb material of the lowest carrier concentration at  lower temperatures. 

Fig. 3.6 (YOSHINAGA and YAMAMOTO [1969], YAMAMOTO [1971]) is the 
spectrum of water vapor obtained with a very simple monochromator and 
an lnSb detector in constant magnetic fields. The resolution of these spectra 
is not so high due to the slow optical system of the monochromator, and 
the second and higher order spectra can not be seen at  all without any 
cut-off filters except two scatter plates. The optical system of a new 
monochromator under construction, shown in Fig. 3.7, has only two 
scatter plates and no other cut-off filters, and is very simple compared 
with conventional grating spectrometers using non-selective detectors. The 
speed of the optical system is F = 3, which gives the optimum condition 
to collect the most radiation energy in the detector element, considering 
the constant spectral width and the transmittance of the light pipe. The 
tuning of the InSb detector by magnetic field is to be synchronized with 
the wavelength scanning of the monochromator. The spectrogram shown in 
Fig. 3.8 is an example of the spectrum of water vapor in the far infrared 

2 1 0 0 ( ~ , 2 ~ + ~ , 3 ~ +  . . .I, 

t o  lnSb detector 

\LiBht pipe 

Fig. 3.7. Optical system of a simple far infrared spectrometer using InSb detector. 
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Fig. 3.8. Spectrum of water vapor absorption near 40 cm-1. 

region obtained with the monochromator and an InSb detector in a constant 
magnetic field. The highest resolution is observed to  be 0.3 cm- ' at 40 cm- 
and 0.4 cm- at 90 cm- ', which are very satisfactory values with such a 
simple far infrared spectrometer. 

3. I .2. Josephson junction detector 

This is a detector using the tunneling effect through a thin oxide barrier 
between two superconducting films (RICHARDS [ 1970bl). The tunneling 
current through such a junction can be divided into two parts: simple 
particle tunneling and Josephson tunneling. The first is the tunneling of 
individual electrons or quasiparticles, which usually dominates the dc 
current when voltages comparable to the energy gap are applied. Josephson 
showed that correlated superconducting pairs of electrons will also tunnel 
and should allow current flow with no associated voltage drop. This 
Josephson current is extremely sensitive to electromagnetic fields in a way 
which permits the construction of a variety of sensitive detectors of radiation 
at frequencies up to the far infrared region. 

The Josephson tunneling effect is described as follows. The wave function 
for the superconducting state can be written in the simple form y5 = t,boei8, 
where the phase factor is a function of both position and time. Josephson's 
lossless pair tunneling current depends on AQ, the phase difference between 
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thz wavz functions for th: superconductors on the two sides of the tunnel 
junction 

I = I, sin AO. (3.12) 

Here I ,  is the maximum zero-voltage current which can be carried by the 
junction. The final potential drop V across an oxide barrier occurs when I ,  
is exceeded. By the quantum theory of tunneling, a time dependence of 
the phase difference is given as follows: 

hd(A8)ldt = 2eV. (3.13) 

If the voltage V is constant in time, eq. (3.13) can be integrated to give 
A0 = 2eV0t/h+OO. Eq. (3.12) then predicts an alternating current flow 
across the barrier at the frequency w, = 2eV,/h. An alternating voltage 
V ,  cos w 1  I is induced across the barrier in addition to the steady voltage 
V,. Eq. (3.13) then gives 

A8  = 2eV0t/h+2eV1 sin w 1  t / h ,  +8,; 

so from eq. (3.12), 

I ( t )  = I, sin [2eV, t / h  +(2eT/,/hw,) sin w ,  t+e , ] .  (3.14) 

Choosing the value 8, = fii, which corresponds to a maximum zero- 
voltage current (V ,  = wo = 0 ) ,  and using standard trigonometric identities, 
I(t) is obtained as follows: 

cc 

q t )  = I ,  c J ,  rz) cos (w,+nw,) t .  
n=--00 

(3.15) 

Here J, is Bessel's function of order n. The junction is thus a nonlinear 
device in which the Josephson currents beat with the induced ac signal. 
In order to operate the junction as a detector, ths zero frequency beats, 
which occur when wo+nwl = 0, are measured. Then 

I , ,  = I,(  - 1)"J,(2eVl/hw,). (3.16) 

A lossless contribution to the dc current appears whenevzr the voltage is 
adjusted so that the ac Josephson frequency w, = 2eV0/h equals harmonics 
of the frequency wI . 

Since n = 0 for Vo = 0, the condition for direct current, 2eV0/h = +nu, 
is automatically satisfied for all w I .  So a broad band detector can be 
obtained. When the dc voltage is adjusted to a cavity mode, 2eV, = hE, 
where w, is a resonant cavity frequency, the Josephson current is found 
to be able to excite the cavity mode with sufficient amplitude. If the junction 
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Fig. 3.9. Schematic diagram of the construction of Josephson junction detector 
(RICHARDS [ I  970bJ). 

is biased so that wo cz w, ,  the Josephson radiation excites the cavity mode 
and is fed back to the junction. This mechanism has been used by Richards 
and Sterling to construct a narrow band detector. Fig. 3.9 illustrates the 
apparatus for holding and adjusting the Josephson contact between Nb 
wires S,  and S,.  The spectral response of such a detector measured using 
a blackbody source and a far infrared Fourier transform spectrometer is 
shown in Fig. 3.10. Although the peak is not resolved, the feedback narrow- 
ing is clearly seen. Richards and his coworker reported NEP 5 10- l4W/,/= 
and the width of spectral response - lo-' cm-' (RICHARDS and STERLING 
[1969]). If the resonant cavity frequency w, could be controlled, a mono- 
chromatic tunable detector might be possible to develop. But the continuous 
shift of w, is difficult and has not yet been achieved. 

The high frequency limit for the response of Josephson detectors is 
related to the critical temperature T, of the superconductors. For Nb, T, is 
8" K and the frequency limit becomes 50 cm-'. For Nb,Sn, these values 
are 17" K and 100 cm-' respectivzly. 

As described above, ideal monochromatic and tunable detectors, available 
to far infrared spectroscopy without any monochromator, have not yet 
been developed. 
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Fig. 3.10. Spectral response of Josephson junction detector (RICHARDS et al. [1969]). 

3.2. MONOCHROMATIC AND TUNABLE SOURCES 

Lasers are the only source to be expected as a monochromatic and 
tunable radiation source at  present. The spectral width of laser radiation 
is very small, but the wavelength is fixed in general, a serious disadvantage 
for use as a spectroscopic source. Recently the tuning of the wavelength 
has been studied, and many laser wavelengths can be tuned in some wave- 
length regions, most of which are below 15 pm, not in the far infrared 
region. But such lasers are important to create a far infrared tunable laser 
as described below. So tunable lasers in any wavelength region in which 
spectral widths are very narrow, will be explained. 

3.2.1. Tuning methods of laser wavelengths 

(1) Tuning by cavity control. For gas lasers lasing in one mode, laser 
wavelengths can be tuned continuously through the Doppler width of the 
laser line by adjusting, for example, the mirror distance of a Fabry-Perot 
cavity. As the Doppler width is reciprocally proportional to the lasing 
wavelength, the tuning range is very narrow in the long wavelength region. 
So the tuning range is not satisfactorily wide and the laser is not available 
for absorption measurement, except in the case where the spectral line 
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to be measured falls into the Doppler width. Also, dye lasers can be tuned 
continuously by using prisms, gratings or etalons of Littrow arrangement 
as one of the two mirrors comprising a Fabry-Perot resonator. By this 
method tunable laser wavelengths in the whole visible region with the 
combination of many kinds of dye lasers can be obtained. An especially 
very narrow spectral width of 0.05 A has been observed for the resonator 
with a few etalons (WALTER and HALL [1970]). 

(2) Tuning by shifting the energy levels related to laser transition. Of 
course, a magnetic field can shift the energy levels (Zeeman effect), but the 
amount of shift is too small for a spectroscopic radiation source. Diode 
lasers using semiconductors can be tuned in a wide range by changing the 
temperature, the pressure, the magnetic field or the injection current. An 
InSb laser using a spin flip tuned by a magnetic field is very interesting as 
described below. 

(3) Mixing of two laser lines. The difference frequency between two 
laser lines, the wavelengths of which are in the visible or infrared region, 
comes into the far infrared region. If one of two laser lines is tunable, 
a tunable far infrared laser can be obtained by mixing with nonlinear 
material. 

(4) Tuning by optical parametric method. Tunable stimulated radiation 
in the far infrared region can be obtained by parametric methods, for 
example, using the polariton effect. 

(5) Semi-tunable lasers using rotational transitions of molecules. Many 
rotational lines in the far infrared region can be lased by optical pumping 
with vibration-rotational lines in the middle infrared region. Of course 
these rotational lines are distributed discretely. 

3.2.2. Diode lasers 

There exist diode lasers using many kinds of semiconductors. But 
Pb, -,Sn,Se and Pb,-,Sn,Te lasers are the most interesting as tunable 
lasers. 

The wavelength of the laser line depends upon the energy gap of the 
semiconductor, which changes with the concentration of Sn (HARMAN, 
CALAWA, MELNGAILIS and DIMMOCK [1969]). The tunable range of a 
Pb,-,Sn,Se laser (0 s x 5 0.276) is from 8 to 31.2 pm. Fig. 3.1 1 shows 
the wavelength dependency on temperature. For a composition with 
x 6 0.10, the temperature coefficient is very low and is 5 x eV/K 
below 30' K.  The coefficient is negative for a composition with x > 0.19. 
Similar results are reported on a Pb,-,Sn,Te laser (NORTON, CHIA, 
BRAGGINS and LEVINSTEIN [1971]). The tunable range of this laser 
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Fig. 3.11. Temperature dependence of Pb, -,Sn,Se laser energy for various x values 
(HARMAN et al. [1969]). 

(0 5 x 5 0.315) is from 6.5 to 31 pm. For a composition with x = 0.1, 
the wavelength variation is approximately 4 x eV/K. So the temper- 
ature must be regulated within k0.01" K for a wavenumber stability of 
k0.04 cm-' at 10 pm. With care, )0.001" K can be maintained between 
10" and 300" K using a liquid helium cryostat with temperature adjustments 
provided by a simple resistance heater wound on the diode mount. The 
mode spacing for a 0.3-mm cavity is about 0.03 pm at 10 pm. This resolution 
and tuning range makes it possible to sample a large number of points 
in the broadband infrared absorption spectra of gases. 

A Pb, -,Sn,Te laser tuned by injection current has shown very remarkable 



1 1 ,  o 31 N E W  S P E C T R O S C O P I C  M E T H O D S  105 

Fig. 3.12. Spectra of the a 9  band of SF, molecule measured with a grating spectrometer 
and tunable Pbo.88Sno,12Te diode laser (HINKLEY et al. [1971]). 
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Fig. 3.13. Absorption spectra of a NH3 line taken at various gas pressures with tunable 
P b 0 , 8 8 S n ~ . ~ 2 T e  diode laser (HINKLEY et al. [1971]). 
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results on middle infrared spectroscopy (HINKLEY [ 19701, HINKLEY and 
KELLEY [1971]). The laser element, the size of which is 1.3 x 0.5 x 0.2 mm3, 
is oscillated (cw) in the 10.6 pm region with the injection current from 
600 to 1800 mA under cooling by liquid helium. The current dependency 
of a Pbo.ssSno.12Te laser is from 10 to 100 MHz/mA, which depends 
upon the size of the laser element and the junction depth. The line width 
is very narrow, i.e., less than 54 kHz (1.8 x lo-, cm- ') at 10.6 pm, and the 
output is 0.24 mW. A SF, molecule has an exceedingly complex spectrum 
in the middle infrared region, which cannot be resolved in the 950 cm- ' 
region even with a high-quality grating spectrometer, but which is resolved 
by a diode laser scan. Fig. 3.12 shows the spectrum of the v, band of a SF, 
molecule. The bottom curve is the absorption curve near 950 cm- at room 
temperature by a grating spectrometer (SF, pressure: 0.1 torr, cell length: 
25 cm). The top curve is a part of the bottom spectrum by the heterodyne 
detection with P(16)C02 laser line at 947.738 cm-I and the tunable diode 
laser (the pressure: 0.1 torr, cell length: 10 cm). The resolution of this 
curve is remarkably high, 3 x lo-, cm- '. Such high resolution measurement 
has the following advantage. Fig. 3.13 shows absorption profiles of the 
strong sP(1, 0) line of NH, at several pressures measured by the same 
detection as described above. As the NH, pressure is increased to 0.5 torr, 
the ceii 10 cm long becomes essentially opaque to radiation near the line 
center. With a grating spectrometer of 0.1 cm-' resolution, a pressure of 
5 torr in a cell 200 cm long produces the same maximum absorption as 
that shown at 0.05 torr in a cell 10 cm long, where the amount of NH, 
in the optical path is 2000 times smaller. 

Diode lasers can be tuned by the pressure applied to the laser element. 
A PbSe laser is tunable in the range from 7.5 to 22.3 pm by a hydrostatic 
pressure of 0-14 K barr (BESSON and PAUL 119681). 

Diode lasers can be tuned also by a magnetic field (CALAWA, DIMMOCK, 
HARMAN and MELNGAILIS [1969]). The conduction and valence bands of 
Pb, -,Sn,Se are split by a magnetic field, and T ,  , T, and T, laser oscillations 
occur as seen in Fig. 3.14. This figure shows also the tuning of TI, T2 and 
T,  for x = 0.19,0.22 and 0.28 by a magnetic field, TI for x = 10.9 is tunable 
up to 34 pm in 80 kC, of which the wavelength is the longest one of diode 
lasers. 

3.2.3. Dye laser 

Dye lasers are tuned by cavity control. Recently a distributed-feedback 
dye laser has been reported to produce a very narrow tunable laser line 
(SHANK, BJORKHOLM and KOGELNIK [ 197 1 I). The schematic diagram of the 
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Fig. 3.14. Magnetic field dependence of Pbl-,Sn,Se diode laser for various x values 
(CALAWA et a]. [1969]). 

experimental setup of mirrorless distributed-feedback laser devices is 
illustrated in Fig. 3.15. The wavelength of the dye laser is given by, 

2, = n,A,/sin 0, (3.17) 

where n, is the solvent index of refraction at the lasing wavelength I.,, and 
Ap is the pump wavelength. AL is tuned by either n, or 0, which is varied by 
changing the mirror positions. 

M Rhodamine 6G shows an angle dependency 
of dAId6 = 80 A at 0.6 pm and a tuning range of 640 A. The solvent index 
is easily varied over the range from 1.33 to  1.55 by proportionate mixing 

A dye laser using 3 x 
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Fig. 3.1 5. Schematic diagram of  the experimental setup of distributed-feedback dye laser 
devices (SHANK et al. [1971]). 

of methanol and bmzol alcohol. With reduced pump power, an apparent 
single mode operation is obtained with a linewidth of less than 0.01 A. 
Near 5900 A the peak output power of the laser is 36 kW, the sum of the 
powers out of both ends of the laser cell, with about 180 kW peak pump 
power. The dye laser pulse has a slight superimposed structure and a dura- 
tion of approximately 10 nsec. 

3.2.4. Spin flip Raman lasers 

Raman scattering from a mobile carrier in semiconductors is also very 
interesting for tunable lasers. Of course, the energy and momentum con- 
servation relations must be satisfied as follows: 

hw, = hwofhw, ,  (3.18) 

k, = k o f k , ,  (3.19) 

where w, and wo are the scattered and incident light frequencies, hw, is 
the energy of the elementary excitation responsible for the scattering of 
light, k,  and ko are the scattered and incident light wave vectors respectively, 
and k,  is the wave vector of the abovz elementary excitation. The minus 
sign applies to Stokes Raman scattering and the plus sign indicates anti- 
Stokes Raman scattering. For the spin flip transition, 

w, = coo k ng,PH, (3.20) 

where gc is the effective g factor of electrons and p is the Bohr magneton. 
n shows the number of spin flip transitions. 

An InSb spin flip Raman laser of pulse type has been reported (PATEL, 
SHAW and KERL [1970], PATEL and SHAW [1971]). The carrier concentration 
n, of InSb used for this laser is (1.3-3)x 10l6 ~ m - ~ .  Fig. 3.16 shows the 
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Fig. 3.16. Schematic diagram of the experimental setup for tunable lnSb spin flip Raman 
laser (PATEL et al. [1970]). 

experimental setup for using the tunable spin flip Raman laser as an infrared 
spectrometer source. The peak spin flip Raman laser power is 30-100 W 
for an input power of 1.5 kW obtained from a Q switched C 0 2  laser 
(10.5915 pm) having a pulse repetition rate of 120 Hz. The tunable range, 
which depends upon the carrier concentration, is from 11.7 to 13.0 pm 
for n, = 3 x 10l6 cm-, in a magnetic field from 48 to 100 kG. The pulse 
width is 30 nsec (3 nsec in a mode-locked operation). The laser linewidth 
is less than 0.16 cm-' measured with a grating spectrometer of resolution 
0.15 cm- ', and the estimated linewidth is less than 0.03 cm-'. The linearity 
of tunability and resettability is less than 0.026 cm-' at 860 cm-'. 

The absoprtion of NH, in the range 80G900 cm-' has been measured 
using the spin flip Raman laser as the source. Fig. 3.17 (a) shows a portion 
of the absorption spectrum (NH, pressure: - 10 torr and absorption 
length: - 15 cm) as a function of frequency in the range 846-855 cm-'. 
The number on the spectrum gives the transition as follows: ( I )  aP(4,0), 

(8)sP(6,4) and (9)sP(6, 5). sP(6, 1 )  and sP(6,2) are resolved and the 
spacing is seen to be - 0.05 cm-'. This confirms the estimate of a spin 
flip Raman laser linewidth of 5 0.03 cm- l .  (b) in the figure was taken with 
a conventional spectrometer having a 15-cm grating, of which the resolution 
is 0.1-0.2 cm-'. The comparison between (a) and (b) in this figure leaves 
no doubt about the superior resolution of the spin flip Raman laser spectrom- 
eter. In addition, the spin flip Raman laser spectrometer is extremely fast 
(because of the relatively high, tunable monochromatic power output) and 

(2) aP(4, 11, (3) aP(4,2), (4) aP(4, 3)- (5) sP(6, 11, (6) sP(6,2), (7) ~ P ( 6 - 3 ) ~  
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Fig. 3.17. Spectra of NH3 absorption measured with a grating spectrometer and tunable 
InSb spin flip Raman laser (PATEL et al. [1970]). 

the trace can be taken in < 1 min. Further improvements may be made 
in high resolution spectroscopy using the very narrow linewidth of the 
spin flip Raman laser line and heterodyne detection. 

The anti-Stokes line which is tunable from 10.0 to 9.4 pm in a magnetic 
field of 30-65 kG has been observed (SHAW and PATEL [1971]). The output 
of this anti-Stokes line is about ten times smaller than that of the first 
Stokes line. Also the second Stokes line has been observed by pumping 
of a CO laser (5.3648 pm) (PATEL [1971]). The second Stokes line is weaker, 
but has twice as wide a tunable range as the first Stokes line. High intensity 
tunable spin flip Raman laser lines using InSb, with carrier concentration 
n, % 2 x  10l6 ~ r n - ~ ,  and a pulsed high pressure C 0 2  laser (10.6 pm), 
with peak power of the order of 1 MW in a magnetic field of 25-100 kG, 
have been reported also (AGGARWAL, LAX, CHASE et al. [1971]). The 
tunable ranges of the first Stokes line, the second Stokes line and the anti- 
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Fig. 3.18. Tuning curves for Stokes, second Stokes and anti-Stokes components of InSb 
spin flip Raman laser (AGGARWAL et al. [1971]). 

Stokes line are 1.2-12.8 pm, 12.0-14.6 pm and 10.0-9.0 pm respectively 
and their maximum outputs are 1 kW, several W and - 30 W respectively. 
Fig. 3.18 shows the frequency shift of the first Stokes line, the second 
Stokes line and the anti-Stokes line in various magnetic fields, and Fig. 
3.19 illustrates the relative output power of the first Stokes line and the 
anti-Stokes line at  various input laser powers. The output can be seen to 
increase very rapidly with an increase in the magnetic field. 

As a radiation source of spectroscopy, cw operation is more desirable than 
pulse operation. Already cw spin flip Raman laser lines (the first and second 
Stokes lines) pumped with a CO laser have been reported (MOORADIAN, 
BRUECK and BLUM [1970], BRUECK and MOORADIAN [1971]). The output 
of the first Stokes line is > 1 W and the threshold power is less than 50 mW. 

3.2.5.  Difference frequency lasers 

Difference frequency generation in a nonlinear crystal using two laser 
lines is very important for obtaining tunable far infrared lasers. Most of the 
tunable lasers described above are in the visible and middle infrared region. 
Tunable far infrared lasers are possible to  obtain by difference frequency 
generation with a fixed wavelength laser and a tunable laser. 
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Fig. 3.19. Pump power dependence of peak output power of Stokes and anti-Stokes 
components of InSb spin flip Raman laser (AGGARWAL et al. [1971]). 

The difference frequency power output is given by 

3 2 n ’ ~ ~ v ;  P,, P,, T 3  I, ____ pv, = 
3 c 3 n 1 n 2 n 3  w 2  

(3.21) 

where v 1  and v2 are the frequencies of two incident laser lights, v 3  is the 
difference frequency, x is the effective second-order nonlinearity, n l ,  2 ,  

are the refractive indices at the frequencies v l ,  v2 and vg respectively, W 2  is 
the cross sectional area of the incident beams at v1 and v 2 ,  T is the power 
transmission coefficient for each surface of the sample, and l i s  the coherence 
factor given by 
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, ( 3 . 2 2 )  
1 + exp ( - A d )  - 2 exp ( - + A d )  cos (Akl )  

( A k ) 2 + b ( A ~ ) 2  
f = exp(-a,!) 

where Ak = k ,  - k 2 - k ,  is the phase dismatch ( l ~ , , ~ , ~  are the respective 
propagation vectors at the three frequencies), AM = a,+cl2-a3 with 
a , ,  2 ,  being the absorption coefficients at the three frequencies of interest. 

The magneto plasma effect for phase matched difference frequency 
generation in InSb crystals of various carrier concentrations in a magnetic 
field, for many lines of C 0 2  laser in 9.6 and 10.6 pm regions, has been 
reported to produce stimulated radiation output of a few pW in the far 
infrared region from 10 to 150 cm-' (VAN TRAN and PATEL [1969]). Of 
course the produced radiation is not truly tunable but is instead a group of 
discretely distributed lines. 

The R,  line of a ruby laser can be tuned by changing the temperature 
of the ruby crystal. Tunable stimulated radiation has been obtained by 
difference frequency generation in quartz or LiNbO, crystals with a ruby 
laser at constant temperature and a ruby laser at various temperatures 
(FARIES, GEHRING, RICHARDS and SHEN [1969]). The crystal of the latter 
laser is cooled by circulating ethyl alcohol. The tuning range of the stimulated 
radiation is from 1.2 to 8.1 cm- ', the output is about 2 x lo-' W and the 
linewidth is estimated to be less than 0.04 cm-'. The tunable range can be 
extcnded to 20 cm- by cooling the ruby crystal with liquid nitrogen. If 
the warmer laser is operated on the R, line, then the range can be extended 
to 50 cm-I. 

Phase matched difference frequency generation in an InSb crystal with 
a fixed wavelength line of a CO, laser and a tunable spin flip Raman laser 
in the range from 1 1.7 to 13.0 pm will be able to produce tunable far infrared 
stimulated radiation (PATEL [1970]). So an InSb spin flip Raman laser in 
the 10 pm region is very important for obtaining tunable far infrared laser 
sources. 

3.2.6. Tunable far infrared parametric generation 

In ionic crystals transverse optical (TO) phonons and photons with 
nearly the same wave vector and energy are strongly coupled. The propaga- 
tion state for these energies and wave vectors can no longer be described 
as a phonon or a photon, but is a mixture of these two elementary excitations 
known as a polariton. The stimulated radiation results from a parametric 
process by polaritons, whereby input pump photons of frequency vp interact 
with an optical vibrational mode in the crystal at frequency v i ,  producing 
Stokes radiation at v, = vp-vi  and idler radiation at vi .  Since the idler 
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frequency and wave vector must lie on the material dispersion characteristic 
(v: k diagram), a unique set of allowed frequencies and wave vectors is 
determined for the scattering process. Simultaneous tuning of Stokes and 
idler is then accomplished by varying the angle between the pump and the 
Stokes propagation vectors (JOHNSON, PUTHOFF, Soo~oo and SUSSMAN 
[ 1971 I). 

From the energy conservation iaw, 

hv, = hv, + hv, , 
and the wave vector conservation law gives 

k,  = k , i - k i ,  

where k, ,  k, and k, are wave vectors of pump, Stokes and idler radiations 
respectively. Then, 

k z  = k ~ + k ~ - 2 k p k , c o ~ V  

= 4n2(v, n p  - v, 11,)' + 87c2vp v, n p  n,( 1 - cos V),  (3.23) 

where V is the angle between k, and k, vectors. np and n, are the index of 
refraction of pump and Stokes radiation. Fig. 3.20 (YARBOROUGH, SUSSMAN, 
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Fig. 3.20. Dispersion curve of LiNb03 in the vicinity of the A, symmetry 248 cm-I 
polariton mode. The dots correspond to experimentally observed points (YARBOROUGH 

et al. [1969]). 
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PUTHOFF et al. [1969]) shows the v : k curve of LiNbO, in the vicinity of 
the A, symmetry 248 cm- polariton mode. The lines intersecting the v : k 
curve are drawn for the wave vector conservation described above. As the 
angle 6 is varied, the idler frequency changes. The dots on the curve corre- 
spond to the observation of stimulated Stokes emission for various values 
of the wave vector and frequency. The experimental arrangement is shown 
in Fig. 3.21 (JOHNSON, PUTHOFF, Soo~oo and SUSSMAN [1971]). The pump 

Golay 
detector  

\J  f! /c, 

LiNbOJ crystal  I I B S !  

Fig. 3.21. Schematic diagram of the experimental setup of tunable far infrared parametric 
generation with LiNbOJ (JOHNSON et al. [1971]). 

is a Q switched ruby laser (6943A) emitting 20 nsec pulses with a peak of 
6 MW and a beam diameter at the laser of about 2 mm. Pulse repetition 
rates of up to 1 pps are possible. A lens focuses the beam near the output 
end of a 3.4 cm a-axis LiNbO, crystal with the laser polarized along the c 

axis. The end faces of the crystal are polished flat and parallel. In addition, 
a cut is made in the corner of the crystal output end at the proper angle to 
allow the idler radiation to emerge approximately normal to the exit surface. 
Far infrared, i.e., idler radiation, is detected by a Golay cell. Wavelengths of 
Stokes radiation are measured with a grating spectrometer. Temporal 
bzhavior of pump and Stokes radiations is monitored on photodiodes. 
Fig. 3.22 shows the theoretical tuning curve and observed values for a 
LiNbO, crystal. The tunable range is from 66 to 200 pm. 
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Fig. 3.22. Theoretical and observed tuning curves of far infrared parametric generation 
with LiNb03 (JOHNSON et al. [1971]). 

The magnitude and frequency dependence of the scattered idler power is 
estimated theoretically as follows (JOHNSON, PUTHOFF, SooHoo and SUSSMAN 
[ 197 1 I): 

(3.24) 

where Pi and P, are the power at the idler and Stokes frequencies, and g, 
is Stokes gain constant which satisfies 

aP, iaz  = g s ~ ,  . (3.25) 

cp is the angle between the pump and idler propagation vectors and a, is 
the idler absorption constant. For a total Stokes signal power P, N lo6 W, 
the peak idler power Pi is about 3 W outside the crystal at vi = 55 cm-'. 
The experimental values of peak output power are - 3W at 200 pm and - 0.25 W at 60 pm. About the idler and Stokes frequency bandwidths, 
conservation of energy for the scattering process requires that Avi 5 Av,, 
where Avi and Av, are the idler and Stokes linewidths respectively. Fabry- 
Perot measurements indicate that 0.1 5 Av, 5 0.5 cm-l. So the idler 
linewidth is estimated to be less than 0.5 cm-'. Since the idler wave vector 
determines its propagation direction, a Ak, results in spatial spreading of 
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the idler output beam. By knowing Avi, the angular divergence of the 
radiation as it emerges from the crystal exit face can be estimated. For a 
Avi of - 0.5 cm- ', the average value for the angular divergence outside 
the crystal is calculated to be 2.5". 

3.2.7. Semi-tunable lasers by molecular rotational transitions 

If a vibration-rotation transition A (emission type in Fig. 3.23 (a) or  
absorption type in the figure (b)) between rotational levels belonging to 
different vibrational states of a gas molecule occurs suddenly, population 
inversion appears between rotational levels related to the transition as 
shown in the figure. Then far infrared rotational transitions B may lase. In 
the case (a) a Q switched laser transition A needs to introduce in a cavity 
for transition B. The cavity for such a purpose is shown in Fig. 3.24 
(OHTSUKA [1970]). The grating acts as a diffraction grating for transition 
A and as a mirror for the transitions B, of which the wavelength is much 
bigger than the grating constant. The mirror M I  and the rotating mirror 
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(a) (b) 

Fig. 3.23. Schematic representation of semi-tunable laser by molecular rotational transi- 
tions. 
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Fig. 3.24. Schematic diagram of cavities for infrared Q switched and far infrared laser 

I b  
compose a cavity for a Q switched laser transition A, and the mirrors MI 
and M,, which has a coupling hole and is movable for cavity tuning, 
compose a cavity for laser transitions B. These cavities are filled with gas 
molecules which have a dipole moment. If a Q switched laser transition 
occurs once, far infrared laser lines will come out from the coupling hole 
of mirror M, . The transition A can be shifted among many rotational levels 
by rotating the cavity arm including the rotating mirror, and many far 
infrared laser lines can be obtained. The optimum gas pressure for the 
Q switched laser transition A may not be the optimum pressure for far 
infrared laser transition B. In the case of Fig. 3.23(b), the Q switched laser 
line can be produced in a different cavity from the cavity for far infrared 
laser lines, and the optimum pressure in those cavities does not need to be 
the same. Also the Q switched laser line of a different molecule can be used, 
when the wavelength of the laser line is just the same as that of the transition 
A of the molecule which produces the far infrared laser lines. 

A CH, F molecule pumped with a Q switched COz P(20) line at 9.55 pm 
produces three far infrared laser lines at 496, 452 and 541 pm as shown in 
Fig. 3.25 (CHANG and BRIDGES [1970]). The output and the pulse width of 
the CO, laser are 1.5 kW and 0.28 psec respectively, and the peak output 
and the pulse width of 496 pm are 0.1 W and 0.5 psec respectively. The 
linewidth is observed to be 60 MHz at a pressure of 50 mtorr and to increase 
with the increase of pressure. Also CH, F, C2 H3 C1 and CH, OH molecules 
are pumped with a cw COZP(20) laser of output 2W (CHANG, BRIDGES and 
BURKHARDT [1970a]). A CHJF molecule produces 2 lines, a C,H,CI 
molecule 3 lines and a CH,OH molecule 23 lines in the range from 70 to 
700 pm. The output power of these lines is 0.1 -a  few W. Also a NH, 
molecule pumped with a NzO laser is reported to produce 81.5 and 263.4 pm 
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Fig. 3.25. Partial energy level diagram of CH3 F showing the observed laser transitions 
(CHANG et al. [1970]). 

of output of 
In these cases the molecule for pumping is different from the molecule 

producing far infrared laser lines. If the same molecule is used for pumping 
and far infrared lasing, many far infrared laser lines can be produced by 
shifting the pumping transitions among various rotational levels. In such 
a way a N, 0 molecule may produce about 50 lines in the range from 100 to 
300 pm and a CO molecule about 100 lines in the range from 250 to 850 pm. 
Since the dipole moment of these molecules is smaller than that of big 
molecules, like a CH,F, C2H3C1 or C H 3 0 H  molecule, it is not easy to 
produce laser transitions in the far infrared region. 

W (CHANG, BRIDGES and BURKHARDT [197Ob]). 
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Many laser lines are distributed discretely in the far infrared region, 
so that semi-tunable lasers will be expected to serve as radiation sources in 
far infrared spectroscopy. 

3.3. TIME RESOLVED SPECTROSCOPY 

Phenomena of which the spectra are to be observed may not be stable 
in time. In such cases the information 2 obtained is given as follows: 

2 = kZ(A, t ) ,  (3.26) 

where Z is the intensity of radiation, which is a function of the wavelength 
I and the time t, and k is a proportional constant. So two cases, i.e., (1) the 
continuous measurement of Z(t )  for discrete values of I ,  and (2) the continu- 
ous measurement of Z(A) for discrete values of t ,  happen in time resolved 
spectroscopy. 

In the visible and violet regions, photomultipliers with very fast response 
have been available for measurements of Z(A) by very fast wavelength 
scanning in periods c 10nsec. Sampling techniques are available for 
repeated phenomena, and Z(A) can be measured in the period of about 
1 nsec. 

In the infrared, especially the far infrared region, strong radiation sources 
and very fast response detectors have not been practically used until now. 
The response time of an InSb photoconductive detector is less than 0.2 psec. 
So it is possible to do fast wavelength scanning in the period of 1 psec if a 
radiation source of enough intensity is available. 

As described above, there have been developed monochromatic tunable 
pulse lasers in the middle and far infrared region, of which the pulse width 
is about 10 nsec and the output power is more than 1 W. Such radiation 
sources are much different from conventional far infrared sources like high 
pressure mercury lamps, of which the output power in ordinary spectral 
width is lo-’ - W. So time resolved spectroscopy in the far infrared 
region can be expected, especially for repeated phenomena where no fast 
response detector is necessary. 

5 4. Conclusion 

About conventional dispersion-type spectrometers, recent fundamental 
developments can not be seen, except the development of elements of 
spectroscopic instruments. Due to their high resolution and rapid measure- 
ments interferometric spectrometers have become more and more useful 
for academic and industrial purposes. 
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Desirable monochromatic tunable detectors in the far infrared region 
have not yet been developed. But some monochromatic tunable laser 
sources have been completed, even though most of them are in the middle 
or visible region, except the LiNbO, polariton laser and optically pumped 
semi-tunable gas lasers in  the far infrared region. Moreover, difference 
frequency generation can make far infrared tunable lasers with two strong 
infrared or visible lasers, if one of them is tunable. 

Thus the following monochromatic tunable radiation sources will be 
practically used for spectroscopic use in the whole far infrared region in 
the near future: much higher output power of 1 W or  more compared 
width 10-7-10-9 W at present, much narrower spectral width of less than 
lo-' cm-' and very narrow pulse width of N 10 nsec if necessary. Thus 
spectral measurements in the far infrared region, even time resolved 
spectroscopic measurements in the region, have been possible with much 
higher signal-to-noise ratio and remarkable resolution compaired with 
those of conventional spectroscopic measurements. 
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0 1. Introduction 

The interaction of light and sound has been studied extensively since 
RAMAN and NATH [1935] first started their investigation. After the inven- 
tion of laser which gives the ready availability of coherent light sources and 
the recent advances in the generation techniques of high frequency coherent 
elastic waves, there has been a renewed interest in the study of interaction 
of coherent light and sound. Such study has led to the useful applications 
of optical probing of elastic waves in solids and many optical signal pro- 
cessing devices. A recent review article by DAMON et al. [1970] has described 
the principles and practical devices based on interaction of light with ultra- 
sound. 

The interest in the interaction of light and acoustic surface waves began 
after the recent advance of acoustic surface technology in the late 1960’s. 
IPPEN [ 19671 reported the first experimental observation of light diffraction 
by Rayleigh waves in quartz. Rayleigh waves (Lord RAYLEIGH [1885]), 
which is one type of acoustic surface waves commonly used, propagate on 
a free surface of a half infinite substrate with particle displacements decaying 
exponentially from the surface. These waves have bulk acoustic wave prop- 
erties with additional advantages of being on the surface with the energy 
concentrating in a surface layer of the order of one acoustic wavelength. 
These unique properties, which make Rayleigh waves easily accessible along 
the propagation path and having high power density with a modest input 
power, are some of the reasons for the current interest in acoustic surface 
waves in signal processing applications (STERN [ 1969 1, KINO and MATHEWS 

I n  designing such acoustic surface wave devices, it is necessary to have 
detail knowledge of the propagation characteristics of these waves on any 
isotropic or anisotropic substrate. Optical probing of acoustic surface waves 
based on the light diffraction by acoustic surface waves has become a con- 
venient tool in studying and utilizing these waves. 

Light diffraction by Rayleigh waves occurs for both the reflected light due 
to the surface ripples in opaque substrates (MEYER et al. [1967], ADLER et 

125 

[ 19711). 
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al. [1968]) and the transmitted light due to the surface ripples and the photo- 
elastic effects in the surface layer of a transparent substrate (IPPEN [1967], 
LEAN [ 19701). It has been used extensively as a probe to visualize the surface 
waves (ADLER et al. [1968]), to measure the propagation characteristics of 
acoustic surface waves, such as the velocity (AUTH and MAYER [1967], 
KROKSTAD and SVAASAND [1967]), the diffraction and the beam steering in 
anisotropic substrate (SLOBODNIK [ 19691, LEAN and POWEL [ 1970]), the 
attenuation (SLOBODNIK et al. [1970]) and the reflection due to the surface 
perturbations (DE LA RUE [1971]). Such optical probing technique has also 
been extended to study the nonlinear effects of acoustic surface waves. The 
spatial growth of ASW harmonics generated due to elastic nonlinearities of 
the substrate can be directly observed by the optical probe (LEAN et a]. 
[ 19691). 

In this paper the basic principle of light diffraction by acoustic surface 
waves will be reviewed. The techniques of the optical probing of acoustic 
surface waves will be discussed together with their advantages and limitations. 

The main difference between the light diffraction by bulk acoustic waves 
and by acoustic surface waves comes from the unique properties of acoustic 
surface waves. In general, acoustic surface waves include Rayleigh waves 
(RAYLEIGH [1887]), dispersive Rayleigh waves (EWING et al. [1957]) and 
Love waves (LOVE [1926]). The existence of these waves results in the bound- 
ary conditions due to a single surface on a semi-infinite substrate (Rayleigh 
waves), or due to a thin film on a substrate (dispersive Rayleigh waves and 
Love waves). Recently the acoustic surface technology has been greatly ad- 
vanced and many papers concerning acoustic surface waves, Rayleigh waves 
in particular, have appeared in the literature. For detailed understanding of 
acoustic surface waves, interested readers are referred to several review ar- 
ticles (WHITE [1970], FARNELL [ 19701, DRANSFELD [1970]). 

Consider Rayleigh waves propagating along the x 3  axis on a surface whose 
normal is in the x2 axis. The particle displacement of such a wave can be 
expressed by: 

3 

Ui = ~ a , , e x p ( a , K x , + j ( o , t - K x , ) } ,  i = 1 , 2 , 3  (1.1) 

when Uj are the particle displacements, K is the acoustic wavenumber, ain 
amplitude constants. an are the normalized decaying constants. The con- 
stants ai, and a, can be obtained by solving the wave equation for the par- 
ticle displacements in the substrate medium with a stress free boundary 
condition on the surface (FARNELL [1970]). In isotropic substrates, the solu- 
tions of the particle displacement for Rayleigh waves consist of only two 

n =  I 
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Fig. 1 . 1 .  Schematic of particle displacements of Rayleigh waves in isotropic substrate. 

components (VIKTOROV [1967], WHITE [1970]) as shown in Fig. 1.1. These 
two particle displacements are 90" out of phase so that particle motions are 
ellipsoidal. The amplitude of the particle displacement decays exponentially 
from the substrate surface with a depth of the order of the acoustic wave- 
length. These waves produce a surface ripple on the surface as well as a 
periodic variation in the index of refraction in the medium. 

The surface ripple 6 is simply given by the normal component of the par- 
ticular displacement at the surface ( x 2  = 0). From eq. (1.1) the surface 
ripple can be written as: 

where 
6 = 6, cos(w,t-Kx,) (1.2) 

The periodic variation in the index of refraction in the penetration layer 
is caused by the photoelastic effect (NYE [1958]). The photoelastic effect, 
which causes a change in optical properties of a crystal in the presence of 
elastic waves, can be specified as a small change in the shape, size, and orjen- 
tation of the indicatrix which gives a geometric representation of the crystal 
optical property. The indicatrix is an ellipsoid of wave normals whose CO- 

efficients are the components of the relative dielectric impermeability tensor 
Bij at optical frequencies. If coordinates are referred to the principal dielec- 
tric axis of the crystal the indicatrix is: 

B , , . X ~ + B ~ ~ X ~ + B , , X ~  = 1 (1.4) 
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where 

( i  = 1 , 2 ,  3 ) .  
2 1  

Bii = (k) = -  
E i i  

n i i  and c i i  are the optical index of refraction and the dielectric constant along 
the principal crystal axes. Under elastic strain, the changes A B i j  in the im- 
permeability is related to the strain tensor Sk, by the equation: 

bBi j  = PijklSkl (1 4 
where Pijkl is the photoelastic tensor and 

with uk being the particle displacement component. The change in the index 
of refraction An,,  and the dielectric constant Acii  can be obtained from (1.6), 
(1.5) and (1.7); 

(1.9) 

The usual summation convention for the tensor elements in (1.6), ( I  .8) and 
(1.9) is understood. The substitution of the particle displacements in ( I .  I )  
into (1.8) or (1.9) gives the change in the index of refraction Anij  or in the 
dielectric constant A e i j .  

Equations (1.8) and ( I  .9) are similar to those of bulk acoustic wave cases. 
However, the transverse dependences of acoustic surface waves in particle 
displacements give extra terms and comptications in Anij or A e i j .  It should 
be noted that the subscripts i a n d j  in Anij  indicate the polarization of the 
diffracted and the incident light respectively. The light diffraction involving 
Anij with i = j preserves the polarization of the incident light while in the 
cases of Anij with i # j  the Polarization of the diffracted light is different 
from that of the incident light. In $ 2  the light diffraction by the surface 
ripple and Anij  due to acoustic surface waves will be calculated theoretically 
and demonstrated experimentally. 

Recently there has been another interesting development involving the 
optical guided waves which propagate in a thin film guide of the order of 
micrometer in thickness on a substrate (GOELL and STANDLEY [1970]). The 
index of refraction in the thin film needs to be higher than that in the sub- 
strate so that the light is trapped in the film by total internal reflection with 
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the field decaying exponentially in the substrate. Optical guided waves inter- 
act strongly by means of photoelastic effect with acoustic surface waves, 
which also travel in the same region and have the same form of exponentially 
decaying amplitudes. These guided waves which have the advantages of high 
power density and controllable dispersion depending on the film thickness 
make such acousto-optic interactions in  thin films particularly important 
both from theoretical and practical points of view. Two recent experimental 
demonstrations, the efficient Bragg deflection of optical guided waves by 
acoustic surface waves (KUHN et al. [1970]) and the optical guided waves 
mode conversion based on collinear interaction of optical guided waves and 
acoustic surface waves in thin films (KUHN et al. [1971]) have been reported. 
In 9 3, the theory on the interaction of optical guided waves and acoustic 
surface waves will be discussed in detail together with some recent experi- 
mental results and current new developments. 

$ 2. Interaction of Light and Rayleigh Waves 

Rayleigh waves propagate on the surface of a substrate and produce sur- 
face ripples as well as a periodic variation in the index of refraction in the 
medium as discussed in 4 1. Depending on the width of the incident beam 
compared to the acoustic wavelength, the interaction of light and Rayleigh 
waves can be considered as either a phase grating type of diffraction or a 
periodic deflection of incident light. If the light beam is many wavelengths 
wide, the surface ripple and the periodic variation of the index of refraction 
provide a phase grating for the incident light. For the reflected beam only 
the surface ripple contributes to the light diffraction while for the transmitted 
beam in a transparent substrate both the surface ripple and the periodic 
variation in the index of refraction contribute to the diffracted light. If the 
light beam is focused on the surface to a spot smaller than the acoustic wave- 
length, the surface ripple in effect tilts the direction of the reflected beam. 
By properly placing a knife edge in the path of the reflected beam, the periodic 
beam tilting can be transformed into an amplitude modulation. In this sec- 
tion, the basic theory of the light diffraction and the knife's edge scheme by 
Rayleigh waves will be discussed together with some of their device applica- 
tions. 

2.1. LIGHT DIFFRACTION BY RAYLEIGH WAVES 

The scattering of electromagnetic waves from a sinusoidal surface was 
first investigated by RAYLEIGH [ 18951. Since then many workers have studied 
the problem (for example, BECKMANN and SPlZZlCHlRO [ 19631). The acoustic 
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surface waves produce a moving sinusoidal surface ripple. The acoustic velo- 
city is about five order of magnitude lower than the speed of light and ap- 
pears stationary to an incident light beam. The scattering of light by acoustic 
surface wave can thus be treated similarly to the problem of the light scatter- 
ing from a periodic surface as discussed by BECKMANN et al. [1963]. 

2.1.1. Reflection case 

The scattering of light from the surface ripple produced by Rayleigh waves 
on a solid can be treated similarly to the problem of light scattering from a 
periodic surface as discussed by BECKMANN et al. [1963]. 

The Helmholtz integral can be used to calculate the scattered electric field 
E,(p) at the observation point p; 

~ , ( p )  = -!-Is ( E  - G ") ds 
4n a n  

where E and dE/& are the electric field and the normal derivative of the 
field on the surface S ;  Fig. 2.1 shows the configuration and coordinates for 

INCIDENT x2 REFLECTED 

Fig. 2.1. Coordinates of the light diffraction by acoustic surface waves. 

the problem we consider. The surface S is the crystal surface with the sinus- 
oidal ripple, G is the Green function which satisfies the wave equation except 
at the observation point p. G can be written as: 

(2.2) 
G =  exp W d R - 4 )  

IR-rl 
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where kd = wJG is the wavenumber, R is the vector from the origin to 
the observation point p as shown in Fig. 2.1. r is the vector from the origin 
to a point in the ~ 2 x 3  plane; 

r = x 2 x z + x 3 x 3 .  (2.3a) 

In particular, for points on the surface S, r reduces to: 

r’ = d(x3)xZ + x3 x j  (2.3b) 

where d(x3) is given by (1.2), xz and x3 on the unit vectors along the coor- 
dinate axes. 

In the far field region, G can be approximated by: 

(2.4) 
exp {-j(kd R O - k d .  G =  

RO 

where R, is the distance from the origin to the observation point. k ,  is given 
by : 

kd = kd COS e d  Xz + kd Sin e d  X3 (2.5) 

and e d  is the angle of the observation direction with respect to the surface 
normal. The surface normal n is given by: 

n = cos px3 - sin px3 (2.6a) 

where p is the tangential angle due to the surface ripple and is given by: 

tan /3 = d’(x3) = d 1  K sin (0, t - -Kx3) .  (2.6b) 

The derivative of G with respect to the surface normal beccimes: 

kdcosed2 ax +kdsined3] 
an an 

= jG[kd COS 6d COS p- kd  Sin 6d Sin a]. (2.7) 

In solving the Helmholtz integral the key point is the proper approximation 
of E and aE/dn on S. In our case of light diffraction from the surface ripple 
produced by Rayleigh waves, the ripple amplitude d1 is usually much smaller 
than the acoustic wavelength A.  Under the normal conditions, d1 < A ,  
the surface ripple provides only a very small perturbation of the surface at  
x2 = 0. The field on the surface S can be approximated as the sum of the 
incident field and the reflected field from the surface without the ripple. Let 
the incident field be: 
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E i n  = E ,  exp { j(wt+ ki cos Oi x2 - ki sin Oi x3)} (2.8) 

where E,, ki  and Oi are the amplitude, wavenumber and incident angle of 
the incident light field respectively. 

In cases where the surface ripple is a small perturbation, we can assume 
the field on the surface S is the sum of the incident and reflected fields, where 
the reflected field is from the substrate surface without the ripple; 

EIs = (1+R)EinIF 
= ( 1  + R)Eo exp { j(wt - ki . r’)}  (2.9) 

where R is the reflection coefficient of the substrate surface without the 
ripple, R is dependent on the polarization of the incident light. Let R +  and 
R -  be the reflection coefficients for the vertically polarized incident light 
(the electric field is in the plane of incidence) and the horizontally polarized 
light (the electric field is normal to the plane of incidence) 

+ ( E ~ / E ~ )  cos oi - J E ~ / E ~  -sin2 ei 
( E ~ I E ~ )  cos ei + J E ~ / E ~  -sinZ ei 

R =  

respectively; 

(2.10) 

cos ei - J E Z l s l  -sin2 ei 
cos oi + J E ~ I E ~  -sin2 ei 

R -  = __- (2.11) 

where c2 and 
the medium in which the incident beam propagates. 

are respectively the dielectric constants of the substrate and 

The normal derivative of E on S can then be found as: 

+-  
= j[(l - R)ki cos Bi cos P + ( l +  R)ki sin Bi sin p]Ei,\, . (2.12) 

Substituting (2.4), (2.6), (2.8) and (2.10) into (2.1) results in: 

x exp { j [ a ,  cos (0, r -  Kx,)+yx3]}dx3, (2.13) 

(2.14) B = (1+R)kd Cos e d - ( I - R ) k i  COs 6i 

(2.15) ( 1  + R)(kd sin 8, + ki sin ei) 
(1 +R)kd cos ed-(l -R)ki cos 81 

Q = (-4 K )  
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where 2 0  is the width of the incident beam. In obtaining eq. (2.13) the rela- 
tion of ds = dx,/cos 8, on the surface S has been used. 

When the surface ripple reduces to zero, 1.e. 6 ,  = 0 and di = 8d, eq. 
(2.13) becomes: 

jEo RDk,  exp { j(wf- k ,  R , ) )  

XRO 
E20 = 

which is the field reflected in the direction of specular reflection by a smooth 
surface with a reflection coefficient R. 

Introducing the identity of: 

exp { ja ,  cos (0, t -  K x 3 ) )  = C j’”J,,,(cl,) exp { jm(w, t -  K x 3 ) }  
m 

m = 0, +1,  + 2 , .  . . (2.18) 

where J,,,(clI) is the mth order Bessel function, we can carry out the integra- 
tion of (2.13) term by term and obtain: 

where 

A,,, = 
2aR0 cos Oi 

sin ((y - r n ~ ) ~ / c o s  si} 
F =  

(y - mK)D/cos Oi ’ 

(2.20a) 

(2.20b) 

It is noted from (2.19) that the diffracted field consists of many orders. 
To each integer m there corresponds a diffraction order which has a maxi- 
mum intensity along the direction 8dm given by: 

y-mK = 0 
or : 

k .  . K 
sin edm = 2 sin Bi+m - 

k d  kd 

(2.21a) 

(2.21 b) 

It is also evident from (2.19) that the frequency of the mfh order is frequency 
shifted by an amount of mw,. 

The time averaging intensity of the mth order diffracted light is given by: 

1 2 ,  = ( E 2 E I ) m  
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Under the normal experimental condition, a1 << 1 is usually true so that 
the Bessel function J m ( a l )  can be expanded as: 

(2.23) 

With this small argument expansion of Jm(al), it is possible to simplify 
the expression of (2.22) by substituting (2.14), (2.15), (2.16) and (2.20b) 
into (2.22). The result gives: 

where: 

(2.24) 

(2.25) 

( l+R)kd cos Od-(l-R)ki cos Bi 
H =  + m  

K(1+R)(kdsin8,+ki sin Oi) 
2ki cos Bi 2ki cos 8i(kd cos 8 d  + ki cos ei) ' 

(2.26) 

The reflection coefficient R in (2.26) is given by (2.10) or (2.11) depending 
on the incident light polarization. 

It should be noted that under the assumption that k / A  << 1, 8i = O d ,  

kd = ki,  eq. (2.26) for m = 1 becomes: 

(2.27) 

and the peak intensity of the first order diffracted light I,, can be approxi- 
mated by: 

I , ,  x I ,  R2J:(2ki cos di6,). (2.28) 

Equation (2.28) has been generally used in the literature for the interpreta- 
tion of the diffracted light intensity as a function of the incident angle. How- 
ever, the above assumption is not always true especially around the Brewster 
angle region for a vertically polarized incident light where R is also very 
small compared to the second term in (2.27). A more detailed discussion 
with experimental verification is shown in Section 2. I .3. 

2.1.2. Transmission case 

In the transmission case, the transmitted beam is modulated by both the 
surface ripple and the periodic variation in the index of refraction in the 
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substrate. As discussed in § 1, the change in the index of refraction An(x2,  
x 3 )  (as given in eq. (1.8)) decays exponentially from the substrate surface 
with a penetration depth 0 of the order of the acoustic wavelength A .  As 
long as the acoustic wavelength is longer than that of incident light A, the 
layer of An provides only a phase modulation of incident light, according 
to WILLARD’S criteria [1949] where l D / A 2  = A/A < 1. 

First, let’s assume that there had not been a layer of An. The diffracted 
field due to the surface ripple can be calculated similar to the reflection case 
with: 

(2.29) El, = (1 + RIEinls 

1 = - j[(1 -R)ki cos Oi cos p+(1 +R)ki  sin Oi sin p]Einl, (2.30) 
a n  s 

where Ei,,ls is the incident field on the surface S (eq. (2.8)) and R is the 
reflection coefficient of the substrate surface. The Green function for the 
transmission case is then: 

where 
G = exp{ - j(k, R o  - k,  * r)}/Ro 

k, = - k,  cos 0, x2 + k ,  sin 8, x3 . 

(2.3 1 a) 

(2.31b) 

0, is the angle of the transmitted beam with respect to x2 axis. The derivative 
of G with respect to the surface normal becomes: 

where: 
dG/dnl, = j(k,  * n’)G(,  

n’ = - cos f ix2  + sin f i x ,  

(2.32) 

(2.33) 

is the surface normal for the transmission case and p is given by (2.7b). 

transmission case: 
Substituting the above equation into (2.1) yields the field E3(p) for the 

x exp { j(k, - ki)  - r}dx, , (2.34) 

(2.35a) B’ = (1 + ~ p ,  COS e, + (1 - q k ,  cos ei , 

9 (2.3 5 b) 
8 ,  K(l +R)(k, sin 8,+ k i  sin ei) 

B’ 
Q‘ = 

Eo is the amplitude of the incident beam with a beam width 20 .  
The integration of (2.34) will result in a similar expression of (2.24). 
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However, there is a variation in the index of refraction An(x, ,  x 3 )  as given 
in (1.8). The effect of the surface ripple 6 ( x 3 )  and the periodic variation in 
the index of refraction An(x2,  x 3 )  can b; taken into account by expanding 
the wavevector of the transmitted beam and letting k,  = (n+  An)k, in eq. 
(2.34); 

(k ,  - ki)  3 Y = - [ ( n  + An)ki cos 9, - k i  cos O i ] [ ( x 2  + 6 ( x 3 ) ]  

+ [ k ,  sin Bt - ki  sin Bi]x3 

= - [ ( n  cos O,-COS Oi)ki (x ,+6)+Anki  cos 0 , ( x 2 + 6 ) ]  

+ [ k ,  sin 19,- k i  sin B i ] x 3 .  (2.36a) 

Since S ( x 3 )  locates at x 2  = 0 and An is a function of x 2  and x3, to take the 
accumulative effect of An along the x 2  direction, eq. (2.36a) can be written 
as : 

f r n  

( k , - k , ) .  Y NN - ( n  cos 8,-cosi)ki 6 ( x 3 ) -  J A n ( x , ,  x 3 ) k i  cos 8, dx, 
0 

+ [ k ,  sin 8, - ki sin B i ] x 3 ,  (2.36b) 

where the first term in the right hand side of (2.36b) is due to the surface 
ripple and the second term is due to the index variation in the substrate. 
Depending on the incident light polarization, the second term may add to 
the first term constructively or destructively. In case of constructive contri- 
butions from both terms, the substitution of (2.36b) into (2.34) and the 
integration of the resultant equation yield: 

m 

where 
j“” ‘15, DB’ 

2nR0 cos tli 
A’ = m (2.38) 

8‘ = ( 1  + R ) k ,  cos 8, + ( 1  -R)k i  cos 8, , 

Q f  = 6, K(1+ R ) ( k ,  sin el + ki sin ei) 
(2.35a) 

, (2.3 5 b) 
B’ 

F ’ = - .  sin ((7’ - rnK)D/cos ei} 

7’ = k ,  sin Bt- ki sin Oi . 
(7’-rnK)D/cos d i  

1 J  An(x,)ki  cos & d x ,  I , (2.39) 
0 

(2.40) 

(2.41) 
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It is evident from (2.37) that the diffracted beam in the transmission case 
has many discrete orders with each order shifted in frequency. The intensity 
of the mfh order diffracted light can be shown to be given by the same ex- 
pression as given in (2 .22)  or in (2.24). 

(a )  
0.7 I ‘,- 

YZ LiNbO, SUBSTRATE 
VERTICALLY POLARIZED 
INCIDENT LIGHT 
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EXPT POINTS 0 4  

0 3  ~~ ‘\‘z CAL CURVE 
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0 2  
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Fig. 2.2. Experimental and calculated results of the + 1 and - 1 orders of the diffracted 
light by a 150 MHz acoustic surface in a LiNb03 substrate. The incident light is vertically 

polarized (a) and horizontally polarized (b). 
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2.1.3. Experimental results 

2.1.3.1. Reflection case 

In order to verify the relation of the diffracted light intensities as a func- 
tion of incident angle for both polarizations, as discussed in Section 2.1.1, 
we have monitored the + 1 and - 1 orders of the diffracted light by a 150 
MHz acoustic surface wave in a lithium niobate (LiNbO,) substrate. The 
Rayleigh waves were excited by interdigital transducers (WHITE [1965]) in a 
Y-cut LiNbO, substrate and propagated along the Z-axis. A 0 . 6 3 ~  laser 
with rotatable polarization provided the incident beam. Fig. 2.2a shows the 
experimental results for the vertically polarized incident light together with 
the theoretical calculation based on eq. (2.24) with R given by (2. lo). With 
an index of refraction iz = 2.3 for the substrate the calculated values for the 
+ 1 and - 1 order diffracted intensities agree very well with the experimental 
values. For the case of horizontally polarized incident light, there is no 
Brewster angle for the diffracted light. The observed diffracted light for + 1 
and - 1 orders incident angle are shown in Fig. 2.2b together with the cal- 
culated curves based on (2.24) with R given by (2.1 I). 

SALZMANN and WEISMANN [I9671 have reported the light diffraction by 
acoustic surface waves in quartz with an experimental configuration as shown 
in Fig. 2.3. The incident laser incident on a quartz substrate surface from 

rTRANSDUCER rA.S.W. 

Fig. 2.3. Experimental configuration of the light diffraction by acoustic surface waves in 
quartz (after SALZMANN and WESMANN [1967]). 

within the solid. The m = 1 order diffracted light by a 316 MHz acoustic 
surface wave was measured as a function of the incident angle. They found 
that the results of their observed diffracted intensity agreed with the ap- 
proximated equation given in (2.28) and concluded that the surface ripple 
effect alone could account for the total diffracted light intensity. ZORY and 
POWELL [1971] have extended the measurement and monitored both the 
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Fig. 2.4. Experimental results (from a paper by ZORY and POWELL [1971]) and calculated 
values (based on eq. (2.24) with R given by (2.10)) of light diffraction of m = f 1 order by 

acoustic surface waves in quartz. 

0 10 20 401 

m = + 1 and m = - 1 orders as a function of incident angle. Fig. 2.4 shows 
the measured results. It is noted that for diffraction orders m = 1 and 
m = - 1 for vertically polarized light, the intensity reaches zero respectively 
before and after the Brewster angle OB of the crystal quartz. Also shown in 
Fig. 2.4 are the calculated curves based on (2.24) with R given by (2.10). 
The agreement between the calculation and experimental results is good. 

50 

2.1.3.2. Transmission case 

In the transmission case, IPPEN [I9671 and LEAN and POWELL [19701 have 
reported the experimental observation of light diffraction by Rayleigh waves 
in quartz and LiNbO, crystals. 

In  order to demonstrate the effects due to  both the surface ripple and the 
change in the index of refraction, LEAN and POWELL [I9711 have measured 
the normalized first order diffracted light for both the reflected and trans- 
mitted beams as a function of the incident light polarization angle. The sam- 
ple was a YZ LiNbO, substrate with a 200 MHz acoustic surface wave 
propagating along the x 3  axis. A He-Ne laser beam was incident normal to 
the substrate. Photodetectors were placed at  proper angles to  detect the first 
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Fig. 2.5. Experimental results of the first order diffracted light IJI , ,  as a function of in- 
cident polarization angle. 

order diffracted light I,. The experimental results of Zl/Io versus the incident 
polarization angles are shown in Fig. 2.5. Zo is the zero order beam. For the 
reflection case, ZJZo is independent of the incident polarization as shown by 
the straight line in Fig, 2.5. For the transmission case, the contribution due 
to the periodic variation An the index of refraction adds constructively to 
the contribution of the surface ripple when the incident light is polarized 
along the x1 axis of the LiNbO, substrate. As the incident light polarization 
is changed along the x, axis, the two contributions cancel each other. Also 
shown in Fig. 2.5 with the experimental point is a curve of coszO (where 0 
is the incident polarization of angle with respect to the x1 axis). This indi- 
cates that only the component of the incident light along the x1 axis “sees” 
the constructive contributions from both the surface ripple and the index 
change in the medium. 

AL~PPI et al. [I9711 have reported recently on the contributions of the 
surface ripple and index change in the substrate to light diffraction by 
acoustic surface waves in quartz. 

2.1.3.3. Diffraction efficiency versus acoustic power 

Since the acoustic power density P, is proportional to the square of acous- 
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tic strain, the power density Pd is proportional to (K6,)'.  Therefore, from 
eq. (2.24) it is noted that I ,  is proportional to Pd. For a given power density 
the first order diffracted light is proportional to K 2  or to the inverse of the 
square of acoustic frequency (LEAN and POWELL [1970]). 

To show this relationship we have measured Il/fo as a function of acoustic 
surface wave power density in a YZ LiNbO, substrate for the transmission 
case at several input frequencies. The results are shown in Fig. 2.6. The in- 

B I / f o = 3 G H ~  
z 

J /fO*3.5GHt 
-60 I 0 0  

Id lo" I8 
Power Density Pd (watt/m21 

Fig. 2.6. Experimental results o f  f,/fo as a function acoustic surface wave power density 
in a YZ LiNb03 substrate for the transmission case at several input frequencies. 

lo" 

cident light is polarized along the x1 axis which gives a maximum diffraction 
efficiency in transmission. The linear relation between I,/Zo and input acous- 
tic power density exists as low input power levels. As the input acoustic 
power density increases, one observes a saturation phenomenon in which the 
power of the fundamental frequency is transformed to nonlinearly generated 
harmonics (see Section 2.5). 

2.2. DETECTION BY BEAM TILTING 

The beam tilting technique to detect the surface ripple was discussed by 
ADLER et al. [1968] and was described in detail by WHITMAN and KORPEL 
[1969]. If a laser with a square cross section is focused into a spot small 
compared to the acoustic wavelength on the surface, the surface ripple, given 
by eq. (1.2) causes the illuminated portion of the surface to tilt by an angle 
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(2.42) 

where 4 = - 2n x, /A is the initial phase. By placing a knife edge in the path 
of the reflected beam as shown in Fig. 2.7, the beam tilting can be directly 

Fig. 2.7. Detection scheme of surface ripple by beam tilting techniques (after ADLER 
et al. [1968]). 

translated to intensity variation detected by a photodetector right after the 
knife edge. With the laser spot focused into a $4 spot, the signal power Psi, 
detected by the photodetector is: 

Psig  = Po2n(6,/A) cos W ,  t (2.43) 

where Po is the total power of the reflected beam. This beam tilting technique 
has been used to visualize and display 8 MHz acoustic surface waves on 
steel containing a variety of surface wave deflecting obstacles (ADLER et al. 
[1968]). Fig. 2.8 shows the display of the acoustic surface waves on a steel 
surface affected by two deep grooves. Assuming that the detector is shot 
noise limited, the minimum detectable surface displacement by this scheme 
is: 

amin = ( 2 e ~ / a ~ , ) * ( ~ / 2 n )  (2.44) 

where e is the charge of an electron. B is the system bandwidth and a is the 
sensitivity of the photodetector. Using a laser power Po = 10 mW and B = 1 
MHz, this system is capable of detecting surface displacement on the order 
of lo-”rn.  
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Fig. 2.8. Display of the acoustic surface waves at 8 MHz on a steel surface affected by 
two deep grooves (after ADLER et al. [1968]). 

The same technique has also been used to detect surface perturbations of 
an acoustic hologram of bulk acoustic waves. The frequency limitation of 
this scheme depends on how well the laser spot can be focused and on the 
critical alignment of the knife edge. For a focused spot of 1 pm in width 
the beam tilting detection scheme may be used to observe acoustic surface 
waves of wavelengths down to approximately 2 pm. 

2.3. OPTICAL PROBING OF ACOUSTIC SURFACE WAVES 

Since the diffraction angle of eq. (2.21b) depends on the acoustic wave- 
length, the phase velocity of acoustic surface waves can be determined by 
measuring the diffraction angle (AUTH and MAYER [1967]; KROKSTAD and 
SVAASAND [1967]). The intensity of the first diffracted order is proportional 
to the average St over the laser spot as long as the spot size is many acoustic 
wavelengths wide. Thus monitoring the first order diffracted light is a con- 
venient way to study the propagation characteristics of acoustic surface 
waves at high frequencies. 
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Fig. 2.9. Energy profiles of an acoustic beam as a function of distance from the input 
transducer to show the effect of diffraction. The transducer had an aperture of 8.8. x lo-' 

cm and operated at the acoustic wavelength of 17 pm. 
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Fig. 2.10. Energy profiles of an acoustic beam as a function of distance from the input 
transducer to show the beam steering effect. The transducer had an aperture of 8.8 x lo- '  

cm and operated at 5 pm acoustic wavelength. 
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2.3. I .  Beam diffraction and steering 

By focusing the laser beam to a small spot compared to the width of the 
ASW and then scanning across the acoustic beams, the energy profile of 
the ASW can be measured. Figure 2.9 shows the energy profiles of the 
acoustic beam as a function of distance from a transducer having an aperture 
of 8.8 x cm and at the acoustic wavelength of 17 pm. The results are 
analogous to Fresnel diffraction of electromagnetic waves from a finite 
aperture in the near field region ( R <  W 2 / A ,  where R is the observation 
distance from the transducer; W the transducer width; and A the acoustic 
wavelength). 

In an anisotropic substrate, the energy flow direction in general does not 
coincide with the propagation direction. This beam steering effect can easily 
be evaluated by the diffraction method. The results of such beam steering 
effects of a 615 MHz ASW in a LiNbO, substrate is shown in Fig. 2.10. The 
aperture of the transducer was 8.8 x cm and the wavelength of the 
waves was reduced to only 5.0 pm so that the near field region would be 
extended further. As a result, no diffraction was observed in this case. How- 
ever, at a distance of 1.18 cm from the input transducer, the center of the 
surface acoustic beam had shifted from the center line of the transducer by 
a distance of 3 x cm, corresponding to a beam steering angle of 1.45". 
The problems of beam diffraction and beam steering on different cuts of 
LiNbO,, have been discussed by SLOBODN~K Jr. et al. [I9701 and FARNELL 
[1970]. 

2.3.2. Attenuation memurement 

The optical probe provides a most satisfactory way of measuring the 
attenuation of surface waves. By translating the substrate so that the laser 
beam scans along the direction of Rayleigh wave propagation and by moni- 
toring the first order diffracted light, we can measure the attenuation directly 
without the effects of input and output acoustic transducers. However, the 
beam profile measurement in Fig. 2.9 suggests that the diameter of the laser 
beam must be equal to or larger than the acoustic beamwidth to avoid 
picking up the fine structure of the acoustic beam. Fig. 2.11 shows the 
measurement of intensities of the first order diffracted light by Rayleigh 
waves in a YZ LiNbO, at frequencies varying from 1090 MHz to 3.45 GHz 
as a function of distance from the input transducer. The straight lines drawn 
through the measured points in semilogarithmic scale give the attenuation 
of the waves at each frequency. 

The attenuation of Rayleigh waves, which is usually higher than that of 



146 L I G H T  A N D  A C O U S T I C  S U R F A C E  W A V E S  

t 4 

1 I I 1  
50 100 150 

DISTANCE (mil) 

Fig. 2.1 I .  The first order diffracted light intensity as a function of distance from the input 
transducer. 

the corresponding bulk waves, has been one of the concerns in the develop- 
ment of surface acoustic wave technology. Besides the scattering by thermal 
phonons and crystal imperfections, Rayleigh waves suffer additional attenu- 
ation due to surface imperfections such as scratches and damaged layers, 
and also due to inherent nonlinear effects. Improvements in mechanical and 
chemical polishing techniques may soon minimize the attenuation due to 
surface imperfections. However, until then, the attenuation of surface acous- 
tic waves will depend largely on the preparation of each individual substrate. 
Losses due to nonlinearly generated harmonics appear to be important for 
surface acoustic attenuation at higher frequencies, additional attenuation 
due to surface imperfections such as scratches and damaged layers, and also 
due to inherent nonlinear effects. Improvements in mechanical and chemical 
polishing techniques may soon minimize the attenuation due to surface im- 
perfections. However, until then, the attenuation of surface acoustic waves 
will depend largely on the preparation of each individual substrate. Losses 
due to nonlinearly generated harmonics appear to be another important 
factor for surface acoustic attenuation especially at higher frequencies. In 
addition to thermal phonon attenuation which is temperature dependent and 
surface scattering (temperature independent), there is also a significant loss 
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Fig. 2.12. Attenuation of acoustic surface wave in YZ LiNbOs substrate as a function of 
frequency (after SLOBODNIK Jr. et al. [1970]). 

arising from air loading (CARR [1970]). SLOBODNIK Jr. et al. [1970] have 
used a laser probe to measure the temperature dependent and temperature 
independent attenuation of Rayleigh waves on Y Z  LiNbO, substrates. The 
results of their measurements are given in Fig. 2.12. The power levels were 
kept low enough to avoid any nonlinear effects. At lGHz, they obtained 
attenuation values of 0.7 dB/psec due to temperature dependent loss, 0.2 
dB/psec due to temperature independent losses and 0.2 dB/psec due to air 
loading. 

2.3.3. Optical superheterodyning 

The first order diffraction intensity provides the amplitude information of 
the acoustic waves “seen” by the laser spot. However, if one is concerned 
about phase information as well, optical superheterodyning technique by 
mixing the diffracted beam with a reference beam is needed (WHITMAN and 
KORPEL [1969]; DE LA RUE et al. [1971]). One of such optical heterodyne 
system is shown in Fig. 2.13. A water filled Bragg cell driven at frequency 
f, is used to modulate the incident light having a frequency f o  . By properly 
aligning the optical system, the reference beam atfo -f, and the probe beam 
at f0+& strike at  the same photodetector for heterodyning. The surface 
ripple of the acoustic surface wave, causes the probe beam to have sidebands 
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Fig. 2.13. An optical superheterodyning system (after WHITE and KORPEL [1969]). 

at a frequencyf,+f,+f,, so that the heterodyne output of the photodiode 
contains sidebands at 2h +f, with amplitudes proportional to the acoustic 
displacement. A narrow band receiver can be used to amplify and detect the 
signal at 2 f - f , .  Assuming the photodetector is shot noise limited the 
minimum detectable displacement is the same as that in eq. (2.44). 

The system shown in Fig. 2.13 can be used to visualize and to display the 
surface waves by scanning the sample or the laser beam. It has also been 
applied to measure the phase and group velocities of acoustic surface modes 
in waveguide structures. The diffracted light beam radiates at an angie 
9 = A/A with respect to incident probe beam. In order to have the optical 
mixing take place it is required that the angle 9 is smaller than the angle 4 
of the focused prove beam. The angle 4 is given by 4 = D/F,  where D is 
the laser beam diameter and F is the focal distance of the lens. This limits 
the shortest acoustic wavelength Amin which can be detected by the scheme. 
By the condition that 9 < 4, we have: 

Amin > AF/D (2.45) 

with D = 1 cm and F = 10 cm, Amin can be about 7 pm with a He-Ne inci- 
dent laser light. At higher acoustic frequencies, the diffracted orders are dis- 
crete, the signal beam and reference beam (can be the zero order beam) have 
to be superimposed with critical alignment at the photodetector to  obtain 
optical heterodyning detection. The frequency of acoustic waves of this 
system is limited by the response time of the available photodetector. De la 
Rue et al. have discussed and compared in detail the different coherent op- 
tical detection schemes (1971). 
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2.4. LIGHT DIFFRACTION BY NONSINUSOIDAL ACOUSTIC SURFACE WAVES 

So far we have discussed the light diffraction by a sinusoidal acoustic 
surface wave, which results in the usual Bessel function distribution for the 
amplitude of the diffracted orders. If the acoustic surface waves are non- 
sinusoidal, and the surface ripples can be expanded as: 

6 = 6, sin [q(wst -  Kx3)++ , ]  (2.46) 

where 6, is the peak amplitude of the qth harmonic and 4, is the phase of 
the q l h  harmonic. Each harmonic diffracts the incident light into a diffracted 
field with discrete orders as shown in eq. (2.19). Neglecting the multiple 
diffraction the total diffracted field from a non-sinusoidal acoustic surface 
wave is the sum of fields due to all harmonics: 

4 

&(PI = 1 Arexp Ww+rws) t -kdRo)  (2.47a) 
r 

where: 

(2.50a) 

= k d  sin Bd-ki sin f$. (2.50b) 

The summation in (2.47b) is for all q and m under the condition r = q - m. 
The reflection coefficient R in (2.14) and (2.49) is given by (2.10) or (2,11), 
depending on the incident polarization. The average intensity of the rth 

order diffracted light is simply given by: 

1, = IAr12 

where the summation is for all q and m so that r = q . m. Each term in 
(2.51) represents the mth order diffraction from the qth harmonic of the 
acoustic surface waves. 

NE~CHBORS and MAYER [I971 J have recently calculated the light diflrac- 
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tion by a non-sinusoidal acoustic surface wave and included multiple dif- 
fraction. However, under the normal experimental condition aq is usually 
much smaller than unity. The multiple diffraction can then be neglected. 
For example, with a power density of 10' watt/m2 at fo = 565 MHz in a 
LiNbO, substrate, the measured first order diffracted light has a normalized 
intensity of ll/Zo = in the reflection case, where I, is the zero order 
diffracted light intensity. The second order diffraction from the fundamental 
has a calculated value of 2.5 x lo-'. Such a small contribution from the 
higher order diffraction (the terms in (2.51) with m > 1) may be neglected 
compared with the first order diffraction of higher harmonics (the terms in 
(2.51) with m = 1). By the same reason, the contributions from the multiple 
diffraction are small and negligible. Equation (2.51) can be approximated 
by letting m = 1, q = r and J,(cc,) = *a,; 

(2.52a) 

w I , F ~ T ~ ~ , ~  (2.52 b) 

and 

(2.53) 
B(k,  cos Bi + ki cos Oi) + K (  1 + R)(kd sin 0, + ki sin ei) 

2ki cos Oi 
T = -  

where Z,, F and B are given by equations (2.25), (2.20b) and (2.14) respcc- 
tively. 

It is seen from (2.52b) that the rth order diffracted light is directly propor- 
tional to the ripple amplitude induced by the rth harmonic of the acoustic 
surface wave. By monitoring the outputs of ZJZ, along the proper angle @, 
(2.26), the amplitude 6, and the power density of the rth harmonic can be 
measured directly (LEAN et al. [1970], SLOBODNIK et al. [1970]). 

Due to the fact acoustic surface waves concentrate their energies in a sur- 
face layer of about one acoustic wavelength, a low input power produces a 
sufficiently high power density so that nonlinear effects can be easily ob- 
served. LEAN and TSENG [1970] have used this optical probing technique to 
study the harmonic generation and parametric mixing of Rayleigh waves in 
LiNbO, substrates. Unlike the optical second-harmonic generation, the lack 
of dispersion of the Rayleigh waves ensures that the phase matching condi- 
tion is met at all frequencies. Thus, large numbers of harmonics can in prin- 
ciple be generated. This fact together with the complexity of two-dimensional 
inhomogeneous waves makes theoretical calculation extremely complicated. 
Experimentally it is possible to observe directly the growth of each harmonic 
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as a function of interaction length and input pump power level by the optical 
probe. 

Fig. 2.14 shows a set of experimental results of the light diffractions by 
acoustic surface wave pulses at a fundamental frequency of 615 MHz and 
its harmonics as a function of distance from the input transducer. The input 

Fig. 2.14. Experimental results of the light diffraction by acoustic surface wave pulses at a 
fundamental frequency of 615 MHz and its harmonics as a function of distance from the 

input transducer. 
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I 

acoustic pulse, which is less than 3 psec in width, has a peak power P(f) at 
the input transducer. By placing the optical probe at the distance z away 
from transducer and monitoring the output pulses of the diffracted light at 
proper angles the intensities of the acoustic power of the fundamental fre- 
quency and each harmonic generated nonlinearly in the medium at the par- 
ticular location z from the transducer can be determined. Fig. 2.14 is the 
multiple exposure of the diffracted pulses as the laser probe was moved along 
the path of propagation. The envelope of the peaks of the diffracted pulses 
indicates the spatial dependence of the fundamental signal and its harmonics 
as a function of interaction length. 
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Fig. 2.15. The diffracted light intensities by acoustic waves at 615 MHz at different power 
levels as a function of distance from the input transducer. 
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It is interesting to notice that the flat portion in the curve for the second 
harmonic in Fig. 2.14b coincides with the peak of the third harmonic in 
Fig. 2 .14~.  At this distance the second harmonic is giving energy to the third 
harmonic by mixing with the fundamental. As the third harmonic decreases, 
the intensity of the second harmonic increases again due to the beating be- 
tween the third harmonic and the fundamental. The input acoustic power at  
fundamental frequencyf, = 615 MHz is about 1.5 x lo-' W, which gives 
a power density of 3.1 x 10' W/mZ. As the input acoustic power level changes, 
the spatial dependences of the fundamental and its harmonics vary. 

The observed spatial dependences of harmonics generated nonlinearly in 
LiNbO, substrate can be explained phenomenologically by a set of coupled 
amplitude equations which take into account both the transverse spatial 
variations of the Rayleigh wave harmonics and any phase mismatch be- 
tween the fundamental and its harmonics due to a layer on a perfect sub- 
strate (LEAN [ 197 1 ]). 

At high power density, the acoustic surface waves depend on the fre- 
quency, the temperature as well as the power level of the input and the 
distance from the input transducer. The nonlinear effect that drains the fun- 
damental signal into harmonics may be one of the important factors in the 
acoustic surface wave attenuation. For example, using the optical probe, 
the diffracted light intensities by the fundamental signal at 615 MHz at 
different power levels as a function of distance can be measured and plotted 
in semilogarithmic scale as in Fig. 2.15. The simple interpretation of attenu- 
ation which relates to an exponential decay in the direction of the propaga- 
tion is no longer valid. It is even possible to have a local negative attenuation 
which is due to the increase in the fundamental signal from the parametric 
mixing of higher harmonic via the elastic nonlinearity of the substrate (LEAN 
and TSENG [ 19701). 

Q 3. Interaction of Optical Guided Waves and Acoustic Surface Waves 

Light can be trapped in a thin film on a substrate. The index of refraction 
in the film must be higher than the surrounding media so that the light beam 
is trapped in the film by total internal reflection at interferes (SHUBERT and 
HARRIS [1968]). The field outside the film decays exponentially with distance 
from interfaces. Due to the fact that both optical guided waves and acoustic 
surface waves are propagating in the same thin film region, the periodic 
change in the index of refraction induced by acoustic surface waves (as dis- 
cussed in 8 1) affects the optical guided waves and results in strong interac- 
tion between them. The interaction mechanism for the guided waves are 
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analog to the more familiar bulk acousto-optic interaction. Depending on 
the acoustic wavelength and the width of the acoustic beam width, the dif. 
fraction can be either a Raman-Nath type (RAMAN and NATH [1935]) of 
diffraction, which is a phase grating diffraction as discussed in Q 2, or a Bragg 
type of diffraction (QUATE et al. [1965]). However, there are also signifi- 
cant differences between bulk wave and surface wave interactions: 

1) The guided waves are no longer TEM waves and have transverse field 
distribution (either TE or TM modes) while the bulk waves are normally 
TEM waves; 

2) The guided waves have most of their energy confined to the thin film 
region having a thickness of the order of one micrometer so that the power 
densities of the guided waves can be three or four orders of magnitude higher 
than the corresponding bulk wave case which has a beam diameter of a few 
millimeter; 

3) These guided waves are dispersive (both optics and acoustics) depend- 
ing on the thickness of the film. 

The high power densities and long interaction length of guided waves 
result in very efficient interaction between optical guided waves and acoustic 
surface waves as reported by KUHN et al. [1970]. The dispersiveness due to 
the finite thickness of the film provides means to adjust the phase matching 
conditions which are required for acousto-optic interactions or electro-optic 
interactions. In this section, the theoretical calculations and experimental 
results of the strong interactions between optical guided waves and acoustic 
surface waves will be discussed. 

3.1. ACOUSTO-OPTIC INTERACTIONS IN THIN FILMS -ANALYSIS 

Consider the interaction between two optical guided modes and one 
acoustic surface wave as shown in Fig. 3.1. The optical guided waves prop- 
agate in a thin film with a higher index of refraction than the index of its 
substrate. It is known that many discrete modes can be supported in a thin 
film guide. The modes can be either transverse electric (TE) or transverse 
magnetic (TM) depending on whether the electric or the magnetic fields lie 
in the plane of the film and normal to the direction of propagation (COLLINS 
[1965]). Their properties are well known. For example, the electric field of 
the TE, mode propagating along a direction having an angle Bi with respect 
to the x2-axis in the plane of the substrate surface as shown in Fig. 3.1 is 
given by: 

E ,  = (x2 sin Bi - x 3  cos &)A, U,(xl) 

x exp { j(o, t - k ,  cos Bi x2 - k, sin Bi xj)} (3.1) 
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A r Diffracted 
, -  

A 

x3 

i Incident 

Fig. 3.1.  Schematic of acousto-optic interactions in thin films, surface waves in thin films. 

where x2 and x3 are unit vectors; A ,  is the peak amplitude; U,(xl) is the 
transverse distribution function for the TE, mode and U,(xl) is chosen to  
be real; w, and k, are the optical frequency and wavenumber of the mode. 
The functions of U,(x l )  and the dispersion relation of 0, and k,  for both 
TE and TM modes can be found in a straightforward manner using the wave 
equation and matching boundary conditions in the interfaces (COLLINS 
[ 19651). 

Assuming that both the incident mode and diffracted mode are TE modes, 
in the analysis of the interaction as shown in Fig. 3.1, the incident mode has 
an electric field as given by eq. (3.1), while the diffracted mode has an elec- 
tric field of: 

En = (XZ Sin 8, + X3 COS ed)An Un(X1) 

x exp { j(w, t - k,  cos 8, x2 + k,  sin 8, x3)} (3.2) 

where 0, is the diffracted angle with respect to the x,-axis. The diffracted 
mode can be either the same mode as the incident wave (m = n), or a 
different mode (rn # n). 

The acoustic surface wave with strain component Sq3 propagates along 
the x,-axis. The strain component Sq3 is given by: 

q = 1 , 2 , 3  (3.3) 

where Bq3 is the peak amplitude, q indicates the particle displacement direc- 
tion. All the strain components are propagating along the x,-axis as indicated 
in Fig. 3.1. Vq3 (xl) are the transverse distribution functions in the film and 
in the substrate. w, and K are the acoustic frequency and wavenumber 

Sq3 = + B ~ ~  vq3(x1) exp { j(ws t -  K x 3 ) }  +C.C. 
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respectively. C.C. indicates the complex conjugate. The change in the di- 
electric constant induced by the strain wave through the photoelastic effect 
has been discussed in Section 1.1. In this case from (1.9) we have: 

(3.4) 
2 

AE,b = -& p a b q 3  Sq3, a ,  b, 4 = 1,2, 3 

where BEab is the element of the change in the dielectric tensor AE, E,, and 
Pabq3  are the dielectric and photoelastic constants in the film and in the sub- 
strate. 

The interaction of the incident light Em and A8 gives rise to an induced 
electric displacement D which has a component 0, given by: 

Da = AEab(Em)b (3.5) 

= -+&:a Pubq3 Bq3 vq3(Am)b 

x {exp {j[(com+os)t-kmcosBix2-(kmsin O i + K ) x 3 ] }  

+exp {j[(co,,-oW,)t-kmcos B i x , - ( k m  sin e i - K ) x 3 ] } }  (3.6) 
where the index a and b run from 1 to 3. ( & , ) b  is the b component of E m  
with an amplitude component (Am)b, eqs. (3.1), (3.2), (3.3) and the relation 
of (3.4) have been used in obtaining the result of (3.6). 

The induced displacement current aD/at can be considered as the driving 
source for the diffracted TE, mode. The power generated by the driving 
displacement current aD/at can be considered as the driving source for the 
diffracted TE, mode. The power generated by the driving displacement cur- 
rent dD/at in a volume should be equal to the power carried away by the 
mode generated from the same region. This power balance leads to the 
following equation: 

x H,) . da = - s,.: . - dv (3.7) 

where E,  and H, are the electric and magnetic field associated with the 
generated TE, mode. In a waveguide mode, the transverse field components 
En, and H,, are related by a wave impedance. For TE modes, we have 

~ 

EnJHnt = J(p/E)k/kn. (3.8) 
The surface a encloses the volume v .  KUHN [I9691 has used the same argu- 
ment to calculate the interaction of nonlinear optics in a finite geometry. 

Consider a case with the interaction region defined by two surfaces located 
at 5 and <+ A<, where < is along the direction of propagation of the TE, 
mode. Both surfaces are extended from zero to infinity in the x,-direction. 
With these simple boundaries, the substitution of (3.2), (3.8) and the deri- 
vation of (3.6) into (3.7) results in the following equation: 
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where 
A ,  A,*/:+Ar = -2jT,, A, A,* exp ( j A k - r ) A c  (3.9) 

(3.10~) 

A k . r  = (3.1 1 a) 

Ak,  x 2  + Ak3 x 3  = ( k ,  cos 6 d  - k ,  LOS 8j)xZ - ( k ,  sin 6d + k ,  sin 6i - K ) x 3 .  

Eq. (3.9) is obtained under the condition that the output frequency is up- 
shifted by w , ,  i.e.: 

w, = w,+w,. (3.1 i b) 

A similar equation can be obtained for the case of downshift in frequency 
in which: 

w, = w,-w, (3.12a) 

A k . r  = (3.12 b) 

Ak, x2 + Ak3x3  = ( k ,  cos 8, -k ,  cos o i )x2  - (k , ,  sin 6, + k,sin 6, + K ) x 3 .  

As A t  approaches zero, eq. (3.9) becomes: 

d'AnA,*'  = -2jT,,  A,A,* exp ( j A k . r ) .  
d r  

(3.13) 

A ,  usually is a slowly varying function with no rapidly changing phase. Eq. 
(3.13) can be approximately written as: 

dA,/dt = - jf,, A, exp ( j A k . r ) .  (3.14) 

Equation (3.14) describes the change in A ,  as a function of 5 due to the 
input A ,  and the coupling constant r,,. The phase mismatch A k  is also 
included. If the input amplitude A ,  is not depleted and can be assumed 
constant in the interaction region, the simple integration of (3.14) gives the 
result of A , .  However in case A ,  depends also on A , ,  a similar derivation 
considering En as the incident wave while Em as the diffracted wave leads 
to the following equation: 

dA,/dC = - jr,, A, exp ( -  jhksr . )  (3.15) 
where 

(3.16) 
v k (sin 8. sin Od E,, I , ,  +cos Oi cos 6 d ~ 3 3  133)  = 2 ! - L - - - -  ~ 

mn 

40 som um C d x ,  
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and dc is the increment in distance along the propagation direction of Em 
mode. Ak is given by (3.1 la) or (3.12b), and Z2, and Z33 are given by (3.10b) 
and (3.10~). Equations (3.14) and (3.15) are the two coupled amplitude 
equations relating A,  and A ,  as a function of interaction length. One of the 
difficulties in solving the coupled amplitude equations in (3.14) and (3.15) 
is the different spatial directions ( and [ for both the incident and the 
diffracted light. However, in case the acoustic beam is wide enough and only 
the intensity variation of the light along the direction of acoustic wave 
fronts is of interest, we can simply let: 

x2 = 4 cos 8 d ,  x2 = cos 8i. (3.17) 

Equations (3.14) and (3.15) become: 

dA, = - j(r,,A,/cos 0,) exp { j ( A k , ~ ~ + A k ~ x ~ ) }  

ern = - j(rmnAn/cos O i )  exp { - j ( A k , x 3 + A k 2 x 2 ) } .  
dx, 

(3.18) 
dx2 

(3.19) 

The solution of the coupled amplitude equations (3.18) and (3.19) with 
boundary conditions that at x2 = 0, 

A, = 0 
and 

can be readily obtained: 
A m  = 

(3.20a) 

(3.20b) 

(3.21) 

where: 
T’ = ~ ~ , m ~ m , / ( C ~ ~  8i COS 8d)l + i A k i .  (3.22) 

The intensity of the diffracted light, which is proportional to IAn12, at a 
distance x2 = L is given by:. 

(3.23) 

when Im(0) is the incident intensity of the input TE, mode. 
Similar solution of the interaction between two TM modes or between 

one TE and one TM mode by the acoustic surface wave can also be obtained. 
The conversion between one TE mode and one TM mode requires proper 
photoelastic constants which will rotate the polarization of the incident mode 
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to  the diffracted mode. The results obtained in this section are valid only 
for the case of collinear interaction in which Oi = Oa = 90" or in cases of 
small incident and diffracted angles so that only one direction dependence of 
the optical beams either in x2 or in x, is important. A more regiorous numer- 
ical calculation on guided wave theory of light diffraction by acoustic micro- 
waves has been reported by CHU and TAMIR [1969]. It is also possible to 
couple the guided modes and the radiation modes which leak outside the 
film guide by acoustic waves as discussed by CHANG [1971]. 

3.2. ACOUSTO-OPTIC INTERACTIONS IN THIN FILMS - EXPERIMENTAL 
RESULTS 

The interactions of optical guided waves in thin films and acoustic surface 
waves have been demonstrated in two recent experiments. One is the mode 
conversion between two collinear TE modes or two TM modes by a collinear 
acoustic surface wave (KUHN et al. [1971]); one is the Bragg diffraction of 
a guided mode by an acoustic surface wave (KUHN et al. [1970]). In this 
section, the detailed experimental results with theoretical interpretations of 
these two experiments will be discussed. 

3.2.1. Collinear interaction 

The experimental setup is shown in Fig. 3.2. The optical guided modes 
were propagating in a glass film on an aluminium coated lithium niobate 
(LiNbO,) substrate. Grating couplers (DAKSS et al. [1970]) were used to 
couple both TE, and TE, modes of a 6328 A laser beam into and out of 
the thin film guide. An acoustic surface wave, launched on the substrate by 

OUTPUT 
BEAMS 

SURFACE ACOUSTIC 
INTERDIGITAL 
TRANSDUCER 

OPTICAL GRATING 

SUBSTRATE 

Fig. 3.2. Schematic of mode conversion experiment based on collinear interaction of optical 
guided waves and acoustic surface waves. 
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interdigital transducers propagated across the surface forming a strain wave 
in the film. When phase matching conditions of eq. (3.11, a and b) were 
satisfied as indicated in Fig. 3.3 coupling was observed from one waveguide 

P 
Fig. 3.3. Phase matching conditions for mode conversion. 

mode to the other. Fig. 3.4 shows the experimental results. The bottom two 
traces show the depletion of the TE, mode and the augmentation of the TE, 
mode as the frequency was swept through the phase matching condition. 
The top trace shows the output of an optical probe (as discussed in Section 

ACOUSTIC FREQUENCY 
(500 kHz / DIV) 

Fig. 3.4. Experimental results of mode conversion (a) optical probe of acoustic strain. 
The zero level is indicated at  the bottom (b) and (c). Depletion of the TE3 output and 
addition to the T E  output as the acoustic frequency is varied over the region where phase 
matching is satisfied. The center frequency of the maximum interaction isfa = 320 MHz. 
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2.3) which was used to monitor the amplitude of the acoustic surface wave. 
The depletion of the TE, mode was about 55 % at the center frequency of 
320 MHz for an acoustic surface wave with a surface displacement of 7.5 A. 
The surface displacement was measured by the optical probing technique 
described in Section 2.3. 

Assuming the spatial dependence of the TE, and TE, modes as shown in 
Fig. 3.2, U,(xl)  and U 3 ( ~ 1 )  can be written as: 

sin h,d exp [-p,(x, -d ) ]  x1 >= d 
U,"(x1) = sin hmx, O _ I x l < d  (3.24) 

( 0  XI so m =  t , 3  

where d is the thickness of the glass film. The parameters h, and p m  are 
determined from the dispersion relations for TE modes; 

(3.25a) 

(pmd)'+(h,d)' = ( ~ ~ - 1 )  (k,d)2 m = I ,  3 (3.25b) 

p,d = - h,d cot h,d 

where n is the index of refraction of the film. 
The acoustic wave is regarded as having a constant amplitude over the 

thickness of the film since the thickness is only a small fraction of the acous- 
tic wavelength, i.e.: 

(3.26) 

Substituting (3.24) and (3.26) into (3.14), (3.19), with Oi = -dd = 90" and 
(3.23) we can obtain the efficiency of the collinear mode conversion as a 
function of acoustic frequency. 

sin2 T L  
= If131 ~ 

T 2  
!!&) (3.27) 

where 

(3.28~)  
7r p 3 h 3 [ ( h l  +h3)sin(h, -h3)d-(h, -h3)sin(h,+h3)dl 

( h ,  +h3)(hI - h 3 ) [ p 3 ( h 3  d-)sin(2h3d))+ h3sinh3d] 
r3] =- p~ ~ ~ - _ _ _ _ _  

210 

Ak3 = 2 4 f  -f0)/0. (3.28d) 

h, and pm (m  = I ,  3) are given in eq. (3.25). n and p are the index of re- 
fraction and the photoelastic constant of the film respectively; B is the peak 
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strain amplitude in the film; v is the acoustic velocity in the film; fo is the 
center frequency for the exact phase matching condition. Fig. 3.5 shows the 
results of the calculation for the depletion of TE, mode based on eq. (3.27). 
The experimental points were from the top trace in Fig. 3.4. In the calcula- 
tion the measured values of the film thickness (d  = 1.6 pm), the index of 
refraction (n = 1.57), the propagation constant from TE3 and TE, mode 
(k3 = 1.51 x lo5 cm-' and k ,  = 1 . 5 6 ~  lo5 cm-') and the peak conversion 
efficiency of 0.55 were used. By using an interaction length L = 0.62 cm, 
the agreement between the calculated and observed results of conversion 
efficiency as a function of acoustic frequency is very good. The physical 
separation between the input and output grating couplers of the sample was 
about 0.8 cm. Probably due to the glass film nonuniformity, not the total 
available interaction length was used in the interaction. 

00 Calculated 
0.5 xxExperlmental 

0.2 

0. I 

319 319.5 320 320.5 321 
FREQUENCY 

Fig. 3.5. The depletion of TEs mode in the mode conversion experiment with the calcula- 
tion curve based on eq. (3.27). 

In order to match the peak conversion efficiency of 0.55, the product of 
the photoelastic constant P and the strain B in the film was calculated to be 
about 1 . 6 2 ~  we have 
the photoelastic constant calculated to be P = 0.138 which is a reasonable 
value for a glass film. 

3.2.2. Bragg deflection of optical guided waves by acoustic surface waves 

Optical Bragg diffraction by acoustic waves has been widely used in laser 
deflection schemes (GORDON [1966]). The same deflection occurs for optical 
guided waves and acoustic surface waves. Under the Bragg condition that 

sin 8, = + K / k  (3.29) 

Using the measured strain value B = 4 x  
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Fig. 3.6. Bragg deflection of optical guided waves by acoustic surface waves. 

where 0, is the incident and diffracted angle of the optical modes with 
respect to the acoustic wave fronts, the optical guided mode can be deflected. 
Eq. (3.29) is obtained by letting Ak3 = 0 in eq. (3.1 la). Using a configuration 
as shown in Fig. 3.6 in which a glass film (thickness d = 0.8 pm, index of 
refraction n = 1.73) was deposited in an a-quartz crystal, an incident TE 
mode was efficiently diffracted by an acoustic surface wave atf = 191 MHz 
under Bragg condition (KUHN et al. [1970]). The diffraction efficiency as 
high as 90 ”/, has been observed for an input acoustic power less than one 
watt. 

At the perfect phase matching condition, the intensity of the diffracted 
light is given (from eq. (3.23) and eq. (3.10a) with Oi = 6, = 0.037) by: 

I d / I i  = sin’ rL 
where 

(3.30) 

(3.3 1 a) 

(3.3 1 b) 

where I d  is the intensity of the diffracted light; Zi is the incident light; P is 
the corresponding photoeleastic constant in the film; B is the peak amplitude 
of the strain wave; W is the width of the acoustic beam. Fig. 3.7 shows the 
calculated curve together with the experimental points for the diffraction 
efficiency as a function of acoustic strain. This efficient deflection of optical 
guided waves by acoustic surface waves has practical device applications as 
deflectors and modulators in integrated optics. 

n r = - n3PB 
2A 

L = wlcos e, 
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0.8, I 

Fig. 3.7. Diffraction efficiency of Bragg deflection of optical guided waves as a function of 
acoustic strain. 

0 4. Conclusion 

In this paper we have discussed two major areas in interaction of light 
and acoustic surface waves. One is the light diffraction by acoustic surface 
waves and the other is the interactions of optical guided waves and acoustic 
surface waves. The study of light diffraction by acoustic surface waves results 
in a convenient optical probing technique to study the propagation charac- 
teristics of acoustic surface waves which are needed for the design and utili- 
zation of acoustic surface wave devices. We have discussed the contributions 
due to the surface ripple and the periodic index variation in the substrate 
for the diffracted light in the reflection case and in the transmission case. 
The detail calculations of light diffraction efficiencies as a function of 
incident angles have been made. Experimental results far the m = + I  
order diffracted light by acoustic surface waves in a YZ LiNb03 or a quartz 
substrate have been obtained to compare with the calculated values. With 
the knowledge of the relationship of the diffracted light and the acoustic 
surface wave signals, some of the propagation properties of acoustic surface 
waves in LiNbO, substrate have been probed and measured. 

In cases of nonsinusoidal acoustic surface waves, it has been shown that 
the diffracted intensity for each order can be correlated to the powzr of the 
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corresponding harmonic in acoustic surface waves. This leads to the study 
of nonlinear effects in acoustic surface waves by the optical probe. One 
useful application of this nonlinear effect study is the sensitive technique to 
measure thin film elastic properties (LEAN and POWELL [1971]). 

The sensitivity of the optical probe is capable of detecting the surface 
ripple witha peak amplitude on the order of fraction of A. Optical heterodyne 
technique as discussed in Section 2.3.3 can improve the detection sensitivity 
more with additional advantages of obtaining the phase information as well. 

In 0 3, the interactions of optical guided waves and acoustic surface waves 
have been calculated with the comparable of experimental results. The effi- 
cient interaction, which has important applications as efficient real time 
modulators for optical guided waves, is one of the reasons for the recent 
exciting interests in integrated optics using optical guided waves for optical 
signal processings and communication. 
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8 1. Introduction 

Solutions to the wave equation indicate the existence of different types of 
waves in optics. So, for example, we may have: 

propagating waves with constant amplitude; 
propagating waves with attenuated amplitude, either in space or time; 
evanescent waves. 

Two distinct classes of waves occur: homogeneous and inhomogeneous 
waves. A homogeneous (propagating) plane wave is a wave whose planes 
of constant amplitude and constant phase coincide. An inhomogeneous 
(evanescent) plane wave, on the other hand, is a wave whose planes of 
constant amplitude and constant phase do not coincide but cross each other 
at a finite angle. 

The properties of the medium and the specific applicable boundary con- 
ditions determine the type of wave which will exist. In the following discus- 
sion, the existence and properties of the last type - the evanescent waves - 
in connection with the possibility of using them in optical imaging will be 
emphasized and discussed. 

Evanescent waves have in the past frequently been regarded more as a 
mathematical tool than a physical phenomenon; they are encountered in 
wavefield analysis in order to satisfy existing boundary conditions. A com- 
mon conception prevails that a direct observation of the evanescent waves 
is impossible because of their conversion into homogeneous waves by the 
interaction with the detectors used or because the field conditions are dis- 
turbed by the extraction of energy. In the following paragraphs, the physical 
reality and the properties of the evanescent waves will be particularly stressed 
upon, and it will be emphasized how their peculiar behavior can be advan- 
tageously used for optical imaging purposes. 

Evanescent waves exist and are formed in optics in connection with some 
well-known phenomena: they are formed in the rarer medium when light 
is totally internally reflected, they occur in diffraction at objects with ex- 
tremely fine structures, they are frequently encountered in connection with 
the angular spectrum representation of the electromagnetic field, they are 
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used for treatment of the radiation from moving charged particles, and they 
are used to describe fields without radiation. Evanescent waves are often 
also called surface waves, especially in the radio-wave field (BARLOW and 
BROWN [1962]), because they are frequently supported and created by inter- 
faces between different media. 

If we include in optical imaging: the object, the relay of its information, 
the optical system and the formation of an image, and the image, then 
evanescent waves may be used at several instances. We may convert evanes- 
cent waves in the object into propagating homogeneous waves, we may 
convert the homogeneous waves in some intermediate plane into evanescent 
waves which may be recorded, later reconstructed and subsequently con- 
verted into homogeneous waves (evanescent wave holography) or we may 
convert the light in the image into evanescent waves. 

Because of their evanescence, evanescent waves cannot be used for trans- 
ferring optical information over any appreciable distance. Therefore, they 
always have to be used in combination with homogeneous propagating 
waves in such a way that propagating waves are converted into evanescent 
waves and/or vice versa. Before conversion, we may, however, introduce a 
change in the state of the evanescent wave: in its amplitude, phase, frequen- 
cy, and polarization. We can also record interference patterns caused by 
evanescent waves, and we can perform diffraction experiments with them. 
Of course, we may also simply absorb the energy contained in them. 

5 2. Existence and Creation of Evanescent Waves 

In this paragraph, we will treat two special cases in which inhomogeneous 
- evanescent - waves occur. These two cases, namely diffraction and total 
internal reflection, can as we will see be used in connection with optical 
imaging. Further, we will concentrate on those properties of the inhomo- 
geneous waves that are of importance in imaging situations. 

Denoting the components of the propagation vector k along the Cartesian 
coordinate axes k,, ky ,  k,, a homogeneous plane wave may be expressed by 

u = A(w)exp {j(k,x+k,y+k,z-wt)}, 

where A is the amplitude. The components of the propagation vector can 
assume any triplet of real numbers which satisfies 

k2 = k:+k;+k:. 

If, on the other hand, k,, k,, k, are allowed to be complex 
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k ,  = k:+ j k y ,  k, = k i +  jki ' ,  kZ  = k:+  jki', 

but k is real, we may write 

u = A(w) exp { j ( k : x +  k i  y + k: z - w t ) - ( k ; x +  k;'y + kl'z)}  

for a plane wave. However, this wave is an inhomogeneous (evanescent) 
wave with the following properties: its planes of constant phase are 

k : x + k l y + k : z  = c1 

and its planes of constant amplitude are 

k y x  + ki'y + ki'z = c 2 ,  

where c1 and c2 are constants. These sets of planes are orthogonal to each 
other, 

k: k y  + k i  k i t +  ki  k:' = 0, 

except in the presence of absorption ( k  complex) as is mentioned in Sec- 
tion 2.3. 

2.1. CREATING EVANESCENT WAVES BY DIFFRACTION 

The essential information contained in the scattered field arising when a 
specific wave with a wavelength 1 is diffracted at an object is only about 
object details above $1. Thus, information about structures which are finer 
than half the wavelength cannot be recovered from such a wave field. 

If a plane object with the complex amplitude transmission z(x, y )  in the 
plane z = 0 is normally illuminated with collimated monochromatic light 

u(x,  y ,  z < 0, t )  = exp { jkz}  exp{ - jw t } ,  (2.1) 

where k = 2n/A = o/c, the wave amplitude immediately behind the object is 

u(x, y ,  + 0, t )  = z(x, y )  exp{ - j u t } .  (2.2) 

Here x, y ,  z are the Cartesian coordinates, t the time, o the angular fre- 
quency, 1 the wavelength, and c the velocity of light. Since the wave equa- 
tion is linear, we can solve the diffraction problem independently for each 
Fourier component of z(x ,y )  and then sum up the results to obtain the 
final wave field. According to Fourier's theorem, we have 

z ( x ,  y )  = 11 F ( v ,  y) exp (2n j ( x v  + yy)}dv dy (2.3) 
- -m 

where F is the Fourier transform of z and v and y are the spatial frequencies 
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in the x and y directions of the object components. Each component gives 
rise to a wave 

exp{ 2nj(xv + yp + zq))exp{ - jwt 1 
that obeys the homogeneous wave equation for z > 0. Thus, q is given by 

and the total wave field in the half space z 2 0 is 

u(x ,  y ,  z ,  t )  = exp {- ju t )  

x [SS F ( v ,  p) exp {2nj(l -Az(v2+p2))~z/I} exp {2nj(xv+yp)}dvdp 

v Z + p Z j  1 / 1 2  

From eq. (2.5) it is clear that different kinds of waves will arise. The homo- 
geneous waves ( v 2 + p 2  < l/1’) which correspond to object details with 
periods larger than the wavelength A propagate in the direction a, p, y to 
the positive z axis, where 

cos a = I v  

cos p = 1p 

cos y = { 1 -12(v2+p2)}? 

With normal incidence to the object plane z = 0, as assumed here, an ob- 
ject period of 1 results in a diffraction angle equal to +n. Of course, we may 
apply grazing incidence and thus diffract the light n for an object period of 
*A. The other portion of the field represented in eq. (2.5) represents inhomo- 
geneous (evanescent) waves (v2 + p 2  > 1/12) which only propagate in direc- 
tions perpendicular to the z axis but are exponentially attenuated for in- 
creasing z values. 

Some characteristics of the evanescent wave may be concluded from the 
preceding derivations; the wavelength I, of the evanescent wave 

I, = 1/(v’+p2)+ (2.6) 

is smaller than the wavelength I of the homogeneous wave. Likewise, the 
phase velocity of the evanescent wave 

v ,  = 0/{2n(v2+p2)+) = C I , / L  (2.7) 
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i s  smaller than the velocity of light c. Of course, both types of waves have 
the same frequency w. The propagation vector k with the components 

k = { V A ,  p1, (1 -A2(V2+p2))+)2n/A (2.8) 

is as was stated above complex in the case of an evanescent wave. 

where 
k = k , + i k , ,  

k ,  = 2rc(v2 +p2)' 

(2.9) 

(2.10) 

is the vector in the direction of propagation of the evanescent wave and 
l / k a ,  where k, = 2n(A2(vz + p 2 ) -  I)*/A, represents the distance from the 
plane z = 0 at which the wave amplitude is attenuated to I/e of its value 
at z = 0. From 

k 2  = (wn,/c)* = k:-kk,2, (2.11) 

where n, is the refractive index of the medium in which the evanescent wave 
exists, it follows that 

1/12 = 1/1:-1/1," (2.12) 

which shows that the evanescent wave can only extend to appreciable & 
values, i.e. z values, when Ae approaches 1. 

The scattering of waves by object structures which are periodic in one 
dimension - diffraction gratings - is of particular interest because of the 
many diversified applications for which these structures are used for. From 
eq. (2.5) we see that the field from an infinite grating illuminated with a 
monochromatic plane wave consists of an infinite discrete set of plane waves. 
The spectrum of these waves is distributed according to the grating equation: 

sin i+sin d = m1/a, (2.13) 

where i and d are the angles of incidence and of diffraction, a the grating 
period, and m an integer. All integer values of m are allowed. Therefore, 
the angles i and d cannot only be real, but also imaginary. Thus, only some 
of the waves are propagating waves which carry energy in the direction set 
by the angle d. The remaining waves are evanescent waves which are ex- 
ponentially (cf. eq. (2.5)) damped normal to the plane of the grating. Eq. 
(2.13) now tells us that in order for waves of order +m to be evanescent, 

lm( > (1 +sin i)a/A (2.14) 
has to be fulfilled. 

In order to explain the diffraction characteristics in more detail and to be 
able to predict certain phenomena, more rigorous approaches to  the problem 
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have to be taken. An anomalous behavior of diffraction gratings first ob- 
served by WOOD [1902] which has stimulated numerous investigations is 
worth mentioning in this connection. These so-called Wood anomalies are 
dependent on the groove profile and on the optical properties of the grating 
material and appear as rapid variations in the intensity of the various dif- 
fracted orders in certain narrow wavelength regions. They are among other 
things associated with wavelengths 2, that correspond to 1371 diffraction, i.e. 
for light diffracted parallel to the grating surface. Thus, they are observed 
in any diffraction order at wavelengths and incidence angles that satisfy 

mR& = a(sin i f  1). (2.15) 

The order mR corresponding to ,IR (the Rayleigh wavelength) is called the 
Rayleigh order. RAYLEIGH [1907] was the first who tried to explain these 
anomalies by his “dynamic theory” based on expansion of the scattered 
field in terms of outgoing waves. A limitation of this theory is its indication 
of a singularity at and, thus, incapability to give the shape of the bands 
due to the anomaly. FANO [1938] tried to overcome this by assuming that 
the grating consists of a lossy dielectric material. Fano is by the way the 
first one to stress the importance of evanescent waves in this connection. 
ARTMANN [ 19421 further refined Rayleigh’s theory, and so did among others 
LIPPMANN and OPPENHEIM [1954], but only in recent years a more sophis- 
ticated treatment of the scattering from different obstacles based on a mul- 
tiple-scattering point of view has been developed (KARP and RADLOW [1956], 
MILLAR [1960], and TWERSKY [1962]). The maxima in the anomalies were 
demonstrated by ARTMANN [1942], but TWERSKY [1962] was first to discuss 
the minima. Besides early experimental investigations by WOOD [ 19021, IN- 
GERSOLL [1920], and STRONG [1936], the grating anomalies have more 
recently been studied by PALMER [1952, 1956, 19611 who also showed their 
polarization dependence. TWERSKY [1962] stressed that although the evanes- 
cent waves formed at the grating do not transport any energy away from 
it, they seem to play a significant role in redistributing the energy. They 
may provide a coupling between different propagating orders and in this 
way change the energy distribution between the directions d which give 
propagating waves. HESSEL and OLIVER [1965] pointed out, using a theory 
based on a guided wave approach, that besides a Rayleigh wavelength type 
of anomaly there may also exist a resonance-type anomaly (also describable 
by Twersky’s multiple-scattering theory) which is related to guided complex 
waves in the grating. In case the period of the diffraction grating is so small 
that no diffracted orders occur when it is illuminated with a plane wave, then 
the guided wave along the grating would be a purely bounded surface wave. 
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When the period, however, is large enough so that diffracted orders arise, 
then the grating can no longer support a purely bounded guided wave and 
the wave will be a leaky wave with one or more radiating harmonics. Thus, 
this resonance type of Wood anomaly occurs for the wavelength at which 
the diffracted waves appear at just the same angles as would be taken by 
the leaky wave supportable by the grating. These resonance effects can occur 
for wavelengths far removed from AR . 

2.2. CREATING EVANESCENT WAVES BY INTERNAL REFLECTION 

Light incident on the boundary between two media is reflected and re- 
fracted according to Fresnel’s formulas. If the refractive index n, of the 
medium from which the light is coming is larger than the refractive index 
n, of the second medium, then the incident light will be totally internally 
reflected for incidence angles equal to and larger than the critical angle for 
total reflection i, 

sin it = n,/n,. (2.16) 

A rigorous treatment of Maxwell’s equations for this case predicts existence 
of evanescent waves in the medium with refractive index n,. These inhomo- 
geneous waves decay exponentially with increasing distance from the inter- 
face. In case total internal reflection of a plane wave of infinite extent (as 
in Section 2.1) is considered, we get in accordance with eq. (2.12) 

(nJA,,)’ = I/A;-- I/A:, (2.17) 

where A,, is the wavelength in vacuum. Furthermore, we have the boundary 
condition 

n, sin i / A ,  = l/A,. (2.18) 
Thus, 

= A,/{n: sin’ i - n,2>+, (2.19) 

which indicates that the evanescent wave amplitude will be attenuated to 
I/e of its value at the boundary at a distance A,/27t below it. The penetration 
depth of the evanescent waves only becomes appreciable when i approaches 
i t .  However, in this region the amplitude of the field at the surface in the 
denser medium can rise to values above those of the incoming wave E,. De- 
pending on the polarization direction of E, ,  different results will be obtained: 
for light polarized perpendicular to the plane of incidence 

EJE, ,  = 2 cos i{cos i +  j(sin2 i-(n,/n,)2)>f>/{l -(ne/n,)2} (2.20) 

and for light polarized parallel to the plane of incidence 
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2 cos i { (ne/ns)  cos i +  j(ng/n,)(sin2 i-(ne/nJ2)+> 
Ell/Es[, = - (2.21) 

(n,/n,)’ cos’ i+ (n,/ne)2[sin2 i - (ne/n,)’] 

These are solutions of Maxwell’s equations with proper boundary conditions 
(see e.g. ARZELI~S [1946]). From these expressions is clear that at the critical 
angle of total reflection, we get 

and (2.22) 

but that the electric field decreases rapidly with increasing angle of incidence 
for total reflection. Figure 2.1 illustrates these conditions. This possibility of 
magnifying the electric field has turned out to be useful, especially for max- 
imizing interaction in local physical penomena. 

3.2 

E/E, 

2.4 

I .6 

0.8 

n 

7 

Fig. 2.1. Transmission of  different polarization components of the electric field as a func- 
tion of the angle of incidence when passing the interface from an optically denser to an 

optically rarer medium (n,/n, = 1.5). 

As we here are concentrating on imaging aspects, the time-averaged flux 
of energy carried by the evanescent waves is of major concern. It was men- 
tioned above that in order to fulfill the continuity requirements of the 
electromagnetic field at the interface between the two media an evanescent 
wavefield in the rarer medium has to exist. With a field of infinite extent 
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treated so far, a net time-averaged flow of energy is obtained only parallel 
to  the boundary but not perpendicular to it. A more meaningful physical 
understanding of the phenomenon is reached by considering a wave of 
limited extent, as occurs in reality and especially in the case of imaging 
applications. 

In order to achieve a broad feeling of the possible uses of evanescent 
waves for optical imaging, we would like to know the direction in which 
the energy travels. One of the first to treat this question extensively was 
PICHT [1929]. He came to the conclusion that the appearance of an energy 
flow in the rarer medium is the result of an energy flow into this medium 
under almost grazing incidence at  some locations and a corresponding 
energy flow from the rarer medium at other locations. NOETHER [1931] ex- 
plained Picht’s conclusion in such a way that insight was obtained concerning 
the physical phenomena involved. SCHAEFER and PICHT [ 19371 explained 
this in an even more realistic form. They pointed out that in case the in- 
ternally reflected wave is limited to a certain width the energy is flowing 
into the rarer medium at one edge causing the reflection to appear less than 
total. This energy is then travelling in the rarer medium as an evanescent 
wave parallel to the interface along the whole extension of the wave as is 
illustrated in Fig. 2.2. At the other edge of the limited wave this energy is 
returning to the denser medium where it adds to the reflected wave. Thus, 
the net effect is a displacement of the whole reflected wave a small distance 
along the surface. 

Fig. 2.2. Illustration of  total reflection of  a finite plane wave. It is shown how the intensity 
distribution I ( x )  is shifted relative to the geometrically reflected wave. The arrows in the 

rarer medium indicate direction of the energy flow. 

An expression for the lateral displacement d that occurs when linearly 
polarized light is internally reflected at an interface between two media (see 
Fig. 2.3) can be obtained in the following way: The time-averaged energy 
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Fig. 2.3. Illustration of how light is displaced a distance d when totally reflected. The 
penetration into the rarer medium is here shown schematically as a parabolic path. 

flow in the evanescent field across a plane perpendicular to the interface 
between the two media 

can be set equal to the energy flow of a plane wave across a surface normal 
to the direction of propagation with a width that is equal to the displace- 
ment d. 

C 
S, = - [EyH,-E,Hy] 

471 

is the x-component of the Poynting vector which is parallel to the interface. 
Thus, for a polarization component that is perpendicular to the plane of 
incidence (Esl = Ey) ,  

+LS,(z = + 0) exp (- 471z/lZ,)dz = Ld,  cn, E:J(871) (2.23) sdi 
from which we obtain 

d,  = l ~ ~ l l H 2 l ~ ~ / { 4 7 1 ~ S E ~ ~ } .  (2.24) 

L is the length of the considered planes perpendicular to the plane of in- 
cidence. IH,I at the boundary in the rarer medium is obtainable from Fres- 
nel’s formulas: 

IH,1 = 2E,, n,  sin i cos i /{l  -(n,/n,)’>*. 

Introducing this and the expressions in eqs. (2.19) and (2.20) in eq. (2.24) 
results in 

dl = (&/n) sin i cos’ i/[{l-(n,/n,)z>{sin2 i - (n, /n,)’}*] .  (2.25) 

Similar calculations for light polarized parallel to the plane of incidence give 

. (2.26) (As/n)(ne/nJ2 sin i cos’ i 
d -  

‘ I  - { ( n , / n ~ ~  cos2 i + sinZ i -(ne/n,>z>{sin2 i - (n,/n,)’>+ 
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Fig. 2.4. The lateral beam displacements dL and dl I as a function of the angle of incidence 
occurring at  total reflection (n,/n, = 1.5). 

In Fig. 2.4 dL and d,, are shown as a function of the angle of incidence i. 
As is clear from this figure, d, ,  > dL for angles of incidence close to the 
critical angle of total reflection. For larger angles, on the other hand, 
dL > dlI . Although an approximate and simplified theory in accordance 
with RENARD’S [ 19641 procedure using the conservation of energy has been 
applied here to obtain eqs. (2.25) and (2.26), it is amazing how little they 
deviate from more exact and complicated approaches. For example, eq. 
(2.25) is identical to the one obtained by LOTSCH [1968, 1970, 19711 and eq. 
(2.26) only insignificantly differs from his results, which by the way still are 
approximations. sin i cos’ i in eq. (2.26) is replaced by {sin i- ( n , / ~ z ~ ) ~  sin i 
-sin2 i+ (ne.n,)2>. Another method of calculating the lateral displacement 
that gives some more insight into the physical phenomena involved was 
introduced by ARTMANN [1948]. He considered total reflection of a laterally 
limited wave. The different plane wave components of its angular spectrum 
will undergo different phase shifts at reflection, because they enter the inter- 
face under different angles. In the superposition of the reflccted waves, this 
produces a spatial variation in the light at the reflecting surface. The condi- 
tion for maximum light is 

d = -(A12 n)dh/di, (2.27) 

where 6 is the phase shift at total reflection. From Fresnel’s formulas, we 
have 
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6, = 2 arctan ([sin2 i - (n,/n,)*]+/cos i }  

a,, = 2 arctan ([sin’ i-(ne/.,)’]+/[(ne/.,)’ cos i ] } .  

This results in somewhat simplified expressions for the lateral beam dis- 
placement: 

d, = (A,/.) sin i/(sin2 i-(ne/nJ2}+ 

d , ,  = ( ~ , / n ) ( n , / n , ) ~  sin [/(sin2 i - (ne /n , )* }+ .  (2.28) 

Of course, we may interpret the phenomena described here not only as a 
lateral displacement in the plane of incidence as outlined above but also as 
a depth of light penetration or as a shift of the reflection center for the light 
in the rarer medium (cf. Fig. 2.3). Thus, NEWTON’S [I7171 suspicion that 
total reflection is not a surface but a volume effect has turned out to be 
correct. He expected that the path of the light energy in the less dense mediun 
could be described by a parabola. 

The lateral displacement that occurs at  total reflection has been experi- 
mentally verified by Goos and HANCHEN [1947, 19491. The effect is also 
commonly known as the Goos-Hanchen effect. In the former half of this 
century, it was commonly accepted that the flow of energy in the rarer 
medium could not be physically determined without disturbing the total 
reflection phenomenon. However, in 1943 the picture changed when Goos 
and Hanchen performed their cleverly devised experiment (see Section 3.2) 
which clearly showed what happens to the light that is totally reflected. The 
interpretation of the convincing experiments by Goos and Hanchen has been 
treated by Goos and HANCHEN [I9471 themselves as well as by ARTMANN 
[1948], V. FRACSTEIN [1949]. WOLTER [1950] and more recently by RENARD 
[1964], SCHILLING [1965], LOTSCH [1968, 1970, 19711, RICARD [1970], and 
HOROWITZ and TAMIR [ 197 11. 

FEDOROV [1955] predicted that the reflected wave generally not only is 
displaced in the plane of incidence but also perpendicular to it. This be- 
havior had already been indicated by WIEGREFE [1914, 19161. The exit 
plane, however, is still parallel to the plane of incidence. FEDEROV [1955] 
showed that the Poynting vector is located in the plane of incidence only 
when the incident light is linearly polarized perpendicular or parallel to this 
plane. In other cases, there will also exist an energy flow normal to the plane 
of incidence causing a transverse displacement d, . This displacement is 
maximum when the incident and reflected waves are circularly polarized in 
the same sense. In case the incident wave is linearly polarized, on the other 
hand, then the transverse displacement is maximum for a circularly polarized 
reflected wave. This transverse displacement which is related to the spin of the 
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photon has been treated by COSTA DE BEAUREGARD [1964, 19651, SCHILLING 
[1965], IMBERT [1968, 19721 and RICHARD [1970]. For a circularly polarized 
incident wave (IMBERT [1969]) 

(2.29) 

where i, is the specific angle of incidence for which the state of polarization 
is preserved and the minus and plus signs represent left and right circularly 
polarized light. In most cases, the transverse displacement is an order of 
magnitude smaller than the lateral displacement. 

A phenomenon similar to the lateral beam displacement at total reflection 
also occurs at diffraction by optical gratings. The diffracted waves are all 
spatially shifted with respect to the illuminating wave (TAMIR and BERTONI 
[1971 I) .  This displacement is explainable in terms of a leaky-wave mechanism 
and is larger for grating diffraction than at total reflection. Furthermore, 
this displacement can be either in the forward or reverse direction with 
respect to the incident wave. 

As mentioned earlier in this section, the energy flux in the rarer medium 
at reflection has in general a local component S, perpendicular to the inter- 
face between the media. This is the case in total internal reflection as well 
as in the case of an absorbing medium. 

- 2  sin3 i cos i d , = + ”  
n sin’ i - sin’ i, + sin4 i, cos‘ i ’ 

2.3. CONDITIONS AT ATTENUATED TOTAL REFLECTION 

In Section 2.2, a non-absorbing rarer medium was assumed. Most direct 
recordings of the described phenomena require, however, an absorbing 
material. This will modify the wavefield conditions in the rarer medium. 
Fresnel’s formulas and Snell’s law are still formally valid even though other 
physical interpretations are needed in this case. The refractive index n, used 
in Section 2.2 has to be replaced by a complex refractive index n, (1 -jK),  

where K is the absorption index. 
In case a wave is internally reflected in a non-absorbing medium at its 

interface with an absorbing medium, the field in the latter medium is still a 
system of inhomogeneous plane waves (see STRATTON [1941]). The planes 
of constant amplitude are parallel to the reflecting interface as in the case of 
total reflection, but the planes of constant phase are no longer perpendicular 
to the interface. The propagation direction is normal to the planes of con- 
stant phase. Thus, in case the rarer medium is absorbing, the inhomogeneous 
wave will propagate in a direction inclined to the interface. The angle of 
inclination (refraction) depends now on the angle of incidence as does also 
the phase velocity. With increasing absorption index K ,  the planes of con- 
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stant phase will incline more and more to the interface in which the reflec- 
tion takes place. In the limit K --t 03 they will be parallel to the planes of 
constant amplitude and the propagation direction is normal to the surface 
of the absorbing medium. 

Figure 2.5 illustrates the difference between the case with a perfectly trans- 
parent (Fig. 2.5(a)) and an absorbing medium (Fig. 2.5 (b)). The electric 
field is shown in the rarer medium at internal reflection for light polarized 
parallel to the plane of incidence. The magnetic field is perpendicular to the 
plane of the figure. Thus, the Poynting vector has the direction of the tangent 
to the orthogonal trajectories to the E-field shown. This means that energy 
enters the rarer medium at certain locations and some portion of it returns 
from it at others. Thus, in the time average the direction of the net energy 
flow is parallel to the interface when no absorption is present and inclined 
to the interface when the rarer medium is absorbing. As is illustrated in 
Fig. 2.5(b), the absorption of the rarer medium causes a progressive decrease 
in the amplitude of the inhomogeneous wave as it travels forward normal 
to the planes of constant phase. 

(a) (b) 

Fig. 2.5. The electric field at  internal reflection in a perfect tranparent rarer medium (a) 
and in an absorbing one (b). Surfaces of constant'amplitude are drawn solid and surfaces 
of constant phase dashed. The variation of the amplitude in depth is shown at the left and 

the variation parallel to the direction of propagation is shown at  the bottom. 

Thus, when K # 0, we get attenuated total reflection. The absorption is 
largest at angles of incidence close to it (critical angle in case of total reflec- 
tion) and depends, of course, on the value of the absorption index K. This 
is illustrated in Fig. 2.6 for fairly strong absorbers. There no longer exists a 
particular angle for total reflection, but a transition of finite angular width 
(LITTMANN [1940]). 

Figure 2.6 shows that when using strongly absorbing media like metals, 
the conditions deviate strikingly from those present at total internal reflec- 
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Fig. 2.6. Internal reflectivity for different polarization directions at the interface between 
an optically denser and an absorbing optically rarer medium (n,/n, = 3.0) as a function 

0.05 (- - -), 0.5 (- - - -), and 5 (-. -. - ) are shown. 
of the angle of incidence. Curves for different absorption coefficients n K  = 0 (- 1, 

tion. For weak absorbers, on the other hand, the reflectivity does not deviate 
noticeably from that for a non-absorbing medium, except very close to the 
critical angle (cf. Fig. 2.6). Commercial non-processed fine grain photographic 
emulsions have a relatively low absorption coefficient (nrc z Thus, in 
those cases, the treatment given in Section 2.2 is a good approximation. 

2.4. WAYS TO USE EVANESCENT WAVES IN OPTICAL IMAGING 

In Sections 2.1 and 2.2 different ways to create evanescent wavefields in 
optics were described. It is also clear from these treatments that the same 
methods may also be used to convert an evanescent wave into a homoge- 
neous propagating wave. According to Helmholtz' reciprocity theorem the 
direction of the light in the cases treated can be reversed, i.e. the evanescent 
waves are converted into homogeneous waves by an interface between two 
media or by a grating structure. This means that the geometries mentioned 
are not able to support evanescent waves over any appreciable lateral dis- 
tances. Energy is coupled out as soon as energy has been coupled into the 
boundary. The lateral displacement mentioned is a measure of how long the 
energy remains in the boundary before it is coupled out again. However, the 
schemes treated can form a part of an optical imaging system as will be 
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Fig. 2.7. Illustration of different ways of creating and converting evanescent waves by 
using and combining diffraction and internal reflection techniques. 

described in detail in later chapters. 
Figure 2.7 shows how, besides using these schemes (Fig. 2.7(a)-(d)) sepa- 

rately, we can also combine them in different ways (Fig. 2.7(e)-(h)). Fig. 
2.7(g) constitutes the optical tunneling method which is commonly used in 
optical thin film techniques (BAUMEISTER [ 19671). By introducing a spatial 
variation of, for example, the thickness, absorption, or refractive index of 
the thin film in which the evanescent waves exist, we have a simple and 
effective means for creating or influencing pictorial information in a light 
beam. The addition of a diffractive structure as in Fig. 2.7(e), (f), and (h) 
even further increases the flexibility of using evanescent waves for formation, 
recording, and processing of optical images. As is described in 8 6, the 
schemes (f) and (h) in Fig. 2.7 are of particular value for the realization of 
evanescent wave holography. 

8 3. Experimental Verification of the Existence and Properties of Evanescent 
Waves 

As is described in this paragraph, there exist different techniques among 
which to choose when we wish to visualize an evanescent wavefield (cf. also 
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9 5 ) .  We may use photographic emulsions, diffraction gratings, geometrical 
boundary changes, scattering by small particles, etc., whereby the evanescent 
wavefield is converted into a propagating homogeneous wavefield. These 
methods, of course, introduce significant deviations from the unique charac- 
ter of total internal reflection and can as such not be considered as true ex- 
perimental proof. However, as we will also see in this paragraph, indirect 
techniques which do not intrude on the evanescent field distribution have been 
devised. 

3. I .  PIONEERING EXPERIMENTS ON EVANESCENT WAVEFIELDS 

The first experimental studies of the light that enters the less dense medium 
in total reflection was performed by NEWTON [1717]. He placed two slightly 
convex glass surfaces against each other. At and around the point where 
they were in contact, he could see through. In reflection, the same area 
appeared dark. He observed that this area seemed first to increase with in- 
creasing angle of incidence and then to decrease when the angle was increased 
further. From these experiments, Newton drew the conclusion that light 
really penetrated into the rarer medium at total reflection. QUINCKE [1866] 
performed experiments similar to Newton’s and observed that the area 
around the contact point between two glass prisms seemed largest a t  
the critical angle of total reflection. Quincke explicitly stated that the pene- 
tration depth of the light decreased with increasing angle of incidence. He 
also found that the penetration depth increased with increasing wavelength 
and that it showed a polarization dependence. Quincke observed how inter- 
nally reflected light penetrates a small separation between the hypotenuse 
surfaces of two right angle prisms. One surface was convex and the other 
plane. In this way an area around the point of contact between the two sur- 
faces appears. With this configuration Quincke studied the penetration depth 
of the evanescent waves as a function of the angle of incidence and obtained 
values of up to a couple of wavelengths for the penetration depth. Another 
experimental approach to study the penetration of light into the rarer 
medium was taken by DITSCHEINER [1870], EXNER [1889], and EDSER and 
SENIOR [ 19021. Their idea was to place a diffraction grating at the interface 
where total reflection occurs. A photographically produced grating was 
cemented onto the hypotenuse face of a right angle prism. The direction of 
the lines of the grating were perpendicular to the plane of incidence. By 
internal reflection at the grating, it was possible to get diffracted light into 
the less dense medium. Different diffraction orders except the zeroth were 
visible. (For a review of early experiments in this field see, for example, 
KOROBKO-STEFANOV [ 19501.) 
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VOIGT [I8991 criticized the procedures which had been used to investigate 
the inhomogeneous wave in the rarer medium. He rejected to the introduc- 
tion of a third medium in order to detect light in the rarer medium, because 
when light appears in the third medium, the reflection is no longer total. 
Instead Voigt suggested a technique that did not require any third medium. 
He used a right angle prism the hypotenuse surface of which consisted of 
two fields slightly inclined to each other so that the edge between them was 
parallel to the roof of the prism. He illuminated the whole hypotenuse sur- 
face so that the light was internally reflected. Looking at the edge from a 
direction in the plane of one of the hypotenuse halves revealed a streak of 
light. The intensity of this light decreased rapidly with increasing angle of 
incidence. However, even Voigt’s method suffers from a deviation from total 
reflection - some light is escaping from the edge. This was the reason why 
this method gave rise to a long and sharp controvzrsy (KETTLER [1899], 
VOIGT [1899b, 19111 and EICHENWALD [1911]). 

Another method was used by HALL [I9021 to show that light penetrates 
into the rarer medium at total reflection. He applied a gelatine layer which 
had been light sensitized using extremely fine silver bromide grains onto one 
side of a flint-glass prism. Light internally reflected in the prism exposed 
the emulsion. After development Hall found that the film had only been 
exposed on that side which was next to the prism. He could detect penetra- 
tion depths up to about 5p. Further, he applied thin collodion films between 
the prism and the sensitized emulsion and was still able to expose the emul- 
sion. WOOD [1913] describes how the same results are obtained by using a 
fluorescent film instead of a photographic emulsion as detector in the rarer 
medi um . 

Extensive investigations with the so-called lamella-experiment described 
above were performed by Goos and HANCHEN [1943]. They measured the 
intensity distribution around the contact area between two glass prisms, one 
of which had a plane and the other a slightly convex hypotenuse surface. 
Photometric measurements were done on photographic recordings, and it 
was found that the measured value of the size of the contact area was 
maximum when the observing light entered at the critical angle for total 
reflection. 

Some early experiments (RIGHI [1898], LAMPA [1899], SCHAEFER and 
GROSS [1910]) were also performed in the microwave field in order to study 
the wave penetration into the rarer medium at total reflection. The work by 
Schaefer and Gross in particular describes convincing experimental verifica- 
tion of the energy distribution in the evanescent wavefield. They used two 
paraffin prisms arranged in a variable beam-splitter configuration and mea- 
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sured the reflected and transmitted energies as a function of the prism separa- 
tion. A wavelength of 15 cm was used and a thermoelement served as detec- 
tor. Direct measurements were also made of the evanescent wavefield distri- 
bution in the rarer medium close to the hypotenuse surface where the 
microwaves were totally reflected. 

3.2. MEASUREMENTS OF PROPERTIES IN EVANESCENT WAVEFIELDS 

One of the more important experiments in this field was performed by 
Goos and Hanchen in the early 1940’s. However their first publication on 
it was delayed because of the war (Goos and HANCHEN [I9471 and COOS 
and LINDBERG-HANCHEN [1949]). Their experiment was devised in such a 
way that the total reflection was not disturbed, It relied on the theorztical 
prediction that the light energy at  total reflection enters the rarer medium 
at certain locations and returns back at other locations into the optically 
denser medium. Light penetrates into the rarer medium as is indicated in 
Fig. 2.3. Goos and Hanchen were able to  visualize the beam displacement 
at  total reflection to a high accuracy. Their experimental idea was to com- 
pare the reflected beam which is drawn as a solid line in Fig. 2.3 to  the one 
which occurs when the reflecting surface is metallized (dashed line in Fig. 
2.3). This was achieved by evaporating a central strip of silver over the sur- 
face at which the total reflection occurred. In order to achieve enough accu- 
racy in determining the beam displacement, the number of reflections was 
kept high by using multi-reflections in  a plane parallel plate. Two edges 
of the plate were inclined to facilitate the entering and exit of the light 
in the glass plate. Goos and Hanchen’s experiments showed without any 
doubt the existence of the beam displacement at  total reflection. From 
observations with 20 to 70 reflections they were able to measure both from 
photographic recordings and from direct observations by an eyepiece micro- 
meter the displacement in the shadow of the light that had passed two succes- 
sive slits. The dependence of the displacement on the angle of incidence 
(Goos and HANCHEN [1947]) and on polarization (Goos and LINDBERG- 
HANCHEN [1949]) was also verified. Further, Goos and Hanchen demon- 
strated the beam displacement by using several wavelengths. Different beam 
displacements occur, of course, for different wavelengths. 

The experiment by Goos and Hanchen was later repeated by WOLTER 
[ 19501 who succeeded in performing even more accurate determinations of 
the lateral beam displacement (Goos-Hanchen effect). Wolter observed the 
displacement of interference fringes formed by two slightly inclined waves 
(the so-called “Minimumstrah1kennzeichnung”-method) that had undergone 
multiple reflections on one hand at the interface glas-air and on the other 
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at the interface glas-silver. A plane parallel plate was used on which a silver 
strip was deposited. Wolter with his technique having a 16-fold improve- 
ment in resohtion over that by Goos and Hanchen found good agreement 
between experiments and theory for both polarization directions in the en- 
tire angular range of interest. 

The experiments described so far have only been concerned with the lateral 
beam displacement, i.e., the displacement in the plane of incidence. Trans- 
verse beam displacement, i.e., displacements orthogonal to the plane of in- 
cidence, have also been experimentally verified (IMBERT [1969, 1970a, b, 
19721). Imbert used circularly polarized light to insure maximum trans- 
verse displacement. Two configurations were used. In one the light was 
successively totally reflected at the sides of a long 60" triangular prism in a 
spiral path (IMBERT [1969, 1970a, b, 19721). For a wavelength of 6328A and 
a refractive index of the glass of 1.8 the transverse displacement is 0 .29~ .  
With 28 reflections, this displacement was recordable. In the other setup, a 
90" triangular tankprism was used. Total reflection occurred at the base side 
and the light was almost normally incident on the sides which had semi-re- 
flecting coatings to change the sense of the circularly polarized light (IMBERT 
[1970a, b, 19721). 20 reflections were applied in this case. To visualize the 
transverse displacement, a 180" phase plate (half of the field was out of phase 
with the other half) was used as object and placed in the light before it entered 
the prism arrangement. Furthermore, the illumination was arranged so that 
half of the field of view was right circularly and rhe other half left circularly 
polarized. The separation line between these two halves was perpendicular to 
the sharp edge of the phase plate. In this way the two halves of the image of 
the edge were displaced in opposite directions. By interchanging the states of 
polarization in the illuminating light, the displacements in the image were 
interchanged. Imbert found good agreement with theory. 

The beam displacement described here can also be found at other wave- 
lengths, e.g., in the microwave and radiowave regions. The work by WOLTER 
[1950, 19611 is in particular worth mentioning. Wolter was concerned with 
explanation of strange reflection effects above seawater in the near field of 
transmitting antennas. He found negative penetration depths for a wave 
polarized parallel to the plane of incidence. This indicates that a wave 
polarized in this sense is reflected at a virtual surface which is located above 
the water level. Several other investigations where evanescent waves were 
especially emphasized on have been performed using microwaves, see e.g. 
CULSHAW [1961], CULSHAW and JONES [1953] and BRADY et al. [1960]. Dis- 
placement of a totally reflected ultrasonic wave was successfully demon- 
strated by SCHOCH [1952]. 
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SCHAFFNER and TORALDO DI FRANCIA [ 19491 studied the evanescent wave- 
field created by a diffraction grating. They illuminated a metal strip grating 
with microwaves of 32 mm wavelength. The grating period was chosen so 
that only the 0th diffraction order was leaving the grating. The other orders 
gave rise to evanescent waves. By placing a paraffin prism close to the 
grating, they were able to  transform one of the first diffraction orders into 
a homogeneous propagating wave. The exponential attenuation of the evanes- 
cent wavefield normal to the grating was confirmed by measuring the energy 
in the first order as a function of the separation between the grating and the 
prism. 

Frustrated total internal reflection experiments have been used to study 
different aspects of the evanescent field which occurs at total reflection. Here 
only two experiments will be mentioned. COON [1966] used a cooled photo- 
multiplier to count the photons (5461A) which had tunneled through the 
gap between two glass prisms. He was able to confirm the exponential atten- 
uation of the evanescent field for prism separations ranging between 3.5 and 
8 . 5 ~ .  CARNIGLIA and MANDEL [1971], on the other hand, were able to verify 
experimentally that the phase of the light which has tunneled from one glass 
prism to the other is independent of the prism separation. This proves that 
the evanescent waves propagate parallel to the glass-air interface and that 
the planes of equal phase are perpendicular to this interface. Measurements 
were performed in He-Ne light with the prism arrangement in one arm of a 
modified Rayleigh interferometer. The phase was determined from the inter- 
ference fringe position as a function of prism separation (up to 20 wave- 
lengths). In both Coon’s and Carniglia and Mandel’s experiments, the prism 
separation was measured by a separate interferometer. 

0 4. Image Formation, Processing, and Transfer Using Frustrated Total 
Internal Reflection 

Total internal reflection techniques lend themselves in a natural way to 
investigations of, among other things, surface topography, film thickness, 
refractive index, and absorption spectra. The effect used is then frustrated 
total internal reflection, i.e., the evanescent waves which penetrate into the 
rarer medium can be absorbed or diverted by bringing an absorbing or high 
refractive index material close enough to the reflecting surface. 

4.1. APPLICATION TO PROXIMITY PROBLEMS IN METROLOGY 

Systems were described by SCHMALTZ [I9361 and DREYHAUPT [1939] 
which used frustrated total internal reflection to examine surface topo- 
graphy. Their interest was in particular to  use the method for inspection of 
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the surfaces of machined parts. However, the method was little known until 
YOUNG and ROTHROCK’S [I9611 and HARRICK’S [I9621 treatments of its 
application to diversified problems in metrology. Young and Rothrock used 
the phenomenon to measure the film thickness between a glass and a metal 
interface. HARRICK [1962, 19631 discussed a number of applications in 
metrology and in particular its usefulness for fingerprinting. Harrick exam- 
ined the film between two prisms. He also replaced the second prism by a 
transparent or absorbing liquid. In this way, optical contact to the film can 
be ensured especially when the film has a nonuniform thickness. Mercury 
was found practical as an absorbing second medium. The range of film thick- 
nesses which can be measured by this method is unfortunately rather limited; 
usually only thicknesses from about 0.1A to l A  can be studied. Ways of ex- 
tending this range include the use of multiple internal reflections and chang- 
ing the angle of incidence. When illuminating the prism in Fig. 4.1 with 

Fig. 4.1. Schematic illustration of optical system for surface topography examination 
using frustrated internal reflection. 

collimated light at an angle of incidence close to the critical angle, the reflec- 
tivity at any position is very sensitive to the local index of refraction of the 
rarer medium. An obvious application of this is in visualization of phase 
objects like biological specimen which cannot easily be studied by conven- 
tional techniques. Because of the strong dependence of the intensity of the 
evanescent field on the distance from the interface, the local intensity in the 
reflected wave field is extremely sensitive to the proximity of the second 
medium to the interface. Very high contrast images can be made of surface 
reliefs using this method. The oblique incidence in the scheme of Fig. 4.1 
will cause distortion of the image. It can be kept to a minimum by using a 
prism of high refractive index and by working as close to the critical angle as 
possible. The recording plane can also be tilted appropriately as is shown in 
Fig. 4.1. On a screen tilted as shown in this figure an image with minimum 
distortion is obtained. In case perfect focus over the entire image is desired 
the screen has to be tilted in the opposite sense. However with this me- 
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thod, it is impossible to produce an image which is simultaneously un- 
distorted and everywhere in focus. An inconvenience with the tilted image 
is that it has to be projected onto a screen. With an eyepiece, it is only 
possible to focus on a narrow zone. 

In the systems mentioned above, distortion and tilting of the Gaussian 
image plane occurred because the axis of the optical system was in line with 
the emerging light. The light that leaves the object plane is inclined to the 
object plane by at  least the critical angle. These drawbacks do not appear 
if the axis of the optical system is normal to the object plane. However, the 
light enters the optical system under angles greater than the critical angle. 
MCCUTCHEN [ I9641 used microscope objectives with numerical apertures 
exceeding one for this purpose. In Fig. 4.2, a setup using an oil immersion 
objective is shown which can be attached to a conventional microscope. 

I 

Fig. 4.2. Illustration of axially symmetric optical system suitable for surface studies using 
frustrated internal reflection. 

McCutchen obtained satisfactory results using a conventional vertical illu- 
minator. A cover-glass was mounted on the objective in such a way that 
accurate focusing could be done on the front surface of the cover-glass. The 
specimen has to be placed in very close proximity to the cover-glass. The 
amount of light reflected depends both on the separation between specimen 
and cover-glass and on the angle of incidence (see Fig. 4.3) and on the index 
of refraction of the specimen. One of the virtues of the method is the unam- 
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biguity in the interpretation of the image in case the specimen is uniform 
in refractive index. Then, there is no doubt whether a hill or valley exists 
in the object. 

4.2. CONVERSION OF UNCONVENTIONAL RECORDINGS INTO INTENSITY 
DISTRIBUTIONS 

With the development and availability of new recording media, a read-out 
scheme using frustrated total internal reflection is a valuable alternative to 
other methods. The schemes described in Section 4.1 appear simple and 
effective for conversion of a variation in the parameter in question of the 
medium into an image intensity distribution. 

Some recording media permit only phase-only recordings. In these cases, 
methods such as the introduction of a spatial carrier and use of spatial fil- 
tering techniques, or Schlieren, phase contrast, or interferometric methods 
are commonly used to transform the phase variation into an amplitude 
variation. Common to all these methods is the need for relatively coherent 
light. Furthermore, in all these methods accurate alignment and component 
adjustments are required. A method similar to the one illustrated in Fig. 4.2, 
on the other hand, has several advantages; it works in incoherent light and 
does not require any special adjustments. Without any  alterations, it works 

Fig. 4.3. Transmission of differently polarized light through a gap (n = I )  between two 
optically dense media (n = 1.5) as a function of its width. Solid curves represent an angle 

of incidence equal to 45" and dashed curves 60". 
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as well for relief- and refractive-index change-type materials as for conven- 
tional absorption type recordings. 

The refractive index changes can be achieved in a number of ways in- 
cluding the use of chemical modifications, electric field (Kerr effect), pres- 
sure, temperature, and strain. 

Figure 4.3 shows the amount of light that is transmitted through a pair 
of glass prisms as a function of their separation A .  The prisms are arranged 
as in Schaefer and Gross’ setup (see end of Section 3.1) which they used to 
demonstrate controlled coupling to the penetrated evanescent wavefield. As 
is shown in this figure, the degree of coupling is dependent on the angles of 
incidence and polarization. The transmitted light is strongest for light polar- 
ized parallel to the plane of incidence. This condition is reversed for angles 
far away from the critical angle as is also clear from Fig. 2.4. Of course, the 
opposite is true far the reflected light. 

The usable range of surface relief variations is obvious from Fig. 4.3. 
A typical linear range is 0.1-0.4 I which is easily achievable with most 
phase-only recording media including bleached photographic material. The 
S-shaped image recording characteristic is similar to that of conventional 
photography. The choice between positive or negative image polarity is a 
matter of choice between transmitted or reflected light. This makes it possible 
to use several media in their different mode of operation, e.g. etched or swel- 
led type phase images. The procedure is partiudarly suited for masking 
techniques, like unsharp masking, where positive and negative versions of 
the same image are superposed. 

The reflection can also be frustrated by the wavelength dispersion of the 
refractive index. If the angle of incidence is chosen near the critical angle, 
preferably just below, the reflectivity will be strongly wavelength dependent 
if there is dispersion in the refractive index. 

As pointed out above the properties of a medium influence the light re- 
flected from it. Thus, besides being a powerful method of forming images, 
these techniques give us means of investigating the process of reflection and 
of studying how thz structure of matter is manifested in the parameters of 
the reflected light (KIZEL [1968]). When transient signals are used as in com- 
munication type applications the buildup time of the process and its pulse 
shaping property has to be considered. 

4.3. AFFECTING GUIDED WAVES THROUGH EVANESCENT WAVES 

In cases where dielectric waveguides are transporting light energy, evanes- 
cent wavefields surround the guide. Especially when the dimensions of the 
guide approach the wavelength of the light, an appreciable amount of the 
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guided energy is contained in the evanescent field. Two types of waveguide 
geometry have been extensively applied : planar as used in integrated optics, 
and cylindrical in fiber optics. (KAPANY and BURKE [1972]; HILL, WA- 
TANABE and CHAMBERS [ 19721). 

The evanescent wavefield has, in this connection, an influence on the 
image-conveying property of the wave guiding system. Such fields are also 
of importance for some aspects of light switching and play a major role for 
coupling energy in and out of optical integrated circuits. 

When fiber optics are used for imaging, the existence of the evanescent 
wavefield is detrimental because it establishes a leakage of light between 
nighboring fibers in a bundle (KAPANY and BURKE [1961], KAPANY [1967], 
LISITSA, BEREZH~NSKII and VALAKH [ 19721). This has a marked detrimen- 
tal effect both on image contrast and on resolution. The smaller the dia- 
meter of the dielectric waveguide and the closer the angle at which the 
waves that constitute a mode are to the critical angle, the greater the frac- 
tion of the total energy of the mode that is propagated outside the fiber, 
In the limit, when the mode angle equals the critical angle, all the energy 
is guided outside the fiber. In order to reduce the coupling between neigh- 
boring fibers, they are commonly being manufactured with a core (the 
waveguide) surrounded by a coating (cladding) of an optically less dense 
medium. There is also another reason for using a cladding. Since only 
those modes with reflection angles larger than the critical angle propagate, 
the number of modes is reduced by keeping the refractive index difference 
small. Index differences of 1 % are typical. The effective absorption of the 
fiber is now a function of the core as well as of the surrounding material. 
The energy transferred to the neighboring fibers in the bundle is in turn 
transferred to their neighbors. Most of the energy that is transferred in the 
first place is in modes close to the critical angle. Therefore, a much higher 
fraction of the total energy of a secondarily excited fiber is transferred to a 
third, and then to a fourth, and so on. This leads to light levels of the same 
order of magnitude in the successive fibers surrounding an excited one. 

Two different types of coupling occur between two parallel fibers, depend- 
ing on the fiber diameter and on the degree of coherence in the light which 
excites one of the fibers: (1) for fiber diameters larger than the light wave- 
length, energy transfer occurs slowly in accordance with the phenomenon of 
frustrated total reflection until a state of equilibrium is reached, (2) for small 
fiber diameter and complete coherence in the light illuminating the fiber, the 
phenomenon of beating will occur. Almost all the energy is transferred to 
the initially unexcited fiber in a certain length and then returns to the excited 
fiber in the same length (half the beat length). 
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Besides passive fibers, interest has also been toward development of active 
fibers and thin films for integrated optics. So, for example, glass fiber lasers 
(SNITZER [ I96 I I), fiber laser amplifiers (KOESTER and SNn ZER [ 1964]), and 
coupled fiber lasers (using evanescent wave coupling) have been developed. 

Lately integrated optics - optical circuits integrated into a common sub- 
strate - has evolved as a new field in optics. There seem to be some tech- 
nological conveniences in this technique. The substrate can contain and 
support the optical components as well as their interconnections and there 
is a promise of simultaneous formation of complicated circuits by using 
masking techniques (MILLER [1969]). They seem to have potential value to 
signal processing for communication purposes (spatial variation in one di- 
mension is possible). Further, the possible high power densities are attrac- 
tive for electro-optic, acoustic-optic, and non-linear optical devices. Light 
couplers according to the principle of Fig. 2.7(g) (TIEN et al. [1969]) and 
Fig. 2.7(f) (DAKSS et al. [1970]) have been found effective. The prism-film 
coupler in particular has been treated in detail (TIEN and ULRICH [1970], 
MIDWINTER and ZERNIKE [1970]). The prism is here placed in close proxi- 
mity to the wave guide. The incident light is internally reflected in the base 
of the prism, i.e. the waves in the prism and the film are coupled through an 
evanescent field. This coupler permits excitation of any one of the film mo- 
des by proper orientation of the direction of the incident wave. Coupling 
takes place along the entire width of the incident wave. As energy is also 
transferred back from the film to the prism, it is important to adjust the 
coupling length and the beam profile for maximum efficiency. 

0 5. Use of Evanescent Waves to Record or Transform Optical Images 

Sometimes the conversion of a homogeneous wavefield into an inhomo- 
geneous one may be of practical value in order to record images. In this con- 
nection, it is in particular the possible increase of the field strength using 
total reflection (cf. eqs. (2.20)-(2.22) and Fig. 2.1) and its limited penetra- 
tion depth (cf. eqs. (2.12) and (2.19) and Fig. 2.4) which are of interest. 
This conversion may be used either as a means of increasing the optical 
signal detectibility or for converting the wavelength of the radiation to a 
more suitable range. Attractive is also the possibility of making very thin 
recordings in  bulk materials. 

5.1. THE ADVANTAGES OF THE EVANESCENT FIELD FOR IMAGE RECORD- 
ING 

As described in Section 2.2, the evanescent wavefield which is created by 
internal reflection has two properties that are of advantage for image record- 
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ings: high field strength and small penetration depth. This combination is 
attractive in order to make high resolution recordings. The interaction length 
(see eqs. (2.25) and (2.26)) is in practice of the order of the wavelength, i.e., 
comparable to the resolution of high aperture optics. This is much smaller 
than the thickness of typical recording media. Further, the increased 
electrical field compensates to some degree for the short interaction 
length. 

There are also recording situations where the possibility of enhancing the 
detector sensitivity is valuable. For example, total internal reflection schemes 
have been suggested in order to increase the sensitivity of photomultipliers 
(GUNTER et al. [1965]). Quite sophisticated schemes which may be used to 
increase the interaction between the light and the recording medium have 
been applied in connection with internal reflection spectroscopy (HARRICK 
[1967]; KORTUM [1969]). 

5.2. USE OF EVANESCENT WAVEFIELD FOR FREQUENCY CONVERSION 

Frequency conversion of an optical wavefield may be wanted for several 
reasons: The detector is sensitive in another wavelength region than that in 
which the lightsource radiates. Local changes in frequency according to a 
specified pattern may be accomplished. Realization of a coherent to inco- 
herent light conversion is possible. Another application is optical mapping 
in three dimensions. 

One simple way to make an evanescent wavefield visible is to use fluorescent 
materials. Spatial variations in the field which is internally reflected in a 
dense medium may easily become visible by applying a fluorescent liquid in 
contact with the medium (SBLBNYI [1913]). Of course, we may also apply 
the fluorescent material as a spatial pattern in such a way that only in those 
areas where the pattern exists the light will be absorbed and re-emitted at 
another frequency, but the light will remain unchanged at  the uncovered 
portions. 

A recording medium with extremely high resolution in the depth direction 
was developed by a research group at the University of Marburg (DREXHAGE 
[ 19701). It seems to have potential value for recording evanescent wavefields. 
It is built up by monomolecular dye layers consisting of long-chain fatty- 
acid molecules and fluorescent dye molecules. These layers, which can be 
made about 25A thick, can be conveniently stacked to form multilayer 
media. The individual layers may be prepared with different dyes and differ- 
ent dye concentration to simplify investigations in the depth direction. The 
exponential decay of the evanescent waves away from the interface at  total 
reflection and the dependence of this decay on the angle of incidence have 
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been verified using these multilayer material as the rarer medium (DREXHAGE 
[ 19701). These layers have also been successfully applied to  studies of the 
absorption and emission of evanescent light (CARNIGLIA et  al. [1972]). 

Another type of recording media, namely non-linear media, may also be 
used to influence or record an evanescent wavefield. The increased field 
strength which it is possible to achieve by applying internal reflection 
techniques is of advantage here. Both second- (BLOEMBERGEN and LEE [1967] 
and third-harmonic generation (BEY et al. [ 19691) have been demonstrated. 

§ 6. Evanescent Wave Holography 

Holography - usually treated as a two-step lensless imaging process - 
was extensively developed in the 1960's (see, for example, LEITH and UPAT- 
NICKS [1967]). Information about the amplitude and phase of a wavefront 
is stored in a recording media in the form of an interference pattern. An 
exact copy of the original wavefront can be reconstructed from this recording 
as a diffracted wavefield. The process of wavefront reconstruction can there- 
by conveniently be described by: the intensity 

which is recorded, the transmission-exposure characteristic of the recording 
medium, which for an ideally linear amplitude hologram is 

t ,  = to -PI, 

and the waves transmitted by the hologram when illuminated with r 

rr, = rto -Pr  Ir I 2  - p r  101' - br20* - Slr 120. 

o and r are the complex amplitudes of the object and reference waves, t ,  the 
amplitude transmission of the hologram, to and p constants determined by 
the processed recording medium; the asterisk denotes complex conjugate 
quantities. The last term of the last expression represents the desired recon- 
structed wavefront and can, as is now well known, be spatially separated 
from the rest by applying an off-set angle between the optical axes of the 
object and reference fields (LEITH and UPATNICKS [1967]). In  1967, STETSON 
[I9671 made a remark that one ought to investigate the possibility to use 
inhomogeneous waves in holography. As will be described in this paragraph, 
the same techniques which are known to work for homogeneous waves can 
also be applied to inhomogeneous waves. o and/or r in the holographic de- 
scription above may represent an evanescent wave, and we will th:n call the 
process evanescent wave holography. 
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6.1. DIFFERENT USES OF HOLOGRAPHY WITH EVANESCENT WAVES 

One of the latest applications of evanescent waves in optical imaging has 
been in the field of holography (NASSENSTEIN [1968, 1969a, b, c, d, e, f, 
1970a, b], BRYNGDAHL [1969]). There are in principle two ways in which 
holography may be used: 

(1) Holographlc recording of the total wavefield from an object, i.e. both 
the homogeneous (propagating) and inhomogeneous (damped) wavefields. 
This makes it possible to make recordings of objects with details below +A. 
However, the recording medium has in practice to be in contact with the 
object, because of unavoidable disturbing boundary conditions and strong 
damping of the evanescent waves. 

(2) Holographic recording of homogeneous wavefields in such a way 
that evanescent waves are created in the recording medium. Homogeneous 
waves are here transformed into inhomogeneous (evanescent) waves or/and 
vice versa in the surface of the hologram medium. 

Characteristic of this type of holography is that evanescent waves are 
taking part both in the formation of and reconstruction from the hologram. 
There are several advantages and reasons to consider this type of holography, 
aside from the possibility of obtaining a deeper insight into the properties 
of the evanescent waves themselves. The in principle unlimited resolution 
which may be obtained from recordings according to ( I )  above lacks alter- 
natives and speaks for itself. Procedure ( 2 ) ,  on the other hand, may seem 
unnecessarily complicated. However, as will be described in detail, evanes- 
cent wave holography possesses some unique features which seem to be of 
value in several optical imaging situations. 

6.2. EVANESCENT WAVE PROPERTIES USEFUL IN HOLOGRAPHY 

The very nature of inhomogeneous waves implies that planes of constant 
amplitude do not coincide with planes of constant phase (cf. introductory 
section of § 2). The evanescent waves which we will consider here only exist 
close to a boundary between the two media where they were formed. Of 
course, it is important that the evanescent waves exist on that side of the 
boundary which contains the recording medium. One way to insure this is 
to allow the light to be internally reflected in a medium adjacent to the light 
sensitive medium. The condition for this to occur is that the medium in 
which the light is internally reflected has a refractive index that is higher than 
that of the recording medium. The evanescent waves are then propagating 
parallel to the surface with planes of constant amplitude parallel to and 
planes of constant phase perpendicular to the surface of the recording me- 
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dium. The penetration depth of the evanescent waves is in practical cases of 
the order of the wavelength of the light used. 

The evanescent wave created by internal reflection has a wavelength (see 
eq. (2 .18))  

where 1, is the wavelength in the medium of refractive index n, adjacent to 
the recording medium and 1, is the wavelength in vacuum. Thus, the phase 
velocity of the evanescent wave is 

A, = I,/sin i = Ao/(ns sin i), (6 .1)  

u,  = u,/sin i = c / (n ,  sin i ) ,  (6 .2)  
where v, is the velocity of light in the surrounding medium. From eqs. (6.1) 
and (6 .2)  is clear that 1, > As and u,  > 0,. However, 0, < c/n, ,  because 
sin i > ne/n,. This implies that 1, < c/(n,v) = A:, where 1: is the wavelength 
of the corresponding homogeneous wave of frequency v in the recording 
medium. The evanescent wave created by internal reflection has, thus, a 
wavelength within the range 

a ~ / n s  < a e  < &lne- 6 - 3 1  

1, as well as u, are independent of the properties of the recording medium. 
The electrical field of a plane polarized evanescent wave propagating in 

the x-direction can be expressed as 

E ,  = A, exp { -2xn,  z/&} exp { j2nx/ne} ,  ( 6 . 4 )  

where A,  is the amplitude at  the surface and Aa is given by eq. (2 .19) .  From 
this expression we conclude two things which are of importance for evanes- 
cent wave holography: The penetration depth is dependent on the angle of 
incidence as well as on the difference in the refractive indices between the 
surrounding and recording media. Maximum penetration depth is obtained 
at the critical angle for total reflection. The energy density in the immediate 
vicinity of the boundary may reach considerable amounts. As is clear from 
expressions (2.22), density values in excess of four times the energy density 
of the incident wave can be obtained at the interface for incidence at the 
critical angle. 

According to the inequality ( 6 . 3 )  the smallest wavelength 1, which we 
may create by internal reflection is AO/ns. Even smaller Re values can, of 
course, be produced by diffraction where the spatial frequency of the object 
causing diffraction determines the wavelength of the evanescent wave (see 
eq. (2.6)). For example, if we normally illuminate a regular plane grating 
having a period Q < A,, then the diffracted waves with amplitude A, are 
(see e.g. SCHAEFFNER and TORALDO DI FRANCIA [ 19491) 
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where rn is the diffraction order and A, is now given by 

A, = Ao/{(rnAo/a)2 - l}f 

The wavelength of the evanescent wave formed by diffraction (A, = ajrn for 
the special case mentioned here) is, as in the internal reflection case, only 
dependent on the boundary conditions and the incident radiation. Further, 
we may conclude from expression (6.5) that the penetration depth of the 
evanescent wave decreases with decreasing wavelength I,, , i.e. increasing 
spatial frequency in the object. 

Another effect which can be used in evanescent wave holography is the 
possibility of influencing the propagation direction of the evanescent wave 
by proper choice of the state of polarization. As was described in Section 
2.2, the exit and incidence planes at internal reflection coincide for light 
linearly polarized parallel or perpendicular to the plane of incidence, which 
means that the propagation direction of the evanescent wave is located in 
this plane. However, for other states of polarization, a propagation com- 
ponent with a direction transverse to this plane occurs, which is maximum 
for circularly polarized light. 

From this section, we may suspect that application of properties such as 
wavelength independent of material properties, local existence of the waves, 
and polarization dependent propagation direction to the field of holography 
may result in peculiar and characteristic effects. 

6.3. EXPERIMENTAL TECHNIQUES AND CONDITIONS 

In the experiments reported on by Nassenstein and Bryngdahl, the evanes- 
cent waves in the hologram recording step were formed by using internal 
reflection techniques. Photographic emulsions were used as the recording 
medium. NASSENSTEIN [ 1969d, 1970al used Agfa-Gevaert Scientia 8E75 and 
10E75 emulsions, and BRYNGDAHL [ 19691 used Kodak spectroscopic plates, 
type 649F. These emulsions have a relatively high refractive index for a wave- 
length A. = 6328A before they are processed. However, the refractive index 
decreases drastically after development and fixing. Nassenstein gave the re- 
fractive index value 1.63 -j1.2 x loe3 for unexposed Agfa-Gevaert emulsion 
and Bryngdahl the value 1.61 for the real part of the refractive index of 
Kodak emulsion. The corresponding values given for processed emulsions 
were 1.54 and 1.56, respectively. 

In order to be able to produce evanescent waves in these emulsions, the 
surrounding medium in which the internal reflection takes place has to have 
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Fig. 6. I .  Experimental arrangements for evanescent wave holography. (a) Recording step 
using commercial photographic plates submerged in di-iodomethane, and (b) corre- 

sponding reconstruction configuration (BRYNGDAHL [1969]). 
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a refractive index higher than that of the emulsion. Two experimental tech- 
niques have been used to achieve this condition: 

(1) Submerging photographic plates in a liquid with a high refractive 
index. Commercially available plates have substrates with lower refractive 
index than that of the photosensitive emulsion. Therefore, this method is 
preferable when we wish to use regular photographic plates. BRYNGDAHL 
[1969] and NASSENSTEIN [1969e, f, 1970a, b] used di-iodomethane, CH212, 
as immersion liquid. The refractive index of di-iodomethane is 1.73 at 6328A. 
This ensures an angular range of at least 20" within which internal reflection 
is obtained. Further, no interaction was found between this liquid and the 
emulsion. The above-mentioned plates are convenient to use in experiments 
of this type because they are not overcoated with hardened gelatine which is 
usually applied in order to protect emulsions. Two optical configurations are 
possible. The liquid may be applied between the emulsion and a glass prism 
of high refractive index so that internal reflection occurs at the surface be- 
tween the liquid and the emulsion. The other arrangement is to use a cell of 
convenient shape filled with di-iodomethane and submerge the plates. A cell 
with hexagonal bottom plate was found convenient for these experiments 
(BRYNGDAHL [1969]). Special holders for the plates and other objects have 
to be provided in order to keep them in place in the di-iodomethane which 
has a density of 3.3 g/cm3. Figure 6.1 shows an example with this latter type 
of configuration. The recording geometry (Fig. 6.l(a)) is arranged so that 
the light from a diffuse object placed in the nearest portion of the cell will 
form the evanescent wavefield in the emulsion. The reference wave coming 
from the right penetrates the plate as a homogeneous wave. A reconstruc- 
tion of a diffuse object is shown in Fig. 6.l(b) where a hologram is illu- 
minated with an evanescent wave. In reconstruction, i.e. after processing the 
plates, the refractive index of the emulsion has decreased to a value about 
1.55 and, thus, a wider variety of immersion liquids may be used than in the 
recording stage. Beside di-iodomethane, a-chloronaphthalene with a refrac- 
tive index of 1.63 at 6328A has been used with good results. 

(2) Use of plates where the emulsion has been coated onto substrates 
with high optical density. NASSENSTEIN [1968, 1969d, 1970al has used photo- 
graphic layers on flint glass plates to make evanescent wave holograms. The 
substrate had then a higher refractive index than the emulsion. Here the in- 
ternal reflection occurred in the glass substrate at the boundary between the 
glass and the photographic layer. This type of configuration seems to offer 
some advantages if the emulsion is bleached to obtain phase holograms. 
Eventual surface relief influence is avoided with this technique. 
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6.4. FORMATION O F  A N D  RECONSTRUCTION FROM EVANESCENT WAVE 
HOLOGRAMS 

As was described in the previous section, the evanescent waves only exist 
in the vicinity of one surface of the photographic layer irrespective of which 
experimental technique is used. Thus, only a portion of the emulsion thick- 
ness is filled with the hologram structure. For example, in case conventional 

Fig. 6.2. Microphotographic microtome sections of photographic layers exposed to (a) 
a single evanescent wave, and (b) an interference pattern between two evanescent waves. 
The film base is below the photographic layer which is only blackened at  its very top por- 

tion. (Courtesy of H. Nassenstein, Farbenfabriken Bayer AG, Leverkusen.) 
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Kodak 649F plates are used, the emulsion thickness is about 15p but the 
hologram thickness is only about lp. This allows us to combine the two 
techniques (1) and (2) of Section 6.3 and use both surfaces of the emulsion 
for independent recordings. 

In Fig. 6.2, microphotographic sections of processed photographic layers 
are shown which had been exposed by evanescent wavefields (NASSENSTEIN 
[1969b, 1970al). The original 7p thick gelatine layer in these illustrations 
had been swelled in water to about 26p. One plane wave internally reflected 
in a medium optically denser than the emulsion was used to expose the film 
in Fig. 6.2(a) and two waves incident under different angles caused the inter- 
fering evanescent waves of Fig. 6.2(b). These microphotographs show clearly 
that the penetration depth of the evanescent waves is limited to about 1p of 
the original thickness of the emulsion. 

Two types of holograms are possible: either one or both of the interfering 
waves can be evanescent. For some applications also hybrid type holograms 
may be needed, e.g. the waves from the object are both homogeneous and 

Reconstruction 

(' I 

Fig. 6.3. Recording and reconstruction schemes for holograms formed by interference 
between a homogeneous object wave o and an evanescent reference wave r .  The holograms 
recorded in (a) as well as (b) give the reconstructed waves - true wave field o and com- 
plex-conjugate wave field o* - using the arrangements shown in (c), (d), (e), and (f) 

(BRYNGDAHL [1969]). 
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1it.c.011 struction 

0*1 I 

Fig. 6.4. Recording and reconstruction schemes for holograms formed by interference 
between an evanescent object wave o and a homogeneous reference waver. The holograms 
recorded in (a) as well as (b) give the reconstructed waves - true wave field o and com- 
plex-conjugate wave field u* - using the arrangements shown in (c), (d), (e) and (f) 

(BRYNGDAHL 119691). 

inhomogeneous and the reference wave may be a homogeneous or an in- 
homogeneous wave. 

(1) Interference between a homogeneous and an evanescent wave (see 
Figs. 6.3 and 6.4). The evanescent field described by eq. (6.4) is 

E ,  = A, exp { -2nn, z/A,} exp { J2?rx/Ae} 

and a homogeneous wave with normal incidence on the emulsion is given by 

Eh = A exp { j2rcz/,l:}, 

where 2: = &,/st,. The sign of the exponent indicates whether the homo- 
geneous wave comes from the front or back of the plate. The interference 
fringe pattern between these waves is proportional to 

I E , + E , ~ ~  = A ’ + A , ~  exp { - 4 n n , z j ~ , }  

+ 2AA, exp { -27112, ./A,} cos {2n(x/,l, - ./A:)}. (6.6) 

The first term on the right indicates a uniform exposure throughout the 
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photographic layer and the second an exposure which rapidly attenuates 
away from z = 0, the surface of the emulsion. The last term describes the 
interference structure. This also is attenuated, but not as rapidly as the 
second term. The planes of the hologram fringes are given by 

x/A, - z/A: = +(2p + I), p integer. (6.7) 

They are inclined to the surface of the emulsion and the distance between 
them is A&/(A% +A:’)*. Their separation in a plane parallel to the surface 
(z = const.) is A,. 

Because of the rapid attenuation in the z-direction, holograms recorded 
from an exposure pattern (6.6) may in most cases be regarded as thin to a 
first approximation. This means that our hologram structure has a period 
equal to the wavelength Ac of the evanescent wave. This also means that 
with the configuration described here, the same hologram is recorded regard- 
less of which side of the plate the homogeneous wave enters. This situation is 
shown in Figs. 6.3 and 6.4 where (a) and (b) will produce identical recordings. 

In reconstruction, these evanescent wave holograms show some peculiar 
features (BRYNGDAHL [1969]). These are in particular due to the collapsing 
thickness of the holograms and the evanescent waves propagating in the 
plane of the hologram. If the hologram is illuminated with the same evanes- 
cent wave that was used in the recording, then a copy of the recorded homo- 
geneous wave is reconstructed. This is shown in Fig. 6.3(c). Because the 
illuminating wave here is an evanescent wave propagating along the holo- 
gram, two waves will be reconstructed. In addition to the reconstructed 
copy of the original wave an identical wave (mirror imaged) is reconstructed 
symmetrically toward the opposite side of the hologram as illustrated in the 
figure. The phase variation in the reconstructed wavefront is contained in 
the relative locations of the hologram fringes. These are sensed in the same 
way by the illuminating light (evanescent wave) which is diffracted symmet- 
rically to both sides of the hologIam. In order to reconstruct the complex 
conjugate wave, the illuminating wave has to come from the opposite direc- 
tion, i.e., we have to reverse the direction of the evanescent wave. Then 
two reconstructions appear, both being complex conjugate with respect to 
the wave recorded (cf. Figs. 6.3(d) and eq. (6.6)). 

There is also another reconstruction geometry possible. This is illustrated 
in (e) and (f) of Figs. 6.3 and 6.4. Homogeneous waves are now used to 
illuminate the hologram. Then, the hologram structure will diffract the light 
so that evanescent waves are created which propagate along the hologram. 
If the medium that surrounds the hologram is optically denser than the 
processed emulsion, the evanescent waves are converted into homogeneous 
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waves which leave the hologram surface at angles that exceed the critical 
angle of internal reflection. For commercially available plates immersed in 
optically dense liquids, the refractive index conditions only permit recon- 
structed waves on one side of the hologram as is shown in (e) and (f)  of 
Figs. 6.3 and 6.4. 

(2) Interference between two evanescent waves (see Figs. 6.5-6.7). TWO 
evanescent waves described by eq. (6.4) 

Eel = A,, exp (-27~n,z/l,,) exp {j2nx/le,} 

Ee2 = A,2 exp {-2nn,z/la2} ~ X P  {j2nx/ led 
and 

cause an interference pattern proportional to 

!Eel +Ee2I2 = A?, exp { - 4 n n , ~ / l , , ) + A ? ~  exp { -471nSz/&,2} 

+2A,, A,, exp { -22nnSz(l/1,, + l / l , , ) >  cos (2nx(l/Ael - 1/Ae2)>. (6.8) 

The first two terms to the right attenuate rapidly in the z-direction. The holo- 
graphic periodic structure described by the third term is also evanescent 
perpendicular to the emulsion surface ( z  = 0), but not quite as rapidly. The 
period of this structure is 

a = A e I  J-e2/(&2 - J e l l *  (6.9) 

Here, it was assumed that the two evanescent waves have the same propa- 

Recording 

Reconstruction 

Fig. 6.5. Recording and reconstruction schemes for a hologram formed by interference 
between an evanescent object wave o and an evanescent reference wave r with the same 
propagation directions. (b) and (c) show the directions of the reconstructed true wave 
field o and complex-conjugate wave field of for opposite directions of the illuminating 

evanescent wave (BRYNGDAHL [1969]). 



208 E V A N E S C E N T  W A V E S  I N  O P T I C A L  I M A G I N G  

Recortling 
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Reconstr tict ion 

Fig. 6.6. Recording and reconstruction schemes for a hologram formed by interference 
between an evanescent object wave o and an evanescent reference wave r with the same 
propagation direction. (b) and (c) show the directions of the reconstructed true wave 
field o and complex-conjugate wave field o* for opposite directions of the illuminating 

evanescent wave (BRYNGDAHL 19691). 

Recording 

Rc.constriict ion 

(b) L-1 

\ 0 L 
/ 

Fig. 6.7. Recording and reconstruction schemes for a hologram formed by interference 
between an evanescent object wave o and an evanescent reference wave r with opposite 
propagation directions. (b) and (c) show the directions of the reconstructed true wave 
field o and complex-conjugate field o* for opposite directions of the illuminating evanescent 

wave. 

gation direction (cf. Figs. 6.5 and 6.6). This is, of course, only a special case. 
The two evanescent waves can interfere under any angle provided they have 
a common polarization component. In the other special case, where the 
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waves travel in  opposite directions (cf. Fig. 6.7), the period of the inter- 
ference pattern is 

a = A e ,  &z/(Ael + A e z ) *  (6.10) 

For A,, = A e 2  eq. (6.10) becomes a = $ I e l .  An interference field will, of 
course, also exist in the surrounding medium in which the light is internally 
reflected. At the very surface of the emulsion (at z = 0) the two interference 
patterns will coincide. The difference between them is that the fringes of the 
one in the surrounding medium in general are inclined to the surface, but 
the fringes of the pattern existing in the emulsion are always perpendicular 
to the surface. 

From eq. (6.10) is clear that the smallest structure in the interference 
pattern is $ I e .  If we allow opposed homogeneous waves to interfere in the 
emulsion, the pattern will have a period +A:. However, I ,  -= A: = A&, 
which means that with evanescent wave holographic techniques we are able 
to record structures that are finer than those which we may form by homo- 
geneous standing waves of the same frequency. This implies that we are 
able to form structures that we will not be able to observe with conventional 
optics using only homogeneous waves. 

In the configurations of Figs. 6.5-6.7, two evanescent waves with different 
wavelengths but the same frequency interfere. Just as in conventional holo- 
graphy, the two waves will in practice originate from the same source and 
be separated by a beam-splitter. Another peculiarity in reconstruction from 
these holograms is the possible directions of the diffracted waves. Conven- 
tionally when homogeneous waves are diffracted by a thin grating with 
coarse structures, the wave vectors of the diffracted waves are all located in 
the plane of incidence (plane formed by wave vector of the illuminating 
wave and normal to the grating lines). However, when illuminating a thin 
grating with evanescent waves which propagate in  the plane of the grating 
any direction of the diffracted waves is possible. What generally occurs is 
that the illuminating evanescent wave is diffracted by the hologram into 
other evanescent waves which when certain boundary conditions are met 
can be converted into propagating homogeneous waves. When the illumi- 
nating evanescent wave propagates perpendicular to the grating structure 
as in the special cases of eqs. (6.9) and (6.10) then the diffracted waves are 
all located in the plane of incidence. 

In Figs. 6.5-6.7, situations described by eqs. (6.9) and (6. I0)are illustrated. 
The main difference between these two cases concerns the spatial frequency 
of the recording. In Figs. 6.5 and 6.6, where the evanescent waves have the 
same propagation direction, the period of the grating is large. Then the 
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angular separation between the 0th order and the reconstructed waves is 
small. Similar reconstructions are formed on both sides of the hologram, 
because the illuminating evanescent wave is propagating in the plane of the 
hologram. However, the refractive indices of the substrate and emulsion do 
not generally allow reconstruction on the substrate side of the recording. If, 
as shown in Figs. 6.5 and 6.6 reconstruction is performed with a wave whose 
propagation direction only slightly exceeds the critical angle of total reflec- 
tion, then it may be possible to extract a reconstructed image on the sub- 
strate side of the emulsion. This reconstruction is of particular interest for 
some applications because the 0th order (internally reflected light) does not 
appear on the same side of the hologram (cf. also Figs. 6.3 and 6.4 where 
the same situation occurs). These holograms which have low spatial fre- 
quencies can, of course, also be illuminated with a homogeneous wave. 
However, the reconstructed waves are now astigmatically distorted. Accept- 
able ieconstructions can only be obtained in this case by introducing a 
cylinder lens after the hologram. In Fig. 6.7, on the other hand, where the 
evanescent waves opposite directions, the spatial frequencies of the holo- 
gram are extremely high. In this case, reconstructions can only be obtained 
by illumination with an evanescent wave. 

6.5. SOME PECULIAR CHARACTERISTICS OF EVANESCENT WAVE HOLO- 
GRAPHY 

Evanescent wave holography possesses some characteristics that are unique 
for this technique of wavefront reconstruction. These propzrties result from 
the evanescent waves - their small penetration depth which tends to make 
the holograms extremely thin and the fact that their wavelengths are inde- 
pendent of the properties of the material in which they propagate. 

The diffraction efficiency of evanescent wave holograms is in general higher 
than that obtainable with conventional absorption type holograms using 
homogeneous waves. This is true for holography in which the evanescent 
waves have been produced by internal reflection. The effect is particularly 
pronounced for angles of incidence of the illuminating light which are close 
to the critical angle of total reflection. In this region, the induced electric 
field can reach (and in certain cases even surpass) twice the value of the illu- 
minating wave (cf. eq. (2.22)). NASSENSTEIN [ 1969el measured diffraction 
efficiencies as high as 22.6 % for an absorption grating of 40 lines/mm (Agfa- 
Gevaert Scientia 8875 and 10E75) illuminated with light polarized parallel 
to the plane of incidence at the angle of total reflection. This is appreciably 
more than 6.25 %, which is the maximum value that can be reached using 
homogeneous waves. Even for phase holograms, the efficiencies were higher 
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when evanescent compared to homogeneous waves were used for reconstruc- 
tion. The efficiency falls off with increasing spatial frequency. For example, 
Nassenstein found a diffraction efficiency of 0.15 % for an absorption grating 
of 5220 lines/mm. This efficiency is considerably higher than can be expected 
from an extrapolation from the transfer function valid for homogeneous 
waves. BRYNGDAHL [1969] reported on efficiency of I % of holograms where 
the light from it diffusely illuminated object (Air Force target) had been inter- 
nally reflected at the surface between di-iodomethane and Kodak 649F emul- 
sion. 

Section 2.2 described how the evanescent wave created by internal reflec- 
tion is influenced by the state of polarization of the incident light. NASSEN- 
STEIN [1969e] obtained a higher diffraction efficiency for light linearly polar- 
ized parallel to than perpendicular to the plane of incidence. This is in 
agreement with eqs. (2.25) and (2.26) and Fig. 2.4 which for angles of inci- 
dence close to the critical angle predict a larger displacement and thus a 
larger penetration depth and interaction length for the light with its polari- 
zation component parallel to the plane of incidence. BRYNGDAHL [ 19691, on 
the other hand, did not find any pronounced difference between the two 
states of linear polarization. He even found that light polarized perpendicular 
to the plane of incidence is preferable in some cases. This is probably because 
of its smaller absorption and its relation to diffraction phenomena. Another 
explanation is that for angles well above the critical angle of total reflection 
fight polarized perpendicular to the plane of incidence penetrates deeper into 
the rarer medium (see Fig. 2.4). 

A further feature of evanescent wave holography is that white light can 
be used for reconstruction (BRYNGDAHL [ 19691). This possibility is explained 
by Fig. 6.8. In (a), the reconstruction using a conventional volume type 
hologram is shown. Constructive interference occurs for a particular wave- 
length only when the Bragg-condition is satisfied. Secondary scattering 

Fig. 6.8. 1llustrat.on of the similarity in reconstruction from a conventional volume-type 
hologram (a) and an evanescent wave hologram (b). The selectivity of the Bragg condition 

allows white light to be used in both cases. 
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which gives rise to straylight occurs when the primarily scattered light pene- 
trates neighboring hologram fringes. In Fig. 6.8(b), the corresponding situa- 
tion using evanescent wave holography is illustrated. Here it is shown how 
the illumination of a thin hologram with a wave propagating in the plane 
of the hologram is equivalent to the situation in Fig. 6.8(a). Furthermore, 
because the primarily scattered light does not have to penetrate neighboring 
fringes, evanescent wave holography is not disturbed by secondary scattering. 
In the cases described in Section 6.4, besides using monochromatic coherent 
light, it is also possible to reconstruct in white light. Shrinkage in depth of 
the processed emulsion does not influence the reconstruction in the case of 
Fig. 6.8(b), because the hologram is only confined to the very surface of the 
photographic emulsion. 

The possibility of changing the wavelength of the evanescent wave without 
changing its frequency or direction (or changing the frequency without 
changing its wavelength) gives flexibility, especially to the white light recon- 
struction. In general, a wavelength change occurs when an evanescent wave 
is diffracted. In the case of a three-dimensional structure, this wavelength 
change requires a modified Bragg-condition (NASSENSTEIN [ I970al); the 
angle of reflection from an interference plane is no longer equal to the angle 
of incidence. However, the three-dimensional case is only of secondary im- 
portance because of the small penetration depth of the evanescent waves. 

Evanescent waves are often formed in the reconstruction process of con- 
ventional holograms (WOLF and SHEWELL [ 19701). Especially in cases where 
the illuminating wave is not normally incident on the hologram, one of the 
reconstructed images, or a portion of one image, is sometimes absent. This 
happens because of diffraction of the illuminating wave into evanescent 
waves by the hologram. The more the illuminating wave is inclined toward 
the hologram, the more of the reconstructed image in question will disappear 
into the plane of the hologram. In the type of evanescent wave holography 
where reconstructed evanescent waves are converted into homogeneous 
waves, the situation is similar. Only evanescent waves with wavelengths 
A o / ~ s  < Ac < Ao/n, (cf. (6 .3 ) )  will be converted into homogeneous waves 
using the techniques of Section 6.4. Information carried by evanescent waves 
with Ae < Ao/n, cannot be recovered. These evanescent waves can no longer 
be converted into homogeneous waves. Thus, the angular region 0" - i t  corre- 
sponds to diffracted homogeneous waves and the region it -90" to conver- 
sion of diffracted evanescent waves into homogeneous waves. 

6.6. APPLICATIONS OF EVANESCENT WAVE HOLOGRAPHY 

Evanescent wave holography appears to be one of our most powerful tools 
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to study and to deepen our insight into the properties of these waves. 
Holography with evanescent waves is one possible way to store informa- 

tion contained in these waves. As such, it may be considered as an evolution 
of holography in order to be able to store information about the total optical 
wave field. One of its more evident applications in  this respect is in  the 
formation of high-aperture and high-resolution optical images. Evanescent 
wave holography offers two major advantages here. An aperture filling the 
whole half space can be used in recording and making reconstructions from 
holograms. The reference and illuminating waves can be confined to that 
side of the hologram which is opposite to the object and reconstructed image 
(cf. (b), (c), and (d) in Figs. 6.3 and 6.4). Further, this type of hologram 
shows high efficiency and insensitivity to shrinkage. 

All the unconventional as well as conventional types of holography with 
homogeneous waves may also be carried out using evanescent waves. Thus, 
incoherent (spatial or temporal incoherence), synthetic and computer- 
generated holography can be applied. Extremely fine structures recorded 
with electron beam techniques can be read out using light waves. Optical 
and ultrasonic techniques may also be combined. 

Another promising application lies in the possibility of using evanescent 
waves to obtain information about portions of object spectra that are located 
beyond the frequency set by the conventional resolution limit in optics, which 
is determined by the aperture and wavelength of the light. As was described 
in Section 2.1, information about object structures smaller than half the wave- 
length is only contained in the evanescent wave field. The first technique 
described in Section 6. I is one possible approach to  recording such informa- 
tion. As the evanescent waves have a shorter wavelength than the corre- 
sponding homogeneous waves of the same frequency, an increase in resolu- 
tion ought to be obtained by illuminating our object with evanescent waves. 
NASSENSTEIN [1969a, f, 1970bl has shown how illumination of an object 
with evanescent waves results in diffracted homogeneous waves which con- 
tain information of high spatial frequencies of the object. This means that 
high spatial frequencies are transformed into low spatial frequencies. How- 
ever, a magnification and a shift of the spectrum is also necessary to obtain 
a magnified image of the original object. Illumination of an object of spatial 
wave number k, with an evanescent wave with propagation vector k ,  results 
in k, = k, - k,. Magnification by a factor M gives k, /M = k , / M -  k , / M ,  
which after a shift of k,.M results in k, /M. NASSENSTEIN [1970b] has ex- 
perimentally verified this procedure using evanescent wave holography, 
which clearly shows that information about object details smaller than the 
value determined by the classic resolution limit can be obtained using eva- 
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nescent wave illumination. The resolution is now set by the wavelenhgt of 
the evanescent wave. This in turn is determined by the conditions for internal 
reflection or other techniques that may be used to create the evanescent light. 

Even finer details may be examined with other configurations. The scheme 
of Fig. 2.7(e) is particularly powerful in regard to spatial frequency trans- 
formation. The principle of this coupling between gratings of extremely 
short periods can conveniently be treated as a Moirt-effect. Of course, the 
distance between the gratings has to b; shorter than the extension range of 
the evanescent waves. 

Evanescent wave holography may also have some potential use in con- 
nection with integrated optics - either for component fabrication or as a 
mean of deflecting or transfering energy. Further, when optical signals are 
transmitted through a thin film, a strong evanescent wave field generally 
exists in  the medium surrounding this film. This makes evanescent wave 
holographic techniques especially suited for introduction and extraction of 
spatial information in integrated optical circuits. 

0 7. Lateral Waves in Optical Imaging Situations 

In Q 2, it was mentioned that when a homogeneous wave is converted into 
an evanescent wave and then reconverted into a homogeneous wave, either 
by using total reflection or grating techniques, the wave will encounter a 
lateral displacement. As also mentioned, t h s  displacement is dependent on 
several parameters such as angle of incidence, frequency and state of polari- 
zation of the light as well as the refractive indices of the medium in which 
the light is internally reflected and of the rarer medium. In Q 2, we only 
treated what happens for one plane wave. If, on the other hand, we regard 
a convergent or divergent wave, the amount of displacement will vary over 
the wavefront, which will result in aberrations. Spherical aberration and 
astigmatism will in general be present in the reflected light and vary with 
the state of polarization (PICHT [1955]). 

7.1. CREATION OF LATERAL WAVES IN TOTAL REFLECTION 

Evanescent waves arise in the rarer medium when light is internally re- 
flected at an interface between two media. This means that evanescent waves 
occur for all angles of incidence which are larger than the critical angle of 
total reflection. For angles smaller than the critical angle light will be re- 
fracted into the rarer medium. In the transition region between these two 
cases, the refracted light will travel along the interface where it will cause a 
disturbance which in turn will give rise to light - a lateral wave - in the 
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optically denser medium. As is illustrated in Fig. 7.1, a wave traveling along 
the interface leaks continuously back into the denser medium. There it acts 
like an inhomogeneous wave (cf. locations of planes with constant phase 

Fig. 7.1. Illustration of the lateral wave field that accompanies the reflected part of a 
wave incident at the critical angle of total reflection. Solid lines represent surfaces of 

constant amplitude and dashed lines surfaces of constant phase. 

and amplitude in Fig. 7.1). The irradiance corresponding to this wave is 
usually small compared to that of the reflected wave. 

As is clear from Fig. 7.1, inhomogeneous waves may exist at total reflec- 
tion in both the medium in which the light is internally reflected and the rarer 
one. The inhomogeneous wave in the rarer medium is the evanescent wave 
treated in the previous paragraphs. The energy of this wave is coupled in as 
well as out from the rarer medium through the interface which means that 
the propagating evanescent waves will be localized to regions specified by 
the spatial distribution of the homogeneous wave incident on the interface 
(cf. Section 2.4). The inhomogeneous wave propagating along with the re- 
flected wave in the optically denser medium, on the other hand, is called a 
lateral wave and in contrast to the evanescent wave, it is not confined to an 
interface and, thus, it will not be converted back into a homogeneous wave 
in close proximity to where it was formed. 

Lateral waves which are more pronounced in other fields like elasticity 
and acoustics, e.g., they occur as boundary layer waves at  earthquakes and 
give the first seismic response, were given a physical interpretation by v. 
SCHMIDT [1934, 19381. v. SCHMIDT [I9381 was able to show that the reflec- 
tion of spherical waves at  an  acoustically less dense medium gives rise to 
peculiar additional waves accompanying the regular reflected ones. By means 
of Schlieren photographs, he showed their existence in acoustical spark ex- 
periments arranged in the way illustrated in Fig. 7.2. Of course, the situation 
illustrated in Fig. 7.2 is equally valid for the optical case. A point source 
emits spherical waves in the medium with the lower velocity. Portions of 
these waves will be reflected and the rest will be refracted (the wavefronts 
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Fig. 7.2. Illustration of the formation of a conical wave in addition to the regular reflected 
and refracted ones when spherical waves are reflected at an optically less dense medium. 

are shown dashed in Fig. 7.2).  As long as the angle of incidence is smaller 
or equal to the critical angle of total reflection, the wavefronts of the inci- 
dent, reflected, and refracted waves cross at the interface. For angles larger 
than the critical angle, the incident wave causes an evanescent wave in the 
rarer medium, i.e. the medium, with higher velocity, and is internally re- 
flected. The refracted wave, on the other hand, that propagates along the 
interface will propagate on that side which gives it the higher velocity. Due 
to continuity requirements, this wave will give rise to a new wave in the 
medium with the lower velocity and its propagation direction is determined 
by the law of refraction, i.e., the light will leave the interface at the critical 
angle of total reflection. The specific geometry of Fig. 7.2 results in a lateral 
wavefield of conical shape which connects tangentially with the reflected 
wave and intersects the refracted wave at the interface. Thus, the lateral 
waves will cause the image of a point source to appear comet-shaped 
(MAECKER [ 19491). The amplitude ratio between the waves polarized parallel 
and perpendicular, respectively, to the plane of incidence and which have 
penetrated the interface at the critical angle is nJn,  (see eqs. (2.22)). At the 
conversion of the refracted wave into a lateral wave, this amplitude ratio 
will be multiplied by the factor n,/n,. Thus, IEll/E,(2 = ( n J r ~ ~ ) ~  which shows 
that the lateral waves are much weaker for incident light that is polarized 
perpendicular to the plane of incidence than parallel to it (MAECKER [1949]). 

MAECKER [1949] showed by using a ray-tracing approach that there exists 
a close relationship between lateral waves and the lateral beam displacement 
that occurs at total reflection. Figure 7.3 illustrates this connection. Rays at 
angles exceeding the critical angle for total reflection from a point source 
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are shown. These rays are differently inclined to the interface and encounter 
different amounts of lateral displacement. It is clear from the figure that for 
angles close to the critical angle a lateral wave (conical wavefront) is ob- 
tained and for angles further away from the critical angle, a reflected wave 
with a curved wavefront occurs. A similar ray-tracing procedure for a con- 
vergent incident wave reveals that lateral waves are not formed in that case. 
Thus, only when the incident wave is divergent or plane and limited (as men- 
tionsd below) will lateral waves exist. 

Fig. 7.3 .  lllustration of the existence of a lateral wave resulting from the lateral beam 
displacement when a diverging wave is totally reflected. 

In case we have a parallel beam of limited extension, the diffracted waves 
caused by the edges of the field will be superposed on the plane wave field. 
Since these diffracted waves are divergent, they can generate lateral waves 
when reflected at an interface. In general, the irradiance of the lateral 
waves is quite small. However, in special cases such as at grazing incidence, 
absorbing denser medium, and collimated light incident at the critical angle, 
i.e., in cases where an interference or an absorption mechanism reduces 
the reflected field, the lateral wave (the diffracted field) may be strong and 
may even be the dominant one (TAMIR and OLINER [1969]). 

As described above, a conical wavefront is created as a second order effect 
when light from a point source is internally reflected at a plane interface 
(see Fig. 7.2). A similarly shaped wavefront also occurs in another phenom- 
enon in which evanescent waves play a major role, namely the conical wave- 
front associated with Cerenkov radiation (TORALDO DI FRANCIA [ 19601, 
ASBY and WOLF [1971]). This wave appears when an electron moves in  a 
straight line with a velocity that is greater than the phase velocity of light 
in the medium. Toraldo di Francia assumed in order to explain the Cerenkov 
effect an electron that moves in close vicinity to a dielectric material similar 
to  the situation illustrated in Fig. 7.1. The electric field caused by the elec- 
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tron may be regarded as being made up of evanescent waves. Thus, if the 
electron is close enough to the interface, some of these evanescent waves will 
be refracted and converted to homogeneous propagating waves. With the 
same kind of reasoning TORALDO DI FRANCIA [1960] was also able to ex- 
plain the Smith-Purcell effect, i.e., the effect observed when an electron 
moves close to a metallic grating. Radiation occurs then in certain directions 
which are specified by the velocity of the electron and the period of the 
grating. 

7.2. EXPERIMENTAL VERIFICATION OF OPTICAL LATERAL WAVES 

Since v.Schmidt performed his experiments in the 1930's, several theoret- 
ical treatments of optical lateral waves have appeared (see e.g. OTT [1942, 
19491, BREKHOVSKIKH [1960], FELSEN [1967], TAMIR and OLINER 119691 
and TAMIR [ 19721). 

The first observations of lateral waves in optics were made by MAECKER 
[ 19491. Later experiments have been performed by ACLOQUE and GUILLEMET 
[ 19601 and OSTERBERG and SMITH [1964]. These experiments use in essence 
a beam of light which, after it is internally reflected in a glass prism, is 
blocked by an absorbing medium. The light trailing the totally reflected 
beam was studied and found to be well observable at  angles of incidence 
close to (within 2 sec of arc) the critical angle of total reflection. It was 
found that the trailing light had the same propagating direction as the 
totally reflected light. The lateral wave field was found to decrease with the 
distance away from the reflected wave. The calculations by TAMIR and OLINER 
[1969] for a plane incident wave indicate a decrease proportional to x;%, 
where xt is the distance the wave travels along the interface. The lateral 
wave field in the less dense medium decays exponentially with distance 
normal to the interface (BREKHOVSKIKH [1960]). Thus, the power flow of 
the lateral wave in the less-dense medium is confined to a narrow layer close 
to the interface, much as are evanescent waves in the same medium. 
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5 1. Introduction - Consideration of Brightness 

Electron probes have a large variety of uses ranging from electron beam 
evaporators and welders to oscilloscopes, microprobes and scanning micro- 
scopes. These various uses place a variety of different demands upon the 
electron optical system and upon the electron source itself. By far the 
majority of these instruments use a hot tungsten filament as the source of 
electrons because it is simple and easy to use and because it is a well devel- 
oped technique. It does, however, have its limitations, and the purpose 
of this article is to investigate the useful range of applicability of another 
source of electrons - field emission - which is superior to the hot filament 
in brightness but inferior in the total current which can be extracted. We 
will not consider some of the more exotic applications of field emission 
such as pulsed sources, but will concentrate upon the production of electron 
probes. 

A hot tungsten filament can have dimensions of a few microns and emit 
many milliamperes of current. A source brightness of 10' A/cmZ sterad 
can be achieved (HAINE and COSSLETT [1961]). In cases where the final 
probe is comparable to the source size high probe currents can be obtained. 
When the final probe size must be much smaller than the source size the 
probe current becomes much lower. The reason for this is that lenses must be 
used to demagnify the source and all electron lenses have aberrations. The 
existence of spherical aberration in particular places an upper limit on the 
convergence angIe of the beam leaving the lens, thereby reducing the probe 
current. When the demagnification must be very large the probe current 
may be reduced to unusable levels. A well known example of this is the 
scanning electron microscope, where a probe radius of 50A reduces the 
probe current to A or less, with the result that inordinately long 
exposures are required to produce a micrograph (PEASE and NIXON [1965]). 

A field emission source has completely different characteristics. The 
effective source radius is about 10 8, and currents up to a few hundred pA 
are attainable. Typical brightness levels range from 5 x 108-10'o A/cm2 
sterad (see later discussion). 
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The limitation on total current means that such sources are not useful 
when high probe currents are required. The small source size, however, 
means that little demagnification is required for the production of small 
probes. As we shall show later, this characteristic, together with the high 
brightness, means that field emission sources are much superior to hot 
filament sources when small probes are required. 

L 

5 2. Field Emission Sources 

We will not attempt to provide here any detailed discussions of the field 
emission process. The reader can be referred to several excellent reviews 
and articles (GOMER [1961]). We give here only the briefest review and 
will concentrate on the practical features of the process as a source of 
electrons. 

The phenomenon of field emission is essentially a tunneling process. 
Electrons in a metal are effectively prevented from leaving the surface by 
the work function 4. If the metal has a sharp point of radius r and a voltage 
I/, is applied to it, an electric field of value V , / r  exists close to the surface. 
The shape of this field is such as to allow tunneling through it. The tunneling 
process was calculated by FOWLER and NORDHEIM [1928], and their expres- 
sion for the total emission current Z as a function of the applied voltage V ,  
can be written 

log ( Z I P )  cc 1/E. 

Such a graph is called a Fowler-Nordheim plot and can be used to verify 
the existence of field emission. 

The field strengths required for field emission are rather large - a few 
volts per Angstrom. This imposes mechanical stress on the material of 
the source so that the only suitable materials are those with high tensile 
strengths. At room temperatures not many materials possess the necessary 
strength. 

Field emission is not uniform over the surface, but depends upon crystal 
orientation. For a probe-forming system we need emission along the axis, 
and the (1 1 1 )  and (310) directions of tungsten are suitable. 

The state of the surface is also important. A monolayer of gas molecules 
can have a profound effect on the emission current. A dielectric monolayer 
has the effect of increasing the potential barrier width by the thickness of 
the layer. This can reduce the emission current by a factor of 10-100. The 
time for formation of a monolayer depends upon the ambient pressure, 
but at lo-'' torr it is about 30 minutes. It is clear, then, that field emission 
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from a clean surface is only practicable in  systems having substantially 
lower pressures than this. In the present state of technology this is difficult, 
but not impossible. A more attractive alternative is to allow time for the 
monolayer to form and then operate in that condition. We have found that 
stable operation for many hours can be obtained at pressures in  the range 
(1-3)x 10-l’ torr. 

It is not practicable to operate at pressures much greater than this because 
the emission rapidly becomes erratic due to the bombardment of the tip 
by ionized gas molecules. 

Practical field emission sources are obtained by etching a fine wire of 
single crystal tungsten in NaOH until it attains a diameter of about 1000 A. 
Heating in vacuum “forms” the end of the wire into a hemisphere. Practical 
details for the fabrication of such souIces are readily available in the 
literature (CREWE, EGGENBERGER, WALL and WELTER [ 19681). 

These tips are normally welded to a tungsten hairpin filament. When a 
pulse of current is applied to this filament it (and the tip) are heated and the 
occluded gas molecules are removed. No heating current is necessary during 
normal operation, and the tip can be operated at room temperature. 

Our experience with the use of such sources can be summarized as 
follows. 

When operated in the range (1-3) x 10- l o  torr it takes about 30 minutes 
for the gas monolayer to form. During this time the emission current a t  
fixed voltage drops by a factor of 50-100. Stable emission of 5-10 pA can 
then be obtained for periods of 10 hours or more. Normal operating voltages 
are 3-4  kV. The lifetime of such tips is unknown, but certainly exceeds 
1000 hours. The energy spread of electrons from the source is about 0.2 V 
even when operated with the gas monolayer in  place (SWANSON and CRONSER 
[ 19671). 

The total emission usually occurs i n  a cone of half-angle about 17”, 
and the emission is approximately uniform when the tip i s  in its “dirty” 
condition. 

There remains the question of source size. A rough idea can be obtained 
by assuming electrons are emitted isotropically with an energy spread VT 
(=  0.2 V).  Conserving transverse momentum we obtain an apparent source 
radius 

A = A l d E  

Taking A ,  = I O O O A ,  Y ,  = 3kV, we obtain 
where A ,  is the tip radius. 

A = 8.2A. 
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More accurate calculations have been performed by WIESNER [ 19701, 
who obtains values less than this. MOLLENSTEDT [1971] obtained an experi- 
mental upper limit of 10 A for the source radius. 

In this article we will take A = 10 A as the basis for our calculations. If, 
in the future, better values are obtained experimentally, the necessary 
modifications to the ensuing calculations can easily be made. It should be 
noted that all our calculations of probe current are independent of the 
assumption of 10 A for the apparent source radius. 

4 3. An Electron Gun System 

Electron guns which have been developed for use with hot filaments are 
not particularly suited for use with field emission sources owing to the very 
different characteristics of these sources. 

It is clear that a triode system is, in any case, required because field 
emission requires an applied voltage of about 3 kV, whereas the required 
probe voltage may range from a few volts to a few hundred kV or more. 
Therefore two anodes are needed. Each of these must have an aperture 
to allow the electrons to pass through. 

The simplest form of suitable electron gun therefore consists of a field 
emission tip and two flat anodes, each having a circular aperture. Spacings 
should be compatible with the various voltages involved, and the tip and 
the two apertures should be colinear. 

Such a simple design has some disadvantages, however. Apertures in 
anodes act as electrostatic lenses with a focal length which is approximately 

f = VIAE 

where V is the electron beam voltage and AE is the difference in electric 
field on the two sides of the aperture. The spherical aberration of these 
lenses is one or two orders of magnitude greater than the focal length. 
In addition, because the focusing action is produced by the field change in 
the neighborhood of the aperture, it must be very carefully made; deviations 
from symmetry will produce additional aberrations. 

It appears that such a gun can be improved by using thick anodes. In 
this case the electric field near the apertures can be made zero. This can be 
done by placing the aperture at the apex of a conical hole whose angle is 
arctan 4 2 .  If this is done the problem of mechanical tolerances is transferred 
to the fabrication of this cone. 

If the electric field is zero near the two apertures it must be allowed to 
change in the space between them so that the electron beam can be 
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Fig. 1. Results of the computer calculation on the 3 cm electron gun indicating the distance 
which the field emission tip must be from the first anode in order to obtain a focus 4, 6, 
10, 50 and lo4 cm measured from the first anode. Tip distance is given as a function of 
the energy ratio R = Vo/ V 1  . Tip distances greater than 15 cm are not indicated because 

this would lead to an unwieldy system. 
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accelerated. This can be accomplished by suitable shaping of the thick 
anodes. In principle, at  least, this can be done in such a way as to minimize 
the spherical aberration of the system. BUTLER [1966] found that the simplest 
possible shape, namely a parabolic field shape, produced the lowest aberra- 
tions. 

Specifically, if the electric field has two zeros, the potential distribution 
along the axis should contain a cubic term V = aZ2+bZ3.  Applying the 
boundary conditions and solving Laplace's equation we can calculate the 
electrode shape. KOMODA [ 19711 has extended these calculations by adding 
fifth order terms in the potential. Some improvement in the coefficient of 
spherical aberration (about 30 %) was obtained. However, this improvement 
is a small effect because the spherical aberration constant usually occurs 
as the one quarter power in any expression for probe size. We will therefore 
not add this complication. 

THOMSON [1971] has used this field shape to calculate first order lens 
properties and chromatic and spherical aberration coefficients. The results 
of this computer calculation are shown in Figs. 1 to 4. 

::J / !  

I / .  
/ I  , .' 

-4 cm 
----6 cm 

10 cm 
' '  '". ' 50 cm 
-lo4 cm 

.o I .I I 10 I00 
Voltage Ratio R 

0.J I I 1 1 1 1 1 1 '  ' I l i l l l l l  I I 1 1 1 1 1 1 '  I I 1 1 1 1 1 1 '  I 

Fig. 3. Spherical aberration of a 3 cm gun for image distances of 4, 6, 10, 50 and lo4 cm. 
Portions of the curve shown are for tip distances 0 to 15 cm. The spherical aberration 

which is shown by these curves is referred back to the source (see text). 
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Fig. 4. Chromatic aberration of a 3 cm gun for image distances of 4, 6, 10, 50 and lo4 cm. 
Portions of the curve shown are for tip distances 0 to 15 cm. The chromatic aberration 

which is shown by these curves is referred back to the source (see text). 

These results are given for an electron gun which is 3 cm long (measured 
between the apices of the two cones). Distance measurements are from the 
first anode and are positive in the direction of the electron beam. Aberrations 
are referred back to the source. In the case of spherical abxration, the 
effective source radius is 

3 A ,  = C,CC 

where C,  is given in the graphs and c( is the semi-angle subtended by the 
defining aperture a t  the tip. 

In the case of chromatic aberration the effective source radius is defined as 

A ,  = C , a ( A V / V l ) x  1000 

where AV is the energy spread from the source (typically 0.2 V) and V ,  
is the voltage on the tip in volts. C, is given in the graphs. 

In the following calculations we shall assume that all power supplies are 
stable to better than 0.2 V so that the effect of the electron energy spread 
from the source is the dominant term in the chromatic aberration effect. 

All calculations are given in terms of the ratio R where R = V , / V , .  
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V,  is the final voltage of the electron beam. If it is preferred to use angles 
on the exit side of the gun (a2)  these can be calculated from M = cr2MJR, 
where M is the magnification of the gun and is also given in the graphs. 

We have not shown values for these parameters when the tip is more 
than 15 cm from the first anode since this would make a clumsy system and 
also stray magnetic fields, both static and dynamic, would be very trouble- 
some. 

We have found these calculations to be extremely reliable. All measure- 
ments performed so far agree with the calculations so that in the remainder 
of this paper we will base all our estimates of probe size on these results. 

Several electron guns of this type have been built and tested in a variety 
of systems (CREWE, EGGENBERGER, WALL and WELTER [1968], CREWE, 
ISAACSON and JOHNSON [1969], CREWE and WALL [1970], and SAXON 
[ 19721). All such guns have used a 2 cm length rather than the 3 cm indicated 
in the graphs. We have recently chosen to construct 3 cm guns because 
this makes the electrical problems somewhat simpler. The curves can easily 
be scaled to any gun length, however. All distances scale with gun size, 
but the magnification does not. 

5 4. Types of Imaging Systems to be Considered 

The most general probe-focusing system consists of a source of electrons, 
an acceleration system and a system of lenses. In this way the source can be 
adjusted to provide the required beam current, the acceleration system will 
provide the required voltage and the lens will provide the desired probe size. 

Each of these components has its limitations so that a careful choice of 
components must be made to achieve the desired goal, and in some cases 
it may not be possible to achieve it. We will therefore explore a number 
of possible systems within this general description in order to assess their 
range of usefulness. 

In order to establish a uniform description we consider the general case 
shown in Fig. 5. The field emission source has an apparent radius A and 
emits electrons over an angular range a, Some of the electrons are accelerated 
by the electron gun and in general they will also be focused by the gun. 
The Gaussian image of A is a spot of radius d2 and the convergence angle 
at  the focus is a2 .  Note that this image can be either real or virtual. 

The lens system acts on the electron beam to provide a real probe whose 
Gaussian image radius is 6, and whose convergence angle is a0 . 

We will consider only one defining aperture to exist and will imagine it 
to be located in the electron gun. In practice the physical aperture can be 
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Fig. 5. Definition of the parameters used in this paper. The object and image sizes shown 
are the apparent object size and the Gaussian images of that object. This diagram indicates 

the definition of the various angles which enter into the calculation. 

in any location and its placement is a matter of convenience. 
Aberrations can occur in the electron gun and lens system so that the 

actual probe radius is not 6, but some greater value 6. 
The correct method of combining the effects of aberrations with diffraction 

and Gaussian radius is a matter for debate, but we will adopt a uniform 
method of taking the R.S.S. value (the square root of the sum of the squares). 
This may very well cause errors, but not by an order of magnitude. The only 
exception to this rule which we will use is the combination of spherical 
aberration and diffraction. This is a well known case in electron microscopy. 

The central problem is then to compute the actual spot radius and expected 
intensity for all the probe-forming systems. 

0 5. General Considerations of Brightness and Intensity 

Electrons from the source of radius A ,  and semi-angle of emission a are 
accelerated and focused by the electron gun. The Gaussian image has a 
radius 6, and in the absence of aberrations the semi-angle of convergence 
at the image is a’ where 

8 2  = MA, a’ = a / M J R ,  

where M is the magnification of the accelerating system and R is the ratio 
of the total acceleration voltage to the voltage on the field emission tip. 

If there were no defining apertures in the gun, the intensity at the image 
would be identical to that at  the source 

I = Prc2A2 sin2 c( = Prc’6:~’~R. 

B is the brightness of the source in A/cm2 sterad. It is considered to be 
the brightness measured at the tip voltage V ,  . We take the approximation 
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that s ina = a, which is quite accurate, since the value of a for a field 
emission source is seldom more than 20 degrees. 

If there are defining apertures in the gun the angle of convergence at 
the image will not be a’ but some smaller value a, .  The value of 6, will not 
be affected so that the intensity in the image will be 

I, = fin26:a; R. 

The image of the tip produced by the gun is now refocused by the lens 
system. The Gaussian image produced by the lens system has a radius 6, 
and the semi-angle of convergence at the new image is a, and we have 

6,a0 = S2a2 

by Liouville’s theorem. We need not consider any additional defining 
apertures because there can be only one in a cylindrically symmetric system. 

The intensity of the probe is therefore equal to the intensity at  the inter- 
mediate image of the tip: 

I, = I, = / h 2 R  * d i a i .  

This is the total intensity in a spot of radius 6 where the value of 6 is deter- 
mined by 6, together with the effect of all the aberrations of the system. 

We can calculate fi  from the values already given, that is A = 10 A, 
I =  10pA, = 17”, 

/I N 3 x lo8 A/cm2 sterad - 1.8 x 10“ electrons/a2 sterad sec. 

The expression for I ,  can now be written 

I ,  = Rai d i  x 1.8 x 10” electrons/sec. 

It is clear from the equation above that 6, should be as large as possible 
if high intensity is required. If we assume that all contributions to probe 
size can be taken in quadrature to calculate the probe radius one can make 
do comparable to 8. 

a. should also be as large as possible, and this corresponds to the use of 
a lens of the shortest possible focal length for any given application. 

In order to proceed further, we will make some assumptions which appear 
to have general applicability. First of all we will assume that the effect of 
gun aberrations is small compared to that of the lens aberrations (this is 
usually, but not always, a very good assumption). Secondly we will assume 
that the lens is used in its “optimum” configuration. That is, corresponding 
to the operational conditions of an electron microscope we adjust the 
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aperture in the lens to give the smallest probe size. This will usually occur 
when the effects of spherical aberration and diffraction are comparable. 
This condition has been analyzed by many authors (GRIVET [1965]) and 
we will take 

6 = 0.5C:L1‘, 

c(0 = 1.4[1/CS,]*, 

where C,, is the spherical aberration coefficient of the lens. 
It can be readily seen that the product 6c1, can readily be written solely 

in terms of 1, the electron wavelength, and independently of the particular 
lens which is used. If the lens were perfect, the product 6c(, would be equal 
to 0.6 1, the Rayleigh criterion. In the presence of spherical aberration this 
is modified slightly and becomes 0.7 A. 

With the assumptions we are making, the value of the probe radius is now 

6 = 4% +(0.7A/aO)’. 

From this equation we can see that when 6, << 0.71/c(, the intensity will be 
small but the probe radius will have its smallest value. If 6, = 0.7 A/R ,  
the probe radius will increase to approximately 6 = 1/a, and the intensity 
will be high. This represents a 40 % increase in probe radius and may not be 
a high price to pay for an increase in intensity. 

We call this the “optimum” condition and in this case the intensity in 
the spot will be 

Iopt = j3z2RA2. 

Now we take 1 = 12.5 V i i  x lop8 crn and this gives 

I,,, = ( t ~ p / v , ) X  10-13. 

p / V ,  is a constant of the system, depending only upon the particular tip 
which is used. We therefore see that I ,  has a constant value independent of 
all the other parameters of the system, including the accelerating voltage. 

Inserting values ( p  = 3 x lo8 A/cmz sterad, V ,  = 3 kV) we obtain 

I,,, = 1.5 x 10-8A = 9 x 10” electrons/sec. 

This estimate provides us with one of the limits of usefulness of a field 
emission source. It states that a reasonable upper limit to the probe current 
is 1.5 x lo-’ A. For probe currents substantially greater than this a hot 
filament source can be used. 

It might appear that probe currents could be increased by making 6, 
the dominant term and large, but as we shall see later this does not appear 
to be possible. 
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3 6. Examples of Electron Optic Systems 

We now consider various possible electron optic systems starting with the 
simplest ones. In each case we calculate the range of probe sizes which are 
possible and the current to be expected in these probes. 

6.1. QUASI-PARALLEL BEAM 

We consider the possibility of using the gun alone to form a probe at 

The contributions to probe radius are 
large distances. 

6 2  = 10M (Gaussian image) 

6, = $,a: M4RZ x 10' (Spherical aberration) 

6, = C,a2 M2R%(AV/Vo) x lo1' (Chromatic aberration 

6, = 0.61A/a2 (Diffraction). 

All values of 6 are given in Angstrom. The parameter t appearing in the 
expression for the spherical aberration term is the value of the beam radius 
at the narrowest point of the caustic. 

We can rewrite these expressions in terms of the radius r of a defining 
aperture which is placed at the gun exit. In so doing we will also write the 
expression in terms of the value of M / S  since MIS varies only slowly 
with S :  

d2  = l O x ( M / S ) S  

6, = $C, r3(M/S)4R% x 10' = *Ar3S 

6, = C, r(M/S)2R*S(AV/Vo) x 10" = B(AV/Vo)rS 

6 D  = 0.6l(AS/r) = CS/r .  

We see that the probe radius is proportional to S and the only problem is 
to optimise r for any given value of R.  

Since S is referred to the first anode and r refers to the radius of the beam 
at the second anode, we can expect some errors to occur when S is small. 
However, these errors will not be large and will be ignored in subsequent 
discussions in order to avoid undue complications. 

The parameter A = C,(M/S)4Rtx 10' is a new spherical aberration 
coefficient, B = CC(M/S)'Ra x 10" is a chromatic aberration coefficient 
and C is a diffraction coefficient. 

A and B are plotted in Figs. 6 and 7 as a function of R.  It can be seen 
that when R > 1 A and 3 can almost be represented by two universal curves. 
This is a reasonable behavior since this is the property possessed by thin 
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Fig. 6. Parameter A for image distances of 4, 6, 10, 50 and lo4 cm. For voltages ratios 
greater than 1 a single curve will almost suffice for the whole range of object distances. 
The parameter A is a spherical aberration coefficient referred to image space such that 
t h e  image size due to spherical aberration equals A x r 3  x S, where r is the radius of the 
exit aperture of the gun and S is the image distance measured from the first anode. When 

r and S are in cm, the image radius is in Angstrom. 

B "1 I o8 

I o7 

-4 cm 
----6 cm 
-- -10 cm 

' 50 cm 
--lo4 cm 

t 1 
6 6  
'O.001 _I I 10 100 

Voltoge Ratio R 

Fig. 7. Parameter B. Chromatic aberration. The chromatic aberration coefficient B is 
given in image space such that the image size equals B X r  x SAV/ VO. When r a n d  S are 

in cm the image size is in Angstrom. 
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lenses. For values of R < 1 no universal curves can be given since the 
values of A and B are strong functions of S as well as R.  Presumably the 
gun can no longer be considered to be thin. 

These curves for A and B are much more convenient in  use than using 
the values of aberration coefficients referred back to the source. We will 
now estimate some probe sizes and intensities. Table 1 shows actual values 
of A as a function of R .  In this table we have used values of A (and B )  for 
the case S = lo4 cm although as we have previously noted these values are 
reasonably accurate for any value of S .  

TABLE 1 

Tip I 

(cm) sec) 
R M / S  distance *A c BO :g r ( p )  (electrons/ 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
24 
30 

0.0302 
0.101 
0.153 
0.192 
0.223 
0.247 
0.269 
0.286 
0.301 
0.315 
0.338 
0.364 

26.4 
5.8 
3.12 
2.1 1 
1.59 
1.27 
1.06 
0.91 
0.79 
0.70 
0.57 
0.44 

5.6 x 105 
3.4 X I 0 6  

7.4 x 106 
1.18  xi07 
1.654X lo7 
2 . 1 1 6 ~ 1 0 ~  
2.66 x 107 
3.15 x 107 
3.60 x 1 0 7  
4.14 x 107 
5.14 x 107 
6.56 x 107  

.098 

.0695 
,0568 
.0491 
.0439 
.0401 
.0372 
.0348 
.0328 
.0311 
.0284 
.0254 

3.46 x lo2 
1.1 X I 0 3  

1.42 x 103 
1.69 x 103 

1 . 9 9 ~  103 
2.09 x 103 

2.21 x 103 

2.31 x 103 
2.37 x 103 

1.86 X lo3 

2.16 X lo3 

2.28 X lo3 

8.6 168 1.1 x108 
11.9 79.4 6 . 5 ~ 1 0 ~  
12.8 63.1 1 . 3 ~  lo9 
13.2 53.9 1.9 x lo9 
13.2 48.6 2 . 6 ~  lo9 

12.9 42.1 3 . 9 ~  lo9 
12.8 40.1 4 . 5 ~ 1 0 ~  
12.6 38.4 5 . 2 ~  lo9 
12.5 37.0 5 . 7 ~ 1 0 ~  
12.1 34.9 7 . 0 ~  lo9 
11.8 32.7 8 . 6 ~ 1 0 ~  

13.0 44.9 3 . 3 ~  109 

In order to calculate values for the effect of chromatic aberration we need 
to know the value of AVIV,. AV we have previously given as 0.2 V and 
our experience shows that V ,  is approximately 3 kV. Therefore we write 

Bo = BR-' x AVjV, = 6 . 6 7 ~  10-'BR-' 
and 

6, = B,rS .  

Values of B ,  are also given in Table 1. We also make the assumption that 
V ,  = 3 kV in calculating C: 

C = 0.612 = O.I39R-*. 

The values of A ,  B, and C can now be used to calculate probe sizes. 
From this table it can be seen that spherical aberration and chromatic 
aberration will be equal when r = 250 p for R = 2 and r = 60 p for R = 30. 
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In each case the value of C/r is less than Ar3  or Br so that the system is not 
optimised for the smallest probe, because r is too large. 

For values of r less than these the effect of spherical aberration becomes 
very small. We therefore neglect it and optimise the effects of diffraction 
and chromatic aberration alone. 

The optimised value of S/S and the appropriate value of r are both given 
in Table I .  

It can be seen that the optimized spot radius is remarkably constant at  
about 13 S A. This is to be compared with the Gaussian radius S,/S which 
varies by a factor of 10 for a change of R from 2 to  30 but is always less than 

The intensity can be calculated from the values of the Gaussian image 
4 S A .  

siz: 6,/S and the real image size S/S, 

r = x (s,jq2 = 9 x t0'O(6,/6)~. 

It can be seen that the intensities are quite reasonable. 
While these values have all been calculated for the case S = lo4 cm it is 

clear from the curves of A and B that no great error will be made even when 
going to the case S = 4 cm. Therefore Table 1 can be used for the general 
case of gun use whenever a real image is required outside the gun. 

6.2. GUN EXIT FOCUS 

The calculations given above cannot be expected to be accurate when the 
real image is much closer to the gun than 1 cm from the second anode 
( S  = 4). In particular, when the image is at  the gun exit an aperture cannot 
b2 placed there, and the useful pencil of rays must be defined elsewhere, 
for example at the first anode. This mode of operation generally requires 
rather high values of R, so if there is any value in  such operating conditions 
it would be for high voltage probes. 

TABLE 2 

Tip I 
R distance M C,(A) C,(A) A' B C S(A) a(mr) (electrons/ 

(cm) sec) 

12 53.0 .022 5.9 x106 1.15 
14 10.7 .LO3 1 . 3 8 ~ 1 0 ~  5 . 5 8 ~ 1 0 - ~  
16 5.96 .173 1 . 7 5 ~ 1 0 ~  1 . 9 9 ~ 1 0 - ~  
18 4.12 .235 5 . 1 8 ~ 1 0 ~  1 . 0 8 ~  
20 3.14 .29 2 . 2 2 ~  lo2 7 . 0 7 ~  
24 2.13 .386 70.6 3 . 9 4 ~  10-3 
30 1.44 .503 24.0 2.27 x 10-3 

14.4 
20.34 
25. I 
30.2 
35.1 
46.1 
63.1 

770 
148 
159 
169 
176 
192 
210 
- 

.0401 

.0372 

.0348 

.0328 

.03 1 1 
,0284 
.0254 

12.7 3.64 2.7X 10' 
13.0 3.27 5.6X 10' 
13.1 3.06 1.6x1O9 
13.1 2.87 2 .4X lo9 
13.1 2.73 4.4X lo9 
13.1 2.49 7.8X lo9 
13.0 2.24 1.3X 10" 
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A table of values of parameters for this condition is given in Table 2. 
Using these values we can calculate the various contributions to probe 

radius: 
6, = 10M 

6, = +c,cl; M4R* x lo8 = A": 

6 ,  = C , a , M 2 R f ( A V / V ~ ) ~  10" = B'a2 

8, = O.6A/aZ = C / q .  

The values of A', B' and C are given in Table 2 for our usual assumptions 
of tip operating conditions. 

It can easily be seen that the effect of chromatic aberration is always small 
so that the value of 8 can be obtained by minimizing the spherical aberration 
and diffraction terms. We will do this in this usual way 

6 = 0.5CfaAt, 

a#) = 1,4[A/C']*. 

This value must be combined with d2 to estimate the final spot size. The 
intensity can be calculated knowing S2 and 6. The values of 6, a 2 ,  6 ,  and 
I are given in Table 2. 

Again the value of the probe radius is remarkably constant at about 
13 A. 

8 7. Field Emission Source and Electron Gun and Magnetic Lens 

The use of a magnetic lens in conjunction with the field emission gun can 
provide greater flexibility both in probe size and in the location of the 
focus. We can conveniently study this system by using the results of the 
previous section. 

7.1. QUASI-PARALLEL BEAM 

We take the focal length of the magnetic lens to be f and f to be much 
smaller than the image distance S.  We do not consider here the case where 
an intermediate cross-over exists between the gun and the lens (as in Fig. 5 )  
but the calculations can readily be extended to such a case. One additional 
parameter would be required to specify this system. 

The terms contributing to spot size originating in the electron gun should 
now be multiplied byflS so that the values given in Table 1 can be used by 
substituting f for S .  It can be seen that these values will always be small 
for any reasonable focusing lens. For example i f f  = I cm these terms will 
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contribute 18 A or less. However, it will be remembered that the values of 
SjS in Table 1 were obtained by optimising the effects of chromatic aberra- 
tion and diffraction. In the present case we have an additional lens in the 
system which will introduce two new aberration terms - chromatic and 
spherical aberration. We will first compare these two aberrations with those 
of the same type which are produced by the gun itself. Let us take, for 
example, the two spherical aberration tei ms 

Ar3S x f / S  and CSLa; x lo8 

from the electron gun and the lens, respectively, where C,, is the spherical 
aberration coefficient of the lens. 

These can be written approximately as 

A f ‘a;  and C,,a% x lo8. 

The ratio of the two terms is then 

( A  f 4/c,L) x 10- 

We can take C,,/f as about 1 so that the ratio becomes 

A f 3  x 

Looking at the values of A in Table 1 we can see that for Af3 = los, 
f must be greater than 1 cm. Therefore the spherical aberration of the lens 
will predominate over that of the gun for focal lengths shorter than this. 

Similarly the chromatic aberration coefficients are in the ratio of 

where C,, is the chromatic aberration coefficient of the lens. C,, is approx- 
imately equal to f so that the ratio becomes Bf x lo-*. Therefore the 
chromatic aberration effect of the gun almost always predominates, but 
it is usually small. 

We can therefore conveniently classify lenses into short and long focal 
lengths, 

f < 1 cm, resp.f> 1 cm. 

7.1. I. Short focal lengths 

In these systems the effect of the lens predominates so that the final 
probe size is given by the usual equation for the resolution in an electron 
microscope - to which must be added the contribution from the Gaussian 
image which will be 6 ,  = 10 x ( M / S )  x J 
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The intensity in the spot can be calculated from the values of 6, and az. 
As an example we will take the case of a lens of focal length 2 mm and 

a spherical aberration coefficient of 1 mm operating at R = 30 (90 kV). 
(We will call this our "standard" lens.) 

The optimum resolution and convergence angle can be calculated as 

6 = 2.56 A, a, = 11.25 mr. 

The calculated value of 6, is 6, = 0.72 A from Table 1. From these we can 
calculate the final probe radius 

6 = 2.66 A. 

The intensity can be most conveniently calculated from 

I ,  = Rag 6,' x 1.8 x 10" electrons/sec. 

In this particular case 

Z = 3.5 x 10' electrons/sec = 5.8 x lo-' ' A. 

While we have not used this exact system, we have used one which is similar. 
A 2 cm electron gun has been used in conjunction with a lens with a spherical 
aberration coefficient of about 0.5 mm. The probe size in this case is approx- 
imately 3 A and the intensity in the probe is 3 x lo-'' A (CREWE and 
RETSKY [ 19721). 

7.1.2. Long focal lengths 

In these systems the effect of the gun predominates over that of the lens 
so that the probe radius will be simply 6 = (6/S)x f and the intensity will 
be that given in the last column of Table 1. The aperture used should be 
the one given in Table I .  

This analysis could be carried out for cases wherefis not small compared 
to S or to cases where the focal point for the gun is close to the lens or 
where there exists an intermediate cross-over. There are, however, simple 
extensions of the arguments given above. 

A special case of an intermediate cross-over is given below. 

7.2. GUN EXIT FOCUS 

In this case we can distinguish two different cases of the use of an auxiliary 
lens - magnifying and demagnifying. 

7.2.1. Demagnifying 

Again we can compare the effects of the gun and the lens above. 
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In the case of spherical aberration, the two terms are 

A’a: ML = A’& M t  and CsLc1;. 

A’MtIC,, . 
We are considering demagnifying systems so that we expect 6 < 13 A. 
This requires a short focal length lens withf < 1 cm. The physical distance 
from the gun to the lens can hardly be less than about 5 cm for practical 
reasons. In this case the effect of the gun will be negligible. Therefore the 
spot radius and intensity can be calculated in the same manner as the 
previous section. 

As an example we consider the same lens as before ( f =  2 mm, 
C,, = 1 mm, R = 30) and obtain 

The ratio of those two is 

6 = 2.6 A. 

With the assumption that the lens is 5 cm from the gun, 6, would have a 
value of 0.2 8, and the intensity would be I,, = 2.7 x lo7 electrons/sec. 

1.2.2. Magnifying 

The two spherical aberration terms are 

A ’ L Y ~ M ~  = A ’ a i M :  

CSLa: M L  = CsLa: M: 
and 

The ratio of these two terms is now 

A‘ICSL * 

In order to obtain substantial magnification a lens of short focal length 
would be used and in that case the effect of the gun will predominate. 
Therefore the spot radius and intensity can be calculated immediately from 
Table 2. Values of 6 should be multiplied by M,, the magnification of the 
lens. The values of intensity will be those given in the last column of Table 2. 

0 8. Generalized System 

Here we consider a probe-forming system consisting of a field emission 
source, an accelerating gun and a system of several lenses. Such a system 
could be used either to magnify the intermediate image of the tip or to 
demagnify it. 
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8.1. DEMAGNIFYING SYSTEM 

The main purpose of using a series of lenses instead of a single lens would 
be to increase the flexibility of the system and perhaps also the intensity. 

An electron gun and a single demagnifying lens such as we have used 
already (CREWE and WALL [1970]) is inflexible in that the position of the 
image of the tip can be uncomfortably close to the focal plane of the lens 
for some value of the ratio R. If the aperture in the gun is fixed (as in our 
system) this means that the system can only be operated over a very small 
range of R .  An additional lens in the system can be used as a condenser 
lens to prepare the electron beam for insertion in the final lens. 

The final demagnifying lens would normally be operated in its optimum 
configuration, and in that case the only effect of a condenser lens on the 
resolution would be to change the value of d o ,  the Gaussian image contribu- 
tion to the probe sizz. 

The number of possible configurations of a multiple lens system is very 
large, and we cannot consider them all here. 

The available parameters include the number and disposition of the lenses 
and their focal properties and the chosen operating condition of the electron 
gun. There may be no intermediate foci in the system, or there may be many. 

We will, therefore, only consider a very general case in order to illustrate 
the general characteristics. We describe the complete lens system as having 
an overall magnification M , .  The final probe-forming lens we take to be 
our standard lens. 

The contributions to image size from the gun are 

6, = A r 3 S M ,  

6, = B(AV/Vo)rSML 

So = l O ( M / S ) S M L .  

The spherical aberration of the lens and diffraction can be combined to give 

6 = 0.5C2L1' 

a, = 1.4(L/CSL)* 
and 

as usual. 
However, there is a relationship between a, and r, 

r = M L S a o  

when S >> 3 cm, and we now have 
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6, = AS4Mta; 
6, = B(AV/Vo)SzM~cc, 

60 = IO(M/S)SML. 

The intensity of the probe can be calculated from the values of So and 
ao.  It can be seen that the design problem reduces to that of choosing an 
appropriate value of SM,. 

As an example we take our standard lens operating at 90 kV. The ratio 
of the spherical aberration of the gun to that of the lens at the image is 
26 (SML)4. The ratio of the effects of the two chromatic aberrations is 
50(SM,)’, and the Gaussian image size is 3.64 (SM,). The intensity of the 
probe is proportional to (SM,)’. 

The consequences of changing S M ,  is as follows. At low values of S M , ,  
say 0.1-0.2, the size of the probe is determined essentially by the final lens 
and is 2.56 A. The intensity will be (1-4) x 10’ electrons/sec. For values of 
S M ,  > 0.14 the chromatic aberration of the gun becomes greater than that of 
the lens, but the effect is still small. When S M ,  reaches 0.3 the chromatic 
aberration of the gun will begin to increase the spot size to about 3 a and at  
this point the intensity will be lo9 electrons/sec. When S M ,  reaches 0.44 
the spherical aberration of the gun will equal that of the lens and the probe 
size will begin to increase rapidly without a corresponding gain in intensity. 

To convert these calculations to a specific design we could use a single 
condenser lens bzfore the final probe-forming system. In that case, if the 
electron beam is parallel to the axis between the lenses ML is equal to the 
ratio of the focal lengthsfo/fl. Withf, = 2 mm we therefore conclude that 
wz obtain the smallest probe with the highest intensity when 

S M ,  = 0.1 = ( S / f , )  x 0.2. 

A reasonable choice would then be f, = 2s.  This corresponds to the 
proposed operating conditions of a 100 kV scanning microscope which 
we are now constructing. In this case we chosef, = 5 cm (CREWE and 
RETSKY [ 19721). 

8.2. MAGNIFICATlON SYSTEM 

A similar analysis can be made for a magnifying system. It would appear 
from all the previous cases that it would be unreasonable to expect a high 
probe current from a field emission source and therefore large probe sizes 
are better obtained by using a hot tungsten filament. However, for probe 
sizes in the range 100-1000 A, the use of a field emission source may be 
superior and estimates of performance can be made using the results of the 
previous section. 
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In this case the first lens in the system would have the shortest focal 
length so that the ideal performance of the system would be 

6 = 0.5Cs),LSM; 

a0 = 1.4(A/CS#/M; 

where ML may be different from M L  if a condenser lens is used before 
the lens of shortest focal length as if the field of this lens has a condensing 
effect. Such a system is too complex to be analyzed generally, and each 
case should be examined individually. The principles are clear, however. 

0 9. Discussion 

A field emission source can be used for the production of electron probes 
ranging in size from a few A to a few microns, and in energy from a few kV 
to a few hundred kV. The intensity of such probes can attain values of 10" 
electrons/sec assuming a total emission from the tip of 10 PA. This is a vcry 
conservative value, and there is little doubt that it can easily be increased 
to a few hundred PA giving a probe current of perhaps 5 x lo-* A. 

Such probes find uses in scanning microscopes and microanalysis. It is 
hoped that this general survey will be useful to designers of such instruments 
and they will then be able to improve their performance with respect to 
probe size, current and working distance. 
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0 1. Introduction 

Theoretical developments in the study of the propagation of optical 
beams have been stimulated duiing the last decade by the invention of 
coherent sources of electromagnetic radiation of short wavelength and the 
growing need for communication systems of high capacity. These theore- 
tical developments have been reviewed in a few excellent papers such as 
those authored by KOCELNIK and Lr [1966], Dr FRANCCA [1966], KOPPEL- 
M A N  [1967], GOUBAU [I9691 and HARVEY [1970]. There is therefore little 
need for reviewing again in detail the best-known aspects of Beam Optics. 
However, the close relationship existing between Beam Optics and other 
parts of physics, especially Wave Mechanics, has perhaps not been suffi- 
ciently emphasized in the past. For that reason the analogy existing between 
Scalar Wave Optics and Wave Mechanics will be discussed in a section of 
this paper. We shall also point out that various observations concerning the 
representation of Gaussian beams by ray packets are best understood in the 
framework of the Geometrical Theory of Diffraction. Consideration will be 
given to optical systems that have not beendiscussed in previous reviews, such 
as optical systems lacking meridional planes of symmetry and optical systems 
incorporating anisotropic materials. The main conclusion of this paper is that 
the laws of propagation of beam modes are most easily obtained from an 
extension to the complex plane of the methods of Hamiltonian optics. 

Let us now motivate our interest in optical beams, i.e., in electromag- 
netic radiations having small angular divergences, and explain under what 
condition optical beams can be described by “beam modes”. Conventional 
metallic waveguides whose transverse dimensions are of the order of a 
wavelength can hardly be used in optics because of their high losses and 
small size. It was therefore proposed in the 1960 to give consideration to 
guiding systems whose transverse dimensions are large compared with the 
wavelength. When optical beams are launched into free space they expand 
because of diffraction. However, if their transverse dimensions are of the 
order of, say, 1000 wavelengths (roughly 1 mm in the optical range), the 
divergence angle is only radians. This small divergence angle indicates 
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that the force of diffraction is small and can be balanced by a relatively weak 
focusing force. This focusing force can be applied either continuously along 
the system axis as in the case of glass fibers with graded index of refraction, 
or in a discrete manner as in the case of optical waveguides incorporating 
conventional lenses. In the former case a small reduction in refractive 
index off-axis ensures beam confinement. For example, a change in refrac- 
tive index of is sufficient in principle to keep confined an optical beam 
with a diameter of 1 mm. The requirements to be met concerning the guide 
uniformness and straightness, unfortunately, are much more stringent than 
in the case of conventional waveguides. 

Some important theoretical aspects of optical beam propagation have 
been known for a long time. Indeed, except for a change in scale, the laws 
of propagation of optical beams in continuously focusing media are the 
same as the laws of propagation of radio waves in atmosphcric ducts, a 
problem which received considerable attention during the first half of this 
century (see, for instance, BOOKER and WALKINSHAW [ 19461). The concept 
of trapped modes and leaky modes, and the quasigeometrical optics (J.W.- 
K.B.) methods which were introduced in these early investigations remain 
quite valuable. 

As indicated before, we shall restrict our attention to bcams that have 
small angular divergences and to media whose refractive index does not 
vary much in transverse directions. It turns out that in such cases the vector 
wave equation obeyed by the electromagnetic field (Maxwell’s equations) 
can be reduced to a scalar wave equation. This does not mean that all 
polarization effects can be ignored, but it means that such effects can be 
considered independently of the focusing properties of the medium. Be- 
cause of this simplification a close relationship can be found between the 
laws of propagation of optical beams and the laws of propagation of scalar 
waves such as sound waves and waves associated with material particles. 
As FEYNMAN [1948] points it out, Wave Mechanics “is easily interpreted 
physically as the expression of Huygens principle for matter waves”. A 
comparison between Scalar Optics and Wave Mechanics at an elementary 
level can be found in GOUDET and MEULEAU [1957]. 

A great variety of approaches have been considered in the 1960’s to study 
the laws of propagation of optical beams in open resonators, sequences of 
lenses, or lens-like media. KELLER and RUBINOW [ 19601 generalized the 
quasi-geometrical optics approach previously mentioned to systems with 
more than one dimension. Other investigators (GOUBAU and SCHWERING 
[1961], MARCATILI [1964], KURTZ and STREIFER [1969]) used Maxwell’s 
equations and introduced suitable approximations in the course of their 
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calculations. PIERCE [1961] made use of the scalar Helmholtz equation that 
each Cartesian component of the field obeys approximately. VAINSHTEIN 
[1965], [1966] and KOGELNIK [I9651 based their calculations on the para- 
bolic approximation of Helmholtz equation introduced by LEONTOVICH and 
FOCK [1946]. In its integral form, the parabolic wave equation is equivalent 
to the Fresnel approximation of the Kirchhoff integral, a formalism used 
by FOX and Lr [ 19601 and BOYD and GORDON [ 196 1 1. More recently, quasi- 
classical (Hamiltonian) approaches have been proposed that we shall dis- 
cuss in detail. Within the approximations considered in this paper, these 
various methods lead to the same conclusions. They suggest a generaliza- 
tion of the concept of mode that we shall now explain. 

Let us consider a uniform fiber whose refractive index decreases as a 
function of the distance from axis according to some law n(x)  =( n(0)  up 
to a distance a beyond which n remains constant. Optical beams with wave- 
length A can be trapped in such a fiber if the change in refractive index is 
sufficiently large (roughly, if [n(O)-n(a)]*a >, A). Assuming that this con- 
dition is met, fields can be found that have invariant irradiance patterns. 
Such field configurations are called stationary states, or modes. These sta- 
tionary states are real and the wavefronts associated with them are plane 
and perpendicular to the system axis. Note incidentally that because the 
duct is finite in depth, the number of modes is also finite. The field of the 
modes, numbered according to the number of nodes in a transverse plane, 
extends to a distance which usually increases with the mode number. 

When the refractive index law n ( x )  is not independent of the axial co- 
ordinate z as assumed before, but does not vary much over a period of 
oscillation of the rays, the modes are slowly varying functions of z .  If a 
beam in one mode is launched at the end of a slightly nonuniform fiber, the 
number of nodes of the field (i.e., the mode number) remains the same 
along the fiber. This law of invariance of the mode number unfortunately 
is not applicable in the case of fast changes in the axial direction; in parti- 
cular, it is not applicable to a sequence of conventional lenses. The field 
transformation becomes complicated in that case and the concept of mode 
loses its usefulness. 

The situation simplifies considerably when the expansion of the square 
of the refractive index in power series of the transverse coordinates xI ,  x2 
can be limited to the first-order terms, i.e., when n 2 ( x I , x 2 )  = 
a f b x ,  +cx, +dx: +ex,x,+fxz, where a, b, c, d, e,fare arbitrary functions 
of z. In analogy with the “weak potentials” considered in Mechanics such 
media will be called weak media. Clearly, a medium can be weak only 
within a finite domain of the xl ,  x2 plane because n has upper and lower 
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bounds. Explicit calculations need to be made to see whether the field irra- 
diance outside this domain is small enough to be neglected. This is not 
always easy to decide because some effects (aberration, radiation losses, 
mode conversion) can be small in absolute value and yet be significant over 
long distances. We shall ignore these difficulties and consider only ideally 
weak media. 

In uniform weak fibers the coefficients a, b, c, d, e, f are constant. It can 
be shown that in that case the stationary states (modes) are described by 
the product of a function of Gauss and a Hermite polynomial whose argu- 
ments are real functions of xl, x2. (tn the case of systems with rotational 
symmetry the Hermite polynomials can be replaced by Laguerre polyno- 
mials.)The fundamental property of weak media is that, even if a, 6,  c, d, e, f 

Fig. 1. Field transformation in aberrated media (left) and square-law media (right) for 
the case of adiabatic ( p )  and nonadiabatic (7) changes in the refractive index law along 

the fiber axis. 
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are rapidly varying, perhaps discontinuous, functions of z, beams can be 
defined whose transverse field distribution is described in any transverse 
plane by the product of a function of Gauss and a Hermite polynomial. 
However the arguments of these functions are in general complex functions 
of xl, x2 and the wavefronts are not plane as before. To distinguish these 
field configurations from the stationary (or quasi-stationary) states previous- 
ly defined, the former have been called beam modes by GOUBAU and SCHWE- 
RING [1961]. Figure I illustrates the difference in behavior of optical beams 
propagating in weak (square-law) and strong (aberrated) media for the 
case of adiabatic and non-adiabatic changes in refractive index. The trans- 
formation of the field of a mode of order 2 in the case of strong media is  
illustrated on the left of Fig. 1. Non-adiabatic changes cause some of the 
power of the launched mode to be transferred to  other modes. The trans- 
formation of the field in the case of weak media is illustrated on the right 
of Fig. 1 .  In that case, the general form of the fieldamplitude is preserved. 
The phase 

In the special case where the fiber is uniform the irradiance pattern of 
beam modes varies periodically (Fig. 2a) the period of oscillation being 
equal to half the period of ray oscillation. For properly chosen initial con- 
ditions the irradiance patterns are invariant; in that case beam modes 

of the field, however, does not remain a constant. 

( b )  

Fig. 2. (a) Mode (straight profile) and beam mode (ondulating profile) in square-law 
media. (b) In free space, a beam mode reaches its minimum size, the so-called beam waist, 

only once. 



254 HAMILTON!  A N  T H E O R Y  O F  B E A M  M O D E  P R O P A G A T I O N  [vr, § 2 

coincide with ordinary modes. In free space, the period of oscillation of the 
irradiance pattern of a beam mode is infinite. Thus, the beam reaches a 
minimum width, its so-called beam waist, only once (see Fig. 2b). Note 
that ordinary modes do not exist in free space, because the field of plane 
waves do not belong to the space of magnitude square integrable functions 
that we are implicitly considering. The concept of beam mode will be 
clarified further by examples given in subsequent sections. 

Sections 2 to 8 are aimed at giving an overall view of the subject matter. 
Most results are given there without proof. Sections 9 to 12 are more formal; 
they are aimed at giving the background material needed to derive the re- 
sults stated in preceding sections. 

9 2. Geometrical Optics Fields 

The purpose of this section is to recall a few elementary results of Geom- 
etrical Optics and to indicate how fields can be associated with ray mani- 
folds. DESCARTES [I6371 observed that the refraction of optical rays at plane 
interfaces can be understood by analogy with the behavior of material 
particles (“L‘action de la lumikre suit les m&mes lois que le mouvement de 
cette balle. . .”). Descartes assumes that the particle velocity v is equal to 
the refractive index n of the medium (v = n), and notes that, when a par- 
ticle encounters a plane surface, only the normal component of the velo- 
city is affected. Equivalently, we can say that rays follow the same trajec- 
tories as material particles of zero total energy in a gravitational potential 
-#n2 (see for instance LUNEBURG [1944] p. 84). Because the acceleration 
experienced by (non-relativistic) particles is the negative of the gradient of 
the potential, light rays r(t) obey the equation 

d2r/dt2 = V(; tnz )  (2.1) 

where d//dt = n, I being the arc length measured along the ray. From this 
equation Fermat’s principle can be obtained. This principle states that the 
variation of 

S(r; r’) - ir ;ndl (2.2) 

is at most of second order with respect to small departures of the path of 
integration from a ray path. The stationary value of S is called the poinf- 
eikonal. Fermat’s principle is equivalent to Maupertuis principle applicable 
to particles of constant energy (see for instance LANDAU and LIFSHITZ 
[1960] p. 140) with the substitution n + v. 
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This mechanical analogy has been formalized by HAMILTON [I8351 who 
introduced an equation of the form 

H(VS, r )  = 0. (2.3 1 
Eq. (2.3) is called the eikonalequation in Geometrical Optics. V S  denotes the 
gradient of the eikonal S at some point r in space; it describes the local 
direction of propagation of the waves. In Mechanics, V S  is to be interpreted 
as the four-dimensional gradient of the action at some space-time point; 
it is related to the energy and momentum of the particle. For some problems, 
it proves convenient to solve (2.3) for a particular component of VS, namely 
dS/dz in Optics and dS/& in Mechanics. The solution is then assumed to 
be unique. 

Equation (2.3) is a partial differential equation for S whose solutions 
S ( r )  = constant can be viewed as wavefronts. Thus, as SVNGE [I9541 points 
it out, eq. (2.3) is really a wave equation, although the wavelength remains 
unspecified. Specification of the wavelength: 2/n in  Optics, h/u in  Mechanics 
( h  denotes Planck's constant; the mass of the particle is assumed to be unity) 
results in  a quantification of the ray trajectories which is now discusscd. 

One often makes use in Geometrical Optics of manifolds of rays called 
normal congruences. Ray congruences are defined by the condition that no 
more than one ray passes through any point in space. These congruences 
are called normal if a surface S ( r )  = constant exists which is perpendicular 
to all of the rays of the manifold. The theorem of Malus and Dupin grants 
that a normal congruence remains normal after an arbitrary number of 
refractions (see BORN and WOLF [1965] p. 130). Geometrical Optics fields 
can be associated with such manifolds, the phase of the field being obtained 
by integrating ndl along a ray from some reference surface, and the field am- 
plitude being obtained by specifying that the power flowing in a narrow 
tube of rays be invariant. 

It often happens that the rays of the manifold are tangent to a curve 
called a caustic. (For simplicity, we now restrict ourselves to the two-di- 
mensional case, exemplified in Fig. 3a.) Two neighboring rays intersect 
each other near the caustic. If E denotes the distance between two such 
rays, the field amplitude must be proportional to  E - )  to satisfy the law 
of conservation of power. Thus, the field amplitude is infinite at the caustic 
where c vanishes. We further observe that E is an algebraic quantity which 
changes sign at the caustic. Because of the exponent 3 in the expression of 
the field amplitude, the change in sign of e results in a phaseshift equal to 
4.. (This phaseshift turns out to be a phase retardation.) The difficulty that 
we now encounter is that two rays instead of one are passing through any 
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given point. To overcome this difficulty KELLER [I9581 suggests that we 
view the plane of the figure as double sided and assume that at the caustic 
the rays actually change side, i.e., pass behind the plane. Rays are repre- 
sented in Fig. 3b by dotted lines when they are located behind the plane 

Fig. 3. (a) This figure illustrates the fact that two neighboring rays meet at the caustic 
when such a caustic is present. (b) Ray congruences in square-law media. 

and by plain lines when they are in front of it. The manifold of rays is now 
a normal congruence with respect to the double-sided surface. 

2.1. LENS-LIKE MEDIA 

Let us consider as an example the case of a square law medium with 
refractive index 

n(x)  = 1 - f B 2 x 2 ,  (2.4 1 

(2.5) 

where B is a constant. Equation (2.1) shows that rays i j ( z )  obey the equation 
- 
q+n2q = 0 

for small values of i j  (dots denote differentiation with respect to z ) .  The 
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solution of ( 2 . 5 )  is 
q ( z )  = g cos (Qz+O), 

where f and 0 are constants of integration. Consider now the manifold of 
rays obtained by letting d assume all values from 0 to 2 x .  According to 
Keller’s representation, we view the strip -5  < x < [, bounded by the two 
caustic lines x = [, x = -[, as double sided. The variation of the eikonal 
between two points such as A and C (see Fig. 3b) can be evaluated along 
two independent paths. Fermat’s principle readily shows that the optical 
length of the ray ABC is equal to  the corresponding length A’C‘ = 2x /Q 
on axis. Consider next the path AC which coincides with the caustic line. 
Because each elementary section of the caustic coincides with a ray, the 
variation of the eikonal along the caustic line is ( 2 x / Q ) n ( 5 )  = ( 2 x / O ) x  
( I  - $ S Z ’ f ’ ) .  Thus, the difference ABC-AC is equal to K O ~ ’ .  To evaluate 
the total phaseshift along the closed path ABCA we must take into account 
the fact that two caustic lines are crossed and introduce a phase retardation 
equal to n. Thus the eikonal is single valued if krcSZ(2-n = 2 m x ,  where 
k = 2n/A and m denotes an integer, i.e., if 

~- 

+kQC2 = m++. ( 2 . 7 )  

Only discrete values ern of 5 are therefore permissible, those corresponding 
to m = 0, 1,  2 .  . . in (2 .7 ) .  For these values of <, a geometrical optics field 
can be associated to the ray manifold by adding the contributions of the 
two congruences shown by plain lines and dotted lines, respectively, in 
Fig. 3b. The field is easily found to be 

e,,(x, z )  = ( I  -x2)-* cos ( ( m + ) )  [arccos ( ~ ) - x ( ~ - x ’ ) ~ ] - ~ x )  
x exp {i[k-(m++)sZ]z} ( 2 . 8 )  

where x = xi(,,. The function e(x)  is represented by a dotted line in Fig. 4 
for m = 6. e ( x )  resembles the exact mode field [given in (3.1)] shown by 
plain lines, except for the fact that, unlike the exact field, e (x )  tends to in- 
finity as the caustic line is approached. This defect is remedied by the 
J.W.K.B. method. With the help of this method the solutions given by 
( 2 . 8 )  on either sids of the caustic (1x1 < Ern and 1x1 > 5,) can be matched 
smoothly to one another. The J.W.K.B. solution, which involves Airy 
functions, is obtained by assuming that the variation of the refractive index 
is linear in the neighborhood of the caustics. For m = 0 the geometrical 
optics field ( 2 . 8 )  departs sharply from the exact modal solution; however 
it turns out that the caustic x = 5, coincides with the beam profile (to be 
defined in Section 3). Furthermore, the expression for the propagation 
constant of a mode of order m given in ( 2 . 8 )  turns out to be exact for any m. 
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Fig. 4. Comparison between the exact solution for the field = e of a mode with mode 
number 6 (plain line) and the geometrical optics approximation (dotted line). The latter 

departs from the former only in the close neighborhood of the caustics x = I 1. 

Note that, instead of considering the closed path ABCA, we could have 
considered as well the path ADA, shown in Fig. 3b, taken at a fixed value 
of z.  Setting p = dS/dx, the variation of S along this path is 

__ 

J -_ p d q  = (rn+t)i. 
ADA 

Equation (2.9), with 1 changed to h, is known in Quantum Mechanics as 
the quantum condition of Bohr-Sommerfeld. 

To evaluate the left hand side of (2.9) it is convenient to represent the 
position of a ray at some plane z in phase space with coordinates p ,  q. In 
the paraxial approximation, and for n close to unity, p coincides with the 
slope q of the ray q, whose maximum value is 525. For the case of square- 
law media presently discussed it proves convenient to use the coordinate 
system 52*q and Q-*p instead of q and p .  The rays of the ray manifold 
representing a mode m are located, in phase space, on a circle with radius 
52*(,,, (see Fig. 5 ) .  The left hand side of (2.9) is equal to the area nQf2 
enclosed by that circle. Thus (2.9) leads again to the condition (2.7). The 
rays of the ray manifold which describes a beam mode, on the other hand, 
are located on an ellipse rather than on a circle. Because this ellipse rotates 
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at a uniform rate R as z varies, the beam width varies as illustrated in Fig. 2a. 
The phase-space representation just described is particularly useful when 

$2 is a slowly varying function of z .  It can be shown that the area covered 
by any continuous set of rays remains the same as z varies. This result, 
known in Optics as the law of invariance of the luminance (see BROUWER 
and WALTHER [ 19671) and, in Mechanics, as Liouville's theorem (see LAN- 
DAU and LIFSHITZ [1960] p. 147), is a consequence of the existence of eikonal 
functions. Thus, as Q varies, the ray manifold expands or contracts but 

remains the same. This is the law of adiabatic invariance for rays. 

Fig. 5. Representation in phase-space of the ray congruences associated with modes 
(circle) and beam modes (ellipse). 

According to (2.7), the constancy of s;!(; for slow variations of Q implies 
that if a beam is at some plane z in a single mode m i t  will remain in that 
same mode as s;! varies (see for instance MILDER [1969]). If Q varies rapidly 
with z ,  mode conversion does occur, However it turns out that. as we have 
indicatcd in the introduction, the general form of the field remains the same 
(e.g., Gaussian). What is happening is that the beam wavefront does not 
remain plane and its half-width f ,  ceases to follow the law of adiabatic 
invariance. 



260 H A M I L T O N I A N  THEORY OF BEAM MODE P R O P A G A T I O N  [VI, 5 2 

2.2. RESONATORS 

Let us now consider closed systems called resonators. RAYLEIGH [I8941 
noted that in a large room sound waves tend to follow closed curves, either 
clinging to the boundaries (whispering gallery modes), or bouncing back 
and forth between opposite walls (bouncing ball modes). KELLER and 
RUBINOW [ 19601 considered the case of perfectly reflecting elliptical boun- 
daries, for which exact solutions are known. Using the Geometrical Theory 
of Diffraction (or asymptotic forms of the exact solution), they obtained 

I II 

m Ip 

Fig. 6. Ray manifolds associated with bouncing ball modes in resonators with elliptical 
boundaries. The normal congruences shown in I, 11,111 and IV are to be viewed as super- 
imposed and “sewed” together at the boundaries (after KELLER and RUBINOW [1960], by 

permission). 

an approximate expression for the resonant frequencies associated with 
beams bouncing back and forth along the small axis of the ellipse (see Fig. 
6) in the form 

k,,L = 2ln+8(m++)[ arctan (exp R,)-tn], (2.10) 

where t L  denotes the length of the ellipse minor axis and tanh (R,) denotes 
the minor to major axis length ratio. k,, is the free-space propagation con- 
stant associated with a mode with axial number I and transverse number m. 
If we introduce the radius of curvature R of the ellipse at  the intersection 
with the small axis, (2.10) becomes 

k,,L = 21n + 2(m + 4) arccos (1 -L/2R), (2.11) 

an expression which coincides with a result obtained independently by 
BOYD and KOGELNIK [I9621 for the resonance of an open cavity incorporat- 
ing two circular mirrors of radius R facing each other. This agreement 
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proves that within the paraxial approximation no distinction should be 
made between circular and elliptic mirrors having the same curvature. 

The Geometrical Theory of modes shows that any ray launched in an 
optical cavity generates, after a large number of round trips, a double 
congruence of rays, bounded by two caustics. These caustics outline the 
beam profile. This was noted by BYKOV and VAINSHTEIN [I9651 and KAHN 
[ 19651. Similar remarks have been applied to the case of square-law media 
by KURAUCHI and KAHN [1966]. STEIER [I9661 observed that the bisectrix 
of two rays of the ray congruence intersects the axis at the wavefront center. 

It should be noted that if a ray happens to retrace its own path after a 
number N of round trips, this ray can be chosen as the closed path defining 
the quantum condition (2.9). The resonator is then said to  be N-fold dege- 
nerate. This point of view, first suggested by DI FRANCIA [1964], has been 
developed recently by RAMSAY and DEGNAN [ 19701. 

According to the laws of conventional geometrical optics, the optical 
field vanishes beyond the caustics. By giving consideration to complex rays, 
KELLER [I9581 was able to evaluate the penetration of the field beyond 
these classical limits, thereby taking into consideration diffraction effects. 
Keller‘s theory suffers of the defect that the field obtained is infiniteat the 
caustic. A number of refinements have been proposed to “flesh a geometri- 
cal optics skeleton with diffraction substance”, as KRAVTSOV [ 19671 vividly 
pictures it, while avoiding the singularities at the caustics. One approach 
consists of assuming that the refractive index varies linearly in the neigh- 
borhood of the caustic and in matching the solutions obtained in various 
regions; this is an extension to three dimensions of the J.W.K.B. method 
alluded to before. KRAVKSOV [I9651 and LUDWIG [I9661 succeeded in mak- 
ing the asymptotic expansion of the field uniform in the neighborhood of 
caustics. These modifications of the Geometrical Theory of Diffraction will 
not be discussed further in this paper. 

0 3. Wave Optics and Wave Mechanics 

As is well known, Geometrical Optics gives an adequate description of 
most optical phenomena when the wavelength, 1, is very small. Similarly, 
Classical Mechanics adequately describes mechanical phenomena when the 
mass of the particles under consideration is very large or, equivalently, if 
we let the Planck constant, h, tend to zero. Because of the analogy existing 
between Geometrical Optics and Classical Mechanics we expect that the 
procedure commonly used to go from the equations of Classical Mechanics 
to those of Wave Mechanics, which consists of replacing in (2.3) ikVS by 
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the differential operator V, is also applicable to the optical problem. Compari- 
son with exact scalar wave equations derived from Maxwell's equations 
shows that this is indeed the case provided the medium is homogeneous or 
weakly inhomogeneous (see Section 9). 

The theory of beam propagation in weak (square-law) media effectively 
coincides with the quantum theory of harmonic oscillators as noted by 
BUDDEN [I9611 p. 198. (See also GORDON El9661 and the recent contribu- 
tions of POPOV [1968], MILDER [1969], GLOGE and MARCUSE [1969], EICH- 
MANN 119711, FELDMANN [1971] and BERGMANN [1972].) To exemplify this 
relationship, let us consider an arrangement of practical significance. Glass 
fibers with quadratic refractive index profiles are presently under active 
consideration for long-distance optical communication. In the arrangement 
shown in Fig. 7, an optical beam generated by a laser is launched at one 

Y B.S. 

IN ~ { ~ ~ - / ~ ~ ~ ~ , o ,  - - . -4  

A I I.  F. 
I OUT 

1.0. 

Fig. 7. Beam deflection in bent square-law fiber. The beam at the right end of the fiber 
is detected by optical heterodyning. 

end of the fiber and detected at the other end by a heterodyne optical re- 
ceiver. To discuss the transmission properties of this system we shall make 
use of formulas borrowed from GOL'DMANN and KRIVCHENKOV [ 19571, 
referred to in the future as GK. Only trivial changes of notation are required: 
In principle, we should set dt = dz/n and $ = n)e, $ being the wave 
function and e the electric field; for simplicity, we assume that the on-axis 
refractive index is close to unity; no distinction need therefore be made 
between t and z ,  and between I) and e. We assume that the mass of the par- 
ticle is unity, replace the Planck constant h by the wavelength 1, and take 
into account the geometrical-optics phaseshift kz suffered by the optical 
field. 

3.1. FIBER TRANSMISSON 

Let us consider a uniform square-law fiber, whose refractive index is 
given in (2.4). The mechanical analog of this medium is an undamped har- 
monic oscillator with spring constant 52'. The modes (stationary states) 
are (GK p. 103) 
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where f, = ( k Q ) - *  [see (2.7)] and H,(x) denotes a Hermite polynomial 
of order m.  

Let us now assume that the fiber, instead of having a straight axis, is 
bent with a variable curvature -C(z) from, say, z = z1 to z2 .  It is not 
difficult to show that, within the paraxial approximation, a curvature - C(z) 
of the guide axis is equivalent to an increment C(z)x in refractive index 
[i.e., n ( x ) + n ( x ) +  C(z)x]. This equivalence, incidentally, is not restricted 
to weak media (BOOKER and WALKINSHAW [1946]). In the mechanical 
analog previously considered, C(z) represents a driving force acting on 
the mass (BERREMAN [1965]). The ray equation (2 .5)  is therefore replaced 
by the inhomogeneous equation 

r + a24 = C(Z). (3-2) 

A ray which initially coincides with the fiber axis is driven into oscillations 
of amplitude ij and slope 4‘ with a total energy (GK p. 108) 

where the vertical bars denote: modulus. This result, stated without proof 
in GK, is most conveniently obtained by introducing the normal-mode 
amplitude a = a*ij +iQ-*i which obeys the differential equation: 
ci+iQa = iQ-*C. Thus b = a exp (iQz) obeys the equation b = iQ-*Cx 
exp (iQz) whose solution is straight-forward. Eq. (3.3) is obtained by noting 
that E = &?b*b, see LANDAU and LIFSHITZ [I9601 p. 63. In establishing 
(3.3) it was of course assumed that the fiber radius is larger than the maxi- 
mum excursion of the rays. As an example of application of (3.3) let us 
assume that the curvature C(z) follows the law C ( z )  = c exp (-z2/it2). 
We have in that case (GK p. 108) 

E = trc C 2 t 2  exp (- &Q2r2). (3.4) 

Let us now consider what is happening to a fundamental (Gaussian) 
mode launched into the distorted fiber. A well known result of the Quan- 
tum Theory of harmonic oscillators is that the center of gravity of a wave 
packet follows a classical trajectory (see for instance MESSIAH [1961]). A 
related result has been obtained in the language of Optics by TIEN, GORDON 
and WHINNERY [I9651 and UNGER 119651. If $(x,z) denotes a solution of 
the unperturbed wave equation and Lf(z) the equation of a ray, the wave 
function 
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is a solution of the complete wave equation (GK p. 109). In the above ex- 
pression, denotes the Lagrangian associated with ij(z): 

- 
L(2) = 1 + + i j 2  - + s 2 2 q 2  + cq. ( 3 4  

Note, incidentally, that the integration in (3.5) can be partially carried out. 
We have, using (3.2) 

Ldz  = (z-z ' )+ jz:C'ijdz] . (3.7) L- 
Because the term involving in (3.5) is a pure phase term, it can be over- 
looked in the present discussion. The important fact is that the solution 
Y(x,z) is obtained essentially by off-setting the solution $(x,z) of the homo- 
geneous equation by a distance equal to the ray position Zj(z). 

Let us assume that, at the exit of the fiber, the optical beam is detected 
with the help of a heterodyne optical receiver (see Fig. 7). If +I.o. and Y 
denote the local oscillator and signal fields, respectively, at the detector, the 
intermediate frequency current is proportional to 

IDe*$r0 !P dx. (3.8) 

The optical beams being assumed to be concentrated on the detector the 
integration in (3.8) can be extended to infinity. Assuming now that the 
field of the local oscillator has been shaped for optimum detection of the 
unperturbed beam +, the received signal is proportional to 

Taking for + and Y the expressions given before in (3.1) (with m = 0) and 
(3.5), the received signal is found to be proportional to (GK p. 108) 

exp (- E/Rv), (3.10) 

E being given by (3.3) or (3.4), and v = s2/27c. (3.10) shows how fast the 
received signal drops when the fiber is bent according to some curvature 
law. For instance, a 20 dB drop is experienced if a I km long fiber is bent 
sinusoidally with an amplitude of 18, (10- 'Om) and a period equal to 2422, 
assuming that the period of oscillation of the rays is 6 mm and the wave- 
length 3 pm. 
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3.2 GREEN FUNCTIONS 

Green functions are of great importance in Beam Optics as in other parts 
of physics. For later use and comparison let us quote a few expressions 
of the Green functions associated with waves propagating in weak media. 

Consider a nonuniform fiber with an index profile 

n(x ,  z )  = 1 -+CP(z)x2, (3.11) 

where Q(z )  is an arbitrary function of z. The field radiated by a point source 
located at  0, z' is (GK p. 11 1) 

C(x, z ;  0, z ' )  = (iAq)-* exp (ti k qq- *x2) exp [ik(z-z ')],  (3.12) 

where q(z)  represents a ray (i.e., a solution of the differential equation: 
q + P 2 q  = 0) which satisfies the initial conditions: q(z')  = 0, 4(z') = 1. 

The physical significance of (3.12) is clear. Because the invariant power 
in the ray pencil bounded by the ray q(z) is proportional to $*$q, the modu- 
lus of $(x, z )  = C(x, z )  is proportional to q-*. The exponential term in 
(3. I2), on the other hand, expresses the departure of the circular wavefront 
from the tangent plane. Note that, because Q(z) is an arbitrary, perhaps 
discontinuous, function of z,  (3.12) is applicable to sequences of lenses as 
well as to lens-like media. As we shall see later this simple formula contains 
all the information needed for understanding the propagation of Gaussian 
beams through weak media and the resonance properties of unaberrated 
optical resonators, in two dimensions. The generalizations considered in 
this paper essentially amount to replacing the scalar ray q by a matricial 
ray Q for the case of non-orthogonal astigmatic systems (see Section 7) 
and the ray slope q by the variable p canonically conjugate to q for the case 
of anisotropic media (see Section 8). The higher order modes of propagation 
are obtained by expanding the complete expression of the Green Function, 
to be given next, in power series of x'. 

Let us assume for generality that the fiber is bent with a curvature- C(z);  
the equivalent refractive index n(x)  is, as we have seen: 1 -&Q2(z)x2 + C(z)x. 
The Green function associated with waves propagating in such a medium 
is (GK p. 111) 

where q and qf  are solutions of the homogeneous ray equations 
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q + 5 1 2 q  = 0; q(z’) = 0, 4(z’) = 1 

i+ + = 0; q%(z‘) = 1, 4f(z ’ )  = 0, 

i j + Q Z i j  = c; ij(2’) = 0, cj(z?) = 0. 

and ij is a solution of the complete ray equation 

Eq. (3.13) can be used to evaluate the transformation of the field of an ar- 
bitrary incident optical beam +’(x’): 

$(x, z )  = / G(x, z; XI, z’)ltl/’(x’, z’)dx’. 
+cc 

(3.14) 
- m  

Eqs. (3.13) and (3.14) exhibit the fact that the transformation of the field 
in weak media depends only on the geometrical optics properties of the 
system (except perhaps for an ambiguity in sign), and more specifically 
on the trajectories of three independent rays. 

0 4. Complex Ray Representation of Gaussian Beams 

We have seen in Section 2 that beam modes can be represented approxi- 
mately by manifolds of rays bounded by caustics, the rays being real between 
the caustic curves and imaginary beyond them. A distinctly different de- 
scription is considered in this section. Fundamental beam modes (Gaussian 
beams) are described by a single complex ray, or two real rays. 

4.1. HISTORICAL BACKGROUND 

DESCHAMPS and MAST [1964] observed that the transformation of the 
radius and wavefront curvature of Gaussian beams through a sequence of 
lenses is equivalent to an impedance transformation through a reciprocal 
two-port network, lenses and sections of free-space being analogous to 
parallel and series reactances, respectively. This analogy shows that it is 
unnecessary to follow the transformation of the beam step by step through 
each element of the optical system. The transformation of the beam param- 
eters can be evaluated from the transfer matrix of the equivalent circuit. 
The transformation of the beam radius and wavefront curvature can alter- 
natively be expressed in terms of the elements of the ray-matrix relating 
ray positions and slopes at the input and output planes (KOGELNIK [19651 
and SUEMATSU and FUKINUKI [1965]). Let 
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denote the ray transformation, primed quantities referring to the input plane. 
The beam half-width 5 ,  defined as the distance from axis where the irra- 
diance is reduced by a factor e = 2.718, and the wavefront curvature p - l  

can be combined into a single complex quantity p,  called the complex wave- 
front curvature; it is defined by 

p = p-‘+i /kt2.  14.2) 

The complex wavefront curvature p is essentially the “variance” introduced 
by DESCHAMPS and MAST [1964] and the “complex beam parameter” intro- 
duced by KOGELNIK [1965a] who, incidentally, denotes it q. In our work, 
q denotes ray positions to conform with the notation used in Mechanics. 
The “ABCD law” of transformation of the curvature ,u is (KOGELNIK 
[ 1965al) 

p = (C+Dp’) ( A  + B p ’ ) -  l .  (4.3) 

KOGELNIK [1965b] observed that if we set p = d/q in (4.3), the quantity 
q ( z )  formally obeys the ray equation. He also noted that, in Deschamps 
and Mast circuit analogy, what corresponds to the electric potential and 
electric current are the quantities q and iq, respectively. No connection was 
established, however, between the phase of the field and the value of 4. 
The first indication that the phase of the on-axis field is related to the geo- 
metrical optics properties of the system is due to VLASOV and TALANOV 
[ 19651 who demonstrated that the on-axis phaseshift experienced by a 
Gaussian beam matched to  a periodic system (i.e., a Gaussian beam such 
that p ( z + L )  = p(z) ,  where L denotes the period) is related to the trace 
A + D of the ray matrix associated with one period of the system. In two 
dimensions, the on-axis phaseshift is 

kL-gI = kL-3 arccos [ ) ( A  +D)]. (4.4) 

DESCHAMPS [I9681 noted that the field of a Gaussian beam can be viewed 
as the field of a ray pencil whose center has a complex location. ARNAUD 
[1969] observed that the field of a Gaussian beam formally coincides with 
the Green function (3.12). This observation is clarified in the next section. 

4.2. TRANSFORMATION OF GAUSSLAN BEAMS 

The Green function (3.12) describes a Gaussian beam if the initial value 
given to q(z )  is complex. Then q(z)  is a complex function of z whose real 
and imaginary parts obey separately the ray equation (2.5). Let us show 
how we can relate this complex ray 4 ( z )  to quantities of direct physical 
significance such as the beam half-width: 5 and the on-axis phase: k z - t o .  
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To within an unimportant constant factor (3.12) is 

$(x, z )  = q-* exp (+i k qq-  ‘x2) exp (ikz). (4.5) 

The quantity 4q- l  in (4.5) is the complex wavefront curvature p. (4.5) 
readily shows that the phase of the on-axis field $(O, z )  is equal to the phase 
of q except for a factor -). The phase-shift experienced by a beam with 
input half-width 5‘ and wavefront curvature p ’ -  through an optical system 
of optical length L is therefore easily obtained. It reads (ARNAUD [1969]) 

kL-38++0‘ = k L - )  Phase (q/q‘) = kL-# Phase of (A+&’), 

or, making use of (4.2) 

Phaseshift = kL-# arccot [k5’2(p’- +A/B)]. (4.6) 

This expression, together with the “ABCD law” (4.3), completely defines 
the transformation of Gaussian beams through two-dimensional optical 
systems. Note that (4.6) reduces to (4.4) in the special case where p = p’. 

It proves convenient to normalize the complex ray q(z)  by the condition 

(k/2i) (q*G-d*q) = 1. (4.7) 

This is possible because in lossless media the quantity (q*cj-(i*q) is inde- 
pendent of z. Indeed, setting q = qr+iq,, the left hand side of (4.7) is 
k(q,qi - qi4,). This quantity, known as a Lagrange ray-invariant (LUNE- 
BURG [1944] p. 251), does not depend on the plane where it is evaluated. 
When (4.7) holds the beam half-width 5: is precisely equal to the modulus 

Let us now consider the propagation of Gaussian beams in free space. 
In free space, q(z) is a linear function of z which can be written, taking 
(4.7) into account 

of q. 

q(z)  = 50 + iz/k5,. 

t 2 ( z )  = q(z)q*(z) = 5: + (Z/k40)2. 

(4.8) 

(4.9) 

This complex ray represents a Gaussian beam whose half-width ( ( z )  is 

Thus to is the half-width of the beam waist, located at z = 0. The phase of 
the on-axis field, on the other hand, is 

kz-38 = k z - )  Phase (q )  = kz- f  arctan (z lkt:) .  (4.10) 

We observe that the beam experiences a phase retardation equal to +n from 
z = - a to z = + a. This phase retardation occurs in the neighborhood 
of the beam waist. In the limit where to + 0, it corresponds to the so-called 
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“anomalous” phase retardation experienced by ray pencils at focal points 
(see BORN and WOLF [I9651 p. 445). Note also that the complex ray 
q ( z )  = q,(z)+iq,(z) can be represented as a real skew ray in a three dimen- 
sional coordinate system: q,, qi, z ,  as shown in Fig. 8a. [n this three-dimen- 
sional representation, changing the phase 8 of q amounts to rotating the 

*---- r--- 

\ 
\ 

( b )  

Fig. 8. (a) A two-dimensional Gaussian beam can be represented by a real skew ray in 
a three-dimensional space: 9r, 9i, 2. (b) Three-dimensional ray representation of the 

Gaussian beam propagation in square-law media. 

skew ray about the z-axis. As is well known in geometry, this operation gene- 
rates a hyperboloid of revolution. Thus the beam profile ( ( z )  is a hyperbola, 
as (4.9) also indicates. Finally, we note that the manifold of rays q,(z, 0) 
coincides with the ray congruence considered in Section 2. 

The fact that the beam half-width is equal to the modulus of q suggests a 
convenient beam tracing method. If we set q ( z )  = q,(z) + iqi(z), q,(z) and 
qi(z) represent two real rays that can be obtained from given initial con- 
ditions by ordinary ray tracing methods. At any plane z,  the beam half- 
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width 4 is equal to (q;+q:)*. Let us illustrate this technique by evaluat- 
ing the half-width of an incident Gaussian beam with waist half-width to, 
at the image focal plane of a lens with focal lengthf. The tracing of the 
two rays q,(z) and qi(z) shown in Fig. 9a is self-explanatory. It shows that the 
beam half-width at the image focal plane of the lens is equal tof/kto; it is 
therefore independent of the location of the beam waist, as shown by 
KOGELNIK [1965a] with the help of (4.3). Another example of beam trac- 
ing is shown in Fig. 9b. 

f 

( b) 

Fig. 9. (a) Beam tracing through a lens. The beam radius at the focal plane of the lens 
does not depend on the location of the incident beam waist. (b) Beam tracing in a system 

of three confocal lenses. 

Let us now consider the case of a uniform square-law fiber with the re- 
fractive index law (2.4). The general solution (2.6) of the ray equation is 
rewritten, for convenience 

q(z )  = q+ exp (iGz)+q- exp (-iQz), (4.11) 
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where q +  and q -  are constants. In the special case where q -  = 0, the beam 
half-width 4 is equal to the modulus of q t ,  a constant. Such a beam, with 
constant half-width go = (kQ)-* is, as we have seen before, a mode of 
the fiber. In the three-dimensional representation (q,, qi, z), the ray g(z) = 
qf exp (iS2z) follows a helical path, as shown in Fig. 8b. The real compo- 
nent of q generates the ray manifold considered in Section 2, as the phase 
of q is varied. 

In the more general case where the beam is launched with a waist half- 
width to different from the mode half-width to, the initial conditions are 
q(0) = q+ +q- = to and cj(0) = iQ(q+ - q - )  = i/kco. The beam half-width 
<(z)  = [q(z)q*(z)]* is therefore 

( t l t o ) ’  = (Eo/eo>’ + [(to/80)2 - (EO/t,)’l cos 2Qz. (4.12) 

This expression shows that the beam half-width 5 oscillates above and 
below the mode half-width to, the maximum and minimum half-widths 
satisfying the relation ~ , i ,&nax  = E 2 0  (TIEN, GORDON and WHINNERY 
[1965]). Because of the electrical analogy pointed out before, the spatial 
variations of the beam half-width are the same as the variations of the vol- 
tage along an unmatched coaxial line. 

4.3. OPTICAL RESONATORS 

Let us discuss briefly the general properties of two-dimensional optical 
resonators. An optical resonator is a section of optical waveguide of the 
type considered before, closed on itself. The resonance condition is obviously 
that the field reproduces itself exactly after a round trip. This general con- 
dition means that the field must in the first place reproduce itself to  within 
some constant factor ct. Secondly the constant ct must be unity. In the case 
of two-dimensional resonators it is sufficient to consider the transformation 
of the fundamental beam mode. The field of Gaussian beams reproduces 
itself, to within some constant factor ct, if the complex wavefront curvature p 
assumes after a round trip its original value p‘. Thus, setting p = p’ in 
(4.3) and solving for p one obtains the parameters of the resonating mode 
at the reference plane. To get the resonance frequencies one needs specify 
that the factor c1 multiplying the field is unity. Using the expression of the 
fundamental phaseshift given in (4.4) and the quantum condition (2.9) we 
get the resonance condition 

where 
k,,L = 21n + (m + +)9, 

B = arccos [*(A + D ) ] .  

(4.13) 
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The choice of the reference plane is unimportant because changing the loca- 
tion of the reference plane amounts to performing a similitude transforma- 
tion on the ray matrix, an operation which preserves the trace A + D .  

Eq. (4.13) shows that the resonator is lossless (i.e., k,, is real) if 

- 2  < A + D  < 2. (4.14) 

This relation is called the stability condition of the resonator (a similar 
problem is discussed in PIERCE [1954]). When (4.14) is satisfied, there exists 
one and only one Gaussian beam whose transverse field configuration re- 
produces itself after a round trip in the resonator (see Fig. 10a). 

Fig. 10. Self-reproducing beams and rays in periodic systems (only one period is shown). 
(a) Self-reproducing Gaussian beam in a stable system. (b) Self-reproducing ray pencils 
in unstable systems. (c) Self-reproducing rays in mode-degenerate resonators. (d) In 

degenerate resonators all rays recycle. 

If A + D is either larger than 2 or smaller than -2, the resonator is unstable. 
The expression obtained from k,, possesses in that case an imaginary part 
which is interpreted as a loss. This loss does not result from any actual 
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dissipation in the resonator but from a steady expansion of the circulating 
beam. The beam eventually reaches the edges of the mirrors, no matter 
how large the mirrors are. A resonator incorporating two circular mirrors 
with curvature R - ’  separated by a distance +L, for instance, is unstable if 
g = 1 - L/2R is larger than unity, or less than - 1 .  The round-trip power 
loss for the fundamental mode is, setting m = 0 in (2.11) 

1 -(1 - q - 2 ) +  

1+(1-g ) 
9 = exp [2 Im (k , ,L ) ]  = --+, (4.15) 

where Im stands for: imaginary part. This result was first obtained by 
SIEGMAN [ 19651 from geometrical considerations. Siegman noted that, when 
a resonator is unstable, two homocentric ray pencils can be found which 
reproduce themselves after a round trip (see Fig. lob). The individual rays 
of these ray pencils, however, do not recycle because their slopes are mul- 
tiplied at each passage by real constants that differ from unity, namely 
exp(i0) and exp( - i O )  (remember that 0 is imaginary in the case of unstable 
resonators). 

In the special case where A + D is precisely equal to either 2 or - 2 (e.g., 
the plane parallel Fabry-Perot) the resonator is called mode-degenerate be- 
cause the resonance frequencies of transverse modes of different orders 
coincide. The two self-reproducing ray pencils previously mentioned 
for the case of unstable systems coalesce into a single ray pencil whose 
individual rays recycle (see Fig. IOc). Arbitrary rays, however, do not 
recycle, except in the very special case where A = D = 1 ,  B = C = 0. If 
the latter conditions are satisfied, the cavity is degenerate (see Fig. 10d). 

Degenerate cavities are of great practical interest because they provide 
frequency filtering of incident optical signals without introducing at the 
same time spatial filtering. A medium with spherical symmetry and refrac- 
tive index law ti = n,/(l + r Z ) ,  known as the Maxwell fish-eye (see LUNE- 
BURG [ 19441 p. 172, and DEMKOV and OSTROVSKII [ 1971 1) is an example 
of degenerate optical cavity free of aberration. POLE [I9651 proposed a 
more practical configuration, the “Conjugate Concentric Cavity”. A de- 
tailed discussion of this class of resonators can be found in ARNAUD [ 19691 
and [ 1970al. 

Q 5. Systenis with Non-Uniform Losses 

The gain of many gas lasers is not uniform over the cross-section of the 
discharge tube and decreases off-axis approximately according to a qua- 
dratic law (in decibels). This effect may significantly affect the focusing 
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properties of the resonator in which the active medium is incorporated. 
Consideration needs sometimes be also given to apertures whose trans- 
missivity decreases according to a Gaussian law. Introduction of such 
apertures (called for brevity Gaussian apertures) in laser oscillators forces 
the laser to oscillate in a pure Gaussian mode. Lasers incorporating aper- 
tures with sharp edges, in contrast, generate optical beams whose field 
distribution is only approximately Gaussian. In the case of confocal reso- 
nators for instance, the field is described by prolate spheroidal wave func- 
tions as shown by BOYD and GORDON [1961]. 

As is well known, dissipation and gain in a medium are expressed, phe- 
nomenologically, by adding an imaginary part to the dielectric constant, 
i.e., by allowing the refractive index to be complex. Application of this 
general idea to optical resonators was made by VAKHINOV [1964] who noted 
that the resonant frequencies and losses of optical resonators incorporating 
mirrors with Gaussian reflectivity profiles can be obtained by giving com- 
plex values to the radius of curvature of the mirrors. To clarify this point 
of view, let us observe than an ordinary lens with focal lengthfhas a field 
transmissivity (output field divided by input field) equal to exp ( -  ikx2/2f) 
at some distance x from axis. A Gaussian aperture with effective half-width 
a, on the other hand, has by definition a field transmissivity exp (-tx2/a2). 
By comparing these two expressions we see that a Gaussian aperture is 
formally equivalent to a lens with imaginary focal length 

f = ika2. (5.1) 

Using a similar argument, we easily find that a curved mirror with curvature 
R - '  and power reflectivity: exp [ - ( ~ / a ) ~ ]  is equivalent to a mirror with 
complex curvature R'- * = R- - i/2kaz. 

Let us consider, as an example, a resonator incorporating two identical 
circular mirrors with Gaussian reflectivity profile. Let the mirror separation 
be denoted d = +L, the mirror curvature R- I, and the reflectivity half-width a. 
The round-trip loss is obtained by replacing R- in (2.11) by the complex 
curvature R'-' = R- -i/2ka2. The round-trip power loss is therefore, for 
the fundamental mode of resonance 

64 = exp [2 Im (k,,L)] = exp (2 Im {arccos [1-d(R-'-i/2ka2)]}). (5.2) 

Curves of constant loss are easily found to be ellipses with equation 

where we have defined g -= 1 -d/R and exp (2y )  _= 64. These curves are 
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shown in Fig. 1 1  for round-trip losses of 1.5 and 5 dB, respectively. The 
segment - 1 < 1 - d / R  < 1 on the g axis corresponds to stable lossless 
resonators. It should be noted that arccos (x) has an undefined sign. The 
proper sign in  (5 .2)  is obtained by specifying that the power flowing in the 
resonator is finite. The upper part (u’ > 0) of the curves corresponds to a 
loss while the lower part (a2 < 0) corresponds to a gain because, in the 
latter case, the mirror reflectivity increases as a function of the distance 
from axis and therefore exceeds unity. 

I /*\-1.5dB \ 

0 1.5 
I 

-f.5 

Fig. 1 1 .  Curves of constant loss in resonators with Gaussian mirror reflectivity. The 
segment -1 < g < + I corresponds to stable resonators. 

KOGELNIK [ 1965b] considered the propagation of Gaussian beams 
through media with non-uniform losses or gain and noted that the trans- 
formation of such beams can be understood by giving complex value to 
the focusing constant in  expressions obtained for the lossless case. The 
above observations are summed up by saying that the expression (3.12) 
for the field of a Gaussian beam is applicable to lossy media. In this ex- 
pression, q ( z )  remains formally a solution of the ray equation q + D2q = 0. 
However, because f2 is now complex, it is no longer true that the real and 
imaginary parts q,, qi of q obey separately the ray equation. This circum- 
stance makes beam tracing procedures somewhat more complicated than 
in the case of lossless media, but all the algebraic results given before are 
unaffected. Related techniques have been considered for radio ray tracing 
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in lossy media (see BUDDEN and TERRY [1970] and a discussion by BERTONI, 
FELSEN and HESSEL [1971]). 

5 6. Mode-Generating Systems 

We have seen in Section 4 that fundamental beam modes (Gaussian 
beams) can be represented by complex rays. This complex ray representa- 
tion can be extended to higher order modes of propagation with the help 
of the concept of “mode generating system” which is discussed in this 
section. 

It will perhaps bring some clarity to the subject if we describe first the 
representation of Gaussian beams by manifolds of complex rays proposed 

Fig. 12. (a) Evaluation of the field at x, z for the case of a real wavefront. (b) Case of 
a complex wavefront. (c) Beam generating system, incorporating a lens and an aperture 

with Gaussian transmissivity. 
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by KRAVTSOV [I9671 (see also KELLER and STREIFER [1971]). Given a real 
wavefront at plane z = 0 with uniform amplitude, the field at some point 
x,z is easily obtained from the laws of geometrical optics by finding the 
ray, normal to the wavefront, which passes through the observation point 
(see Fig. 12a). Kravtsov notes that a Gaussian amplitude distribution 
exp [ -+(x2/5’)] can be written alternatively exp [$ik(ix2/kt2)], and the 
curve z = ix2/k<’ viewed as an imaginary wavefront. The laws of trans- 
formation of Gaussian beams in free space are obtained by applying for- 
mally to imaginary wavefronts the laws of geometrical optics. The ray going 
from the imaginary wavefront to the real observing point is of course a 
complex ray. We observe that the rays perpendicular to the imaginary wave- 
front are of the form ccq(z), where q ( z )  denotes the complex ray considered 
before in Section 4, and ci is an arbitrary complex number. These rays thus 
form a 2-parameter ray manifold which can be represented, if we so desire, 
as a manifold of real rays in the qc, qi, z three-dimensional space (see Fig. 
12b). This ray manifold forms a skew congruence. 

Let us now introduce a slightly different point of view. Let an isotropic 
point source be located on axis at z‘ and assume that there is, at plane 
z = 0, a thin lens with focal length -z‘ and a Gaussian aperture with 
effective radius a. This aperture is assumed to have a power transmissivity 
exp[- (x /a ) * ] ,  (see Fig. 12c). The role of the thin lens is to  transform the 
wave diverging from the point source, into a plane wave. The Gaussian ap- 
erture, on the other hand, shapes the field amplitude distribution into a 
Gaussian field distribution: I) = exp[ -+ (x /a ) * ] .  Just after the aperture, the 
field therefore coincides with the field of a Gaussian beam. (This lens-aperture 
combination is capable of synthesizing Gaussian beams, but it has in prac- 
tice the disadvantage of absorbing a significant part of the power radiated 
by the source. The motivation for describing this arrangement is therefore 
essentially theoretical.) This example shows that the problem of finding 
the transformation of the field of a Gaussian beam can be reduced to the 
problem of finding the field radiated by a point source. What is now needed 
is the Green function for lossy inhomogeneous media. The expression for 
such a Green function was formally given in (3.12). Generalization to the 
case of lossy media is straightforward if the medium parameters are ana- 
lytic functions of their arguments, an assumption which can almost always 
be made. The algebra will be carried out explicitly in Section 12 for the 
more general case of non-orthogonal anisotropic media. 

The laws of propagation of the higher order modes are also easily ob- 
tained along the same lines, by considering the field radiated by off-set 
point sources given in (3.13); the higher order modes of propagation are 
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the coefficients of the expansion of the radiated field in power series of the 
transverse coordinates of the source (for a general discussion see FRIED- 
MAN [1960]). More precisely, it can be stated that beam modes are the fields 
radiated by imaginary multipoles through a properly chosen optical sys- 
tem. 

The most convenient way of evaluating the coupling between two radi- 
ators consists of making use of the mode-generating system concept be- 
cause application of this concept avoids the need of performing integrations. 
Let us consider, for concreteness, a transmitting antenna ( a )  and, at some 
distance away from it, a receiving antenna ( p )  as shown in Fig. 13a, and let 
us ask for the voltage generated across the load of antenna (p )  when a 

OUT 
( 0 )  

I N  

I I X  

[ b )  I 
Fig. 13. This figure illustrates the mode-generating system approach to the evaluation of 
the coupling between two antennas. (a) Actual arrangement. (b) Equivalent arrangement. 

The coupling C is proportional to the field radiated at (8) by (a ) ,  or vice-versa. 

voltage unity is applied to antenna (a). Assuming that the two antennas 
are matched to their loads, the received voltage is proportional to the inte- 
gral of the product of the field $, radiated by antenna (a) and the field $o 
that ( p )  would radiate if it were used as a transmitter. This integral can be 
evaluated over any plane located between the two antennas. Let us 
now assume that the field distributions generated by the antennas are 
Gaussian; this is often the case in practice, strong illumination tapers being 
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usually introduced to minimize the level of the side lobes. Because each 
Gaussian field distribution can be represented by a point source, as we have 
seen, the problem of evaluating the coupling between two antennas is re- 
duced to the problem of evaluating the coupling between two point sources. 
This coupling is simply the field radiated at p by ci  (or vice-versa), because 
the field radiated by p is a delta function (see Fig. 13b). Thus, the coupling 
can be obtained without integration, by application of (3.13). (For detailed 
algebraic expressions see ARNAUD [ 197 I a].) 

0 7. Non-Orthogonal Optical Systems 

Astigmatic optical systems are frequently encountered in Beam Optics. 
Brewster angle windows, for instance, often used in laser technology, in- 
troduce a small degree of astigmatism. Because spherical mirrors under 
oblique incidence exhibit different focal lengths for ray manifolds lying 
in the incidence plane and in the perpendicular plane, most ring lasers are 
astigmatic (see COLLINS [1964], BAUES [1969], HERTZ and MINKWITZ 
[ 19691). Such systems possess meridional planes of symmetry and their 
properties can be discussed by considering separately what is happening 
in the two mutually perpendicular meridional planes of symmetry. The 
analysis thus reduces to the two-dimensional case discussed before and need 
not be repeated. It may happen, however, that the optical system considered 
does not possess meridional planes of symmetry. This is the case, for in- 
stance, for a sequence of two cylindrical lenses oriented at an angle of, 
say, 45” to one another (see Fig. 14a). Such optical systems are called “non- 
orthogonal”. The transformation of paraxial rays can be described by a ray 
matrix 

A B q’ [,’I = [c ,] [q. ]  = 9x [$:I ’ (’7.1) 

which has the same formal appearance as the ray matrix (4.1) applicable 
to two-dimensional systems. In the present case, however, q and q denote 
2-vectors, and A, B, C, D denote 2 x 2 matrices. The inverse of the 4 x 4 
matrix ill? is (LUNEBURG [I9441 p. 216) 

This result (7.2) rests on the existence of a point-eikonal function. A, 8, C, D 
satisfy a number of relations that are readily obtained from (7.2). They 
will be given explicitly and discussed in Section 11. 
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Modal solutions in non-orthogonal optical systems were investigated by 
KAHN and NEMIT [1967] who considered the case of periodically rotated 
astigmatic lenses. Using a real ray technique (see Section 2) they defined the 
conditions for stability and unstability of the system. The transformation 
of Gaussian beam irradiances and wavefronts in nonorthogonal optical 
systems was obtained by SUEMATSU and FUKINUKI [1968], (see also COL- 
LINS [1970]). The expressions given by these authors are rather complicated. 
Actually, the ABCD law is applicable to non-orthogonal systems provided 
A,  B, C, D, 11 and p’ are understood as 2 x 2 matrices rather than scalars 
and the terms are ordered as shown in (4.3). Experimental observation of 
the transformation of Gaussian beams through non-orthogonal systems 
was made by ARNAUD and KOGELMK [1969]. The beam irradiance pattern 
is elliptical in shape. Tt is interesting to note that this elliptical pattern 

Fig. 14. Non-orthogonal optical systems. (a) Gaussian beam transformation in a sequence 
of two cylindrical lenses with different orientations. (b) Resonator incorporating cylin- 

drical mirrors. (c) Helical gas lens. (d) Cavity with image rotation. 
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rotates continuously as the beam propagates, the total rotation angle from 
z = - 00 to z = + t ~ )  being equal to II in free space. 

Far-reaching results concerning the theory of non-orthogonal resonators 
were obtained by POPOV [1968], who gave a general expression for the res- 
onant frequencies of lossless non-orthogonal resonators and applied it 
to the case of a resonator incorporating two cylindrical mirrors whose 
generatrices make arbitrary angles to one another (see Fig. 14b). This ex- 
pression has been generalized to the case of lossy systems (ARNAUD [ 1971al). 
Let A,, I , ,  A,, I, denote the four eigenvalues of the matrix %R. Because 
of the special properties of 2R exhibited by the Luneburg rule of inversion 
(7.2), it turns out that I 3  = I; and I4 = A; I .  It can be shown that, after 
a round-trip in the resonator the field of a mode m,, m2 reproduces itself 
except for a constant factor +I~1+tIT2+f and a term expressing the geo- 
metrical-optics round-trip phase shift: exp (ikL). Thus the resonance fre- 
quencies are given by 

* ~ X P  ( i k l r n l m 2  L)n, ? m t + - S  ~2 m z + +  = exp(2iln) (7.3) 

where I is the axial mode number. Note that there is some arbitrariness in 
the choice of I ,  and I, which, according to our previous discussion, could 
be replaced by their inverses A; respectively. This ambiguity 
can be lifted by specifying that the power in the mode is finite. Setting now 
I I  = exp(i0,) and A, = exp(iO,), the resonance condition (7.3) can be 
rewritten 

and I ,  

Alrnlrn2L = 2/7r+(m, +&)Ol  + ( m 2 + 9 0 2 f n .  (7.4) 

It can be shown that if the resonator is free of dissipation losses ('93 real), 
0,  and 0, are either real or imaginary. If 0, and O2 are both real, klmlmz is 
real and the resonator is stable. This is the case explicitly considered by 
POPOV [ 19681. When either 8 ,  or 0, are imaginary, klmlmz has an imaginary 
positive part; the resonator is unstable and suffers from the geometrical 
losses discussed in Section 4 for the two-dimensional case. 

Let us observe further that (7.4) reduces to (4.13) in the case of two- 
dimensional resonators. For most resonators that have rotational symmetry 

0, = 3 0. Then (7.4) becomes 

klrn,,,L = 21n+(nz, + r i i 2 ~  1)B. (7.5j 

Such resonators with rotational symmetry are obviously mode-degenerate. 
An interesting result concerning optical resonators with folded optical- 

axis is that, in general, the wavefronts of the resonating modes coincide 
with the surface of the end mirrors. (Furthermore the field at the end mir- 
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rors assumes the same form as in conventional resonators in an oblique 
coordinate system.) This result is most easily verified for the case of weak 
media by making use of the symmetry property of the round-trip point- 
eikonal. More generally, this property results from the fact that the operator 
expressing the round-trip transformation of the field evaluated from and to 
one of the two end mirrors is symmetric if the medium is free of internal re- 
flection and reciprocal, and unitary if the medium is lossless. As one easily 
proves, the eigenvectors of symmetric unitary operators corresponding to 
distinct eigenvalues are real. Because the modal functions are real the wave- 
fronts coincide with the mirror surface. 

POPOV [1969a, b] and ARNAUD [1970b] gave descriptions of Gaussian 
beams in terms of complex matricial rays Q. With the formal substitution 
q + Q, results obtained for the two-dimensional case are applicable to 
non-orthogonal systems as well. For instance the field of Gaussian beams 
propagating in a medium with refractive index 

n(x ,  Z) = 1 +)XNX (7.6) 

where x denotes a vector with components xl, x2 and N a 2 x 2 matrix, 
is obtained essentially by replacing q by Q in (4.5). We have 

y?oo(X ,z) = IQI-' exp (tik iQQ- ' x )  exp (ikz) (7.7) 

where IQI denotes the determinant of the matrix Q. Q denotes a solution 
of the matrix ray equation Q = NQ with initial conditions so chosen that 
I) assumes the specified form at the input plane. 

POPOV [1968] gave an expression for the fields of modes of resonance 
of any order ( m , , m , )  in the form 

+rn,m, = A ; ~ ' A F ' * o ~  3 ('7.8) 

where $oo denotes the fundamental mode given in (7.7) and the /Ii, i = 1,2, 
denote raising operators of the form: (ik)- 1 4 i l J / 8 x - G i ~ ,  were the qi denote 
complex rays. ARNAUD [1970b] has shown that +rn,rn, is, explicitly, a prod- 
uct of a Gauss function and a Hermite polynomial in two complex vari- 
ables. In general, however, the fields $,,,, defined by (7.8) are not orthog- 
onal. Special conditions must be met by the generating rays q l ,  q2  if the 
orthogonality condition is to hold. An orthogonal set of modes is easily 
obtained with the help of the mode generating system concept (see Sec. 12). 
The modes of resonance of a resonator, on the other hand, are generated 
by the modal matrix of the resonator round-trip ray matrix, itself a ray 
matrix. 
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The helical gas lens is an example of non-orthogonal optical system of 
practical interest. The focusing properties of electrostatic lenses incorporat- 
ing four coaxial helices at potentials + V ,  - V ,  + V and - V,  respectively, 
have been known for a long time in the technology of particle accelerators. 
These electrostatic lenses evolved from the concept of strong-focusing ac- 
cording to which a periodic sequence of converging and diverging lenses 
with equal absolute powers has a net focusing effect, provided the period 

Fig. 15. Computed beam patterns in helical gas lenses. The numbers on the left are the 
mode numbers. The numbers on top (Y, 30", 40") are related to the helix temperature 
(after ARNAUD [1972b], computed by W. Mammel. By permission of the Optical Society 

of America). 
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does not exceed a certain critical value. TIEN, GORDON and WHINNERY 
[1965], UNCER [1965] and MARIB [1970] have discussed the application of 
this technique to the guidance of optical beams, the four helices being raised 
at alternately high and low temperatures (see Fig. 14c). Because of the dif- 
ference in temperature, gradients of refractive index are created in the gas 
filling the space inside the helices. The gas thus acts as a quadrupole lens 
whose principle axes rotate along the system axis. Alternatively, the gas can 
be replaced by a liquid with low optical losses. Refractive index gradients 
of the type considered can also be induced in electrooptic materials by 
d.c. electric fields. TIEN, GORDON and WHINNERY [ 19651 gave an approxi- 
mate expression for the field of the fundamental mode of propagation, 
applicable when the temperature difference between the helices is small. 
MARIB [ 19701 gave an exact description of the fundamental mode of prop- 
agation. The general modal solution was obtained by ARNAUD [1972b]. 
Fig. 15 shows irradiance patterns calculated for various mode numbers 
and temperatures of the helices. These patterns rotate along the system axis 
together with the helices. 

Another non-orthogonal system of possible practical interest is the 
cavity with image rotation (ARNAUD [1970b], BERGMANN [1972]). This 
three-dimensional optical resonator possesses the property that the irradi- 
ance of all the modes is rotationally symmetric. In addition, the usual polar- 
ization degeneracy is lifted as a result of the twist of the path. This feature 
is of interest for reducing the coupling between clockwise and counter- 
clockwise waves in laser gyroscopes. 

0 8. Anisotropic Media 

In the previous discussions we were exclusively concerned with isotropic 
media, i.e., with media in which the wavelength is independent of the direc- 
tion of propagation. Many lasers, however, incorporate materials that have 
either natural or induced birefringence. 

Let us first consider anisotropic effects that are too small to influence 
significantly the focusing power of the medium. For instance, if we let a 
ring laser spin about an axis perpendicular to its plane, the resulting Doppler 
effect can be accounted for by assuming that the medium is slightly non- 
reciprocal. To evaluate this effect let us consider a perfectly conducting 
cylinder in free space (see Fig. 16). Clockwise (CW) and counterclockwise 
(CCW) waves can cling to the concave side of this boundary with a velocity 
almost equal to the speed of light c (the phase velocity slightly exceeds c 
at the boundary; this is of no consequence for the present discussion). Let 
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Fig. 16. This figure illustrates the principle of  laser gyroscopes. The rotation o f  the cir- 
cular boundary being immaterial, the beat frequency between clockwise and counter- 
clockwise waves can be seen as resulting from the rotation of  the mixer (Doppler effect). 

us now assume that the fields of the CW and CCW waves are mixed in a 
rotating nonlinear device having a linear velocity u. Because of the Doppler 
effect, the relative beat frequency between CW and CCW waves is 

Af/ f  = 2 U/C. (8.1) 

The rotation of the cylinder itself being immaterial, (8.1) is applicable to 
the case where the cylinder and the detector are held fixed with respect 
to one another and rotate at the same angular velocity; such an arrangement 
is called a laser gyroscope. If the gyroscope is immersed in a medium with 
refractive index n moving with it, the drag of the CW and CCW waves 
resulting from the rotation of the medium has to  be taken into account. 
It is evaluated by using the formula of addition of velocities of special 
relativity: u = (0, + u , ) / ( l  +ulu2/c2)  with u I  = u and u2 = f c /n .  The rela- 
tive beat frequency is found to be, after a few rearrangements 

Af/ f  = 2u/cn, 

to first order in vjc. Note, incidentally, that the gyroscopic effect vanishes 
in the non-relativistic limit of large n. These results (%I) ,  (8.2) can be 
obtained alternatively in a non-inertial frame of reference rotating with 
the gyroscope, on the basis of the theory of General Relativity (HEER 



286 H A M I L T O N I A N  T H E O R Y  O F  B E A M  M O D E  P R O P A G A T I O N  [VI, Ei 8 

[1964])*. We now observe that the rotation can be ignored provided the 
isotropic medium is replaced by a fictitious non-reciprocal medium with 
refractive indices n,, = n+v /c  and nccw = n-v /c  applicable to waves 
propagating in the CW and CCW directions, respectively. The lack of iso- 
tropy resulting from spinning is usually very small (u << c )  and does not 
affect significantly the focusing properties of the medium. 

The propagation of beam modes in strongly anisotropic materials has 
been investigated by BERGSTEIN and ZACHOS [ 19661, BHAWALKAR, GON- 
CHARENKO and SMITH [1967], SCHAEDLA and BEYER [ 19681, WUNSCHE 
[ 19701, TANAKA, S u z u ~ r  and MATSUMOTO [ 19701, SCHACHTER and CHANGH- 
W I  [ 19701, SUEMATSU [ 197 1 ] and ERMERT [ 197 1 3 .  These authors gave con- 
sideration to uniaxial, biaxial or gyrotropic media and based their calcula- 
tions on approximate forms of Maxwell's equations. 

MASON [1971] has shown that if the surface of wave normals can be 
approximated by a parabola, i.e., if 

kas/az = 4o + 4 [kp + 42k2p2  = - q p ) ,  (8.3) 

wherep = dS/dx and 40, 41, 92 are constants, the law of transformation of 
the half-width 5 of a Gaussian beam with a half-width to at the input plane is 

5* = 5;  + (2z42/50)2. (8.4) 

This result can be obtained alternatively from a Hamiltonian approach 
(ARNAUD [1972a]). Because we are interested only in the half-width of the 
beam, consideration need be given only to the term in x2 in the expression 
of the point-eikonal. Thus, setting S = $Ux2,  substituting in (8.3), and com- 
paring the terms in x2, we find that U obeys the differential equation 0 = 

24,kU2 whose solution is U = (a-2b2kz)-', where a denotes an inte- 
gration constant. Because the field is proportional to exp (ikS), the field 
amplitude is exp {Re [p ik (a-24 ,kz) - 'x2] )  = exp [--(x/()~] where 5 is 
given by (8.4), a being obtained by specifying that 4 = to at z = 0. 

In the example just discussed the solution of the Riccati equation 
U = 24,kU2 was straightforward. However, in more complicated cases it 
is easier to solve linear ray equations. If we set U = p q -  ' we find that q. p 
obey Hamilton's equations for light rays without misalignment terms [i.e., 
with 41 = 0 in (8.3)]. Thus, we have, from (8.3) 

* Note that if the laser is located in a gravitational potential 4 (4 < 0), the frequency 
measured by a distant observer where q5 = 0 is red-shifted as a result of the loss of  mo- 
mentum of  the photons. The relative change in frequency is Af//= 4/c2 as one easily 
finds from the principle of equivalence of General Relativity. This effect is of  course the 
same for CW and CCW waves. 



V I ,  o 91 T H E  S C A L A R  W A V E  E Q U A T I O N  281 

The second equation (8.5) shows that p is a constant; this is a consequence 
of the homogeneity of the medium. The solution of the first equation (8.5) 
is clearly q = b-24 ,kpz ,  where b is a constant of integration. Setting 
a = b/p we find U = p q - '  = (a-24,kz)- * as before. This simple example 
will help clarify the more general derivations given in Sections 10 to 12. 

It is interesting to note that in the realm of Wave Mechanics anisotropies 
usually arise as a result of the presence of d.c. magnetic fields. The solutions 
obtained in the case of harmonically bound particles immersed in a mag- 
netic field, for instance (JONES and PAPADOPOULOS [1972]) ,  are related 
to those discussed in the present section. The case of general quadratic 
Lagrangians has been discussed in an important paper by CHERNIKOV 
[ 19681. 

0 9. The Scalar Wave Equation 

The purpose of this section is to show that under certain conditions Max- 
well's equations can be reduced to a scalar wave equation. The approxima- 
tions needed are rather drastic; yet they appear to be well supported by 
experiment for most systems of practical interest. 

9.1. THE EIKONAL EQUATION 

The optical field e, h obeys Maxwell's equations. In a time-invariant linear 
medium, free of spatial and temporal dispersion and free of sources, these 
equations are conveniently written 

where M ( r )  denotes a 6 x 6 matrix which characterizes the macroscopic 
electromagnetic properties of the medium at some point r in space. d stands 
for ldldt  where I denotes the 3 x 3 unit matrix and V x denotes the rota- 
tional operator. 

An equation for e alone is obtained by multiplying (9 .1)  on the left 
by [d V x 1. We get 

[ a  V x ] M  [v:] e = 0. 

When the medium is homogeneous, i.e., when M does not depend on r ,  
the three components of e obey the same scalar wave equation 
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det. { [a  V x]M [y”,]) e j  = 0, j = 1 , 2 , 3 .  (9.31 

Let us now consider the quasi-classical approximation and assume that 
the field has the form 

e = Sexp (S), (9.4) 

where the space-time variations of ii are slow compared with those of S. 
Then de - (dS)e. Substituting in (9.2) fields of the form (9.4) we get an 
equation for ii which reads 

d S  - 
[ ~ S V S ~ ~ M  [ ] e = 0. 

vs x 
(9.5) 

Eq. (9.5) is a system of three linear equations in Zl, F2, Z3 which admits 
nontrivial solutions (Z # 0) only if 

Equation (9.6) is a partial differential equation for S ,  called the eikonal 
equation; it can be obtained formally by the substitution d --f JS in the 
scalar wave equation (9.3) applicable to homogeneous media. Note that 
(9.6) is un-affected if VS is changed to - V S  and M to its transposed M ,  
because the transposed of the antisymmetrical matrix VS x is - V S  x . 
Thus, to any ray trajectory in the first medium (M), there corresponds an 
identical ray trajectory in the transposed medium ( M ) ,  described in the 
opposite direction. 

9.2. RECIPROCITY 

Let us introduce an adjoint field e*, ht propagating in the transposed 
medium, characterized by the matrix M .  A generalized form of Lorentz 
reciprocity theorem (KONG [1970]) states that, for any closed surface Y 

JP(V’.i-i’*v)dY = 0. 
(9.7) 

In (9.7) v denotes the tangential component of e on Y and i = h x ii (i being 
the unit vector normal to Y pointing outward) is also tangent to 9. Simi- 
lar definitions are applicable to v*,  i * .  

If we choose for Y two planes perpendicular to some axis z at z and z t d z  
(Y is closed at  infinity where the fields are assumed to be negligibly small), 
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(9.7) expresses the fact that the integral over a transverse plane of 
(d . i - - i t  . v )  is independent of z. 

For the clarity of the discussion, let us consider now lossless birefringznt 
crystals. In such crystals, the electric field, the magnetic field and the Poynt- 
ing vector are, for each eigenstate of polarization, three mutually perpendi- 
cular real vectors (see BORN and WOLF [ 19651 p. 665). Thus, assuming that 
the beam (e, h )  propagates in a direction close to the z axis we have approxi- 
mately, to within an unimportant factor, i = nv, where n denotes the ray in- 
dex of refraction. Let us assume further that e', h* describes a beam propagat- 
ing in a direction close to the -z axis with a state of polarization corresp- 
onding to the state of e, h. We have approximately i t  = -nv'. Therefore 
Lorentz reciprocity theorem (9.7) can be written 

where we have defined $ = n f v ,  $' = nfv' and ($*, $) denotes a scalar 
product in both real and function space 

We now assume that the state of polarization of the waves is independent 
of x,, x 2 ,  and set $ ( x ,  z) = $ ( x ,  z) 4 (z), $' (x,  z) = $ ' (x ,  z )~*(z ) .  The 
transformation of 4,4* is assumed to be the same as if the medium param- 
eters were independent of x,, x2. The problem of finding the transformation 
of the vector wave function $ ( x ,  z) is consequently split into two inde- 
pendent problems: first, find the transformation of the state of polarization 
4(z). Secondly, find the transformation of the scalar wave function $ ( x ,  z). 
(9.8) is applicable separately to 4(z),  4'(z) and to $ ( x ,  z), $*(x ,  2); scalar 
products in real space are involved in the first case and scalar products in 
function space are involved in the second case. 

9.3. TRANSFORMATION OF THE POLARIZATION 

We are dealing in this subsection with the problem of finding the trans- 
formation of plane waves propagating along the z-axis. The medium param- 
eters are assumed to depend only on the z coordinate, i.e., the medium 
is stratified. Because the scale of the inhomogeneities is large compared 
with the wavelength, the medium can be considered free of reflection and 
only two waves, both propagating in the forward direction, need be con- 
sidered. The vector 4(z) therefore obeys a first order differential equation 
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of the form d(z) = A(z)4(z) where A(z) denotes a 2 x 2 matrix. The adjoint 
equation is clearly if = -A#* if (9.8) is to be satisfied. It is convenient to  
diagonalize A and write it RSR-' where S denotes a diagonal matrix whose 
elements S ,  and S ,  are essentially the local propagation constants of the 
two waves. The columns of the modal matrix R, on the other hand, are the 
local eigenstates of polarization. Thus 4 and 4' obey the differential equa- 
tions, 

4 = R S R - ' ~ ,  (9.10a) 

(9. lob) 

respectively. When the medium is isotropic we have S ,  = S ,  = S ,  and 
(9.10a) has the obvious solution +(z) = +(O) exp [S(z)]  indicating that the 
state of polarization is invariant. If, on the other hand, the medium is 
- anisotropic ( S ,  # S , )  and R varies slowly with z, (9.10a) has the solution 
4(z) = exp [S(z)]&O), where $(z) = R-'(z)$(z). Because 5 is diagonal, 
this result shows that the components of the wave function on each eigen- 
state of polarization can be dealt with independently when the eigenstates 
are not degenerate and vary slowly with z. We shall restrict ourselves to 
these two cases (isotropic or weakly inhomogeneous media). 

It sometimes happens that the z axis is curved rather than straight. In 
that case, a natural choice for the x, and x2 axes is the binormal and the 
principal normal to the curve z, respectively. This coordinate system, how- 
ever, rotates about the z axis at a spatial rate equal to the torsion z of the 
axis. Thus, in order to preserve the applicability of our previous results, 
it is preferable to define xl, x2 as the coordinate system which rotates about 
z with respect to the binormal at a rate --z (see RYTOV [1937], LUNEBURG 
[1944] p. 57). 

It is instructive to consider the case where the z axis is a closed non- 
planar curve and the medium is isotropic. After a round trip, 4 experiences, 
with respect to its original state, a rotation equal and opposite to the inte- 
grated torsion of the closed curve. Thus, only circular states of polarization 
(clockwise or counterclockwise) reproduce themselves after a roundtrip, 
except for a phase factor. The same conclusion is reached for the case where 
the closed path is defined by an even number of perfectly conducting mir- 
rors. Because the tangential component of the total electric field vanishes 
on the mirror surface, the vector 4 experiences upon reflection a symmetry 
with respect to the normal to the mirror; this transformation can be viewed 
as the product of a symmetry with respect to the plane of the mirror and an 
inversion with respect to the point of incidence. When the number of mir- 
rors is even, all inversions cancel out. An even number of symmetries, on 
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the other hand, is equivalent to a rotation. The transformation is therefore 
the same as in the case of isotropic continuous media. In both cases the 
resonating fields are circularly polarized (clockwise and counterclockwise). 

9.4. THE ORDERED SCALAR WAVE EQUATlON 

We now give consideration to the scalar part $(x, z )  of the vector wave 
function. The eikonal equation (9.6) can be solved, in principle, for dS/az 
and written, for time-harmonic sources (the -iwr time dependence of S 
being omitted) 

(9.1 la) 

where we have set p = dS/dx and allowed x to assume complex values 9. 
H is called the Hamiltonian. For rays in the transposed medium, the eiko- 
nal equation is, changing VS to -VS, 

H(P, 9, z ) + a S / a ~  = 0, 

H( - p, 9, Z )  - dS/dz = 0. (9.11b) 

As we have seen, these equations can be obtained from the scalar wave 
equation applicable to the case of homogeneous media through the substi- 
tution V -+ VS. We wish to investigate whether, inversely, approximate yet 
physically meaningful scalar wave equations can be obtained from the sub- 
stitution VS + V in (9.1 1)  when the medium lacks homogeneity. Specific- 
ally, we wish to see under what conditions the reciprocity relation (9.8) 

(9.12) 

holds. 

term being arranged in symmetrical form 
Let the Hamiltonian H(p, 9, z )  be expanded in power series of p, each 

H(P3 99 z )  =f (9 )+  t9(9)P+P9(9)1+:PF(q)P+. * .  (9.13) 

Tildes on the first vectors of matrix products are omitted; no ambiguity 
should result from this simplification. f ,  g and F are arbitrary functions of 
9 and z,  and F is symmetrical. With the substitution VS + V (i.e. p -+ a /dx ,  
dS/dz -+ d jdz )  in (9.1 la) and (9.11 b) we get the two following differential 
equations for $ and $*, respectively 

- all/ = [ - f ( x ) -  [ g ( x ) ,  L j d  + _ g ( x ) ]  - l a  

dZ ox  u x  

1 2 ax O X  
+ - -F (x ) :  + . . .] $*. (9.14b) 

JZ 
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These expressions for d$/az and d$*/dz can be introduced in (9.12). Rather 
than performing directly the integrations involved, let us note that each 
component of p = a / d x  is an antisymmetrical operator. For p1 = d/ax, 
for instance, we have 

-($&)dx, = 0 (9.1 5 )  = J  d ~ 2 J - m  a:, 

because the wave functions vanish rapidly at infinity. An arbitrary func- 
tion f(q) of q, on the other hand, is symmetrical. Thus, terms such as 
g(q)p + pg(q) which change sign with p are antisymmetrical operators, while 
terms such as pF(q)p involving even powers of p are symmetrical operators. 
We now see readily, by considering each term in the expansion of H at a 
time, that reciprocity relation (9.12) is satisfied. Conservation of power 
could be demonstrated along similar lines by giving consideration to 
Hermitian products instead of simple products. 

In conclusion, a physically acceptable scalar wave equation is obtained 
by the substitution VS -, V in the eikonal equation provided the latter is 
arranged in symmetrical form. Note that a term such a t pF(q)p could be 
written as well +[p2F(q)+F(q)p2]. This ambiguity is expected; we cannot 
hope to obtain a well-defined scalar wave equation because the components 
of the electric or magnetic field do not even satisfy the same wave equation 
when the medium lacks homogeneity. However, within the approximation 
of Gauss, F does not depend on q. The wave equation is therefore free of 
ambiguity in the case that we shall consider in detail. 

0 10. Hamiltonian Optics 

The main concepts and results of Hamiltonian Optics are recalled in this 
section. For a detailed exposition the reader should see KLINE and KAY 
[ 19651. The motivation for giving here these well-known results is to clarify 
the fact that they are, in general, applicable to complex spaces as well as 
to real spaces. 

The eikonal equation (2.3) is most conveniently written 

where pQ = dS/dq,, a = 1,2, 3; q3 = z. In general, the left-hand side of 
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(10.1) involves complex coefficients, and the eikonals S/ik are complex. 
Even in the case of lossless media, complex eikonals are of interest to ac- 
count for diffraction effects. We assume that all relevant quantities are 
analytic functions of their arguments. 

In order to solve (10.1) it proves useful to introduce complex rays q,(t), 
where t denotes now an arbitrary real parameter, defined by the equation 

(10.2) 

These equations can be solved, in principle, for thep,; we assume that the 
pa are single valued functions of the q, and dq,/dt. Differentiating (10.1) 
totally with respect to qA (a = 1, 2, 3) we get 

(10.3) 

where the summation sign over repeated indices is omitted. Because 
pa = dS/aq,, we have 

apaldq, = apfilaqa. (10.4) 

Thus, with the help of (10.2), (10.3) becomes 

dPpldt = -aH/ag,. (10.5) 

Equations (10.2) and (10.5) are Hamilton’s equations for light rays. To- 
gether with some initial conditions, they completely define the complex ray 
trajectories. 

Going back to the notation used in (9.11a) with t = z, Hamilton equa- 
tions (10.2), (10.5) are 

4 = aHjap (10.6a) 

p = -aH/aq (10.6b) 

where the upper dots denote differentiation with respect to z. These equa- 
tions show that dH/dz = aH/Sz. Thus, if the medium parameters are in- 
dependent of z, H remains the same along a ray. The point-eikonal S(r; r’) 
is defined by 

The quantity 

qcj ,  4, z) = P 4 -H(P, 4 ,z), (10.8) 
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where p is expressed as a function of q ,  q and z, is called the Lagrangian. 
Eqs. (10.6a) and (10.6b) show that the ray trajectories can be obtained 
from the Lagrangian by means of 

aL/aq = p, (10.9a) 

aL/aq = p. (10.9b) 

It is not difficult to show from the previous expressions that, for any 
small variation of path between r and r ’ ,  6S( r ;  r ’ )  = 0. This is the mathemat- 
ical expression of the well-known Fermat’s principle. This principle can 
be used to evaluate the point-eikonal of a sequence of two optical systems 
whose individual point-eikonals S, (4”; 4‘) and S,(q;  q” ) ,  respectively, are 
known. It is obtained by addition 

S(q;  4 0  = S,(q; q ” ) + S , ( q ” ;  (7’1, (10.10) 

the intermediate variable q” being eliminated by application of Fermat’s 
principle: 

a 
-- [S,(q; q”)tS,(q”;  q’)] = 0. 
dq” 

(10.1 1) 

(10.11) can be solved, in  principle, for q”, and the solution substituted in 

We are now in position to state the main result of this section: the Van 
(10.10). 

Vleck propagator 

(10.12) 

where the vertical bars denote a determinant, is the asymptotic form of the 
Green function of (9.14a). VAN VLECK [ 19281 has shown that if the right 
hand side of (10.12) is substituted in (9.14a) and the result ordered in de- 
creasing powers of k, the two first terms vanish, in agreement with the cor- 
respondence principle. The physical interpretation of (10.12) is simple when 
the eikonal is real. The term exp (S) expresses the phase shift resulting from 
the optical length S/ik. The term in front of it, on the other hand, can be 
obtained from power conservation requirements. Clearly, the propagator 
for the transposed medium is obtained by changing the sign of S in (10.12). 

We note further that if we limit ourselves to the terms exhibited in (9.14) 
(parabolic approximation) and assume that S is, at most, quadratic in  
x ,  x ‘  (approximation of Gauss), all terms vanish, and (10.12) gives the 
exact expression for the Green function (see CHOQUARD [1955]). Because 
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only the approximation of Gauss is considered in subsequent sections, 
(10.12) can be used without restrictions. The field transformation may alter- 
natively be expressed in terms of the mixed eikonal, as shown by WALTHER 
[1969]. 

5 11. Properties of the Point-Eikonal 

Ln order to make use of the expression of the Green function given in 
the previous section we must be able to evaluate the point-eikonal S/ik. 
This evaluation is in general easy to carry out because we limit ourselves 
to the approximation of Gauss. The algebraic details are displayed in this 
section. 

1 1 . 1 .  RAY MATRICES 

We have indicated in Section 10 that the point-eikonal of a sequence of 
two optical systems can be obtained by adding the individual point-eikonals 
and eliminating the intermediate variables with the help of Fermat’s prin- 
ciple. It turns out that it is sometimes more convenient to  characterize op- 
tical systems by ray matrices rather than by point-eikonals because the ray 
matrix of a sequence of optical systems can be obtained by matrix multi- 
plication. In this subsection we indicate how the ray matrix is related to 
the point-eikonal. 

Within the approximation of Gauss, S assumes the general form 

S(q,  z ;  q’, z’) = d+uq+u‘q’++ qUq+qVq’++q’Wq’, (11.1) 

where d is a scalar, u, u‘ are 2-vectors, U, W are 2 x 2 symmetric matrices, 
and V is a 2 x 2 matrix. 

d, u, u ‘ ,  U, V and W are complex functions of z and z’. Equation (1 1.1) 
shows that an optical system is defined by I 1  (possibly complex) con- 
stants. By definition we have 

p = as/aq = u +  uq+ Vq’, 

-p‘ = as/aql = u )  + tq + Wq’. 

(11.2) 

These relations can be written 

‘;I 1 . (11.3) 
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By comparing (1 1.2) and ( I  1.3) we readily find that 

U = DB-', 

V = C-DBK'A,  u = c-DB-'a, (11.4) 

3 = - B - ' ,  

W = B -  'A ,  

u' = B - ' o .  

LUNEBURG [ 19441 relations are easily obtained from (1 1.4) by noting that 
U and W are symmetrical matrices. We have 

AB = BA, BD = 66, D? = Cb, 
?A= AC, 6 A - k C  = 1, DA-CE = 1, (1 1.5) 

1m1 = 1, 

and the inverse of 91 is 

(11.6) 1 15 -6  i c - d a  
- 2  i <a-Ac . 
0 0  1 

YJt-' is the matrix relating the input quantities (q ' ,  p ' ,  I )  to the output 
quantities (4, p ,  1). Luneburg's relations (1 I .5) are effectively equivalent to 
six independent scalar equations. 

An optical system can alternatively be described by the position and 
slope assumed at the output plane by five rays with given initial conditions. 
Let these rays be denoted ij, p ,  Q, P and Q*, Pt.  The pairs of matrices (Q, P )  
and (Q', Pt) actually represent two rays each, because they are defined by 
the association of two ordinary rays: Q = [qlqz] and Q' = [ q i q i ] .  The 
ray matrix of the optical system can clearly be expressed in term of these 
rays 

( I  1.7) 
0 0 1  

if the initial conditions for Q', Q and 4 are, respectively 

E l  [!I> El '  (11.8) 

Note that, because the rays Q and Q* satisfy ( I l S ) ,  PQ- '  and Q-'Qt are 
symmetrical matrices. 

We can now use (1 1.4) and (1 1.7) to obtain an expression of S in terms 
of the trajectories of five rays. We have 
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S ( q ,  Z; q', z') = d+(p-PQ-'ij)q+4Q-1q' 
+ + qPQ- ' 4  - q Q- '9' + 4q'Q- Q'q'. (1 1.9) 

It remains to express d in terms of 4. We have, from (11.9) and (10.7) 

where L denotes the Lagrangian. This relation provides the 
pression for d. Introducing (1 1.10) in ( I  1.9), S can be written 

(1 1.10) 

desired ex- 

(11.11) 

Eq. ( I  I .  1 I )  allows us to generalize (3.13) to the case of non-orthogonal 
systems. This expression sometimes proves more convenient to use than 
( 1  1.1) because rays obey linear equations. The parameters U, V, W. . ., on 
the other hand, obey nonlinear equations, as we shall see in the next sub- 
section. 

11.2. EVALUATION OF THE POINT-EIKONAL 

Within the approximation of Gauss dS/dz is, at most, quadratic in 
p = dS/dq and q .  Thus, the Hamiltonian assumes the form 

aS/dz = -H(p, q. z )  = n + n q + &  qNq-+(P-g-Gq)F(P-g-Gq), (11.12) 

where n,  n,  N, g, G and f are functions of z that can be obtained from 
knowledge of the material matrix M(r ) .  Hamilton equations (10.6a) and 
(10.6b) are, explicitly 

4 = dH/ap = F(P - g - Gg), (1 1.13a) 

p = -aH/dq = n+Nq+&(p-g-Gq). (1 1.13b) 

Using for p the expression given in (11.13a) we find the Lagrangian 

and 

lZ:Ldz = /:n dz+ !j [q(z)p(z)-q(z')p(z')+ S'(nq+gcj)dz] 2' , (11.14b) 

a generalization of (3.7). 
Let us now introduce the expression (1 1.1) for S in (1 1.12) and compare 
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terms that have the same powers in q and 4'. We get a set of ordinary dif- 
ferential equations for U, V, W, u, u' and d which reads 

U+(U-G)F(U-G) = N, b+(U-G)F(U-g) = n, (11.15) 

V+(U-G)FV = 0, 

W+VFV = 0, 

u'VF(u-g) = 0, 

d + +  (U-g)F(u-g) = H. 

These equations are most easily solved in the order shown above because 
each equation involves only the solutions of previous equations. Note that 
these equations are of first order; the solutions are therefore uniquely de- 
fined by the values assumed by d, u, u', U, V, W at some plane. 

Because the differential equations ( I  1.15) are nonlinear it is sometimes 
simpler to use the form (1 1.1 1) of the point-eikonal. In this equation Q, p 
are solutions of the ray equations ( I  1.13) with the initial conditions $0) = 0, 
p(0) = 0. Q, P obey the ray equation without misalignment terms, namely 

Q = F(P-GQ),  P = NQ+ZF(P-GQ)  (1  1.16) 

with the initial conditions Q(0)  = 0, P(0) = 1. Q' and Pt are solutions of 
(1 1.16) with the initial conditions Q'(0) = 1, Pt(0) = 0. 

Assuming now that the medium parameters are independent of z, we 
obtain by differentiation of (1 1.13a) and use of (1 I .  13b) the ray equation 

F- 'q+(G-C)c j -Nq = n. ( 1  1.17) 

Many optical systems incorporate only homogeneous media. When the 
medium is homogeneous, G = 0, N = 0 and n = 0. Thus (1 1.17) reduces 
to q = 0, the rays being (complex) straight lines. The point-eikonal is 
obtained by multiplying the right-hand side of (11.14a) by z-z' 

- 

S(q, Z; q', z ' )  = (z -z ' ) (n+ ig++ i $ - ' q )  

q = (q-q ' ) / (z-z ' ) .  

(1 1.18) 
where 

It remains to obtain the effective optical thickness associated with curved 
surfaces of discontinuity. We shall assume for simplicity that the discon- 
tinuity is not really abrupt, but tapered in such a way that the law of adia- 
batic invariance of the polarization is obeyed. This matching layer is there- 
fore assumed to be thick compared with (& ' -&- ')- ', where A, and 1, 
denote the ordinary and extraordinary wavelengths, yet thin from a ray-op- 
tics point of view. Let us first assume that the surfaces of discontinuity 
are plane and that the z-axis is a ray of the system. At each plane of re- 
fraction the position of a ray can be defined by its distance x i  from the 
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z-axis in the plane of incidence and its position x i  in the direction perpen- 
dicular to the plane of incidence. Such a ray reaches the plane of refraction 
at y1 = x i ,  y ,  = x;/cos i‘, if i‘ denotes the angle of incidence (see Fig. 17). 
Let us now go back to the situation often encountered where the surface 
of discontinuity is curved. Let the equation of the surface of discontinuity 
be denoted ((yl, y,), the axis [ being perpendicular to the reference surface. 
The effective optical thickness resulting from this deformation of the 
surface is (H-H’)[ = ( a S ’ / a [ - a S / d [ ) ; .  In the special case of isotropic 
media for instance, we have (see LUNEBURG [I9441 p. 90) H’ = -ikn‘ x 
cos (i’), H = -ikn cos(i), where n’, n denote the refractive indices in the 

Fig. 17. Evaluation of the effective optical thickness associated with a deformation of 
the surface of discontinuity between two homogeneous media. (a) Refraction by a plane 
interface. VS’ and VS describe the surfaces of wave normals for the two media, the origin 
being at pointO. (b) A displacement [ of the surface introduces an effective optical 

thickness (H - H‘)[. 
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first and second media, respectively. The rest of the calculation consists in 
performing first-order expansions consistent with the approximation of 
Gauss. This procedure provides closed form expressions for the constants 
d, u, u’, U, V, W introduced in (1 1.1) in the case of arbitrary sequences of 
curved surfaces of discontinuity. 

8 12. Beam Modes 

We are now in position to give a general expression for the field of beam 
modes. Substituting the expression (1 1.1) given for S in the Van Vleck prop- 
agator (10.12), the Green function is found to be 

1 

2n 
G(X,  Z ;  q’, z’) = - JVI* exp ( d + u x + u ’ q ’ + f x U x + x V q ‘ + f ~ ’ w q ’ ) .  (12.1) 

Note that, because V is in general complex and varies with z, the determi- 
nant IVI  contributes to the variation of both the phase and amplitude of G. 

We define now the modes of propagation as the coefficients of the ex- 
pansion of G(r; q’, z’)  in power series of q; and q;. Explicit expressions are 
easily obtained if we recall the definition of Hermite polynomials in terms 
of their generating functions 

where < denotes a vector. Explicitly we have (ARNAUD [1971])* 

where exp. means that the series terminates when one of the exponents 
becomes equal to zero. Notice that, for any diagonal matrix D with ele- 
ments 11, I, we have 

X‘m,mz(D<; DWD) = A ~ 1 j b ; z J f ‘ m l m 2 ( < ;  W), (12.4) 

a relation which readily results from the definition (12.2). 
Let us make use of these mathematical results, setting 5 = d + V x  and 

expanding the right-hand side of (12.1) in power series of q;, 4;. The co- 
efficients are, to within unimportant factors, 

t jmlm2(x ,  z )  = IV1* exp ( d + u ~ + f x U x j X ~ , ~ , ( u ‘ +  v x ;  W),  (12.5) 

* Because a minus sign has been dropped for simplicity on the left-hand side of (12.2), 
the polynomial &‘ differs slightly from a Hermite polynomial. 
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or, alternatively, in terms of the rays Q, Q and Q* [see (1  1.11)] 

I j l m l m 2 ( X '  Z )  = IQI-' ~ X P  [ P ( X - ~ ) + ~ ( X - Q ) P Q - ' ( ~ - ~ ) I  

x 2 Y ' m , m 2 [ Q - 1 ( x - i j ) ;  Q-'Q'] exp [[L(q, q, z)dz] . (12.6) 

These expressions give the modes of propagation in their most general 
form.* The initial values of the parameters q,  p, Q, P and Q', f' are found 
by comparing (12.6) with the incident field at z = 0. Eq. (12.4) exhibits 
the fact that there is some arbitrariness in the determination of these param- 
eters. This arbitrariness can be removed, if desired, by introducing norm- 
alization conditions such as those given in ( I  1.8). Note incidentally that 
this normalization condition ( I  1.8) differs by a complex numerical factor 
from the normalization condition used in Section 4. Once the initial values 
of the rays have been obtained, the field at any point in space is obtained 
by solving the ray equations ( I  1.13) or ( 1  1.17) and substituting in (12.6). 

8 13. Conclusion 

We have shown that the problem of finding the modes of propagation 
in unaberrated systems can be reduced to a routine application of the methods 
of Hamiltonian Optics because the continuation in the complex plane that 
is needed to take into account diffraction effects does not involve any formal 
change in the algebra. The approach to the theory of modes discussed 
in detail in this paper is based on a power series expansion of the Green 
function. This approach is simple, both conceptually and algebraically, 
even in the case of optical systems incorporating astigmatic and anis- 
otropic media; it requires only the use of matrix algebra. 

Because of space limitation, application of these general results to par- 
ticular optical systems has not been made. Also, a few important topics 
pertaining to the theory of beam modes had to be left out: Mode orthogo- 
nality, mode coupling, and a general theory of optical resonators. 

For a generalization of the results discussed in this paper one should 
take into account aberration eKects, perhaps with the help of a perturbation 
method. One should also try to account more fully for the vectorial charac- 
ter of the optical field and the coupling between the local eigenstates of 
polarization. Many optical systems have already been analyzed with due 
consideration to such effects. New significant results, however, will probably 
appear in the future in this relatively new field. 

by the factor: ik. 
* For a comparison with the results given in Section 3, all lengths should be multiplied 
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0 1. Historical Background 

I .  I .  INTRODUCTION 

lnhomogeneous or gradient-index media have long been of interest to 
optical workers, and rightly so, since these media occur frequently in nature. 
The lens of the human eye and the atmosphere of the earth are familiar 
examples. 

It is known that gradient-index media offer attractive theoretical possibil- 
ities in the design of optical instruments. For example, MAXWELL [I8541 
showed that an inhomogeneous medium of a certain type has the property 
of forming a sharp image of every point in its interior. He thus demonstrated 
that an optical instrument that is perfect (in a limited sense) is theoretically 
possible. 

WOOD [I9051 described a method of forming a circular slice of gelatin in 
which the refractive index is a function of the distance from the center. He 
thus showed that, with the help of a gradient-index medium, it is possible 
for a plane-parallel plate to act like a lens. More recently, LUNEBURG [1964] 
explored mathematically the possibilities of using inhomogeneous media in 
optical systems. 

Until recent times these and other similar examples were regarded by lens 
designers as mathematical curiosities since there seemed to be no way to 
fabricate gradient-index lens elements for practical applications. Within the 
last few years, however, some advances in the pertinent technology have 
been made. These developments have created a new interest in both theo- 
retical and practical aspects of inhomogeneous media, and a number of 
papers on this subject have appeared recently. 

One promising application of the new technology consists of the so-called 
GRIN (gradient-index) rods. A thin glass rod can be treated so as to form 
an index gradient in the rod, the index of refraction then being a dwreasing 
function of the distance from the axis of the rod. Such a rod has a focusing 
effect on rays entering one end, and images can be transmitted along the rod. 

A second application, possibly of greater importance, consists of the use 
of classical-type lens elements made with inhomogeneous media. From the 

307 
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mathematical viewpoint, such elements provide the lens designer with several 
more design parameters, namely, the parameters required to specify the 
gradient functions. The new degrees of freedom should make it possible, in 
many cases, to match the quality of a given instrument with fewer lens 
elements, thus reducing space, weight, and possibly cost. 

1.2. MAXWELL‘S FISHEYE 

Optical theoreticians have long been interested in the possibility of a per- 
fect instrument. An instrument, for example, is called “absolute” if every 
point of a three-dimensional region is imaged stigmatically (sharply). This 
means that all rays from a single point of this region (object point) converge 
to a single, corresponding image point. 

MAXWELL [I8541 showed that an absolute instrument is possible in prin- 
ciple, and, in fact, proved that an inhomogeneous medium having an index 
function of the form 

n0 n(r) = 
t + (r/a)’ 

has the desired property. Here r represents the distance from a fixed point 
0, and no and a are constants. This index distribution evidently has spher- 
ical symmetry about a point, and a lens described by eq. (1.1) is known as 
a Maxwell fisheye lens. Rays in such a medium follow plane curves each in 
the form of a circular arc, as shown, for example, by HERZBERGER [I9581 
and BORN and WOLF [1970]. 

The fisheye lens is perfect only in a limited sense. Although eveiy object 
point is sharply imaged, the images of extended objects suffer seveiely from 
various aberrations such as distortion. Furthermore, only points within the 
lens itself are sharply imaged. 

1.3. LUNEBURG LENS 

LUNEBURG [I9641 solved the problem of imaging stigmatically all points 
infinitely distant from a certain lens. This lens, however, does not represent 
an absolute instrument since the points at infinity can be iegarded only as 
points of a surface rather than a region of three-dimensional space. 

The Luneburg lens consists of an inhomogeneous medium indicated by 
the index function 

n(r) = (2-r)+,  (1.2) 

where again r is the distance from the origin. The iegion around the lens is 
assumed to have an index of unity. Every parallel bundle of rays is imaged 
sharply. 
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It is doubtful if such a lens can be fabricated for use in visible light since 
the index given by eq. (1.2) must vary from 0 to 42. However, the Lune- 
burg lens has proven useful in applications to radar. 

1.4. WOOD LENS 

WOOD [I9051 showed how to construct a simple lens in the form of a 
plane parallel plate of gelatin. His procedure was to use a dipping technique 
to make a cylinder of gelatin in which the refractive index is a function of 
the distance from the axis. Then slicing the cylinder by cuts perpendicular 
to the axis results in a number of so-called Wood lenses. 

A typical gradient in a Wood lens is of the form 

where now r represents the distance from the axis of rotational symmetry. 
If the thickness d of the slice is small, it is found that the Wood lens with 
index given by eq. (13) has a focal length of 

f ’  = -1 / (2N,d ) ,  (1.4) 

approximately. This result shows that the plate acts like a converging or 
diverging lens according to  whether N ,  >< 0. 

Wood mentions that Schott has prepared glass lenses of this type by 
pouring molten glass into an iron tube and then suddenly chilling the tube 
on the outside. The tension in the glass cylinder creates a radial variation 
in the refractive index. Plane parallel plates can then be obtained by cutting 
the glass cylinder into slices. 

0 2. Recent Developments 

For many years glass technologists have experimented with the effects of 
diffusing ions into glass in order to modify the refractive index. Only recently, 
however, was it found that a controlled variation in the index could b t  pro- 
duced by ion diffusion in certain types of glass in such a way as to leave 
the glass strain-free and colorless ( HAMBLEN [ 19691 and PEARSON, FRENCH 
and RAWSON [l969]). 

By the ion-diffusion technique an inhomogeneous layer can be formed 
just below the surface of the glass and extending several millimeters beneath 
the surface. The index may be either an increasing or a decreasing function 
of depth, and index variations of 0.08 or more can be achieved. 

The above method of treatment lends itself to the fabrication of the SO- 

called GRIN rods mentioned in $ 1  provided the diameters of the rods are 
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small. If a rod is cylindrical and the ion diffusion is applied to the curved 
surface, it is evident that the resulting index will be a function of the radial 
distance from the axis. A gradient with this type of symmetry is called a 
cylindrical or radial gradient. The Wood lens is another example involving 
a gradient of this type. 

Another potential use of the ion diffusion method consists of the treat- 
ment of any conventional type of lens element on one side (or both) so as to 
form a gradient-index layer. If the surface treated is spherical, the index 
becomes a function of the perpendicular distance from the surface or a 
function of the radial distance from the center of curvature. The index 
function is then said to have spherical symmetry and is referred to as a 
“spherical gradient”. Maxwell’s fisheye and the Luneburg lens are examples 
of this type. 

A surface containing a spherical gradient can be ground and polished, 
and, after this is done, the physical surface may no longer be concentric 
with the spheres of constant index. Thus considerable latitude is possible 
in constructing lens elements of various types. 

In the limiting case in which the center of symmetry of the spherical 
gradient is at  infinity, the index function is simply a function of the distance 
from a reference plane. Such a gradient (axial gradient) can evidently be 
produced by using the ion-diffusion technique starting with a plane glass 
surface. When an axial gradient element is used as part of an optical sys- 
tem, there is some evidence to indicate that the effect is similar to the 
presence of an aspheric surface. MOORE [I9711 has found that the third- 
order contributions to the aberrations of the system are, indeed, the same 
as if one replaced the axial gradient by an aspheric surface. 

At present it is not clear how useful spherical gradients will be in prac- 
tical lens design. The fact that the gradient layer produced by ion diffusion 
extends only a small distance below the surface does appear to be an im- 
portant limitation. The question then arises whether a cylindrical gradient 
can be produced with index variations extending over a large distance from 
the optical axis and being effective through the entire thickness of the lens 
element. If something like a Wood lens could be made with glass, the desired 
result would be achieved. 

SINAI [1971] describes a method by which the above can be accomplished 
by irradiation of glass with high-energy neutrons. By suitable masking, the 
radiation dose can be controlled over selected regions of the lens surface, 
so that a two-dimensional index distribution can be produced within the 
lens according to desired specifications. In particular, a cylindrical gradient 
with a prescribed profile can be obtained. Sinai has shown that a single- 
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element lens produced in this manner may exhibit substantially lower spher- 
ical aberration than comparable homogeneous lenses. 

Thus it appears that at  least two methods of fabricating gradient-index 
optical elements are known. Admittedly, these methods are somewhat diffi- 
cult and costly at  present. But, doubtless, easier and cheaper methods will 
be found. Already the developments cited above have generated renewed 
interest in the design of optical instruments involving inhomogeneous ele- 
ments. 

Q 3. Ray Tracing 

3.1. GENERAL NUMERICAL RAY TRACE 

In order to make use of gradient index elements in lens design (or in 
GRIN rods), the first step is to prepare a suitable method of tracing rays 
in inhomogeneous media. The basic theory for doing this is well known, the 
differential equation of the ray paths being given in the form (BORN and 
WOLF [1970]) 

where r is the variable position vector for points on the ray, Vn is the gra- 
dient of the refractive index n, and a prime denotes differentiation with 
respect to the arc length s. 

In principle, eq. (3.1) determines the paths of all the rays. However, this 
equation, which actually represerts three coupled scalar differential equa- 
tions of second order, cannot be solved analytically in general. A computer 
routine can be devised for solving for the ray paths when the index function 
n(x ,  y ,  z )  is known and the starting data for each ray are given. MONTAGNINO 
[1968] has suggested the following method for doing this. 

Consider the Taylor series expansion of Y in terms of the arc length s in 
the neighborhood of a starting point Po, i.e., 

(n  r’)’ = Vn, (3.1) 

~(s) = r(so)  + v’(s,)As+ ~ r ” ( ~ ~ ) ( A s ) ~  + . . . . 

r’(s) = r‘(so)+r”(so)As+ . . . . 

(3.2) 

(3.3) 

(3.4) 

Likewise, the expansion of the derivative r’(s) is 

As usual in differential geometry 

t = r’, K = Y” = t’ 

where t is the unit tangential vector and K is the curvature vector of the ray 
path. Thus eq. (3.3) can be written 

t ( s )  = t(s ,)+K(s,)As+ . . . . (3.5) 
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To obtain a formula for K we write eq. (3.1) in the form 

n’t+nK = Vn. (3.6) 

t Z = l ,  t * t ’ = t . K = O ,  (3.7) 

n’ = t Vn. (3.8) 

(3.9) 

We then apply scalar multiplication by t ,  noting that 

which gives 

Hence, from eq. (3.6), 

K = [Vn- t ( t  * Vn)]/n. 

The numerical computation then proceeds as follows. Assuming r(so) and 
t (s , )  = r’(so) known at the starting point Po, calculate K at Po from eq. 
(3.9). Select an arbitrary small value for As and compute t (s )  from eq. (3.5) 
using only two terms on the right-hand side. Also calculate ~(s) from eq. 
(3.2) using only two terms on the right-hand side. By this procedure ap- 
proximate values of r and t are found for a point P a small distance As 
away from the starting point Po. Iterating this routine determines (approxi- 
mately) a succession of points of the ray and also the direction of the ray 
at each point. 

Ray tracing by the numerical method outlined above can be done effec- 
tively with a high-speed computer. By taking small values of As and carrying 
many significant figures, very accurate results can be obtained. Furthermore, 
this approach is essentially independent of any symmetry in the function 

On the other hand, when possible, it is desirable to take account of special 
symmetries. In fact, in certain cases, exact analytical solutions can be found 
and, in other cases, simplified ray-tracing equations can be devised so as to 
reduce the time of computation without loss of accuracy. Also, analytic or 
semi-analytic ray-tracing formulas can be helpful in describing the imaging 
properties of the rays. We shall therefore consider some alternative ray- 
tracing methods. 

4% Y ,  2). 

3.2 SPHERICAL MEDIUM 

If the index n is a function ot the distance r from a fixed point (spherical 
gradient) the solution of the differential equation (3.1) can be reduced to the 
evaluation of a single quadrature (LUNEBURG [1964]). For use in practical 
lens design, it is important to arrange the tracing formulas in a form which 
is convenient for use in analyzing conventional-type optical systems modi- 
fied by gradients ( MARCHAND [ 19701). 
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It is natural to introduce spherical coordinates ( r ,  0, 4) with origin 0 at 
the center of symmetry of the index function and with polar axis along the 
line OP,, where Po is the starting point of the ray (see Figs. 1 and 2). Then 
Fermat’s principle requires stationarity of the integral 

L = nds = Fdr ,  Js: Jr: (3.10) 

where 
F = n ( r ) ( l +  r202 + r2  sin2e @)+, (3.11) 

the dot indicating differentiation with respect to r.  

Fig. 1. Ray in a concentric medium (case with zo > 0) .  Figure is schematic in that 
planes OPoP and OO’Po need not coincide. 

Since aFld4 = 0, the first Euler equation reduces to 

n r 2  sin28 +r2B2 -+ r2  sin2e q3’)-+ = const. 

However, at Po, 0 = 0, showing that the constant is 0. For a nonradial ray, 
sin6 # 0, except at Po, and hence 4 = 0 along the ray. This verifies the 
well-known fact that all rays in a concentric medium are plane curves. 

With 4 = 0, we have dFla0 = 0, so that the second Euler equation re- 
duces to 

nr20( 1 + r2d2)-i-  = e, (3.i2) 

where e is constant along any ray. It is not difficult to show the geometrical 
meaning of e as indicated by the formula 

e = _+ nr sin II/, (3.13) 

II/ being the angle shown in Figs. 1 and 2, and the .+ being chosen as II/ 2 +n. 
It is convenient for conventional-type optical systems to assume that 6 is in 
the interval 0 5 0 < fn,  and to consider two cases according to whether 
zo > 0 (Fig. 1, with d > 0 and I,/I < f n )  or zo < 0 (Fjg. 2, with d < 0 and 
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Fig. 2. Similar to Fig. 1 ,  but with zo < 0. 

t,b > 3.). We shall assume r > 0 throughout. The value of e can be deter- 
mined for a given ray by applying eq. (3.13) at the starting point, i.e., 

e = f norO sin (3.14) 

Rearranging eq. (3.12) we obtain 

d ( n Z r 2 - e z ) f  = e,  (3.15) 

the positive root being chosen since e and 0 must have the same sign [see 
eq. (3.12)]. From this we have 

(3.16) 

It now appears to be a simple matter to obtain the Cartesian coordinates of 
a general point on the ray. However, the polar axis was chosen in the direction 
OP, making an angle cto with the z-axis of the optical system (see Figs. 1 
and 2). In order to obtain convenient tracing formulas it is necessary to 
employ Cartesian coordinates (x, y, z) with the z-axis along the optical axis 
and optical direction cosines ( p ,  q, I )  relative to these axes. Therefore we 
introduce the following vectors, which are illustrated geometrically in Fig. 3: 

Fig. 3. Similar to Fig. 1, but showing vectors. 
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The vectors in the second column are simply the unit vectors corresponding 
to those in the first column. 

Since each ray lies entirely in one plane, we can write 

3 = CLP,+@Jo, (3.18) 

are coefficients to be determined. Scalar multiplication by where LY and 
Po and 3, in turn gives 

As seen from Fig. 3, these relations lead to 

cos 0 = LY+p cos *() 

cos (&)-O) = CL cos &+P, 

(3.19) 

(3.20) 

after which it is easily found that 

= sin %/sin $o, CI = cos 6 - p  cos I/I~. (3.21) 

From eqs. (3.17) and (3.18) we obtain 

x = r(a xoho + P P O h O )  

Y = r(CI YOb.0 + P 401no) 

z = r(c( zo/ro + j3 lo/no). 

(3.22) 

In principle these are the desired ray-tracing equations provided LY and P 
are eliminated by eqs. (3.21) and 6 is evaluated by eq. (3.16). The compo- 
nents (p ,  q, l )  of the ray direction vector s can be found by differentiating 
eqs. (3.22) with respect to r and then normalizing to a length n. 

In practice, eqs. (3.22) involve three difficulties. First, for radial or nearly 
radial rays, p becomes indeterminate since both sin 8 and sin $o tend to 0. 
Second, when OP, is large, the quantities z, zo, r and ro are large and may 
even be infinite. Finally, after elimination of a, p and 8, eqs. (3.22) give the 
ray-tracing equations in terms of the inconvenient parameter r instead of z. 
We therefore revise the tracing formulas to remove these difficulties. 
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Equation (3.16) can be written 

8 = eM,, 
where 

(3.23) 

13.24) 

We multiply and divide by 6 in the first of eqs. (3.21) and note eqs. (3.14) 
and (3.23) to obtain 

p = f norO M ,  sinc 0 (f as zo 2 0). (3.25) 

This removes the difficulty with nearly radial rays. Numerical computation 
of sinc 0 = (sin 8)/0 can be done by division when 0 > 0.01 (say) and by 
the series 

sinc 6 = 1 - 02/3! + e4/5! - . . . , (3.26) 
when 0 2 0.01. 

We consider next the case where OP, is large, as is often true in practice. 
In fact, when OP, + 00, the surfaces of constant index become planes per- 
pendicular to the optical axis and we have an axial gradient. To deal with 
large values of OP, we introduce a new parameter ZI in place of r, i.e., 

u = f ( r - ro)  (f asz, 2 0). (3.27) 

The geometrical meaning of u, as illustrated in Figs. 1 and 2, is simply the 
penetration depth of the point P beyond the surface So of constant index 
passing through Po. It is convenient to introduce the symbol p o  for the 
curvature of the sphere S o ,  with p o  considered negative or positive depend- 
ing on whether So is concave to the left or the right, i.e., as zo >< 0. This 
agrees with the usual optical convention. In both cases this convention leads 
to 

r/ro = 1 -pou.  (3.28) 

With help of eqs. (3.27) and (3.28), we find that eq. (3.24) can be written 

M ,  = M P ;  (f as zo 3 O ) ,  (3.29) 
with 

This integral is seen to be well-behaved when OP, is large since p o  is 
small, ep, is always finite, and u is small in cases of practical interest. It 
should be understood that, in eq. (3.30), n is to be expressed as a function 
of u, the distance of P from the surface S o  measured radially. The sphere So  
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need not coincide with the glass surface since the grinding and polishing 
done after the ion-diffusion treatment may produce a different curvature. 

It is helpful to introduce the symbol 

2 = I ep, I = no sin$,, (3.31) 

after which we find easily 

O = Z l p , ( M ,  /? = n o I p o ( M s i n c 8  
(3.32) 

M = cos 8-/? cos $ 0 ,  

and 
x = (1  - p o u ) ( ~ x o  +po M sinc 8 )  

z = ( I  - p o u ) ( ~ z o  + lo M sinc 0). 

y = (1 -pou)(ayo+yo Msinc 8) (3.33) 

Here M is given by eq. (3.30) with (epo)2 replaced by E 2 .  
Equations (3.32) and the first two of eqs. (3.33) are well-behaved, but the 

equation for z breaks down when OP, is large since z and zo become large. 
This difficulty can be removed by introducing a new origin obtained by 
projecting the point Po onto the z-axis. The coordinates of P relative to this 
origin are 

x = x,  jj = y ,  z = z-zo. (3.34) 

After some manipulation (MARCHAND [ 19701) a well-behaved formula for 
Z can be found. The resulting tracing formulas are still not entirely con- 
venient because they are expressed in terms of the parameter u. It would be 
helpful to solve the last of eqs. (3.33) for in terms of u so that u could be 
eliminated from the first two equations. This cannot be done explicitly be- 
cause of the implicit form of the third equation. However, the equation can 
be solved numerically, and a convenient procedure for doing so is to arrange 
it in the form 

u = +sec8(z/a+M[(1-pozl)(b-Io/a)siiic 0 

+i? sin (+8) sinc (+ct)]} (i- as zo 3 0), (3.35) 
where 

b = ~ ~ o + / ~ o l ( P o x o + ~ o ~ o )  

a = + [ t - p ; ( x ; + y ; ) ] +  (3.36) 

( MARCHAND [ 19701). 
Equation (3.35) can be used effectively for numerical ray tracing in con- 

junction with eqs. (3.36) and eqs. (3.30)-(3.33). With Z given we put a trial 
value of u, and the corresponding values of M and 8, on the right-hand side 
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of eq. (3.35) and so calculate an improved approximate value of u. Iteration 
of this procedure gives u to the desired degree of accuracy. 

It is found (MARCHAND [1970]) that the optical direction cosines of the 
ray at a typical point P are given by 

P = A ,  IPO I X O + B , P O  

4 = A2 I Po I YO+B2C?O (3.37) 

I = A ,  a+B,fO,  
where 

A ,  = (at-.? sin 6-6 cos 6 ) / ( l - p o u )  

B ,  = (/?t/IZo +cos 0 ) / ( l  -Po u )  

t = i [ n ’ ( 1 - ~ ~ u ) ’ - ~ ~ ] +  

(3.38) 

(k as zo 3 0). 

These equations have also been arranged so as to be valid when OPo is large 
and for radial rays. As before, with Z given, the corresponding value of u 
must be the one determined from eq. (3.35) by iteration. 

It is not difficult to show that the optical path from Po to P is given by 

The proof follows from eqs. (3.11) and (3.12) with $ = 0 and eqs. (3.15), 
(3.28), (3.31) and (3.38). It is necessary to replace F by -F in  eq. (3.1 1 )  in 
the case when s is a decreasing function of r .  

3.3. CYLINDRlCAL MEDIUM 

In a cylindrical medium the refractive index IZ is a function of the radial 
distance r measured from the axis of symmetry. It is therefore convenient 
to introduce cylindrical coordinates 

x = r cos 0, y = r sin 0, z = z. (3.40) 

Then, to apply Fermat’s principle, we write 

L =  F d z  1: 
with 

F = n(r)(l .t i2 + r282)i, 

in which the dot indicates differentiation with respect to z. 
Since aF/atJ = 0, the first Euler equation reduces to 

nr’O(l+ iz + r2d2)-+ = c, 

(3.41) 

(3.42) 

(3.43) 
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c being constant along any ray and having the same sign as 0 at every point. 
The value of c can be found from the initial conditions of the ray. 

Solving for 6 we find 

mr20 = c ( l+  (3.44) 

nz = (112 - 2 / r 2 , ) + .  (3.45) 
where 

With the help of eqs. (3.44) and (3.45) it is found that the second Euler 
equation reduces to the form 

d 

dz 
- [ m i ( l + i . 2 ) - * ]  = tn’(l+?)*, (3.46) 

where the prime denotes differentiation with respect to r. This equation can 
be written 

[mi ( l+  i2)-f]d[mi(l + ?’)-*I = m dni  (3.47) 

and integrated to give 

or 
[ m i ( l + i 2 ) - * ] 2 + k  = in2 

m 2 / ( l + r 2 )  = k .  

(3.48) 

(3.49) 

This relation shows that the expression on the left-hand side is invariant 
along any given ray. The optical significance of this result can be seen as 
follows. The optical direction cosines of a ray at any point are given by 

p = n dxlds, q = n dylds, I = n dz/ds. (3.50) 

The third equation can be written 

I = n / i  --- n(1 + i2  +r20’)-*.  (3.51) 

Then, from eqs. (3.43), (3.44) and (3.49), it follows that 

m p=-- - k .  
1 +i2 

(3.52) 

Hence, in any cylindrical medium, the third optical direction cosine is con- 
stant along any ray: 

I = I ,  = no cos y o ,  (3.53) 

the zero subscript denoting evaluation at Po. This invariance of I can also 
be deduced at once from the z-component of eq. (3.1). 
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Equation (3.49) can now be written 

or 

with 

i2 = rn2/lo2-1 

i. = dr/dz = g / l o  

g =- 5 ( m  2 -lo) 2 t -  . 

(3.54) 

(3.55) 

(3.56) 

Here the k is chosen depending on whether r is an increasing or decreasing 
function of z. 

In principle, the entire ray trace can now be reduced to two quadratures. 
From eq. (3.55) we have 

and from eqs. (3.44) and (3.52), 

B = c / ( for2 )  
giving 

(3.57) 

(3.58) 

(3.59) 

Unfortunately, eq. (3.57) gives z as a function of r and thus gives r only 
as an implicit function of z. So it is necessary to do a numerical inversion 
to obtain r in terms of z, after which 6 can be determined from eq. (3.59). 
Furthermore, the denominator in eq. (3.57) is often small, so that the evalua- 
tion of the integral becomes highly inaccurate. 

In view of the above difficulties, practical ray tracing is best done by a 
different method. From eqs. (3.52) and (3.53) it follows that eq. (3.46) 
reduces to 

i: = mm’/f,2. (3.60) 

This equation, together with eq. (3.58) and appropriate initial conditions, 
provides an efficient method for tracing rays in a cylindrical medium. Stan- 
dard subroutines for solving such differential equations are well known. For 
meridional rays, c = 0, in which case only eq. (3.60) is required. In the case 
of a skew ray passing near the axis, some care may be needed since the 
denominator in eq. (3.58) becomes small. 

Once r and 0 are known, for a given value of z,  x and y are found by eqs. 
(3.40). To find the direction of the ray we first note from eqs. (3.50) and 
(3.53) that 
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p = n i / S  = l i  = l 0 i  

q = n j / S  = zj = 1,j 

I = I , .  

Differentiation of eqs. (3.40) gives 

i = i cos 8 - r  sill e B 
j = i s i n $ + r c o s e B .  

Hence, we find with the help of eqs. (3.55), (3.58) and (3.40) 

p = g cos 8- ( q r )  sin 0 

q = g sin 8+(c /r )  cos 8 

I = 1,. 

32 1 

(3.61) 

(3.62) 

(3.63) 

From the preceding formulas it is not difficult to show that 

x g - y p  = c (3.64) 

a t  each point of a ray, showing that c is the well-known skewness invaiiant. 
Equation (3.64) is a useful check formula. Also, by applying this equation 
at  Po, we have 

c = xoqo-YoPo, (3.65) 

which serves to determine the value of c at the start of a ray trace. A second 
check formula is the relation 

pz+q2+Z2  = n z ,  (3.66) 

which holds at each point of a ray. 

to P. This is obtained by noting that 
For some problems it is important to compute the optical path from Po 

Since 1 is invariant, this gives 

(3.67) 

(3.68) 

To evaluate this integral it suffices to know n as a function of r and, in turn, 
r as a function of z. 
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3.4. AN IMPORTANT SPECIAL CASE 

In the Wood lens a quadratic function was assumed for n(r)  as given by 
eq. (1.3). More geneially, cylindrical media have often been described by a 
series of the form 

n ( r )  = N , + N , ~ ~ + N ~ ~ ~ +  . . . . (3.69) 

However, it is found (MARCHAND [1972]) that, if an index function of the 
form 

n 2 ( r )  = N , Z f b 2 r 2 ,  b > 0, (3.70) 

is assumed, the ray-tracing equations can be integrated completely in closed 
form. This can be seen as follows. 

Differentiation of eqs. (3.62) gives 

2 = PCOS 8-2 i 8 sin 8 - r  d2 cos 8 - r  4 sin 8 (3.71) 

with a similar equation for j .  From eqs. (3.60), (3.45) and (3.70), we find 

i: = (nn'+c2/r3) /1$ = (c2 /r3fb2r) /Z; ,  (3.72) 

and from eq. (3.58), 

8 = c/Ior2,  4 = -2ci/lor3. (3.73) 

x = @/Io)'  r cos 8, (3.74) 

Thus, eq. (3.71) reduces to form 

with a similar equation for y. It is convenient to introduce a scale factor for 
the z-coordinate, i.e., 

Z = z b /&,  (3.75) 

after which the differential equations can be written 

d2x/dZ2 + X  = 0 

d2y/dZ2+y = 0, 

provided the negative sign is taken in eq. (3.70). 
These equations have the solution 

x = xo cos Z + (po/b)  sin Z 

y = yo cos Z + (qo/b) sin Z, 

(3.76) 

(3.77) 

where the constants of integration have been chosen so that at Po, x and y 
reduce to xo, yo, respectively, and the optical direction cosines of the ray 
are given by p o ,  qo at that point. 
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The corresponding formulas for the direction of the ray at any point are 
found to be 

p = po cos 2-bx, sin Z 

q = qo cos 2-by, sin 2. 
(3.78) 

When the positive 
reduce to the form 

sign is taken in eq. (3.70), the differential equations 

d2X/dF2 - x = 0 

d2y/dZ2 - y  = 0, 

and the corresponding ray-tracing formulas are found to be 

x = xo cosh Z+ (p , /b)  sinh Z 

y = yo cosh Z + (q,/b) sinh Z 

p =p,coshZ+bx,sinhZ 

q = q,coshI+by,sinhZ. 

(3.79) 

(3.80) 

Inspection of eqs. (3.77), (3.78) and (3.80) shows that they can be used 
without difficulty for numerical ray tracing of all rays. In case b is very 
small, division by b can be dealt with by the simple device of writing 

( l / b )  sin = (Z/b) sinc 5 = ( z / / * )  sinc 2, 

where eq. (3.75) was used. The same device can be used for the computation 
of (l/b)sinh Z when b is small. 

Owing to the simplicity of the solutions of eq. (3.70), it seems reasonable 
to try gradients of this type in design work. There are two parameters No 
and b available to optimize aberrations. The choice of sign in eq. (3.70) al- 
lows the gradient to have either a positive or a negative power. Once a 
preliminary design has been achieved, fine correction can be sought by add- 
ing higher terms in eq. (3.70). 

3 .5 .  ANALYTICAL RAY TRACING 

Equations (3.57) and (3.59) represent an attempt to integrate the ray- 
tracing equation as far as possible analytically in the case of a cylindrical 
medium. But, of course, nothing more can be done unless the function n ( r )  
is specified. Furthermore, these equations involve difficulties in practical 
calculations, and STREIFER and PAXTON [1971] developed an analytic ap- 
proach to this problem by assuming that the index function is described by 
an expression of the form 

n 2 ( r )  = N , Z [ ~  - 6 ( r / r , )2+x2  62(r/r,)4+ . . .I, (3.8 1 )  



3 24 G R A D I E N T  I N D E X  L E N S E S  [VII, § 3 

where N o ,  6, t12, c13, . . . are constants that determine the index function. In 
their treatment it was assumed that 6 > 0, which is certainly valid for the 
GRIN rod application where a converging medium is required. 

It should be noted that, in eq. (3.81), n2 instead of n is expanded in a 
series, so that a conversion is required in order to compare coefficients with 
those used by most other writers. 

Streifer and Paxton show that, for 6 > 0, an exact solution can be found 
if a finite number of terms are used in eq. (3.81). However, the algebraic 
expressions for the solutions become very coniplicated if more than two or 
three terms of eq. (3.81) are included. It is interesting to note that the deri- 
vation of the intricate algebraic formulas can be done with modern computer 
software techniques. 

The form chosen for eq. (3.81) makes it convenient for consideration of 
asymptotic approximations based on small values of 6. 

3.6. GENERAL ROTATLON-SYMMETRIC MEDIUM 

In case n is a function of both r and z, much of the development in Q 3.3 
remains valid. However, the third optical direction cosine I is no longer in- 
variant. Equation (3.46) must now be replaced by 

d dm 

dz U t -  
- [miQ + i”)-+] = - (1 + i”+, (3.82) 

and this cannot be integrated without knowing how m depends on both r 
and z. 

Setting 

we find that 
u = mi. ( l+ i2) -h ,  (3.83) 

( 1 + i 2 ) f  = r n / j ( m 2 - u 2 ) ,  (3.84) 

and 
i = u/J(m2 - u’), 

ti = rn(dm/ar)/J(m2 - u2). 

Also, since eq. (3.44) is still valid in the present case, we obtain 

(3.85) 

(3.86) 

(3.87) 

Equations (3.85), (3.86) and (3.87) form a set of first-order differential 
equations that can be solved by standard computer subroutines. Here it is 
assumed that n is a known function of r and z and that n is given by eq. 
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(3.45), i.e., 
mz = n2-c2 / r2 .  (3.88) 

Thus, onc obtains numerically the functions r ( z ) ,  U(Z) and d ( z )  and, from 
these, the ray-tracing equations in Cartesian form as given by eqs. (3.40). 

1 = J(m2-u2) .  (3.89) 

The first two optical direction cosines of the ray at  each point are found by 

For the present case we find, with the help of eq. (3.51), that 

p = u cos 8- (c l r )  sin U 

q = u sin 8 + ( c / r )  cos 0, 
(3.90) 

which are essentially the same as the first two of eqs. (3.63). The optical 
path along a ray is still given by eq. (3.67), but not by eq. (3.68), since 1 is 
no longer constant along a ray. 

I t  is evident that the formulas of this section provide an alternative method 
for tracing rays in a spherical medium. 

0 4. Lens Design 

4.1. PARAXlAL RAYS IN A CYLINDRICAL MEDIUM 

In a gradient-index medium the rays travel in curved paths, so that the 
classical formulas for lens aberrations must be generalized for such media. 
In defining aberrations the well-established approach is to begin by con- 
sidering the first-order approximations to the exact ray-tracing formulas, i.e., 
the paraxial tracing formulas. This name derives from the fact that these 
rays describe well the rays that lie near the optical axis. 

It is known that, if all the rays obeyed the paraxial formulas exactly, the 
image formation of the optical system would be ideal. Therefore, it is cus- 
tomary to use the paraxial rays as reference for the real rays. The deviations 
of the real rays fiom the paraxial ones serve as definitions of the abxrations 
of the system. It is therefore important to obtain the appropriate paraxial 
ray-tracing formulas for gradient-index media. 

In a cylindrical medium, such as one described by eq. (3.69), it is found 
that the coefficients No and N ,  suffice to determine the paraxial formulas. 
It is not possible to disregard the coefficient N ,  since the differential equa- 
tions determining the ray trace involve the derivative 

n’(r) = 2r(N,  +4Nzr2+  . . .) (4-1) 

However, the second term and higher terms here can be discarded in the 
fi rst-order theory. 
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A convenient way to obtain the paraxial formulas is to consider the special 
case described in 9: 3.4. When r is small, eq. (3.70) can be expanded as 

n(r )  = iv0( I i b 2 r 2 / ~ ; ) +  

= N 0 [ l ~ ~ ( b r / N 0 ) 2 - ) ( b r / I V 0 ) 4 ~  . . .]. (4.2) 

N ,  = & b2 / (2No)  (4.3) 

From the viewpoint of paraxial optics any cylindrical medium having 

will behave the same as the special medium with parameters No and 6 .  
Therefore, the tracing formulas (3.77), (3.78) and (3.80) can be used as the 
paraxial tracing formulas for any cylindrical medium provided we take 

0 = W O " +  (4.4) 

and also I eplace several quantities by their appropriate paraxial expressions. 
The scale factor b / l o  becomes 

bjlo = (2Nolfi11)+/(n0 cos y o )  = (21N1 I/NO)*, (4.5) 

I = K z ,  k = (21N,l/N0)'. ( 4 4  

in the paraxial limit. In this case 

In aberration theory, for the most part, only meridional paraxial rays are 
of interest. For a meridional ray in the xz-plane 

q = n cos /? = n dyldz = -nu, (4.7) 

where u is the negative of the slope, as often used in describing meridional 
rays. Taking note of eqs. (4.4) and (4.6) we thus find in the paraxial limit 

We now obtain the paraxial tracing formulas from eqs. (3.77), (3.78) and 
(3.80), the results being 

y = yo cos i - (uo/k)  sin 5 

u = uo cos I+ (yak) sin i 

when N 1  < 0, and 

y = yo cosh 2- (uo/k)  sinh Z 

u = uo cosh 2- (yak) sinh Z 

(4.9) 

(4.10) 
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when N ,  > 0. It is interesting to observe that the paraxial rays are not 
straight 1 ines. 

4.2. FOCAL LENGTH OF A SINGLET 

The paraxial tracing formulas are used to determine the focal length of 
the optical system. For this purpose we consider a meridional ray entering 
the system parallel to the axis. Using the paraxial tracing formulas we must 
find out where the ray meets the z-axis after passing through the system. TO 
illustrate the procedure we consider a single lens element having a cylindrical 
gradient index and surrounded by air. 

Let yo and y ,  be the ray heights at the first and second surfaces, iespec- 
tively, and uo, u l ,  u 2 ,  u3 the negative slope values before and after the first 
and second surfaces, respectively. For paraxial refraction formulas we use 
the axial value N o  for the index inside the lens and so obtain 

where p o ,  p I  are the two surface curvatures of the singlet. 
Adjusting the notation in eqs. (4.9) and (4. lo), we have 

cos ( kd )  
u 2  = 'I (cosh ( k d ) )  \-sinh (kd) 

cos ( k d )  sin ( k d )  
'I = yo (cosh ( k d ) )  -("'"' (sinh ( k d ) )  ' 

(4.11) 

(4.12) 

in which the upper or lower quantities are used as N ,  3 0, and d is the 
axial thickness. 

The focal lengthf" is obtained by setting 240 = 0 and using the definition 

Ilf* = U, /YO.  (4.13) 

After elimination of u I  , u2 and y1 we have 

sin ( kd ) / kd  (/!lo- 1 ) 2 d p o p ,  ~ ~- 

sinh (kd) /kd  I No 

N ,  5 0. (4.14) 

Here 
k = (21N, l jN , )" ,  (4.15) 
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as in eq. (4.6). It is evident that, when N ,  = 0, eq. (4.14) reduces to the 
customary formula for the focal length of a homogeneous singlet, 

(4.16) 

By the same general procedure we can derive formulas for locating the 
paraxial image plane for a given object plane. 

Equation (4.14) can often be replaced by an approximate formula, valid 
when kd CK 1, obtained by approximating the terms in braces by the leading 
terms of their series expansions. This leads to 

I f *  = I / f , -2N,d .  (4.17) 

From eq. (4.14) we can find the focal length of a Wood lens by letting 
po -+ 0 and p,  --* 0. In this case, the approximate formula, eq. (4.17), re- 
duces to 

l lf* = -2N,d ,  (4.17a) 

showing that a cylindrical gradient does, indeed, produce power in a plane 
parallel plate. 

4.3. BUCHDAHL THEORY 

As pointed out, the various geometrical aberrations can be computed for 
a given optical system by tracing real rays and paraxial rays. This makes it 
possible to predict the performance of the system from its construction 
parameters. However, the central problem in lens design is to decide how 
to change the construction paranieters so as to reduce the aberrations. 

Several years ago BUCHDAHL [ 19691 developed a modification of the clas- 
sical order-by-order analysis of aberrations. Buchdahl’s method involves the 
surface-by-surface computation of contributions to the third-order, fifth- 
ordel, etc., geometrical aberrations. This approach helps the designer to 
determine which surfaces and which parameters are sensitive for the various 
aberrations. What is more, this surface-by-surface analysis applies also to 
systems containing one or more gradient-index media, provided these have 
rotational symmetry about the axis. 

Buchdahl’s theory calls for tracing two meridional paraxial lays through 
the system. One ray passes through the axial point of the object plane and 
has unit height at the entrance pupil. The second ray has unit height at the 
object plane and zero height at the efitrance pupil. A brief outline of Buch- 
dahi’s method, as applied in the presence of inhomogeneous niedia, is pre- 
sented in an appendix ot his book (BUCHDAHL [I969]). 

Sands and Moore developed many of the details of Buchdahl theory as 
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applied to gradient-index media (SANDS [1970, 1971 (a, b, c)], MOORE [1970, 
1971 1, MOORE and SANDS [1971]). In particular, Moore investigated the cor- 
rection of third-order aberrations in gradient-index singlets. He was able to 
design a singlet with an axial gradient corrected for third-order spherical 
aberration and coma and having no third-order distortion. Using a cylin- 
drical gradient he designed a singlet corrected for all third-order mono- 
chromatic aberrations except for Petzval curvature of field. His studies in- 
dicate that, in a general way, cylindrical gradients appear to be more effec- 
tive in lens design than axial or spherical gradients. 

4.4. COLOR CORRECTION 

In the preceding sections it was seen that the paraxial properties of a 
cylindrical medium are determined by the coefficients No and N ,  of the 
expansion 

Iz(r) = N o + N , r 2 + N 2 r 4 +  . . .. (4.18) 

In these sections the assumption was tacitly made that the light involved 
was monochromatic. 

The possibility that N o ,  N , ,  N , ,  . . . can depend on wavelength must 
eventually be faced even though, at the present time, little is known about 
dispersion properties of the actual inhomogeneous media now being fabri- 
cated. 

SANDS [ l97Ial has considered theoretically the question of computing the 
paraxial chromatic aberration of a general rotation-symmetric system. Thus 
he assumes an index function of the form 

n((, Z, I )  = N0(z ,  d)+N,(z,  I ) ( + N 2 ( z ,  a)(’+ * .  . , 

5 = r 2  = xz+y2  

(4.19) 
where 

(4.20) 
and I is the wavelength. 

Following closely the methods of Buchdahl, Sands shows that the chro- 
matic aberration can be computed by summing contributions from all of the 
surfaces and all of the media in the system even though some of the media 
may have inhomogeneous index functions of the form shown in eq. (4.19). 
The definition used for the chromatic aberration is 

E = H I - m H ,  (4.21) 

in which H is the two-dimensional vector giving the location of the object 
point in the object plane, m is the paraxial magnification for light of wave- 
length A, (the base wavelength) and H’ is the vector of position (for wave- 
length A) in the ideal image plane for the base color. 
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We shall not present here the detailed formulas for computing e. However, 
it is interesting to note that Sands extends a dispersion theory of Buchdahl’s 
to the inhomogeneous case. Thus each of the coefficients N o ,  N , ,  , . . is 
assumed to be expanded in a power series in a color parameter w, which is 
a function of ,I and 1, of the form 

w = SA/(  1 + a6A) 
SA = , I -Ao.  

(4.22) 

Thus one can speak of color aberrations of various chromatic orders. The 
linear terms in these expressions naturally lead to the primary color aberra- 
tions. 

4.5. THIRD-ORDER ABERRATIONS OF 1NHOMOGENEOUS LENSES 

Following BUCHDAHL [I9691 and SANDS [1970], we consider a medium 
with refractive index given by 

n = N,(z)+N,(z)t+N,(z) t2+ . . . , (4.23) 

5 = r2  = x 2 + y 2 .  (4.24) 

With n a function of both rand z, rays can be traced by the method of 4 3.6. 
In a centered optical system, it is known (BUCHDAHL [1970]) that the total 

vectorial third-order aberration is given by an expression of the form 

where 

= Cult1 t 2al11I +(a3 + uq)[l]S+ [02  t 2 0 ,  +o, ( I ] T  (4.25) 
Here 

S = ( S , ,  S,), T = (T, , T,) (4.26) 

are two-dimensional vectors indicating the intersection point of the ray with 
the object plane and the entrance pupil, respectively, and 

tt = s,Z+s; 
‘ I1 = S,T,+SYTY 

2 2  C l  = T, + T, . 
(4.27) 

It is not difficult to verify that the five coefficients crl to u5 are the familiar 
Seidel aberration coefficients. 

In Buchdahl’s theory each of these coefficients is expressed as the sum of 
contributions from all the surfaces and intersurface transitions in the optical 
system. In order to describe these contributions we consider two meridional 
paraxial rays. The a-ray is defined by heights of unity at the object plane 
and zero at the entrance pupil, the b-ray by heights of zero at the object 
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plane and unity at  the entrance pupil. Tracing these two rays (by paraxial 
formulas) through the optical system determines heights y,(z), Y b ( Z )  and 
slopes u, (z )  = .i,(z), u b ( z )  = .o(z) for all points of these rays, the dot indi- 
cating differentiation with respect to z. 

Consider now a typical refracting surface, assumed to be spherical with 
curvature c. Sands defines a constant I( by the formula 

K = -C A ( 2 N ,  + t c  N o ) ,  (4.28) 

where A indicates the change in the following quantity in  moving from one 
side of the surface to the other, and N o ,  N ,  are the coefficients in eq. (4.23) 
for either of the two media involved. If both media are homogeneous, 
K = 0. By way of further notation let 

ko = No/No' ,  (4.29) 

the ratio of the axial indices before and after the surface, and 

i, = u, + c ya 

i b  = u b + c J ' b  

q = ib/ia (4.30) 

)- = N O ( z )  [.va(z)ub(z) -vb(z)ua(z) l  

a = ' N  2 o ( k 0  - 1 )  Yaia2 (ia + Ua'). 

Evidently, i, is the angle of incidence, i.e., the angle the a-ray makes with 
the surface normal before refraction, and i, correspondingly for the b-ray. 
The quantity 1, is a paraxial invariant of the system and so can be determined 
at any convenient point in  the optical system. The quantity a is the usual 
spherical surface contribution to the spherical aberration. 

With this notation it  is found that the contributions of the surface to the 
five coefficients (rl to o5 are given by 

a, = a+Kya4 

u2 = aq+ KYa3Yb 

U 3  = aq2 + K Y a 2 y b 2  

a4 = +A'c d(l/No) 

U s  = U q 3  + qU4 f Ky,J'b3. 

(4.31) 

The effect of a transfer from any surface to the next one is expressed by five 
contributions UT to a:, as given by the formulas 
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Here the symbol V indicates the change in the following quantity in 
transfer from one surface to the next. The integrals are to be computed 
z-values from the first of the surfaces to the next. 

the 
for 

It is thus seen to be ielatively straightforward to compute the Seidel 
(third-order) coefficients for a centered system containing one or more in- 
homogeneous media of the type indicated by eq. (4.23). The procedure 
requires the tracing of two paraxial rays through the optical system to give 
the functions y,(z), yb(z), ua(z), ub(z) and then performing the integrations 
indicated in eqs. (4.32). 

ci = P( C aij+ 2 a;), (4.33) 
j j 

(4.34) 

I' being the z-coordinate of the paraxial image plane. 
The two summation signs in eq. (4.33) indicate that each of the five co- 

efficients ci is obtained by summing the surface contributions ai over all 
surfaces and the transfer contributions 07 over all the intervals in the sys- 
tem. 

In the case when n is independent of z (cylindrical medium), the ray 
tracing can be done by eqs. (4.9) when N ,  < 0 or by eqs. (4.10) when 
N ,  > 0. In this case the coefficients N o ,  N ,  , N z ,  . . . are constants. Then 
the required integrals have the forms 

/Y:dz, JY:u;dZ, Ju:dz, lya':ubdz, (4.35) 

etc. 
But, for a cylindrical medium, ihe paraxial quantities y,, yb, u,, ub are 

given by simple functions involving sin 2, cos I when N ,  < 0, or sinh ,Z and 
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cosh I when N ,  > 0. Consequently, these integrals can be evaluated once 
and for all in the indefinite form. Then it only remains to insert the ap- 
propriate z-values as limits of integration, i.e., the axial values of z at the 
surfaces involved. 

As an illustration, consider the integral 

A = yfu:dz, s 
and rewrite eqs. (4.9), noting that u = -u, i.e., 

y ,  = yo, cos Z+ (u,,/k) sin 1 

u, = uOa cos Z-y,,k sin 1 
with 

(4.36) 

(4.37) 

Z = kz = z ( ~ ~ N , / / N , ) ~ .  (4.38) 

The quantities yOa and voa are the values of y, and u, at the vertex plane of 
the first of the two surfaces involved. 

Substitution of eqs. (4.37) into (4.36) shows that several elementary in- 
definite integrals must be evaluated, namely, 

c0s3 Z sin 1 dB, 1 cos' 1 sin2 1d2, s c0s4 Z dz, 

j cos Z sin3 Z d1, 1 sin4 Zd1, (4.39) 

where we have changed the variable of integration to 1. As pointed out, 
these and the other necessary indefinite integrals can be evaluated once and 
for all, so that no numerical integrations are required. 

0 5. GRIN Rods 

5.1. INTRODUCTION 

A GRIN rod consists of a transparent, cylindrical rod having a cylindrical 
index function with N ,  < 0. The negative value of the coefficient produces 
a focusing effect, so that an image on one end of the rod can be trans- 
mitted to the other with unit magnification provided the parameters of the 
rod are suitably chosen. 

Ray tracing in GRIN rods is essentially the same as for any cylindrical 
medium. Hence, eqs. (3.58) and (3.60), in conjunction with eqs. (3.45), 
(3.56) and (3.63), with suitable initial conditions, serve as the basis for a 
computer program to trace the rays. 



334 G R A D I E N T  l N D E X  L E N S E S  [LII, g 5 

5.2.  MERIDIONAL RAYS 

With M < 0 meridional paraxial rays can be traced by means of eqs. 
(4.6) and (4.9), i.e., 

1) = y o  cos 5 - ( u o / k )  sin Z 

11 = u0 cos Z t y o  k sin Z (5.1 ) 

Z = k z ,  k = ( 2 1 N l l / N o ) ’ - .  

It is evident that meridional rays are periodic, the period L being given by 

L = 2rc/k.  (5.2) 

Thus, if the length of the rod is a multiple of L, any meridional ray entering 
one end (at z = 0) at height yo will have the same height at the other end. 
Therefore, in the paraxial approximation, all points at  one end are sharply 
imaged, in the limited sense that all paraxial meridional rays through a point 
Po at z = 0 will pass through a single point P at the other end. 

If the index function n ( r )  is suitably chosen, it is possible for the same 
property to hold exactly for all meridional rays, except for those reflected 
at the surface of the cylinder. 

Consider a medium given by 

n(r)  = N o  sech (w) = No( 1 - )ct2r2 + &a4r4 + . . .). (5.3) 

For a meridional ray, from eqs. (3.45), (3.56), and (3.57) with c = 0, we find 

(5.4) 

taking the f sign as i. 2 0. Insertion of eq. (5.3) into (5.4) leads to 

(5.5) 

(5.6) 

(5.7) 

cosh (crr)dr z = A  ~~ 

S , o  j{ 1 - A Z  sinh’ (ur) )  ’ 
with 

A = * l o ( N ; - l o )  2 -+. 

u = A sinh (ur) .  

Equation (5.5) is easily evaluated by introducing a variable 

The result, with r replaced by y, is 

(uz+sin-’ u O ) ]  

(5.8) uo = A sinh (uro). 
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I n  this case, evidently, every meridional ray is periodic with period 

AZ = 2 ~ 1 ~ .  (5.9) 

If the length L of the rod is chosen so that 

L = 2 4 a  (5.10) 

(or any multiple of Az) ,  it is clear that any point on one end of the rod will 
be sharply imaged (from the viewpoint of meridional rays alone). 

Thus the gradient function given by eq. (5.3) can be considered as ideal 
for meridional rays. Unfortunately, with this type of gradient, skew rays 
are not imaged sharply, as has been pointed out, for instance, by RAWSON, 
HERRlOTT and MCKENNA [1970]. In fact, it is not possible for a cylindrical 
gradient to image sharply both meridional and skew rays within its own 
medium. 

5.3. HELICAL RAYS 

A ray is called helical if all of its points are at the same distance ro from 
the axis. For such a ray 

n = n(ro) = no, r E r o ,  i = 0, i: 3 0. (5.1 1) 

Equation (3.59) gives then 

6 = 0, + (c / fo) (z / r : ) ,  (5.12) 

showing that the ray is periodic with period 

Az = 2nriEo/lcl. (5.13) 

We can ask what form of gradient function is ideal for helical rays. If the 
period Az is equal to the length L of the rod, we have 

L = 2nrilojlcl. (5.14) 

It will be seen that, in order for a ray to be helical, the value of c must be 
ielated in a certain way to the index function and the radius of the ray. For, 
with r = 0, we see from eq. (3.60) that m' = 0 at each point of the ray. 
Hence, from eq. (3 .49,  

mm' = nn' + c2/r3 = 0, (5.15) 

a t  each point of the ray. For Po this gives 

c = k ( - n , n b r i ) + .  (5.16) 

This shows that a cylindrical medium can support helical rays only if n is 
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a decreasing function of r.  Furthermore, if c # 0, there are evidently two 
symmetrical helical rays passing through a given starting point, the f in 
eq. (5.16) depending on whether 4 3 0. 

From eq. (3.54) we have lo = rn along a helical ray, and therefore eq. 
(3.45) reduces to 

(5.17) 1; = n g - c  Ir, ,  

which determines lo,  with the help of eq. (5.16), if the index function n(r)  
is given along with the radius y o .  

Elimination of c and Zo from eq. (5.14) [or eq. (5.13)] by means of eqs. 
(5.16) and (5.17) shows that the period of a helical ray depends, in general, 
on the radius ro of the ray. However, with a suitable choice of the index 
function, this is not the case. The elimination of lo and c from eq. (5.14) 
leads to 

nb/no = r o / { r g + ( ~ / 2 n ) ’ } .  (5.18) 

Following RAWSON, HERRIOTT and MCKENNA [I9701 we assume this to hold 
for all radial values between 0 and ro with L independent of ro . We integrate 
the differential equation between these limits, the result being 

2 2  

(5.19) 

where No is the axial value of the index. An index function of this form may 
be regarded as idea1 for helical rays. 

5 6. Conclusions 

The history of optics contains numerous cases where inhomogeneous 
media have been studied theoretically. In recent years, improved methods 
of fabricating optical elements having index gradients were found, and this 
has stimulated new investigations to determine how such elements can be 
put to practical use. 

Two applications of gradient index materials are of special interest at 
present. Narrow rods (GRIN rods) with cylindrical index gradients show 
promise as image-transfer devices, and conventional-type optical elements, 
modified by an inhomogeneity of the index of the material, provide a new 
design tool for classical types of optical systems. These elements are poten- 
tially useful in improving quality, reducing manufacturing costs, and perhaps 
helping to meet constraints on space and weight in optical systems. 

In connection with recent studies of gradients, the role of ray tracing has 
been important. Although the basic differential equations that determine the 
ray paths have been known for many years, it is important to cast these into 
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forms that are efficient for the particular geometries under consideration. 
In  some cases it is found that the differential equations can be either partially 
or  completely integrated. 

A substantial amount of theoretical work has appeared recently in the 
optical literature on methods of analyzing the image-forming properties of 
gradient-index lenses. However, not much has been reported, as yet, on the 
application of such elements in the design of practical lenses. 
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A 
aberration, 225, 228, 252 - coefficient, 230, 235 - -, chromatic, 231, 236, 241 
- -, spherical, 230, 235 et seq., 241 
aberrations, correction of, 329 
-, lens, 325 
absolute instrument, 308 
absorbers, strong, 182 
-, weak, 183 
absorbing medium, 182 
absorption, 171 
- index, 18 1 
accelerating gun, 243 
acceleration system, 232 et seq. 
action, 255 
acoustic hologram, 143 
- power, 140 
- surface technology, 125 
- - waves, 125 el seq., 128 et seq. 
- _ _  , nonsinusoidal, 149 et seq. 
- velocity, 130, 162 
-waves, bulk, 128, 143 
acoustics, 215 
acousto-optic interactions, 129 
adiabatic approximation, 56 
- changes, 253 
- -, non-, 253 
- demagnetization, 82 
- invariance, law of, 259, 298 
air loading, 147 
Airy function, 257 
amplitude modulation, 129 
angular divergences, 249 
- spectrum representation, 169 
anharmonic interaction, 3, 5 ,  7, 65 
anisotropic materials, 244 
- media, 284 et seq. 
- substrate, 126 
annihilation operator, 8, 44, 62 

anode, thick, 228 
anti-Stokes line, 110 
apodization, 84 
astigmatic optical system, 279 
- system, non-orthogonal, 265 
astigmatically distorted reconstruction, 

astigmatism, 214, 279 
asymmetric-type interferometer, 85 
atomic correlations, 48 
attenuated total reflection, 181 
axial gradient, 310 

B 

bath oscillator, 28 
beam diffraction, 145 
- displacement, 187 
- -, lateral, 177, 180, 187 et seq. 
- -, transverse, 188 
- halfwidth, 270 et seq.? 286 
- modes, 249, 253, 278, 300 et seq. 
- -, fundamental, 266 
- optics, 249 
- profile, 269 
- propagation, 262 
- radius, 266 
- splitter, 84, 209 
- -, variable, 186 
- steering, 126, 145 
-tilting technique, 141 
- tracing methods, 269, 275 
- waist, 254 
birefringence, induced, 284 
-, natural, 284 
birefringent crystal, lossless, 289 
Bloch equations, 22, 43 
Bohr magneton, 92, 108 
- - Sommerfeld, quantum condition of, 

bolometer, 82 rt seq. 

210 

258 
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-, impurity doped Ge, 82 
Boltzmann constant, 18 
Born approximation, 17, 20, 25, 45, 55, 

Bose-Einstein distribution, 30, 33 
boson, 8 
- system, 12 
boundary, 260 
- condition, 169, 176, 200, 209 
- -, stress free, 126 
- layer waves, 2 15 
Bragg cell, 147 
- condition, 21 1 et seq. 
- deflection, 129, 162 
- diffraction, 159 
- type diffraction, 154 
Brewster angle, 134, I38 et seq. 
- - window, 279 
brightness, 225 
- level, 225 
Brout-Prigogine equation, 67 
Brownian motion, 3, 37, 71 
Buchdahl theory, 328, 330 
bulk acoustic waves, 128, 143 
- waves, 146 
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c-number, 8 et seq., 19, 62 
- differential equation, 25 
- distribution function, 3, 8 et seq. 
- variables, 39, 56 
Cauchy principle value, 29 
caustic, 261, 266 
- curve, 255 
- lines, 257 
cavity control, 106 
-, degenerate, 273 
- tuning, 1 I8 
Cerenkov radiation, 217 
channel spectra, 88 
chromatic aberration, 238 et seq. 
- - coefficient, 231, 236 et seq., 241 et seq. 
cladding, 194 
clean surface, 227 
coherence, degree of, 194 
- factor, 112 
coherent interaction, 55 
- light conversion, 196 
- radiation, 83 
- source, 249 
collinear interaction, 159 
- mode conversion, 161 
color correction, 329 

59, 64, 66 

coma, 329 
communication system, 249 
complex beam parameter, 267 
computer, 31 1 er seq. 
- generated hologram, 21 3 
-, real-time on-line, 88 
congruences, 255 
-, normal, 255 
conical wave, 216 et seq. 
conjugate concentric cavity, 273 
conservation of energy, I79 
- - power, 255, 292 
convergence angle, 242 
conversion efficiency, 162 
cooled filters, 81 
cooperation number, 48 
correlation function, 10, 35, 50 
- matrix, 27 et seq. 
- time, 28 
correlations, atomic, 48 
coupling coefficient, 20, 65 
- constant, 157 
creation operator, 8, 44 
critical angle, 175 et seq., 179, 182, 190, 

193 et seq., 214 ef seq. 
-temperature, 101 
cross spectral density, 19 
cryostat, 93 
crystal imperfections, 146 
- orientation, 226 
cutoff filters, 96 et seq. 
cyclotron resonance absorption, 93, 96 
- - detector, InSb, 91 et seq. 
- - transition, 92 
cylindrical medium, 318, 322 

D 

damaged layers, 146 
damped wavefield, 198 
damping, 36, 42, 198 
- coefficient, 37 
Debye frequency, 5,  66 
decay constant, 49 
-, exponential, 46 
- of photons, spontaneous, 67 
-, superradiance, 51 
degenerate, N-fold, 26 I 
demagnification, 225 et seq. 
demagnifying system, 242 et seq. 
density operator, 4 et seq., 7, 9, 23 et seq., 

detailed balance, 4, 18, 57, 69 
detector, low temperature, 81 

21, 52 
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detuning, 36 
diagrammatic methods, 5 
dielectric constant, 128, 156 
- impermeability tensor, relative, 127 
- material, 2 I7 
- -, lossy, 174 
- monolayer, 226 
difference frequency generation, I 11 
- - laser, 1 I 1  e f  seq. 
diffraction, 249 
- angle, 143, 172 
- coefficient, 236 
- effects, 261 
-efficiency. 140, 163, 210 
-, force of, 250 
-, geometrical theory of, 260 
- grating, 173, 185 
- order, 200 
diffusion constant, 37 
- coefficient, 38, 68 
- matrix, 68 
diode laser, 103 pi sey. 
- -, tunable, 106 
dipole-dipole coupling, 19 
discontinuity, surfaces of, 298 e f  se9. 
dispersion relations, 161 
displacement, induced electric, 156 
-, transverse, 180 
distributed feedback dye laser, 107 
distribution, Bose-Einstein, 30, 33 
- function, 3 ,  5, 8 e f  sey., 22 
- -, c-number, 3, 8 et sey. 
- -, phase space, 8 et seq., 23 et seq., 38, 

- -. steady state, 57 
- -, Sudarshan-Gluuber, 9 et seq., 21, 29, 

- -, Wigner, 9 et seq., 29, 38 
-, Poisson, 33 
Doob’s theorem, 72 
Doppler effect, 284 et seq. 
-width, 102 
double beam spectrometer, 86 
drift coefficient, 68 
dye laser, 103, 106 et se9. 
- -, monomolecular, 196 
dynamic theory, 174 
Dyson’s time ordering operator, 20, 25 
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earthquakes, 215 
echelette grating, 98 
- type grating, 79 

49, 68 

36 et seq., 49, 55, 62 

effective mass, 92 
eikonal, 257 
- equation, 255, 287 ef  seq., 291 
- functions, 259 
elastic nonlinearities, 126 
- strain, 128 
- waves, coherent, 125 
elasticity, 2 I5 
electron beam technique, 213 
- gun system, 228, 240 
- lens, 225 
- microscope, resolution in, 241 
- microscopy, 233 
- optical system, 225, 236 
- probes, 225 
electrooptic materials, 284 
electrostatic lens, 228, 283 
emission, stable, 227 
energy flow, I77 et seq. 
entropy, 32 
etching, 227 
Euler equation, 313, 318 et seq. 
evanescent field, 178 
- wave, 169 et sey. 
- -, creation, I70 et sey., 175 et seq. 
- -, existence, 170 et sey. 
- - holography, 170, 184, 197 
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Fabry-Perot cavity, 102 
- _ -  resonator, 103, 273 
Fellgett’s effect, 83 
Fermat’s principle, 254, 257, 294 ef seq., 

313, 318 
fermions, 12 
fiber, 262 
-, active, 195 
-, distorted, 263 
- exit, 264 
- laser amplifier, 195 
- coupled, 195 

- optics, 194 
-, passive, 195 
-, square-law, 262, 270 
- transmission, 263 
field damping, 55 
- emission, 225 et seq. 
- - source, 226, 240 e f  sey., 243 
- irradiance, 252 
- shape, 230 
- -, parabolic, 230 
film thickness, 161 et sey. 

- -, glass, 195 
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filter, sharp cut-off, 79 
fluctuations, 55, 68 
fluorescence, 62 
fluorescent dye molecules, 196 
- film, 186 
- liquid, 196 
- material, 196 
focal length, 327 
Fock state, 30, 33, 50 
focussing force, 250 
Fokker-Planck equation, 3, 25, 29 et seq., 

34, 56, 63, 67 et seq. 
- _ -  process, 67 et seq. 
Fourier series, 88 
- transform, 171 
- -, fast, 88 
- transformation, 87 
- 's theorem, 171 
Fowler-Nordheim plot, 226 
free-space propagation, 260 
frequency conversion, 196 
- filtering, 273 

Fresnel approximation of the Kirchhoff 
integral, 251 

- diffraction, 145 
- 's formulas, 175, 178 et seq., 181 
frustrated total internal reflection, 189 

functional Z, 35 et seq. 
fundamental beam modes, 276 
- mode, 263,282 
- - of resonance, 274 
Furry picture, 59 

G 

gas laser, 55  
Gauss, approximation of, 292, 294 et seq., 

-, function of, 252 et seq. 
Gaussian amplitude distribution, 277 
- aperturt, 274 
- beam, 249, 265 et seq., 276 
- image, 233 et seq., 239, 241 
- mode, 274 
- random process, 21, 29, 38 
- reflectivity profile, 274 
Ge bolometer, 97 
gelatine, hardened, 202 
general modal solution, 284 
- relativity, 285 
generating function, 32 et seq. 
geometrical optics, 277 

- Shift, 45, 62 

ef seq. 
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- - fields, 254 
- theory of diffraction, 249 
Ginzburg-Landau energy functional, 57 
glass fiber, 262 
Colay cell, 115 
- detector, 83 
Coos-Hanchen effect, 180, 187 
gradient, axial, 310 
-, cylindrical, 310 
- -index layer, 310 
- - -  media, 307 et seq. 
- _ -  singlets, 329 
- radial, 310 
grating, 79, 96 
- coupler, 159 
- filter, 79 
grazing incidence, 172, I77 
Green's function, 12, 21, 34, 39, 57, 63, 

130, 135, 265 et seq., 277, 294 et seq. 
GRIN rod, 307 et seq., 311,324,333 et seq. 
grinding, 317 
groove profile, 174 
guided wave, optical, 128 et seq., 153 et seq., 

gun aberrations, 234 
- exit focus, 239, 242 
gyroscope, 285 
gyrotropic media, 286 

H 

H-function, 69 
H-theorem, 69 et seq. 
Hamiltonian, augmented, 35 
- optics, 249, 292 et seq. 
harmonic generation, 150 
- oscillator, 7, 19, 43, 49, 262 
- -, randomly modulated, 21 
- -, relaxation of, 27 
- -, undamped, 262 
Hartree approximation, 50 
He-Ne laser, 139 
heat bath, 28, 58 
Heisenberg picture, 12 
helical gas lens, 283 
- path, 271 
- rays, 335 
Helmholtz equation, parabolic approxi- 

mation, 251 
- -, scalar, 251 
- integral, I30 
- reciprocity theorem, 183 
Hermite polynomial, 252 et seq., 263 
heterodyne detection, 83, 106, 110 

162 
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- optical receiver, 264 
high resolution images, 213 
- - recordings, 196 
- - spectroscopy, 84 
hologram fringes, 206 
-, hybrid type, 204 
- thickness, 204 
holography, 197 et seq. 
-, evanescent wave, 170, 184, I97 et seq. 
homogeneous wave, 169, 172, 183 
- wavefield, 198 
Huygens’ principle, 250 

I 

idler radiation, 113 et seq. 
image conveying, 194 
- formation, 170, 189 
- processing, 189 
imaging system, 232 
-, optical, 170 
impurity, 94 
- atoms, 92 
- levels, 93 
incidence, angle of, 18 I 
inclination, angle of, 181 
incoherence, spatial, 21 3 
-, temporal, 21 3 
incoherent light, 192 
- - conversion, 196 
index function, 310 et seq., 323 
- gradient, 307 et seq. 
- of refraction, 127 
- - _  , graded, 250 
indicatrix, 127 
information storage, 213 
infrared, 79 
inhomogeneous media, 289 et seq., 307 
- wave, 169 
- wavefield, 198 
initial random phase, 16, 20 
InSb detector, 91 et seq. 
integrated circuits, optical, 194 
- optics, 194, 214 
integro-differential equation, 15, 2S, 56 
interaction, anharmonic, 3, 5, 7 
- length, 158, 162 
- picture, 19, 21, 25, 27, 29, 40 
- time, 5 
interdigital transducer, 138, 160 
interference field, 209 
- filter, 81 
- fringe pattern, 170, 187 
interferometric methods, 192 

- spectrometer, 83 
internal reflected wave, 177 
- reflection, 175, 200 
- - spectroscopy, 196 
- -, total, 128, 153, 169 et seq. 
invariance of the luminance, law of, 259 
inversion, unsaturated, 54 
ion diffusion, 309, 317 
ionic crystal, 1 13 
irradiance, 267 
- pattern, 251 
irradiation of glass, 310 
isotropic media, 290 

J 

J. W. K. B. method, 250, 257, 261 
Jacquinot’s effect, 83 
Josephson contact, 101 
- current, 99 et seq. 
- detector, 101 
- frequency, 100 
-junction detector, 99 et seq. 
- radiation, 101 
- tunneling, 99 

K 

Keller’s representation, 257 
Kerr effect, 193 
Kirchhoff integral, 251 
knife edge, 142 
Kolmogorov equation, 68 

L 

Lagrange ray invariant, 268 
Lagrangian, quadratic, 287 
Laguerre polynomial, 11, 252 
lamella experiment, 186 
laminar-type interferometer, 83 
Landau level, 91 
Langevin equation, 29, 37, 56 
- process, 71 
Laplace transform, 15 
laser, 3, 5, 7, 22 et seq., 138, 262 
- gyroscope, 284 
- light, statistical properties of, 57 
- linewidth, I09 
- master equation, 52 
- model, 21 
- oscillator, 274 
lateral beam displacement, 177, 180, 183, 

- wave, 214 et seq. 
lattice vibrations, 93 

187 et seq., 214 et seq. 
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leaky modes, 250 
- -wave mechanism, 181 
lens aberrations, 234, 325 
- design, 325 et seq. 
- -like media, 256, 265 
light coupler, 195 
- diffraction, 125, 129 et seq., 138 
- switching, 194 
Liouville equation of motion, 6 
- operator, 6, 12, 20, 24 et seq., 40, 52, 59 
- ' s  theorem, 234, 259 
Littrow arrangement, 103 
local oscillator, 264 
long focal length system, 242 
Lorentz reciprocity theorem, 288 et seq. 
Lorentzian spectrum, 22 
loss mechanism, 52 
losses, non-uniform, 273 
lossy medium, 277 
Love waves, 126 
Luneburg lens, 308 et seq. 
- rule of inversion, 281 
- ' s  relation, 296 

M 

macroscopic mean value, 22 
magnetic field tuning, 106 
- lens, 240 
- resonance, 65 
magneto plasma effect, I13 
magnification system, 233 
magnifying, 243, 245 
Malus and Dupin, theorem of, 255 
manifold, 276 
mapping, 29 
- operator, 8 et seq., 5 5  
-, optical, 196 
Markovian approximation, 41, 45, 56, 

masking techniques, 193, 195 
master equation, 4, I3 er seq. 
- -, laser, 52 
- - method, 3 et seq. 
- -, Pauli's, 4 
matricial ray, 265 
Maupertuis principle, 254 
Maxwell's equations, 156, 250, 262, 286 
- fisheye, 273, 308 et sey. 
mechanical accuracy, 85 
- stress, 226 
- tolerances, 228 
meridional paraxial rays, 334 
- planes of symmetry, 279 

59, 66 

- rays, 334 
metal mesh filter, 79 
- wire-cloth meshes, 81 
metallic grating, 218 
metrology, I89 
Michelson-type interferometer, 83 
microanalysis, 246 
micrograph, 225 
microprobes, 225 
microscopic reversibility, 69 
microwave region, 188 
Minimumstrahl kennzeichnung-method, 

misalignment terms, 298 
mixing of  laser lines, 103 
modal matrix, 282 
mode conversion, 159, 252 
- -generating system, 276 
modes, 25 1, 262 
Moire-effect, 214 
monochromatic detector, 91 et seq. 
- radiation, 91 
- source, 102 
monochromator, 95 et seq. 
monolayer, gas, 227 
multichannel spectrometer, 89 
multilayer material, 197 
multiple diffraction, I50 
multitime correlation function, 12 

N 

N. E. P. (see noise equivalent power) 
network, two-port, 266 
neutron, high-energy, 3 10 
noise equivalent power, 82, 98, 101 
nonlinear effects, 126 
- material, 103 
- optics, 3 
nonsinusoidal acoustic surface waves, 149 

et seq. 
normal-mode amplitude, 263 
- rule of mapping, 27 et seq. 

0 

Q-rule of mapping, 39 
object structures, 173 
objective, microscope, 191 
oblique incidence, 190 
occupation number, 28 
open system, 23 
optical axis, folded, 281 
- cavity, 261, 273 
- grating, 18 I 

I87 
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- guided wave, 128 et seq., 153 er seq., 162 
- heterodyne system, 147 et seq. 
- imaging, 177 
- information transfer, 170 
- mixing, 148 
-probing, 125, 152, 161 
- pumping, 3, 67 
- rays, 254 
- resonator, 265, 27 I et seq. 
- -, unaberrated, 265 
- superheterodyning, 147 er seq. 
- thickness, 298 et seq. 
- transitions, 92 
- tunneling, 184 
optimum condition, 235 
oscillations, relaxation of, 5 ,  23 
outgoing waves, I74 

P 

P-representation, 9 
parabolic approximation, 294 
parametric frequency conversion, 7, 62, 71 
- generation, 11 3 
- mixing, 150, 153 
- oscillation, 3, 8, 23, 71 
paraxial approximation, 258, 261, 263, 334 
- formulas, 325, 331 
- limit, 326 
- meridional rays, 334 
- ray, 325 
- -, meridional, 326 
particle displacement, 128 
- tunneling, 99 
path difference, 84 et seq., 89 
Pauli’s master equation, 4, 17 er seq., 30, 32 
penetration depth, 135, 175, 180, 185, 195, 

_ _  , negative, 188 
periodic surface, I30 
permutation symmetry, 46, 50 
perturbation, 4 et seq., 7, 17, 25 
- expansion, 13 
-, small, 132 
- theory, 5 
Petzval curvature, 329 
phase contrast methods, 192 
- diffusion model, 21 
- grating, 129 
- hologram, 210 
- matching, 154 
- matching condition, 160, 162 et seq. 
- mismatch, 157 
- -only recording, 192 

199, 316 

- retardation, 255, 257, 268 
- -, anomalous, 269 
- space, 258 
- - distribution function, 8 et seq., 23 et 

seq., 49, 68 
- -equation, 12 
- - methods, 3, 7 et seq. 
- - -  representation, 259 
- transitions, second order, 57 
-velocity, 143, 172, 181, 217 
phase shift, on-axis, 267 
phonons, 67 
-, transverse optical, 1 I3 
photo-response, 93 et seq. 
photoconductive detector, InSb, 93, 98 
photodetector, 139, 142, 148 
photoelastic constant, 156, 161 
- effects, I26 et seq., 156 
- tensor, 128 
photographic emulsions, 183, 185, 200 
photomultiplier, 120 
photons, transverse optical, 11 3 
Planck constant, 262 
point-eikonal, 254, 279, 286, 293 et seq., 

- - _  , round trip, 282 
Poisson distribution, 33 
polariton, I 1  3 
-effect, 103 
polarization angle, 139 
- degeneracy, 284 
- effects, 250 
-, state of, 289 et seq. 
polarized light, circularly, 188 
- wave, circularly, 181 
polishing, 3 I7 
Poynting vector, 178, 180 et seq., 289 
prism, 79 
probability distribution, 68 
probe-focussing system, 232 
probe-forming system, 226, 243 
- radius, 236, 242 
- size, 225, 238 
prolection operator, 5 et seq., 15, 24 
prolate spheroidal wave functions, 274 
propagating order, 174 
- wave, 169 
- wavefield, 198 
propagation, modes ot; 300 er seq. 
- of optical beams, 249 er seq. 
proximity problems, 189 
pulse shaping, 193 
pump field, 36, 62 

295 et seq. 
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- mechanism, 52 
- parameter, 58 
Putley detector, 93, 96 
pyroelectric detector, 83 

Q 
Q switched CO2 laser, 109 
- - laser transition, 117 et seq. 
- - ruby laser, 115 
quadrupole lens, 284 
quantum entropy, 32 
- oscillator, 37 
- statistical mechanics, 3 
- system, strongly interacting, 58 
quartz crystal, 163 
- substrate surface, 138 
quasi-geometrical optics, 250 
- -parallel beam system, 236, 240 
quasiparticles, 99 

R 

radiation field, 44 et seq. 

- rate, 46, 50 
- source, 91 
radiowave region, 188 
Raman-Nath type diffraction, 154 
- scattering, 108 
random phase, 4 
ray congruence, 261, 269 
- equation, 270, 275. 298 

- IOSS, 252 
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- manifold, 257 er seq., 266, 271, 277, 279 
- matrix, 266, 272, 279, 295 et seq. 
- pencil, 265, 267, 273 
representation, complex, 266 
- tracing, 216, 311 et seq. 
- -, analytical, 312, 323 
- -, numerical, 3 I I ,  3 I 7  
- trajectory, 288, 293 et seq. 
Rayleigh criterion, 235 
- interferometer, 189 
- -Jeans formula, 96 
- order, 174 
-wave, 125 et seq., 129 et seq. 
- - propagation, 145 
-wavelength, 174 
real-time on-line computer, 88 
reciprocity theorem, Lorentz, 288 et seq. 
reconstruction geometry, 206 
-, wavefront, 197, 203, 206, 210 
Redfield's master equation, 20, 22 
reduced density operator, 32, 41, 54, 63 

- phase space distribution function, 23, 27, 
38 

reflection coefficient, 132 et seq., 149 
-filter, 81 
refractive index, 173, 175, 200 et seq., 251, 

256,265 
- - gradient, 284 
- - profiles, quadratic, 262 
relaxation, 18, 22, 45, 51 
- coefficient, longitudinal, 22 
- -, transverse, 22 
- of atoms, 40, 51 
- - oscillators, 5 ,  23, 27, 34 
- process, 3 
- time, 5 ,  43, 53 
- -, longitudinal, 53 
- -, transverse, 53 
relief-type material, 193 
reservoir, 18, 23, 25, 31, 52 
- correlation functions, 41 
- - matrix, 27 
- - time, 41 
- interaction, 59 
- operator, 40 
- variables, 23 
resolution, 242 
resonance, 55  
- absorption, 97 
condition, 271 
-effects, 175 
- frequencies, 271 
-, modes of, 282 
- properties, 265 
- -type anomaly, 174 et seq. 
resonant optical field, 60 
- scattering, 67 
resonating mode, 271 
resonator, 260, 281 
-, confocal, 274 
-, lossless, 272 
-, mode-degenerate, 273, 281 
- round-trip ray matrix, 282 
-, unstable, 272 et seq. 
response time, 82, 120 
Reststrahlen powder filter, 79, 81 
retardation function, 55  
-, phase, 255, 257 
Rhodamine 6G. 107 
rotating wave approximation, 41, 57 
- - Van der Pol oscillator, 56 
rotation-symmetric medium, 324 et seq. 
- symmetry, 328 
ruby laser, 113 
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S 
sampling technique, 120 
saturation effects, 55 
-, spin resonance, 60, 62 
scalar ray, 265 
- wave equation, 250, 262, 287 et seq. 
--- , ordered, 291 et seq. 
scanning microscope, 225, 246 
scattered field, 174 
scattering, coherent, 62 
Schlieren methods, 192 
- photographs, 2 15 
Schrodinger picture, 19 
Schwinger’s boson representation, 12 
scratches, 146 
second order diffraction, 150 
secondary scattering, 21 1 et seq. 
Seidel aberrations, 330 
semi-tunable laser, 1 17 
sensitivity, detector, 196 
sharp cutoff filter, 79 
short focal length system, 241 
- memory approximation, 20, 28, 64 
shot noise limit, 142, 148 
signal detectibility, optical, 195 
- processing, 195 
- -to-noise ratio, 83, 85, 91 
single mode laser, 7, 52, 56 
- - operation, 108 
singlet, 327 
sinusoidal surface, 129 et seq. 
skew congruence, 277 
- ray, 269, 320, 335 
skewness invariant, 321 
Smith-Purcell effect, 218 
smooth surface, 133 
Snell’s law, 181 
solid state physics, 65 
sound, 125 
space-time point, 255 
spatial carrier, I92 
- filtering, 192, 273 
-frequency, 210, 213 
spectroscopy, high resolution, 84 
-, internal reflection, 196 
-, time resolved, 120 
spectrum representation, angular, 169 
specular reflection, 133 
speed of light, 130 
spherical aberration, 214, 225, 228, 231, 

235 et seq. 
- - coefficient, 231, 235 et seq. 
- gradient, 310 

-medium, 312 
spin coupling, 18 er seq. 
- effect, 92 
- flip laser, 103 
- - Raman laser, 108 et seq., 113 
- - transition, 108 
- of photon, 181 
- relaxation, 22, 29, 58 
- resonance saturation, 60, 62 
- system, 5, 22 
spontaneous emission, 44, 46, 50, 58, 60 
square-law media, 262 
stability condition, 272, 280 
state of polarization, 21 I 
stationary states, 251 
steady state distribution function, 57 
stimulated radiation, 1 I3 
- Stokes emission, 115 
stochastic perturbations, 7, 18 et seq. 
- processes, 3, 25 
Stokes gain constant, 116 
- line, anti-, 110 er seq. 
- -  , first, 110 er seq. 
- -, second, 110 
- propagation vector, 114 
- radiation, 113 er se4. 
- -Raman scattering, 108 
strain component, 155 
- tensor, 128 
- wave, 163 
stray magnetic field, 232 
straylight, 212 
stress free boundary condition, 126 
Sudarshan-Glauber distribution function, 

9, 21, 29, 36 et seq., 49, 55, 62 
superfluid, 3 
superposition of waves, 179 
superradiance, 3, 5, 23, 44 
- decay, 51 
- of the first kind, 47 et seq. 
- - -  second kind, 48, 51 
surface displacement, 142, 161 
- imperfections, 146 
- of machined parts, inspection of, 190 
- perturbations, 126, 143 
- relief variations, 193 
- ripples, 125 etseq., 129 etseq.,  138 et seq. 
- scattering, 146 
- topography, 189 
- waves, 125 et seq., 170 
- -, acoustic, I25 et se4., 128 et seq. 
susceptibility, linear, 57 
-, nonlinear, 36 
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-, static, 58 
synchroscope, 89 
synthetic hoIogram, 213 

T 

tetradic, 6 
thermal detector, 76 et seq. 
-equilibrium, 18, 32, 42, 54 
- phonons. 146 
thermoelement, 187 
thickness, emulsion, 204 
-, hologram, 204 
thin film, 153 et seq. 
third order aberration, 330 
- - distortion, 329 
threshold, 22, 71 
- region, 56 et seq. 
total internal reflection, 128, 153,169et seq. 
_ _ _  , frustrated, 189 et seq. 
- reflection, 175 et seq., 179 
- -, attenuated, 181 
transfer function, 21 1 
- matrix, 266 
transition probability, 4, 18, 42 et seq., 48 
transmission filter, 88 
- properties, 262 
transparency, selfinduced, 23 
transverse beam displacement, 188 
trapped modes, 250 
tunable detecor, 91 et seq., 98, 101 
- diode laser, 106 
- laser, 92, 102 
- radiation, 91 
- source, 102 
tungsten filament, hot, 225 
- hairpin filament, 227 
tuning, optical parametric, 103 
tunneling current, 99 
- effect, 99 et seq. 
- process, 226 
two-level atom, 23, 42, 49 
- _ -  system, 52 
Twersky’s multiple scattering theory, 174 
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U 

ultra-sound, 125 
ultrasonic wave, totally reflected, I88 

V 

vacuum state, 45 
Van der Pol oscillator, 56, 69 
Van Vleck propagator, 294, 300 
variance, 267 
vertex plane, 333 
vibration-rotation transition, I17 
virtual processes, 42 

W 

wave equation, 169 
- -, scalar, 250, 262, 287 et seq. 
- mechanics, 249, 261 
- optics, 261 
- -, scalar, 249 et seq. 
wavefront, 25 I 
- curvature, 266 et seq. 
- reconstruction, 197 
waveguide, dielectric, 193 
- geometry, 194 
-, metallic, 249 
weak coupling, 64 
- fiber, 252 
- media, 251 
- potential, 251 
Weyl ordered moments, 39 
- rules, 8 et seq., 29 
- symmetrized product, 9 
Wigner distribution function, 9, 29, 38 
Willard’s criteria, 135 
Wood anomalies, I75 et seq. 
- lens, 309 et seq., 322, 328 

Z 

Z, functional, 35 et seq. 
Zeeman effect, 103 
zero dipole moment, 49 
- temperature, 45 
- - relaxation, 51 
Zwanzig’s projection operator techniques, 5 
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