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Foreword

The development of medical imaging over the past three
decades has been truly revolutionary. For example, in cardi-
ology specialized three-dimensional motion estimation
algorithms allow myocardial motion and strain measurements
using tagged cardiac magnetic resonance imaging. In mam-
mography, shape and texture analysis techniques are used to
facilitate the diagnosis of breast cancer and assess its risk.
Three-dimensional volumetric visualization of CT and MRI
data of the spine, internal organs and the brain has become the
standard for routine patient diagnostic care.

What is perhaps most remarkable about these advances in
medical imaging is the fact that the challenges have required
significant innovation in computational techniques for nearly
all aspects of image processing in various fields. The use of
multiple imaging modalities on a single patient, for example
MRI and PET, requires sophisticated algorithms for image
registration and pattern matching. Automated recognition
and diagnosis require image segmentation, quantification and
enhancement tools. Algorithms for image segmentation and

visualization are employed broadly through many applications
using all of the digital imaging modalities. And finally, the
widespread availability of medical images in digital format has
spurred the search for efficient and effective image compres-
sion and communication methods.

Advancing the frontiers of medical imaging requires the
knowledge and application of the latest image manipulation
methods. In Handbook of Medical Imaging, Dr. Bankman has
assembled a comprehensive summary of the state-of-the-art in
image processing and analysis tools for diagnostic and
therapeutic applications of medical imaging. Chapters cover
a broad spectrum of topics presented by authors who are highly
expert in their respective fields. For all those who are working
in this exciting field, the Handbook should become a standard
reference text in medical imaging.

William R. Brody
President, John Hopkins
University






Preface

The discoveries of seminal physical phenomena such as X-rays,
ultrasound, radioactivity, and magnetic resonance, and the
development of imaging instruments that harness them have
provided some of the most effective diagnostic tools in
medicine. The medical imaging community is now able to
probe into the structure, function, and pathology of the human
body with a diversity of imaging systems. These systems are
also used for planning treatment and surgery, as well as for
imaging in biology. Data sets in two, three, or more dimensions
convey increasingly vast and detailed information for clinical
or research applications. This information has to be interpreted
in a timely and accurate manner to benefit health care. The
examination is qualitative in some cases, quantitative in others;
some images need to be registered with each other or with
templates, many must be compressed and archived. To assist
visual interpretation of medical images, the international
imaging community has developed numerous automated
techniques which have their merits, limitations, and realm of
application. This Handbook presents concepts and digital
techniques for processing and analyzing medical images after
they have been generated or digitized. It is organized into six
sections that correspond to the fundamental classes of algo-
rithms: enhancement, segmentation, quantification, registra-
tion, visualization, and a section that covers compression,
storage, and communication. The last chapter describes some
software packages for medical image processing and analysis.

I Enhancement

Enhancement algorithms are used to reduce image noise and
increase the contrast of structures of interest. In images where
the distinction between normal and abnormal tissue is subtle,
accurate interpretation may become difficult if noise levels are
relatively high. In many cases, enhancement improves the
quality of the image and facilitates diagnosis. Enhancement
techniques are generally used to provide a clearer image for a
human observer, but they can also form a preprocessing step
for subsequent automated analysis. The chapters in this section
present diverse techniques for image enhancement including
linear, nonlinear, fixed, adaptive, pixel-based, or multi-scale
methods.

IT Segmentation

Segmentation is the stage where a significant commitment is
made during automated analysis by delineating structures of
interest and discriminating them from background tissue. This
separation, which is generally effortless and swift for the
human visual system, can become a considerable challenge in
algorithm development. In many cases the segmentation

approach dictates the outcome of the entire analysis, since
measurements and other processing steps are based on
segmented regions. Segmentation algorithms operate on the
intensity or texture variations of the image using techniques
that include thresholding, region growing, deformable tem-
plates, and pattern recognition techniques such as neural
networks and fuzzy clustering. Hybrid segmentation and
volumetric segmentation are also addressed in this section.

ITI Quantification

Quantification algorithms are applied to segmented structures
to extract the essential diagnostic information such as shape,
size, texture, angle, and motion. Because the types of
measurement and tissue vary considerably, numerous techni-
ques that address specific applications have been developed.
Chapters in this section cover shape and texture quantification
in two- and three-dimensional data, the use of shape
transformations to characterize structures, arterial tree mor-
phometry, image-based techniques for musculoskeletal
biomechanics, image analysis in mammography, and quanti-
fication of cardiac function. In applications where different
kinds of tissue must be classified, the effectiveness of
quantification depends significantly on the selection of
database and image features, as discussed in this section. A
comprehensive chapter covers the choices and pitfalls of image
interpolation, a technique included in many automated
systems and used particularly in registration.

IV Registration

Registration of two images of the same part of the body is
essential for many applications where the correspondence
between the two images conveys the desired information.
These two images can be produced by different modalities, for
example CT and MRI, can be taken from the same patient with
the same instrument at different times, or can belong to two
different subjects. Comparison of acquired images with digital
anatomic atlas templates also requires registration algorithms.
These algorithms must account for the distortions between the
two images, which may be caused by differences between the
imaging methods, their artifacts, soft tissue elasticity, and
variability among subjects. This section explains the physical
and biological factors that introduce distortions, presents
various linear and nonlinear registration algorithms, describes
the Talairach space for brain registration, and addresses
interpolation issues inherent in registration. Chapters that
describe clinical applications and brain atlases illustrate the
current and potential contributions of registration techniques
in medicine.

xi



V Visualization

Visualization is a relatively new area that is contributing
significantly to medicine and biology. While automated
systems are good at making precise quantitative measurements,
the complete examination of medical images is accomplished
by the visual system and experience of the human observer.
The field of visualization includes graphics hardware and
software specifically designed to facilitate visual inspection of
medical and biological data. In some cases such as volumetric
data, visualization techniques are essential to enable effective
visual inspection. This section starts with the evolution of
visualization techniques and presents the fundamental con-
cepts and algorithms wused for rendering, display,
manipulation, and modeling of multidimensional data, as
well as related quantitative evaluation tools. Fast surface
extraction techniques, volume visualization, and virtual endo-
scopy are discussed in detail, and applications are illustrated in
two and three dimensions.

VI Compression, Storage, and
Communication

Compression, storage, and communication of medical images
are related functions for which demand has recently increased
significantly. Medical images need to be stored in an efficient
and convenient manner for subsequent retrieval. In many cases
images have to be shared among multiple sites, and commu-
nication of images requires compression, specialized formats,
and standards. Lossless image compression techniques ensure
that all the original information will remain in the image after
compression but they do not reduce the amount of data
considerably. Lossy compression techniques can produce

significant savings in storage but eliminate some information
from the image. This section covers fundamental concepts in
medical image compression, storage and communication, and
introduces related standards such as JPEG, DICOM, and HL-7.
Picture archiving and communication systems (PACS) are
described and techniques for preprocessing images before
storage are discussed. Three chapters address lossy compres-
sion issues and one introduces an efficient three-dimensional
image compression technique based on the wavelet transform.
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edical images are often deteriorated by noise due to various sources of interference and other

phenomena that affect the measurement processes in imaging and data acquisition systems.

The nature of the physiological system under investigation and the procedures used in
imaging also diminish the contrast and the visibility of details. For example, planar projection nuclear
medicine images obtained using a gamma camera as well as single-photon emission computed
tomography (SPECT) are severely degraded by Poisson noise that is inherent in the photon emission and
counting processes. Although mammograms (X-ray images of the breast) are not much affected by noise,
they have limited contrast because of the nature and superimposition of the soft tissues of the breast,
which is compressed during the imaging procedure. The small differences that may exist between normal
and abnormal tissues are confounded by noise and artifacts, often making direct analysis of the acquired
images difficult.

In all of the cases just mentioned, some improvement in the appearance and visual quality of the
images, even if only subjective, may assist in their interpretation by a medical specialist.

Image enhancement techniques are mathematical techniques that are aimed at realizing improvement
in the quality of a given image. The result is another image that demonstrates certain features in a manner
that is better in some sense as compared to their appearance in the original image. One may also derive or
compute multiple processed versions of the original image, each presenting a selected feature in an
enhanced appearance. Simple image enhancement techniques are developed and applied in an ad hoc
manner. Advanced techniques that are optimized with reference to certain specific requirements and
objective criteria are also available.

Although most enhancement techniques are applied with the aim of generating improved images for
use by a human observer, some techniques are used to derive images that are meant for use by a
subsequent algorithm for computer processing. Examples of the former category are techniques to
remove noise, enhance contrast, and sharpen the details in a given image. The latter category includes
many techniques in the former, but has an expanded range of possibilities, including edge detection and
object segmentation.

If used inappropriately, enhancement techniques themselves may increase noise while improving
contrast, they may eliminate small details and edge sharpness while removing noise, and they may
produce artifacts in general. Users need to be cautious to avoid these pitfalls in the pursuit of the best
possible enhanced image.



2 I Enhancement

The first chapter, by Paranjape, provides an introduction to basic techniques, including histogram
manipulation, mean and median filtering, edge enhancement, and image averaging and subtraction, as
well as the Butterworth filter. Applications illustrate contrast enhancement, noise suppression, edge
enhancement, and mappings for image display systems. Dental radiographic images and CT images of the
brain are used to present the effects of the various operations. Most of the methods described in this
chapter belong to the ad hoc category and provide good results when the enhancement need is not very
demanding. The histogram equalization technique is theoretically well founded with the criterion of
maximal entropy, aiming for a uniform histogram or gray-level probability density function. However,
this technique may have limited success on many medical images because they typically have details of a
wide range of size and small gray-level differences between different tissue types. The equalization
procedure based on the global probability with a quantized output gray scale may obliterate small details
and differences. One solution is the locally adaptive histogram equalization technique described in this
chapter. The limitations of the fundamental techniques motivated the development of adaptive and
spatially variable processing techniques.

The second chapter by Westin et al. presents the design of the adaptive Wiener filter. The Wiener filter is
an optimal filter derived with respect to a certain objective criterion. Westin et al. describe how the
Wiener filter may be designed to adapt to local and spatially variable details in images. The filter is cast as a
combination of low-pass and high-pass filters, with factors that control their relative weights. Application
of the techniques to CT and MR images is illustrated.

The third chapter by Laine et al. focuses on nonlinear contrast enhancement techniques for
radiographic images, in particular mammographic images. A common problem in contrast or edge
enhancement is the accompanying but undesired noise amplification. A wavelet-based framework is
described by Laine et al. to perform combined contrast enhancement and denoising, that is, suppression
of the noise present in the input image and/or control of noise amplification in the enhancement process.
The basic unsharp masking and subtracting Laplacian techniques are included as special cases of a more
general system for contrast enhancement.

The fourth and final chapter of the section, by Qian, describes a hybrid filter incorporating an adaptive
multistage nonlinear filter and a multiresolution/multiorientation wavelet transform. The methods
address image enhancement with noise suppression, as well as decomposition and selective reconstruc-
tion of wavelet-based subimages. Application of the methods to enhance microcalcification clusters and
masses in mammograms is illustrated.

Together, the chapters in this section present an array of techniques for image enhancement: from
linear to nonlinear, from fixed to adaptive, and from pixel-based to multiscale methods. Each method
serves a specific need and has its own realm of applications. Given the diverse nature of medical images
and their associated problems, it would be difficult to prescribe a single method that can serve a range of
problems. An investigator is well advised to study the images and their enhancement needs, and to
explore a range of techniques, each of which may individually satisfy a subset of the requirements. A
collection of processed images may be called for in order to meet all the requirements.



Fundamental Enhancement

Techniques

Raman B. Paranjape Introduction . . .. .. ..ot 3
University of Regina 2 Preliminaries and Definitions. . . ... ... ...ttt 3
3 Pixel Operations . . .. .cou ittt e 4
3.1 Compensation for Nonlinear Characteristics of Display or Print Media « 3.2 Intensity Scaling e
3.3 Histogram Equalization
4 L0Cal OPerators. « v v v vttt e et e e 7
4.1 Noise Suppression by Mean Filtering + 4.2 Noise Suppression by Median Filtering
4.3 Edge Enhancement « 4.4 Local-Area Histogram Equalization
5 Operations with Multiple Images. . . .. ... . i 15
5.1 Noise Suppression by Image Averaging 5.2 Change Enhancement by Image Subtraction
6 Frequency Domain Techniques ... ....... ... .. 16
7 Concluding Remarks . . ... ... 16
References. ... ... 17

1 Introduction

Image enhancement techniques are used to refine a given
image, so that desired image features become easier to perceive
for the human visual system or more likely to be detected by
automated image analysis systems [1, 13]. Image enhancement
allows the observer to see details in images that may not be
immediately observable in the original image. This may be the
case, for example, when the dynamic range of the data and that
of the display are not commensurate, when the image has a
high level of noise or when contrast is insufficient [4, 5, 8, 9].
Fundamentally, image enhancement is the transformation or
mapping of one image to another [10, 14]. This transformation
is not necessarily one-to-one, so that two different input
images may transform into the same or similar output images
after enhancement. More commonly, one may want to generate
multiple enhanced versions of a given image. This aspect also
means that enhancement techniques may be irreversible.
Often the enhancement of certain features in images is
accompanied by undesirable effects. Valuable image informa-
tion may be lost or the enhanced image may be a poor
representation of the original. Furthermore, enhancement
algorithms cannot be expected to provide information that is
not present in the original image. If the image does not contain
the feature to be enhanced, noise or other unwanted image

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

components may be inadvertently enhanced without any
benefit to the user.

In this chapter we present established image enhancement
algorithms commonly used for medical images. Initial con-
cepts and definitions are presented in Section 2. Pixel-based
enhancement techniques described in Section 3 are trans-
formations applied to each pixel without utilizing specifically
the information in the neighborhood of the pixel. Section 4
presents enhancement with local operators that modify the
value of each pixel using the pixels in a local neighborhood.
Enhancement that can be achieved with multiple images of the
same scene is outlined in Section 5. Spectral domain filters that
can be used for enhancement are presented in Section 6. The
techniques described in this chapter are applicable to dental
and medical images as illustrated in the figures.

2 Preliminaries and Definitions

We define a digital image as a two-dimensional array of
numbers that represents the real, continuous intensity dis-
tribution of a spatial signal. The continuous spatial signal is
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sampled at regular intervals and the intensity is quantized to a
finite number of levels. Each element of the array is referred to
as a picture element or pixel. The digital image is defined as a
spatially distributed intensity signal f(m, n), where f is the
intensity of the pixel, and m and » define the position of the
pixel along a pair of orthogonal axes usually defined as
horizontal and vertical. We shall assume that the image has M
rows and N columns and that the digital image has P quantized
levels of intensity (gray levels) with values ranging from 0 to
pP—-1.

The histogram of an image, commonly used in image
enhancement and image characterization, is defined as a vector
that contains the count of the number of pixels in the image at
each gray level. The histogram, h(i), can be defined as

i=0,1,...,P—1,

1 w=0,
o) = { .
0 otherwise.

A useful image enhancement operation is convolution using
local operators, also known as kernels. Considering a kernel
w(k,I) to be an array of (2K + 1 x 2L + 1) coefficients where
the point (k, I) = (0, 0) is the center of the kernel, convolution
of the image with the kernel is defined by:

g(m,n) = w(k, 1) f(m,n) = Z Z w(k, )« f(m—k,n—1),
K

——KI=—1L

where g(m, n) is the outcome of the convolution or output
image. To convolve an image with a kernel, the kernel is
centered on an image pixel (m, n), the point-by-point products
of the kernel coefficients and corresponding image pixels are
obtained, and the subsequent summation of these products is
used as the pixel value of the output image at (m,n). The
complete output image g(m, n) is obtained by repeating the
same operation on all pixels of the original image [4, 5, 13]. A
convolution kernel can be applied to an image in order to effect
a specific enhancement operation or change in the image
characteristics. This typically results in desirable attributes
being amplified and undesirable attributes being suppressed.
The specific values of the kernel coefficients depend on the
different types of enhancement that may be desired.

Attention is needed at the boundaries of the image where
parts of the kernel extend beyond the input image. One
approach is to simply use the portion of the kernel that
overlaps the input image. This approach can, however, lead to
artifacts at the boundaries of the output image. In this chapter
we have chosen to simply not apply the filter in parts of the
input image where the kernel extends beyond the image. As a
result, the output images are typically smaller than the input
image by the size of the kernel.

I Enhancement

The Fourier transform F(u, v) of an image f(m, n) is defined
as

1 M—-1N-1 )
F(u, V) :m — L f(m, n)eisz(Wer)a
m=0 n=0
u=01,2,....M—1 v=0,1,2,...,N—1,

where 1 and v are the spatial frequency parameters. The Fourier
transform provides the spectral representation of an image,
which can be modified to enhance desired properties. A spatial-
domain image can be obtained from a spectral-domain image
with the inverse Fourier transform given by

M-1N-1

S F(u,v) P (),

u: V:
m=0,1,2,....M—1, n=0,1,2,...,N—1.

The forward or inverse Fourier transform of an N x N image,
computed directly with the preceding definitions, requires a
number of complex multiplications and additions propor-
tional to N2. By decomposing the expressions and eliminating
redundancies, the fast Fourier transform (FFT) algorithm
reduces the number of operations to the order of Nlog,N [5].
The computational advantage of the FFT is significant and
increases with increasing N. When N = 64 the number of
operations are reduced by an order of magnitude and when
N = 1024, by two orders of magnitude.

3 Pixel Operations

In this section we present methods of image enhancement that
depend only upon the pixel gray level and do not take into
account the pixel neighborhood or whole-image character-
istics.

3.1 Compensation for Nonlinear Characteristics
of Display or Print Media

Digital images are generally displayed on cathode ray tube
(CRT) type display systems or printed using some type of
photographic emulsion. Most display mechanisms have non-
linear intensity characteristics that result in a nonlinear
intensity profile of the image when it is observed on the
display. This effect can be described succinctly by the equation

e(m, n) = C(f(m, n)),

where f(m,n) is the acquired intensity image, e(m,n)
represents the actual intensity output by the display system,
and C() is a nonlinear display system operator. In order to
correct for the nonlinear characteristics of the display, a
transform that is the inverse of the display’s nonlinearity must
be applied [14, 16].
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g(m, n) = T(e(m, n)) = C'(C(f(m,n)))
g(m, n)=f(m,n),

where T() is a nonlinear operator which is approximately equal
to C7!(), the inverse of the display system operator, and
g(m, n) is the output image.

Determination of the characteristics of the nonlinearity
could be difficult in practice. In general, if a linear intensity
wedge is imaged, one can obtain a test image that captures the
complete intensity scale of the image acquisition system.
However, an intensity measurement device that is linear is then
required to assess the output of the display system, in order to
determine its actual nonlinear characteristics.

A slightly exaggerated example of this type of a transform is
presented in Fig.1. Figure 1la presents a simulated CRT display
with a logarithmic characteristic. This characteristic tends to
suppress the dynamic range of the image decreasing the
contrast. Figure 1b presents the same image after an inverse
transformation to correct for the display nonlinearity.
Although these operations do in principle correct for the
display, the primary mechanism for review and analysis of
image information is the human visual system, which is
fundamentally a nonlinear reception system and adapts locally
to the intensities presented.

3.2 Intensity Scaling

Intensity scaling is a method of image enhancement that can be
used when the dynamic range of the acquired image data
significantly exceeds the characteristics of the display system, or

FIGURE 1
especially in the brighter parts of the image such as in areas with high tooth density or near filling material. (b) The nonlinearity of the display is reversed
by the transformation, and structural details become more visible. Details within the image such as the location of amalgam, the cavity preparation liner,
tooth structures, and bony structures are better visualized.

vice versa. It may also be the case that image information is
present in specific narrow intensity bands that may be of
special interest to the observer. Intensity scaling allows the
observer to focus on specific intensity bands in the image by
modifying the image such that the intensity band of interest
spans the dynamic range of the display [14, 16]. For example, if
f; and f, are known to define the intensity band of interest, a
scaling transformation may be defined as

0 otherwise

- (i)

e:{f hA<f<h

where e is an intermediate image, g is the output image, and
fmax 1s the maximum intensity of the display.

These operations may be seen through the images in Fig. 2.
Figure 2a presents an image with detail in the intensity band
from 90 to 170 that may be of interest to, for example a gum
specialist. The image, however, is displayed such that all gray
levels in the range 0 to 255 are seen. Figure 2b shows the
histogram of the input image and Fig. 2c presents the same
image with the 90-to-170 intensity band stretched across the
output band of the display. Figure 2d shows the histogram of
the output image with the intensities that were initially between
90 and 170, but are now stretched over the range 0 to 255. The
detail in the narrow band is now easily perceived; however,
details outside the band are completely suppressed.

(b)

(a) Original image as seen on a poor-quality CRT-type display. This image has poor contrast, and details are difficult to perceive —



FIGURE 2
and provides an example of a feature that may be of dental interest. (b) Histogram of the input image in (a). (c) This output image selectively shows the
intensity band of interest stretched over the entire dynamic range of the display. This specific enhancement may be potentially useful in highlighting
features or characteristics of bony tissue in dental X-ray imagery. This technique may be also effective in focusing attention on other image features such
as bony lamina dura or recurrent caries. (d) Histogram of the output image in (c). This histogram shows the gray levels in the original image in the 90-to-
170 intensity band stretched over 0 to 255.

3.3 Histogram Equalization

Although intensity scaling can be very effective in enhancing
image information present in specific intensity bands, often
information is not available a priori to identify the useful
intensity bands. In such cases, it may be more useful to
maximize the information conveyed from the image to the user
by distributing the intensity information in the image as
uniformly as possible over the available intensity band [3, 6, 7].

I Enhancement
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(a) Input image where details of interest are in the 90-to-170 gray level band. This intensity band identifies the bony structures in this image

This approach is based on an approximate realization of an
information-theoretic approach in which the normalized
histogram of the image is interpreted as the probability density
function of the intensity of the image. In histogram equaliza-
tion, the histogram of the input image is mapped to a new
maximally-flat histogram.

As indicated in Section 2, the histogram is defined as h(i),
with 0 to P — 1 gray levels in the image. The total number of
pixels in the image, M*N, is also the sum of all the values in
h(i). Thus, in order to distribute most uniformly the intensity
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profile of the image, each bin of the histogram should have a
pixel count of (M * N)/P.

It is, in general, possible to move the pixels with a given
intensity to another intensity, resulting in an increase in the
pixel count in the new intensity bin. On the other hand, there is
no acceptable way to reduce or divide the pixel count at a
specific intensity in order to reduce the pixel count to the
desired (M x N)/P. In order to achieve approximate unifor-
mity, the average value of the pixel count over a number of
pixel values can be made close to the uniform level.

A simple and readily available procedure for redistribution
of the pixels in the image is based on the normalized
cumulative histogram, defined as

j
H) = S ),

j=0,1,...P— 1.

The normalized cumulative histogram can be used as a
mapping between the original gray levels in the image and
the new gray levels required for enhancement. The enhanced
image g(m, n) will have a maximally uniform histogram if it is
defined as

g(m,n) = (P —1) - H(f (m, n)).

Figure 3a presents an original dental image where the gray
levels are not uniformly distributed, while the associated
histogram and cumulative histogram are shown in Figs 3b and
3¢, respectively. The cumulative histogram is then used to map
the gray levels of the input images to the output image shown
in Fig. 3d. Figure 3e presents the histogram of Fig. 3d, and Fig.
3f shows the corresponding cumulative histogram. Figure 3f
should ideally be a straight line from (0,0) to (P —1,P — 1),
but in fact only approximates this line to the extent possible
given the initial distribution of gray levels. Figure 3g through 1
show the enhancement of a brain MRI image with the same
steps as above.

4 Local Operators

Local operators enhance the image by providing a new value
for each pixel in a manner that depends only on that pixel and
others in a neighborhood around it. Many local operators are
linear spatial filters implemented with a kernel convolution,
some are nonlinear operators, and others impart histogram
equalization within a neighborhood. In this section we present
a set of established standard filters commonly used for
enhancement. These can be easily extended to obtain slightly
modified results by increasing the size of the neighborhood
while maintaining the structure and function of the operator.

4.1 Noise Suppression by Mean Filtering

Mean filtering can be achieved by convolving the image with a
(2K + 1x2L + 1) kernel where each coefficient has a value
equal to the reciprocal of the number of coefficients in the
kernel. For example, when L = K = 1, we obtain

1/9 1/9 1/9
wk,)=41/9 1/9 1/9 %,
1/9 1/9 1/9

referred to as the 3 x 3 averaging kernel or mask. Typically, this
type of smoothing reduces noise in the image, but at
the expense of the sharpness of edges [4, 5, 12, 13]. Examples
of the application of this kernel are seen in Fig. 4(a—d). Note
that the size of the kernel is a critical factor in the successful
application of this type of enhancement. Image details that are
small relative to the size of the kernel are significantly
suppressed, while image details significantly larger than the
kernel size are affected moderately. The degree of noise
suppression is related to the size of the kernel, with greater
suppression achieved by larger kernels.

4.2 Noise Suppression by Median Filtering

Median filtering is a common nonlinear method for noise
suppression that has unique characteristics. It does not use
convolution to process the image with a kernel of coefficients.
Rather, in each position of the kernel frame, a pixel of the input
image contained in the frame is selected to become the output
pixel located at the coordinates of the kernel center. The kernel
frame is centered on each pixel (m, n) of the original image,
and the median value of pixels within the kernel frame is
computed. The pixel at the coordinates (m, n) of the output
image is set to this median value. In general, median filters do
not have the same smoothing characteristics as the mean filter
[4, 5, 8,9, 15]. Features that are smaller than half the size of the
median filter kernel are completely removed by the filter. Large
discontinuities such as edges and large changes in image
intensity are not affected in terms of gray level intensity by the
median filter, although their positions may be shifted by a few
pixels. This nonlinear operation of the median filter allows
significant reduction of specific types of noise. For example,
“shot noise” may be removed completely from an image
without attenuation of significant edges or image character-
istics. Figure 5 presents typical results of median filtering.

4.3 Edge Enhancement

Edge enhancement in images is of unique importance because
the human visual system uses edges as a key factor in the
comprehension of the contents of an image [2, 4, 5, 10,13, 14].
Edges in different orientations can be selectively identified and
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FIGURE 3 (a) Original image where gray levels are not uniformly distributed. Many image details are not well visualized in this image because of the
low contrast. (b) Histogram of the original image in (a). Note the nonuniformity of the histogram. (c) Cumulative histogram of the original image in (a).
(d) Histogram-equalized image. Contrast is enhanced so that subtle changes in intensity are more readily observable. This may allow earlier detection of
pathological structures. (e) Histogram of the enhanced image in (d). Note that the distribution of intensity counts that are greater than the mean value
have been distributed over a larger gray level range. (f) Cumulative histogram of the enhanced image in (d). (g) Original brain MRI image (courtesy of
Dr. Christos Dzavatzikos, Johns Hopkins Radiology Department). (h) through (1) same steps as above for brain image.
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enhanced. The edge-enhanced images may be combined with
the original image in order to preserve the context.
Horizontal edges and lines are enhanced with

and vertical edges and lines are enhanced with
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The omnidirectional kernel (unsharp mask) enhances edges in
all directions:
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-1/8 —1/8 —1/8

Note that the application of these kernels to a positive-valued
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(a)

11

(o)

FIGURE 4

(d)

(a) Original bitewing X-ray image. (b) Original image in (a) corrupted by added Gaussian white noise with maximum amplitude of + 25

gray levels. (c) Image in (b) convolved with the 3 x 3 mean filter. The mean filter clearly removes some of the additive noise; however, significant blurring
also occurs. This image would not have significant clinical value. (d) Image in (b) convolved with the 9 x 9 mean filter. This filter has removed almost all
of the effects of the additive noise. However, the usefulness of this filter is limited because the filter size is similar to that of significant structures within

the image, causing severe blurring.

image can result in an output image with both positive and
negative values. An enhanced image with only positive pixels
can be obtained either by adding an offset or by taking the
absolute value of each pixel in the output image. If we are
interested in displaying edge-only information, this may be a
good approach. On the other hand, if we are interested in
enhancing edges that are consistent with the kernel and
suppressing those that are not, the output image may be added
to the original input image. This addition will most likely result
in a nonnegative image.

Figure 6 illustrates enhancement after the application of
the kernels wy,, wy,, and wyp to the image in Fig. 3a and
3g. Figures 6a, b, and ¢ show the absolute value of the output
images obtained with wy,, wy;, and wpyp, respectively
applied to the dental image while 6d, e, and f show the
same for the brain image. In Fig. 7, the outputs obtained
with these three kernals are added to the original images of
Fig. 3a and g In this manner the edge information is
enhanced while retaining the context information of the
original image. This is accomplished in one step by
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FIGURE 5

(a) Image in Fig. 4b enhanced with a 3 x 3 median filter. The median filter is not as effective in noise removal as the mean filter of the same

size; however, edges are not as severely degraded by the median filter. (b) Image in Fig. 4a with added shot noise. (c) Image in figure 5(b) enhanced by a
3 x 3 median filter. The median filter is able to significantly enhance this image, allowing almost all shot noise to be eliminated. This image has good

diagnostic value.

convolving the original image with the kernel after adding 1
to its central coefficient. Edge enhancement appears to
provide greater contrast than the original imagery when
diagnosing pathologies.

Edges can be enhanced with several edge operators other
than those just mentioned and illustrated. Some of these are
described in the chapter entitled “Overview and Fundamentals
of Medical Image Segmentation,” since they also form the basis
for edge-based segmentation.

4.4 Local-Area Histogram Equalization

A remarkably effective method of image enhancement is local-
area histogram equalization, obtained with a modification of
the pixel operation defined in Section 3.3. Local-area histo-
gram equalization applies the concepts of whole-image
histogram equalization to small, overlapping local areas of
the image [7,11]. It is a nonlinear operation and can
significantly increase the observability of subtle features in
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(b)

FIGURE 6 (a) Absolute value of output image after convolution of wy,
with the image in Fig. 3a. (b) Absolute value of output image after
convolution of wy,; with the image in Fig. 3a. (c) Absolute value of output
image after convolution of wyp. (d through f) same as a, b, and ¢ using
image in Fig. 3g.

(d) (e) ()



14 I Enhancement

FIGURE 7 (a) Sum of original image in Fig. 3a and its convolution with
wy1» (b) with wy,, and (c) with wyp. (d through f) same as a, b, and ¢
using image in Fig. 3g.
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the image. The method formulated as shown next is applied at
each pixel (m, n) of the input image.

L

by (m, n) (i) = i > o(f(m+lLn+k)—i), i=0,1,...P—1
k=K I=—L
_ 1 ] _
Hy,(m,n)(j) = m; by a(m, n)(i),
j=0,1,...P—1

g(m,n) = (P — 1)« Hy(m, n)(f(m, n))

where h;,(m, n)(i) is the local-area histogram, H; ,(m, n)(j) is
the local-area cumulative histogram, and g(m, n) is the output
image. Figure 8 shows the output image obtained by enhancing
the image in Fig.2a with local-area histogram equalization
using K = L = 15 or a 31 x 31 kernel size.

Local-area histogram equalization is a computationally
intensive enhancement technique. The computational com-
plexity of the algorithm goes up as the square of the size of the
kernel. It should be noted that since the transformation that is
applied to the image depends on the local neighborhood only,
each pixel is transformed in a unique way. This results in higher
visibility for hidden details spanning very few pixels in relation
to the size of the full image. A significant limitation of this
method is that the mapping between the input and output
images is nonlinear and highly nonmonotonic. This means that
it is inappropriate to make quantitative measurements of pixel
intensity on the output image, as the same gray level may be
transformed one way in one part of the image and a completely
different way in another part.

FIGURE 8 Output image obtained when local-area histogram equaliza-
tion was applied to the image in Fig. 2a. Note that the local-area histogram
equalization produces very high-contrast images, emphasizing detail that
may otherwise be imperceptible. This type of enhancement is computa-
tionally very intensive and it may be useful only for discovery purposes to
determine if any evidence of a feature exists.
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5 Operations with Multiple Images

This section outlines two enhancement methods that require
more than one image of the same scene. In both methods, the
images have to be registered and their dynamic ranges have to
be comparable to provide a viable outcome.

5.1 Noise Suppression by Image Averaging

Noise suppression using image averaging relies on three basic
assumptions: (1) that a relatively large number of input images
are available, (2) that each input image has been corrupted by
the same type of additive noise, and (3) that the additive noise
is random with zero mean value and independent of the image.
When these assumptions hold, it may be advantageous to
acquire multiple images with the specific purpose of using
image averaging [1] since with this approach even severely
corrupted images can be significantly enhanced. Each of the
noisy images a;(m, n) can be represented by

ai(m7 l’l) = f(m7 f’l) + di(ma l’l),

where f(m, n) is the underlying noise-free image, and d;(m, n)
is the additive noise in that image. If a total of Q images are
available, the averaged image is

1 Q
g(m’ 1’1) = azai(ma n)

i=1
such that

E{g(m,n)} = f(m, n)

and

where E{ - } is the expected value operator, g, is the standard
deviation of g(m, n), and o, is that of the noise. Noise

suppression is more effective for larger values of Q.

5.2 Change Enhancement by Image Subtraction

Image subtraction is generally performed between two images
that have significant similarities between them. The purpose of
image subtraction is to enhance the differences between two
images (1). Images that are not captured under the same or
very similar conditions may need to be registered [17]. This
may be the case if the images have been acquired at different
times or under different settings. The output image may have a
very small dynamic range and may need to be rescaled to the
available display range. Given two images f, (m, n) and f, (m, n),
the rescaled output image g(m, n) is obtained with
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b(m’ n) :fl(mv n) _fz(m7 n)

B ) b(m, n) — min{b(m, n) }
R O s e

where f, .. is the maximum gray level value available, b(m, n) is
the unstretched difference image, and min{b(m,n)} and
max{b(m,n)} are the minimal and maximal values in
b(m, n), respectively.

6 Frequency Domain Techniques

Linear filters used for enhancement can also be implemented in
the frequency domain by modifying the Fourier transform of
the original image and taking the inverse Fourier transform.
When an image g(m, n) is obtained by convolving an original
image f(m, n) with a kernel w(m, n),

g(m,n) = w(m,n) x f(m,n),

the convolution theorem states that G(u,v), the Fourier
transform of g(m, n), is given by

G(u,v) = W(u,v)F(u,v),

where W(u,v) and F(u,v) are the Fourier transforms of the
kernel and the image, respectively. Therefore, enhancement can
be achieved directly in the frequency domain by multiplying
F(u, v), pixel-by-pixel, by an appropriate W (u, v) and forming
the enhanced image with the inverse Fourier transform of the
product. Noise suppression or image smoothing can be
obtained by eliminating the high-frequency components of
F(u,v), while edge enhancement can be achieved by
eliminating its low-frequency components. Since the spectral
filtering process depends on a selection of frequency
parameters as high or low, each pair (u,v) is quantified
with a measure of distance from the origin of the frequency
plane,

D(u,v) = Vi +v2,

which can be compared to a threshold Dy to determine if (u, v)
is high or low. The simplest approach to image smoothing is
the ideal low-pass filter W (u,v), defined to be 1 when
D(u,v) < Dy and 0 otherwise. Similarly, the ideal high-pass
filter Wy;(u, v) can be defined to be 1 when D(u, v) > Dy and 0
otherwise. However, these filters are not typically used in
practice, because images that they produce generally have
spurious structures that appear as intensity ripples, known as
ringing [5]. The inverse Fourier transform of the rectangular
window Wi (u,v) or Wpy(u,v) has oscillations, and its
convolution with the spatial-domain image produces the
ringing. Because ringing is associated with the abrupt 1 to 0
discontinuity of the ideal filters, a filter that imparts a smooth
transition between the desired frequencies and the attenuated

I Enhancement

ones is used to avoid ringing. The commonly used Butterworth
low-pass and high-pass filters are defined respectively as

1
B ) = D) /Do P
and
By (u,v) ,

1+ oDy /D, V)

where cis a coefficient that adjusts the position of the transition
and n determines its steepness. If ¢ = 1, these two functions
take the value 0.5 when D(u,v) = D;. Another common
choice for cis v/2 — 1, which yields 0.707 ( — 3 dB) at the cutoff
Dy. The most common choice of # is 1; higher values yield
steeper transitions.

The threshold Dy is generally set by considering the power of
the image that will be contained in the preserved frequencies.
The set S of frequency parameters (u,v) that belong to the
preserved region, ie., D(u,v) <Dy for low-pass and
D(u,v) > D for high-pass, determines the amount of
retained image power. The percentage of total power that the
retained power constitutes is given by

> |F(u, )P
p=l0 100
>0 [F(u,v)]

V(u,v)

and is used generally to guide the selection of the cutoff
threshold. In Fig. 9a, circles with radii r4 that correspond to five
different f§ values are shown on the Fourier transform of an
original MRI image in Fig. 9e. The u = v = 0 point of the
transform is in the center of the image in Fig. 9a. The
Butterworth low-pass filter obtained by setting D equal to
rgfor f=90% , with ¢ =1 and n=1, is shown in Fig. 9b
where bright points indicate high values of the function. The
corresponding filtered image in Fig. 9f shows the effects of
smoothing. A high-pass Butterworth filter with Dy set at the
95% level is shown in Fig. 9d, and its output in Fig. %h
highlights the highest frequency components that form 5% of
the image power. Figure 9c shows a band-pass filter formed by
the conjunction of a low-pass filter at 95% and a high-pass
filter at 75%, while the output image of this band-pass filter is
in Fig. 9g.

7 Concluding Remarks

This chapter has focused on fundamental enhancement
techniques used on medical and dental images. These techni-
ques have been effective in many applications and are
commonly used in practice. Typically, the techniques presented
in this chapter form a first line of algorithms in attempts to
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FIGURE Y Filtering with the Butterworth filter. (a) Fourier transform of MRI image in (e); the five circles correspond to the f values 75, 90, 95, 99, and
99.5%. (b) Fourier transform of low-pass filter with § = 90% which provides the output image in (f). (c) Band-pass filter with band f§ = 75% to
B = 90% whose output is in (g). (d) High-pass filter with § = 95%, which yields the image in (h). (Courtesy of Dr. Patricia Murphy, Johns Hopkins

University Applied Physics Laboratory.)

enhance image information. After these algorithms have been
applied and adjusted for best outcome, additional image
enhancement may be required to improve image quality
further. Computationally more intensive algorithms may then
be considered to take advantage of context-based and object-
based information in the image. Examples and discussions of
such techniques are presented in subsequent chapters.
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1 Introduction

Adaptive filters are commonly used in image processing to
enhance or restore data by removing noise without signifi-
cantly blurring the structures in the image. The adaptive
filtering literature is vast and cannot adequately be summarized
in a short chapter. However, a large part of the literature
concerns one-dimensional (1D) signals [1]. Such methods are
not directly applicable to image processing and there are no
straightforward ways to extend 1D techniques to higher
dimensions primarily because there is no unique ordering of
data points in dimensions higher than one. Since higher-
dimensional medical image data are not uncommon (2D
images, 3D volumes, 4D time-volumes), we have chosen to
focus this chapter on adaptive filtering techniques that can be
generalized to multidimensional signals.

This chapter assumes that the reader is familiar with the
fundamentals of 1D signal processing [2]. Section 2 addresses
spatial frequency and filtering. 2D spatial signals and their
Fourier transforms are shown to illuminate the similarities to
signals in one dimension. Unsharp masking is described as an
example of simple image enhancement by spatial filtering.
Section 3 covers random fields and is intended as a primer for
the Wiener filter, which is introduced in Section 3.2. The
Wiener formulation gives a lowpass filter with a frequency
characteristic adapted to the noise level in the image. The
higher the noise level, the more smoothing of the data. In
Section 4 adaptive Wiener formulations are presented. By
introducing local adaptation of the filters, a solution more
suitable for nonstationary signals such as images can be

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

obtained. For example, by using a “visibility function,” which
is based on local edge strength, the filters can be made locally
adaptive to structures in the image so that areas with edges are
less blurred. Section 5 is about adaptive anisotropic filtering. By
allowing filters to change from circularly/spherically symmetric
(isotropic) to shapes that are closely related to the image
structure, more noise can be suppressed without severe
blurring of lines and edges. A computationally efficient way
of implementing shift-variant anisotropic filters based on a

non-linear combination of shift-invariant filter responses is
described.

2 Multidimensional Spatial Frequencies
and Filtering

At a conceptual level, there is a great deal of similarity between
1D signal processing and signal processing in higher dimen-
sions. For example, the intuition and knowledge gained from
working with the 1D Fourier transform extends fairly straight-
forwardly to higher dimensions. For overviews of signal
processing techniques in 2D see Lim [3], or Granlund and
Knutsson for higher dimensional signal processing [4].

2.1 Spatial Frequency

The only difference between the classical notions of time
frequencies and spatial frequencies is the function variable
used: Instead of time, the variable is spatial position in the

19
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latter case. A multidimensional sinusoidal function can be
written as

f = cos(x"e), (1)

where x is the spatial position vector and e is a normalized
vector defining the orientation of the wave (x,ec%"). The
signal is constant on all hyperplanes normal to e. For any 1D
function g, the multidimensional function

f=g@x"e) (2)
will have a Fourier transform in which all energy is concen-

trated on a line through the origin with direction e. For
example, for a plane in three dimensions given by

f= 6(xTé)’ (3)

el Frogusncy

Wil Froguemey e AT

F, +F

FIGURE 1
sinusoidal with a higher spatial frequency.

I Enhancement

where 0 denotes the Dirac function, the Fourier transform will
be concentrated on a line with orientation normal to the plane,
and the function along this line will be constant.

Examples of 2D sinusoidal functions and their Fourier
transforms are shown in Fig. 1. The top figures show a
transform pair of a sinusoid of fairly low frequency. The
Fourier transform, which contains two Dirac impulse func-
tions, is shown to the left and may be expressed as

Fi=6(u—o,)+dé(u+ o), (4)

where u denotes the 2D frequency variable, @, the spatial
frequency of the signal. The bottom figures show the transform
pair of a signal consisting of the same signal in F; plus another
sinusoidal signal with frequency w,.

Fy=F +6(u—0,) +0(u+w,). (5)

-1

(Top) Sinusoidal signal with low spatial frequency. (Bottorn) Sum of the top signal and a
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2.2 Filtering

Linear filtering of a signal can be seen as a controlled scaling of
the signal components in the frequency domain. Reducing the
components in the center of the frequency domain (low
frequencies), gives the high-frequency components an
increased relative importance, and thus highpass filtering is
performed. Filters can be made very selective. Any of the
Fourier coefficients can be changed independently of the
others. For example, let H be a constant function minus a pair
of Dirac functions symmetrically centered in the Fourier
domain with a distance |, | from the center,

H=1-6(u—a)+u+o,). (6)

This filter, known as a notch filter, will leave all frequency
components untouched, except the component that corre-
sponds to the sinusoid in Fig. 1, which will be completely
removed. A weighting of the Dirac functions will control how
much of the component is removed. For example, the filter

(7)

will reduce the signal component to 10% of its original value.
The result of the application of this filter to the signal F, + F,.
(Fig. 1, bottom) is shown in Fig. 2. The lower-frequency
component is almost invisible.

Filters for practical applications have to be more general than
“remove sinusoidal component cos(®”x).” In image enhance-
ment, filters are designed to remove noise that is spread out all
over the frequency domain. It is a difficult task to design filters
that remove as much noise as possible without removing
important parts of the signal.

H=1-09(u—o,)+é(u+ o),

Viartical Feoquincy

Horiontal Frequency

H(F, + F)
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2.3 Unsharp Masking

Unsharp masking, an old technique known to photographers,
is used to change the relative highpass content in an image by
subtracting a blurred (lowpass filtered) version of the image
[5]. This can be done optically by first developing an unsharp
picture on a negative film and then using this film as a mask in
a second development step. Mathematically, unsharp masking
can be expressed as

f=of =By (8)

where o and f§ are positive constants, « > f. When processing
digital image data, it is desirable to keep the local mean of the
image unchanged. If the coefficients in the lowpass filter fj, are
normalized, i.e., their sum equals 1, the following formulation of
unsharp masking ensures unchanged local mean in the image:

©)

1
x—p
By expanding the expression in the parentheses (af — ff},) =
afy, + o(f — fi,) — Bfyp> we can write Eq. (9) as

f:ﬁp_'_ﬁ(f_ﬁpx

f=

(f = Bfyp)-

(10)

which provides a more intuitive way of writing unsharp
masking. Further rewriting yields

f:ﬁerV(f*flp) (11)

:flp"‘yfhpa (12)

where 7y can be seen as a gain factor of the high frequencies. For

hx(h+1)

FIGURE2 Notch filtering of the signal f; + f,, a sum of the sinusoids. The application of the filter hin Eq. (7) reduces the

low-frequency component to one-tenth of its original value.
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y=1, the filter is the identity map, f,+fi, =1
+(f — fip) = f> and the output image equals the input image.
For y > 1 the relative highpass content in the image is increased,
resulting in higher contrast; for y<1 the relative highpass
content is decreased and the image gets blurred. This process
can be visualized by looking at the corresponding filters
involved. In the Fourier domain, the lowpass image f;, can be
written as the product of a lowpass filter Hj, and the Fourier
transform of the original image,

F, = H,F.

(13)

Figure 3 (top left) shows H), and the highpass filter that can

Lowpeass filter, H,

I Enhancement

be constructed thereof, 1 — H,, (top right). Figure 3 (bottom
left) shows the identity filter from adding the two top filters,
and (bottom right) a filter where the highpass component has
been amplified by a factor of 2. Figure 4 shows a slice of a CT
data set through a skull (left), and the result of unsharp
masking with y = 2, i.e., a doubling of the highpass part of the
image (right). The lowpass filter used (flp in Eq. (11)) was a
Gaussian filter with a standard deviation of 4, implemented on
a21x21 grid.

A natural question arises. How should the parameters for the
lowpass filter be chosen? It would be advantageous if the filter
could adapt to the image automatically either through an a
priori model of the data or by some estimation process. There

0.8

0.

314 ‘\"h
et ET <314
T GH - --"‘I;'I;_s.l,:._lﬁ'
=i} Tli:l ‘h'\-\.‘ __.-:"---r--. ] ﬁ W
s I 7.4 ﬁ"\._,a-"'-'f_.,, "_Ifrl 5
=314 A4
Hy, +2H),

FIGURE 3 Visualization of the filters involved in unsharp masking. See also Plate 1.
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FIGURE 4 Filtering CT data using unsharp masking. The highpass information of the original image (left) is twice as high in the
result image (right). Note how details have been amplified. This technique works well due to the lack of noise in the image.

are two main categories of such adaptive filters, filters for image
enhancement and filters for image restoration. The two
categories mainly differ in the view of the data that is to be
filtered. The method of unsharp masking belongs to the first
category, image enhancement. The image is made crisper by
increasing the image contrast. The input image was not
considered to be degraded in any way, and the purpose of the
algorithm was just to improve the appearance of the image. In
image restoration, as the name implies, the image data are
modeled as being degraded by a (normally unknown) process,
and the task at hand is to “undo” this degradation and restore
the image. The models of image degradation commonly
involve random noise processes. Before we introduce the well-
known Wiener filter, a short description of stochastic processes
in multiple dimensions is given. In multiple dimensions
stochastic processes are customary referred to as random fields.

3 Random Fields and Wiener Filtering

A central problem in the application of random fields is the
estimation of various statistical parameters from real data. The
Wiener filter that will be discussed later requires knowledge of
the spectral content of the image signal and the background

noise. In practice these are, in general, not known and have to
be estimated from the image.

3.1 Autocorrelation and Power Spectrum

A collection of an infinite number of random variables defined
on an n-dimensional space (x€R") is called a random field.
The autocorrelation function of a random field f(x) is defined
as the expected value of the product of two samples of the
random field,

Ry (x,x') = E{f(x)f (x)}, (14)

where E denotes the statistical expectation operator. A random
field is said to be stationary if the expectation value and the
autocorrelation function are shift-invariant, i.e., the expecta-
tion value is independent of the spatial position vector x, and
the autocorrelation is a function only of T = x — x'.

Rp(z) = E{f(x + 7)f (%)} (15)

The power spectrum of a stationary random process is
defined by the Fourier transform of the autocorrelation

function.

(16)

Since the autocorrelation function is always symmetric, the
power spectrum is always a real function.



24

A random process n(x) is called a white noise process if
R, (1) = ,0(1). (17)

From Eq. (16), the power spectrum of a white process is a
constant:

— (18)
The Wiener-Khinchin theorem [6] states that

1
B0} = RO) = s [ Swda (19
where 7 is the dimension of the signal (the theorem follows
directly from Eq. 16, by taking the inverse Fourier transform of
S(u) for T =0). This means that the integral of the power
spectrum of any process is positive. It can also be shown that
the power spectrum is always nonnegative [6].

The cross-correlation function of two random processes is
defined as

Ry (%, %) = E{f(x)g(x)}
3.2 The Wiener Filter

(20)

The restoration problem is essentially one of optimal filtering
with respect to some error criterion. The mean-squared error
(MSE) criterion has formed the basis for most published work
in this area [7-9].

In the case of linear stationary estimation we wish to
estimate the process fwith a linear combination of values of the
data g This can be expressed by a convolution operation

f=hxg, (21)

where h is a linear filter. A very general statement of the
estimation problem is: given a set of data g, find the estimate f
of an image fthat minimizes some distance ||f — f||.

By using the mean-squared error, it is possible to derive the
estimate with the principle of orthogonality [6]:

E{(f - f)g} = 0.

Inserting the convolution expression in Eq. (21) thus gives

E{(f —hxg)g}=0. (23)

When the filter operates in its optimal condition, the estimation
error (f — f) is orthogonal to the data g In terms of the
correlation functions Ry, and Ry, Eq. (23) can be expressed as [2]

(24)

(22)

ng:h*Rgg

By Fourier transforming both sides of the equation, we get
S = HS,,, resulting in the familiar Wiener filter

S
I (25)
Sgg

H =

When the data are the sum of the image and stationary white
noise of zero mean and variance g2

n’
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g=f+n (26)
R,, = 0,0(1), (27)
then
Ry = Ry + Ry, (29)
and the stationary Wiener filter is given by
S
il
H = . 30

This means that for a Gaussian signal, the Wiener filter is the
optimal linear estimator (among all estimators). The Wiener
filter optimizes the trade-off between smoothing the signal
discontinuities and removal of the noise.

4 Adaptive Wiener Filters

The standard formulation of the Wiener filter has met limited
success in image processing because of its lowpass character-
istics, which give rise to unacceptable blurring of lines and
edges. If the signal is a realization of a non-Gaussian process
such as in natural images, the Wiener filter is outperformed by
nonlinear estimators. One reason why the Wiener filter blurs
the image significantly is that a fixed filter is used throughout
the entire image, the filter is space invariant.

A number of attempts to overcome this problem have
adopted a nonstationary approach where the characteristics of
the signal and the noise are allowed to change spatially [10-23].

4.1 Local Adaptation

The Wiener filter in Eq. (30) defines a shift-invariant filter, and
thus the same filter is used throughout the image. One way to
make the filter spatially variant is by using a local spatially
varying model of the noise parameter o,,. Such a filter can be
written as

Ho_ 31

This filter formulation is computationally quite expensive since
the filter changes from pixel to pixel in the image.

Lee derived an efficient implementation of a noise-adaptive
Wiener filter by modeling the signal locally as a stationary
process [14, 3] that results in the filter

. af(x)

f(x) = mg(x) +m(g(x) - (32)

my (x))

where m; is the local mean of the signal g, and oj% is the local
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signal variance. A local mean operator can be implemented by
a normalized lowpass filter where the support region of the
filter defines the locality of the mean operator. It is interesting
to note that this formulation gives an expression very similar to
the expression of unsharp masking in Eq. (11), although the
latter is not locally adaptive. Figure 5 shows the result of Lee’s
filter on MR data through the pelvis.

4.2 Nonlinear Extension by a Visibility Function

The Wiener filter that results from a minimization based on the
MSE criterion can only relate to second-order statistics of the
input data and no higher [1]. The use of a Wiener filter or a
linear adaptive filter to extract signals of interest will therefore
yield suboptimal solutions. By introducing nonlinearities in
the structure, some limitations can be taken care of.

Abramatic and Silverman [12] modified the stationary white
noise Wiener solution (Eq. (30)) by introducing a visibility
function o, 0 < o < 1, which depends on the magnitude of
the image gradient vector, where o is 0 for “large” gradients
and 1 in areas of no gradient. They showed that the generalized
Backus—Gilbert criterion yields the solution

S
H il

=7 33
S (33)

for an optimal filter. The Backus—Gilbert method [24,25] is a
regularization method that differs from others in that it seeks to
maximize stability of the solution rather than, in the first
instance, its smoothness. T}}e Backus—Gilbert method seeks to
make the mapping from f and f as close to the identity as
possible in the limit of error-free data. Although the Backus—
Gilbert philosophy is rather different from standard linear
regularization methods, in practice the differences between the

Original MR data
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methods are small. A stable solution is almost inevitably
smooth.

Equation (33) shows a very explicit trade-off between
resolution and stability. o = 0 gives a filter that is the identity
mapping (maximum resolution) and o = 1 gives the smoother
Wiener solution. By choosing o to be spatially variant, i.e., a
function of the position in the image, o = a(x), a simple
adaptive filter is obtained. For large gradients, the alpha
function cancels the noise term and the function H becomes
the identity map. This approach has the undesired feature that
the filter changes from point to point in a way that is generally
computationally burdensome. Abramatic and Silverman [12]
proposed an “‘signal equivalent” approach giving a filter that is
a linear combination of the stationary Wiener filter and the
identity map:

(34)

Note that H, equals the Wiener solution (Eq. (30)) for a = 1,
and for o =0 the filter becomes the identity map. It is
interesting to note that Eq. (34) can be rewritten as

= 2
¥ Sy 402
T

+(1—0a) (35)

Sﬂ'+0'2‘

Equation (35) shows that Abramatic and Silverman’s model
can be seen as a linear combination of a stationary lowpass
component and a nonstationary highpass component [16].
Inserting H for the stationary Wiener solution we can write the
filter in Eq. (35) as

H,=H+ (1—o)(1— H). (36)

Filtered MR data

FIGURE 5 Filtering MR data through the pelvis using Lee’s method. Note how the background noise the original image
(left) has effectively been suppressed in the result image (right). Note how the motion related artifacts are reduced, but
blurring is introduced.
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5 Anisotropic Adaptive Filtering

5.1 Anisotropic Adaptive Filtering in Two
Dimensions

On the basis of the characteristics of the human visual system,
Knutsson et al. [16] argued that local anisotropy is an
important property in images and introduced an anisotropic
component in Abramatic and Silverman’s model (Eq. (36))

H,, =H+(1=0)(y+ (1) cos’(¢p — 0))(1 = H), (37)

where the parameter y controls the level of anisotropy, ¢
defines the angular direction of the filter coordinates, and 0 is
the orientation of the local image structure. The specific choice
of weighting function cos?(¢ — ) was imposed by its ideal
interpolation properties, the directed anisotropy function
could be implemented as a steerable filter from three fixed
filters [16]

cosz(go), cosz(q) —n/3), and cosz((p —2m/3)

(these filters span the same space as the three filters 1,
cos2(¢@),sin2(¢p), which also can be used). Freeman and
Adelson later applied this concept to several problems in
computer vision [26].

Knutsson et al. estimated the local orientation and the degree
of anisotropy with three oriented Hilbert transform pairs, so-
called quadrature filters, with the same angular profiles as the
three basis functions describing the steerable weighting func-
tion. Figure 6 shows one of these Hilbert transform pairs. In
areas of the image lacking a dominant orientation, 7 is set to 1,
and Eq. (37) reverts to the isotropic Abramatic and Silverman
solution. The more dominant the local orientation, the smaller
the y value and the more anisotropic the filter.

5.2 Multidimensional Anisotropic Adaptive
Filtering

The cos?(-) term in Eq. (37) can be viewed as a squared inner
product of a vector defining the main directionality of the
signal (0) and the frequency coordinate vectors. This main
direction is denoted e;, and an orthogonal direction e,, Eq.
(37) can be rewritten as
Hy = H+ (1= H)p(el) + )7, (38)
where u is the 2D frequency variable, and the parameters y, and
7, define the anisotropy of the filter. For y, =7, = 1 — a, the
filter becomes isotropic (y = 1 in Eq. (37)), and fory, =1 — «
and y, = 0 the filter becomes maximally anisotropic (y = 0 in
Eq. (37)) and mainly favors signals oriented as ;.
The inner product notation in Eq. (38) allows for a direct
extension to multiple dimensions:
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H o= H+ (1- H) Y (e, (39)

k=1

where N is the dimension of the signal (N = 2 for images and
N =3 for volumes). However, two important elements
remain: how to define the orthogonal directions e, and the
coefficients y, so that the equation describes a useful adaptive
filter.

By expressing the squared inner product (& i1)* as the inner
product of two outer products ( e.el, uu’ )

N

H,=H+(1—-H) Z<7kékél?7i‘i‘T>
=1

=H+(1-H)(C,U),

(40)

(41)

we can define a term C as a “control” tensor,

N

_ 5 sl

C= g Yi€rer -
k=1

The tensor C controls the filter adaptation by weighting the
components in the outer product description of the Fourier
domain U according to its “shape”. For a 3D signal this shape
can be thought of as an ellipsoid with principal axes e;.
Similar to the 2D case in Eq. (37), where 0 describes the main
orientation of the local spectrum, the tensor C should describe
the major axes of the local spectrum in the Fourier domain.
The consequence of the inner product in Eq. (41) is a
reduction of the high-frequency components in directions
where the local spectrum is weak. In those directions the
adaptive filter will mainly act as the stationary Wiener
component H, which has lowpass characteristics.

(42)

5.3 Adaptation Process

Before we describe the adaptation process, we will introduce a
set of fixed filters

Hy(u) = (1 - H)(a{ )", (43)

where #1;, define the directions of the filters and & = ﬁ

It turns out that the adaptive filter in Eq. (39) can be written
as a linear combination of these fixed filters and the stationary
Wiener solution where the weights are defined by inner
products of a control tensor C and the filter associated dual
tensors M.

N(N+1)/2
H. =H+ Z (My, C)H,,
k=1

(44)

where the tensors M, define the so-called dual tensor basis to
the one defined by the outer product of the filter directions.
The dual tensors M, are defined by

<Mk7Nl> = 5kl7
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FIGURE 6 Visualization of a quadrature filter (Hilbert transform pair) used in the estimation of local anisotropy. (Top)
The plots show the filter in the spatial domain: the real part (left) and the imaginary part (right). It can be appreciated that
the real part can be viewed as a line filter and the imaginary part an edge filter. The color coding is green, positive real, red,

negative real; blue, positive imaginary, and orange, negative imaginary. (Bottom) The left plot shows the magnitude of the
filter with the phase of the filter color coded. The right plot shows the quadrature filter in the Fourier domain. Here the filter
is real and zero on one half of the Fourier domain. See also Plate 2.

where N, = fi;n] are the outer products of the filter
directions. The number of fixed filters needed, N(N +1)/2,
is the number of independent coefficients in the tensor C,
which is described by a symmetric N x N matrix for a signal of
dimension N. This gives that 3 filters are required in two
dimensions, and 6 filters in three dimensions.

The rest of this section is somewhat technical and may be
omitted on a first reading.

Equation (44) can be validated be inserting the expressions
for the control tensor C and the fixed filter functions in
Eq. (44),

N2 N
Ho=H+(1—-H) Y (M) veel)hu). (45)
k=1 i=1

By expressing the squared inner product (& it)* as the inner
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product of two outer products (f;n], #u’), switching the
order of the terms in the first inner product

N(N+1)/2 N
Ho=H+(1=H) > (Y el My) (i, uis"),
k=1 =l
(46)
and reordering the summation
N N(N+1)/2
H.=H+(1-H)() reel, Y M) N aa") (47)
i=1 k=1
=1
N
:H+(1_H)<Zyzezelauu > (48)
i=1
N
=H+(1-H)) yefm), (49)

which is equal to the adaptive filter we wanted to construct (Eq.
(39)). The under-braced terms sums to 1 because of the dual
basis relation between the two bases M, and N,.

5.4 Estimation of Multidimensional Local
Anisotropy Bias

Knutsson [27] has described how to combine quadrature filter
responses into a description of local image structure using
tensors. His use of tensors was primarily driven by the urge to
find a continuous representation of local orientation. The
underlying issue here is that orientation is a feature that maps
back to itself modulo m under rotation, and direction is a
feature that maps back to itself modulo 2. That is why vector
representations work well in the latter case (e.g., representing
velocity) but not in the former case.

Knutsson used spherically separable quadrature filters [28],

Q(u) = R(p)Di(u), (50)

where u is the vector valued frequency variable, p = |u|,
i =, and R(p) and D, (i) are the radial and the directional
functions, respectively,

{p

if ali, >0
otherwise,

= (@)’
51
~ ¢ 651
where 7, is the filter direction, i.e., D(#) varies as cos*(¢),
where ¢ is the angle between u and the filter direction, and

R(p) = e~ T3’ (/o) (52)

is the radial frequency function. Such functions are Gaussian
functions on a logarithmic scale and are therefore termed
lognormal functions. Bis the relative bandwidth in octaves and
po is the center frequency of the filter. R(p) defines the
frequency characteristics of the quadrature filters.
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A tensor T describing local structure is obtained by a linear
summation of quadrature filter magnitude responses, |g/,
weighted by predefined tensors M, associated with each filter
(defined as the dual tensors in Eq. 44):

N+1

N(N+1)/2
T= Z Mg (53)
k=1

where |q| is the output magnitude from the quadrature filter k.

The tensor in Eq. (53) is real and symmetric and can thus be
written as a weighted sum of outer products of its orthogonal
eigenvectors:

N
T=3 i,
k=1

(54)

where the vectors e, describe the principal axes of the local
signal spectrum (the locality is defined by the radial frequency
functions of the quadrature filters).

The distribution of the eigenvalues, 1, < 1, < ... < Ay,
describes the anisotropy of the local spectrum. If the tensor is
close to rank 1, i.e., there is only one large eigenvalue
(A >>2, ke{2,...,N}), the spectrum is concentrated to
the line in the Fourier domain defined by e,. Further, if the
tensor is close to rank 2 the spectrum is concentrated to the
plane in the Fourier domain spanned by e, and e,.

5.5 Tensor Mapping

The control tensor C used in the adaptive scheme is based on a
normalization of the tensor described in the previous section
(Eq. 54):

N
C= Z“/kékélz (55)
k=1
A
_ T, 56
o2 (56)

where o is a term defining the trade-off between resolution and
stability similar to Eq. (33). However, here the resolution
trade-off is adaptive in the same way as the stationary Wiener
filter o = 0 gives maximum resolution, and the larger the value
of o, the smoother the Wiener solution. Maximum resolution
is given when 4, is large compared to o, and the smaller 4, the
smoother the solution. If the “resolution parameter” & = 0, the
control tensor will be

(57)

LT s L
:e1e1T+/1—2e2e2T+...+;t—eNeITv. (58)
1 1

With this normalization, the largest eigenvalue of Cis y;, =1,
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and the resulting adaptive filter H. becomes an allpass filter
along signal direction e,

H =H+(1-Hy =1 (59)

If it is desired to increase the image contrast, this can be done
by increasing the high frequency content in dim parts of the
image data adaptively. Assuming a normalization of the tensors
T so that the largest eigenvalue is 1 globally, max(4,) = 1, this
can be achieved by increasing the exponent of the 4, in the
denominator.

/

C= prES" T (60)
1

This will increase the relative weights for low and medium-low
signal components compared to the largest (4, = 1). More
elaborate functions for remapping of the eigenvalues can be
found in [4, 29, 30].

5.6 Examples of Anisotropic Filtering in 2D and
3D

The filters used in the examples below have in the 2D examples
size 15 x 15, and 15 x 15 x 15 in the 3D. The center frequencies
of the quadrature filters differ in the examples, but the relative
bandwidth is the same, B=2. We have for simplicity
approximated the stationary Wiener filter with the following
lowpass filter:

{H(p) :cos%%) if 0< p<p,,
P
H(p) =0

(61)

otherwise.
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frequency. The more noise in the image, the lower the cutoff
frequency p), that should be used.

Figure 7 shows the result of 2D adaptive filtering of MR data
from breast imaging. The original image is shown to the left. To
the right, the result from anisotropic adaptive filtering is
shown. The quadrature filters used for estimating the local
structure had center frequency w, = /3 and the lowpass filter
H had a cutoff frequency p;, = m/4. The control tensor C was
defined by Eq. (56) with o = 1% of the largest 4, globally.

Figure 8 shows the result of 3D adaptive filtering of MR data
through the skull. The original image is shown to the left.
The result from adaptive filtering is shown to the right. The
quadrature filters used had center frequency w, = n/2 and the
lowpass filter H had a cutoff frequency p;, = /3. The control
tensor C was defined by Eq. (60) with oo = 1% of the largest 4,
globally. Note that details with low contrast in the original
image have higher contrast in the enhanced image.

Figure 9 shows the result of 3D (2D 4 time) adaptive
filtering of ultrasound data of a beating heart. The left row
shows images from the original time sequence. The right row
shows the result after 3D filtering. The quadrature filters used
had center frequency @, = n/6 and the cutoff frequency of the
lowpass filter H was pj, = n/4. The control tensor C is defined
by Eq. (60) with o = 5% of the largest 4, globally.

More details on implementing filters for anisotropic
adaptive filtering can be found in [4] where the estimation
of local structure using quadrature filters is also described in
detail. An important issue that we have not discussed in this
chapter is that in medical imaging we often face data with a
center-to-center spacing between slices that is larger than the
in-plane pixel size. Westin et al. [30] introduced an affine
model of the frequency characteristic of the filters to
compensate for the data sampling anisotropy. In addition

FIGURE 7 2D adaptive filtering of data from MR breast imaging. (Left) Original image. (Right) Adaptively filtered image.
The adaptive filtering reduces the unstructured component of the motion related artifacts.
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FIGURE 8 3D adaptive filtering of a coronal MR data set of the head with dynamic compression of the signal. (Left)
Original image. (Right) Adaptively filtered image. Note the improved contrast between brain and cerebrospinal fluid (CSF).

FIGURE 9 Spatio-temporal adaptive filtering of ultrasound data of the heart. (Left) The images for the original image sequence. (Right) Result after 3D
adaptive filtering. Note the reduction of the specular noise when comparing between filtered and unfiltered image sets.

to changing the frequency distribution of the filters, they also
show how this affine model can provide subvoxel shifted
filters that can be used for interpolation of medical data.
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1 Introduction

Image enhancement techniques have been widely used in the
field of radiology, where the subjective quality of images is
important for human interpretation and diagnosis. Contrast is
an important factor in subjective evaluation of image quality.
Many algorithms for accomplishing contrast enhancement
have been developed and applied to problems in medical
imaging. A comprehensive survey of several methods has been
published by Wang et al. [1]. Among the various techniques
published, histogram modification and edge enhancement
techniques have been most commonly used along with
traditional methods of image processing.

Histogram modification techniques [2,3], explained in
Chapter 1, are attractive because of their simplicity and speed
and have achieved acceptable results for some applications. The
transformation function used is derived from a desired
histogram and the histogram of an input image. In general,
the transformation function is nonlinear. For continuous
functions, a lossless transformation may be achieved. However,
for digital images with a finite number of gray levels, such a
transformation results in information loss due to quantization.
For example, a subtle edge may be merged with its neighboring

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

pixels and disappear. Attempts to incorporate local context
into the transformation process have achieved limited success.
For example, simple adaptive histogram equalization [4]
supported by fixed contextual regions cannot adapt to features
of different size.

Most edge enhancement algorithms share a common
strategy implicitly: detection followed by local “edge shar-
pening.” The technique of unsharp masking, discussed in
Chapter 2, is significant in that it has become a popular
enhancement algorithm to assist the radiologist in diagnosis
[5,6]. Unsharp masking sharpens edges by substracting a
portion of a filtered component from an original image.
Theoretically, this technique was justified as an approximation
of a deblurring process by Rosenfeld and Kak [7]. Loo et al. [8]
studied an extension of this technique in the context of digital
radiographs. Another refinement based on Laplacian filtering
was proposed by Neycenssac [9]. However, techniques of
unsharp masking remain limited by their linear and single-
scale properties and are less effective for images containing a
wide range of salient features, as typically found in digital
mammography. In an attempt to overcome these limitations, a
local contrast measure and nonlinear transform functions were
introduced by Gordon and Rangayyan [10], and later refined
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by Beghdadi and Negrate [11]. Limitations remained in these
nonlinear methods, since no explicit noise suppression stage
was included (in fact, noise could be amplified), and ad-hoc
nonlinear transform functions were introduced without an
analytical basis for their enhancement mechanisms or their
potential for artifacts.

Recent advancement of wavelet theory has sparked the
interest of researchers in the application of image contrast
enhancement [12-18]. In this chapter, we give a detailed
mathematical analysis of a dyadic wavelet transform and reveal
its connection to the traditional method of unsharp masking.
In addition, we discuss a simple nonlinear enhancement
function and analyze the problem of introducing artifacts as a
result of nonlinear processing of wavelet coefficients. We also
describe a denoising strategy that preserves edges using wavelet
shrinkage [23] and adaptive thresholding.

Selected enhancement techniques are discussed in the
following sections of this chapter: Section 2 presents a one-
dimensional (1D) dyadic wavelet transform. Section 3
analyzes linear enhancement and its mathematical connec-
tion to traditional unsharp masking. Section 4 analyzes
simple nonlinear enhancement by pointwise functional
mapping. Section 5 introduces denoising with wavelet
shrinkage along with an adaptive approach for finding
threshold values. Section 6 presents a two-dimensional (2D)
extension for digital mammography and special procedures
developed for denoising and enhancement that avoid
orientation distortions. Section 7 presents some sample
experimental results and comparisons with existing techni-
ques. Finally, Section 8 concludes our discussion and suggests
possible future directions of research.

2 One-Dimensional Discrete Dyadic
Wavelet Transform

2.1 General Structure and Channel
Characteristics

A fast algorithm [19,20] for computing a 1D redundant
discrete dyadic wavelet transform (RDWT) is shown in Fig. 1.
The left side shows its decomposition structure, and the right,
reconstruction. For an N-channel structure, there are N—1
high-pass or band-pass channels and a low-pass channel. Thus,
the decomposition of a signal produces N— 1 sets of wavelet
coefficients and a coarse signal.

Since there is no down-sampling and up-sampling shown in
Fig. 1, this redundant discrete dyadic wavelet transform does
not correspond to an orthogonal wavelet basis.

For simplicity of analysis, an equivalent multichannel
structure is shown in Fig. 2. This computational structure
also makes obvious the potential for high-speed execution by
parallel processing.
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FIGURE 1 Computational structure for a one-dimensional discrete

dyadic wavelet transform (three levels shown).

A A
We shall refer to filters f,,(w) and i,,(w) in Fig. 2 as forward
filters and inverse filters, respectively. Their relationship to the
filters & (w), k(w),and h( ) shown in Fig. 1 is explicitly given

1__[?1260

"0),1<m<N-—1,

and
: E
— f . (w) + Fole )
E
—1 J () . fileny [
— e
E
1 f.(e) * i(w) [
— fi(@) i) [

FIGURE 2 An equivalent multichannel structure for a three-level
RDWT.
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A A A N-17
ip(w) = k(w),iy(w) = | | h(2'w),
=0
N N-1— R
in(@) =[] h@'o) k@"0), 1 <m<N-1
1=0
Since filters h(w), g (w), and k(w) satisfy the condition

filters f,, ()
domain:

3 fi(@) in(w) =
1

Channel frequency responses c?ﬂ(w) can be written as

2

- Z(w) m=0

A

Fol®) ()
ni_[ﬁzw‘ [1—‘112"’ .2]

it

As an example, let as consider an extension of the class of filters
proposed by Mallat and Zhong [20] and precisely show how
these filters can cover the space—frequency plane to provide a
complete analysis:

En()

<m<N-1

m

A
hZa) = N.

(2)

A w\ 2n+p
h(w) = e*acos (E) )

where p =0 or 1. Let

m—1 1
= [H cos(ZHw)] .
1=0
Then we can show that

A : m—1 q
0 m q<w) = Sln(z . w) 9
’ 2msin(%)

and therefore

A A

0 m,4n+2p(w) -0 m+1,4n+2p(w)>0 <m<

(N-1)

A
0 N,4n+2p(w)7 m=N.

A
Note that 0 ,(w) = 1, and for 0<m<N,
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A
0 m-+ L4n+2p(w)

¢ plw) = 0

m4n+2p (w) -

2n+p—1

Z cos(2" 'w ]21,
1=0
(5)

and sin*(2) is the frequency response of the discrete Laplacian
operator of impulse response {1,—2,1}.

0 ,4(w) with even exponential g is an approximate
Gaussian function, while the frequency responses of the
channels 0 <m < N are approximately Laplacian of Gaussian.
Figure 3 shows the frequency response of each distinct channel
while Fig. 4 compares 0 24(®) and 0 26(w) with related
Gaussians.

2 @ mA
= Sin (5)4 9m,4n+2p+2

2.2 Two Possible Filters

In this framework, the possible choices of filters are constrained
by Eq. (1). For the class of filters defined by Eq. (2), we can
derive

§<w>2<w>sm< ) ZPJ os(5)]

I=

Under the constraint that both £ (o) and k(w) are finite
impulse response (FIR) filters, there are two possible design
choices which are distinguished by the order of zeros in their
frequency responses.

1. Laplacian filter. In this case, §(w) = —4sin*(2) or
g(l) ={1,-2,1}, which defines a discrete Laplacian
operator, such that (gxs)(I) =s(I+1)—2s(])
+s(I = 1). Accordingly, we can chose both filters & (w)
and h(w) to be symmetric:

A w 2n
() = [cos(3)]
and
. 2
b=y - ()
g(m) 4~ 2/1
Both forward and inverse filters, 0 < m < N — 1, can be
derived by
fulw) = —4[sin(2" )70 ,5,(0)
w m A A
=sin? (3)4" 0 ,2,2(0) = 8(0) £ ,,(@)  (6)
and
A 2n—1 21
1 m(w) = mZﬂ(w) Z [COS(Zm ! )] =7 m(w)
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FIGURE 3 Channel frequency responses for N =6, n =1, and (a) p=0and (b) p= 1.

AN
Note that the forward filters f,,(w),0 < m < N — 1, can
be interpreted as two cascaded operations, a Gaussian
averaging of —0,,,,,(w) and the Laplacian
—4sin*(2), while the set of inverse filters i ,(w) are
low-pass filters. For an input signal s(l), the wavelet
coefficients at the points “E” (as shown in Figs 1 and 2)

may be written as
Wm(w) = A(S * /lm)(l)v

where A is the discrete Laplacian operator, and 4,,(I) is
approximately a Gaussian filter. This means that each

Theata 2 4

: Gaussian expl-2.8w"w)

inl
L]

25 3

K
(a

=

N 2 N . . .
FIGURE 4 (a) 0, ,(w) compared with the Gaussian function e~#¢". (b) 6, ¢(w) compared with the Gaussian function e~
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wavelet coefficient w,,(I) is dependent on the local
contrast of the original signal at each position I.

2. Gradient filter. In this case, § (w) = 2ie % sin(2), or
g(0)=1, and g(1) = -1, such that (gxs)(I) =
s(I) — s(I — 1). Thus, we select the filters

?1(60) = e [cos (%)} o

and

Thata 2.6

\ : Gaussian exp(-3.8w"w)

25 3

3.8m?%
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We then derive the forward filters

foul@) = 8(©)27 0 113012(0) = £(©) 7 ()

and inverse filters

where

A

D) =270 (@)1 [cos2" )]

Il
<)

is a low-pass filter.
In this case, the associated wavelet coefficients may be
written as

Wy (1) = V(s % 2,,) (1)

where V is a discrete gradient operator characterized by

s(l) =s() —s(I—1).

3 Linear Enhancement and Unsharp
Masking

3.1 Unsharp Masking

In general, unsharp masking can be seen as a generalized
subtracting Laplacian operator. In this context, an early
prototype of unsharp masking [7] was defined as

Su<x7 y) = S(x7 y) - kAS(x7 y)v (7)
where
o @
a2 o

is the Laplacian operator. However, this original formula
worked only at the level of finest resolution. More versatile
formulas were later developed in two distinct ways.

One way to extend this original formula was based on
exploiting the averaging concept behind the Laplacian
operator. The discrete form of the Laplacian operator may be
written as

As(i,j) = [s(i 4 1,j) = 25(i, ) + s(i = 1,j)]
+[s(j+1) = 255, j) + 53, j — 1)]

=—%wm—§wumﬂ+w—Lﬂ+ww

+s(i,j+ 1) +s(i, j— 1)]}
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This formula shows that the discrete Laplacian operator can be
implemented by substracting from the value of a central point
its average neighborhood. Thus, an extended formula [8] can
be written as

su(i,7) = (i, ) + K[s(i, j) — (s"h) (i, )], (8)

where h(i,j) is a discrete averaging filter, and * denotes
convolution. Loo, Doi, and Metz [8] used an equal-weighted
averaging mask:

I I
’ 0, otherwise.

Another way to extend the prototype formula [9] came from
the idea of a Laplacian-of-Gaussian filter, which expands
Eq. (7) into

su(x,7) = s(x,y) = kA(s°g) (%, y) = s(x,y) — k(s"Ag)(x, y)
©)
where g(x,y) is a Gaussian function, and Ag(x,y) is a
Laplacian-of-Gaussian filter.

‘We mention for future reference that both extensions shown
in Egs. (8) and (9) are limited to a single scale.

3.2 Inclusion of Unsharp Masking Within the
RDWT Framework

We now show that unsharp masking with a Gaussian lowpass
filter is included in a dyadic wavelet framework for enhance-
ment by considering two special cases of linear enhancement.

In the first case, the transform coefficients of channels
0 <m < N —1 are enhanced (multiplied) by the same gain
Gy>1,0r G, = Gy>1,0 < m < N — 1. The system frequency
response is thus

H@) = Y Gy () + Ex(0) =Gy 3 (o)

— (G = 1) cy(w)
=Gy~ (Gy— 1) Ex(@) = 14 (Gy — 1)1 — Cy(w).
This makes the input—output relationship of the system simply

se(l) = s(1) + (Gy = Ds() = (s* en) (D] (10)

Since ¢ ~(w) is approximately a Gaussian low-pass filter, Eq.
(10) may be seen as the 1D counterpart of Eq. (8).

In the second case, the transform coefficients of a single
channel p,0 < p<N are enhanced by a gain G,> 1; thus,

V(@)=Y @)+ G, cp(@) =€) + (G, — 1) ¢,p(w)

(11)
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Recall the channel frequency response c?n(a)) derived pre-
viously in Eq. (5). The input—output relationship of the system
in Eq. (11) can be written as

se() = s(1) = (G, = 1){A(sxm)(1) (12)

where 7(l) is the impulse response of an approximately
Gaussian filter. Similarly, Eq. (12) may be seen as the 1D
counterpart of Eq. (9). The inclusion of these two forms of
unsharp masking demonstrates the flexibility and versatility of
the dyadic wavelet framework.

4 Nonlinear Enhancement by Functional
Mapping

Linear enhancement can be seen as a mapping of wavelet
coefficients by a linear function E,(x) = G,x. A direct
extension of this is a nonlinear mapping function E,,(x). The
main challenges here are how to design a nonlinear function
and how to best utilize multichannel information extracted
from a dyadic wavelet framework to accomplish contrast
enhancement.

4.1 Minimum Constraint for an Enhancement
Function

A major concern in enhancement is to introduce no artifacts
during processing (analysis) and reconstruction (synthesis).
For the dyadic wavelet framework this means that we should
not create new extrema in any of the channel outputs. This
defines a minimum constraint on any enhancement function:
A function must be continuous and monotonically increasing.

4.2 Filter Selection

For linear enhancement, the selection of filters g m(®) (and
thus k ,,(w)) makes little difference. However, this is not true
for the nonlinear case. For the nonlinear approach described
later, we show that a Laplacian filter should be favored. By
selecting a Laplacian filter, we can be assured that positions of
extrema will be unchanged and that no new extrema will be
created within each channel. This is possible for the following
reasons:

1. Laplacian filters are zero-phase. No spatial shifting in the
transform space will occur as a result of frequency
response.

2. A monotonically increasing function E(x) will not
produce new extrema. (At some point E[f(x,)] is an
extremum if and only if f(x,) was an extreme
singularity.)

I Enhancement

3. The reconstruction filters are simply zero-phase
smoothing filters that will not create additional extrema.

The major difficulty in using a gradient filter is that
reconstruction includes another gradient operator. As a
result, a monotonically increasing function E(x) alone (as
shown in Fig. 5a) will no longer guarantee that new extrema
will not be introduced in each output channel. Moreover, it is
not difficult to show that any nonlinear mapping will change
the positions of original extrema. Therefore, we will assume the
choice of Laplacian filters in the remainder of this chapter.

4.3 A Nonlinear Enhancement Function

Designing a nonlinear enhancement scheme is difficult for two
reasons: (1) the problem of defining a criterion of optimality
for contrast enhancement, and (2) the complexity of analyzing
nonlinear systems. We adopted the following guidelines in
designing nonlinear enhancement functions:

1. An area of low contrast should be enhanced more than
an area of high contrast. This is equivalent to saying that
small values of wavelet coefficients w at some level m,
denoted by w,,, should have larger gains.

2. A sharp edge should not be blurred.

Experimentally, we found the following simple function to
be advantageous:

x—(K-1)T, ifx<-T
E(x) = Kx, if |x] <T<x+6(x) (13)
x+(K-1)T, ifx>T

where K> 1. This expression for enhancement may also be
reformulated as a simple change in value (Eq. (13) right) where

—(K-1T1, if x<-T
o(x)= (K—-1)x, if |x|<T.
(K-—1)T, if x>T

At each level m, the enhancement operator J,, has two free
parameters: threshold T,, and gain K,,. In our experimental
studies, K,=K,, 0<m<N-1, and T,
max{w,,[n]}, where 0<T <1 was user specified. For
t = 1.0, the wavelet coefficients at levels 0 < m < N —1
were multiplied by a gain of K, shown previously to be
mathematically equivalent to unsharp masking. Thus this
nonlinear algorithm includes unsharp masking as a subset.
Figure 6 shows a numerical example, comparing linear and
nonlinear enhancement. Note the lack of enhancement for the
leftmost edge in the case of the linear operator.
Specifically, an enhanced signal S,(I) can be written as

:t(—}
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se(l) = : (Enl(s  fu)] # ) (1) + (s fig o in) (1)
N N-1
= Z(S * fon * 1) (1) + 3 (Om[A(s * 4y)] ) (D)

or

Z

() = () = S (BA(s % )] * 1) (1),

0

(14)

3
I

For completeness, we mention that the formula of Eq. (14) can
be seen as a multiscale and nonlinear extension of the original
unsharp masking operator defined by Eq. (9). We argue that
multiscale unsharp masking as defined by Eq. (14) makes a
marked improvement over traditional techniques in two
respects:

1. The fast multiscale (or multimask) decomposition
procedure efficiently identifies features existing within
distinct levels of scale, eliminating the need for search.

2. The nonlinear algorithm enhances small features within
each scale without blurring the edges of larger features,
making possible the simultaneous enhancement of
features of all sizes.

4.4 Enhancement Techniques

To accomplish multiscale contrast enhancement, nonlinear
techniques for image enhancement were applied to levels of a
multiresolution representation. For each basis, there were four
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(a) E(x) and (b) d(x), both with T = 0.5 and K = 20.

components in the transform space: horizontal, vertical,
diagonal, and a DC component, represented by di, di, di,
and s, respectively; i is the level of a transform. Let s be the
original image, ¢ be the function designed to emphasize
features of importance within a selected level i, and L be the
number of levels in a transform. Then, an enhanced image may
be constructed by

L

s=Y_ wWl(g(d), g(di), g(di), s").

i=1

(15)

In general, by defining a function g we can denote specific
enhancement schemes for modifying the coefficients within
distinct selected levels of scale-space.

Local Enhancement Techniques

Image enhancement should emphasize important features
while reducing the enhancement of noise. Enhancement
techniques for digital mammography based on multi-scale
edges have been developed [12-15]. In this chapter, we will
consider the enhancement to be specified by

di(m,n),
g'di(m, n),

1f. ot 1
= {4,

if: e'(m,n)> T,
where m and n denote coordinates in the spatial domain, el is
the edge set corresponding to the transform space component
di, ¢'is alocal gain, and T' is a threshold at level i; g’ and T" are
selected adaptively. The edge set e’ of di contains the local
maxima of d! along the horizontal direction. For d} and dj, the
direction is along the vertical and diagonal orientations (45°),
respectively. Specifically,
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nonlinear operator with t = 0.1 and K, = 7.

|d{(m,n)|, if |d{'(m,n)}>{d{'(m+l,n)|
¢'(m,n) = and‘df(m,n)’>’d{(m—l,n)|
0, otherwise.

The processing of d and d} is similar. By simply replacing di,
i, and di with corresponding modified components di, di,
and d;, we obtain an enhanced image s.

Multiscale Histogram Equalization

Histogram equalization of transform-space images provides a
global method to accomplish multiresolution enhancement.

I Enhancement
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350

1D contrast enhancement of a synthetic signal (a) by four-level dyadic wavelet analysis with (b) a linear operator with K, = 2.3, and (c) a

Traditional histogram equalization was applied to each sub-
band of coefficients in the transform space (excluding the DC
component) to obtain a globally enhanced mammogram.

Multiscale Adaptive Gain

In this approach, we suppress pixel values of very small
amplitude, and enhance only those pixels larger than a certain
threshold T within each level of the transform space. We design
the following function to accomplish this nonlinear operation
[17]:

f(y) = alsigm(c(y — b)) — sigm(=c(y + b)), (16)



3 Enhancement by Multiscale Nonlinear Operators

where

1
“= sigm(c(1 — b)) — sigm(—c(1+ b))’

sigm(y) is defined by

. 1

sigm(y) = T

and b and ¢ control the threshold and rate of enhancement,
respectively. It can be easily shown that f(y) is continuous and
monotonically increasing within the interval [ — 1, 1] (similar
to histogram equalization). Furthermore, a derivative of f(y) of
any order exists and is continuous. Therefore, enhancement
using f(y) will not introduce new discontinuities (artifacts)
into the reconstructed image.

5 A Method for Combined Denoising and
Enhancement

Some nonlinear enhancement methods [11] do not take into
account the presence of noise. In general, noise exists in both
digitized and digital images, due to the detector device and
quantization. As a result of nonlinear processing, noise may be
amplified and may diminish the benefits of enhancement.

Denoising an image is a difficult problem for two reasons.
Fundamentally, there is no absolute boundary to distinguish a
feature from noise. Even if there are known characteristics of a
certain type of noise, it may be theoretically impossible to
completely separate the noise from features of interest.
Therefore, most denoising methods may be seen as ways to
suppress very high-frequency and incoherent components of
an input signal.

A naive method of denoising that is equivalent to low-pass
filtering is naturally included in any dyadic wavelet framework.
That is, simply discard channels at the highest resolution, and
enhance coefficients confined to lower space-frequency chan-
nels. The problem associated with this linear denoising
approach is that edges are blurred significantly. This flaw
makes linear denoising mostly unsuitable for contrast enhance-
ment in medical images. In order to achieve edge-preserved
denoising, more sophisticated methods based on wavelet
analysis were proposed in the literature. Mallat and Hwang
[22] connected noise behavior to singularities. Their algorithm
relied on a multiscale edge representation. The algorithm
traced modulus wavelet maxima to evaluate local Lipschitz
exponents and deleted maxima points with negative Lipschitz
exponents. Donoho [23] proposed nonlinear wavelet
shrinkage. This algorithm reduced wavelet coefficients
toward zero based on a level-dependent threshold.
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5.1 Incorporating Wavelet Shrinkage into
Contrast Enhancement

The method of denoising by wavelet shrinkage can be
incorporated trivially into a nonlinear enhancement frame-
work by simply adding an extra segment to the enhancement
function E(x), defined earlier in Eq. (13):

x—(K—-1)T,+KT,, if x<-T,
K(x+T,), if -T,<x<-T,

B(x) = 0, i W <T,
K(x—T,), if T, <x<T,
x+(K—1)T, - KT,, if > T,

However, there are two arguments that favor shrinking
gradient coefficients instead of Laplacian coefficients.

First, gradient coefficients exhibit a higher signal-to-noise
ratio (SNR). For any shrinkage scheme to be effective, it is
essential that the magnitude of the signal’s components be
larger than that of existing noise. It is thus sensible to define the
SNR as the maximum magnitude of a signal over the
maximum magnitude of noise. For example, consider a soft
edge model

A

——— A>0.
(1 + e2Bx)’

flx) =
The first and second derivatives of f(n) are

Ap
[2 cosh?(fx))]

—AB%sinh
o AL

fi(x) =
with the magnitude of local extrema |f’(x))| = A|B|/3 and
If" ()] = 2AB /3V/3, respectively. In this simple model, we
can assume that noise is characterized by a relatively small A
value and large 8 value. Clearly, gradient coefficients have a
higher SNR than those of Laplacian coefficients since f
contributes less to the magnitude of the function’s output.
Figures 7b and 7c show first and second derivatives, respec-
tively, for an input signal (a) with two distinct edges.

In addition, boundary contrast is not affected by shrinking
gradient coefficients. As shown in Fig. 7, coefficients aligned to
the boundary of an edge are local extrema in the case of a first
derivative (gradient), and zero crossings in the case of a second
derivative (Laplacian). For a simple pointwise shrinking
operator, there is no way to distinguish the points marked
“B” from the points marked “A” (Fig. 7c). As a result, regions
around each “A” and “B” point are diminished, while the
discontinuity in “B” (Fig. 7d) sacrifices boundary contrast.

In the previous section, we argued that nonlinear enhance-
ment is best performed on Laplacian coefficients. Therefore,
in order to incorporate denoising into our enhancement
algorithm, we split the Laplacian operator into two cascaded
gradient operators. Note that
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(a)
(c)
FIGURE 7
(d) Shrunken Second derivative.
A . m—1 2 A N
4 m(w) = —4[5111(2 CU)] =8 ml(w) 8 m,Z(w)7
where

g (@) = eB2isin(2), 8 ,,(w) = %2isin(2), if m =0,

A A .
& 1 (@) = & p(@) = 2isin(2" '),
Denoising by wavelet shrinkage [23] can then be incorporated

into this computational structure as illustrated in Fig. 8, where
the shrinking operator can be written as

|x| - Tm

0, otherwise.

if |x|>T,,

) = sgn(x){

Note that the shrinking operator is a piecewise linear and
monotonically nondecreasing function. Thus, in practice, the
shrinking operator will not introduce artifacts.

otherwise.

I Enhancement

(b)

(a) Signal with two edges. (b) First derivative (gradient). (c) Second derivative (Laplacian).

5.2 Threshold Estimation for Denoising

The threshold T, is a critical parameter in the shrinking
operation. For a white noise model and orthogonal wavelet,
Donoho [23] suggested the formula T, = y/2log(N)a/v/N,
where N is the length of an input signal and ¢ is the standard
deviation of the wavelet coefficients. However, the dyadic
wavelet we used is not an orthogonal wavelet. Moreover, in our
2D applications, a shrinking operation is applied to the
magnitudes of the gradient coefficients instead of the actual
wavelet coefficients. Therefore, the method of threshold
estimation proposed by Voorhees and Poggio [24] for edge
detection may be more suitable.

In our “shrinking” operation, only the magnitudes of the
gradient of a Gaussian low-passed signal are modified. As
pointed out by Voorhees et al. [24], for white Gaussian noise,
the probability distribution function of the magnitudes of
gradient is characterized by the Rayleigh distribution:
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(a) Noisy input signal (contaminated by white Gaussian noise). (b) Nonlinear enhancement without denoising, G,, = 10, N =4, t = 0.1.

(c) Nonlinear enhancement of levels 2-3, G,,, = 10, t = 0.1; levels 01 set to zero. (d) Nonlinear enhancement with adaptive wavelet shrinkage denoising,

G,=10,N=4,t=0.1.

m_(m/n’

PrHAfH(m) :?e 2, m>0

0, m<0.

To estimate #, a histogram (probability) of ||Af]| was
computed, and then iterative curve fitting was applied.
Under this model, the probability p of noise removal for a
particular threshold 7 can be calculated by

_ Jo Prjagy (m)dm
Jo Prag (m)dm

and thus 1 = \/—21n(1 — p)y. For p = 0.999, T = 3.71.

Figure 8 compares the performance of different approaches.
In (b), we observed that enhancement without any denoising
results in distracting background noise. In (c), edges are
smeared and broadened by low-pass enhancement. Only in (d),
with wavelet shrinkage enabled, we are able to achieve the
remarkable result of denoising and contrast enhancement
simultaneously.

To demonstrate the denoising process, Figs 9a and 9b show
both nonlinear enhancement of wavelet coefficients without
and with denoising, respectively, for the original input signal
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FIGURE 9 Column (a), Sample of magnitude of enhanced wavelet coefficients without denoising. Column (b), Enhanced wavelet coefficients with
adaptive thresholding T, = 4.54. Column (c), The magnitude distribution and curve-fitting. (Rows 1 through 4 correspond to levels 1 to 4).
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shown in Fig. 9a. Figure 9c shows the associated curve-fitting
for threshold estimation.

6 Two-Dimensional Extension

For image processing applications, the 1D structures discussed
previously are simply extended to two dimensions. We first
adopt the method proposed by Mallat andZZhong [20], shown
in Fig, 11, where filter | (w) =1+ | h(w)|"2,and h(w), k(w),
and £ (w) are the same filters as constructed for the 1D case.
The left side of Fig. 10 corresponds to analysis (decomposition)
while the right side is synthesis (reconstruction). The bar above
some of the analytic forms of the synthesis filters refers to the
complex conjugate.

If we simply modify the two oriented wavelet coefficients
independently, orientation distortions are introduced. One
way to avoid this severe artifact is first to apply denoising to the
magnitude of the gradient coefficients, and then carry out
nonlinear enhancement on the sum of the Laplacian coeffi-
cients, as shown in Fig. 11. For the two oriented gradient
coefficients g, and g, the magnitude M and phase P are
computed as

M =,/g + g and P = arctan (g—x> )
&

respectively. The denoising operation is then applied to M,
obtaining M’. The denoised coefficients are then simply
restored as g, = M’ cos(P) and g’ = M’ sin(P), respec-
tively. For the enhancement operation, notice that the sum of
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two Laplacian components is isotropic. Therefore, we may
compute the sum of the two Laplacian components L = I, + I,
and F=1,/l,. A nonlinear enhancement operator is then
applied to only L, producing L'. Thus, the restored components
are I, = L'« Fand I, = ' % (1 — F).

7 Experimental Results and Comparison

In this section, we present samples of experimental results and
compare the dyadic wavelet analysis with other methods.
Figure 12a shows a synthetic image with three circular
“bumps” and added white noise. The enhancement results
shown in (b) and (c) demonstrate amplification of unwanted
noise. Moreover, note that histogram equalization processing
alters the object’s boundary. However, the result shown in (d)
accomplished by dyadic wavelet analysis provides a clearer
image without orientation distortion. Note also the “halo”
effect surrounding the smaller simulated masses in (d). Indeed,
radiologists are trained to be sensitive to this visual feature in
detecting subtle masses in screening mammography.

Figure 13a shows an original dense mammogram image with
an obvious mass. The boundary of the mass in the enhanced
image is more clearly defined and the penetration of spicules
into the mass is well delineated.

To test the performance of enhancement algorithms in
circumstances similar to clinical ones, we can use images with
known structures where the objects of interest are deliberately
obscured by normal breast tissues. Mathematical models of
phantoms have been used to validate multiscale enhancement
techniques against false positives arising from possible artifacts
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FIGURE 10 Two-dimensional dyadic wavelet transform (two levels shown).
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FIGURE 11 Denoising and enhancement for the 2D case (level one shown).

and evaluate the contrast improvement. Our models included
features of regular and irregular shapes and sizes of interest in
mammographic imaging, such as microcalcifications, cylind-
rical and spicular objects, and conventional masses. Techniques
for “blending” a normal mammogram with the images of

mathematical models were developed. The “imaging” justifi-
cation for “blending” is readily apparent; a cancer is visible in a
mammogram because of its (slightly) higher X-ray attenuation,
which causes a lower radiation exposure on the film in the
appropriate region of a projected image.

(c)

(d)

FIGURE 12 (a) Noisy image (white Gaussian noise contaminated). (b) Histogram equalized. (c)
Nonlinear enhancement by Beghdadi and Negrate’s algorithm [11]. (d) Nonlinear enhancement with
adaptive wavelet shrinkage denoising, G,, =20, N =4, t = 0.1.
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The efficacy of the dyadic wavelet analysis technique was
tested using mathematical phantom features blended into
clinically proven, cancer-free mammograms. Figures 14a and
14b show mathematical phantom features that were blended
into two images, resulting in the images shown in Fig. 15 (a)
and Fig. 16(a). Figure 15a shows a dense mammogram with
blended phantom features, while Fig. 15b shows the image
processed by the nonlinear enhancement method. The
enhanced image makes more visible the boundary (uncom-
pressed areas) of the breast and its structure. In addition, the
phantom features are also well enhanced. Figure 16a shows a
dense mammogram with blended phantom features, and
Fig. 16b shows the corresponding enhanced image.

Other results have shown that the multiscale processing
techniques just described can make unseen or barely seen
features of a mammogram more obvious. The analyzing

(a)
FIGURE 13
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functions presented improve the visualization of features of
importance to mammography and assist the radiologist in the
early detection of breast cancer.

Figure 16a shows an example of a mammogram whereby the
mathematical phantom shown in Fig. 15a has been blended
into a clinically proven, cancer-free mammogram. These
images shown were constructed by adding the amplitude of
the mathematical phantom image to a cancer-free mammo-
gram followed by local smoothing of the combined image.

Before applying these techniques, a computer-simulated
phantom was developed to both characterize and optimize
each enhancement algorithm [45]. Parameters included the
levels of analysis, the threshold (T) and gain (¢) parameter
value. The phantom study enables us to compute an enhance-
ment factor (EF) which was used to quantitatively measure the
performance of each algorithm. EF was defined as the ratio of

(a) Original mammogram image M73. (b) Nonlinear enhancement with adaptive

wavelet shrinkage denoising, G,, =20, N =5, t =0.1.

(a)

FIGURE 14
be blended into M56.

(b)

(a) Five phantom features to be blended into M48. (b) Five phantom features to
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FIGURE 15 (a) Mammogram image M48 with blended phantom features. (b) Nonlinear
enhancement with adaptive wavelet shrinkage denoising, G,, =20, N =5, t = 0.1.

(b)

FIGURE 16 (a) Mammogram image M56 with blended phantom features. (b) Nonlinear
enhancement with adaptive wavelet shrinkage denoising, G,, = 20, N =5, t = 0.1.
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(a) (b)

FIGURE 17 (a) Refinement relation for Deslauries—Dubuc interpolation (DD). (b) Interval wavelet plot, D = 3.
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(a) (b)

(e) (f)

FIGURE 18 (a) Mathematical phantom. (b) Mammogram M56 blended with phantom image. (c)
Enhancement by adaptive histogram equalization. (d) Enhancement by adaptive gain processing of DD
interpolation coefficients. (e) Enhancement by traditional unsharp masking. (f) Enhancement by
multiscale edges of DD interpolation coefficients.
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(a) (b) () (d) (e)

FIGURE 19 Contrast enhancement of features in blended mammogram. Phantom mammographic features from top to bottom: minute
microcalcification cluster, microcalcification cluster, spicular lesion, circular (arterial) calcification, and a well-circumscribed mass. (a) Original image.
(b) Enhancement by unsharp masking. (c) Enhancement by adaptive histogram equalization. (d) Enhancement by adaptive gain processing of DD
wavelet coefficients. (e) Local enhancement by multiscale edges of DD wavelet coefficients.
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(e)

FIGURE 20 Sample scan lines displaying enhancement by the method of multiscale edges of DD wavelet coefficients: (a) minute microcalcification

cluster, (b) microcalcification cluster, (c) spicular lesion, (d) circular (arterial) calcification, and (e) well-circumscribed mass. Solid line indicates original

mammogram; dotted line indicates local enhancement by multiscale edges.

TABLE 1

CII for enhancement by unsharp masking (UNS), adaptive histogram equalization (AHE), and by local enhancement of multiscale edges

obtained from Deslauriers—Dubuc interpolation (EDGE), adaptive gain processing of Deslauriers—Dubuc interpolation (GAIN)

Feature CII UNS CII AHE CII GAIN CII EDGE
Minute microcalcification cluster 1.3294 0.8442 7.7949 12.7298
Microcalcification cluster 3.6958 4.9759 10.9217 11.0783
Spicular lesion 2.0174 3.5714 12.5714 13.7596
Circular (arterial) calcification 2.1888 4.4601 8.0160 10.6914
Well-circumscribed mass 1.4857 31.1714 9.8286 11.3429

output to input contrast noise ratio (CNR). The study found
that computed EF values correlated well with the feature
detection performance of radiologists [45]. In addition, clinical
use confirms that processing the blended mammogram
with our local enhancement techniques introduced no sig-
nificant artifacts and preserved the shapes of the known
mammographic features (calcifications, dominant masses, and
spicular lesions) contained in the original mathematical
phantom.

Enhancement by multiscale edges provides a significant
improvement in local contrast for each feature included in the
blended mammograms. A quantitative measure of contrast
improvement can be defined by a Contrast Improvement Index
(CH)’ Cll = CProcessed/ COriginal’ where CProcessed and COriginal are

the contrast values of a region of interest in the processed and
original images, respectively.

In this chapter we adopt a version of the optical definition of
contrast introduced by Morrow et al. [41]. The contrast Cof an
object was defined by C = (f —b)/(f + b), where f is the
mean gray-level value of a particular object in the image called
the foreground, and b is the mean gray-level value of a
surrounding region called the background. This definition of
contrast has the advantage of being independent of the actual
range of gray levels in the image. We computed local masks to
separate the foreground and background regions of each
feature included in the blended mammogram.

Figure 18c shows the result after processing the blended
mammogram with adaptive histogram equalization (AHE).
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Selected a RO oW

column

FIGURE 21 (a) Selected ROI within a mammogram, (b) ROI is
processed based on tensor product: Each row is processed first, followed
by the processing of each column.

Figure 18d was obtained after reconstructing the blended
mammogram from interval wavelet transform coefficients
modified by multiscale adaptive gain processing (GAIN).
Figure 18e shows the result after processing the blended
mammogram with unsharp masking (UNS). Figure 18 shows
the result obtained after reconstructing the blended mammo-
gram from interval wavelet transform coefficients modified by
multiscale edges (EDGE). Figure 19 shows enlarged areas
containing each feature in the processed mammogram for each
method of contrast enhancement. The images in each row of
Fig. 19 were rescaled by the same linear transformation. Table 1
summarizes the comparison quantitatively by listing CII values
computed for each case and feature.

Table 3 shows the CII values for the original and enhanced

I Enhancement

mammographic features shown in Fig. 18. From the table we
observed that the enhancement by GAIN and EDGE performed
significantly better than UNS and AHE.

Figure 20 shows the improvement of local contrast accom-
plished by EDGE for a sample scan line profile taken from
cross-sections of each feature. Note that in all cases contrast
was improved while preserving the overall shape of each feature
profile.

Given the large matrix size of digital mammograms,
computational costs for processing can be large. However, by
constructing wavelets which exist only on an interval [35, 36] as
shown in Fig. 21, it is possible to enhance an arbitrary region of
interest (ROI) within a mammogram. Figure 22 shows the
enhancement of an arbitrarily shaped ROI using adaptive gain
processing of interval wavelet interpolation [36]. Figure 22
shows the enhancement of an arbitrary ROI using multiscale
edges. By constraining the enhancement to only an interest
region, computation is greatly reduced (Table 2). This makes
possible interactive processing of suspicious areas on a softcopy
display system.

8 Conclusion

In this chapter we have reviewed established connections
between dyadic wavelet enhancement algorithms and tradi-
tional unsharp masking. We proved that two cases of linear
enhancement were mathematically equivalent to traditional
unsharp masking with Gaussian low-pass filtering. We
designed a methodology for accomplishing contrast enhance-
ment with a simple multiscale nonlinear operator that exploits
the wide dynamic range available in medical images. By
judicious selection of wavelet filters and enhancement func-

(a) (b)

)

FIGURE 22 Blended mammogram: (a) Original mammogram blended with mathematical phantom. (b) ROI enhancement by adaptive gain
processing of DD wavelet coefficients. (¢) ROI enhancement by multiscale edges of DD interpolation.
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TABLE 2 Comparison of computation time” in seconds: whole mammogram vs ROI

Matrix size(number of pixels) Tentire Tror Tiutire/ TroOI
512 x 512 748 135 5.54
1024 x 1024 5760 135 42.67

“Trnire TEpresents the time to process a complete mammogram, while T, represents the time to process only a selected ROIL The number of pixels within
the ROI was 76,267 and it was executed on Sun Sparc Station Model 10/30.

TABLE 3 Contrast values Cpyjgiyq for features in the original blended mammogram M56, Cyys for enhancement by unsharp masking C,pp for
enhancement by adaptive histogram equalization, Cgpgp for enhancement by multiscale edges obtained from Deslauriers—Dubuc interpolation (EDGE),
and Cgypy for enhancement by adaptive gain processing of Deslauriers—Dubuc interpolation (GAIN)

Feature Coriginal Cuns Cane Coav Crpce
Minute microcalcification cluster 0.0507 0.0674 0.0128 0.3952 0.6454
Microcalcification cluster 0.0332 0.1227 0.1652 0.3626 0.3678
Spicular lesion 0.0287 0.0579 0.1025 0.3608 0.3949
Circular (arterial) calcification 0.0376 0.0823 0.1677 0.3014 0.4021
Well-circumscribed mass 0.0035 0.0052 0.1091 0.0344 0.0397

tions, we showed that artifacts could be minimized. An
additional advantage of this simple enhancement function was
that its mathematical formulation included a generalization of
traditional unsharp masking as a subset.

We then showed how an edge-preserving denoising stage
(wavelet shrinkage) could be incorporated into the contrast
enhancement framework, and introduced a method for adap-
tive threshold estimation. We then showed how denoising and
enhancement operations should be carried out for two-dimen-
sional images to avoid distortions due to filter orientation.

Contrast enhancement was also applied to features of specific
interest to mammography, including masses, spicules, and
microcalcifications. Multiresolution representations provide
an adaptive mechanism for the local emphasis of such features
blended into digitized mammograms. In general, improve-
ments in image contrast based on multiscale processing were
superior to those obtained using competitive algorithms of
unsharp masking and adaptive histogram equalization.

Deslauriers—Dubuc interpolation (see Fig. 17) representa-
tions [34] on an interval enabled us to enhance arbitrary
regions of interest. As shown in Fig. 21 and Fig. 22, this can
provide radiologists an interactive capability for enhancing
only suspicious regions of a mammogram. It also reduced the
computational cost compared to processing an entire mam-
mogram. These results suggest that wavelet-based image
processing algorithms could play an important role in
improving the imaging performance of digital mammography,
as well as other clinical applications.
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1 Introduction

Image enhancement is usually performed by either suppressing
the noise or increasing the image contrast [1-3]. The goal of
enhancement techniques is to accentuate certain image features
for subsequent analysis or display. Their properties should be
noise reduction, detail preservation, and artifact-free images.
In the early development of signal and image processing, linear
filters were the primary tools. Their mathematical simplicity
and the existence of some desirable properties made them easy
to design and implement. Moreover, linear filters offered
satisfactory performance in many applications. However,
linear filters have poor performance in the presence of noise
that is not additive as well as in problems where system
nonlinearities or non-Gaussian statistics are encountered. In
addition, various criteria, such as the maximum entropy
criterion, lead to nonlinear solutions. In image processing
applications, linear filters tend to blur the edges, do not remove
impulsive noise effectively, and do not perform well in the
presence of signal-dependent noise. Also, although the exact
characteristics of our visual system are not well understood,
experimental results indicate that the first processing levels of
our visual system possess nonlinear characteristics. For such
reasons, nonlinear filtering techniques for signal/image pro-
cessing were considered as early as 1958 [1]. Nonlinear filtering
has had a dynamic development since then. This is indicated by
the amount of research presently published and the widespread
use of nonlinear digital filters in a variety of applications,
notably in telecommunications, image processing, and geo-
physical signal processing. Most of the currently available

Copyright © 2000 by Academic Press.
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image processing software packages include nonlinear filters
such as median filters and morphological filters.

In this chapter, the design of a hybrid filter combining an
adaptive multistage nonlinear filter and a multiresolution/
multiorientation wavelet transform is presented and the
application of the hybrid filter for image enhancement in
medical imaging is illustrated. The specific clinical application
used as an example is the enhancement of microcalcification
clusters (MCCs) and mass in digitized mammograms. The
hybrid enhancement technique is used to improve both their
visualization and their detection using computer assisted
diagnostic (CAD) methods. The enhancement of MCCs and
masses is a good model for evaluating the hybrid nonlinear
filter and wavelet transform because the detection of these
structures presents a significant challenge to the performance
of X-ray imaging sensors and image display monitors.
Microcalcifications and masses vary in size, shape, signal
intensity and contrast, and they may be located in areas of very
dense parenchymal tissue, making their detection difficult [1-
12]. The classification of MCCs and masses as benign or
malignant requires their morphology and detail to be preserved
as accurately as possible.

The implementation of direct digital X-ray sensors, as
opposed to the conventional X-ray screen film method, will
require the use of specialized high-luminance computer
monitors for reading mammograms at either central or
remote sites. These monitors must compete with conventional
light box displays used for film interpretation, to allow a viable
implementation of filmless radiology. Image enhancement of
MCCs and mass in digitized mammograms should potentially
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improve visual diagnosis on a computer monitor and could
also be used as a preprocessing algorithm for CAD methods
being proposed as a “second opinion” in reading strategies
[11,12]. Similarly, the improved response characteristics of
either X-ray film digitizers or direct digital sensors of recent
design, such as their spatial resolution and image contrast,
place greater constraints on the design of image enhancement
algorithms because image detail, such as small microcalcifica-
tions, must be preserved. Finally, the varying noise
characteristics of these new sensors and the possible generation
of image artifacts, particularly at high resolution, need to be
accounted for in order to reduce the false positive detection
rate of MCCs or masses.

Multiresolution/multiorientation methods, such as the
wavelet transform, originally developed in the signal processing
field [13], have been proposed for image enhancement,
segmentation or edge detection in the field of digital mammo-
graphy [12,14]. The motivation for the multiresolution/
multiorientation approaches is their inherent advantage over
traditional filtering methods that primarily focus on the
coupling between image pixels on a single scale and generally
fail to preserve image details of important clinical features. For
example, the use of traditional single-scale CAD algorithms for
enhancement or detection of MCCs has generally resulted in a
sensitivity (true positive, TP, detection rate) that does not exceed
85% with 14 false positives (FPs) per image [1-3].

The hybrid filter architecture includes first an adaptive
multistage nonlinear filter (AMNF) used for both noise
suppression and image enhancement by smoothing back-
ground structures surrounding the structures of interest.
Second, a multiresolution/multiorientation wavelet transform
(MMWT) is employed for further selective enhancement. The
hybrid filter takes advantage of the image decomposition and
reconstruction processes of the MMWT, where reconstruction
of specific subimages is used to selectively enhance structures of
interest and separate the background structures. Finally, the
hybrid filter selectively combines the filtered and reconstructed
images to provide further enhancement and selective removal
of background tissue structures.

In this chapter, Section 2 presents the hybrid filter
architecture and the theoretical basis of the AMNF and the
MMWT, as well as the optimization of the filter parameters.
Section 3 describes the evaluation of the visual interpretation of
the enhanced images and the results for detection. Section 4
presents a discussion and conclusions.

2 Design of the Hybrid Filter

The hybrid filter evolved with earlier work for image noise
suppression and the use of the wavelet transform, specifically
for segmentation of MCCs and masses in digitized mammo-
grams [11]. A multistage tree-structured filter (TSF), with fixed

I Enhancement

parameters, that demonstrated improved performance for
noise suppression in digital mammograms compared to
traditional single-stage filters was initially developed in Qian
et al. [8]. Similarly, a two-channel multiresolution WT was
successfully used for both decomposition and reconstruction,
with selective reconstruction of different subimages to segment
MCCs [10]. Cascaded implementation of the TSF and the WT
resulted in a significant reduction in the FP rate for MCC
detection in the analysis of both simulated images with varying
noise content and analysis of digital mammograms with
biopsy-proven MCCs. However, the image detail of the
segmented MCCs and masses was not fully preserved, although
results were better than single scale methods [5, 9, 10]. With the
addition of the adaptive multistage nonlinear filter described in
this chapter, better performance in noise suppression is
obtained. The filter includes a criterion for selective enhance-
ment of MCCs and masses while smoothing background
parenchymal structures.

A block diagram of the hybrid filter architecture is shown in
Fig. 1. The input mammographic image ¢(i,j) 1 < i <N
1 < j < M, is first filtered by the AMNEF for enhancing desired
features while suppressing image noise and smoothing the
details of background tissue structures. The output image,
expressed as gyyng(7,7), 1s processed in two different ways. A
weighting coefficient ¢, is applied to the output image and the
same output image is processed by MMWT, as shown in Fig. 1,
which decomposes gu\np(i,j) into a set of independent,
spatially oriented frequency bands or lower-resolution sub-
images. The subimages are then classified into two categories,
those that primarily contain the structures of interest and those
that consist mainly of background. The subimages are then
reconstructed by the MMWT into two images g, (i,7) and
&2 (i,7) that contain the desired features and background
features, respectively. Finally, the outputs of the reconstructed
subimages weighted by coefficients o, and o5, and the original
weighted output image o, gupnr(7,7), are combined as indi-
cated in Fig. 1, to yield the output image g, that further
improves the enhancement:

%o = %1 8amnr (i J) + 008 (1) — #3842 (3, 1) (1)

A linear gray scaling is then used to scale the enhanced images.

FIGURE 1 Block diagram of the hybrid filter architecture used for image
enhancement that includes the adaptive multistage nonlinear filter
(AMNF), shown in Fig. 4, and multiresolution/multiorientation wavelet
transform (MMWT).



4 Medical Image Enhancement with Hybrid Filters

2.1 The Adaptive Multistage Nonlinear Filter

Basic Filter Structure

An image can be considered to consist of the sum of a low-
frequency part and a high-frequency part. The low-frequency
part may be dominant in homogeneous regions, whereas the
high-frequency part may be dominant in edge regions. The
two-component image model allows different treatment of the
components, and it can be used for adaptive image filtering and
enhancement [11]. The high-frequency part may be weighted
with a signal-dependent weighting factor to achieve enhance-
ment. The first stage of the AMNF includes multiple linear and
nonlinear filters that are judged to be appropriate for the
particular application. In this stage the input image is filtered
with each of these filters and in the second stage, for each pixel,
the output of only one filter is selected using an adaptive
criterion. There is a wide choice of filters that can serve as the
building blocks of the AMNEF: Here we illustrate a first stage
based on five different filters: a linear smoothing filter, three
nonlinear o-trimmed mean filters [1] with different window
sizes, and a tree-structured filter.

The a-trimmed mean filter is a good compromise between
the median and moving average filter. For example, in a 3 x 3
window, it excludes the highest and lowest pixel values and
computes the mean of the remaining 7 pixels. In this manner
outliers are trimmed and averaging also is implemented.

The TSF is based on the central weighted median filter
(CWMEF), which provides a selectable compromise between
noise removal and edge preservation in the operation of the
conventional median filter. Consider an M x N window W
with M and N odd, centered around a pixel x(7, j) in the input
image The output y(i,j) of the CWMF is obtained by
computing the median of pixels in the window augmented
by 2K repetitions of x(i, j) [8],

y(i,j) = median{x(i — m,j — n), 2K copies of x(i,j)};
m,ne W,

where 2K is an even positive integer such that
0<2K<MN — 1. If K =0, the CWMF is reduced to the
standard median filter, and if 2K > MN — 1, then the CWMF
becomes the identity filter. Larger values of K preserve more
image detail to the expense of noise smoothing, compared to
smaller values. In order to introduce directional sensitivity to
the CWME, we can use a string of pixels to serve as a window
instead of the usual square window. Figure 2 shows a set of
eight recommended linear and curved windows. The TSF is a
multistage nonlinear filter that consists of multiple CWMFs
organized in a tree structure. A three-stage TSF is illustrated in
Fig. 3 where the first stage is made of 8§ CWMFs using the linear
and curved windows of Fig. 2. The second stage has two
CWMFs without windows that process the outputs of the first
stage and the input x(i, j). The third stage is a single CWMF
that acts on three inputs and produces the output of the TSE.
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FIGURE 2 Linear windows used in the central weighted median filter
(CWME).

The output of the AMNF shown in Fig. 4 is

gamne (1) = gap(i,7) + b1, 7)(g(i, ) — gar (i, 1)) (2)

where b(i,j) is a signal-dependent weighting factor that is a
measure of the local signal activity and g, (4, j) is the output of
one of the five filters mentioned above selected for each pixel
according to the value of b(i, j). The value of b(i, j) is obtained
from the local statistics around the processed pixel as

CWMF

4 CWMF

fwMF

Yo(ij)

W, CWMF [~

FIGURE 3 Block diagram of the tree-structured filter (TSF).
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FIGURE 4 Block diagram of the adaptive multistage nonlinear filter
(AMNF) used for noise suppression and enhancement.

b(i,j) = a*(i,j)/(6*(i,j) + 0,7 (i,])), where o is the signal
variance and ¢,% is the noise variance. In flat regions of the
input image, the signal-to-noise ratio is small, b(i, j) becomes
small, and g,\nr(, j) approaches g,r(i, 7). On the other hand,
around the edges in the image, the signal-to-noise ratio is large,
b(i,j) gets close to 1, and gyune(i,j) approaches g(i,j). The
operation of the filter therefore should preserve the edges in the
image. The estimation of the parameters ¢, and g, is described
in a later subsection.

Adaptive Operation

Noise suppression increases while the spatial resolution
decreases with increasing window size. Linear filters smooth
the edges, average the details with noise, and decrease greatly
the spatial resolution. The AMNF selects the nonlinear filter
with a small window (e.g., 3 x 3) in the areas containing small
structures of interest such as microcalcifications, while a linear
filter with a large window (e.g., 7 x 7 or 9 X 9) is used in areas
without small structures, to achieve noise removal and back-
ground smoothing. During the enhancement process, the filter
is automatically selected by the weighting factor b(i,j). The
outputs of the five filters in the first stage of Fig. 4 are subject to
a binary weighting that selects one filter out of the five.
Representing the outputs of the five filters as the vector g;, this
adaptive process can be written with the vector notation

&= CTgkv (3)

where g; is the vector whose nonzero element is the output
g5 (1,7), and the elements of ¢ are set adaptively according to
the weighting factor b(i, j) such that
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[1,0,0,0,0]" b(i,j) <7,
0,1,0,0,0]" 1, <b(i,j) <1,
(.66 00650 = [0,0,1,0,0]" 1,<b(i,j) <75 (4)
0,0,0,1,0]" 7,<b(i,j) <1,
0,0,0,0,1]" 7, <b(i,j).

The thresholds 7, to 7, have to be set by the user according to
the application.

Parameter Computation for the AMNF

The local mean g(i, ) and local variance ¢, (i, j) needed for
Egs. (1)—(4) can be calculated over a uniform moving average
window of size (2r 4+ 1) x (2s + 1) with

itr jts

> spa) (5)

(i, ) 1
81 = o~

r+1)2s+1) 5, &
, 1 itr  jts )
o S ME (6
) = i DEs T p; g;s(g(za q) —2(i.j))°.  (6)
Considering the image to be formed by a noise-free ideal image
f(4,7) and a noise process n(i,j) such that g(i,7) = f(i,j)+
n(i, ), it is straightforward to show that the local variance of
f(i,j) is given by

O-fz(iaj) = 0g2(i7j) - O-nZ(i7j)7 (7)

where ¢,%(i,]) is the nonstationary noise variance assuming
that f(i,j) and n(i, j) are independent. The function a,%(, j) is
assumed to be known from an a priori measurement on the
imaging system. An example of local statistics computation of

an imaging system is the typical degradation model of Poisson
noise in mammographic screening systems:

g (i, j) = Poisson; {f (i, j)} (8)

where Poisson,{ -} is a Poisson random number generator,
and 4 is a proportionality factor such that

(;f@j)g(isj))e—/tf(i.j)
8(i,j)!

The conditional ensemble mean and variance of ¢*(i,7) given

f(4,5) are

p(g(i)If (i) = (%)

E[g"(i,)|f (i,7)] = Af(i,])
Var(g" (i, j)|f (i, /)] = Af (i, ])-
The normalized observation is defined as

.o g(i,j) _ Poisson; (f(i,j))
glij) === j :
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Therefore, the noise part has the form

11(1,]) = g(lvj) _f(la]) = Fi _f(17]) (13)
and its variance can be shown to be
o (i,7) = E(f (i, 1))/ A (14)

From these equations, the ensemble variance of f(i, j) can be
obtained as
O-J%(lvj) = G?g(la]) - (f(lvj)/}) = Gé(l,]) -

(&(ij)/2). (15)

2.2 The Multiresolution/Multiorientation
Wavelet Transform

Multiresolution Wavelet Transform

The WT utilizes two functions, the mother wavelet ¥, ,(x) that
spans the subspace W, and a scaling function ¢, ,(x) that
spans the subspace V;. The function y is subjected to the
functional operations of shifts and dyadic dilation, and the WT
may be implemented by using filter banks that have good
reconstruction properties and high computational efficiency.
Two-, three- and four-channel wavelet transforms were initially
used for preliminary studies of medical image enhancement
and segmentation [5,9,10,12]. An M-channel WT decom-
poses the input image into M? subimages, and the 4-channel
WT that we illustrate has 16 decomposed subimages. It is
important to select the subimages with significant diagnostic
features for reconstruction.

The dilations and translations of the scaling function induce
a multiresolution analysis of L*(R), in a nested chain of closed

subspaces of L*(R)(... C V_; C V, C V; C V,...) such that
Vo, ={0}, V,=I*R),
V; and W, are related by
VOW, =V,
which extends to
Vi@W,@Wiy = Vi, (16)

where W, is the subspace spanned by mother wavelet function
v.

In order to apply wavelet decompositions to images, two-
dimensional extensions of wavelets are required. An efficient
way to construct this is to use “separable wavelets” obtained
from products of one-dimensional wavelets and scaling
functions. The two-dimensional functions can be constructed
as

P(x,y) = ¢(x)$(y)

and either
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Y(x,y) =y (x)$(y) (17)

or

Y(x,y) =y (x)(y)

The functions of (17) correspond to the separable two-
dimensional filter banks. The basis functions for a 4-channel
wavelet transform, where ¢(x,y)eV, and W;(j = 4,3,2,1),
can be ordered by

b3(x) 3 (y); b3 ()3 (¥), @3 (W2 (v), D3 (X)1 ()
Vs5(x) 3 (y); 3 ()5 () s (W (), ¥ ()1 () (18)
Vo (x) 3 (9)s Yo ()5 (v), Yo ()W (), Y2 () ()
Vi (2)3 (1) ¥ ()3 (), ¥ () (), Y (), ()

In terms of two dimensional basis functions, the set in (18) can
also be represented by the block matrix

ASxd’(xa y)A.“vyd)(xv y)a ASxd)(xa y)B3y¢(x7 )’), A3x¢(x7 y)BZyd)(xv y)a
A3x¢(x7 y)Bl},d)(x, )’)

B3x¢(x7 y)A3y¢(x7 }’)7 BSxd)(xV y)BSy¢(x7 }’)7 BSxd)(x? y)BZy¢(x7 }’),
BSx¢(x7 y)Bly(rb(xv y)

BZx(z)(xa y)A3y¢(x7 y)7 B2x¢(~x: y)BSy(b(xa y)7 B2x¢(x7 y)BZy(b(xa y)7
BZxd)(xa y)B1y¢(x7 y)

le¢(x7 y)A3y¢(x7 }’), le¢(xa )’)B3y¢(x7 }’)7 le¢(x> y)B2y¢(x7 }’)7
led)(x’ y)BIyqb(x’ }’)

(19)
where A and B represent linear operators. The wavelet
representation of the operator just described has interesting
interpretations. First, the representation means that the 2D
image is decomposed into 16 subimages, which allows the
multichannel image processing techniques to be used. Second,
in the foregoing wavelet-based image compression,
As P(x,9)As,¢(x, y) is the “low-frequency” portion of the
operator, while other blocks in Eq. (19) are “high-frequency”
components of the operator. This motivates a general and
consistent scheme for “scaling down” from a fine to a coarse
grid. Compared to a 2-channel wavelet transform, a 4-channel,
multiresolution wavelet transform provides more accurate
representation, selective reconstruction of the higher order M 2
subimages allows better preservation of the enhanced struc-
tures, and better detection sensitivity can be obtained on
enhanced images. Adaptive linear scaling should be used to
adjust image gray scale intensity and allow operator-indepen-
dent evaluation of the enhanced image.

The Multiorientation Wavelet Transform

The directional WT (DWT) is a wavelet transform for
multiorientation signal decomposition using polar coordinates
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implemented on a pixel-by-pixel basis [16]. This approach
allows enhancement of structures that have a specific orienta-
tion in the image. The selection of the wavelet basis functions is
important to obtain a high orientation selectivity. This is
achieved by introducing a directional sensitivity constraint on
the wavelet function [17]. The input image is decomposed by
the DWT, yielding two output images. One is a directional
texture image, used for directional feature enhancement. The
second is a smoothed version of the original image, with
directional information removed, and later used for image
background correction. This module plays two important roles
in mammogram analysis: (1) isolation of the central mass from
surrounding parenchymal tissue in the case of stellate tumors
as required later for enhancement and segmentation, and (2)
direct detection and analysis of spiculations and their differ-
entiation from other directional features in the mammogram
using a ray tracing algorithm.

Directional sensitivity can be obtained by retaining only the
components that lie in the desired orientation in the WT
domain. Selection of the orientation can be achieved with a fan
having a desired angular width and oriented in the desired
orientation in the WT domain. All orientations can be analyzed
by considering multiple such fans, positioned adjacently. For
example, four fans with 45° angular widths can cover all
orientations. By taking the inverse WT of only those compo-
nents in a given fan, we can produce an image where structures
in the selected orientation have been emphasized. The four fans
with 45° width give rise to four images and the dominant
orientation corresponds to the image with highest gradient.
Since the dominant orientation can change across the image, it
is wise to make this decision individually for each pixel.
Therefore, for each pixel, we can compute the local gradient
magnitude G on each of the four images and determine the
highest. The pixel value in the image with the highest local
gradient is taken as the orientation selective value of that pixel
for the 45° fan.

The appropriate fan width can also change from image to
image, and narrower fan widths may be better in many images.
Therefore, the DWT is implemented by using multiorientation
filter banks with nine fan widths, 45° (4 orientations), 30° (6
orientations), 22.5° (8 orientations), 15° (12 orientations), 11
25° (16 orientations), 9° (20 orientations), 7.2° (25 orienta-
tions), 6° (30 orientations), and 5.63° (32 orientations). In
each orientation, the maximal gradient magnitude is defined as
G,,i=1,2,...9 The technique of the adaptive directional
filter bank (ADFB) is shown in Fig. 5 where the output depends
on the maximal gradient among all orientations, defined as

Ginax = Max{o, |Gy, 0,|G, |, 05| Gs, - . ., 29| Gyl } (20)

where a;(i = 1,2, 3,9) are normalizing factors to make all o;G;
have the value given by a unit arc area and f,(i=1,2,3,...9)
are adaptive control parameters If G, = o;G;, then f§; =1
and f; =0 for j# i. For example, when G, = 0yGy, the

output of the 32-channel directional filter is used as the
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FIGURE 5 The scheme of multiorientation wavelet transform imple-
mented by an adaptive directional filter bank.

orientation of the striation in the window. In this manner each
pixel is filtered according to an adaptive orientation with an
adaptive width allowing more orientation details and more
complex orientations to be enhanced. The result is that the
filters appear to be “tuned” to the orientation and size of
structures to enable better enhancement. The filters are applied
globally to the entire image to obtain a set of high-frequency
features in different directions. The gradient operators are
commonly used in directional feature detection and edge
detection, such as isotropic operation, compass operation, and
Laplace operator and stochastic gradient operation [20-22].

3 Experimental Results

3.1 Image Database

The hybrid enhancement approach was tested with a database
that contained (a) 100 single-view mammograms at a resolu-
tion of 105 microns and 12 bits per pixel, including 50 cases of
normal mammograms and 50 mammograms with biopsy-
proven malignant MCCs; (b) 100 single-view mammograms at
a resolution of 180 microns and 12 bits per pixel with 50
normal and 50 abnormal cases with masses. Both normal and
abnormal mammograms manifested typical variations in
parenchymal density and structure, ranging from very dense
to fat breasts. The location and geometry of the MCCs were
identified on the digitized images and films by expert
radiologists. A truth file was thus established for each of the
abnormal images, which was used to determine the TP and FP
rates. A cluster of three or more detected calcifications per cm?,
i.e., an area of 95 x 95 pixels on the images in database (a), was
interpreted as on FP if it was not identified in the truth file.
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Each abnormal mammogram in database (b) contained at least
one mass of varying size and location. The database contained
20 stellate, 14 circumscribed, and 19 irregular masses, all with
biopsy-proven cancers. A reference image or electronic truth
file was formed for all abnormal mammograms, including
location information on each tumor provided by an expert
mammographer based on visual criteria and biopsy results.
Histograms of the effective size and contrast of the masses in
the database are shown in Qian et al. [7] and Qian et al. [17].

The visual evaluation was conducted with a dual-monitor
workstation used for image enhancement, receiver operating
characteristic (ROC) analysis, and free response ROC (FROC)
analysis [15]. The computer was a Sun ULTRA 2 workstation
with two 200-MHz CPUs, running computer software to
generate FROC/ROC curves, and connected to two high-
resolution 5-megapixel monitors for image display. The
computational time for the full analysis did not exceed 2
minutes per case, but, to facilitate efficient operation, images
were batch-processed prior to analysis by radiologists since the
algorithms were fully automatic.

3.2 Visual Evaluation of Enhanced Images

The outcome of enhancing the original mammogram image
shown in Fig. 6a is shown in Figs 6b and 6c, using the hybrid
filter (Fig. 1) with a two-channel WT and a four-channel WT,
respectively. The importance of the noise suppression and
enhancement filter, prior to the use of the MMWT algorithm,
as outlined in Fig. 1, is demonstrated by the representative
subimages (512 x 512 pixels) shown in Fig. 7. This figure
shows a comparison of the enhanced image using the hybrid
filter of Fig. 1, the enhanced image by eliminating the AMNF
step of Fig. 1, and the enhanced image by replacing the AMNF
by the tree structured filter in Fig. 1. The hybrid filter provides
better noise suppression and results in more detail of the extent
of the MCC in terms of their morphology and spatial
distribution of the microcalcifications. Comparison of the

FIGURE 6 Representative mammographic images with a single biopsy
proven mass showing (a) the original digitized image, (b) enhanced image
using the hybrid filter (Fig. 1) with a two-channel multi-resolution WT, (c)
enhanced image using the hybrid filter with a four-channel multi-
resolution WT.
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FIGURE 7 Representative mammographic images with a single biopsy-
proven MCC showing (a) a 512 x 512 pixel original digitized image, (b)
enhanced image using the hybrid filter (Fig. 1), (c) enhanced image using
the hybrid filter without the AMNF stage, (d) the enhanced image using
the TSF for noise suppression, (¢) NN detection results for the original
image as input, and (f) NN detection results using the enhanced image as
input. Several FN detections were observed in the results (e) obtained with
the original image as the input.

enhanced MCCs and films demonstrated good correlation in
terms of the number of calcifications, as well as their shape and
distribution.

3.3 MCC Detection

A novel multistage artificial neural network (NN) was used to
detect MCCs in both raw and enhanced images. The NN
involves the use of a backpropagation algorithm with Kalman
filtering to obtain a high convergence rate as required for
analysis of large images generated in digital mammography [4].
Training of the NN was based on 30 cancer cases from the
database, where two types of regions of interest (ROIs) were
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extracted from both the unprocessed and enhanced versions of
the images. One ROI type contained a representative MCC and
the other ROI type contained normal parenchymal tissue.
Testing was performed on all the 100 single view mammograms
in database (a), using first the original versions and then the
enhanced outputs. When the output of the NN, within a
moving window, was more than a given empirically derived
threshold, the output was identified as an individual micro-
calcification and labeled as a square on the image [4, 18].

Representative results of NN detection of MCCs are shown
in Fig. 7e and Fig. 7f. Significant improvement in the network’s
performance was observed when the enhanced images were
used as inputs. For example, in Fig. 7f, the NN detected most of
the microcalcifications within the cluster using the enhanced
image, but only some of them were detected using the original
image, as shown in Fig. 7e. Because of these false negative (FN)
detections in the results with the original image, the extent of
the MCC is not properly delineated. Analysis of the 100 full
images further demonstrated the importance of the enhance-
ment step and 93% sensitivity was observed in the detection of
MCCs with less than 1.35 FP MCCs/image using the enhanced
images. With the original images as inputs, however, a lower
sensitivity of 71% was observed for approximately the same FP
detection rate (1.47 FP clusters/image).

An illustration of the potential performance of the filter is
shown in Fig. 8 for texture enhancement of a representative
normal digital chest image, contrast enhancement for skin
tumor imaging, and nerve fiber bundle detection in retinal
imaging using a visible-light camera. In all cases, improvement
in image texture or detail is apparent in the enhanced image as
compared to the original image. Optimal linear gray-scale
mapping was used in each instance for purposes of comparison.

4 Discussions and Conclusions

This chapter described the potential contributions of the
MMWT in a hybrid filter architecture for enhancement of
medical images. The chapter also indicated the importance of
the use of an adaptive filter for both noise suppression and
enhancement prior to the use of the MMWT. A good
enhancement method could partially compensate for monitor
limitations and perhaps allow diagnosis to be performed
directly from a monitor as required for filmless radiology
departments or remote diagnosis. The use of the enhanced
image allows specific features of the microcalcifications and
mass to be more objectively identified for training a neural
network. For example, if raw images are analyzed, the features
used to train the neural networks are difficult to objectively
determine because of the presence of structured noise, which
may increase the FP detection rate to unacceptable levels or
decrease the sensitivity of detection. In a ROC study on
softcopy reading versus film with this enhancement method,
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FIGURE 8 Representative original and enhanced image pairs using the
hybrid filter in different applications (a) and (b), normal chest image
showing texture enhancement, (c) and (d), skin tumor image, and (e) and
(f), retinal image.

the variability among four radiologists was reduced when the
enhanced images were used to assist the interpretation of the
original softcopy image data on the monitors [15].

Several methods may be used to improve the hybrid filter.
First, the use of more than four channels in the WT would
provide a greater number of decomposed subimages. More
selective reconstruction of subimages may allow better pre-
servation of image detail and possibly better removal of
structured image noise. Second, the hybrid filter could include
the use of adaptive wavelet methods, similar to those proposed
for image compression [19]. In the adaptive method, a group
of orthogonal bases are iteratively computed to minimize the
object function for a specific task such as image enhancement.
Universal wavelet algorithms can be developed for image
enhancement, segmentation, detection, and compression in
medical image processing.
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essential analysis function for which numerous algorithms have been developed in the field of

image processing. In medical imaging, automated delineation of different image components is
used for analyzing anatomical structure and tissue types, spatial distribution of function and activity, and
pathological regions. Segmentation can also be used as an initial step for visualization and compression.
Typically, segmentation of an object is achieved either by identifying all pixels or voxels that belong to the
object or by locating those that form its boundary. The former is based primarily on the intensity of
pixels, but other attributes, such as texture, that can be associated with each pixel, can also be used for
segmentation. Techniques that locate boundary pixels use the image gradient, which has high values at the
edges of objects. Chapter 5 presents the fundamental concepts and techniques used for region-based and
edge-based segmentation, including global and adaptive thresholding, watershed segmentation, gradient
operators, region growing, and segmentation using multiple images.

Since segmentation requires classification of pixels, it is often treated as a pattern recognition problem
and addressed with related techniques. Especially in medical imaging, where variability in the data may be
high, pattern recognition techniques that provide flexibility and convenient automation are of special
interest. One approach is fuzzy clustering, a technique based on fuzzy models and membership functions.
Chapter 6 introduces the concept of fuzzy sets, establishes the distinction between membership and
probability, and describes image segmentation with fuzzy clustering. Both supervised and unsupervised
methods are presented and illustrated with several applications. Another approach is neural networks,
where the classification is based on distributed nonlinear parallel processing. Numerous neural network
structures and training algorithms are available and can be applied to medical image segmentation.

S egmentation, separation of structures of interest from the background and from each other, is an
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Chapter 7 focuses on a particularly effective class of neural networks, the generalized radial basis
functions, and presents an approach that combines unsupervised and supervised techniques.

A relatively new segmentation approach based on deformable models provides a mechanism that is
considerably different from fundamental techniques and pattern recognition methods. In this approach a
flexible boundary model is placed in the vicinity of the structure to be segmented, and the model is
iteratively adjusted to fit the contour of the structure. Deformable models are particularly suited for
segmentation of images that have artifacts, noise, and weak boundaries between structures. Chapter 8
presents a comprehensive review of deformable models and their use for medical image segmentation.
Since the formulation of deformable models lends itself well to shape representation, matching, and
motion tracking, these three applications are also addressed in Chapter 8. An important aspect of
segmentation with deformable models is the possibility of incorporating prior information on the shape
of the object. Chapter 9 describes shape constraints that facilitate segmentation with deformable
templates. Specific shape information can be used when the shapes of structures of interest are consistent.
In cases where shapes are likely to vary significantly, generic shape constraints are needed. Chapter 9
presents integrated techniques that use a maximum a posteriori formulation and related distributions for
specific shape constraints, while the generic shape constraints are addressed with the level set method and
a thickness constraint. The application of specific and generic shape constraints for deformable models is
illustrated on heart and brain images in Chapter 9. Segmentation with deformable models has been
successful in many images that cannot be segmented well with other techniques; however, two main
limitations of deformable templates must be noted. Deformable models can converge to a wrong
boundary if the initial position is not close enough to the desired boundary, and they also can refuse to
converge into concave regions of the desired boundary. Chapter 10 describes gradient vector flow fields
that can provide a solution for both problems. This technique allows the initial model to be placed inside,
outside, or even across the boundary, and it converges well if other structures do not interfere with the
progress of the model.

In some medical image analysis applications, the presence of various structures with different
properties suggests the use of a specifically designed sequence of multiple segmentation techniques. For
example, initial steps can use fundamental techniques to reduce the data, and subsequent steps can apply
more elaborate techniques that are robust but more time consuming. The best choice of techniques and
their order depends typically on the problem as well as computational resources. Chapter 11 presents a
hybrid approach designed for fully automated segmentation of brain MRI images. The algorithm includes
histogram analysis, thresholding, nonlinear anisotropic diffusion, and deformable templates. The
paradigm of this chapter can guide the design of other hybrid methods for use on different image data.

Recent advances in the speed and resolution of medical imaging instruments provide valuable
volumetric data for numerous clinical applications. Practically all segmentation techniques described in
this chapter were first developed for 2D image analysis but can also be extended to 3D images. Chapter 12
presents a comparative study of eight different techniques that can be used for volumetric segmentation.
The evaluation is based on identification of white matter, gray matter, and cerebrospinal fluid in brain
MRI images. Many segmentation algorithms may have difficulties at the boundary of different tissue
types in volumetric data. This can be due to the fact that a voxel can contain a mixture of materials.
Segmentation with fuzzy clustering provides one solution based on its membership functions. Another
possibility is obtained by modeling each voxel as a region and computing the proportion of materials in
each voxel. Chapter 13 presents this approach, which is based on a probabilistic Bayesian approach, to
determine the most likely mixture within each voxel. The discrete 3D sampled data are used to produce a
continuous measurement function. and the distribution of this function within each voxel leads to the
mixture information. The technique is illustrated on volumetric data of brain, hand, and tooth.
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1 Introduction

The principal goal of the segmentation process is to partition
an image into regions (also called classes, or subsets) that are
homogeneous with respect to one or more characteristics or
features [11, 16, 20, 30, 36, 66, 77, 96, 107, 109]. Segmentation is
an important tool in medical image processing and it has been
useful in many applications. The applications include detection
of the coronary border in angiograms, multiple sclerosis lesion
quantification, surgery simulations, surgical planning, mea-
suring tumor volume and its response to therapy, functional
mapping, automated classification of blood cells, studying
brain development, detection of microcalcifications on mam-
mograms, image registration, atlas-matching, heart image
extraction from cardiac cineangiograms, detection of tumors,
etc. [8,14,15,35,38,41a, 61,71, 88,109, 115, 132].

In medical imaging, segmentation is important for feature
extraction, image measurements, and image display. In some
applications it may be useful to classify image pixels into
anatomical regions, such as bones, muscles, and blood vessels,
while in others into pathological regions, such as cancer, tissue
deformities, and multiple sclerosis lesions. In some studies the
goal is to divide the entire image into subregions such as
the white matter, gray matter, and cerebrospinal fluid spaces of
the brain [67], while in others one specific structure has to be
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extracted, for example breast tumors from magnetic resonance
images [71].

A wide variety of segmentation techniques has been
proposed (see surveys in [11,20,30,41,77,83,127]).
However, there is no one standard segmentation technique
that can produce satisfactory results for all imaging applica-
tions. The definition of the goal of segmentation varies
according to the goal of the study and the type of the image
data. Different assumptions about the nature of the analyzed
images lead to the use of different algorithms.

Segmentation techniques can be divided into classes in many
ways, depending on classification scheme:

® Manual, semiautomatic, and automatic [101].

e Pixel-based (local methods) and region-based (global
methods) [4].

® Manual delineation, low-level segmentation (thresh-
olding, region growing, etc), and model-based
segmentation (multispectral or feature map techniques,
dynamic programming, contour following, etc.) [109].

o Classical (thresholding, edge-based, and region-based
techniques), statistical, fuzzy, and neural network techni-
ques [87].

The most commonly used segmentation techniques can be
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classified into two broad categories: (1) region segmentation
techniques that look for the regions satisfying a given
homogeneity criterion, and (2) edge-based segmentation tech-
niques that look for edges between regions with different
characteristics [16, 36,77, 96, 107].

Thresholding is a common region segmentation method
[25,83,98,107,127]. In this technique a threshold is selected
and an image is divided into groups of pixels having values less
than the threshold and groups of pixels with values greater or
equal to the threshold. There are several thresholding methods:
global methods based on gray-level histograms, global methods
based on local properties, local threshold selection, and
dynamic thresholding. Clustering algorithms achieve region
segmentation [13, 27, 37, 54] by partitioning the image into sets
or clusters of pixels that have strong similarity in the feature
space. The basic operation is to examine each pixel and assign it
to the cluster that best represents the value of its characteristic
vector of features of interest. Region growing is another class of
region segmentation algorithms that assign adjacent pixels or
regions to the same segment if their image values are close
enough, according to some preselected criterion of closeness
[77,85].

The strategy of edge-based segmentation algorithms is to
find object boundaries and segment regions enclosed by the
boundaries [16,36,41,72,96]. These algorithms usually
operate on edge magnitude and/or phase images produced
by an edge operator suited to the expected characteristics of the
image. For example, most gradient operators such as Prewitt,
Kirsch, or Roberts operators are based on the existence of an
ideal step edge. Other edge-based segmentation techniques are
graph searching and contour following (6, 14, 106].

Traditionally, most image segmentation techniques use one
type of images (MR, CT, PET, SPECT, ultrasound, etc.).
However, the performance of these techniques can be
improved by combining images from several sources (multi-
spectral segmentation [29, 89, 117]) or integrating images over
time (dynamic or temporal segmentation (71,93, 108]).

The following sections will present some of the segmentation
techniques that are commonly used in medical imaging. In
Section 2 we will discuss several thresholding techniques.
Section 3 will describe region growing techniques. The
watershed algorithm will be reviewed in Section 4. Section 5
will present edge-based segmentation techniques. A discussion
of multispectral segmentation methods will be given in
Section 6.

2 Thresholding

Several thresholding techniques have been developed
[16,25,36,41,51,96-98,107,127]. Some of them are based
on the image histogram; others are based on local properties,
such as local mean value and standard deviation, or the local
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gradient. The most intuitive approach is global thresholding.
When only one threshold is selected for the entire image, based
on the image histogram, thresholding is called global. If the
threshold depends on local properties of some image regions,
for example local average gray value, thresholding is called
local. If the local thresholds are selected independently for each
pixel (or groups of pixels), thresholding is called dynamic or
adaptive.

2.1 Global Thresholding

Global thresholding is based on the assumption that the image
has a bimodal histogram and, therefore, the object can be
extracted from the background by a simple operation that
compares image values with a threshold value T [25,107].
Suppose that we have an image f(x,y) with the histogram
shown on Fig. 1.

The object and background pixels have gray levels grouped
into two dominant modes. One obvious way to extract the
object from the background is to select a threshold T that
separates these modes.

The thresholded image g(x, y) is defined as

1 if(x,9)>T

0 if(x,y) < T ()

g(xy) = {
The result of thresholding is a binary image, where pixels with
intensity value of 1 correspond to objects, while pixels with
value 0 correspond to the background.

Figure 2 shows the result of segmentation by thresholding.
The original image (Fig. 2A) contains white cells on a black
background. Pixel intensities vary between 0 and 255. The
threshold T' = 127 was selected as the minimum between two
modes on a histogram (Fig. 2B), and the result of segmentation
is shown in Fig. 2C, where pixels with intensity values higher
than 127 are shown in white. In the last step (Fig. 2D) the edges
of the cells were obtained by a 3 x 3 Laplacian (second-order
derivative [36]; also see description in Section 5), which was
applied to the thresholded image on Fig. 2C.

There are many other ways to select a global threshold. One

A

na, of pixels back ground
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FIGURE 1 An example of bimodal histogram with selected threshold T.
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FIGURE 2 An example of global thresholding. (A) Original image, (B)
histogram of image A, (C) result of thresholding with T = 127, (D)
outlines of the white cells after applying a 3 x 3 Laplacian to the image
shown in C.

of them is based on a classification model that minimizes the
probability of error [77]. For example, if we have an image with
a bimodal histogram (e.g., object and background), we can
calculate the error as the total number of background pixels
misclassified as object and object pixels miscalssified as
background. A semiautomated version of this technique was
applied by Johnson et al. [56]) to measure ventricular volumes
from 3D magnetic resonance (MR) images. In their method an
operator selects two pixels— one inside an object and one in
the background. By comparing the distribution of pixel
intensities in the circular regions around selected pixels, the
threshold is calculated automatically and it corresponds to the
least number of misclassified pixels between two distributions.
The result of the thresholding operation is displayed as a
contour map and superimposed on the original image. If
needed, the operator can manually modify any part of the
border. The same technique was also applied to extract lymph
nodes from CT images and was found to be very sensitive to
user positioning of interior and exterior points [95]. Some of
the threshold selection techniques are discussed in Refs.
[25,96,127].

In many applications appropriate segmentation is obtained
when the area or perimeter of the objects is minimally sensitive
to small variations of the selected threshold level. Figure 3A
shows the intensity profile of an object that is brighter than

Aaow P

I

FIGURE 3 An example of the sensitivity of the threshold level selection.
(A) Cross-sectional intensity profile of a light object on a dark background
with three thresholding levels T1, T2, and T3, and three other levels
generated by adding a small value AT; (B) a hypothetical plot of the area
(A) or perimeter (P) versus thresholding level T.

background, and three threshold levels for segmentation: T1,
T2, and T3. A small variation AT in the lowest threshold level
will cause a significant change in the area or perimeter of the
segmented object. The same is true for the highest threshold
level. However, a change of AT in the middle level will have
minimal effect on the area or perimeter of the object. The
object area A(T) and perimeter P(T) are functions of the
threshold T that often exhibit the trend shown in Fig. 3B.
Therefore, the threshold level that minimizes either dA(T)/dT
or dP(T)/dT is often a good choice, especially in the absence of
operator guidance and when prior information on object
locations is not available.

A related technique that evaluates multiple thresholds is
based on an estimate of the gradient magnitude around the
segmented object edge [16]. The average gradient magnitude is
given by

AT xP(T) P(T)

G=1i = 2
G= m T AA H(T)’ @)

where H(T) is the histogram function. The threshold that
maximizes the average boundary gradient is selected.

If an image contains more than two types of regions, it may
still be possible to segment it by applying several individual
thresholds [96], or by using a multithresholding technique
[86]. With the increasing number of regions, the histogram
modes are more difficult to distinguish, and threshold selection
becomes more difficult.

Global thresholding is computationally simple and fast. It
works well on images that contain objects with uniform
intensity values on a contrasting background. However, it fails
if there is a low contrast between the object and the back-
ground, if the image is noisy, or if the background intensity
varies significantly across the image.

2.2 Local (Adaptive) Thresholding

In many applications, a global threshold cannot be found
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from a histogram or a single threshold cannot give good
segmentation results over an entire image. For example, when
the background is not constant and the contrast of objects
varies across the image, thresholding may work well in one part
of the image, but may produce unsatisfactory results in other
areas. If the background variations can be described by some
known function of position in the image, one could attempt to
correct it by using gray level correction techniques, after which
a single threshold should work for the entire image. Another
solution is to apply local (adaptive) thresholding (6,9, 18,25,
41, 63, 80, 127].

Local thresholds can be determined by (1) splitting an image
into subimages and calculating thresholds for each subimage,
or by (2) examining the image intensities in the neighborhood
of each pixel. In the former method [18], an image is first
divided into rectangular overlapping subimages and the
histograms are calculated for each subimage. The subimages
used should be large enough to include both object and
background pixels. If a subimage has a bimodal histogram,
then the minimum between the histogram peaks should
determine a local threshold. If a histogram is unimodal, the
threshold can be assigned by interpolation from the local
thresholds found for nearby subimages. In the final step, a
second interpolation is necessary to find the correct thresholds
at each pixel.

In the latter method, a threshold can be selected using the
mean value of the local intensity distribution. Sometimes other
statistics can be used, such as mean plus standard deviation,
mean of the maximum and minimum values [16,25], or
statistics based on local intensity gradient magnitude [25, 62].

Modifications of the above two methods can be found in
Refs. [30,41, 80,96]. In general, local thresholding is compu-
tationally more expensive than global thresholding. It is very
useful for segmenting objects from a varying background, and
also for extraction of regions that are very small and sparse.

2.3 Image Preprocessing and Thresholding

Many medical images may contain low-contrast, fuzzy con-
tours. The histogram modes corresponding to the different
types of regions in an image may often overlap and, therefore,
segmentation by thresholding becomes difficult. Image pre-
processing techniques can sometimes help to improve
the shape of the image histogram, for example by making it
more strongly bimodal. One of the techniques is image
smoothing by using the mean (average) or median filter
discussed in Chapter 1 [53, 65, 96, 99]. The mean filter replaces
the value of each pixel by the average of all pixel values in a
local neighborhood (usually an N by N window, where N = 3,
5, 7, etc.). In the median filter, the value of each pixel is
replaced by the median value calculated in a local neighbor-
hood. Median smoothing, unlike the mean filter, does not blur
the edges of regions larger than the window used while
smoothing out small textural variations. Figure 4 illustrates
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FIGURE 4 Median filtering as a preprocessing step for thresholding; (A)
original autoradiography image, (B) result of a 7 x 7 median filter, (C)
result of a 9 x 9 median filter. Corresponding image histograms are shown
on the right.

results of preprocessing on an autoradiography image using a
median filter with 7 x 7 and 9 x 9 windows. Figure 4A shows
the original image and its histogram, which is unimodal and,
therefore, precludes selection of an appropriate threshold.
Median filtering sharpens the peaks on the image histogram
(Figs 4B and C) and allows selection of thresholds for image
segmentation.

A common smoothing filter is the Gaussian filter, where for
each pixel [i,7], the convolution mask coefficients gl[i,j] are
based on a Gaussian function:

- +j2)] ’ )

gli,j] = exp { 55

where ¢ is the spread parameter (standard deviation) that
defines the degree of Gaussian smoothing: Larger ¢ implies a
wider Gaussian filter and a greater amount of smoothing. The
Gaussian filter can be approximated in digital images by an N
by N convolution mask. A 7 x 7 Gaussian mask with ¢ = 2
[52] is obtained with the coefficients of the following matrix:
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4 7 10 7 4
12 26 33 26 12 4
26 55 71 55 26
10 33 71 91 71 33 10
26 55 71 55 26
4 12 26 33 206 12
4 7 10 7 4

By normalizing each coefficient with the sum of all (1115) a
filter that preserves the scale of the image is obtained.

Goshtasby and Turner [38] reported that smoothing with a
Gaussian filter reduced noise and helped in thresholding of the
endocardial surfaces on cardiac MR images.

Preprocessing with extremum sharpening combined with
median filtering has proven to be useful in segmenting
microscopic images of blood cells [14, 65]. In this method, a
minimum and maximum are calculated within an N by N
window around each pixel (x, y). The value of the extremum
operator is simply whichever of the two extrema is the closest
to the value at pixel (x, y). When the pixel (x, y) has a value
exactly midway between minimum and maximum, the
operator takes the value of the pixel. The appropriate
window size for the extremum sharpening has to be commen-
surate with the width of the image edges.

The extremum sharpening is usually followed by median
filtering, which smoothes out the slightly ragged contours left
by the sharpening operation. The standard procedure sug-
gested in [65] for segmenting cells was: 9 x 9 median filter
(noise removal), 3 x 3 extremum sharpening, and finally 5 x 5
median filter, followed by thresholding based on threshold
determined from the histogram.

The median and Gaussian smoothing, as well as extremum
sharpening, “improve” image histograms by producing images
with strongly bimodal histograms. Additional techniques for
making histogram valleys deeper are discussed in Weszka et al.
[127].

A more elaborate approach used for specific types of
images is provided by adaptive filtering techniques where the
parameters of the algorithm are modified locally based on
the pixel’s neighborhood [51,68]. If, for example, the
neighborhood has relatively constant intensity, we can
assume that we are within an object with constant features
and we can apply an isotropic smoothing operation to this
pixel to reduce the noise level. If an edge has been detected
in the neighborhood, we could still apply some smoothing,
but only along the edge. Adaptive filtering combines an
efficient noise reduction and an ability to preserve and even
enhance the edges of image structures. Westin used adaptive
filtering successfully for the thresholding of bones on CT
images [126]. Adaptive filtering is discussed in Chapter 2.

3 Region Growing

Whereas thresholding focuses on the difference of pixel
intensities, the region growing method looks for groups of
pixels with similar intensities. Region growing, also called
region merging, starts with a pixel or a group of pixels
(called seeds) that belong to the structure of interest. Seeds
can be chosen by an operator, or provided by an automatic
seed finding procedure. In the next step neighboring pixels
are examined one at a time and added to the growing region,
if they are sufficiently similar based on a uniformity test,
(also called a homogeneity criterion). The procedure con-
tinues until no more pixels can be added. The object is then
represented by all pixels that have been accepted during the
growing procedure [1,6, 36,77, 85,96,102, 104, 107, 113, 116].

One example of the uniformity test is comparing the
difference between the pixel intensity value and the mean
intensity value over a region. If the difference is less than a
predefined value, for example, two standard deviations of the
intensity across the region, the pixel is included in the region;
otherwise, it is defined as an edge pixel. The results of region
growing depend strongly on the selection of the homogeneity
criterion. If it is not properly chosen, the regions leak out into
adjoining areas or merge with regions that do not belong to the
object of interest. Another problem of region growing is that
different starting points may not grow into identical regions.

The advantage of region growing is that it is capable of
correctly segmenting regions that have the same properties and
are spatially separated. Another advantage is that it generates
connected regions.

Instead of region merging, it is possible to start with some
initial segmentation and subdivide the regions that do not
satisfy a given uniformity test. This technique is called splitting
[41,96,107]. A combination of splitting and merging adds
together the advantages of both approaches [6, 84, 133].

Various approaches to region growing segmentation have
been described by Zucker [133]. Excellent reviews of region
growing techniques were done by Fu and Mui [30], Haralick
and Shapiro [41], and Rosenfeld and Kak [96].

An interesting modification of region growing technique
called hill climbing was proposed by Bankman et al. for
detecting microcalcifications in mammograms [8]. The tech-
nique is based on the fact that in a given image f(x, ), the edge
of a microcalcification to be segmented is a closed contour
around a known pixel (x,, ,), the local intensity maximum.
For each pixel, a slope value s(x, y) is defined as

f(x0,%0) — f(%,9)
d(x07y07xa }’)

s(x,y) = (4)

where d(x,, ¥y, X, ¥) is the Euclidean distance between the local
maximum pixel and pixel (x, y).

In the first step, the object’s edge points are identified by
radial line search emanating from the local maximum. The line
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search is applied in 16 equally spaced directions originating
from the pixel (x;,,), and for each direction, a pixel is
considered to be on the edge if it provides the maximal slope
value. Next, the edge points are used as seeds for region
growing with a spatial constraint (growing the region inward,
toward local maximum), and an intensity constraint (including
pixels with intensity values increasing monotonically toward
the local maximum). Figure 5 shows the steps of segmentation
using the hill-climbing algorithm. The technique was success-
fully applied to segment low-contrast microcalcification
clusters on mammography images. The advantages of this
algorithm are that it does not need selection of a threshold and
that, because it grows the region from the edges toward the
center, it circumvents excessive growth of a region.

Region growing has found many other medical applications,
such as segementation of ventricles on cardiac images [104],
extraction of blood vessels on angiography data [48], or
extraction of brain surface [21].

FIGURE 5  Steps of segmentation with the hill climbing algorithm; (A) a
0.5x0.5mm image showing a subtle microcalcification, (B) 16 edge
points determined by the algorithm, (C) result of region growing, (D)
edges of region enclosing the segmented microcalcification. Reprinted
with permission from I N. Bankman, T. Nizialek, 1. Simon, et al,
“Segmentation algorithms for detecting microcalcifications in mammo-
grams”, IEEE Trans. Inform. Techn. Biomed, vol. 1, no. 2, pp. 141-149,
1997. ©1997 IEEE.
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4 Watershed Algorithm

Watershed segmentation is a region-based technique that
utilizes image morphology [16, 107]. It requires selection of at
least one marker (“seed” point) interior to each object of the
image, including the background as a separate object. The
markers are chosen by an operator or are provided by an
automatic procedure that takes into account the application-
specific knowledge of the objects. Once the objects are marked,
they can be grown using a morphological watershed transfor-
mation [10]. A very intuitive description of watersheds can be
found in Ref. [16]. To understand the watershed, one can think
of an image as a surface where the bright pixels represent
mountaintops and the dark pixels valleys. The surface is
punctured in some of the valleys, and then slowly submerged
into a water bath. The water will pour in each puncture and
start to fill the valleys. However, the water from different
punctures is not allowed to mix, and therefore the dams need
to be built at the points of first contact. These dams are the
boundaries of the water basins, and also the boundaries of
image objects.

An application of watershed segmentation to extract lymph
nodes on CT images is shown in Fig. 6 [95]. In this
implementation a 3 x 3 Sobel edge operator [36,96] is used

FIGURE 6 Image segmentation using Sobel/watershed algorithm. (A)
Original image of a lymph node; (B) operator’s marks: a point inside the
node, and a circle enclosing the area well outside the node; (C) binary
image generated from B; (D) result of a 3x3 Sobel edge detection
operation performed on the original image A; (E) result of the watershed
algorithm performed on image D using markers from image C; (F) edges
of the lymph node (interior region from image E) superimposed on
the original image. Reprinted with permission from J. Rogowska,
K. Batchelder, G. S. Gazelle, et al. Quantitative CT lymphography:
evaluation of selected two-dimensional techniques for computed
tomography quantitation of lymph nodes. Investigative Radiology,
vol. 31, no. 3, pp. 138-145, 1999. See also Plate 3.
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in place of the morphological gradient to extract edge strength.
The original lymph node image is shown in Fig. 6A. In the first
step, the operator positions a cursor inside the node (Fig. 6B).
All pixels within a radius of two pixels of the mark are used as
seed points for the lymph node. To mark the exterior of lymph
node, the operator drags the cursor outside of the node to
define a circular region, which completely encloses the node
(Fig. 6C). All pixels outside this circle mark the background.

In the next step, an edge image is created using the Sobel
edge operator (Fig. 6D). The edge image has high values for the
pixels with strong edges. With the seed point marking the node
interior, the circle marking the background (Fig. 6C), and the
edge image generated by the Sobel operator (Fig. 6D), the
segmentation proceeds directly with the watershed operation
(Fig. 6E). The watershed operation operates on an edge image
to separate the lymph node from the surrounding tissue. By
using a technique called simulated immersion [119], the
watershed considers whether a drop of water at each point in
the edge image would flow to the interior seed point or the
exterior marker. Points that drain into the interior belong to
the lymph node, whereas points that drain to the exterior
belong to the surrounding tissue. More formal discussions of
morphological segmentation can be found in Refs.
[75,119,120].

Watershed analysis has proven to be a powerful tool for
many 2D image-segmentation applications [75]). An example
of segmentation of microscopic image of human retina is
included in Ref. [107]. Higgins and Ojard [43] applied a 3D
extension of the watershed algorithm to cardiac volumetric
images.

5 Edge-Based Segmentation Techniques

An edge or boundary on an image is defined by the local pixel
intensity gradient. A gradient is an approximation of the first-
order derivative of the image function. For a given image
f(x,y), we can calculate the magnitude of the gradient as

6l = /|63 + 67| = [(g):(g—];ﬂ (5)

and the direction of the gradient as

G
D =tan"! <—y)
G,

where G, and G, are gradients in directions x and y
respectively. Since the discrete nature of digital image does
not allow the direct application of continuous differentiation,
calculation of the gradient is done by differencing [36].

Both magnitude and direction of the gradient can be
displayed as images. The magnitude image will have gray levels

(6)

that are proportional to the magnitude of the local intensity
changes, while the direction image will have gray levels
representing the direction of maximum local gradient in the
original image.

Most gradient operators in digital images involve calculation
of convolutions, e.g., weighted summations of the pixel
intensities in local neighborhoods. The weights can be listed
as a numerical array in a form corresponding to the local image
neighborhood (also known as a mask, window or kernel). For
example, in case of a 3 x 3 Sobel edge operator, there are two
3 x 3 masks:

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

The first mask is used to compute G, while the second is used
to compute G,. The gradient magnitude image is generated by
combining G, and G, using Eq. (5). Figure 7B shows an edge
magnitude image obtained with the 3 x3 Sobel operator
applied to the magnetic resonance angiography (MRA) image
of Fig. 7A.

The results of edge detection depend on the gradient mask.
Some of the other edge operators are Roberts, Prewitt,
Robinson, Kirsch, and Frei-Chen [36, 41, 53, 96, 97].

Many edge detection methods use a gradient operator,
followed by a threshold operation on the gradient, in order
to decide whether an edge has been found [12,16,25, 36,
41,72,96,97,107, 113]. As a result, the output is a binary image
indicating where the edges are. Figures 7C and 7D show the

FIGURE 7 Edge detection using Sobel operator. (A) Original angio-
graphy image showing blood vessels, (B) edge magnitude image obtained
with a 3 x 3 Sobel mask, (C) edge image thresholded with a low threshold
(300), (D) edge image thresholded with a high threshold (600).
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results of thresholding at two different levels. Please note that
the selection of the appropriate threshold is a difficult task.
Edges displayed in Fig. 7C include some background pixels
around the major blood vessels, while edges in Fig. 7D do not
enclose blood vessels completely.

The edge-based techniques are computationally fast and do
not require a priori information about image content. The
common problem of edge-based segmentation is that often the
edges do not enclose the object completely. To form closed
boundaries surrounding regions, a postprocessing step of
linking or grouping edges that correspond to a single boundary
is required. The simplest approach to edge linking involves
examining pixels in a small neighborhood of the edge pixel
(3x3, 5x5, etc.) and linking pixels with similar edge
magnitude and/or edge direction. In general, edge linking is
computationally expensive and not very reliable. One solution
is to make the edge linking semiautomatic and allow a user to
draw the edge when the automatic tracing becomes ambiguous.
For example, Wang et al. developed a hybrid algorithm (for MR
cardiac cineangiography) in which a human operator interacts
with the edge tracing operation by using anatomic knowledge
to correct errors [121]. A technique of graph searching for
border detection has been used in many medical applications
(6,14, 64, 81,105,106, 112]. In this technique each image pixel
corresponds to a graph node and each path in a graph
corresponds to a possible edge in an image. Each node has a
cost associated with it, which is usually calculated using the
local edge magnitude, edge direction, and a priori knowledge
about the boundary shape or location. The cost of a path
through the graph is the sum of costs of all nodes that are
included in the path. By finding the optimal low-cost path in
the graph, the optimal border can be defined. The graph
searching technique is very powerful, but it strongly depends
on an application-specific cost function. A review of graph
searching algorithms and cost function selection can be found
in Ref. [107].

Since the peaks in the first-order derivative correspond to
zeros in the second-order derivative, the Laplacian operator
(which approximates second-order derivative) can also be used
to detect edges [16, 36, 96].

The Laplace operator V> of a function f(x, y) is defined as

0*f(x, O*f (x,
V2 f(x,y) = 2(;}/) fa(;czy).

(7)

The Laplacian is approximated in digital images by an N by N
convolution mask [96,107]. Here are three examples of 3 x 3
Laplacian masks that represent different approximations of the
Laplacian operator:

0 -1 0 -1 -1 -1 1 =2 1
—1 4 -1 —1 8§ -1 —2 4 =2
0 -1 0 -1 -1 -1 1 =2 1

The image edges can be found by locating pixels where the
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FIGURE 8 Results of Laplacian and Laplacian of Gaussian (LoG) applied
to the original image shown in Fig. 7A. (A) 3 x 3 Laplacian image, (B)
result of a 7 x 7 Gaussian smoothing followed by a 7 x 7 Laplacian, (C)
zero-crossings of the Laplacian image A, (D) zero-crossings of the LoG
image B.

Laplacian makes a transition through zero (zero crossings).
Figure 8A shows a result of a 3 x 3 Laplacian applied to the
image in Fig. 7A. The zero crossings of the Laplacian are shown
in Fig. 8C.

All edge detection methods that are based on a gradient or
Laplacian are very sensitive to noise. In some applications,
noise effects can be reduced by smoothing the image before
applying an edge operation. Marr and Hildreth [72] proposed
smoothing the image with a Gaussian filter before application
of the Laplacian (this operation is called Laplacian of Gaussian,
LoG). Figure 8B shows the result of a 7 x 7 Gaussian followed
by a 7 x 7 Laplacian applied to the original image in Fig. 7A.
The zero crossings of the LoG operator are shown on Fig. 8D.
The advantage of LoG operator compared to a Laplacian is that
the edges of the blood vessels are smoother and better outlined.
However, in both Figs 8C and D, the nonsignificant edges are
detected in regions of almost constant gray level. To solve this
problem, the information about the edges obtained using first
and second derivatives can be combined [107]. This approach
was used by Goshtasby and Turner [38] to extract the
ventricular chambers in flow-enhanced MR cardiac images.
They used a combination of zero crossings of the LoG operator
and local maximum of the gradient magnitude image, followed
by the curve-fitting algorithm.

The Marr—Hildreth operator was used by Bomans et al. [12]
to segment the MR images of the head. In a study of coronary
arteriograms, Sun et al. [110] used a directional low-pass filter
to average image intensities in the direction parallel to the
vessel border. Other edge-finding algorithms can be found in
Refs. [24, 30, 36, 96].
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6 Multispectral Techniques

Most traditional segmentation techniques use images that
represent only one type of data, for example MR or CT. If
different images of the same object are acquired using several
imaging modalities, such as CT, MR, PET, ultrasound, or
collecting images over time, they can provide different features
of the objects, and this spectrum of features can be used for
segmentation. The segmentation techniques based on integra-
tion of information from several images are called multispectral
or multimodal [20,22,29,90,103,118].

6.1 Segmentation Using Multiple Images
Acquired by Different Imaging Techniques

In the case of a single image, pixel classification is based on a
single feature (gray level), and segmentation is done in one-
dimensional (single-channel) feature space. In multispectral
images, each pixel is characterized by a set of features and the
segmentation can be performed in multidimensional (multi-
channel) feature space using clustering algorithms. For
example, if the MR images were collected using T1, T2, and a
proton-density imaging protocol, the relative multispectral
data set for each tissue class result in the formation of tissue
clusters in three-dimensional feature space. The simplest
approach is to construct a 3D scatter plot, where the three
axes represent pixel intensities for T1, T2, and proton density
images. The clusters on such a scatter plot can be analyzed and
the segmentation rules for different tissues can be determined
using automatic or semiautomatic methods [13, 19].

There are many segmentation techniques used in multi-
modality images. Some of them are k-nearest neighbors (kNN)
[19,55,76], k-means [111,118], fuzzy c-means [12,40], arti-
ficial networks algorithms [19, 89], expectation/maximization
[31,58,125], and adaptive template moderated spatially
varying statistical classification techniques [122]. All multi-
spectral techniques require images to be properly registered. In
order to reduce noise and increase the performance of the
segmentation techniques, images can be smoothed. Excellent
results have been obtained with adaptive filtering [20], such as
Bayesian processing, nonlinear anisotropic diffusion filtering,
and filtering with wavelet transforms [32, 49, 50, 103, 124, 130].

To illustrate the advantages of using multispectral segmen-
tation, we show in Fig. 9 the results of adaptive segmentation
by Wells et al. [125] applied to dual-echo (T2-weighted and
proton-density weighted) images of the brain. The adaptive
segmentation technique is based on the expectation/maximi-
zation algorithm (EM) [26a] and uses knowledge of tissue
properties and intensity inhomogeneities to correct and
segment MR images. The technique has been very effective in
segmenting brain tissue in a study including more than 1000
brain scans [125]. Figures 9A and B present the original 72 and
proton-density images, respectively. Both images were
obtained from a healthy volunteer on a 1.5-T MR scanner.

FIGURE 9 The results of adaptive segmentation applied to dual-echo
images of the brain. (A) Original T2-weighted image, (B) original proton-
density weighted image, (C) result of conventional statistical classification,
(D) result of EM segmentation. The tissue classes are represented by
colors: blue, CSF; green, white matter; gray, gray matter; pink, fat; black,
background. See also Plate 4. (Courtesy of Dr. W. M. Wells III, Surgical
Planning Lab, Department of Radiology, Brigham and Women’s Hospital,
Boston.)

Figure 9C shows a result of conventional statistical classifica-
tion, using nonparametric intensity models derived from
images of the same type from a different individual. The
segmentation is too heavy on white matter and shows
asymmetry in the gray matter thickness due to intrascan
inhomogeneities. Considerable improvement is evident in Fig.
9D, which shows the result of EM segmentation after
convergence at 19 iterations.

Adaptive segmentation [125] is a generalization of standard
intensity-based classification that, in addition to the usual
tissue class conditional intensity models, incorporates models
of the intra- and interscan intensity inhomogeneities that
usually occur in MR images. The EM algorithm is an iterative
algorithm that alternates between conventional statistical tissue
classification (the “E” step) and the reestimation of a
correction for the unknown intensity inhomogeneity (the
“M” step).

The EM approach may be motivated by the following
observations. If an improved intensity correction is available, it
is a simple matter to apply it to the intensity data and obtain an
improved classification. Similarly, if an improved classification
is available, it can be used to derive an improved intensity
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correction, for example, by predicting image intensities based
on tissue class, comparing the predicted intensities with the
observed intensities, and smoothing. Eventually, the process
converges, typically in less than 20 iterations, and yields a
classification and an intensity correction.

In recent work, the algorithm has been extended in a number
of directions. A spline-based modeling of the intensity artifacts
associated with surface coils have been described by Gilles et al.
[34]. The addition of an “unknown” tissue class and other
refinements have been described by Guillemaud and Brady
[39]. Also, Markov models of tissue homogeneity have been
added to the formalism in order to reduce the thermal noise
that is usually apparent in MR imagery. Held et al. [42] used
the method of iterated conditional modes to solve the resulting
combinatorial optimization problem, while Kapur [59] used
mean field methods to solve a related continuous optimization
problem.

6.2 Segmentation Using Multiple Images
Acquired over Time

Multispectral images can also be acquired as a sequence of
images, in which intensities of certain objects change with time,
but the anatomical structures remain stationary. One example
of such sequence is a CT image series generated after
intravenous injection of a contrast medium that is carried to
an organ of interest. Such an image sequence has constant
morphology of the imaged structure, but regional intensity
values may change from one image to the next, depending
upon the local pharmacokinetics of the contrast agent.

The most popular segmentation technique that employs
both intensity and temporal information contained in image
sequences, is the  parametric  analysis  technique
[44,45,79a,89a]. In this technique, for each pixel or region
of interest, the intensity is plotted versus time. Next, the plots
are analyzed, with the assumption that the curves have similar
time characteristics. Certain parameters are chosen, such as
maximum or a minimum intensity, distance between maxi-
mum and minimum, or time of occurrence of maximum or
minimum. The appropriate set of parameters depends on the
functional characteristics of the object being studied. Then, an
image is calculated for each of the chosen parameters. In such
images the value of each pixel is made equal to the value of the
parameter at that point. Therefore, the method is called
parametric imaging. The disadvantage of the method of
parametric analysis is that it assumes that all pixel intensity
sequence plots have the same general pattern across the image.
In fact, however, many images have pixels or regions of pixels
that do not share the same characteristics in the time domain
and, therefore, will have dissimilar dynamic intensity plots.

An interesting application of the parametric mapping
technique to the 3D segmentation of multiple sclerosis lesions
on series of MR images was proposed by Gerig et al. [33].
Temporal images were acquired in intervals of 1, 2, or 4 weeks
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during a period of 1 year. The parameters chosen for
parametric maps were based on lesion characteristics, such as
lesion intensity variance, time of appearance, and time of
disappearance. The 3D maps displayed patterns of lesions that
show similar temporal dynamics.

Another technique for temporal segmentation was intro-
duced by Rogowska [91]. The correlation mapping (also called
similarity mapping) technique identifies regions (or objects)
according to their temporal similarity or dissimilarity with
respect to a reference time—intensity curve obtained from a
reference region of interest (ROI). Assume that we have a
sequence of N spatially registered temporal images of sta-
tionary structures. The similarity map NCOR; based on
normalized correlation is defined for each pixel (4,7) as

N

5 (4] = 1) (RD) — o)
NCOR;; = N”:1 — )
3 (gl = )3 (RDH] = )

where A;[#] is the time sequence of image intensity values for
the consecutive N  images:  A[1],A;[2],..., A;N],
(i=12,..., Lj=12,...,],n=1,2,...,N; I 1is the
number of image rows, J is the number of image columns),
R[n] is the reference sequence of mean intensity values from a
selected reference ROIL, p, is the mean value of the time
sequence for pixel (,7), and py is the mean value of the
reference sequence.

Pixels in the resulting similarity map, whose temporal
sequence is similar to the reference, have high correlation
values and are bright, while those with low correlation values
are dark. Therefore, similarity mapping segments structures in
an image sequence based on their temporal responses rather
than spatial properties. In addition, similarity maps can be
displayed in pseudocolor or color-coded and superimposed on
one image. Figure 10 shows an application of correlation
mapping technique to the temporal sequence of images
acquired from a patient with a brain tumor after a bolus
injection of contrast agent (Gd-DTPA) on a 1T MR scanner.
The first image in a sequence of 60 MR images with the
reference region of interest in the tumor area and a normal ROI
is shown in Fig. 10A. Figure 10B plots the average intensities of
the reference and normal ROIs. The correlation map is
displayed with a pseudocolor lookup table in Fig. 10C.

The technique of correlation mapping has found numerous
applications. Some of them are included in Refs [92, 93]. Other
investigators have adopted this technique in brain activation
studies [7], segmentation of breast tumors [71], and renal
pathologies [108].

A modification of correlation mapping technique, called
delay mapping, is also used to segment temporal sequences of
images. It segments an image into regions with different time
lags, which are calculated with respect to the reference [94].

Parametric maps, similarity maps, and delay maps—all are
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FIGURE 10 Image segmentation using correlation mapping. (A) First
image in a sequence of 60 temporal images with 3 x 3 pixel ROIs drawn in
tumor and normal area; (B) plot of the average intensity of the reference
ROI (tumor) and the normal ROI for 60 images in a sequence; (C)
correlation map of the tumor See also Plate 5.

segmentation and visualization tools for temporal sequences of
images. They are particularly useful for evaluation of disease
processes, drug treatments, or radiotheraphy results.

7 Other Techniques

Combined (hybrid) strategies have also been used in many
applications. Here are some examples: Kapur et al. [58] present
a method for segmentation of brain tissue from magnetic
resonance images that combines the strengths of three
techniques: single-channel expectation/maximization segmen-
tation, binary mathematical morphology, and active contours
models. Masutani et al. [73] segment cerebral blood vessels on
MRA images using a model-based region growing, controlled
by morphological information of local shape. A hybrid strategy
[3] that employs image processing techniques based on
anisotropic filters, thresholding, active contours, and a priori
knowledge of the segmentation of the brain is discussed in
Chapter 11.

Many segmentation techniques developed originally for two-

dimensional images can be extended to three dimensions — for
example, region growing, edge detection, or multispectral
segmentation [12,19,21,90, 125]. 3D segmentation combined
with 3D rendering allows for more comprehensive and detailed
analysis of image structures than is possible in a spatially
limited single-image study. A number of 3D segmentation
techniques can be found in the literature, such as 3D
connectivity algorithm with morphological interpolation
[57], 3D matching of deformable models [70], 3D edge
detection [78], coupled surfaces propagation using level set
methods [131], and a hybrid algorithm based on thresholding,
morphological operators, and connected component labeling
[46,100]. Several volumetric segmentation algorithms are
discussed in Chapter 12, where their accuracy is compared
using digital MR phantoms. Partial volume segmentation with
voxel histograms is presented in Chapter 13.

There has been great interest in building digital volumetric
models (3D atlases) that can be used as templates, mostly for
the MR segmentation of the human brain [23,47, 61]. A model-
based segmentation is achieved by using atlas information to
guide segmentation algorithms. In the first step, a linear
registration is determined for global alignment of the atlas with
the image data. The linear registration establishes corre-
sponding regions and accounts for translation, rotation and
scale differences. Next, a nonlinear transform (such as elastic
warping, [5]) is applied to maximize the similarity of these
regions.

Warfield et al. [122,123] developed a new, adaptive,
template-moderated, spatially varying, statistical classification
algorithm. The algorithm iterates between a classification step
to identify tissues and an elastic matching step to align a
template of normal anatomy with the classified tissues.
Statistical classification based upon image intensities has
often been used to segment major tissue types. Elastic
registration can generate a segmentation by matching an
anatomical atlas to a patient scan. These two segmentation
approaches are often complementary. Adaptive, template
moderated, spatially varying, statistical classification integrates
these approaches, avoiding many of the disadvantages of each
technique alone, while exploiting the combination. The
algorithm was applied to several segmentation problems,
such as quantification of normal anatomy (MR images of
brain and knee cartilage) and pathology of various types
(multiple sclerosis, brain tumors, and damaged knee cartilage).
In each case, the new algorithm provided a better segmentation
than statistical classification or elastic matching alone.

Figure 11 shows an example of 3D segmentation of normal
and pathological brain tissues. The tumor segmentation was
carried out with the algorithm of Kaus et al. [60]. This
visualization was used to support preoperative surgical plan-
ning for tumor resection.

In some medical images, regions that have similar average
intensities are visually distinguishable because they have
different textures. In such cases, the local texture can be
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FIGURE 11 Rendering of 3D anatomical models and 2D MRI cross-
sections of a patient with a meningioma. The models of the skin surface,
the brain, and the tumor (green) are based on automatically segmented 3D
MRI data. The precentral gyrus (yellow) and the corticospinal tract (blue)
are based on a previously aligned digital brain atlas [61]. See also Plate 6.
(Courtesy of Drs. Ron Kikinis, Michael Kaus, and Simon Warfield, Surgical
Planning Lab, Department of Radiology, Brigham and Women’s Hospital,
Boston.)

quantified using techniques described in Chapters 14 and 15.
Each pixel can be assigned a texture value and the image can be
segmented using texture instead of intensity [6,79].

Fuzzy clustering, which provides another approach for
segmentation of two-dimensional or multispectral images,
is discussed in Chapter 6. Segmentation has also been
addressed with neural networks in several applications
[2,28,37,40,69, 82,101, 132]. The use of neural networks for
segmentation is illustrated in Chapter 7. The family of active
contour (snakes, deformable templates) algorithms that have
been widely used for medical image segmentation
[74,95,128,129] is presented in Chapter 8, shape constraints
for deformable models are discussed in Chapter 9 and gradient
vector flow deformable models are explained in
Chapter 10.

8 Concluding Remarks

Segmentation is an important step in many medical applica-
tions involving measurements, 3D visualization, registration,
and computer-aided diagnosis. This chapter was a brief
introduction to the fundamental concepts of segmentation
and methods that are commonly used.

Selection of the “correct” technique for a given application is
a difficult task. Careful definition of the goals of segmentation
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is a must. In many cases, a combination of several techniques
may be necessary to obtain the segmentation goal. Very often
integration of information from many images (acquired from
different modalities or over time) helps to segment structures
that otherwise could not be detected on single images.

As new and more sophisticated techniques are being
developed, there is a need for objective evaluation and
quantitative testing procedures [17,20,26]. Evaluation of
segmentation algorithms using standardized protocols will be
useful for selection of methods for a particular clinical
application.

Clinical acceptance of segmentation techniques depends also
on ease of computation and limited user supervision. With the
continued increases in computer power, the automated real-
time segmentation of multispectral and multidimensional
images will become a common tool in clinical applications.
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1 Introduction

This chapter is about segmenting medical images with fuzzy
models. Probably 80% of the methods described are based on
some form of clustering or classifier design, so Section 2
contains a brief introduction to the basic ideas underlying
fuzzy pattern recognition. If nothing else, we hope this
piques your interest in fuzzy models, which were an amusing
and controversial, but usually disregarded novelty in science
as little as 10 years ago. Today, fuzzy models are an
important tool in many scientific studies and fielded
engineering applications. The impetus for using fuzzy
models came from control theory. Many important applica-
tions based on fuzzy controllers have made their way into the
marketplace in recent years [1,2]. Fuzzy pattern recognition
also counts some important successes as we approach the
millennium, and this chapter is an all too short account of
the impact of fuzzy models in medical image segmentation
[3,4,38].

Section 3 contains a few case studies of applications of
algorithms that are mentioned in Section 2 in medical image
segmentation. Current research efforts involving unsuper-
vised and supervised segmentation of medical images with
two spatial dimensions (2D images) in applications such as
brain tissue analysis (e.g., to detect pathology) and mammo-
graphy (to detect tumors) are presented. We also discuss
fuzzy models for problems that—at least in principle—
involve images with three spatial dimensions (3D images).

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

Most of these models are aimed toward just two 3D
applications: visualization and (segmentation for) volume
estimation, both of which can be used for surgical planning
and therapy. Finally, some conclusions and possible topics
for future research are discussed in Section 4.

2 The Quantitative Basis of Fuzzy Image
Segmentation

2.1 Fuzzy Models: What Are They, and Why?

This section is based on material first published in [5]. Fuzzy
sets are a generalization of conventional set theory that were
introduced by Zadeh in 1965 as a mathematical way to
represent vagueness in everyday life [6]. The basic idea of fuzzy
sets is easy and natural. Suppose, as you approach a red light,
you must advise a driving student when to apply the brakes.
Would you say, “Begin braking 74 feet from the crosswalk”? Or
would your advice be more like, “Apply the brakes pretty
soon”’? The latter, of course; the former instruction is too
precise to be implemented. This illustrates that crisp precision
may be quite useless, while vague directions can be interpreted
and acted upon. Moreover, this particular type of vagueness
does not exhibit an element of chance—i.e., it is not
probabilistic. Many other situations, of course—coin flip is a
nice example—clearly involve an element of randomness, or
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chance. Accordingly, computational models of real systems
should also be able to recognize, represent, manipulate,
interpret, and use (act on) both fuzzy and statistical uncer-
tainties.

Fuzzy interpretations of data structures are a very natural
and intuitively plausible way to formulate and solve various
problems. Conventional (crisp) sets contain objects that satisfy
precise properties required for membership. The set of numbers
H from 6 to 8 is crisp; we write H = {ref|6 < r < 8}.
Equivalently, H is described by its membership (or character-
istic, or indicator) function, my : R—{0,1} defined as

()~ {1 6578
HVY7 1 0;  otherwise |-

The crisp set H and the graph of my; are shown in the left half of
Fig. 1. Every real number (r) either is in H, or is not. Since my
maps all real numbers r€ R onto the two points {0, 1}, crisp
sets correspond to two-valued logic—is or isn’t, on or off, black
or white, 1 or 0.

Consider next the set Fof real numbers that are close to seven.
Since the property “close to 77 is fuzzy, there is not a unique
membership function for F Rather, the modeler must decide,
based on the potential application and properties desired for F
what mp should be. Properties that might seem plausible for
this F include: (i) Normality (mg(7) = 1); (i) Monotonicity
(the closer ris to 7, the closer mg(r) is to 1, and conversely);
and (iii) Symmetry (numbers equally far left and right of 7
should have equal memberships). Given these intuitive con-
straints, either of the functions shown in the right half of Fig. 1
might be a useful representation of E my, is discrete (the
staircase graph), while myp, is continuous but not smooth (the
triangle graph). You can easily construct a membership
function for F so that every number has some positive
membership in F but we wouldn’t expect numbers “far from
7,7 20,000,987 for example, to have much! One of the biggest

H=16,8]
® °
6 7 8 g
my
1-f----- . .
t 1 £
1 1 ]
1 1 H
1 ' H
1 i E
1 ] E
Y
6 7 8
FIGURE 1
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differences between crisp and fuzzy sets is that the former
always have unique membership functions, whereas every fuzzy
set has an infinite number of membership functions that may
represent it. This is at once both a weakness and a strength;
uniqueness is sacrificed, but this gives a concomitant gain in
terms of flexibility, enabling fuzzy models to be “adjusted” for
maximum utility in a given situation.

In conventional set theory, sets of real objects such as the
numbers in H are equivalent to, and isomorphically described
by, a unique membership function such as my. However, there
is no set-theoretic equivalent of “real objects” corresponding
to mp. Fuzzy sets are always (and only) functions, from a
“universe of objects,” say X, into [0,1]. This is depicted in Fig.
2, which illustrates that the fuzzy set is the function m that
carries X into [0,1]. The value of m at x, m(x), is an estimate of
the similarity of x to objects that closely match the properties
represented by the semantics of .

One of the first questions asked about fuzzy models, and the
one that is still asked most often, concerns the relationship of
fuzziness to probability. Are fuzzy sets just a clever disguise for
statistical models? Well, in a word, NO. Perhaps an example
will help—this one is reprinted from the inaugural issue of the
IEEE Transactions on Fuzzy Systems [5].

Let the set of all liquids be the universe of objects, and let
fuzzy subset L = {all potable (= “suitable for drinking”)
liquids}. Suppose you had been in the desert for a week
without a drink and came upon two bottles A and B, marked
as in the left half of Fig. 3 (memb = “membership”, and
prob = “probability”).

Confronted with this pair of bottles, which would you
choose to drink from first? Most readers familiar with the basic
ideas of fuzzy sets, when presented with this experiment,
immediately see that while A could contain, say, swamp water,
it would not (discounting the possibility of a Machiavellian
fuzzy modeler) contain liquids such as hydrochloric acid. That
is, membership of 0.91 in L means that the contents of A are

F =numbers near 7

6 68 8

Membership functions for hard and fuzzy subsets of R.
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Domain = X

Range = m{X]

FIGURE 2 Fuzzy sets are membership functions.

“fairly similar” to perfectly potable liquids (pure water,
perhaps). On the other hand, the probability that B is
potable =0.91 means that over a long run of experiments,
the contents of B are expected to be potable in about 91% of the
trials. And the other 9%?2 In these cases the contents will be
unsavory (indeed, possibly deadly). Thus, your odds for
selecting a nonpotable liquid are about 1 chance in 10. Thus,
most subjects will opt for a chance to drink swamp water, and
will choose bottle A. Suppose that we examine the contents of
A and B, and discover them to be as shown in the right half of
Fig. 3—that is, A contains beer, while B contains hydrochloric
acid. After observation, then, the membership value for A will
be unchanged, while the probability value for B clearly drops
from 0.91 to 0.0.

Finally, what would be the effect of changing the numerical
information in this example? Suppose that the membership
and probability values were both 0.5—would this influence
your choice? Almost certainly it would. In this case many
observers would switch to bottle B, since it offers a 50% chance
of being drinkable, whereas a membership value this low would
presumably indicate a liquid unsuitable for drinking (this

memblAcl) = 0.91 prob (BeL) = 0.91
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depends, of course, entirely on the membership function of the
fuzzy set L).

We think this shows that these two types of models possess
philosophically different kinds of information: fuzzy mem-
berships, which represent similarities of objects to
imprecisely defined properties: and probabilities, which
convey information about relative frequencies. Moreover,
interpretations about and decisions based on these values
also depend on the actual numerical magnitudes assigned to
particular objects and events. See [7] for an amusing
contrary view, [8] for a statistician’s objection to the bottles
example, and [9] for a reply to [8]. The point is, fuzzy
models aren’t really that different from more familiar ones.
Sometimes they work better, and sometimes not. This is
really the only criterion that should be used to judge any
model, and there is much evidence nowadays that fuzzy
approaches to real problems are often a good alternative to
more familiar schemes. References [1-4] give you a start on
accessing the maze of literature on this topic, and the entire
issue in which [8,9] appear is devoted to the topic of
“fuzziness vs probability.” It’s a silly argument that will
probably (1) never disappear; the proof is in the pudding,
and (2), as you will see in this chapter, fuzzy sets can, and
often do, deliver.

2.2 Numerical Pattern Recognition

There are two types of pattern recognition models—numerical
and syntactic—and three basic approaches for each type—
deterministic, statistical, and fuzzy. Rather than take you into
this maze, we will steer directly to the parts of this topic that
help us segment images with fuzzy clustering. Object data are
represented as X = {x;,...,x,} CR?, a set of n feature
vectors in feature space RP. The jth object is a physical entity

such as a fish, guitar, motorcycle, or cigar. Column vector x; is

memblAs L] = 0.91

prob (Be L) = 0.00

FIGURE 3 Bottles for the weary traveler—disguised and unmasked!
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the numerical representation of object j and x; is the kth
feature or attribute value associated with it. Boldface means
vector, plainface means scalar. Features can be either con-
tinuously or discretel7y valued, or can be a mixture of both.
X={(1,1)",0,3.1)",(1,-1.2)"} is a set of n=3 feature
vectors in p = two-dimensional (2D) feature space.

One of the most basic structures in pattern recognition is the
label vector. There are four types of class labels—crisp, fuzzy,
probabilistic, and possibilistic. Letting integer ¢ denote the
number of classes, 1 < ¢ < n, define three sets of label vectors

in R
Npc = {ye%c tVi€ [07 I]VI7y1>OE{1} = [07 l]c - {0} (1)

Nfc:{yENpc:zC:yizl} (2)

i=1
th:{yENfc:yie{07l}Vi}:{e17e27~-'7ec}' (3)

In Eq. (1) 0 is the zero vector in ¢ - N}, is the canonical (unit
vector) basis of Euclidean c-space, so e; = (0,..., 1 ,..., 0,
the ith vertex of N, is the crisp label for class i,'1 < i< c.
Ny, contains the fuzzy (and probabilistic) label vectors; N,
contains possibilistic label vectors. Note that Nj. C Ny C N,,.
The three kinds of noncrisp labels are collectively called soft
labels. Figure 4 is a sketch of the structure embodied by Egs.
(1)=(3) for ¢ = 3.

A c-partition of X is a ¢ x n matrix U = [u;]. There are three
sets of nondegenerate c-partitions, whose columns {U;}
correspond to the three types of label vectors:

M,, = {Ue?R“” L ULEN, Yk 0< ) uikVi} (4)

k=1
Mfcn = {UGMPCH : UkeNvak} (5)
thn = {UEMfcn : Ukethvk}. (6)

Nps ={e;,e,, €5}

v Nps =[0,1F - {0}
N¢z = conv(Ny3)

FIGURE 4 Label vectors for ¢ = 3 classes.

II Segmentation

Equations (4), (5), and (6) define, respectively, the possibilistic,
fuzzy (or probabilistic, if in a statistical context), and crisp ¢-
partitions of X, with M, C Mg, C M,,. Crisp partitions have
an equivalent set-theoretic characterization: {X;, ..., X.} par-
titions X when X; N X; = Vi # j and X = UX;. Soft partitions
are noncrisp ones. Since definite class assignments (tissue types
in medical images) for each pixel or window are the usual goal
in image segmentation, soft labels y are often transformed into
crisp labels H(y) using the hardening function

Hy)=e < lly—el <ly—ell &y=yj#i ()

In Eq. (7) || * || is the Euclidean norm,

(y—e) v

on ¢, and ties are broken arbitrarily. H finds the crisp label
vector e; closest to y by finding the maximum coordinate of y,
and assigning the corresponding crisp label to the object z that y
labels. When z is a noncrisp label, H(y) is called hardening of y
by the maximum membership principle. For example, for the
fuzzy label y = (0.37,0.44,0.10,0.09)", H(y) = (0,1,0,0)".1f
the four tissue classes represented by the crisp labels are
1 =bone, 2 =fat, 3 =gray matter, and 4 = white matter, the
vector y indicates that whatever it labels (here, an image pixel)
is slightly more similar to fat than the other three tissues, and if
we had to have a definite tissue assigned to this pixel, it would
be fat. However, this is an example of a very “fuzzy’ label; we
would have much more confidence that the correct tissue was
chosen with a label vector such as y = (0.03, 0.84,0.05,0.08)".
The function in (7) is not the only way to harden soft labels.
This is an important operation when images are segmented
with soft models, because clinicians want to see “this region is
white matter,” not “here is a fuzzy distribution of labels over
the region.” Table 1 contains a crisp, fuzzy, and possibilistic
partition of n = 3 objects into ¢ = 2 classes. The nectarine, x;,
is labeled by the last column of each partition, and in the crisp
case, it must be (erroneously) given full membership in one of
the two crisp subsets partitioning this data. In U,, x5 is labeled
“plum.”

Noncrisp partitions enable models to (sometimes!) avoid
such mistakes. The last column of U, allocates most (0.6) of the
membership of x; to the plums class, but also assigns a lesser
membership (0.4) to x; as a peach. U illustrates possibilistic
label assignments for the objects in each class.

To see the relevance of this example to medical images,
imagine the classes to be peaches — “people with disease A”
and plums — “people with disease B,” that x;, x, and x5 are
(images of) patients, and the columns beneath them
represent the extent to which each patient is similar to
people with diseases A and B. From U,-U; we infer that
patient 1 definitely has disease A. On the other hand, only
U, asserts that patients 2 and 3 do not; their labels in the
second and third partitions leave room for doubt—in other
words, more tests are needed. All clinicians know about

ly —eill = e,
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TABLE 1 Typical 2-partitions of X = {x, = peach, x, = plum, x; = nectarine}

U, € M3 U, € Mp,3 Us € M3
Object x, X, x5 x; X, X3 x, x, X3
A = Peaches 1.0 0.0 0.0 1.0 0.2 0.4 1.0 0.2 0.5
B =Plums 0.0 1.0 1.0 0.0 0.8 0.6 0.0 0.8 0.6

shadow symptoms—e.g., Lyme’s disease shares symptoms
with many other very different afflictions. This is the great
advantage of fuzzy partitioning algorithms—it may be
(notice these are algorithmic outputs, and algorithms are
often wrong) precisely the noncrisply labeled patients that
need the most attention (most extensive testing). Hardening
each column of U, and U; with (7) in this example makes
them identical to U;, and everything you worked so hard to
learn by passing to a soft model is lost! Crisp partitions of
data do not possess the information content needed to
suggest fine details of infrastructure such as hybridization or
mixing that are available in U, and U;. Consequently, extract
information of this kind before you harden U! In medical
image segmentation, as soon as the partition of the image is
hardened, some of the advantage that accrues by using a soft
model is lost. The hope is that carrying soft uncertainty
throughout the calculations up to just this point will realize a
gain in overall accuracy.

So, how do we get soft partitions of data? Perhaps 80-90% of
all soft partitioning algorithms used in medical image
segmentation are based on, or derived from, the fuzzy c-
means (FCM) model and algorithmic family [1]. The c-means
families are the best-known and most well-developed families
of batch clustering models because they are least squares
models. The optimization problem that defines the hard (H),
fuzzy (F), and possibilistic (P) c-means (HCM, FCM and PCM,
respectively) models is:

min < J,. (U, V;w) = Z Z ull D3
{ =1 k=1

(uv
w0 >} (8a)
=1 k=1

where

U € Mye, My, o1 M, for HCM, FCM or PCM (8b)
respectively;

V=w,v,...,v.)eRT;v;e R (8¢)

is the ith point prototype;
T
w=(w,wy,...,w,) ;weR"

is the ith penalty term (PCM);

m > 1 is the degree of fuzzification;

(8e)
Dj = a(xiv;) = [l — vill3

(8f)
is the A- induced inner product distance between x; and v;.
Weight vector w in (8d) is a fixed, user-specified vector of
positive weights; it is not part of the variable set in minimiza-
tion problem (8a). The HCM, FCM, and PCM clustering
models are summarized in Table 2. Problem (8a) is well-
defined for any distance function on R?. The method chosen to
approximate solutions of (8a) depends primarily on Dj. If D;;
is differentiable in V (e.g., whenever D;. is an inner product
norm), the most popular technique for solving (8a) is grouped
coordinate descent (or alternating optimization (AO)).

Column 3 of Table 2 shows the first-order necessary
conditions for U and V at local extrema of J,, required by
each model. The second form, ¥, for v; in (9b), emphasizes that
optimal HCM-AO prototypes are simply the mean vectors or
centroids of the points in crisp cluster 4, n; = |U/; |, where U,
is the ith row of U. Table 3 is a pseudocode listing that lets you
implement all three of the c-means families in a single
framework. There are a lot of details left out here about
singularity, initialization, rules of thumb for the parameters,
and especially, about how to pick ¢, the number of clusters to
look for. This is crucial when FCM is used for image
segmentation. If we had space, we would put a little numerical
example here so you could see how these three algorithms
work. For brevity, we skip this here, but point out that the three
partitions U;, U,, and Us in Table 1 are exactly the kinds of Us
produced by HCM, FCM, and PCM as listed in Table 3. We will
see images segmented with these algorithms later.

So, clustering algorithms deliver c-partitions U of X and can
often, as with the c-means families, estimate other parameters
such as the vectors we denoted by V = {v,v,,...,v.} C ®in
(8¢). The vector v; is interpreted as a point prototype (centroid,
cluster center, signature, exemplar, template, codevector, etc.)
for the points associated with cluster i. At the end of clustering,
the vectors comprising V will have algorithmically assigned
labels, and these may or may not correspond to meaningful
physical classes. For example, an MR image segmented by
clustering ends up with regions and perhaps prototypes that are
artificially colored as, say, “red,” “green,” etc., whereas the
clinician needs for them to be called “bone,” “gray matter,” etc.
This seemingly unimportant fact provides a convenient and
important way to classify segmentation methods.

= (x—v)" Alxg —v;)
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TABLE 2 Optimizing J,, (U, V, w) when Dy, = |x, — v,

II Segmentation

Minimize First-order necessary conditions for (U, V) when Dy = |x, — v;|, >0V i, k
. . I; Dp<Di,j#il,.
. cp — ) ik = xp] .
]1(U7 V; W) over ((—]) V) mn thn x R Uk { 0; otherwise }Vlv k) (93)
HCM w; = OVi Suw X
V== = Vi (ob)
> ’
k=1
J.(U, V;w) over (U, V) in M, x RP . 517!
FCM m>1 U = [Z(%)} Vi, k; (10a)
AN
Wi = ovi n n
V= ( W%/ 22 u?;’é) vi (10b)
k=1 k=1
Jn(U, V;w) over (U, V) in M, x R o\ ] T
PCM m>1 Uy = {1 + (%‘)" ]} Vi, ks (11a)
w; >0Vi
v, = <Z WX/ 3 k> Vi, (D)
kA1 k=1

An important problem associated with unsupervised image
segmentation is cluster validity. To understand this problem, let
P ={U;:1<i< N} denote N different partitions (crisp or
soft) of a fixed unlabeled data set X that may arise as a result of:

(i) clustering X with one algorithm C at various values of ¢ ;
or

(ii) clustering X over other algorithmic parameters of C

or

applying several C’s to X, each with various parameters ;

or

all of the above

(iii)
(iv)
Cluster validity is the study (selection or rejection) of which

TABLE 3 The HCM/FCM/PCM-AQ algorithms

Store Unlabeled Object Data X C R

« number of clusters: 1<c<n

» maximum number of iterations: T

« weighting exponent: 1 < m< oo (m = 1 for HCM-AO)
Pick « inner product norm for J,, : [|x||3 = xTAx

» termination measure: E, = |V, — V,_, || = big value

+ termination threshold: 0 <& = small value

« weights w; >0V i (w = 0 for FCM-AO/HCM-AQO)
Guess + initial prototypes: Vy = (v, ...,v.9) €R? (12)

t<0

REPEAT

te—t+1

Irerate U, = F-(V,_,) where F-(V,_;) = (9a, 10a or 11a)

V, = G¢(U,) where G(U,) = (9b, 10b or 11b)
UNTIL (t =T or E, <¢)
(U,V)=(U,,V,)

U, € P “best represents the data” in some well-defined sense, or
for some well-defined purpose. One popular strategy—rmath-
ematical validation—uses a validity functional V : D —®R to
rank U; e P. There are hundreds of cluster validity functionals
in the literature [3]. We will meet an application of validity
functions later, so to fix this idea, here is one of the simplest:
the partition coefficient Vpe, which is well-defined for any fuzzy
partition U of X [3]:

)\ _lul? _ w(uu?)
>3 ) ==
" n n

Let’s compute the partition coefficient of crisp U, and fuzzy U,
in Table 1:

VoclU,0) = (13)

1{SHE 12412412
Vec(U1,2) = 3 ZZ i 3 =1 (l4a)
k=1 i=1
1 3 2
Vec(Us,2) = 3 Z Z ”12k
k=1 i=1
_17+402° 404 +0.8 406> 220
= 3 =
~0.73. (14b)

For crisp or fuzzy partitions, Vp is known to lie between 1/¢
and 1; it will take the value 1 if and only if Uis crisp; and it will
take the fuzziest value 1/c if and only if U has the entry 1/c in
all cn elements. Thus, the smaller V. is, the fuzzier Uis. Some
authors use these mathematical facts to justify defining the best
U; in P as the one that maximizes Vp- over the available
choices, on the theory that the crispest partition is the best
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candidate in P. Unfortunately, this use of Vp. has some well-
known deficiencies [3], but this shows you how validity
functions work. We could compute V p-(U;,2)=0.76 for the
possibilistic partition U; in Table 1, but since the column sums
are not constant, all we know about this validity function for
this case is that it lies between 0 and ¢, and it takes the value 1
at crisp partitions of X. So Vp. does not have a clear
interpretation for possibilistic partitions. However, the PCM
clustering algorithm is sometimes used to segment images, so
there are other validity functions that can be used for this case
[3].

What’s wrong with using validity functions? Well, the “true”
parameters of a model that represents substructure in any data
set are unknown. Consequently, validity functionals have little
chance of being generally useful for identifying a “best”
segmentation of an image obtained by clustering. More
typically, V is used instead to eliminate badly misleading
solutions. Thus, validity functionals are usually used prior to
validation by humans or rule bases.

A classifier is any function D : ®7—N,, .. The value y = D(z)
is the label vector for z in Rf. D is a crisp classifier if
D[R?] = N,,; otherwise, the classifier is fuzzy, possibilistic, or
probabilistic, which for convenience, we lump together as soft
classifiers. When part or all of X is used to “train” D (find its
parameters), the training and test data are denoted by X,, and
X,.- Many classifiers also produce point prototypes, and in this
instance the prototypes will usually acquire physical class labels
during training.

We denote the test (or generalization) error rate of D when
trained on X, and tested with crisply labeled X, as
Ep(X,.|X,,) = (number of mistakes committed by D/|X,]|).
If the same data, X = X,, = X,,, are used for training and
testing, Ep(X|X) is called the resubstitution error rate. A
classifier for which Ep(X|X) =0 is said to be consistent.
Ep(X|X) is usually optimistically biased and so is generally
regarded as a “ballpark” estimation of Ep,(X,,|X,,), the number
we really want to know. There are lots of papers about the topic
of this paragraph—how to set up proper experiments, how to
use the samples you have most efficiently, how to estimate
parameters, how many times, etc. [1].

Once point prototypes are found, they can be used to define
a crisp nearest prototype (1-np) classifier Dy g 5. Let V'be a set of
¢ crisply labeled point prototypes, one per class, ordered so that
e; is the crisp label for v;, 1 < i< ¢; let 6 be any distance
measure on N7, and let E = {e; : i=1,...,c} = N,. The crisp
nearest prototype (1-np) classifier Dy g 5 is defined, for ze R,
as

Decide zei < Dy g (z) = e; < d(z,v;)

< 0(z,v;)Vj # i; ties arbitrarily resolved. (15)

For example, suppose the prototypical patient with disease A
has heart rate of 90bps and temperature of 101°, while a
patient with the “textbook case” of disease B has heart rate
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75 bps and temperature 95°. We can represent these prototypes
with the vectors v, = (90,101)", and v, = (75,95)". OK,
your patient z has heart rate 82 bps and temperature 98°. If you
use (15) to classify z = (82,98)" and choose the Euclidean
distance J, for your implementation, you have

d,(z,v,) = \/(90 —82)” + (101 — 98)> = v/73=8.54

as the distance (from your patient) to disease A, and

0,(z,vy) = \/(75 —82)* + (95 — 98)” = /58=7.61

as the distance to disease B. Taking the smaller value (nearest
prototype) yields the diagnosis “z has B.” Would you do this in
your practice? Of course not. But now you know how
prototype classifiers work, and moreover, you do make
diagnoses this way—it’s just that your brain uses “non-
Euclidean” calculations about 2’s relationship to (what you
know about) A and B to help you, the trained clinician, render
a diagnosis. This is what pattern recognition is all about.

One last note: don’t confuse the 1-np rule with the I-nearest
neighbor (1-nn) rule. Prototypes are new points built from the
data, while neighbors are points in the labeled data. Neighbors
are a special case of prototypes, but this distinction is very
important. More generally, we may speak of the k-nn rule. This
classifier simply finds the k nn’s to any unlabeled point z,
counts the number of “votes” for each class in z’s neighbor-
hood, and then assigns the majority label to z. The k-nn rule is
a very good classifier that has been used quite successfully in
many papers on medical image segmentation: see [3] for both
the crisp and soft designs.

2.3 Feature Extraction

This section considers the “front end” of medical image
processing systems, where features are chosen and extracted
from the raw image. We usually discuss images with two spatial
dimensions, but most of what we say generalizes to images with
N spatial dimensions, and to nonspatial dimensions such as
time. Let I = {(i,j):i=1,...,m;j=1,...,n} CR* be a
rectangular array or lattice of integers that specify (mn) spatial
locations ( pixel addresses). In what follows, ij may be used as a
short form for (i,7). Next let Q={q:9q=0,1,
..., G—1} C R be the integers from 0 to G — 1. G is the set
of quantization (or gray) levels of some picture function pix:
R2—>RN. N is called the spectral dimension of pix. It is
commonly assumed that pix is continuously differentiable at
least once. Confinement of pix to the lattice IJ (which is done
automatically by the digitizing scanner that realizes samples of
pix) creates an mx n digital image denoted by Pj. For
example, color photographs and magnetic resonance (MR)
images usually have spectral dimension N = 3, whereas
unispectral images (such as digitized X-ray mammograms)
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have N =1. An “8-bit” image has 2% =256 gray levels,
whereas a “16-bit” image has 65,536 gray levels.

Image data are usually converted into sets of feature vectors
X ={x;,...,x,} C NP, where p is the number of nonspatial
features associated with each spatial location in the image.
Don’t confuse p, the dimension of the extracted feature space,
with N, the spectral dimension of the image itself. N =p
whenever the vectors in X are simply the quantized intensities
(the raw digitized image). As soon as we extract new features
from the raw intensities, it is possible that N # p. Thus, we
may have 7D feature vectors built from three intensities
attached to two spatial dimensions (pixels); or 2D feature
vectors for images with N = 3 intensities at each of three
dimensional spatial locations (voxels), etc. If the 2D spatial
location of a feature vector is important, we write x;; for the
feature vector associated with pixel address (i, j). Feature vector
x;; may or may not include the coordinate values (i, j) among
elements. Thus, e.g., if location (2, 4) in an image has intensity
value 37, we write x,, = 37 and p = 1.

Medical imaging systems use various sensors to collect
spatial distributions of measurements which represent the
underlying tissue characteristics. Figure 5 depicts several
schemes for extracting features from an input image. These
raw data support pixel-, edge-, and region-based segmentation
(the distinction being what numerical features extracted from
the image are used as the basis for processing). This is
illustrated at the top of Fig. 5, which shows N = 3 spectral
dimensions, and the extraction of a feature vector x;; from just
the intensities at the 7jth pixel locations on the left-hand side,
and from a region (window) surrounding the ijth pixel on the
right-hand side. The left side thus illustrates pixel-based
features, while the right side illustrates either edge or region-
based features.

As an example, MRIs are composed of N =3 spectral
dimensions: two relaxation times as well as proton density at
each 2D spatial location. Let T1;, T2;; and r;; denote the spin
lattice relaxation, transverse relaxation, and proton density of
pixel (4, j) in an MR slice of overall dimensions (m x n). We can
aggregate these three measurements into pixel vector
x; = (T1;, T2, 1) in 1; and the pixel vectors so constructed
comprise a data set X that supports pixel-based methods.

L~

(Exr.ract feature vectors X = {zul c ’*Rp)

FIGURE 5 Extraction of features for image processing.
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On the other hand, if we estimated the horizontal and
vertical gradients, say g, ; and g, ;; of the intensity function at
pixel (4,7) from intensities in some neighborhood of (i,j) in
each of the three MR slices, there would be either three sets of
features in }*? or one set of features in R° to support edge-based
segmentation of X. (Some writers call gradients fexture
features.) Finally, we might instead extract and order the
nine intensities from a 3 X 3 window centered at pixel (4, ;) in
each of the three slices. This would result in either three sets of
features in R or one set of features in $? to support region-
based segmentation of X.

It is both possible and sometimes profitable to combine
pixel- and window-based features to make up each vector in X.
For example, the spatial coordinates of the pixels can be used
either as part of the feature vector, or in the extraction of the
features selected for use. In the final analysis the choice of
features is very important, but the “quality” of features is
extremely domain dependent. In this sense, it is difficult to
quantitatively describe a “generally useful” feature space. This
is especially true in the medical domain, where clinicians must
be relied upon to supply insight and recommendations about
the features they use when visually processing a medical image.

2.4 2D Image Segmentation

Many studies of nonfuzzy segmentation methods have been
published. For example, Morrison and Attikiouzel [17]
describe segmentation by statistical and neural network
models; other multispectral methods are discussed by Just
and Thelen [18], Hyman et al. [19]. Vannier et al. [20], and
Raman et al. [21]. Jain and Flynn [22] provide a wonderful
survey of image segmentation by crisp cluster analysis. Fuzzy
clustering and early work in fuzzy image processing is discussed
in many papers reprinted in [4].

The objective of image segmentation is to divide an image
into (meaningful) regions. Errors made in this stage will affect
all higher level activities. Therefore, methods that incorporate
the uncertainty of object and region definitions and the
faithfulness of the features to represent various objects
(regions) are desirable. Some writers regard edge detection as
image segmentation, but we prefer to keep these two schemes
for decomposing the elements of an input image separate.

In an ideally segmented image, each region should be
homogenous with respect to some predicate such as gray level
or texture, and adjacent regions should have significantly
different characteristics or features [14,47]. More formally,
segmentation is the process of partitioning the entire image in
its X representation into ¢ crisp and maximally connected
subregions {X;} such that each X; is homogeneous with respect
to some predicate P, i.e.,

f:lXi =X
X;NX; = @Vi,j,i # j
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X, 1,...,c are connected (16¢)
p(X;) = TRUE Vi (16d)
p(X;UX;) = FALSE if i # j and X; is adjacent to X;.  (16e)

Conditions (16a) and (16b) together are just the set-theoretic
representation of a crisp c-partition of X. The crisp member-
ship function m, : [J—{0, 1} of region X; is

mlid={s | (hex b

and if the values of the ¢ membership functions in (17) are
arrayed as a matrix U, it is a crisp c¢-partition Ue M, of X.
Notice that even though the spatial locations of the pixels in the
image are not directly involved in the partition in (16), the
image plane is implicitly partitioned by U, because each x;; in X
is associated with the 7jth column of U.

In many situations it is not easy to determine if a pixel
should belong to a region or not. This is because the features
used to determine homogeneity may not have sharp transitions
at region boundaries. This is especially true when features are
computed using, say, a local 3 x 3 or 5 x 5 window. To alleviate
this situation, we can insert fuzzy sets concepts into the
segmentation process. The first reference to fuzzy segmentation
was made by Prewitt [24], who suggested that the results of
image segmentation should be fuzzy subsets rather than crisp
subsets of the image plane. In a fuzzy segmentation, each pixel
is assigned a membership value in each of the c regions. If the
memberships are taken into account while computing proper-
ties of regions, we often obtain more accurate estimates of
region properties.

The result of a fuzzy segmentation of X is a fuzzy partition U
of Xinto c fuzzy subsets {m, : IJ—=[0,1] : i=1,...,c}, which
replaces the ¢ membership functions in (17). For (i,j) € Py,
mp (i, j) represents the degree to which (i, ;) belongs to m, .
This is how fuzzy clustering algorithms enter the picture—they
produce the matrix U that partitions the image. Unfortunately,
this does not preserve the connectivity among regions at (16¢)
that is presumably enforced by construction of the predicate P
in (16d) and (16e). This is one of the most important problems
that needs to be solved if segmented medical images are to be
clinically useful, because without this property, clustering
algorithms (crisp or soft) will “tear up tissue classes” into
medically incorrect regions. We will return to this point in the
last section.

|
—

(17)
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2.5 Segmentation in Medical Applications

There are many ways to classify segmentation methods, none of
which leads to a crisp partition of them. For example, Figure 92
in Dellepiane [23] shows a classification based on a tree rooted
at image segmentation that subdivides algorithms based on the
parameters that guide them to their goal. Dellepiane identifies
three main groups based on density, topology, and geometry.

95

Our interest in the role and importance of human experts in
medical image processing leads us to a somewhat different way
to classify segmentation algorithms. Our focus is primarily on
how and where knowledge beyond that possessed by the sensor
data and computationally obtained low-level information is
injected into the system. Based on this criterion, traditional
pattern recognition methods for segmentation can be
(roughly) classified into two groups, supervised (Su) and
unsupervised (US) methods, depending on whether the vectors
in X are labeled or unlabeled. Figure 6 illustrates the distinction
we make here between the two groups of segmentation
methods that seem popular in the fuzzy modeling domain,
and further subdivides unsupervised methods into two
subgroups based on whether a human (US,) or a rule base
(USp) is used to assign labels (tissue classes) to the unlabeled
clusters (or regions) in the image. In the sequel we refer to the
three vertical paths (left to right) in Fig. 6 as tracks US,, USg
and Su, respectively.

Note carefully that it is the labels of the data (and their use
during training) that divide the methods illustrated in Figure 6
into supervised and unsupervised approaches. The fact that
humans or rules are used to assign physical labels to tissue
clusters in the two US tracks is of course supervision in some
broader (and in medicine, crucially more important) sense, but
here we use the term supervised in the usual context of
classifier design—that is, when training data X,, are used prior
to segmentation of test images. There are also segmentation
algorithms that use human knowledge about the image domain
as a basis for nontraditional classifier designs (Herndon et al.
[25]; Hata et al. [26,27]). These models, and others that appear
in the section on 3D problems, don’t fit in the framework of
Fig. 6 very well.

Supervised (Su) )
R ™
Human selects and
labels X1, : tissue pixels
for training or seeds for
reglon growlng

r/_llnlnpzrvll-nd [us)

Cluster X into
¢ subreglons

Validate clusters (and
passibly) revise ¢ )

l

-
Color each cluster
[Crisp or Fuszzy)

9 r,

L

Human views image:
{i} rejects output...or
(i) assigns labels

"

X, used to

parametrize
classifier D

D labels
plxels in X-X|,

(or other images)
A USy ot AN

( Evaluation, acceptance and use by practicing clinicians )

Rules revise
o i assign
tissue labels

us

FIGURE 6 A classification of segmentation methods based on human
intervention.



96

The bottom portion of Fig. 6 reemphasizes the need for final
evaluation of processed images by medically trained experts.
Researchers rarely carry a system to this stage, and as part of the
algorithm itself (cf. Dellepiane, [23]). Prior to computer aided
medical diagnosis, problem domains were focused in areas
where system designers were the experts (for example, finding
chairs, cigars, fish, or guitars). Medical image analysis,
however, presents a vastly more complicated problem when
visual evaluation is relied upon to assess the quality and utility
of algorithmic outputs. Usually, clinicians are provided with a
set of images and asked to evaluate one or more “properties” of
the enhancement process, such as judging the faithfulness
of the replication of the film or sensor information, the utility
of the enhancement (edges, regions, etc.), or the implication of
region of interest (ROI) prompts (Hume et al. [11]). We
illustrate these points with an example from digital mammo-
graphy [10].

As shown in Fig. 7, radiologists (more generally, clinicians
with expertise in the appropriate medical domain) can be
involved in performance evaluation of image segmentation in
three ways. For example, radiologists can compare the
following:

(C1) Sensor outputs (e.g., films) to unenhanced digiti-
zations (digital images)

(C2) Unenhanced digital images to enhanced digital
images

(C3) Original sensor outputs to enhanced digital images

When radiologists examine mammogram films in a light
box, the entire mammogram suite can be viewed. However,
when a digital version of the film is viewed on a computer
monitor, only a fraction of the digitized film can be viewed at
one time, often with just 256 shades of gray (assuming an 8 bit
display). When printed, these digitized images must be further
cropped or compressed to fit the paper constraints of the
printer. In this case, an average 600 dpi (dots per inch) laser

Sensor Output Digitized Image Processed Image

t © 11 © 4

fidelity of digittzation  enhancement quality

sensor output versus enhanced images

FIGURE 7 Clinician involvement in algorithm evaluation.
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printer can resolve only 122 gray levels [12]. Research indicates
that humans themselves can only resolve 32 gray levels [13],
and yet many of these issues are ignored in the current
literature on mammogram enhancement systems.

Since radiologists are most comfortable with films, while
nonclinicians such as computer scientists and engineers are
most comfortable with computer monitors and printouts of
digitized images, some compromise is involved when devel-
oping and evaluating the performance of these systems. Access
to all three data types (original films, digitized images, and
processed images) maximizes flexibility when defining perfor-
mance assessment instruments, while still ensuring the
development of a sound and repeatable evaluation metho-
dology.

As an example, the involvement of clinicians who are actively
participating in breast cancer screening programs is critical for
the successful emergence of mainstream digital mammo-
graphy. When such clinicians have contributed to the creation
of a database, true, medically registered correlations between
radiologist and ground truth can be made. Clinicians can be
asked to independently judge the enhancement quality of the
breast skin line and breast substructure, the sufficiency of the
detail level within and outside these areas, and the level of
differentiation between normal and abnormal tissues.
Instruments used by Bensaid et al. [15] to elicit feedback
from radiologists viewing brain tumor segmentations are a
good example of how this can be done.

In addition to clinician involvement in performance evalua-
tion, mammographic image databases often contain ground
truth information that may include, e.g., ratings for character-
izations of breast tissues, or the size and locations of lesions.
Ground truth information is derived by one or more domain
experts in one of two ways:

GT1 (primary). Visually guided hand labeling of clinical
features on sensor outputs

GT2 (secondary). Algorithmically determined locations
of ROIs that are visually assessed and accepted by clinical
experts

When ground truth of either type is available, performance
analysis can be based on various pattern recognition methods
[16]:

PRI. Using labeled test data to estimate error rate
ED(Xte|Xtr)

PR2. Correlation between computed and ground truth
labels

PR3. Analyzing receiver operating characteristic curves

There are several ways to use these measures. For example,
algorithm A can be used with training data X,, to parametrize a
classifier D, and then the labels the classifier assigns to test data
X, can be used to estimate the generalization potential of D. If
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ground truth information is available, estimated regions of
interest can be compared to the ground truth to assess the
quality of the algorithm. Standard measures of agreement or
goodness of fit such as correlation coefficients can be used to
compare the relative quality of several algorithms A, B, ..., Z
on common data sets that possess ground truth.

The scoring method used to determine a “hit” vs a “miss”
when using ground truth information deserves careful con-
sideration. For example, comparisons can be based on
matching centroids of observed vs expected regions, intersec-
tions of bounding boxes for detected and benchmark regions,
etc. Standardization of the technique employed for a given data
set is critical to making unbiased assessments of an algorithm’s
performance. The general situation for assessment by pattern
recognition techniques is summarized in Fig. 8 (for the
mammographic image domain: “micro” stands for micro-
calcifications). As shown in Fig. 8, X,, may contain images
(here micros) with abnormalities not represented in the
training data X,.

Evaluation without clinician involvement such as that
illustrated in Fig. 8 can provide insight into the success or
utility of a proposed technique. However, clinician involve-
ment is vital to developing a generalizable, non-database-
specific, repeatable methodology that will be accepted by health
care personnel.

Visual examination (e.g., shown as track US, in Fig. 6) of an
algorithmically suggested, artificially colored image is termed
human validation. In this case, a clinically knowledgeable
operator inspects, say, an unsupervised segmentation of a
medical image, and either rejects it or accepts it and assigns a
physical label to each region (cluster). This approach can be
successful in terms of labeling the segmented image correctly
only if the operator can imagine tissue structure as it must be in
the data. Since X is not labeled, the “true” substructure in the
data is unknown. Thus, human validation is subjective and to
some extent nonrepeatable. Nonetheless, this method is
extremely important and still much in evidence, as clinicians
historically trust human judgment more than computational
evidence.

labeled medical images

Training | Testing
leston ' mass
i
| mass I i | leston |
|nurmal v micro
model |~ training |—3u classifier |3 error rate

FIGURE 8 Evaluation of supervised approaches.
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A third possibility (besides mathematical validation, which
we have already discussed) is to instead use rule-based
validation (e.g., as shown in track USy in Fig. 6), in which
clinical knowledge is encapsulated in the form of a rule-based
system. This circumvents the need for a human on-line either
before or after the segmentation, and probably represents the
best hope at present to realize a truly unsupervised medical
assistant [28].

After clustering to find a partition U of unlabeled X in either
US track, a crisp color is usually assigned to each tissue class. If
U is already crisp, this is straightforward. Otherwise, the
simplest way to do this is to harden each column of Uwith H as
in Eq. (7). Another possibility is to assign “fuzzy” colors to
each pixel by mixing ¢ basic colors in proportion to their
memberships. Lighter shades are usually assigned to the pixels
with high membership values and darker shades are used for
lower membership values. This has the effect of outlining
borders where classes are intermixed and has been preferred by
physicians (Bezdek et al. [29]). The choice of which color to use
for which region, and how to shade regions in images, is a
seemingly trivial part of segmentation. However, visual dis-
plays often have preestablished expectations in the medical
community. The coloring scheme chosen significantly affects
the utility of computed outputs, so this issue deserves careful
attention.

Several fuzzy approaches to the tracks US, and Su in Fig. 6
are reviewed in [29]. Several fuzzy models for track USy were
surveyed by Clark et al. [30]. For readers interested in image
processing based on the fuzzy reasoning paradigm that has
emerged from fuzzy control (not specifically for applications in
the medical domain), we highly recommend the survey by
Keller et al. [31] as a companion to this chapter.

3 Qualitative Discussion of a Few Fuzzy
Image Segmentation Methods

This section contains a few examples of segmentation based on
fuzzy models in each of the three tracks shown in Fig. 6. Much
of this material is a subset of Bezdek and Sutton [38], which has
more extensive discussions of many other papers and methods
that will not fit into the space allotted for this chapter. Another
source for fuzzy imaging models and their applications
(though not much on medicine) is [3].

3.1 Unsupervised Segmentation: Track US,

Much recent work in track US, has been done at many
institutions. We will discuss this area using case studies from
research done at the University of South Florida (USF).
Bensaid et al. [32] introduced a technique called validity-
guided (re)clustering (VGC) and illustrated its use on MR
images of patients with and without pathology. The VGC
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index is a generalization of the Xie-Beni cluster validity
index [33]. The aim of this method is to enhance the quality
of unsupervised fuzzy partitions of X by examining each
FCM-derived cluster individuall. When FCM terminates at
U for a fixed ¢, the general procedure begins by selecting a
particular cluster in X (say Uj;) = row i of U) for splitting.
After hardening this row with H at (7), FCM with ¢ =2 is
applied to the points corresponding to H(U;). To preserve
the chosen value of ¢, two other clusters in U are merged at
the same step.

The overall effect of VGC is to join tightly coupled clusters,
split loosely coupled ones, and preserve the chosen value for c.
Hence, VGC is not a cluster validation scheme in the same
sense as defined previously, since it is not applied to different
partitions of X and is not used to choose a best value for c.
However, it is driven by a validity functional that assesses the
ith cluster, and then sums the VGC measure over i, providing
an overall validity function for U. VGC continues reclustering
until improvement becomes small.

Bensaid et al. [32] used 30 MR images to illustrate that
VGC really improves outputs of FCM segmentation. For each
image, an optimized supervised segmentation was constructed
by an iterative process whereby the training set was
repeatedly reselected in order to optimize the segmentation
quality, as determined by two clinically knowledgeable
investigators. Segmentation as in track Su of Fig. 6 was
done with the crisp 7-nn rule using the Euclidean norm. The
7-nn rule was chosen as a way to construct GT2 type ground
truth because this classifier is reportedly superior to various
neural-like networks and probabilistic designs (Vaidyanathan
et al. [34]).

The optimized 7-nn, FCM and VGC segmentations were
subsequently evaluated by three expert radiologists in a blind
study discussed in Bezdek et al. [35]. Each radiologist was
provided with three (T1, T2, p) views of each unenhanced raw
image and the three segmentations, and was asked to fill out a
survey form (method C2). Individual panelists were asked to
rate the quality of the first four performance indicators shown
in Table 4 on a scale from 0 to 10, where 0 =very bad and
10 = excellent. Each radiologist was also asked to rate the last
two items (5 and 6 in Table 4) on a percentage basis—that is, to
estimate the percentage of true positive tumor (correctly
classified tumor pixels) and the percentage of false positive

TABLE 4 Comparison of three MR segmentation

Item Description 7-nn rule FCM FCM +VGC
1 WM vs GM 7.8 7.4 7.5

2 Normal vs pathology 8.3 7.5 7.8

3 Tumor vs edema 8.6 6.7 8.3

4 CSF quality 8.5 7.3 7.8

5 % True positive tumor 90.61 80.56 86.78

6 % False positive tumor 12.44 17.61 5.17

II Segmentation

tumor ( pixels incorrectly classified as tumor). Acronyms used
in this table and later are white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF).

For each of the first four items in Table 4, the scores
corresponding to each algorithm are averages over all 30
segmentations and three radiologists. The percentages of true
and false positives reported for items 5 and 6 are simply
averaged for each algorithm. Table 4 shows that, for the data
used in this study, VGC does enhance segmentations made by
FCM. For example, with 99% confidence, VGC better
differentiates between WM and GM (row 1); between normal
and pathological tissues (row 2); and between tumor and
edema (row 3); VGC is also superior to FCM for identifying
CSF (row 4).

VGC segmentations are not quite as good as those obtained
with the optimized, supervised 7-nn rule. This is as expected,
since supervision by labeled data usually improves (or at least
should improve) algorithmic outputs. VGC shows significant
promise for differentiating between tumor and other tissues
compared to FCM, and moreover, the ratio between its
percentages of true positive and false positive tumor pixels is
higher than the corresponding ratio for the supervised 7-nn
rule. With 99% confidence, VGC produces significantly less
false positive tumor than 7-nn. On the other hand, even with
confidence as low as 90%, 7-nn’s true positive tumor
percentage is not significantly better than VGC’s rate. So, this
model seems to be a positive step on the way to truly
unsupervised designs.

Velthuizen et al. [36] discuss the use of a modification of the
mountain clustering method (MCM, Yager and Filev, [37]) they
call M3 for segmentation of MR images. The mountain method
produces ¢ point prototypes V = {v,...,v.},v;e RPVi from
unlabeled data. MCM begins at ¢ = 1 and continues to add
prototypes to V until an objective function threshold is
exceeded. Thus, c is neither fixed nor explicitly chosen, but is
implicitly specified by the termination threshold used to stop
the algorithm.

It is a misnomer to call MCM (or M3) a clustering method
because no partition U of X is produced by either of these
algorithms, which are more properly viewed as prototype
generator methods. However, after the terminal prototypes
Vuem Or Vs are found, they can be used to generate a crisp c-
partition of X by applying either the HCM necessary condition
(9a) or, equivalently, the 1-np classifier at (15) based on them
to each point in the (unlabeled) image. Velthuizen et al. [36]
use various sets of MR pixel intensities as features.
Segmentation by M3 proceeds as follows:

[M3.1] Run M3 on X to find V;

[M3.2] Construct U, a crisp partition of X with equation
(9a) or (15): the label assigned to xj; is the label (index) of
the closest prototype

[M3.3] Physically label each cluster in U as a tissue class
by matching the pixels in an algorithmic cluster to each
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of the ground truth tissue clusters. Assign the algorithmic
cluster to the tissue class that enjoys maximum pixel
matching

[M3.4] Artificially color the labeled image

Segmentation by FCM was done with two initializations: a
“standard” initialization V, (cf. (9) in Velthuizen et al.); and
with V5. We write FCM(V) to indicate FCM initialized with
V. FCM generates a terminal fuzzy c-partition Ugcy, of X that is
hardened column by column using Eq. (7), and finally, steps
[M3.3] and [M3.4] are performed on the resultant crisp
partition. Velthuizen et al. evaluated segmentations of 13 MR
images using both types of ground truth (methods GT1 and
GT2). Segmentations were produced by four methods: a
supervised k-nn rule (used to construct the type GT2 ground
truth), unsupervised M3, unsupervised FCM(V,), and unsu-
pervised FCM(V,;). Comparisons were made visually
(method C3) and quantitatively (method PR2).

Figure 9 shows T1 (weighted) input data for a patient who
has a brain tumor. Figure 9(b) is the color key:
CSF = cerebrospinal  fluid, WM = white matter; GM = gray
matter; GM-2 = ( falsely labeled) gray matter. A supervised k-
nn segmentation is shown in Fig. 9c. This image results from an
operator choosing labeled subsets of pixels from each tissue
class, and then using the standard k-nn rule to label the
remaining pixels. This is repeated until a panel of radiologists
agree that the k-nn segmentation is good enough to be used as
type GT2 ground truth. Ten of the 13 images discussed in this
study used this method (GT2) as a basis for comparing the
results of the three algorithms (unsupervised M3, unsupervised
FCM(V,), and unsupervised FCM(V,;). The other three
images had manual ground truth (GT1).

Figure 9d shows a segmentation achieved by FCM(V ). The
tumor is not detected. Instead, FCM(V,) finds two gray matter
regions that do not correspond to anatomical tissues. The M3
segmentation in Fig. 9e is much better—it finds many of the
tumor pixels and does not have a GM-2 tissue region. Finally,
panel 9f exhibits the segmentation resulting from the initi-
alization of FCM with the output of M3. This view should be
compared to Fig. 9c. It’s hard to see on a printed copy, but
there is excellent correspondence between the tumor regions in
these two views. Table 5, adapted from Velthuizen et al., shows
the average performance on pathological tissues for segmenta-
tions of 13 images made by unsupervised M3, unsupervised
FCM(V,), and unsupervised FCM(V 3).

When FCM is initialized with V,, segmentation is not as
good as M3—it has nearly 5% more false positives and about
7% fewer true positives in tumor. In edema, the recognition
rates are about the same. When FCM is initialized with Vs,
there is substantial improvement in the true positive rate for
both tissue classes and a slight decrease in edema false positives.

To appreciate the importance of the validity issue when
segmenting images by clustering, see Fig. 10a the original
digital mammogram of a patient with a breast tumor (image
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FIGURE 9 MR segmentations [37].

MDBO001 in the MIAS database [53]). Views (b) to (f) in Fig.
10 are segmentations of this image made by the FCM algorithm
given in Table 2. Parameters of these runs are p=1,m =2,
both norms Euclidean, and termination threshold & = 1.0.
All five segmentations are shown in shades of grey, assigned
to each pixel by hardening the columns of the terminal
partition with H in Eq. (7). The variable in these five views is ¢,

TABLE 5 Average true and false positive pixel counts (in %) for
pathological tissues

False Positives True Positives

FCM(V,) M3 FCM(V,;) FCM(V,) M3  FCM(V,;)
Tumor  10.3 56 5.2 59.4 66.1 753
Edema 5.9 59 87 75.9 779 812
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FIGURE 10 Ilustration of the validity problem when segmenting with
clustering. See also Plate 7.

the number of tissue classes to seek. View (b) depicts the tumor
as one of four tissue classes, and this is probably a fairly
accurate representation of the tissue structure in this image.
However, FCM reliably delivers a partition of the input data at
any specified value of ¢, and as you can see, if ¢ = 12 tissue
classes are requested, as in view 10f, FCM happily complies.
Medically, of course, this is not a good result. Moreover,
computing a validity functional such as the partition coeffi-
cient in Eq. (13) will not tell an uninformed user that ¢ = 4 or
¢ = 6 is probably the preferred algorithmic interpretation of
this image. We believe that the best approach to this problem
lies with a rule-based approach to validity.

Clark ef al. [28] have reported results from a completely
automated system that extracts glioblastoma multiforme
tumors from sequences of transaxial MR images (for the
purpose of tumor volume tracking during treatment). FCM is
used during preprocessing to remove extracranial areas (air,
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bone, skin, fat, muscles, etc.), which helps to limit processing in
subsequent steps. A rule-based expert system then extracts the
intracranial region and initiates the process of iteratively
refining the segmentation. Multispectral histogram analysis of
the intracranial region followed by region analysis provides the
final tumor labeling. Results are provided for 13 unseen volume
data sets, with comparisons to supervised, radiologist-labeled
“ground truth” tumor volumes, and supervised k-nearest
neighbor tumor segmentations.

There are many, many studies that perform segmentation
with fuzzy models along track US,. Without ground truth
images that can be used for quantitative assessment as in Table
5, none of these studies will carry much weight in terms of
establishing the clinical efficacy (or lack of it) of a particular
model. Human expertise is needed, and it is more efficiently
used in the other two tracks shown in Fig. 6. Nonetheless,
investigations in track US, are numerous and popular; we
conjecture that this is because it is the easiest track to work in
without the aid of medically knowledgeable clinicians.

3.2 Unsupervised Segmentation: Track USg

One of the earliest (nonfuzzy) articles discussing the use of
rules in the context of MR segmentation was by Menhardt and
Schmidt [39]. The use of fuzzy rule-based guidance for the
segmentation of medical images, track USy of Fig. 6, apparently
began with Li ef al. [40]. These authors used FCM as the first
step in a knowledge-based (KB) system that automatically
segments and labels glioblastoma-multiforme tumors in
successive MR slices of the human brain and subsequently
estimates total tumor volume. We call the approach discussed
in [40] the USF-KB system.

Initial clustering of image sections in the USF-KB approach
is performed by FCM with overclustering, i.e., the image is
deliberately segmented into more clusters than are known to
exist. When FCM uses for ¢ the number of clusters determined
by an operator during manual labeling, FCM often separates
tissue types incorrectly. Overclustering is based on the premise
that multiple clusters containing the same tissue type are easier
to merge than the separation of tissue regions in under-
segmented clusters. This is in some sense the reverse of the
VGC approach: Clusters are merged using mid-level rules
rather than low-level pixel-based processing.

After initial FCM segmentation, the overclustered partition
and the cluster center for each region are provided to a (crisp)
rule-based expert system that contains knowledge gathered
from a variety of sources such as radiologist expertise and
empirical observations. The USF-KB system includes heuristics
concerning tissue characteristics in feature space (T1, T2, p)
and anatomical information about the internal structure of the
brain.

Using knowledge-based and model-based recognition tech-
niques, the system iteratively locates tissues of interest. These
focus-of-attention tissues are analyzed by matching measured
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to expected characteristics. For tumor segmentation, focus-of-
attention is used with additional stages of fuzzy clustering to
separate normal brain tissue from pathology, then to separate
tumor from nontumor pathology. This cycle is important, as it
allows the results of applying FCM to the raw images to guide
knowledge application, which in turns guides further clus-
tering, making it possible to break down the more complex
problem of tumor segmentation into smaller, more easily
attainable goals.

Table 6 [35] shows results from USF-KB processed slices of a
single patient with diagnosed glioblastoma multiforme
scanned over five repeat sessions. Acronyms are false positive
(EP), true positive (TP), false negative (FN), tumor size (TS),
and correspondence ratio (CR). The slices were used to refine
the rules in the knowledge-based system. Ground truth for
these slices in the form of tumor pixel counts were made by a
human operator. False positives are nontumor pixels that are
mislabeled.

The correspondence ratio shown in Table 6 is computed with
the formula CR = (TP — (1/2 % (FP + FN)))/TS. The true
positives and false negatives sum to the tumor size,
TP + FN =TS. This is one way to assess the overall quality of
the segmentation. The value of CR maximizes when there are
no FPs or FNs. On the other hand, FPs not in the tumor can
cause this number to be negative. Thus, values close to 1
indicate segmentations that closely match human estimates.
Table 6 shows that the processed slices for this patient were
relatively accurate.

Hillman et al. [41] and Chang et al. [42,43] report success at
Texas A&M with a track USp scheme that is in some sense
diametrically opposite to the USF-KB model. This group
introduces fuzzy rules as a preprocessing stage followed by FCM
clustering to segment the remaining pixels in rat and human
brain MR images. Fuzzy rules endow the system with somewhat
greater reliability than crisp rules at a significant savings in
CPU time and storage. Approximately 80% of the pixels are
labeled by intensity thresholding with the fuzzy rule-base before
clustering. The mean vector of each set of labeled pixels (after a
hardening alpha-cut) provides FCM with initial prototypes.

TABLE 6 Pixel counts for a glioblastoma-multiforme patient
using the USF-KB system

Patient ID FP TP FN TS CR

p32s19 4 667 36 703 0.920
p32s20 33 1007 54 1061 0.908
p45s17 28 420 16 436 0.913
p50s21 131 1197 41 1238 0.897
p50s22 101 960 46 1006 0.881
p52s18 17 491 37 528 0.878
p52s19 82 1010 26 1036 0.922
p56s19 112 984 47 1031 0.877
Pp56s20 82 892 47 939 0.881
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After FCM segmentation of the unlabeled pixels, the final rat
brain segmentation obtained was reportedly satisfactory.

This technique has also been used to study HIV-positive
lesions in human MR images. In agreement with the USF-KB
system, this group reports that using FCM alone is not
sufficient to produce satisfactory segmentations of MR images.
They noted again that the computational complexity of FCM
was a problem and that FCM had difficulty in directly utilizing
spatial (nonfeature) information derived from the MR image.
Furthermore, they reported that FCM sometimes mislabeled
“easy” pixels of classes that did not have concave hulls in
feature space.

3.3 Supervised Segmentation: Track Su

Our discussion of fuzzy methods for supervised medical image
segmentation begins with the semisupervised FCM (ssFCM)
method. Techniques of this kind in the context of c-means
clustering were first discussed by Pedrycz [44]. Algorithms in
this category are (i) clustering algorithms that (ii) use a finite
design set X; C R? of labeled data to (iii) help clustering
algorithms partition a finite unlabeled data set X; C R?, and
then (iv) terminate without the capability to label other points
in RP. The prefix “semi” is used because these schemes are not
supervised in the sense that labeled training data are used to
find the parameters of a classifier D that is subsequently used to
complete segmentation of X; as shown in the Su track of Fig. 6.

The semisupervised approach is applicable in domains such
as image segmentation, where users may have a small set of
manually derived labeled data, and can use it to supervise
classification of the remaining pixels in a single image. Initially,
partitions of X for semisupervised clustering algorithms have
the form

chn = [ Utr | Ute] (183)
—~—
CX My CX My,
where
X=X,UX, (18b)

When n; = X,, ;, the n; need not be equal, nor is it necessary
that the columns of U, be crisp. The basic idea is to use
(X,, U,) and X,, to find U,,. Roughly speaking, semisupervi-
sion exchanges the generalization capability of a classifier
trained with (X,,, U, ) for access to the structural information
possessed by the points in both X,, and X,, while searching for
clusters U, of X,,.

The development and use of ssfFCM for MRI segmentation is
discussed by Bensaid et al. [45]. In this model a modified
version of FCM (i.e., ssfFCM) is applied to X,,. The training
data set X,, guides ssFCM toward improved clustering of the
unlabeled pixels by splitting the FCM update conditions at (10)
for U and V into labeled and unlabeled components. The
labeled components of U are fixed as in (18) and can be
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weighted by class so that ssFCM effectively uses many copies of
the relatively few training data in X,,. We exemplify this model
in Section 3.D, where ssFCM is used to make volume estimates
of tumors.

Segmentation in the USF-KB model has been augmented by
the addition of fuzzy rules. Namasivayam and Hall [46] have
shown that over a large set of MR images from different
patients, fuzzy rules perform most reliably when they are based
on relative differences in pixel intensities for different tissue
types. Relative fuzzy rules and ssFCM applied to the unlabeled
pixels in X,, yield more accurate and much faster (compared to
FCM alone) segmentations of normal MR images. ssfFCM has
also been used in the reclustering stage of the USF-KB system.
In this application, crisply labeled training pixels are chosen by
a set of rules that identify tissue types with a high degree of
confidence.

3.4 Three-Dimensional Applications

The last topic in our chapter considers research that attempts
to extend 2D techniques such as segmentation into three
dimensions. Typical applications include volume estimation
and visualization, both of which are needed in pre- and
postoperative surgical analysis. Nonfuzzy work in this area
includes Xiaoping et al. [48]. Research along these lines based
on either unsupervised and supervised fuzzy methods is quite
sparse.

The USF-KB system has been used to estimate tumor volume
[35]. Interslice variability makes direct volumetric clustering of
pooled sets of MR slices problematic. From a knowledge
perspective, developing a model of the entire structure of the
brain, even qualitatively, is extremely complex (if possible at all;
but see Hata et al. [26,27]). The USF-KB system exploits the
fact that clustering performs well on individual slices. A 3D
segmentation can be constructed by combining labeled tumor
areas from each processed slice (as long as there are no gaps)
into a single volume.

Qualitative models called templates in the USF-KB system
model specific regions (in the axial plane) of the brain. These
models attempt to capture expected changes in the brain’s
anatomical structure at different points in the volume. Also,
slices are processed in contiguous order to allow knowledge
gleaned from processing one slice to be propagated axially to
assist in classification and labeling decisions in spatially
adjacent slices. This is roughly equivalent to imposing an
extra layer of supervision onto multiple copies of track USg of
Fig. 6.

Figure 11, from [35], compares the total tumor volume
estimated by the USF-KB system with the tumor volume based
on hand labeling by radiological experts at five observation
times (weeks 0, 7, 13, 16, and 20) during the course of
treatment of a brain tumor patient. The patient had diagnosed
glioblastoma multiforme and was undergoing both chemo and
radiation therapy during the 20-week period. There were
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FIGURE 11 Knowledge-based vs manual volume estimates [35].

approximately 9 slices per volume in the axial plane (each
5mm thick with no gaps between slices) at each of the five
sampling periods. The graph shows that the unsupervised
knowledge-based system very closely models physician-gener-
ated ground truth.

Results from a series of experiments at USF to measure
tumor volume from MR brain images using ssFCM, the k-nn
rule, and a seed-growing approach called ISG are reported in
Vaidyanathan et al. [34]. The objective was to determine how
sensitive these three methods were to training data chosen by
observers (technicians with some medical physics training). It
is difficult to choose training data from the raw images so that
the measured tumor volume is consistent over multiple trials.
Four patient cases were used in the study, with repeat scans
available for 2 patients (3 for patient 1, and 5 for patient 2).

Experiments reported by Vaidyanathan et al. are summar-
ized in Table 7, where tumor volume variability (in percent)
resulting from the choice of the training data for each trial is
reported. The differences in volume estimates for multiple
training sets chosen by one or more observers are given in
terms of averages over the 10 tumor volumes obtained from the
four patient cases. The tumors involved were either menin-
gioma or glioblastoma multiforme. All patients were
undergoing therapy during the course of repeat scans. This
experiment indicates that, for the cases studied, ssFCM and ISG
are less sensitive to the choice of training data by a single
observer than the k-nn rule. When more than one observer

TABLE 7 Variability in % of tumor volumes

ssFCM ISG k-nn
Intra-observer 6 6 9
Inter-observer 4 17 5
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extracts training data, ISG becomes very unstable; but ssFCM
and k-nn are less sensitive to changes of this kind.

Udupa and Samarasekera et al. [49] advocate the use of fuzzy
connectivity for image segmentation. The examples presented
by these authors all use 3D data. The basic methodology, like
that of Dellepiane et al. [23], is applicable to 2D segmentation.
This technique is initiated by a user-chosen seed for each tissue
class, so it follows the basic requirements for belonging to our
Su track. Image segmentation and object classification are
achieved by thresholding a fuzzy relation in the given image.
Udupa and Samarasekera begin with a formal representation of
fuzzy digital spaces composed of space elements (spels) in
digital p-space, special cases being pixels (p = 2) and voxels
(p=3). Spel intensities are used to compute fuzzy spel
affinities, which in turn enable the authors to define and study
the concepts of fuzzy connected components, fuzzy object
extraction, and fuzzy spel labeling in images. Two region
growing dynamic programming algorithms for fuzzy object
extraction and labeling are proposed and analyzed. Both
algorithms are initiated at a user-defined (seed) spel and are in
this sense quite similar to Dellepiane et al. [50]. However,
Udupa and Samarasekera aim for a much more general
framework and present a much more detailed mathematical
analysis than Dellepiane et al. This is a pretty technical
approach, but one that may be worth following.

4 Conclusions and Discussion

4.1 Track US,

The better unsupervised techniques are still much too slow.
Improving speed via parallelization and optimization will
improve their competitiveness with, e.g., neural networks.
Development of dynamic cluster validity analysis also shows
promise. Unsupervised methods need better ways to specify
and adjust ¢, the number of tissue classes sought by the
algorithm. A study of 23 validity indices of all three types—
crisp, fuzzy and probabilistic—concluded that mathematical
validation for mixtures of normal distributions was generally
unreliable [51]. The VGC method seems useful for a limited
objective, but in general, the main problem persists: If ¢ is
unknown, is there an automatic way to deduce that your
algorithm has found an interpretation of the image that
humans will find agreeable? Many experimental studies of
countless validity indices with various data sets offer little cause
for optimism. Our opinion is that much research needs to be
done before reliance can be placed on mathematical validation.
Human evaluation and labeling will probably continue to be
the most popular and certainly the most reliable method for
systems using the track US, approach, but this is subjective,
time-consuming (and therefore expensive), and susceptible to
errors introduced by human factors such as fatigue.
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Initialization of unsupervised iterative methods such as FCM
is a third important area of research. Much effort has been
invested in ways to initialize unsupervised methods at points in
the solution space that don’t lead to local trap states (the
FCM(V ;) method, for instance). This is a pervasive problem
for all gradient-based techniques and can be very serious in the
application domain discussed here. The error functions that
are being optimized have very large numbers of unknowns, so
there will be a concomitant increase in the number of local
solutions that make an algorithm happy but offer little to
medical practitioners.

Another problem that is actually caused by using clustering
algorithm C for segmentation is the lack of enforcement of the
region properties in Eq. (16). This problem is related to cluster
validity, but is not caused entirely by not running C at the
“correct” number of tissue classes. Very little work has been
done about this problem. A paper by Tolias and Panas [52]
addresses this problem as follows. After running FCM to
termination on an image, they apply a Takagi—Sugeno type
fuzzy rule base to the image. This last pass is noniterative and
uses the rules to merge regions, smooth boundary transitions,
and eliminate noise. This approach is new, and we think some
variant of it will be an important and positive step toward
improving the unsupervised approach to medical image
segmentation.

4.2. Track USg

The most desirable situation is that the evolution of some
form of track USy will eventually lead to a library of
prelabeled prototypical images that can be used to train a
generic classifier, thereby eliminating intervention by humans
to supply tissue labels for clusters formed by algorithms in
this track. However, variations in real images from location
to location in the same patient, from patient to patient, and
from sensor to sensor make this possibility rather remote at
present.

Image understanding groups have long since recognized the
need for fusion of low and mid-level data and information.
One of the hallmarks of track USy is the use of hybrid models
that fuse low-level, pixel-based processing with mid-level rules,
facts, heuristics, and rules of thumb in knowledge-based
systems. This is the trend in both medical and nonmedical
image understanding efforts. The work reviewed here supports
this trend, and we believe that track US; will ultimately yield a
truly unsupervised design for (limited objective) medical image
analysis. At the input end, knowledge-based labeling with well-
established rules can dramatically reduce the number of
unlabeled pixels (windows, cases, etc.) that need to be
classified. And at the output end, rules can be used to “clean
up” unsupervised outputs and then label the final tissue classes.
We believe that research in this area will grow, as will the
achievement of dynamic cluster validity using cluster merging
and splitting rules. These rules will be both mathematically and
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teleologically based. Aggregation of evidence using Sugeno-
type fuzzy integrals should be of great help in this area.

4.3 Track Su

Experience and careful documentation of many case studies in
a particular area (such as segmentation of MR imagery) are
needed to make any real progress in this area. The instability of
supervised techniques to training sets across different sensors,
patients, and even within MR slices for the same patient might
be improved by the generation of more globally representative
training sets. The growth industry in track Su is probably in
neural networks and their fuzzy relatives, a topic that we
purposely eschewed in this chapter. However, without expert
rules, we feel that supervised learning for segmentation of
medical images—with or without the new network approaches
that are nowadays so fashionable—has little chance to become
the backbone of computational image analysis in fielded
systems that are reliable enough to be accepted by the health
care industry.

4.4 Final Comments

The general accuracy of computational techniques that per-
form well needs to be further investigated across different
imaging devices, types of patient problems, and medical
communities. Perhaps the largest single impediment to real
success in this domain is the lack of very large (e.g., 100,000 sets
of labeled patient slices for MR studies per pathology), well-
documented databases. The Digital Database for Screening
Mammography (DDSM [10]), if constructed as advertised
with 3000 cases encompassing 12,000 images, offers a mini-
mally acceptable basis for mammography research, but still
falls far short of what we believe to be an adequate number of
cases for training and testing. There are many other important
areas in medicine that share imaging sensors as a common
thread (e.g., cancer of the cervix, prostate cancer, bone cancer,
heart disease, lung disorders). The construction of such
databases, which can be shared worldwide, is difficult and
expensive. On the other hand, the reward—delivery to the
health care industry of an economical means of vastly
improved diagnosis, treatment, and recovery procedures—is
well worth the cost.

The classification of suspicious areas in a medical image
should, when possible, be compared quantitatively to ground
truth patient information, in terms of the number of false
positives and false negatives. Furthermore, error rates only tell
part of the story. They should always be benchmarked against
visual assessment by practicing clinicians. The development of
useful instruments for solicitation from and interaction
between medical personnel and computer scientists is an area
for careful research that is often ignored. For example, in
mammography, useful judgmental functions for radiologists
include assessment of the enhancement quality of the breast
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skin line and breast substructure, the sufficiency of the detail
level within and outside these areas, and the level of
differentiation between normal and abnormal tissues.
However, providing outputs for these assessments and user-
friendly communication channels to convey them are non-
trivial issues, and this aspect of medical image analysis is
usually given scant attention by computer professionals. More
work needs to be done to involve qualified human factors
personnel throughout the system development process in the
design of instruments that provide such feedback.

Finally, fusion of outputs (multiple classifiers) is very
fashionable nowadays, and rightfully so. Information of
different types certainly resides in different sensors and
processing streams. This falls in the realm of the overworked
buzzwords “sensor fusion’; the buzzwords are overworked,
but the idea is solid—can we combine information from
different outputs so that the fused image is more informative to
clinicians than either of the component images? This works in
other application areas (see [3] for an example in land-mine
detection).

Multiple fuzzy models can be integrated to essentially cast a
weighted vote for “significant” areas within an image, and we
believe that fuzzy models will be useful for this purpose. The
use of soft decision templates [3], for example, to combine
confidences about pixels and pixel windows, has enjoyed
success in other application domains, and thus seems appro-
priate here as a useful means for fusion of multiple output
streams. The soft decision template model (and many neural
network models that were not covered in this chapter) does not
explicitly concern medical imagery, but we suspect that
methodologies of this kind will be useful in the domain of
computational medicine.

A last important area we want to mention is data acquisition
and the understanding of how engineering principles that
govern imaging technology affect the presentation of medical
images with different media. We see a need to systematically
assess how the medium upon which, say, a mammogram is
presented influences the interpretation task and other clinically
related issues. Examining the impact of the human—computer
interface in medical imaging is an interesting, exciting,
important, and very difficult undertaking, as it involves
human factors engineering, computer science, and medical
expertise. Studies of this aspect of medical imaging, done in a
coordinated and integrated manner, are needed to provide a
solid groundwork for biomedical computer scientists and
engineers.
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1 Introduction

Segmentation can be defined as the identification of “mean-
ingful” image components. It is a fundamental task in image
processing providing the basis for any kind of further high-
level image analysis. In medical image processing, a wide range
of applications is based on segmentation: One may think of the
volumetric analysis with respect to normal or pathological
organ development, temporal monitoring of size and growth in
pathological processes, or as a basis for the applicability of
automatic image fusion algorithms when combining the
complementary information obtained by different image
acquisition modalities.

Still, the simplest way to obtain good segmentation results is
segmentation by man. This yields excellent results, which is due
to the fact that human operators do not only apply the
presented image data information, but also make use of
additional model-based knowledge such as anatomical skills as
well as complex psychological cognitive abilites, e.g., with
respect to orientation in space. However, the segmentation of
hundreds of MRI or CT slices by manual contour tracing is a
very time-consuming task that requires a considerable amount
of human intervention.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

Therefore, it is desirable to perform segmentation by
machines. However, this is difficult to achieve, as the complex
cognitive abilities just mentioned can hardly be transferred to
computer programs. An efficient strategy to cope with this
problem is to present additional image data information as an
input to automatic image segmentation systems, thus com-
pensating for the lack of high-level image analysis capabilities
in machines. A possible realization of this principle is the
acquisition and processing of “multispectral” image data sets,
which forms the basis of the segmentation approach presented
in this chapter.

A huge variety of automatic medical image segmentation
procedures has been described in the literature. A good survey
is provided by the list of citations published in [30] that may
serve as a good starting point for further reference. Examples
for different segmentation methods range from simple histo-
gram-based thresholding or region growing algorithms, to
more sophisticated techniques such as active contours or
watershed transformation.

In this chapter, we concentrate on segmentation by the
analysis of “multispectral” images. Here the image object is
examined by n> 1 different image acquisition techniques, e.g.,
different MRI sequence protocols. Appropriate preprocessing
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steps comprise the anatomically correct registration of the data
sets and masking a region of interest in which the segmentation
should be performed. Finally, each voxel can be characterized
as a vector in a n-dimensional feature space composed of the
gray levels obtained for the different image acquisition
techniques. Segmentation then becomes the problem of
classifying these multidimensional feature vectors as belonging
to a specific element among a given set of alternative
“meaningful” image components.

The segmentation algorithms described in this chapter are
not based on presumptive heuristic rules derived from
anatomical meta-knowledge of how such a classification
decision should be made. In contrast, purely data-driven self-
organization of the classifier is employed according to the
principle of “learning by example” rather than analyzing the
data according to a fixed set of given rules.

In this context, data analysis may be performed by two
different strategies. The first one tries to identify character-
istic properties of the multidimensional data distribution of
unlabeled feature vectors, i.e., without a given interpretation
of the data with respect to the segmentation classes. We refer
to this approach as unsupervised clustering (UC). The second
strategy involves labeled data, i.e., the learning algorithm
requires both the feature vector itself and a target function
defining its interpretation with regard to segmentation class
membership. This approach resembles learning with a
teacher. We call it supervised classification (SC).

Neural network computation offers a wide range of different
algorithms for both UC and SC. Some of them have been used
for multispectral image segmentation in the past. However, UC
and SC are usually treated as completely different issues. In this
chapter, we present an algorithmic approach that aims to
combine UC and SC, where the information obtained during
UC is not discarded, but is used as an initial step toward
subsequent SC. Thus, the power of both image analysis
strategies can be combined in an integrative computational
procedure. This is achieved by applying so-called generalized
radial basis functions (GRBF) neural networks.

In the remainder of this article, we (i) explain the theory of
GRBF networks in the context of UC and SC, (ii) discuss its
application to medical image segmentation, and (iii) present
our own segmentation results for multispectral 3D MRI data
sets of the human brain with respect to the tissue classes “gray
matter,” “white matter,” and “cerebrospinal fluid.”

2 Structure and Function of the GRBF
Network

The general architecture of a GRBF network is shown in Fig. 1.
It consists of three layers of neurons: input layer, hidden layer,
and output layer. If we start from n input neurons with
activations x;, i€ {1, ..., n}, the activation pattern of the input
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Structure of the GRBF network.

layer is represented by an n-dimensional vector x in the so-
called feature space R". This activation is propagated to the N
neurons of the hidden layer by directed connections with
“synaptic ~ weights”  w;.  The  synaptic  weights
w;eR", je{l,...,N}, are computed as a set of prototypical
vectors that represent the data set in the feature space. The
activation a; of the hidden layer neuron j is chosen as a
function of the distance d = [|x — w;]| of the data vector x with
respect to the virtual position w; of the hidden layer neuron j. d
hereby defines an arbitrary metric in the feature space, e.g., the
Euclidean metric. The term “virtual position” is based on the
idea that the activation a; of the hidden layer neuron should
take its maximum value x,,,,, & w;, which can be looked at as a
“specialization” of the neuron j with respect to the position
xmax'

It is obviously reasonable to choose 4; as a monotonically
declining function of d, i.e., the activation g; of the hidden layer
neuron should decline with increasing distance between x and
the virtual position w;. A simple choice is an isotropically
decreasing function a aj, i.e., the declining behavior does not
depend on the direction of the difference vector (x —w;).
From this results a symmetry with respect to rotation, i.e., a
radial decline of a;(x) in the neighborhood of w;: Therefore, we
refer to the activation function a;(x) as a radial basis function
(RBF). With respect to favorable properties regarding function
approximation, E Girosi and T. Poggio [10] proposed the use

of Gaussian activation functions a;(x):

2
% — wil

2p;

ai(x) = g(llx —wjll, p;) = exp| — (1)

Moody and Darken [17] propose a global normalization of the
hidden layer activation by
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which results in a hidden layer activation of

aj(x)
A(x)

gl —will.p)
¥ gllx—will, )
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exp B
TN wiP\ (3)

Zi:l exp\ — pr

Thus, a competition between the hidden layer neurons is
introduced that enables a probabilistic interpretation of
classification results. The radial symmetry of the activation
function 4;(x) in (1) is obviously lost by the normalization in
(3). In the following, we refer to this issue by using the term
generalized radial basis functions (GRBF). In [10] such a system
is called “Hyper-BF Network.”

In a final step, a linear signal propagation of the hidden layer
activation is performed to the m neurons of an output layer by
weighted summation,

a (x) =

N
= 2_sa(), (4)
=1
or in terms of single components,

ZSU 4;\x

In neural network computing, this mapping corresponds to a
structure called the perceptron (Rosenblatt [22]).

ie{l,...,m}. (5)

3 Training Procedure

The memorized “knowledge” of the network is represented by
the free parameter P = {(w,s;, p;)}, i.e., the weights w; and s;
as well as the range p; of the Gaussians in the hidden layer. It

serves as the basis for the approximation of a function

F:R"->R", x—y=F(x), (6)
which should be provided by using a training data set
T ={(x",y")|ve{l,...,p}}, where p denotes the number of
sample patterns. Here, two aspects should be considered: On
one hand, the network should reproduce the given training
data as well as possible; on the other hand, it should be able to
provide some reasonable generalization with respect to
unknown test data.
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An obvious training strategy is the minimization of the error

p
Z lly" — : (7)

An attempt to simultaneous optimization of all the free
parameters by gradient descent on the cost function (7) implies
two problems: On one hand, the procedure can be trapped in
local minima, thus providing suboptimal solutions. One may
cope with this difficulty by randomization employing noise
(so-called simulated annealing) that enables escape from local
minima. A second problem is involved by the slow convergence
of such a global optimization. In this context, the method
proposed by Poggio [19] does not provide any advantage
compared to the classical optimization strategy of error
backpropagation for the multilayer perceptron (see, e.g.,
[23]). Such a global, i.e., simultaneous optimization of all the
parameters also does not correspond with the idea of biological
information processing by local self-organization. This can
serve as a motivation for a proposal by Moody and Darken
([17]) to split up the parameter space P = {(w;,s;, p;)} into
three smaller partitions {w;}, {s;}, {p;} that may be optimized
separately. The resulting dlmenswnahty reduction involves an
increased convergence rate for the optimization process within
the different partitions. On the other hand, this strategy may
sometimes lead to suboptimal minimization results for (7), for
there is no longer a systematic search on the total parameter
space P.

This concept of separate optimization within each of the
three partitions of P is the basis of the GRBF architecture
applied in this chapter. It works in three steps:

(1) Initially the virtual positions w; of the hidden layer
neurons are calculated in a procedure called vector
quantization (VQ). This is based on an unsupervised
clustering algorithm, i.e., the target information y* of the
training data set T = {(x",y")|ve{l,...,p}} is not
used within the training procedure.

(2) Once the virtual positions w; are known, the width of the
“receptive fields” p; of the hidden layer neurons is
determined by some appropriate heuristic rule or by
optimization with respect to the quality of the function
approximation result.

(3) Finally, the output weights s; are computed. For this
purpose, one can choose between a global gradient
descent method and a local training procedure based on
Hebbian correlation learning.

These training steps are explained in the following paragraphs.

3.1 Optimization of the w;: Vector Quantization

Let n denote the dimension of the feature space, e.g., the
number of gray levels obtained for each voxel. Let K denote the
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number of feature vectors x” € R". Clustering by VQ identifies
groups je {1,..., N} of vectors sharing similar features. These
groups are represented by prototypical vectors called codebook
vectors (CVs) w; located at the center of the corresponding
clusters.

VQ procedures determine these cluster centers by an
iterative adaptive update according to
wi(t+1) =w;(t) +e(t) a(x(t), W(t),x) (x(t) —w;(t)), (8)
where ¢(t) denotes a learning parameter, a; a so-called
cooperativity function which, in general, depends on the
codebook W(f), a cooperativity parameter k, and a pre-
sented, in general, randomly chosen feature vector
xe{x'|ve{l,...,K}}.

VQ algorithms can be classified according to the coopera-
tivity function a;. One can distinguish between so-called hard
clustering methods that assign each feature vector x to exactly
one cluster represented by the CV w; and soft clustering
methods implying the concept of fuzzy membership of feature
vectors in several clusters.

For example, a simple method for hard clustering is the
algorithm proposed by Linde, Buzo, and Gray (LBG) [16].
Here, a; is calculated by the “winner takes all” learning rule

i
a;(x(1), W(1)) := 0ix) 9)

where i(x) is determined according to the minimal distance
criterion

e = will = min flx — ;]|
If we change a; in such a way that more than one CV can take
part in the update at the same time f, (8) changes into a
“winner takes most” learning rule. The resulting soft clustering
methods can be classified according to the metric the
cooperativity function a; is based on.
If we do not use the metric of the feature space itself, but
define a mapping
r:NoY c R,

j=r(), (10)

of the CVs onto a target space, we obtain a scenario that may be
interpreted with respect to a neural network model of sensory
maps (e.g., [26]). Usually k is chosen k < N and k < n. The
r(j)’s can be thought of as representing the physical location of
neurons in a cortex model. A common choice would be the
ordering of the rjs on a regular low-dimensional grid
(ke{2,3}). However, this is not mandatory (see, e.g., [28]).
By choosing the metric of the cooperativity function g;
according to the neuron positions r; in the target space, we
obtain Kohonen’s self-organizing map (SOM) algorithm
[14,15]. a; is then chosen as a monotonically declining
function of the distance to the “winner neuron” r'(x(t)),
e.g., a Gaussian
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a(r (). (x(1)), o (1)) = %—w) (1)

or a characteristic function on a k-dimensional hypersphere
around #(x(1)),

ai(r(j), v (x(1)), 0(t)) := Ajr—r(x(e))<o(r)

{1 e —P(x(e)]] < o ()
0 : ||r—7r(x(2)||>a(t).

The update rule (8) then becomes

wj(t + 1) = wi(t) + &(t) a;(r(j), r'(x(2)), 0 (1)) (x(£) — w;(1)).
(13)

o(t) denotes a concrete choice of the cooperativity parameter x
in (8). It is a measure for the “range” of the cooperativity
function a;(r(j), r'(x(t)), a(t)) on the cortex model. As well as
the learning parameter &(t), it is usually updated according to
some heuristic annealing scheme. A common strategy is an
exponential decay, i.e.,

o) =0 (D) ref0,

(14)

and

e(r) = (15)

¢(0) (%)m_ t€ [0, tayl-

In contrast to algorithms in which the cooperativity function is
based on the metric of the feature space, such as k-means type
clustering or minimal free energy VQ, the SOM algorithm has
the interesting property of topology preservation, i.e., neigh-
boring points of the feature space are mapped onto
neighboring neurons of the cortex model. In various data
analysis problems, this allows for the construction of graphi-
cally appealing 2D maps that represent the CVs in some
topological order. However, this order may be misleading
because of folding of the feature map (see, e.g., [20]) in cases
where the data are located on manifolds with a dimension > k.

If we avoid the mapping like (10) of the CVs onto a cortex
model but apply a metric of the feature space a; directly
according to

a;(x(), W(2), k=p(1)) = eXP<—Ej<;<t>>/2p )

we obtain the cooperativity function for the soft clustering
scheme proposed by Rose, Gurewitz, and Fox [21].

Here, the “error” E;(x(t)) = [|x(t) — wj(t)H2 measures the
distance between the codebook vector w; and the data vector x.
Z denotes a partition function given by

7 = ZeXp(—Ej(X)/ZP2)a

(16)

(17)
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and p is the cooperativity parameter of the model. This so-
called “fuzzy range” p(t) defines a length scale in the feature
space, not in a cortex model such as ¢(¢) in (11) or (12).
According to the analogy to statistical mechanics (see later
discussion), p can be interpreted as the temperature T in a
multiparticle system employing T = 2p%. It is annealed to
repeatedly smaller values in the VQ procedure, e.g., according
to an annealing scheme such as (14).

The learning rule (8) with a; given by (16) describes a
stochastic gradient descent on the error function

E,(W) = —Z—;Z/f(x) In Zd, (18)

which, using the terminology of statistical mechanics, is a free
energy in a mean-field approximation [21,6]. Here, f(x)
denotes the probability density of feature vectors x. The values

of the cooperativity function 4; are normalized

a;(x, W,p) =1

(19)

j=1

and can be interpreted as the assignment probabilities of a
given feature vector x to each of the CVs je{1,..., N} [21].

The CVs w; mark local centers of the multidimensional
probability distribution f(x). Thus, for the application to
multispectral image segmentation, the CV w; is the weighted
average of all the gray-level feature vectors x” belonging to
cluster j with respect to a fuzzy tesselation of the feature space
according to (16).

In contrast to SOMs, minimal free energy VQ

(i) can be described as a stochastic gradient descent on an
explicitly given energy function (see (18)) [21],

(ii) preserves the probability density without distortion as
discretization density, i.e. the number of CVs, grows
toward infinity [8, 9], and, most important for practical
applications,

allows for hierarchical data analysis on different scales of
resolution [7].

(iii)

Furthermore, the procedure can be monitored by various
control parameters such as the free energy, entropy, and
reconstruction error, which enable an easy detection of cluster
splitting. Properties of resulting optimal codebooks have been
thoroughly investigated [8] and allow for a self-control process
of the VQ procedure with respect to theoretically proven
conservation laws [7].

Figure 2 illustrates the application of hierarchical minimal
free energy VQ clustering to a simple two-dimensional toy
example.

As the “fuzzy range” p declines in the course of the annealing
scenario, the VQ procedure passes several stages:
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FIGURE 2 Two-dimensional toy example for minimal free energy VQ
(from [13]). Decreasing p leads to repetitive cluster splitting, thus enabling
data analysis on different scales of resolution.

(i) In the beginning of the VQ process (p—0o0), all the
assignment probabilities for any given feature vector x
are equal, i.e., a;(x) = 1/N. This state is characterized by
a single minimum of the free energy (18). All the CVs are
located in the same position of the feature space, i.e.,
there is maximal “degeneracy” of the codebook with
only one cluster representing the center of mass of the
whole data set.

(ii) As the deterministic annealing procedure continues with

decreasing p>0, phase transitions occur and large

clusters split up into smaller ones representing increas-
ingly smaller regions of the feature space.

Correspondingly, the number m(p) of clusters increases

(1 <m(p) <N) until cluster degeneracy is removed

completely.

For p—0, each feature vector x is solely attributed to the

closest CV, and 4; is given by the hard clustering

cooperativity (9).

(iii)
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Minimal free energy VQ forms the basis for the unsupervised
segmentation approach presented in this chapter. However, in
contrast to learning rule (8), the CVs are computed employing
a “batch algorithm” that is explained in the following:

Let ( )y denote the expectation value of a random variable f,

fix = / £(x) plx)dx

with probability density p(x), and let

/f

denote the class-specific expectation values. Then (f); can be
computed according to Bayes’ rule

p(x) p(jlx)
p()

(20)

plx|j)dx (21)

p(xlj) =

/f

if we interpret the activations aj(x) as the a posteriori
probabilities p(j|x) (see (19)) for the assignment of feature
vector x to the hidden layer neuron j, thus leading to

/p(]ﬂx dx—/p

as the average activation (so-called “load”) of neuron j. The
stationarity condition

(22)

as

P pli) (01

=y P

plilx)dx = (a;(x))x  (24)

(a;(x) (x — w;)) =0 (25)
of the learning rule (8) yields
(a;(x) x) 26)

YT @)y

i.e., the iteration of (8) until stationarity results in a fuzzy
tesselation of a feature space

! P =3 / p() plilx)dx

where the CVs w; represent the class-specific averages (x); of
the data distribution according to (23).

Equation (26) represents a batch version of minimal free
energy VQ. The right side of Eq. (26) is influenced via the
activations a;(x) by the CV positions w;. The procedure is
iterated untll convergence is achieved for the w;. The batch
version is well suited for implementation on parallel computers

(see [2]).

(27)
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3.2 Optimization of the p;

Once the virtual positions w; have been computed, one has to
determine the widths p; of the receptive fields. With regard to
various heuristic approaches to compute and optimize the p;,
we refer to the literature, e.g., [1]. One can either define an
individual p; for every CV w; or a global p; for all CVs. A simple
global method proposed by [17] is to choose the average
nearest-neighbor distance of the CVs. In this chapter, we
choose a global width p = p;, je {1,..., N} for all CVs that is
determined by optimizing the classification results of the GRBF
network.

3.3 Optimization of the s;: Supervised Learning

The output weights s; (see Fig. 1) are collected in the matrix
S = (s;) eR"™N) They can be determined in two different
ways:

o A first approach is a global training procedure. Given the

training data set T = {(x",y")|ve{l,...,p}}, the
error function
1 &, )
=3y~ Sal) (28)
pP=

can be minimized by a gradient descent method. Thus,
the weight change As;; in a training step with a learning
rate ¢ results in

As; = — ¢V, E,

y Sij

(29)

ie.,

& b N
As; = ;Z [J’i” - ; sikak(xy)‘| a;(x"). (30)

v=1

Assuming convergence of the procedure, i.e., As; =0,
this yields

P
Z}’:‘/ﬂj(
v=1

Class label information is then introduced as follows: If
y” belongs to class Ae{1,...,m},

ie{l,...,m},

holds, i.e. the component y; of y” is set to 1, whereas all
the other components are set to 0. By computing the sum
over the activations belonging to all the feature vectors of
a specific class 4, Eq. (31) transforms into a system of m
linear equations for the weights s);:

x)>x/ = Z sik{a(x)a;(x))
k=1

N
Z s (x”)a;(x (31)

1 k=1

M@

1%

Yi = 0 (32)

Ae{l,...

,m}. (33)
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® An alternative approach is a local training procedure
based on a Hebbian learning rule:

5ij) (%)

According to the hypothesis of Donald Hebb [12], it
rewards correlated pre- and postsynaptic activation by a
growth term As;~y,a;(x). The decay term As;; ~ s;;a;(x)
acts as a simple means to avoid explosive weight growth.

As; = e(y; — (34)

In contrast to (31) the local update rule (34) only
requires information of neurons that are directly coupled
to each other by the corresponding synaptic weight.
Thus, (34) is inspired by the idea of localized biological
information processing.

If we again assume the convergence of the procedure, i.e.,
As;; = 0, summation over all xe X yields

P
> _ria
v=1

If we introduce the class label information by
y{ = 0j (x> the final weights can be calculated by
(a)(x)),
(a(x)) x
Besides the local structure of the training procedure,
weight computation according to (36) provides the
advantage of weight normalization:

m
E Slj:

=1

p

)= Z sijaj(x)'

v=1

(35)

(37)

Together with the normalization of the hidden layer
activations according to (19), this also results in a
normalization of the output activations y;(x),

N

x):z

=1 =1 j=1

5;;4i(x (38)

7

and thus (also because of a;(x) > 0and s;; > 0) enables a
probabilistic interpretation of the cla551ﬁcat10n proper-
ties of the GRBF network. This can be explained as
follows: According to (19), we can interprete the hidden
layer activations a;(x) as conditioned assignment prob-
abilities p(j|x) of the feature vector x to the codebook
vector j, and, with regard to (37), the s); as the
conditioned assignment probability p(A]j) of class 4 to
the codebook vector j. Linear signal propagation

x) = Z SAjaj(x)
j=1

then yields the a posteriori probability of class A at a
given feature vector x € X:

(39)
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N
pilx) = p(ilj)p(ilx). (40)
j=1

Thus, the GRBF perceptron with the local learning rule
(34) for the output weights represents a Bayes classifier
that does not require the computation of the corre-
sponding a posteriori probabilities from known a priori
probabilities by Bayes’ rule (22).

Unfortunately the local training procedure (34) is inferior to
the global training procedure (31) with respect to the
classification performance of the total network (see, e.g., [2]).
For this reason, the global training procedure is recommended.
Its application to tissue classification is presented in
Section 8.2.

4 Application to Medical Image
Segmentation

In the previous section, we explained the underlying theory and
general properties of the GRBF neural networks used in this
chapter. This provides the basis for their application to
automatic segmentation of magnetic resonance imaging data
sets of the human brain.

The general concept of multispectral voxel-based brain
segmentation can be explained as follows: » different 3D data
sets for each brain are obtained employing different MRI
acquisition parameters. In this chapter, we used n =4 MRI
acquisition sequences (71 weighted, T2 weighted, proton
density weighted, and inversion recovery sequences; see Section
5). Segmentation aims at classifying each voxel of the multi-
spectral data set as belonging to a specific tissue type, thus
obtaining information about sturucture and volume of the
tissue classes.

A classical problem with numerous clinical applications is
the segmentation of brain imaging data with respect to the
tissue classes gray matter, white matter, and cerebrospinal fluid
(CSF). Several other structures such as meninges or venous
blood may be introduced as additional segmentation classes.
However, these additional classes comprise only a small part of
the total brain volume. Furthermore, for most of the clinical
applications, the focus of interest is reduced to gray- and white-
matter structures. Therefore, we assigned these minor addi-
tional classes to CSE

Although such a threefold classification of brain tissue may
be sufficient for numerous clinical applications, it should be
emphasized that the concept presented in this chapter can be
extended to an arbitrary number of tissue classes. Especially
one may think of introducing additional classes for the
identification of pathological tissue, e.g., multiple sclerosis
plaques or malignant brain tumor structures.
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TABLE 1 Acquisition parameters for the four MRI sequences of the 3D data sets
T1 T2 PD IR

Magn. field strength [T] 1.5 1.5 1.5 1.5
Number of images 126 63 63 63
Matrix size 512 x 512 256 x 256 256 x 256 256 x 256
Pixel size [mm] 0.449 0.898 0.898 0.898
Slice thickness [mm] 1.5 3.0 3.0 3.0
TR [ms] 11.6 3710 3710 9975
TE [ms] 4.9 90 2 60
TI [ms] — — — 223

(d)

FIGURE 3 Example of corresponding images of a multispectral 3D data set of the human brain
obtained by different MRI acquisition techniques. Corresponding types of tissue are represented by
different gray levels in the different MRI sequences. (a) TI weighted image. (b) T2 weighted image.
(c) Proton density weighted image. (d) Inversion recovery image.




7 Segmentation with Neural Networks

i
) ]

1]
]
Ill

FIGURE 4 Pilot plan for the acquisition of coronal cross-sections
of the human brain orthogonal to the anterior commissure—posterior
commissure (AC-PC) line.

Before segmentation and classification, several preprocessing
steps have to be performed on the imaging data. These steps
will be explained in the following.

5 Image Data

The image data sets were obtained on a 1.5 T whole body MRI
scanner (Siemens, Magnetom Vision). Four healthy male
volunteers (aged 24-32 years) were examined in a prospective
study employing a standardized MRI sequence protocol: T1
weighted MP-RAGE, T2 weighted and proton density (PD)
weighted spin echo, and Inversion-Recovery (IR) sequences. The
MRIacquisition parameters of each sequencearelisted in Table 1.

A second essential preprocessing step is the anatomically
correct alignment of the data sets obtained by the different MRI
sequences. In general, it is sufficient to process the raw image
data without further image registration, as the head of the
scanned subject is kept in a constant position during the whole
MRI acquisition protocol and a corresponding field of view
(FOV) is applied in each of the four MRI sequences. Only the
T1 weighted image data had to be resampled with respect to
matrix size and slice position in order to match the parameters
of the other MRI sequences (see Table 1). However, correct
alignment may require additional preprocessing steps, if
motion artifacts have to be corrected. This situation will be
discussed in Section 6.1.
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Figure 3 presents an example of corresponding images of the
four different MRI acquisition techniques. The example shows
one of 63 coronal cross-sections orthogonal to the anterior
commissure—posterior commissure (AC-PC) line that were
acquired according to a pilot plan shown in Fig. 4.

6 Preprocessing

6.1 Image Registration

The concept of voxel-based multispectral image segmentation
requires anatomically correct alignment of the data sets
acquired within different image acquisition procedures. As
pointed out in Section 5 for MRI data sets of the human brain,
this may already be achieved during the acquisition procedure
itself by stabilizing the subject’s head position and applying a
constant field of view in the different MRI sequences. In general,
this will be sufficient in order to obtain an acceptable co-
registration of the different MRI data sets. Nevertheless, there
may be situations in which motion artifacts cannot be avoided.

In these cases additional image registration techniques have
to be applied. Registration methods can be classified with
regard to the level of human interaction required within the
procedure (see, e.g., [24,27]):

(1) Manual interactive registration by a human observer.

(2) Semi automatic procedures that require a lesser amount
of human interaction. An example is so-called “mark-
and-link” methods in which a human observer has to
identify corresponding anatomical landmarks serving as
reference points for the registration procedure.

(3) Fully automatic procedures that do not require any
human working power (e.g., [18,29,4]): These methods
are frequently applied for the superposition of data sets
obtained in different medical imaging modalities such as
MRI, PET, SPECT, or CT in order to make use of the
complementary diagnostic information provided by the
different modalities.

The subject of registration is addressed in detail in the
Registration section of this Handbook. Figure 5 shows an
example for manual interactive registration: For this purpose, the
information of two data sets has to be condensed within a single
image. To obtain simultaneous visibility of image information,
the gray levels of the first data set are represented by the pixel
intensity of the merged image, whereas the gray levels of the
second data set are represented by the pixel color. In Fig. 5a T2
weighted image (Fig. 5a) and a T1 weighted image (Fig. 5b) are
superimposed in Fig. 5c. Misalignment of the anatomical
structures can be identified. The T1 weighted image is then
moved by translation and rotation under interactive visual
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FIGURE 5 Interactive matching of two corresponding images. (a) Gray level representation of a
T2 weighted image (reference image). (b) Gray level representation of a T1 weighted image, (c)
Superposition of the two images; in practice, the T2 weighted image is represented by the color of
the merged image, whereas the T1 weighted image is represented by the pixel intensity; here, only
black-and-white representations are shown. Misalignment with respect to corresponding
anatomical features can clearly be identified. (d) The TI weighted image is moved in order to
obtain a correct match with the T2 weighted image.

(b)

FIGURE 6 Presegmentation by masking of extracerebral structures. (a) Original image. (b)
Presegmented image.
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control ofahuman observer untila correctanatomical alignment
is achieved (Fig. 5d) with respect to the T2 weighted image.

6.2 Presegmentation

After correct anatomical registration of the n image data
sets, an additional preprocessing step can be performed: All
the extracerebral structures that are not required for the
tissue classification task should be excluded from the data
set.

Figure 6a shows a T1 weighted image of a coronal cross-
section through the head. Besides the brain, various other
structures can be identified, such as the skull and the pharynx.
By defining a mask, these extracerebral structures are removed.
Finally, only the structures belonging to the brain remain in the
data set (Fig. 6b).

The restriction to brain structures by excluding all the voxels
in the surrounding tissue structures provides important
advantages for the subsequent segmentation task:

(1) Vector quantization is only restricted to voxels that are
relevant with respect to the segmentation task. The
resulting codebook thus represents the gray level
distribution of the brain voxels without the contribution
of irrelevant extracerebral voxels.

(2) The gray level range is restricted. Without presegmenta-
tion, some codebook vectors would specialize on tissue
classes outside the brain. This, however, would lead to a
decreased representation of tissue classes within the
brain. However, this could be compensated by
increasing the total number of codebook vectors applied
in the vector quantization procedure.

(3) Voxels inside and outside the brain with a similar gray
level representation do not cause problems for the brain
tissue segmentation task. If presegmentation was
omitted, such voxels would be attributed to the same
codebook vector, i.e., they could not be separated from
each other. This could only be achieved by considerably
increasing the number of codebook vectors in order to
obtain a more fine-grained resolution of the gray-level
feature space, which, in turn, would increase the
computational expense for vector quantization.

The last item in particular justifies the additional effort for
presegmentation. In analogy to image registration, there is a
wide scope of methods for presegmentation ranging from
manual contour tracing to semiautomatic or fully automatic
procedures. The latter exist in numerous implementations and
are available on a commercial basis. They are frequently based on
filter operations or region-growing algorithms (see, e.g., [5, 11]).
For presegmentation of the data sets included in this chapter, we
performed manual contour tracing by human observers.
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6.3 Rescaling

In a last preprocessing step, the gray levels of each data set are
normalized to the unit interval [0,1]. Let GeIR"™"bn)
represent the gray levels of a presegmented, multispectral
data set according to the explanations of the previous sections,
consisting of n data sets with |/ images each of size m, x m,
(n=4, =63, m,=m, =256 for the data applied in this
chapter). G, , , , thus represents the gray level of a voxel, where
u denotes the index of the single data set (e.g., 1 = T1 weighted,
2 = T2 weighted, 3 = proton density weighted, 4 = inversion
recovery), t the image, i.e., slice number, and r, s the x- and y-
position within the image, respectively. Let
min

lgmﬁcgmx,lgm;,gm},, 1<I<i

gmin(u): ue{l,...

[N

denote the minimal gray level of data set u, and

Cnax () = max o 1 ueil,...,n
grnax( ) 1<l <my, 1<, <m,, 1<P<] [N { ’ ) }7
the maximal gray level. Then each data set ue{l,...,n} is

rescaled according to

G — g (u
Gm_t,u — T,5,t,U gimn( ) 7
- gmax(u) - gmin(u)

re{l,...,m},se{l,...,m,}, te{l,...,I}. (41)

Ge Ryl here denotes the rescaled multispectral data set.
An alternative approach would be rescaling according to the
standard deviation of the gray-level distribution in each of
the single data sets. This would reduce the effect of outliers on
the rescaling procedure.

Rescaling enables eqivalent weighting of the single data sets
in the subsequent vector quantization step; see Section 7.

7 Vector Quantization

After performing the preprocessing steps explained in the
previous section, we obtain multispectral data G e IR
consisting of n correctly aligned, normalized data sets, where
extracerebral voxels are excluded by a presegmentation mask.
This can be interpreted as follows.

Each voxel of the multispectral 3D data set represents an n-
dimensional feature vector x that is determined by the tissue

class for this voxel:

F41 Gr,s,t,l
D Gr,s,t,z

x= = (42)
&n Grﬁs.t,n
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FIGURE 7 Segmentation. (a) T1 weighted image of a 3D data set. (b) Corresponding segmented

~

image with gray-level representation of the tissue classes (medium gray = “‘gray matter,” light gray

~

= “white matter,” dark gray = “CSF”).

The data set X = {x} is now presented as the input to a vector
quantizer according to Section 3.1. By unsupervised clustering, a
set C of codebook vectors w; with C={w;eR"|je
{1,...,N}} is computed that represent the data set X. Here,
the number N of codebook vectors is much smaller than the
number of feature vectors. The codebook vector positions are

FIGURE 8 Manual labeling of tissue classes for supervised learning. The
labeled regions (medium gray = “gray matter,” light gray = “white
matter,” dark gray = “CSF”) provide the training data set for supervised
learning of the output weights s; of the GRBF network.

determined by minimal free energy VQ presented in Section
3.1, where the update of the codebook vectors w; is performed
employing the batch version of the algorithm:

(a(x) x)

w; = W. (43)

The activation a;(x) is given by

2
=il
exp 57
~.
ZN exp [ — Ix=wil
i=1 €XPp 2p?

The calculation of the w;’s implies an “external” computa-
tional loop where p; is decreased and an internal loop where
the w;’s are calculated by iteration of (43) for each given p.
In detail, this works as follows: In a first step, the number
foax Of the “external” iteration steps, the initial p(¢# = 0), and
final value p(Z,,) of the widths p; of the receptive fields are
defined, and the codebook vector positions are initialized at
the center of the data distribution X. While keeping
p;=p(t =0) constant, the “internal” loop is iterated
according to (43) until the codebook vectors have reached
stationary positions or a maximal number of iteration steps
(e.g., 50) have been performed. Subsequently, the widths p;
of the receptive fields are reduced according to an exponen-
tial decay scheme

)=o) ()™ e o gl

and the procedure is repeated. The computation is stopped at
the iteration step t,,,, of the “external” loop.

As a result, we obtain a fuzzy tesselation of the feature space
X. According to Eq. (23), the codebook vectors w; represent the

a(x) = (44)

(45)



7 Segmentation with Neural Networks

TABLE 2 Semiquantitative evaluation of segmentation quality
employing vector quantization in the gray level feature space and
subsequent manual assignemt of codebook vectors and GRBF classifica-
tion, respectively”

Data set 1 Data set 2 Data set 3 Data set 4
Manual assignment 2.0 1.8 1.9 1.9
GRBF classification 1.9 1.6 1.8 1.7

“The quality of each image of a 3D data set was evaluated by a
neuroradiologist on a 5-grade semiquantitative score (1 =excellent,
5=insufficient). The table contains the average scores of all the images
belonging to a 3D data set.

cluster-specific centroids (x) ; of the data set. This tesselation of
the feature space provides the basis for two methods of tissue
segmentation that will be explained in Section 8.

It should be mentioned that for reducing the computational
expense of the procedure, it is useful not to present the total
data set X, but to restrict the input of the vector quantizer to a
representative subset X’ C X of randomly chosen feature
vectors x' € X'.

8 Classification

Given a set of feature vectors x in a gray-level feature space G,
vector quantization can determine a set of prototypical
codebook vectors w; representing the feature space. This
provides the basis for segmentation of the imaging data set with
respect to different tissue classes. Two alternative approaches

are discussed in the following paragraphs.

8.1 Interactive Assignment of Codebook Vectors

This approach requires two steps: In a first step, each feature
vector x is uniquely attributed to a codebook vector w;
according to a minimal distance criterion. If a vector x is
presented as an input to a GRBF network sketched in Fig. 1, the
N neurons of the hidden layer are activated according to

TABLE 3 Parameters employed for vector quantization of the gray level
feature space (see Section 7) and GRBF classification (see Section 8.2)

Parameter Value
# Codebook vectors N 20
vQ # Itc?ration steps f.x 250
Radius p(tr = 0) 0,2
Radius p(t = t,,,,) 0,02
GREBE # Cl.asses m 3
Radius p 0,06

119

(b)

(0

FIGURE 9 Comparison of the segmentation results for a frontal coronal
cross-section of data set 2. (a) T1 weighted image. (b) Segmentation by
vector quantization and subsequent manual interactive assignment of
codebook vectors. (c) Segmentation by a GRBF classifier.
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TABLE 4 Statistics of the training data sets used for the GRBF classifier”

Tissue Data set 1 Data set 2 Data set 3 Data set 4
# Voxels 3177 3620 2887 3383
Gray matter Volume [cm?] 7.69 8.77 6.99 8.19
Ratio [%] 38.1 44.3 43.3 45.4
# Voxels 4664 3810 2986 3429
White matter Volume [cm?] 11.29 9.23 7.23 8.3
Ratio [%] 55.9 46.6 44.7 46.0
# Voxels 500 746 799 638
CSF Volume [cm’] 1.21 1.81 1.93 1.54
Ratio [%] 6.0 9.1 12.0 8.6
Total # Voxels 8341 8179 6672 7450
Volume [cm’] 20.19 19.81 16.16 18.03
Recognition rate [%] 98.2 99.1 99.2 97.5

» <

“The table shows the number of voxels labeled as “gray matter,” “white matter,” and “CSE” the resulting volumes, and the corresponding percentage of the
whole training data set. Furthermore, the ratio of correct GRBF classification results for the training data set is listed.

FIGURE 10 Comparison of the segmentation results for a central coronal cross-section of data set

2. (a) TI weighted image. (b) Segmentation by vector quantization and subsequent manual
interactive assignment of codebook vectors. (c) Segmentation by a GRBF classifier.
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TABLE 5 Segmentation results for vector quantization of the gray-level feature space according to Section 7 and subsequent manual interactive
assignment of the codebook vectors to the tissue classes according to Section 8.1°

Tissue Data set 1 Data set 2 Data set 3 Data set 4
# Voxels 318551 347602 297290 354015
Gray matter Volume [cm’] 771.39 841.74 719.91 857.27
Ratio [%)] 51.3 51.6 47.3 53.7
# Voxels 199684 230728 230532 232711
White matter Volume [cm’] 483.55 588.72 558.25 563.53
Ratio [%] 32.2 34.2 36.7 35.3
# Voxels 102372 95705 100526 72305
CSF Volume [cm’] 247.9 231.76 243.43 175.09
Ratio [%] 16.5 14.2 16.0 11.0
Total # Voxels 620607 674035 628348 659031
Volume [cms] 1502.84 1632.22 1521.59 1595.89

“The table shows the number of voxels labeled as “gray matter,
of the total volume, and the total values for each data set.

FIGURE 11 Comparison of the segmentation results for an occipital coronal cross-section of data

set 2. (a) T2 weighted image. (b) Segmentation by vector quantization and subsequent manual
interactive assignment of codebook vectors. (c) Segmentation by a GRBF classifier.

»

white matter,” and “CSE” the resulting absolute volumes, the corresponding percentage
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TABLE 6 Results for segmentation by vector quantization according to Section 7 and subsequent classification by a GRBF network according to

Section 8.2°

Tissue Data set 1 Data set 2 Data set 3 Data set 4
# Voxels 365574 378156 331883 362367
Gray matter Volume [cm’] 885.26 915.73 803.68 877.50
Ratio [%] 58.9 56.1 52.8 55.0
# Voxels 185608 212557 204439 225901
White matter Volume [cm’] 449.46 514.72 495.06 547.04
Ratio [%] 29.9 31.5 32.5 34.3
# Voxels 69425 83322 92026 70763
CSF Volume [cm3] 168.1 201.77 222.85 171.36
Ratio [%] 11.2 124 14.7 10.7
Total # Voxels 620607 674035 628348 659031
Volume [cm3] 1502.84 1632.22 1521.59 1595.89

»

“The table shows the number of voxels labeled as “gray matter,
of the total volume, and the total values for each data set.

o H"‘%‘Hz
exp W
a(x) =
7 N —w||?
S exp (- Lxl)

Now the feature vector x is attributed to the neuron j i.e., the
codebook vector w; with maximal activation according to Eq.
(3). This is obviously equivalent with assigning the feature
vector x to the codebook vector w(x) with minimal distance to

X:

(46)

W(x) = Wj7

with  [x — w]| :miin||x—w,-\|. (47)
Thus, the fuzzy tesselation of the feature space is transformed
into an exhaustive and mutually exclusive “hard” tesselation
that assigns each feature vector x, i.e., each voxel of the 3D data
set to the nearest-neighbor codebook vector w;.

In a second step, each codebook vector w; is assigned to a
tissue class Ae{1,...,m} (e.g., 1 = gray matter, 2 = white
matter, 3 = CSF) that is represented by the codebook vector.
For this reason, for each of the N codebook vectors w;, all the
voxels of the 3D data set belonging to this codebook vector
according to Eq. (47) are labeled automatically. Interactive
visual inspection of the images of the 3D data set that contain
the maximal number of pixels belonging to a specific codebook
vector w; usually enables a decision on which tissue class 4 is
represented by this codebook vector. Thus, it is usually
sufficient to analyze N images for assigning each codebook
vector to a tissue class. If a clear decision for a codebook vector
cannot be made, additional images with highlighted pixels
belonging to the specific codebook vector can be viewed in
order to perform a proper tissue class assignment. As a result,
each of the m tissue classes / is represented by a set of codebook
vectors w]’

By assigning each voxel to a codebook vector w; according to

j
Eq. (47) and each codebook vector to a tissue class 4, all the

white matter,” and “CSE” the resulting absolute volumes, the corresponding percentage

voxels of the 3D data set can be attributed to a tissue class. This,
however, is eqivalent to the segmentation of the data set with
respect to the given tissue classes. Figure 7a shows a TI
weighted image, and Fig. 7b the corresponding segmented
image with gray-level representation of the three tissue classes
“gray matter,” “white matter,” and “CSE”

Besides this simple manual assignment of codebook vectors
to tissue classes, segmentation can be performed by an
alternative approach: Classification by supervised learning.
This is explained in the following paragraph.

8.2 Supervised Classification

This approach makes use of the whole GRBF network
explained in Fig. 1. If a feature vector x is presented to the
input layer, the neurons of the hidden layer are activated
according to Eq. (3). The hidden layer activations a;(x) are
transferred via the output weights s; to the m neurons of the
output layer:

yi(x) :Zsijaj(x), ie{l,...,m}. (48)

Here, each output neuron i corresponds to one of the m tissue
classes 1. Avoxel represented by its feature vector x is assigned
to the class A(x) =i with maximal activation y;(x) of the
corresponding output neuron i

Alx) =i, with y, = m]axyj. (49)
Assignment of all the voxels to a tissue class according to Eq.
(49) finally yields the segmentation of the data set.

This procedure requires the supervised training of the
output weights s;. For this purpose, the global training
procedure explained in Section 3.3 is employed. The training
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TABLE 7 Explanation of the contingency tables used for the comparison
of two segmentation procedures: The tables contain a contingency matrix
A = (a5)"

ij

Manual assignment

Gray White CSF
Gray ap aip a3
GRBF White ay ) a3
CSF as, az, a3

“The matrix element a;; denotes the number of voxels classified as belonging
to tissue class 7 (i € {gray matter, white matter, CSF}) by the GRBF network
and to tissue class j(je{gray matter, white matter, CSF}) by manual
assignment of codebook vectors.

TABLE 8 Contingency table for data set 1; class labels corresponded in
569,701 of 620,607 voxels (91.8%)
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TABLE 9 Contingency table for data set 2; class labels corresponded in
623,303 of 674,035 voxels (92.5%)

Manual assignment

Gray White CSF
Gray 337,542 27,308 13,306
GRBF White 9,079 203,420 58
CSF 981 0 82,341

TABLE 10 Contingency table for data set 3; class labels corresponded in
588,520 of 628,348 voxels (93.7%)

Manual assignment

Gray White CSF
Gray 294,677 26,764 10,442
GRBF White 662 203,768 9
CSF 1,951 0 90,075

Manual assignment

Gray White CSF
Gray 316,721 16,123 32,730
GRBF White 1,824 183,561 223
CSF 6 0 69,419

data set T = {(x",y")|ve{l,...,p}} required for supervised
learning is provided by interactive labeling of a small
representative subset of the data by a human observer. This
is performed by manual contour tracing of regions that can
clearly be attributed to one of the tissue classes without
ambiguity. Figure 8 shows an example for regions manually
labeled as “‘gray matter,” “white matter,” and “CSE” If a
training vector x” can be assigned to the tissue class 4, the
corresponding component y} of the target vector y” is set to
one, whereas all the other components are set to zero.

9 Results

This section presents results for the segmentation of 3D MRI
data sets of the human brain described in Section 5 by the
methods explained earlier [25]. Multispectral MRI data were
acquired in four healthy male volunteers. In the following,
“data set g refers to the multispectral data of volunteer
q,9€{1,...,4}.

Initially, the four data sets were preprocessed according to
the procedures explained in Section 6. Interactive, anatomically
correct manual alignment of the single MRI sequence data
according to Section 6.1 was only necessary for one of the four
data sets (data set 4); all the other data sets were already aligned
correctly because of corresponding MRI acquisition para-
meters.

After preprocessing, the data sets were segmented by
applying two different strategies:

o Manual interactive assignment of codebook vectors to
tissue classes according to Section 8.1.

® Semiautomatic classification by a GRBF network
according to Section 8.2.

In the following, the results and their evaluation are discussed
with respect to the relation between segmentation quality and
the amount of human intervention required for the segmenta-
tion procedures.

At first, the results for vector quantization of the gray-value
feature space with manual interactive assignment of codebook
vectors to tissue classes will be discussed. The parameters used
for minimal free energy vector quantization are listed in
Table 3.

As can be seen from Table 2, the simple manual assignment
of codebook vectors already yields good segmentation results.
Typical examples are presented in Figs. 9b, 10b, 11b.

The average manual processing time for the assignment of
codebook vectors to tissue classes was 6 minutes per data set,
i.e., the procedure requires only a little human intervention.

However, this approach sometimes yields suboptimal
results, especially in cases where a codebook vector cannot be

TABLE 11 Contingency table for data set 4; class labels corresponded in
609,789 of 659,031 voxels (92.5%)

Manual assignment

Gray White CSF
Gray 333,576 25,512 3,279
GRBF White 18,700 207,194 7
CSF 1,739 5 69,019
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attributed to a single tissue class without ambiguity. Sometimes
a codebook vector is positioned at the border between two
tissue classes, which makes a clear assignment difficult or even
impossible. In these situations, a hard, i.e., unique assignment
of the codebook vector to a single tissue class leads to
misclassifications resulting in decreased segmentation quality.

Detailed segmentation results using vector quantization are
listed in Section 9.3.

In the following, the results for classification by a GRBF
network after preceding vector quantization of the gray-level
feature space are discussed. The parameters of the GRBF
classifier are listed Table 3. The training data comprise
approximately 1% of the whole data set each. Detailed
numbers are listed in Tables 4 and 5.

This approach yields better segmentation results than
unsupervised clustering with respect to subjective evaluation
by a neuroradiologist, as can be seen from Table 2. Typical
segmentation results are presented in Figs 9¢, 10c, and 11c.

The improvement of segmentation quality, however, was
accompanied by a considerable increase of human interven-
tion: Manual processing time for interactive labeling of the
training data was approximately 30 minutes per data set. Thus,
supervised classification requires more human intervention
than unsupervised clustering.

Table 6 presents a detailed list of segmentation results using
GRBF classification.

Tables 7 through 11 present a comparative evaluation of
results obtained by the two different segmentation approaches
using contingency tables. On average, 92.6% of the voxels were
assigned to corresponding class labels.

10 Discussion

In this chapter we have presented a neural network approach to
automatic segmentation of MRI data sets of the human brain
by neural network computation. The GRBF architecture
enables an effective combination of unsupervised and super-
vised learning procedures.

Although the results presented in the preceding section are
very encouraging, several critical issues still need to be
discussed with regard to the data, the aim of segmentation,
and the validation of the results. These remarks can provide an
outlook for further research activities:

(1) Validation. As there is no “gold standard” for
evaluating the quality of segmentation results, careful
considerations have to be made with regard to defining
the objectivity, reliability, and validity of the procedure.

(a) Objectivity. This has two aspects: On one hand, more
detailed investigations have to be made with regard to
the interobserver variability of the segmentation results
that are influenced by human interaction: In the
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unsupervised learning approach there may be inter-
individual variations in cluster assignment decisions,
whereas in the supervised classification approach there
may be different segmentation results due to different
choices of the training data that are interactively labeled
by a human observer performing manual contour
tracing. A second aspect that should be subject to more
detailed investigation is the reproducibility of the
GRBF neural network segmentation results compared
to other semiautomatic segmentation procedures.

(b) Reliability. A closer examination of the intraobserver

variability of the segmentation results has to be made
in cases where the same data are reprocessed by the
same individual at different times. The segmentation
results may differ because of those parts of the
procedure that require human interaction, as
explained previously. A different aspect is the
variability of the segmentation results in repetitive
MRI examinations of the same subject at different
times. This is especially important for studies that
focus on the temporal monitoring of size and growth
of pathological processes.

(c) Validity. The semiquantitative evaluation by an

experienced neuroradiologist as presented in the
previous section can only be a first step to critical
analysis of segmentation quality. In further studies,
this should be accompanied by objective measure-
ments such as the planimetric analysis in a series of
cross-sections after neuropathological preparation of
animal brains.

(2) Data. Segmentation results can be influenced by the

choice of the MRI sequences as well as different ways of
extracting information from these input data.

(a) MRI sequences. Further studies are required with

regard to which MRI sequences should contribute to
the multispectral data set serving as raw data for the
segmentation procedure. These may vary according to
the focus of interest in specific clinical situations. One
might expect, for example, that proton density
weighted sequences are not very helpful when a detailed
white/gray matter segmentation is to be performed. On
the other hand, additional sequences such as FLAIR
may be useful for providing better segmentation results
for various types of pathological tissue. Such con-
siderations should be guided by the attempt to achieve
a reasonable trade-off between two complementary
optimization criteria: segmentation quality and MRI
sequence acquisition time. The latter is a critical issue
when examining patients instead of healthy volunteers.

(b) Product space. Because of local inhomogeneities of

imaging properties, a specific tissue class may have
different location-dependent gray-level appearance.
Thus, it could be helpful to extend the segmentation
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procedures explained in this chapter in order to
account for such gray-level shift effects. A possible
solution could be to operate in the product space of
gray-level and spatial coordinates, serving as a new
input feature space. This could provide a more
comprehensive description of the data set and, thus,
may improve the segmentation results.

(3) Aim of segmentation. The three tissue types—gray
matter, white matter, and CSF—are just a preliminary
choice for defining brain tissue segmentation classes,
although they turn out to be sufficient for most clinical
applications. However, they may be completed by
introducing additional classes for venous blood,
meninges, etc., thus providing a more fine-grained
tissue separation. This is extremely important when
segmentation is to be used for defining the spatial extent
of pathological lesions. Here, one could specifiy classes
for types of pathological tissue, e.g., for defining focal
lesions such as tumors or multiple sclerosis plaques.

In summary, a wide range of further research topics has to be
covered in future studies based on the results presented in this
article. Such investigations can help to introduce automatic
neural network segmentation as a cost-effective and reliable
tool for routine medical image processing according to the
growing importance of quantitative image analysis techniques
for clinical decision making.
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1 Introduction

The rapid development and proliferation of medical imaging
technologies is revolutionizing medicine. Medical imaging
allows scientists and physicians to glean potentially life-saving
information by peering noninvasively into the human body.
The role of medical imaging has expanded beyond the simple
visualization and inspection of anatomic structures. It has
become a tool for surgical planning and simulation, intrao-
perative navigation, radiotherapy planning, and tracking the
progress of disease. For example, ascertaining the detailed
shape and organization of anatomic structures enables a
surgeon preoperatively to plan an optimal approach to some
target structure. In radiotherapy, medical imaging allows the
delivery of a necrotic dose of radiation to a tumor with
minimal collateral damage to healthy tissue.

With medical imaging playing an increasingly prominent
role in the diagnosis and treatment of disease, the medical
image analysis community has become preoccupied with the
challenging problem of extracting, with the assistance of
computers, clinically useful information about anatomic
structures imaged through CT, MR, PET, and other modalities
[6,7,13,41,67,118,129, 143,152]. Although modern imaging
devices provide exceptional views of internal anatomy, the use
of computers to quantify and analyze the embedded structures
with accuracy and efficiency is limited. Accurate, repeatable,

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

quantitative data must be efficiently extracted in order to
support the spectrum of biomedical investigations and clinical
activities from diagnosis, to radiotherapy, to surgery.

For example, segmenting structures from medical images
and reconstructing a compact geometric representation of
these structures is difficult because of the sheer size of the
datasets and the complexity and variability of the anatomic
shapes of interest. Furthermore, the shortcomings typical of
sampled data, such as sampling artifacts, spatial aliasing, and
noise, may cause the boundaries of structures to be indistinct
and disconnected. The challenge is to extract boundary
elements belonging to the same structure and integrate these
elements into a coherent and consistent model of the structure.
Traditional low-level image processing techniques that con-
sider only local information can make incorrect assumptions
during this integration process and generate infeasible object
boundaries. As a result, these model-free techniques usually
require considerable amounts of expert intervention.
Furthermore, the subsequent analysis and interpretation of
the segmented objects is hindered by the pixel- or voxel-level
structure representations generated by most image processing
operations.

This chapter, an updated version of Mclnerney and
Terzopoulos [97], surveys deformable models, a promising
and vigorously researched model-based approach to computer-
assisted medical image analysis. The widely recognized potency
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of deformable models stems from their ability to segment,
match, and track images of anatomic structures by exploiting
(bottom-up) constraints derived from the image data together
with (top-down) a priori knowledge about the location, size,
and shape of these structures. Deformable models are capable of
accommodating the often significant variability of biological
structures over time and across different individuals.
Furthermore, deformable models support highly intuitive
interaction mechanisms that allow medical scientists and
practitioners to bring their expertise to bear on the model-
based image interpretation task when necessary. We will review
the basic formulation of deformable models and survey their
application to fundamental medical image analysis problems,
including segmentation, shape representation, matching, and
motion tracking (see also the compilation [124]).

2 Mathematical Foundations of
Deformable Models

The mathematical foundations of deformable models represent
the confluence of geometry, physics, and approximation
theory. Geometry serves to represent object shape, physics
imposes constraints on how the shape may vary over space and
time, and optimal approximation theory provides the formal
underpinnings of mechanisms for fitting the models to
measured data.

Deformable model geometry usually permits broad shape
coverage by employing geometric representations that involve
many degrees of freedom, such as splines. The model remains
manageable, however, because the degrees of freedom are
generally not permitted to evolve independently, but are
governed by physical principles that bestow intuitively mean-
ingful behavior upon the geometric substrate. The name
“deformable models” stems primarily from the use of elasticity
theory at the physical level, generally within a Lagrangian
dynamics setting. The physical interpretation views deformable
models as elastic bodies that respond naturally to applied forces
and constraints. Typically, deformation energy functions
defined in terms of the geometric degrees of freedom are
associated with the deformable model. The energy grows
monotonically as the model deforms away from a specified
natural or “rest shape” and often includes terms that constrain
the smoothness or symmetry of the model. In the Lagrangian
setting, the deformation energy gives rise to elastic forces
internal to the model. Taking a physics-based view of classical
optimal approximation, external potential energy functions are
defined in terms of the data of interest to which the model is to
be fitted. These potential energies give rise to external forces
that deform the model such that it fits the data.

Deformable curve, surface, and solid models gained popu-
larity after they were proposed for use in computer vision [138]
and computer graphics [135] in the mid-1980s. Terzopoulos
introduced the theory of continuous (multidimensional)

II Segmentation

deformable models in a Lagrangian dynamics setting [139]
based on deformation energies in the form of (controlled-
continuity) generalized splines [140]. Ancestors of the deform-
able models now in common use include Fischler and
Elshlager’s templates [49] and Widrow’s rubber mask tech-
nique [154].

The deformable model that has attracted the most attention
to date is popularly known as “snakes” [73]. Snakes or
“deformable contour models” represent a special case of the
general multidimensional deformable model theory [139]. We
will review their simple formulation in the remainder of this
section in order to illustrate with a concrete example the basic
mathematical machinery that is present in many deformable
models.

Snakes are planar deformable contours that are useful in
several image analysis tasks. They are often used to approx-
imate the locations and shapes of object boundaries in images
based on the reasonable assumption that boundaries are
piecewise continuous or smooth (Fig. 1). In its basic form, the
mathematical formulation of snakes draws from the theory of
optimal approximation involving functionals.

2.1 Energy-Minimizing Deformable Models

Geometrically, a snake is a parametric contour embedded in
the image plane (x,y)eR%. The contour is represented as
v(s) = (x(s), y(s)) ", where x and y are the coordinate func-
tions and s€ [0, 1] is the parametric domain. The shape of the
contour subject to an image I(x, ) is dictated by the functional

EW) =S (v) +2(v). (1)

The functional can be viewed as a representation of the energy
of the contour, and the final shape of the contour corresponds
to the minimum of this energy. The first term of the functional,

2

ds, (2)

2
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is the internal deformation energy. It characterizes the
deformation of a stretchy, flexible contour. Two physical
parameter functions dictate the simulated physical character-
istics of the contour: w,(s) controls the “tension” of the
contour while w, (s) controls its “rigidity.”" The second term in
(1) couples the snake to the image. Traditionally,

'The values of the nonnegative functions w;(s) and w;(s) determine the
extent to which the snake can stretch or bend at any point s on the snake.
For example, increasing the magnitude of w; (s) increases the “tension”
and tends to eliminate extraneous loops and ripples by reducing the length
of the snake. Increasing w, (s) increases the bending “rigidity” of the snake
and tends to make the snake smoother and less flexible. Setting the value of
one or both of these functions to zero at a point s permits discontinuities
in the contour at s.
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FIGURE 1 Snake (white) attracted to cell membrane in an EM
photomicrograph [18].

Pv) = /0 P(v(s))ds, 3)

where P(x, y) denotes a scalar potential function defined on the
image plane. To apply snakes to images, external potentials are
designed whose local minima coincide with intensity extrema,
edges, and other image features of interest. For example, the
contour will be attracted to intensity edges in an image I(x, )
by choosing a potential P(x,y) = —c|V[G, * I(x, y)]|, where ¢
controls the magnitude of the potential, V is the gradient
operator, and G, * I denotes the image convolved with a
(Gaussian) smoothing filter whose characteristic width o
controls the spatial extent of the local minima of P.

In accordance with the calculus of variations, the contour
v(s) that minimizes the energy &(v) must satisfy the Euler—
Lagrange equation

0 v o’ o’y
—& (Wl E) + @ (W2 @) + VP(V(S, t)) =0. (4)

This vector-valued partial differential equation expresses the
balance of internal and external forces when the contour rests
at equilibrium. The first two terms represent the internal
stretching and bending forces, respectively, while the third term
represents the external forces that couple the snake to the
image data. The usual approach to solving (4) is through the
application of numerical algorithms (Section 2.3).
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2.2 Dynamic Deformable Models

Although it is natural to view energy minimization as a static
problem, a potent approach to computing the local minima of
a functional such as (1) is to construct a dynamical system that
is governed by the functional and allow the system to evolve to
equilibrium. The system may be constructed by applying the
principles of Lagrangian mechanics. This leads to dynamic
deformable models that unify the description of shape and
motion, making it possible to quantify not just static shape, but
also shape evolution through time. Dynamic models are
valuable for medical image analysis, since most anatomical
structures are deformable and continually undergo nonrigid
motion in vivo. Moreover, dynamic models exhibit intuitively
meaningful physical behaviors, making their evolution amen-
able to interactive guidance from a user (Fig. 2).

A simple example is a dynamic snake that can be represented
by introducing a time-varying contour wv(s,t) = (x(s,1),
y(s,t))" with a mass density u(s) and a damping density
7(s). The Lagrange equation of motion for a snake with the
internal energy given by (2) and external energy given by (3) is

v v D v o* o’y
WSt 15 - g (mer) +oa (mEs) = VP0G
(5)

The first two terms on the left-hand side of this partial
differential equation represent inertial and damping forces.

FIGURE 2 Snake deforming toward high gradients in a processed
cardiac image, influenced by “pin” points and an interactive “spring” that
pulls the contour toward an edge [95].
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Referring to (4), the remaining terms represent the internal
stretching and bending forces, while the right-hand side
represents the external forces. Equilibrium is achieved when
the internal and external forces balance and the contour comes
to rest (ie., Ov/dt = 0°v/0t? = 0), which yields the equili-
brium condition (4).

2.3 Discretization and Numerical Simulation

In order to numerically compute a minimum energy solution,
it is necessary to discretize the energy & (v). The usual approach
is to represent the continuous geometric model v in terms of
linear combinations of local-support or global-support basis
functions. Finite elements [163], finite differences [116], and
geometric splines [47] are local representation methods,
whereas Fourier bases [9] are global representation methods.
The continuous model v(s) is represented in discrete form by a
vector u of shape parameters associated with the basis
functions. The discrete form of energies such as &(v) for the
snake may be written as
1 1
E(u) = Ju Ku + P(u), (6)
where K is called the stiffness matrix, and P(u) is the discrete
version of the external potential. The minimum energy
solution results from setting the gradient of (6) to 0, which is
equivalent to solving the set of algebraic equations

Ku=—-VP =f, (7)

where f is the generalized external force vector.

The discretized version of the Lagrangian dynamics equation
(5) may be written as a set of second-order ordinary differential
equations for u(r);

Mii + Cit + Ku = f, (8)

where M is the mass matrix and C is a damping matrix. The
time derivatives in (5) are approximated by finite differences,
and explicit or implicit numerical time integration methods are
applied to simulate the resulting system of ordinary differential
equations in the shape parameters u.

2.4 Probabilistic Deformable Models

An alternative view of deformable models emerges from casting
the model fitting process in a probabilistic framework. This
permits the incorporation of prior model and sensor model
characteristics in terms of probability distributions. The
probabilistic framework also provides a measure of the
uncertainty of the estimated shape parameters after the
model is fitted to the image data [133].

Let u represent the deformable model shape parameters with
a prior probability p(u) on the parameters. Let p(I|u) be the
imaging (sensor) model—the probability of producing an
image I given a model u. Bayes’ theorem

II Segmentation

p(I]u)p(a)
o(0) ®)

expresses the posterior probability p(u|I) of a model given the
image, in terms of the imaging model and the prior
probabilities of model and image.

It is easy to convert the internal energy measure (2) of the
deformable model into a prior distribution over expected
shapes, with lower energy shapes being the more likely. This is
achieved using a Boltzmann (or Gibbs) distribution of the form

1

plu) = - exp(—S(u))

S

p(ull) =

(10)

where S(u) is the discretized version of ¥ (v) in (9) and Z is a
normalizing constant (called the partition function). This prior
model is then combined with a simple sensor model based on
linear measurements with Gaussian noise

p(I]) = —exp(~P(w)), (1)

Z
where P(u) is a discrete version of the potential Z(v) in (3),
which is a function of the image I(x, y).

Models may be fitted by finding u that locally maximize
p(u|I) in (9). This is known as the maximum a posteriori
solution. With the preceding construction, it yields the same
result as minimizing (1), the energy configuration of the
deformable model given the image.

The probabilistic framework can be extended by assuming a
time-varying prior model, or system model, in conjunction
with the sensor model, resulting in a Kalman filter. The system
model describes the expected evolution of the shape para-
meters u over time. If the equations of motion of the physical
snakes model (8) are employed as the system model, the result
is a sequential estimation algorithm known as “Kalman
snakes” [137].

3 Medical Image Analysis with
Deformable Models

Although deformable models were originally developed for
application to problems in computer vision and computer
graphics, their potential for use in medical image analysis has
been quickly realized. They have been applied to images
generated by imaging modalities as varied as X-ray, computed
tomography (CT), angiography, magnetic resonance (MR),
and ultrasound. Two-dimensional and three-dimensional
deformable models have been used to segment, visualize,
track, and quantify a variety of anatomic structures ranging in
scale from the macroscopic to the microscopic. These include
the brain, heart, face, cerebral, coronary and retinal arteries,
kidney, lungs, stomach, liver, skull, vertebra, objects such as
brain tumors, a fetus, and even cellular structures such as
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neurons and chromosomes. Deformable models have been
used to track the nonrigid motion of the heart, the growing tip
of a neurite, and the motion of erythrocytes. They have been
used to locate structures in the brain, and to register images of
the retina, vertebra, and neuronal tissue.

In the following sections, we review and discuss the
application of deformable models to medical image interpre-
tation tasks, including segmentation, matching, and motion
analysis.

3.1 Image Segmentation with Deformable Curves

The segmentation of anatomic structures—the partitioning of
the original set of image points into subsets corresponding to
the structures—is an essential first stage of most medical
image analysis tasks, such as registration, labeling, and motion
tracking. These tasks require anatomic structures in the
original image to be reduced to a compact, analytic
representation of their shapes. Performing this segmentation
manually is extremely labor intensive and time-consuming. A
primary example is the segmentation of the heart, especially
the left ventricle (LV), from cardiac imagery. Segmentation of
the left ventricle is a prerequisite for computing diagnostic
information such as ejection-fraction ratio, ventricular
volume ratio, and heart output, and for wall motion analysis
that provides information on wall thickening, etc. [123].

Most clinical segmentation is currently performed using
manual slice editing. In this scenario, a skilled operator, using a
computer mouse or trackball, manually traces the region of
interest on each slice of an image volume. Manual slice editing
suffers from several drawbacks. These include the difficulty in
achieving reproducible results, operator bias, forcing the
operator to view each 2-D slice separately to deduce and
measure the shape and volume of 3-D structures, and operator
fatigue.

Segmentation using traditional low-level image processing
techniques, such as thresholding, region growing, edge detec-
tion, and mathematical morphology operations, also requires
considerable amounts of expert interactive guidance.
Furthermore, automating these model-free approaches is
difficult because of the shape complexity and variability
within and across individuals. In general, the underconstrained

(a) (b) ()

FIGURE 3
toward LV boundary, driven by “inflation” force [95].
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nature of the segmentation problem limits the efficacy of
approaches that consider local information only. Noise and
other image artifacts can cause incorrect regions or boundary
discontinuities in objects recovered by these methods.

A deformable model-based segmentation scheme, used in
concert with image preprocessing, can overcome many of the
limitations of manual slice editing and traditional image
processing techniques. These connected and continuous geo-
metric models consider an object boundary as a whole and can
make use of a priori knowledge of object shape to constrain the
segmentation problem. The inherent continuity and smooth-
ness of the models can compensate for noise, gaps, and other
irregularities in object boundaries. Furthermore, the para-
metric representations of the models provide a compact,
analytical description of object shape. These properties lead to
an efficient, robust, accurate, and reproducible technique for
linking sparse or noisy local image features into a complete and
consistent model of the object.

Among the first and primary uses of deformable models in
medical image analysis was the application of deformable
contour models, such as snakes [73], to segment structures
in 2-D images [12,18,26,29,33,61,80,88,111, 120, 145].
Typically users initialized a deformable model near the object
of interest (Fig. 3) and allowed it to deform into place. Users
could then exploit the interactive capabilities of these models
and manually fine-tune them. Furthermore, once the user is
satisfied with the result on an initial image slice, the fitted
contour model may then be used as the initial boundary
approximation for neighboring slices. These models are then
deformed into place and again propagated until all slices have
been processed. The resulting sequence of 2D contours can
then be connected to form a continuous 3D surface model
[23,26,29, 86].

The application of snakes and other similar deformable
contour models to extract regions of interest is, however, not
without limitations. For example, snakes were designed as
interactive models. In noninteractive applications, they must
be initialized close to the structure of interest to guarantee
good performance. The internal energy constraints of snakes
can limit their geometric flexibility and prevent a snake from
representing long tubelike shapes and shapes with significant
protrusions or bifurcations. Furthermore, the topology of the

(d) (e) ()

(a) Intensity CT image slice of canine LV. (b) Edge detected image. (c) Initial snake. (d)—(f) Snake deforming



132

structure of interest must be known in advance, since classical
deformable contour models are parametric and are incapable
of topological transformations without additional machinery.

Various methods have been proposed to improve and
further automate the deformable contour segmentation pro-
cess. Cohen and Cohen [26] used an internal “inflation” force
to expand a snakes model past spurious edges toward the real
edges of the structure, making the snake less sensitive to initial
conditions (inflation forces were also employed in [138]).
Amini ef al. [2] use dynamic programming to carry out a more
extensive search for global minima. Poon et al. [115] and
Grzeszczuk and Levin [58] minimize the energy of active
contour models using simulated annealing, which is known to
give global solutions and allows the incorporation of non-
differentiable constraints.

Other researchers [21,51,60,65,69,71,92,119] have inte-
grated region-based information into deformable contour
models or used other techniques in an attempt to decrease
sensitivity to insignificant edges and initial model placement.
For example, Poon et al. [115] use a discriminant function to
incorporate region-based image features into the image forces
of their active contour model. The discriminant function
allows the inclusion of additional image features in the
segmentation and serves as a constraint for global segmenta-
tion consistency (i.e., every image pixel contributes to the
discriminant function).

II Segmentation

Several researchers [19,20,77,81,90,91,99, 108,122,153,
157] have been developing topology-independent shape mod-
eling schemes that are not only less sensitive to initial
conditions, but also allow a deformable contour or surface
model to represent long tubelike shapes or shapes with
bifurcations (Fig. 4), and to dynamically sense and change its
topology (Fig. 5).

Finally, another development is a snakelike technique known
as “live-wire” [11,46]. This semiautomatic boundary tracing
technique computes and selects optimal boundaries at inter-
active rates as the user moves a mouse, starting from a user-
specified seed point. When the mouse is moved close to an
object edge, a live-wire boundary snaps to and wraps around
the object of interest. The live-wire method has also been
combined with snakes, yielding a segmentation tool that
exploits the best properties of both techniques [84, 85].

3.2 Volume Image Segmentation with
Deformable Surfaces

Segmenting 3-D image volumes slice by slice using manual slice
editing (or image processing techniques) is a laborious process
and requires a postprocessing step to connect the sequence of
2-D contours into a continuous surface. Furthermore, the
resulting surface reconstruction can contain inconsistencies or
show rings or bands. As described in the previous section, the

FIGURE 4
a vessel [96].

(a) (b)

Image sequence of clipped angiogram of retina showing an automatically subdividing snake flowing and branching along

FIGURE 5 Segmentation of a cross sectional image of a human vertebra phantom with a topologically adaptable snake [96]. The
snake begins as a single closed curve and becomes three closed curves.
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application of a 2-D active contour model to an initial slice and
the propagation of the model to neighboring slices can
significantly improve the volume segmentation process.
However, the use of a true 3-D deformable surface model can
potentially result in even greater improvements in efficiency and
robustness, and it also ensures that a globally smooth and
coherent surface is produced between image slices.

Deformable surface models in 3-D were first used in
computer vision [138]. Many researchers have since explored
the use of deformable surface models for segmenting structures
in medical image volumes. Miller [101] constructs a polygonal
approximation to a sphere and geometrically deforms this
“balloon” model until the balloon surface conforms to the
object surface in 3-D CT data. The segmentation process is
formulated as the minimization of a cost function where the
desired behavior of the balloon model is determined by a local
cost function associated with each model vertex. The cost
function is a weighted sum of three terms: a deformation
potential that “expands” the model vertices toward the object
boundary, an image term that identifies features such as edges
and opposes the balloon expansion, and a term that maintains
the topology of the model by constraining each vertex to
remain close to the centroid of its neighbors.

Cohen et al. [26,28] and McInerney and Terzopoulos [95]
use finite element and physics-based techniques to implement
an elastically deformable cylinder and sphere, respectively. The
models are used to segment the inner wall of the left ventricle of
the heart from MR or CT image volumes (Fig. 6). These
deformable surfaces are based on a thin-plate-under-tension
surface spline, the higher dimensional generalization of Eq. (2),
which controls and constrains the stretching and bending of
the surface. The models are fitted to data dynamically by
integrating Lagrangian equations of motion through time in
order to adjust the deformational degrees of freedom.
Furthermore, the finite element method is used to represent
the models as a continuous surface in the form of weighted
sums of local polynomial basis functions. Unlike Miller’s [101]

%
= T

(b)

FIGURE 6 (a) Deformable “balloon” model embedded in volume image
deforming toward LV edges of canine heart. (b) Reconstruction of LV [95].
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polygonal model, the finite element method provides an
analytic surface representation, and the use of high-order
polynomials means that fewer elements are required to
accurately represent an object. Pentland and Sclaroff [113]
and Nastar and Ayache [106] also develop physics-based
models but use a reduced modal basis for the finite elements
(see Section 3.5).

Staib and Duncan [127] describe a 3D surface model used
for geometric surface matching to 3D medical image data. The
model uses a Fourier parameterization that decomposes the
surface into a weighted sum of sinusoidal basis functions.
Several different surface types are developed, such as tori, open
surfaces, closed surfaces, and tubes. Surface finding is for-
mulated as an optimization problem using gradient ascent that
attracts the surface to strong image gradients in the vicinity of
the model. An advantage of the Fourier parameterization is that
it allows a wide variety of smooth surfaces to be described with
a small number of parameters. That is, a Fourier representation
expresses a function in terms of an orthonormal basis, and
higher indexed basis functions in the sum represent higher
spatial variation. Therefore, the series can be truncated and still
represent relatively smooth objects accurately.

In a different approach, Szeliski et al. [132] use a dynamic,
self-organizing oriented particle system to model surfaces of
objects. The oriented particles, which can be visualized as
small, flat disks, evolve according to Newtonian mechanics and
interact through external and interparticle forces. The external
forces attract the particles to the data while interparticle forces
attempt to group the particles into a coherent surface. The
particles can reconstruct objects with complex shapes and
topologies by “flowing” over the data, extracting and con-
forming to meaningful surfaces. A triangulation is then
performed, which connects the particles into a continuous
global model that is consistent with the inferred object surface.

Other notable work involving 3D deformable surface models
and medical image applications can be found in
[20,33,37,38,98, 107,134,153,156,162], as well as several
models described in the following sections.

3.3 Incorporating A Priori Knowledge

In medical images, the general shape, location, and orientation
of an anatomical structure is known, and this knowledge may
be incorporated into the deformable model in the form of
initial conditions, data constraints, and constraints on the
model shape parameters, or into the model fitting procedure.
The use of implicit or explicit anatomical knowledge to guide
shape recovery is especially important for robust automatic
interpretation of medical images. For automatic interpretation,
it is essential to have a model that not only describes the size,
shape, location, and orientation of the target object, but that
also permits expected variations in these characteristics.
Automatic interpretation of medical images can relieve
clinicians from the labor-intensive aspects of their work
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while increasing the accuracy, consistency, and reproducibility
of the interpretations. In this section, and in the following
sections on matching and motion tracking, we describe several
deformable model techniques that incorporate prior anato-
mical knowledge in different ways.

A number of researchers have incorporated knowledge of
object shape into deformable models by using deformable
shape templates. These models usually use “hand-crafted”
global shape parameters to embody a priori knowledge of
expected shape and shape variation of the structures and have
been used successfully for many applications of automatic
image interpretation. The idea of deformable templates can be
traced back to the early work on spring-loaded templates by
Fischler and Elshlager [49]. An excellent example in computer
vision is the work of Yuille et al. [161], who construct
deformable templates for detecting and describing features of
faces, such as the eye. In an early example from medical image
analysis, Lipson et al. [87] note that axial cross-sectional images
of the spine yield approximately elliptical vertebral contours
and consequently extract the contours using a deformable
ellipsoidal template. More recently, Montagnat and Delingette
[103] used a deformable surface template of the liver to
segment it from abdominal CT scans, and a ventricle template
to segment the ventricles of the brain from MR images.

Deformable models based on superquadrics are another
example of deformable shape templates that are gaining in
popularity in medical image research. Superquadrics contain a
small number of intuitive global shape parameters that can be
tailored to the average shape of a target anatomic structure.
Furthermore, the global parameters can often be coupled with
local shape parameters such as splines, resulting in a powerful
shape representation scheme. For example, Metaxas and
Terzopoulos [100] employ a dynamic deformable superquadric
model [136] to reconstruct and track human limbs from 3D
biokinetic data. Their models can deform both locally and
globally by incorporating the global shape parameters of a
superellipsoid with the local degrees of freedom of a membrane
spline in a Lagrangian dynamics formulation. The global
parameters efficiently capture the gross shape features of the
data, while the local deformation parameters reconstruct the
fine details of complex shapes. Using Kalman filtering theory,
they develop and demonstrate a biokinetic motion tracker
based on their deformable superquadric model.

Vemuri et al. [148, 149] construct a deformable superquadric
model in an orthonormal wavelet basis. This multiresolution
basis provides the model with the ability to continuously
transform from local to global shape deformations, thereby
allowing a continuum of shape models to be created and to be
represented with relatively few parameters. They apply the
model to segment and reconstruct anatomical structures in the
human brain from MRI data.

As a final example, Bardinet et al. [10] fit a deformable
superquadric to segmented 3D cardiac images and then refine
the superquadric fit using a volumetric deformation technique
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known as free-form deformations (FFDs). FFDs are defined by
tensor product trivariate splines and can be visualized as a
rubber-like box in which the object to be deformed (in this case
the superquadric) is embedded. Deformations of the box are
automatically transmitted to embedded objects. This volu-
metric aspect of FFDs allows two superquadric surface models
to be simultaneously deformed in order to reconstruct the
inner and outer surfaces of the left ventricle of the heart and the
volume in between these surfaces. Further examples of
deformable superquadrics can be found in [24,112] (see
Section 3.5). Further examples of FFD-based (or FFD-like)
deformable models for medical image segmentation can be
found in [89,94].

Several researchers cast the deformable model fitting process
in a probabilistic framework (see Section 2.4) and include prior
knowledge of object shape by incorporating prior probability
distributions on the shape variables to be estimated
(52,126, 148, 155]. For example, Staib and Duncan [126] use
a deformable contour model on 2D echocardiograms and MR
images to extract the LV of the heart and the corpus callosum of
the brain, respectively. This closed contour model is para-
meterized using an elliptic Fourier decomposition, and a priori
shape information is included as a spatial probability expressed
through the likelihood of each model parameter. The model
parameter probability distributions are derived from a set of
example object boundaries and serve to bias the contour model
toward expected or more likely shapes.

Székely et al. [131] have also developed Fourier parameter-
ized models. Furthermore, they have added elasticity to their
models to create “Fourier snakes” in two dimensions and
elastically deformable Fourier surface models in three dimen-
sions. By using the Fourier parameterization followed by a
statistical analysis of a training set, they define mean organ
models and their eigen-deformations. An elastic fit of the mean
model in the subspace of eigenmodes restricts possible
deformations and finds an optimal match between the model
surface and boundary candidates.

Cootes et al. [30] and Hill et al. [66] present a statistically
based technique for building deformable shape templates and
use these models to segment various organs from 2D and 3D
medical images. The statistical parameterization provides
global shape constraints and allows the model to deform
only in ways implied by the training set. The shape models
represent objects by sets of landmark points that are placed in
the same way on an object boundary in each input image. For
example, to extract the LV from echocardiograms, they choose
points around the ventricle boundary, the nearby edge of the
right ventricle, and the top of the left atrium. The points can be
connected to form a deformable contour. By examining the
statistics of training sets of hand-labeled medical images, and
using principal component analysis, a shape model is derived
that describes the average positions and the major modes of
variation of the object points. New shapes are generated using
the mean shape and a weighted sum of the major modes of
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variation. Object boundaries are then segmented using this
“point distribution model” by examining a region around each
model point to calculate the displacement required to move it
toward the boundary. These displacements are then used to
update the shape parameter weights. An example of the use of
this technique for segmenting MR brain images can be found
in [43].

3.4 Matching

Matching of regions in images can be performed between the
representation of a region and a model (labeling) or between the
representation of two distinct regions (registration).
Registration of 2D and 3D medical images is necessary in
order to study the evolution of a pathology in an individual, or
to take full advantage of the complementary information
coming from multimodality imagery. Examples of the use of
deformable models to perform medical image registration are
found in [14,48,59,63,78,104, 105,141]. These techniques
primarily consist of constructing highly structured descriptions
for matching. This operation is usually carried out by extracting
regions of interest with an edge detection algorithm, followed by
the extraction of landmark points or characteristic contours (or
curves on extracted boundary surfaces in the case of 3D data). In
three dimensions, these curves usually describe differential
structures such as ridges, or topological singularities. An elastic
matching algorithm can then be applied between corresponding
pairs of curves or contours where the “start” contour is
iteratively deformed to the “goal” contour using forces derived
from local pattern matches with the goal contour [105].

An example of matching where the use of explicit a priori
knowledge has been embedded into deformable models is the
automatic extraction and labeling of anatomic structures in the
brain from MR images, or the registration of multimodality
brain images. The anatomical knowledge is made explicit in the
form of a 3D brain atlas. The atlas is modeled as a physical object
and is given elastic properties. After an initial global alignment,
the atlas deforms and matches itself onto corresponding regions
in the brain image volume in response to forces derived from
image features. The assumption underlying this approach is that
at some representational level, normal brains have the same
topological structure and differ only in shape details. The idea of
modeling the atlas as an elastic object was originated by Broit
[17], who formulated the matching process as a minimization of
a cost function. Subsequently, Bajcsy and Kovacic [8] imple-
mented a multiresolution version of Broit’s system where the
deformation of the atlas proceeds step-by-step in a coarse to fine
strategy, increasing the local similarity and global coherence.
The elastically deformable atlas technique is very promising and
consequently has become a very active area of research that is
being explored by several groups [15,16,25,34-36,45,
52,93,121, 125,130, 142, 146, 150].

The automatic brain image matching problem is extremely
challenging and there are many hurdles that must be overcome
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FIGURE 7 The result of matching a labeled deformable atlas to a
morphologically preprocessed MR image of the brain [121].

before the deformable atlas technique can be adopted for
clinical use. For example, the technique is sensitive to the initial
positioning of the atlas—if the initial rigid alignment is off by
too much, then the elastic match may perform poorly. The
presence of neighboring features may also cause matching
problems—the atlas may warp to an incorrect boundary.
Finally, without user interaction, the atlas can have difficulty
converging to complicated object boundaries. A proposed
solution to these problems is to use image preprocessing in
conjunction with the deformable atlas. Sandor and Leahy [121]
use this approach to automatically label regions of the cortical
surface that appear in 3D MR images of human brains (Fig. 7).
They automatically match a labeled deformable atlas model to
preprocessed brain images, where preprocessing consists of 3D
edge detection and morphological operations. These filtering
operations automatically extract the brain and sulci (deep
grooves in the cortical surface) from an MR image and provide
a smoothed representation of the brain surface to which their
3D B-spline deformable surface model can rapidly converge.

3.5 Motion Tracking and Analysis

The idea of tracking objects in time-varying images using
deformable models was originally proposed in the context of
computer vision [73, 138]. Deformable models have been used
to track nonrigid microscopic and macroscopic structures in
motion, such as blood cells [83] and neurite growth cones [62]
in cinemicroscopy, as well as coronary arteries in cineangio-
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graphy [82]. However, the primary use of deformable models
for tracking in medical image analysis is to measure the
dynamic behavior of the human heart, especially the left
ventricle. Regional characterization of the heart wall motion is
necessary to isolate the severity and extent of diseases such as
ischemia. Magnetic resonance and other imaging technologies
can now provide time-varying three-dimensional images of the
heart with excellent spatial resolution and reasonable temporal
resolutions. Deformable models are well suited for this image
analysis task.

In the simplest approach, a 2D deformable contour model is
used to segment the LV boundary in each slice of an initial
image volume. These contours are then used as the initial
approximation of the LV boundaries in corresponding slices of
the image volume at the next time instant and are then
deformed to extract the new set of LV Dboundaries
[5,53, 64,123, 145]. This temporal propagation of the deform-
able contours dramatically decreases the time taken to segment
the LV from a sequence of image volumes over a cardiac cycle.
Singh et al. [123] report a time of 15 minutes to perform the
segmentation, considerably less than the 1.5-2 hours that a
human expert takes for manual segmentation. Deformable
contour models have also been succesfully used to track the LV
boundary in noisy echocardiographic image sequences
[22,70].

MclInerney and Terzopoulos [95] have applied the temporal
propagation approach in three dimensions using a 3D dynamic
deformable “balloon” model to track the contractile motion of
the LV (Figs 8 and 9).

In a more involved approach, Amini and Duncan [1] use
bending energy and surface curvature to track and analyze LV
motion. For each time instant, two sparse subsets of surface
points are created by choosing geometrically significant land-
mark points, one for the endocardial surface, and the other for
the epicardial surface of the LV. Surface patches surrounding
these points are then modeled as thin, flexible plates. Making
the assumption that each surface patch deforms only slightly
and locally within a small time interval, for each sampled point
on the first surface they construct a search area on the LV
surface in the image volume at the next time instant. The best
matched (i.e., minimum bending energy) point within the
search window on the second surface is taken to correspond to
the point on the first surface. This matching process yields a set
of initial motion vectors for pairs of LV surfaces derived from a
3D image sequence. A smoothing procedure is then performed
using the initial motion vectors to generate a dense motion
vector field over the LV surfaces.

Cohen et al. [27] also employ a bending energy technique in
two dimensions and attempt to improve on this method by
adding a term to the bending energy function that tends to
preserve the matching of high curvature points. Goldgof et al.
[46,68,72,102] have also been pursuing surface shape
matching ideas primarily based on changes in Gaussian
curvature and assume a conformal motion model (i.e.,
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(13) (14) (15) (16)

FIGURE 8 Sagittal slice of successive CT volumes over one cardiac cycle
(1-16) showing motion of canine LV [95].

(15)

(16)

FIGURE 9 Tracking of the LV motion of canine heart during one cardiac
cycle (1-6) using deformable balloon model [95].
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motion that preserves angles between curves on a surface but
not distances).

An alternative approach is that of Chen et al. [24], who use a
hierarchical motion model of the LV constructed by combining
a globally deformable superquadric with a locally deformable
surface using spherical harmonic shape modeling primitives.
Using this model, they estimate the LV motion from angio-
graphic data and produce a hierarchical decomposition that
characterizes the LV motion in a coarse-to-fine fashion.

Pentland and Horowitz [112] and Nastar and Ayache [106]
are also able to produce a coarse-to-fine characterization of the
LV motion. They use dynamic deformable models to track and
recover the LV motion and make use of modal analysis, a well-
known mechanical engineering technique, to parameterize
their models. This parameterization is obtained from the
eigenvectors of a finite element formulation of the models.
These eigenvectors are often referred to as the “free vibration”
modes and variable detail of LV motion representation results
from varying the number of modes used.

The heart is a relatively smooth organ and consequently
there are few reliable landmark points. The heart also under-
goes complex nonrigid motion that includes a twisting
(tangential) component as well as the normal component of
motion. The motion recovery methods described previously
are, in general, not able to capture this tangential motion
without additional information. Magnetic resonance techni-
ques, based on magnetic tagging [4] have been developed to
track material points on the myocardium in a noninvasive way.
The temporal correspondence of material points that these
techniques provide allow for quantitative measurement of
tissue motion and deformation, including the twisting com-
ponent of the LV motion. Several researchers have applied
deformable models to image sequences of MR tagged data
[3,42,75,76,110,159]. For example, Amini et al. [3] and
Kumar and Goldgof [76] use a 2D deformable grid to localize
and track SPAMM (Spatial Modulation of Magnetization) tag
points on the LV tissue. Park et al. [109, 110] fit a volumetric
physics-based deformable model to MRI-SPAMM data of the
LV. The parameters of the model are functions that can capture
regional shape variations of the LV such as bending, twisting,
and contraction. Based on this model, the authors quantita-
tively compare normal hearts and hearts with hypertrophic
cardiomyopathy.

Another problem with most of the methods described
previously is that they model the endocardial and epicardial
surfaces of the LV separately. In reality the heart is a thick-
walled structure. Duncan et al. [42] and Park et al. [109, 110]
develop models that consider the volumetric nature of the
heart wall. These models use the shape properties of the
endocardial and epicardial surfaces and incorporate mid-wall
displacement information of tagged MR images. By con-
structing 3D finite element models of the LV with nodes in the
mid-wall region as well as nodes on the endocardial and
epicardial surfaces, more accurate measurements of the LV
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motion can be obtained. Young et al. [158, 160] and Creswell et
al. [31] have also constructed 3D finite element models from
the boundary representations of the endocardial and epicardial
surfaces.

4 Discussion

In the previous sections we have surveyed the considerable and
rapidly expanding body of work on deformable models in
medical image analysis. The survey has revealed several issues
that are relevant to the continued development of the
deformable model approach. This section summarizes the
key issues and indicates some promising research directions.

4.1 Autonomy vs Control

Interactive (semiautomatic) algorithms and fully automatic
algorithms represent two alternative approaches to computer-
ized medical image analysis. Certainly automatic interpretation
of medical images is a desirable, albeit very difficult, long-term
goal, since it can potentially increase the speed, accuracy,
consistency, and reproducibility of the analysis. However, the
interactive or semiautomatic methodology is likely to remain
dominant in practice for some time to come, especially in
applications where erroneous interpretations are unacceptable.
Consequently, the most immediately successful deformable
model based techniques will likely be those that drastically
decrease the labor intensiveness of medical image processing
tasks through partial automation and significantly increase
their reproducibility, while still allowing for interactive
guidance or editing by the medical expert. Although fully
automatic techniques based on deformable models will likely
not reach their full potential for some time to come, they can
be of immediate value in specific application domains such as
the segmentation of healthy tissue surrounding a pathology for
enhanced visualization.

4.2 Generality vs Specificity

Ideally a deformable model should be capable of representing a
broad range of shapes and be useful in a wide array of medical
applications. Generality is the basis of deformable model
formulations with local shape parameters such as snakes.
Alternatively, highly specific, “hand-crafted” or constrained
deformable models appear to be useful in applications such as
tracking the nonrigid motion of the heart (Section 3.5),
automatically matching and labeling structures in the brain
from 3D MR images (Section 3.4), or segmenting very noisy
images such as echocardiograms. Certainly attempts to
completely automate the processing of medical images would
require a high degree of application and model specificity. A
promising direction for future study appears to be techniques
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for learning “tailored” models from simple general-purpose
models. The work of Cootes et al. [30] may be viewed as an
example of such a strategy.

4.3 Compactness vs Geometric Coverage vs
Topological Flexibility

A geometric model of shape may be evaluated based on the
parsimony of its formulation, its representational power, and
its topological flexibility. Generally, parameterized models
offer the greatest parsimony, free-form (spline) models feature
the broadest coverage, and implicit models have the greatest
topological flexibility. Deformable models have been devel-
oped based on each of these geometric classes. Increasingly,
researchers are turning to the development of hybrid
deformable models that combine complementary features.
For objects with a simple, fixed topology and without
significant protrusions, parameterized models coupled with
local (spline) and/or global deformations schemes appear to
provide a good compactness—descriptiveness trade-off
[24,112, 136, 148]. On the other hand, the segmentation and
modeling of complex, multipart objects such as arterial or
bronchial “tree” structures, or topologically complex struc-
tures such as vertebrae, is a difficult task with these types of
models. Polygon-based or particle-based deformable modeling
schemes seem promising in segmenting and reconstructing
such structures. Polygon-based models may be compacted by
removing and “retiling” [40, 57, 144] polygons in regions of
low shape variation, or by replacing a region of polygons with
a single, high-order finite element or spline patch [117]. A
possible research direction is to develop alternative models
that blend or combine descriptive primitive elements (rather
than simple particles), such as flexible cylinders, into a global
structure.

4.4 Curve vs Surface vs Solid Models

The earliest deformable models were curves and surfaces.
Anatomic structures in the human body, however, are either
solid or thick-walled. To support the expanding role of medical
images into tasks such as surgical planning and simulation, and
the functional modeling of structures such as bones, muscles,
skin, or arterial blood flow, may require volumetric or solid
deformable models rather than surface models. For example,
the planning of facial reconstructive surgery requires the
extraction and reconstruction of the skin, muscles, and bones
from 3D images using accurate solid models. It also requires
the ability to simulate the movement and interactions of these
structures in response to forces, the ability to move, cut, and
fuse pieces of the model in a realistic fashion, and the ability to
stimulate the simulated muscles of the model to predict the
effect of the surgery. Several researchers have begun to explore
the use of volumetric or solid deformable models of the human
face and head for computer graphics applications [44,79] and
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for medical applications [39, 54,55, 74, 114, 151, 152], particu-
larly reconstructive surgery simulation, and there is much
room for further research. Researchers have also begun to use
volumetric deformable models to more accurately track and
analyze LV motion [31, 42,110, 158].

4.5 Accuracy and Quantitative Power

Ideally it should be possible to measure and control the
accuracy of a deformable model. The most common accuracy
control mechanisms are the global or local subdivision of
model basis functions [101], or the repositioning of model
points to increase their density in regions of the data exhibiting
rapid shape variations [147]. Other mechanisms that warrant
further research are the local control and adaptation of model
continuity, parameter evolution (including the rate and
scheduling of the evolution), and the automation of all
accuracy control mechanisms. The parametric formulation of
a deformable model should not only yield an accurate
description of the object; it should also provide quantitative
information about the object in an intuitive, convenient form.
That is, the model parameters should be useful for operations
such as measuring, matching, modification, rendering, and
higher-level analysis or geometric reasoning. This “parameter
descriptiveness” criterion may be achieved in a postprocessing
step by adapting or optimizing the parameterization to more
efficiently or more descriptively match the data. However, it is
preferable to incorporate the descriptive parameterization
directly into the model formulation. An example of this
strategy is the deformable model of Park et al. [110].

4.6 Robustness

Ideally, a deformable model should be insensitive to initial
conditions and noisy data. Deformable models are able to
exploit multiple image attributes and high level or global
information to increase the robustness of shape recovery. For
example, many snakes models now incorporate region-based
image features as well as the traditional edge-based features
(Section 3.1). Strategies worthy of further research include the
incorporation of shape constraints into the deformable model
that are derived from low-level image processing operations
such as thinning, medial axis transforms [50], or mathematical
morphology. A classical approach to improve the robustness of
model fitting is the use of multiscale image preprocessing
techniques [73, 138], perhaps coupled with a multiresolution
deformable model [8]. A multiresolution technique that merits
further research in the context of deformable models, is the use
of wavelet bases [128] for deformations [148, 149]. A deform-
able model should be able to easily incorporate added
constraints and any other a priori anatomic knowledge of
object shape and motion. Section 3.3 reviewed several of the
most promising techniques to incorporate a priori knowledge.
For example, for LV motion tracking, a promising research
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direction is the incorporation of biomechanical properties of
the heart and the inclusion of the temporal periodic char-
acteristics of the heart motion. Future directions include
modeling schemes that incorporate reasoning and recognition
mechanisms using techniques from artificial intelligence such
as rule-based systems or neural networks.

5 Conclusion

The increasingly important role of medical imaging in the
diagnosis and treatment of disease has opened an array of
challenging problems centered on the computation of accurate
geometric models of anatomic structures from medical images.
Deformable models offer an attractive approach to tackling
such problems, because these models are able to represent the
complex shapes and broad shape variability of anatomical
structures. Deformable models overcome many of the limita-
tions of traditional low-level image processing techniques, by
providing compact and analytical representations of object
shape, by incorporating anatomic knowledge, and by providing
interactive capabilities. The continued development and
refinement of these models should remain an important area
of research into the foreseeable future.

Acknowledgments

We thank Stephanie Sandor and Richard Leahy of the USC
Signal and Image Processing Institute for the deformable brain
atlas figure, as well as the following individuals for providing
citation information that improved the completeness of the
bibliography: Amir Amini, Nicholas Ayache, Ingrid Carlbom,
Chang Wen Chen, James Duncan, Dmitry Goldgof, Thomas
Huang, Stephane Lavallee, Francois Leitner, Gerard Medioni,
Dimitri Metaxas, Alex Pentland, Stan Sclaroff, Ajit Singh,
Richard Szeliski, Baba Vemuri, Alistair Young, and Alan Yuille.
This work was made possible by the financial support of the
Information Technologies Research Center of Ontario. This
chapter is an updated version of an article by the authors
entitled “Deformable models in medical image analysis: A
survey.” Medical Image Analysis 1(2), 1996, published by
Oxford University Press (see ref. [97]).

References

1. Amini, A. A., and Duncan, J. S. (1992). Bending and
stretching models for LV wall motion analysis from curves
and surfaces. Image and Vision Computing 10(6):418-430.

10.

11.

12.

13.

14.

15.

16.

17.

139

. Amini, A. A., Weymouth, T. E. and Jain, R. C. (1990). Using

dynamic programming for solving variational problems in
vision. IEEE Trans. on Pattern Analysis and Machine
Intelligence 12(9):855-867.

. Amini, A., Chen, Y., Curwen, R., Mani, V., and Sun, J. (1998).

Coupled B-snake grids and constrained thin-plate splines for
analysis of 2D tissue deformation from tagged MRI. IEEE
Trans. on Medical Imaging 17(3):344-356.

. Axel, L., and Dougherty, L. (1989). Heart wall motion:

Improved method of spatial modulation of magnetization
for MR imaging. Radiology 172:349-350.

. Ayache, N., Cohen, I., and Herlin, I. L. (1992). Medical image

tracking. In Blake, A. and Yuille, A., eds., Active Vision.
Cambridge, MA: MIT Press. Chapter 17.

. Ayache, N. (1995a). Medical computer vision, virtual reality

and robotics. Image and Vision Computing 13(4):295-313.

. Ayache, N., ed. (1995b). Proc. First International Conf. on

Computer Vision, Virtual Reality and Robotics in Medicine
(CVRMed’95), Nice, France, April, 1995, volume 905 of Lecture
Notes in Computer Science. Berlin, Germany: Springer-Verlag.

. Bajcsy, R., and Kovacic, S. (1989). Multiresolution elastic

matching. Computer Vision, Graphics, and Image Processing
46:1-21.

. Ballard, D., and Brown, C. (1982). Computer Vision.

Englewood Cliffs, NJ: Prentice-Hall.

Bardinet, E., Cohen, L. D., and Ayache, N. (1996). Tracking
and motion analysis of the left ventricle with deformable
superquadrics. Medical Image Analysis 1(2):129-149.
Barrett, W. A., and Mortensen, E. N. (1996-7). Interactive
live-wire boundary extraction. Medical Image Analysis
1(4):331-341.

Berger, M. O. (1990). Snake growing. In Faugeras, O., ed.,
Computer Vision—Proc. First European Conf. on Computer
Vision (ECCV’90), Antibes, France, April, 1990, Lectures
Notes in Computer Science, 570-572. Springer-Verlag.
Bizais, Y., Barillot, C., and Paola, R. Di, eds. (1995).
Information Processing in Medical Imaging: Proc. 14th Int.
Conf. (IPMI’95), Ile de Berder, France, June, 1995, volume 3 of
Computational Imaging and Vision. Dordrecht, The
Netherlands: Kluwer Academic.

Bookstein, F. L. (1989). Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE Trans. on
Pattern Analysis and Machine Intelligence 11(6):567—585.
Bookstein, E L. (1991). Thin-plate splines and the atlas
problem for biomedical images. In Barret, H. H. and Gmitro,
A. E, eds., Information Processing in Medical Imaging: Proc.
12th Int. Conf. (IPMI'91), Wye, UK, July, 1991, Lectures
Notes in Computer Science, 326-342. Springer-Verlag.
Bozma, 1., and Duncan, J. S. (1992). A modular system for
image analysis using a game theoretic framework. Image and
Vision Computing 10(6):431-443.

Broit, C. (1981). Optimal Registration of Deformed Images.
Ph.D. Dissertation, Computer and Information Science
Dept., University of Pennsylvania, Philadelphia, PA.



140

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

Carlbom, I., Terzopoulos, D., and Harris, K. (1994).
Computer-assisted registration, segmentation, and 3D
reconstruction from images of neuronal tissue sections.
IEEE Trans. on Medical Imaging 13(2):351-362.

Caselles, V., Kimmel, R., and Sapiro, G. (1995).
Geodesic active contours. In Proc. Fifth International
Conf: on Computer Vision (ICCV’95), Cambridge, MA,
June, 1995, 694-699. Los Alamitos, CA: IEEE Computer
Society Press.

Caselles, V., Kimmel, R., and Sapiro, G. (1997). Minimal
surfaces based object segmentation. IEEE Trans. on Pattern
Analysis and Machine Intelligence 19(4).

Chakraborty, A., and Duncan, J. S. (1999). Game theoretic
integration for image segmentation. IEEE Trans. on Pattern
Analysis and Machine Intelligence 21(1).

Chalana, V., Linker, D. T., Haynor, D. R, and Kim, Y.
(1996). A multiple active contour model for cardiac
boundary detection on echocardiographic sequences.
IEEE Trans. on Medical Imaging 15:290-298.

Chang, L. W., Chen, H. W,, and Ho, J. R. (1991). Recons-
truction of 3D medical images: A nonlinear interpolation
technique for reconstruction of 3D medical images. Computer
Vision, Graphics, and Image Processing 53(4):382-391.

Chen, C. W.,, Huang, T. S., and Arrott, M. (1994). Modeling,
analysis, and visualization of left ventricle shape and motion
by hierarchical decomposition. IEEE Trans. on Pattern
Analysis and Machine Intelligence 16:342—-356.

Christensen, G., Rabbitt, R. D., Miller, M. L., Joshi, S. C.,
Grenander, U., Coogan, T. A., and van Essen, D. C. (1995).
Topological properties of smooth anatomic maps. In Ref.
(13], pp. 101-112.

Cohen, L. D., and Cohen, 1. (1993). Finite element methods
for active contour models and balloons for 2D and 3D
images. IEEE Trans. on Pattern Analysis and Machine
Intelligence 15(11):1131-1147.

Cohen, I., Ayache, N, and Sulger, P. (1992a). Tracking points
on deformable objects using curvature information. In
Sandini, G., ed., Computer Vision—Proc. Second European
Conf. on Computer Vision (ECCV’92), Santa Margherita
Ligure, Italy, May, 1992, Lectures Notes in Computer Science,
458-466. Springer-Verlag.

Cohen, I., Cohen, L. D., and Ayache, N. (1992b). Using
deformable surfaces to segment 3D images and infer
differential ~structures. CVGIP: Image Understanding
56(2):242-263.

Cohen, L. D. (1991). On active contour models and balloons.
CVGIP: Image Understanding 53(2):211-218.

Cootes, T., Hill, A., Taylor, C., and Haslam, J. (1994). The use
of active shape models for locating structures in medical
images. Image and Vision Computing 12(6):355-366.
Creswell, L. L., Wyers, S. G., Pirolo, J. S., Perman, W. H.,
Vannier, M. W., and Pasque, M. K. (1992). Mathematical
modelling of the heart using magnetic resonance imaging.
IEEE Trans. on Medical Imaging 11(4):581-589.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

II Segmentation

. Davatzikos, C., and Bryan, R. N. (1995). Using a deformable

surface model to obtain a mathematical representation of the
cortex. In International Symp. on Computer Vision, Coral
Gables, FL, November, 1995, 212-217. Los Alamitos, CA:
IEEE Computer Society Press.

Davatzikos, C. A., and Prince, J. L. (1995). An active contour
model for mapping the cortex. IEEE Trans. on Medical
Imaging 14(1):65-80.

Davatzikos, C. A., Prince, J. L., and Bryan, R. N. (1996).
Image registration based on boundary mapping. IEEE Trans.
on Medical Imaging 15(1):112-115.

Declerck, J., Subsol, G., Thirion, J. P., and Ayache, N. (1995).
Automatic retrieval of anatomic structures in 3D medical
images. In Ref. [7], pp. 153-162.

Delibasis, K., and Undrill, P. E. (1994). Anatomical object
recognition using deformable geometric models. Image and
Vision Computing 12(7):423-433.

Delibasis, K., Undrill, P. E., and Cameron, G. G. (1997).
Designing Fourier descriptor-based geometric models for
object interpretation in medical images using genetic
algorithms. Computer Vision and Image Understanding
66(3):286-300.

Delingette, H., Hebert, M., and Ikeuchi, K. (1992). Shape
representation and image segmentation using deformable
surfaces. Image and Vision Computing 10(3):132—144.
Delingette, H., Subsol, G., Cotin, S., and Pignon, J. (1994).
Virtual reality and craniofacial surgery simulation. In Ref.
[118], pp. 607-618.

Delingette, H. (1997). Decimation of iso-surfaces with
deformable models. In Ref. [143], pp. 83-91.

Duncan, J., and Gindi, G., eds. (1997). Information Processing
in Medical Imaging: Proc. 15th Int. Conf. (IPMI’97), oultney,
Vermont, USA, June, 1997, volume 1230 of Lecture Notes in
Computer Science. Berlin, Germany: Springer.

Duncan, J., Shi, P., Amini, A., Constable, R., Staib, L., Dione,
D., Shi, Q., Heller, E., Singer, M., Chakraborty, A., Robinson,
G., Gore, J., and Sinusas, A. (1994). Towards reliable,
noninvasive measurement of myocardial function from 4D
images. In Medical Imaging 1994: Physiology and Function
from Multidimensional Medical Images, volume 2168 of SPIE
Proc., 149-161. Bellingham, WA: SPIE.

Duta, N., and Sonka, M. (1998). Segmentation and inter-
pretation of MR brain images: An improved active shape
model. IEEE Trans. on Medical Imaging 17(6):1049—-1062.
Essa, 1., Sclaroff, S., and Pentland, A. P. (1993). Physically-
based modeling for graphics and vision. In Martin, R., ed.,
Directions in Geometric Computing. Information Geometers,
UK.

Evans, A. C., Dai, W,, Collins, L., Neelin, P., and Marrett, S.
(1991). Warping of a computerized 3D atlas to match
brain image volumes for quantitative neuroanatomical and
functional analysis. In Medical Imaging V: Image Processing,
volume 1445 of SPIE Proc., 236-246. Bellingham, WA:
SPIE.



8 Deformable Models

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Falcao, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch, B.
E., and de A. Lotufo, R. (1998). User-steered image
segmentation paradigms: Live wire and live lane. Graphical
Models and Image Processing 60(4):233-60.

Farin, G. (1993). Curves and Surfaces for CAGD. New York,
NY: Academic Press.

Feldmar, J., and Ayache, N. (1994). Locally affine registration
of free-form surfaces. In Proc. Conf. Computer Vision and
Pattern Recognition (CVPR’94), Seattle, WA, June, 1994, 496—
501. Los Alamitos, CA: IEEE Computer Society Press.
Fischler, M., and Elschlager, R. (1973). The representation
and matching of pictorial structures. IEEE Trans. on
Computers 22(1):67-92.

Fritsch, D., Pizer, S. M., Yu, L., Johnson, V., and Chaney, E.
(1997). Segmentation of medical image objects using
deformable shape loci. In Duncan and Gindi (1997), 127-
140.

Gauch, J. M., Pien, H. H., and Shah, ]. (1994). Hybrid
boundary-based and region-based deformable models for
biomedical image segmentation. In Mathematical Methods in
Medical Imaging II1, volume 2299 of SPIE Proc., 72—83. San
Diego, CA: SPIE.

Gee, J. C. (1999). On matching brain volumes. Pattern
Recognition 32:99-111.

Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J. (1995).
Dynamic programming for detecting, tracking and matching
deformable contours. IEEE Trans. on Pattern Analysis and
Machine Intelligence 17(3):294-302.

Geiger, B. (1992). Three dimensional simulation of delivery
for cephalopelvic disproportion. In First International
Workshop on Mechatronics in Medicine and Surgery, Costa
del Sol, Spain, October, 1992, 146-152.

Gibson, S., Fyock, C., Grimson, E., Kanade, T., Kikinis, R.,
Lauer, H., McKenzie, N., Mor, A., Nakajima, S., Ohkami, H.,
Osborne, R., Samosky, J., and Sawada, A. (1998). Volumetric
object modeling for surgical simulation. Medical Image
Analysis 2(2):121-132.

Goldgof, D. B., Lee, H., and Huang, T. S. (1988). Motion
analysis of nonrigid surfaces. In Proc. Conf. Computer Vision
and Pattern Recognition (CVPR’88), Ann Arbor, MI, June,
1988, 375-380. Los Alamitos, CA: IEEE Computer Society
Press.

Gourdon, A. (1995). Simplification of irregular surface
meshes in 3D medical images. In Ref. [7], pp. 413-419.
Grzeszczuk, R. P, and Levin, D. N. (1997). Brownian strings:
Segmenting images with stochastically deformable contours.
IEEE Trans. on Pattern Analysis and Machine Intelligence
19(10).

Gueziec, A., and Ayache, N. (1994). Smoothing and
matching of 3D space curves. International Journal of
Computer Vision 12(1):79-104.

Gunn, S. R, and Nixon, M. S. (1997). A robust snake
implementation; a dual active contour. IEEE Trans. on
Pattern Analysis and Machine Intelligence 19(1).

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75

141

Gupta, A., O’Donnell, T., and Singh, A. (1994). Segmentation
and tracking of cine cardiac MR and CT images using a 3-D
deformable model. In Proc. IEEE Conf. on Computers in
Cardiology, September, 1994.

Gwydir, S. H., Buettner, H. M., and Dunn, S. M. (1994).
Non-rigid motion analysis and feature labelling of the
growth cone. In IEEE Workshop on Biomedical Image
Analysis, Seattle, WA, June, 1994, 80-87. Los Alamitos, CA:
IEEE Computer Society Press.

Hamadeh, A., Lavallee, S., Szeliski, R., Cinquin, P., and Peria,
0. (1995). Anatomy-based registration for computer-
integrated surgery. In Ref. [7], pp. 212-218.

Herlin, I. L., and Ayache, N. (1992). Features extraction and
analysis methods for sequences of ultrasound images. Image
and Vision Computing 10(10):673—682.

Herlin, I. L., Nguyen, C., and Graffigne, C. (1992). A
deformable region model using stochastic processes applied
to echocardiographic images. In Proc. Conf. Computer
Vision and Pattern Recognition (CVPR’92), Urbana, IL,
June, 1992, 534-539. Los Alamitos, CA: IEEE Computer
Society Press.

Hill, A., Thornham, A., and Taylor, C. J. (1993). Model-
based interpretation of 3D medical images. In Proc. 4th
British Machine Vision Conf. (BMVC’93), Surrey, UK,
September, 1993, 339-348. BMVA Press.

Hohne, K. H., and Kikinis, R., eds. (1996). Proc. Fourth Conf.
on Visualization in Biomedical Computing (VBC’96),
Hamburg, Germany, September, 1996, volume 1131 of
Lecture Notes in Computer Science. Berlin, Germany:
Springer.

Huang, W. C,, and Goldgof, D. B. (1993). Adaptive-size
meshes for rigid and nonrigid shape analysis and synthesis.
IEEE Trans. on Pattern Analysis and Machine Intelligence
15(3).

Ivins, J., and Porrill, J. (1994). Statistical snakes: Active
region models. In Proc. 5th British Machine Vision Conf.
(BMVC’94), 377-386. BMVA Press.

Jacob, G., Noble, J. A., Mulet-Parada, M., and Blake, A.
(1999). Evaluating a robust contour tracker on echocardio-
graphic sequences. Medical Image Analysis 3(1):63-75.
Jones, T., and Metaxas, D. (1997). Automated 3D segmenta-
tion using deformable models and fuzzy affinity. In Ref. [41],
pp. 113-126.

Kambhamettu, C., and Goldgof, D. B. (1994). Point
correspondence recovery in nonrigid motion. CVGIP:
Image Understanding 60(1):26—43.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. International Journal of Computer
Vision 1(4):321-331.

Keeve, E., Girod, S., Kikinis, R., and Girod, B. (1998).
Deformable modeling of facial tissue for craniofacial surgery
simulation. Computer Aided Surgery 3(5).

. Kraitchman, D. L., Young, A. A., Chang, C. N., and Axel,
L. (1995). Semi-automatic tracking of myocardial motion



142

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

in MR tagged images. IEEE Trans. on Medical Imaging
14(3):422-432.

Kumar, S., and Goldgof, D. (1994). Automatic tracking of
SPAMM grid and the estimation of deformation parameters
from cardiac MR images. IEEE Trans. on Medical Imaging
13(1):122-132.

Lachaud, J.-O., and Montanvert, A. (1999). Deformable
meshes with automated topology changes for coarse-to-fine
three-dimensional surface extraction. Medical Image Analysis
3(1):1-21.

Lavallée, S., and Szeliski, R. (1995). Recovering the position
and orientation of free-form objects from image contours
using 3D distance maps. IEEE Trans. on Pattern Analysis and
Machine Intelligence 17(4):378-390.

Lee, Y., Terzopoulos, D., and Waters, K. (1995). Realistic
modeling for facial animation. In Proc. SIGGRAPH’95,
Los Angeles, CA, August, 1995, in Computer Graphics Proc.,
Annual Conf. Series 1995, 55-62. New York, NY: ACM
SIGGRAPH.

Leitner, E, and Cinquin, P. (1991). Complex topology 3D
objects segmentation. In Model-Based Vision Development
and Tools, volume 1609 of SPIE Proc., 16-26. Bellingham,
WA: SPIE.

Leitner, E, and Cinquin, P. (1993). From splines and
snakes to Snakes Splines. In Laugier, C., ed., Geometric
Reasoning: From Perception to Action, volume 708 of
Lectures Notes in Computer Science. Springer-Verlag, pp.
264-281.

Lengyel, J., Greenberg, D. P., and Popp, R. (1995). Time-
dependent three-dimensional intravascular ultrasound. In
Proc. SIGGRAPH’95, Los Angeles, CA, August, 1995, in
Computer Graphics Proc., Annual Conf. Series 1995, 457—
464. New York, NY: ACM SIGGRAPH.

Leymarie, E, and Levine, M. (1993). Tracking deformable
objects in the plane using an active contour model. IEEE
Trans. on Pattern Analysis and Machine Intelligence
15(6):635—646.

Liang, J., Mclnerney, T., and Terzopoulos, D. (1999a).
Interactive medical image segmentation with united snakes.
In Proceedings of the Second International Conference on
Medical Image Computing and Computer  Assisted
Interventions (MICCAI199), Cambridge, England. Berlin,
Germany: Springer.

Liang, J., McInerney, T., and Terzopoulos, D. (1999b). United
snakes (towards a more perfect union of active contour
techniques). In Proceedings of the IEEE Seventh International
Conference on Computer Vision (ICCV99), Kerkyra, Greece.
Los Alamitos, CA: IEEE Computer Society Press.

Lin, W. C., and Chen, S. Y. (1989). A new surface
interpolation technique for reconstructing 3D objects from
serial cross-sections. Computer Vision, Graphics, and Image
Processing 48:124-143.

Lipson, P., Yuille, A. L., O’Keefe, D., Cavanaugh, J., Taaffe, J.,
and Rosenthal, D. (1990). Deformable templates for feature

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

II Segmentation

extraction from medical images. In Faugeras, O., ed,
Computer Vision—Proc. First European Conf. on Computer
Vision (ECCV’90), Antibes, France, April, 1990, Lectures
Notes in Computer Science, 477-484. Springer-Verlag.
Lobregt, S., and Viergever, M. A. (1995). A discrete dynamic
contour model. IEEE Trans. on Medical Imaging 14(1):12-24.
Lotjonen, J., Reissman, P-J., Magnin, I. E., and Katila, T.
(1999). Model extraction from magnetic resonance volume
data using the deformable pyramid. Medical Image Analysis
3(4):387-406.

Malladi, R., Sethian, J., and Vemuri, B. C. (1995). Shape
modeling with front propagation: A level set approach. IEEE
Trans. on Pattern Analysis and Machine Intelligence
17(2):158=175.

Malladi, R., Kimmel, R., Adalsteinsson, D., Sapiro, G.,
Caselles, V., and Sethian, J. A. (1996). A geometric approach
to segmentation and analysis of 3D medical images. In IEEE
Workshop on Mathematical Methods in Biomedical Image
Analysis, San Francisco, CA, June, 1996, 244-252. Los
Alamitos, CA: IEEE Computer Society Press.

Mangin, J. E, Tupin, E, Frouin, V., Bloch, 1., Rougetet, R.,
Regis, J., and Lopez-Krahe, J. (1995). Deformable topological
models for segmentation of 3D medical images. In Ref. [13],
pp. 153-164.

McDonald, D., Avis, D., and Evans, A. (1994). Multiple
surface identification and matching in magnetic resonance
images. In Ref. [118], pp. 160-169.

Mclnerney, T., and Kikinis, R. (1998). An object-based
volumetric deformable atlas for the improved localization of
neuroanatomy in MR images. In Ref. [152], pp. 861-869.
Mclnerney, T., and Terzopoulos, D. (1995a). A dynamic
finite element surface model for segmentation and tracking
in multidimensional medical images with application to
cardiac 4D image analysis. Computerized Medical Imaging
and Graphics 19(1):69-83.

MclInerney, T., and Terzopoulos, D. (1995b). Topologically
adaptable snakes. In Proc. Fifth International Conf. on
Computer Vision (ICCV’95), Cambridge, MA, June, 1995,
840-845. Los Alamitos, CA: IEEE Computer Society Press.
Mclnerney, T., and Terzopoulos, D. (1996). Deformable
models in medical image analysis: A survey. Medical Image
Analysis 1(2):91-108.

Mclnerney, T., and Terzopoulos, D. (1999). Topology adaptive
deformable surfaces for medical image volume segmentation.
IEEE Trans. on Medical Imaging 18(10):840-850.

Mclnerney, T., and Terzopoulos, D. (2000). T-snakes:
Topology adaptive snakes. Medical Image Analysis.
In press.

Metaxas, D., and Terzopoulos, D. (1993). Shape and nonrigid
motion estimation through physics-based synthesis. IEEE
Trans. on Pattern Analysis and Machine Intelligence
15(6):580-591.

Miller, J. V., Breen, D. E., Lorensen, W. E., O’Bara, R. M.,
and Wozny, M. J. (1991). Geometrically deformed



8 Deformable Models

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

models: A method for extracting closed geometric models
from volume data. In Computer Graphics (Proc.
SIGGRAPH’91 Conf., Las Vegas, NV, July, 1991), volume
25(4), 217-226.

Mishra, S. K., Goldgof, D. B., and Huang, T. S. (1991).
Non-rigid motion analysis and epicardial deformation
estimation from angiography data. In Proc. Conf.
Computer Vision and Pattern Recognition (CVPR91),
Maui, HI, June, 1991, 331-336. Los Alamitos, CA: IEEE
Computer Society Press.

Montagnat, J., and Delingette, H. (1997). Volumetric
medical image segmentation using shape constrained
deformable models. In Ref. [143], pp. 13-22.

Moshfeghi, M., Ranganath, S., and Nawyn, K. (1994). Three-
dimensional elastic matching of volumes. IEEE Trans. on
Image Processing 3:128—138.

Moshfeghi, M. (1991). Elastic matching of multimodality
medical images. CVGIP: Graphical Models and Image
Processing 53:271-282.

Nastar, C., and Ayache, N. (1996). Frequency-based nonrigid
motion analysis: Application to four dimensional medical
images. IEEE Trans. on Pattern Analysis and Machine
Intelligence 18(11).

Neuenschwander, W., Fua, P., Székely, G., and Kiibler, O.
(1997). Velcro surfaces: Fast initialization of deformable
models. Computer Vision and Image Understanding
65(2):237-245.

Niessen, W., ter Haar Romeny, B. M., and Viergever, M. A.
(1998). Geodesic deformable models for medical image
analysis. IEEE Trans. on Medical Imaging 17(4): 634-641.
Park, J., Metaxas, D., and Axel, L. (1995). Volumetric
deformable models with parameter functions: A new
approach to the 3D motion analysis of the LV from MRI-
SPAMM. In Proc. Fifth International Conf. on Computer
Vision (ICCV°95), Cambridge, MA, June, 1995, 700-705. Los
Alamitos, CA: IEEE Computer Society Press.

Park, J., Metaxas, D., and Axel, L. (1996). Analysis of
left ventricular wall motion based on volumetric
deformable models and MRI-SPAMM. Medical Image
Analysis 1(1).

Paulus, D., Wolf, M., Meller, S., and Nieman, H. (1999).
Three-dimensional computer vision for tooth restoration.
Medical Image Analysis 3(1):1-19.

Pentland, A., and Horowitz, B. (1991). Recovery of nonrigid
motion and structure. IEEE Trans. on Pattern Analysis and
Machine Intelligence 13(7):730-742.

Pentland, A., and Sclaroff, S. (1991). Closed-form solutions
for physically based shape modelling and recognition. IEEE
Trans. on Pattern Analysis and Machine Intelligence
13(7):715-729.

Pieper, S., Rosen, J., and Zeltzer, D. (1992). Interactive
graphics for plastic surgery: A task-level analysis and
implementation. In Proc. ACM 1992 Symposium on
Interactive 3D Graphics, 127-134.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

143

Poon, C. S., Braun, M., Fahrig, R., Ginige, A., and Dorrell,
A. (1994). Segmentation of medical images using an
active contour model incorporating region-based images
features. In Robb (1994), 90-97.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. (1992). Numerical Recipes in C. Cambridge University
Press.

Qin, H., Mandal, C., and Vemuri, B. C. (1998). Dynamic
Catmull-Clark subdivision surfaces. IEEE Transactions on
Visualization and Computer Graphics 4(3).

Robb, R. A, ed. (1994). Proc. Third Conf. on Visualization
in Biomedical Computing (VBC’94), Rochester, MN,
October, 1994, volume 2359 of SPIE Proc. Bellingham,
WA: SPIE.

Rougon, N., and Préteux, E. (1991). Deformable markers:
Mathematical morphology for active contour models
control. In Image Algebra and Morphological Image
Processing 1I, volume 1568 of SPIE Proc., 78-89.
Bellingham, WA: SPIE.

Rougon, N., and Préteux, E (1993). Directional adaptive
deformable models for segmentation with application to 2D
and 3D medical images. In Medical Imaging 93: Image
Processing, volume 1898 of SPIE Proc., 193-207. Bellingham,
WA: SPIE.

Sandor, S., and Leahy, R. (1995). Towards automatic
labelling of the cerebral cortex using a deformable atlas
model. In Ref. [13], pp. 127-138.

Sapiro, G., Kimmel, R., and Caselles, V. (1995). Object
detection and measurements in medical images via geodesic
deformable contours. In Vision Geometry IV, volume 2573 of
SPIE Proc., 366-378. Bellingham, WA: SPIE.

Singh, A., von Kurowski, L., and Chiu, M. Y. (1993).
Cardiac MR image segmentation using deformable models.
Image  Processing and  Biomedical
Visualization, volume 1905 of SPIE Proc, 8-28.
Bellingham, WA: SPIE.

Singh, A., Goldgof, D., and Terzopoulos, D.
Deformable Models in Medical Image Analysis.
Alamitos, CA: IEEE Computer Society.

Snell, J. W., Merickel, M. B., Ortega, J. M., Goble, J. C,,
Brookeman, J. R., and Kassell, N. E (1995). Model-based
boundary estimation of complex objects using hierarchical

In  Biomedical

(1998).
Los

active surface templates. Pattern Recognition 28(10):1599—
1609.

Staib, L. H., and Duncan, J. S. (1992a). Boundary finding
with parametrically deformable models. IEEE Trans. on
Pattern Analysis and Machine Intelligence 14(11):1061-1075.
Staib, L. H., and Duncan, J. S. (1992b). Deformable Fourier
models for surface finding in 3D images. In Robb, R. A, ed.,
Proc. Second Conf. on Visualization in Biomedical Computing
(VBC’92), Chapel Hill, NC, October, 1992, volume 1808 of
SPIE Proc., 90—-104. Bellingham, WA: SPIE.

Strang, G., and Nguyen, T. (1996). Wavelets and Filter Banks.
Wellesley, MA: Wellesley-Cambridge Press.



144

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

Stytz, M., Frieder, G., and Frieder, O. (1991). Three-
dimensional medical imaging: Algorithms and computer
systems. ACM Computing Surveys 23(4):421-499.

Subsol, G., Thirion, J.Ph., and Ayache, N. (1995). A general
scheme for automatically building 3D morphometric
anatomical atlases: Application to a skull atlas. In Proc.
Second International Symp. on Medical Robotics and Computer
Assisted Surgery (MRCAS’95), Baltimore, MD, November,
1995, 226-233.

Székely, G., Kelemen, A., Brechbuhler, Ch., and Gerig, G.
(1996). Segmentation of 2-D and 3-D objects from MRI
volume data using constrained elastic deformations of
flexible Fourier surface models. Medical Image Analysis 1(1).
Szeliski, R., Tonnesen, D., and Terzopoulos, D. (1993).
Modeling surfaces of arbitrary topology with dynamic
particles. In Proc. Conf. Computer Vision and Pattern
Recognition (CVPR93), New York, NY, June, 1993, 82-87.
Los Alamitos, CA: IEEE Computer Society Press.

Szeliski, R. (1990). Bayesian modeling of uncertainty in low-
level vision. International Journal of Computer Vision 5:271—
301.

Tek, H., and Kimia, B. (1997). Volumetric segmentation of
medical images by three-dimensional bubbles. Computer
Vision and Image Understanding 65(2):246-258.
Terzopoulos, D., and Fleischer, K. (1988). Deformable
models. The Visual Computer 4(6):306-331.

Terzopoulos, D., and Metaxas, D. (1991). Dynamic 3D
models with local and global deformations: Deformable
superquadrics. IEEE Trans. on Pattern Analysis and Machine
Intelligence 13(7):703-714.

Terzopoulos, D., and Szeliski, R. (1992). Tracking with
Kalman snakes. In Blake, A. and Yuille, A., eds., Active Vision.
Cambridge, MA: MIT Press. 3-20.

Terzopoulos, D., Witkin, A., and Kass, M. (1988). Constraints
on deformable models: Recovering 3D shape and nonrigid
motion. Artificial Intelligence 36(1):91-123.

Terzopoulos, D. (1986a). On matching deformable models to
images. Technical Report 60, Schlumberger Palo Alto
Research. Reprinted in Topical Meeting on Machine Vision,
Technical Digest Series, Vol. 12 (Optical Society of America,
Washington, DC) 1987, 160-167.

Terzopoulos, D. (1986b). Regularization of inverse visual
problems involving discontinuities. IEEE Trans. on Pattern
Analysis and Machine Intelligence 8(4):413—424.

Thirion, J. P. (1994). Extremal points: Definition and
application to 3D image registration. In Proc. Conf.
Computer Vision and Pattern Recognition (CVPR’94),
Seattle, WA, June, 1994, 587-592. Los Alamitos, CA: IEEE
Computer Society Press.

Thompson, P. M., and Toga, A. W. (1996-7). Detection,
visualization and animation of abnormal anatomic structure
with a deformable probabilistic brain atlas based on random
vector field transformations. Medical Image Analysis
1(4):271-294.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

II Segmentation

Troccaz, J., Grimson, E., and Mosges, R., eds. (1997).
Proc. First Joint Conf. Computer Vision, Virtual Reality
and  Robotics in Medicine and Medical Robotics
and  Computer-Assisted ~ Surgery (CVRMed-MRCAS’97),
Grenoble, France, March, 1997, volume 1205 of Lectures
Notes in Computer Science. Berlin, Germany: Springer-
Verlag.

Turk, G. (1992). Re-tiling polygonal surfaces. In Computer
Graphics (Proc. SSIGGRAPH’92 Conf., Chicago, IL, July, 1992),
volume 26(2), 55-64. ACM SIGGRAPH.

Ueda, N., and Mase, K. (1992). Tracking moving contours
using energy-minimizing elastic contour models. In Sandini,
G., ed., Computer Vision—Proc. Second European Conf. on
Computer Vision (ECCV’92), Santa Margherita Ligure, Italy,
May, 1992, Lectures Notes in Computer Science, 453—457.
Springer-Verlag.

Vaillant, M., and Davatzikos, C. (1997). Mapping the
cerebral sulci: Application to morphological analysis of the
cortex and non-rigid registration. In Duncan and Gindi
(1997), 141-154.

Vasilescu, M., and Terzopoulos, D. (1992). Adaptive
meshes and shells: Irregular triangulation, discontinuities
and hierarchical subdivision. In Proc. Conf. Computer
Vision and Pattern Recognition (CVPR’92), Urbana, IL,
June, 1992, 829-832. Los Alamitos, CA: IEEE Computer
Society Press.

Vemuri, B. C., and Radisavljevic, A. (1994). Multiresolution
stochastic hybrid shape models with fractal priors. ACM
Trans. on Graphics 13(2):177-207.

Vemuri, B. C., Radisavljevic, A., and Leonard, C. (1993).
Multiresolution 3D stochastic shape models for image
segmentation. In Colchester, A.C.E.  and Hawkes,
D. J., eds., Information Processing in Medical Imaging:
Proc. 13th Int. Conf. (IPMI'93), Flagstaff, AZ, June, 1993,
Lectures Notes in Computer Science, 62-76. Springer-
Verlag.

Wang, Y., and Staib, L. H. (1998). Elastic model based non-
rigid registration incorporating statistical shape information.
In Wells et al. (1998), 1162—-1173.

Waters, K. (1992). A physical model of facial tissue and
muscle articulation derived from computer tomography
data. In Robb, R. A, ed., Proc. Second Conf. on
Visualization in Biomedical Computing (VBC’92), Chapel
Hill, NC, October, 1992, volume 1808 of SPIE Proc., 574—
583. Bellingham, WA: SPIE.

Wells, W., Colchester, A., and Delp, S., eds. (1998). Medical
Image Computing and Computer-Assisted Intervention: Proc.
Ist Int. Conf. (MICCAI’98), Cambridge, MA, USA, October,
1998, volume 1496 of Lectures Notes in Computer Science.
Berlin, Germany: Springer.

Whitaker, R. (1994). Volumetric deformable models. In Ref.
[118].

Widrow, B. (1973). The rubber mask technique, part I
Pattern Recognition 5(3):175-211.



8 Deformable Models

155.

156.

157.

158.

159.

Worring, M., Smeulders, A. W. M., Staib, L. H., and
Duncan, J. S. (1996). Parameterized feasible boundaries
in gradient vector fields. Computer Vision and Image
Understanding 63(1):135-144.

Xu, C., and Prince, J. L. (1998). Snakes, shapes, and gradient
vector flow. IEEE Transactions on Image Processing 359-369.
Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., and
Tannenbaum, A. (1997). A geometric snake model for
segmentation of medical imagery. IEEE Trans. on Medical
Imaging 16(2):199-209.

Young, A., and Axel, L. (1992). Non-rigid wall motion using
MR tagging. In Proc. Conf. Computer Vision and Pattern
Recognition (CVPR’92), Urbana, IL, June, 1992, 399—-404. Los
Alamitos, CA: IEEE Computer Society Press.

Young, A. A., Axel, L., Dougherty, L., Bogen, D. K., and
Parenteau, C. S. (1993). Validation of tagging with MR

160.

161.

162.

163.

145

imaging to estimate material deformation. Radiology
188:101-108.

Young, A. A., Kraitchman, D. L., Dougherty, L., and Axel, L.
(1995). Tracking and finite element analysis of stripe
deformation in magnetic resonance tagging. IEEE Trans. on
Medical Imaging 14(3):413-421.

Yuille, A. L., Hallinan, P. W., and Cohen, D. S. (1992). Feature
extraction from faces using deformable templates.
International Journal of Computer Vision 8:99—111.

Zeng, X., Staib, L. H., Schultz, R. T., and Duncan, J. S. (1998).
Segmentation and measurement of the cortex from 3D MR
images. In Ref. [152], pp. 519-530.

Zienkiewicz, O. C., and Taylor, R. L. (1989). The Finite
Element Method. New York, NY: McGraw-Hill.






Shape Constraints in
Deformable Models

Lawrence H. Staib INtroduction . . ..o\ttt 147
Xiaolan Zeng 20 Background. . . ... 147
Robert T. Schultz 2.1 Tissue Classification + 2.2 Deformable Models « 2.3 Statistical Shape Models « 2.4 Overview
James S. Duncan 3 Deriving Image Feature Information .. .......... .. ... ... ... . ... ..... 149
Yale University 4 Global Shape Constraints. .. .. .......o.iutniit i, 149

4.1 Integration » 4.2 Initial Testing on Human Subjects
Amit Chakraborty 5 Level Set Methods Incorporating Generic Constraints . ..................... 152
Siemens Corporate Research 5.1 Level Set Method » 5.2 Coupled Surfaces Propagation: Speed Term Design « 5.3 Validation

5.4 Images from Human Subjects « 5.5 Cortical Shape, Thickness, and Surface Area « 5.6 Sulcal

Surface Determination

6 COonCIUSIONS. . .« vttt e 156
REfEIeNCES . . o o v e ettt e e 156

1 Introduction

Deformable models for medical image segmentation are often
enhanced by their use of prior shape information. Some
problems are well suited to the constraints that global shape
information provides, where the shapes of the organs or
structures are very consistent and are well characterized by a
specific shape model. Other problems involve structures whose
shapes are highly variable or have no consistent shape at all and
thus require more generic constraints. We describe approaches
to these two types of segmentation problems illustrating the
varying uses of shape information. For the first, we describe
integrated approaches in a maximum a posteriori formulation
using parametric models with associated probability densities.
For the second, we describe level set methods which incorpo-
rate powerful generic shape constraints, in particular, a
thickness constraint. These approaches are illustrated with
examples from images of the heart and brain. We will discuss
the development of these ideas, current methodology and
future directions.

2 Background

Tremendous advances have been made in medical imaging
technology during the last decade and the need for automated

Copyright © 2000 by Academic Press.
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techniques for the difficult problems involved in the measure-
ment of structure has greatly increased. Reliable, valid, and
efficient methods are needed to quantify image information
using all available prior information. Boundary finding in
medical images has been a critical problem addressed by many
in recent years. The two principal sources of image-derived
information that are used by most segmentation methods are
region-based and boundary-based. In addition, extrinsic
information from prior knowledge of shape or shape char-
acteristics can be brought to bear on the problem in the form of
shape models, constraints, atlases, etc.

2.1 Tissue Classification

Region-based methods use tissue classification to assign voxels
to classes based on the gray level of the voxel, the gray level
distribution of the image, neighboring voxels, or other
measures of homogeneity. Markov random fields [16,23]
have been used to model probabilistic constraints on image
gray levels to aid in classification. Wells et al. [41] proposed
estimating brain tissue classes (gray, white, CSF) while
simultaneously estimating the underlying magnetic resonance
bias field using an expectation-maximization (EM) strategy.
Other work includes that of Cline et al. [8], who use a
multispectral voxel classification method in conjunction with
connectivity to segment the brain into different tissue types
from 3D magnetic resonance (MR) images. Although all of
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these methods work to some extent, region-based methods
typically require further processing to group segmented regions
into coherent structure(s), and hence constraints based on
topological or geometric coherence cannot be easily built into
the processing. This inability makes such techniques limited
when applied to medical images where such constraints are a
necessity. A number of techniques use ad hoc postprocessing
after intensity classification using a sequence of arithmetic,
logic or morphologic operations [4, 5, 17] with varying success.

2.2 Deformable Models

A large amount of work has been carried out using deformable
surfaces for 3D boundary finding particularly using the snakes
approach of Kass et al. [20]. Close initialization is needed in order
to achieve good results; outward balloon forces can help with this
problem. Deformable surface models using the finite-element
method have also been used [9]. However, the need to override
local smoothness to allow for the significant protrusions that
a shape may possess (which is highly desirable in order to
capture, for example, the folds of the cortex) remains a problem.
Another type of deformable model involves level set methods
[25,26,32], which are powerful techniques for analyzing and
computing interface motion. The essential idea is to represent
the boundary of interest as a propagating wavefront. Equations
governing the motion are developed so that the boundary
propagates along its normal direction with a speed controlled as
a function of surface characteristics (e.g., curvature, normal
direction) and image characteristics (e.g., gray level, gradient).
This powerful approach can be extended, as will be described
later, to include generic shape constraints in order to control the
behavior of the standard level set algorithms, which may be
unsuccessful when the image information is not strong enough.

A number of groups have attempted to develop variations of
deformable models specifically for solving the problem of
segmenting cortical gray matter, a particular challenge to such
methods and an important application area. Davatzikos and
Bryan used a ribbon for modeling the outer cortex and
proposed an active contour algorithm for determining the
spine of such a ribbon [13]. However, close initialization and
human interaction are still needed to force the ribbon into the
sulcal folds. Xu et al. [42] used gradient vector flow fields in
conjunction with tissue membership functions as a way of
better controlling the deformation of snakelike active contour
models for finding the central cortical layer halfway between
the gray/white and gray/CSF boundaries. Teo et al. [37] used a
system that exploited knowledge of cortical anatomy, in which
white matter and CSF regions were first segmented, then the
connectivity of the white matter was verified in regions of
interest. Finally, a connected representation of the gray matter
was created by growing out from the white matter boundary.
MacDonald et al. [24] designed an iterative algorithm for
simultaneous deformation of multiple surfaces to segment MR
brain images with intersurface constraints and self-intersection
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avoidance using cost function minimization. This approach
takes advantage of the information of the interrelation between
the surfaces of interest, but is computationally expensive, and it
requires tuning a number of weighting factors in the cost
function. Kapur et al. [19] also use a snake approach, in
conjunction with EM segmentation and mathematical mor-
phology. Although volume measurement may be reliable with
this approach, the shape of the outer surface is poorly
representative of the true surface.

2.3 Statistical Shape Models

Statistical models can be powerful tools for directly capturing
the variability of structures being modeled. Such techniques are
a necessity for the segmentation of structure that is consistent in
shape but poorly defined by image features, as is often the case in
medical images. Atlas registration for the purposes of segmenta-
tion [10, 14] is one way of using prior shape information. Collins
et al. [11], for example, segment the brain using an elastic
registration to an average brain, based on a hierarchical local
correlation. The average brain provides strong prior informa-
tion about the expected image data and can be used to form
probabilistic brain atlases [38]. A variety of specific parametric
models for prior shape have been used successfully in our
laboratory [34,35,40] and by other groups [12,36,39] for
segmentation. The statistics of a sample of images can be used to
guide the deformation in a way governed by the measured
variation of individuals. Staib and Duncan use prior probabil-
ities to model deformable objects with a Fourier representation
for segmentation [34,35]. The prior is computed based on
statistics gathered from a sample of image-derived shapes.
Point-based models and their associated statistics are used in
medical images for segmentation [12,40]. They represent
objects using a principal-component analysis of a sample of
shapes. The use of principal components has also been adapted
for the Fourier representations by Szekély et al. [36]. Others have
used moment-based constraints [30] to incorporate shape
information. Region-based information can be combined with
prior models in a single-objective [7,33] or game-theoretic
manner [6] in order to enhance the robustness of the approach.

2.4 Overview

We categorize segmentation problems into two types: the
delineation of structure of known shape whose form is a
continuous variation around a mean shape and the finding of
more complex structure that varies significantly between
individuals. In the first case, we have developed an integrated
method using parametric shape models applied to structures
such as the caudate in the subcortex of the brain and the left
ventricle of the heart. In the second, we have developed a
coupled level-set approach, applied primarily to the cortex of
the brain. These methods have been tested on a variety of
synthetic and real images.
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3 Deriving Image Feature Information

In order to distinguish tissue specific gray-level transitions,
such as occur at the bounding surfaces of the cortical layer, we
have designed a gray-level-based local operator to obtain the
likelihood of each voxel lying on the surface separating specific
tissue types, such as gray and white matter, instead of using the
gradient information alone.

We make the assumption of an image I, in which voxels
belonging to tissue A are independently drawn from a Gaussian
distribution G(uy,0,), and voxels belonging to tissue B are
independently drawn from G(ug,0p). Thus, at a possible
boundary with normal direction 0 dividing the neighborhood
of this site into parts R1 and R2, we have:

=, 1 2.2 1 2.2
0) = = ) /ey e e
Pan(6) H V21o, H V2nog

reRl teR2
(1)

The direction and magnitude of the estimate are given by the
maximum of p,; [45].

In Fig. 1, we show an example of the result from our local oper-
ator, applied to the gray—white transition and to the gray—-CSF
transition. These results can be used for detecting, for example,
the outer and inner cortical surfaces respectively [43—45].

4 Global Shape Constraints

We apply our integrated boundary finding and region-based
segmentation to the problem of locating structure from images
where there is prior knowledge of shape that can be represented
in a global shape model. We want to determine the surface (or
curve, in 2D) parameters that correspond to the structure that
matches both the boundary strength in the image and the
region homogeneity properties.

(®)

FIGURE 1
(b) result from gradient operator; (c) result from our local operator py-(0"), B = gray matter, C = white matter; (d) p,5(0*), A=CSE
B = gray matter. Our local operator responds selectively to the designated gray-level transition.
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We represent curves [34] and surfaces [35] using a Fourier
parameterization. It is a strong model concisely represented
in terms of parameters and easily allows the incorporation
of prior shape information. Associated parameter prob-
ability distributions are used to introduce a bias toward an
expected range of shapes. A surface is represented by three
coordinate functions of two surface parameters as
x(u,v) = (x(u,v), y(u,v), z(u,v)) where each is represented
by a Fourier parametrization:

K K
flu,v) = Z Z[am.’l cos mucos Iv + by, ; sin mu cos lv

m=0 [=0

+ €y cOs musin lv 4 d,,, ; sin mu sin 1v]. (2)

The weights on each of the terms form the parameter vector p
to be optimized. The series is truncated at K so that only a finite
number of harmonics are used, in order to limit the search
space dimensionality and constrain the space of functions.
Different types of surfaces (e.g., open, closed) can be modeled
by constraining the parameter values [35].

We model the image as a Markov random field (MRF) and
use a Maximum a posteriori (MAP) probability approach to do
region-based classification [27,7,33]. This approach classifies
each voxel into a particular tissue type based on its gray level
and neighboring voxels in order to ensure a smooth segmenta-
tion.

4.1 Integration

Integration can be achieved in a sequential manner, where the
region-based segmentation is determined first, and then that
information is used to optimize the boundary:

m)}n F'(X) = m)}n[fl (X)),

min F(p,X) = min(,(p) + Bfix (p, X)]- (3)

Results from our local operator compared to image gradient. (a) Axial slice from a 3D T1-weighted MR brain image;

—
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Here, X represents the output of the region-based process and p
represents the output of the boundary finding module. In the
first equation, f;(X) represents the region-based information
and it is optimized to agree with the gray-level models for the
tissue types and smoothness as defined by the MRF [7]. In the
second, f,(p) represents the shape prior-driven Bayesian
contribution of the boundary finding module. The contribu-
tion of the boundary module is essentially the integral of the
boundary strength at each point on the current surface (or
curve), thus enforcing agreement of the determined boundary
to the boundary strength in the image. f;,(p, X) represents the
interaction term that uses the output X of the region process
and is essentially an integral over the current region of the
classification to the desired tissue type, thus encouraging
uniform classification within the region. Both modules operate
on the image, which forms the common input; however, the
region module operates on the gray-level values directly, while
the boundary module makes its decision based on boundary
strength derived from the image.

A more powerful approach, however, is the game theoretic
formulation [29], where two interacting modules are present,
one related primarily to boundary finding and the other
primarily related to region growing, but each containing
coupling terms that feed information related to the other
module:

min F' (X, p) = min[f; (X) + ofy, (X, p)],
nlpian(aX) = min[£,(p) + fia(p, X))- (4)

In the first equation, in addition to the MRF term, there is an
additional interaction term, f,;(X,p), that uses the latest
available output p of the boundary module and represents the
agreement of the voxels within the current boundary with the
assumed gray-level distribution for the indicated tissue type. In
the second, the terms are the same, however, the interaction
term f;,(p, X) uses the latest available output X of the region
process. Here, instead of sequential optimization, the modules
assume the roles of players in a two-player game and are
optimized in parallel. The cost function of each module
includes the output from the other module that comes as
feedback. The game continues until the players find it
impossible to improve their positions unilaterally, that is,
without cooperation from the other player. This natural
stopping point of the parallel decision making process
constitutes the Nash equilibrium solution.

To visualize the Nash equilibrium [1], Fig. 2 shows constant
level or isocost curves of F'(-) and F?(-) for a simple two-
dimensional situation. For fixed p', say, p! = p', the best D,
can do is to minimize F? along the line p' = p'. Assuming that
this minimization problem admits a unique solution, the
optimal response of the second (player) decision maker D, is
determined in the figure as the point where the line p' = p' is
tangent to an isocost curve F2(-) = constant. For each different
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p', a different unique optimal response can be found for D,,
and the collection of all these points form ,, the reaction curve
of D,. The reaction curve I, of the first player D, is similarly
constructed. By definition, the Nash solution must lie on both
reaction curves, and thus if these curves meet at only one point,
the Nash solution exists and is unique.

The Nash equilibrium solution for game theoretic integra-
tion (which can be thought of as the most “rational” decision
under the circumstances) is the natural counterpart of the
global optimum obtained using the sequential objective
optimization approach, although we have found it to be
more robust to noise and initialization [7]. This technique has
been applied to a variety of 2D [7] and 3D [33] problems.

In order to compute the contribution of the region based
information, it is necessary to compute a volume integral
over the region (in two dimensions, an area integral). We
can save a lot of computation, especially when we carry out
an iterative optimization procedure, if we convert the
volume integral to an area integral using Gauss’ divergence
theorem [2]. Since an area integral must already be
computed because of the boundary information, the order
of the computational complexity is not increased. We
therefore construct a function whose divergence is the
function we wish to integrate by integrating in each of the
coordinate directions. Then we can simply compute the area
integral of this function during the optimization process
(see [33] for details), greatly reducing the necessary compu-
tation.

-

)
F = constsnt

o
\
L)

Nash Eguilibwienm

p! p!

FIGURE 2 In a simple game theoretic formulation, constant level curves
for F!(-) and F?(-) and the corresponding reaction curves (/; and },) of D;
and D, are shown. The Nash equilibrium lies at the intersection of the
reaction curves.
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Testing of the integrated method based on the use of shape
prior information and game theoretic reasoning has been
performed on a range of synthetic 3D shapes, as shown in Fig.
3, as well as a variety of human data (as in Fig. 4) [33]. Plots of
the robustness of this approach to noise and initialization are
shown in Fig. 3 showing the improvement of the integrated
method.

4.2 Initial Testing on Human Subjects

In the brain, some subcortical structures often have poor
contrast between gray and white matter. Some gray-matter
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structures have striate regions, which appear with intermediate
intensity. These structures, however, are less variable, in terms
of shape, than the cortex. Thus, prior shape information is
often necessary here in order to identify boundaries. In Fig. 4,
we demonstrate the performance of the 3D integrated method
on subcortical structure examples: the head of the right caudate
nucleus and the left thalamus. Using the integrated method
with a prior shape model, along with region and boundary
information, the proper boundaries are found.

Although this method is fairly robust to initialization, the
use of a prior shape model sometimes requires manual
initialization of position and pose. We have developed a 3D
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FIGURE 3

(Left) Synthetic shape used to generate noisy 3D test image. (Middle) Noise performance of the surface finder with and without region

information. The combined method has a lower average error for this example, especially at low SNR. (Right) Performance of the surface finder with and
without region information under different starting positions varied by shifting the initialization vertically. Clearly, the combined method is superior.

FIGURE 4 Results of surface finding for the head of the left caudate nucleus (top row) and the right thalamus (bottom row) in an MR image. (Left)
Three perpendicular slices through the 3D image (1.2 mm? voxels) are shown with the surface obtained using both the boundary and the region
information and the wireframe. (Right) Manual delineation of the same structures showing good agreement.
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visualization tool [31] that allows control of the translation,
rotation and scale of the initial model, with reference to the 3D
dataset, as shown in Fig. 5.

5 Level Set Methods Incorporating
Generic Constraints

We have developed a coupled surfaces approach for automa-
tically segmenting a volumetric layer from a 3D image [43—45].
This approach uses a set of coupled differential equations, with
each equation determining the evolution or propagation of a
surface within a level set framework. In the case of the cortex,
one surface attempts to localize the white matter/gray matter
(WM/GM) inner cortical boundary and the other the gray
matter/cerebrospinal fluid (GM/CSF) outer boundary.
Coupling between the surfaces incorporates the notion of an
approximately fixed thickness separating the surfaces every-
where in the cortex. This soft constraint helps in ensuring that
the GM/CSF boundary is captured even in the deeper cortical
folds in the brain. A further assumption is that across each
surface there is a local difference in the gray-level values, while
in between the two surfaces there is a homogeneity of gray
levels. By evolving two embedded surfaces simultaneously, each
driven by its own image-based information, while maintaining
the coupling, we are able to achieve an automatic and robust
segmentation of the cortex, and simultaneously obtain a
representation of the inner and outer cortical surfaces.

3_Card_View

Rok

Roty |

FIGURE 5 Platform for initializing shapes within subcortical structures
[31]. See also Plate 8.
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5.1 Level Set Method

For our purposes, the volumetric layer is defined completely by
its bounding surfaces and the homogeneity in between. The
essential idea is to first represent each cortical surface (in this
case) as a front y(¢). Given a moving closed front y(¢), the idea
is to produce an Eulerian formulation for the motion of this
surface propagating along its normal direction with speed E
where F can be a function of geometric surface characteristics
and image characteristics (such as those described earlier).
Such a formulation can be produced by embedding the
propagating interface as the zero level set of a higher
dimensional function ¥ defined by W(x,t) = d, where d is
the signed distance from position x to y(t). The equation of
evolution of ¥, inside which our surface is embedded as the
zero level set, is given by W, 4+ F|V¥| = 0. As ¥(x, ) evolves,
it remains a function. However, the propagating hypersurface
7(¢) may change topology, break, merge, and form sharp
corners as the function ¥ changes. This flexibility greatly assists
in the convergence to complex structures. In addition, the level
set approach facilitates structural measurement through the
direct computation of geometric parameters, such as curvature
and thickness, via the level set function. For example, the
intrinsic geometric properties of the front may be computed
directly and accurately from the level function '¥'. At any point
on the front, the outward normal vector is given by 7 = V¥,
and the mean curvature is easily obtained from the divergence
of the gradient of the unit normal vector to front, that is,
K=V-(V¥/|V¥)).

5.2 Coupled Surfaces Propagation: Speed Term
Design

In solving the problem of segmenting the cortical gray matter
layer bounded by two surfaces, we consider two moving
interfaces describing the bounding surfaces. Starting from
inside the inner bounding surface (gray/white boundary), with
an offset in between, the interfaces propagate along the normal
direction, stopping at the desired place, while maintaining the
distance between them. Embedding each surface as the zero
level set in its own level function, we have two equations,
lIJin, + Fin|V\Pin| =0 and lIIoutt + Fout|V\P0ut| = 0’ where Fin
and F,, are functions of the surface normal direction, image-
derived information, and the distance between the two
surfaces. The coupling is embedded in the design of F;, and
F, .- Where the distance between the two surfaces is within the
normal range for cortical thickness, the two surfaces propagate
according to the image-based information; where the distance
between the two surfaces is out of the normal range, the
distance constrains the propagation. We define

Fn = 8(Pant—wat (07)) (¥ o),
Fou = 8(pese—am (07))h(Wyy). (5)
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Function g smoothly maps larger gray level transition prob-
ability (Eq. 1) to slower speed, i.e., as the probability gets larger,
g tends to zero, while as the probability approaches zero, g
tends to a constant. Function 4 smoothly penalizes the distance
outside of the normal range. As the distance between the
surfaces goes out of normal range, h goes to zero, while within
the normal range, h is constant. Thus, each surface moves with
constant speed along the normal direction, and slows down or
stops when either the image-based information becomes strong
or the distance to the other surface moves away from the
normal range. Surface renderings showing the inner and outer
cortical layers found from a normal 3D brain MR image using
this approach are shown in Fig. 6. A 2D example showing the
delineation of the endocardium and epicardium of the left
ventricle from an MR heart image is shown in Fig. 7. Here, the
thickness constraint is much wider to allow for the larger
variation in the thickness of the myocardium.

5.3 Validation

For algorithm testing with ground truth information, we used
brain images from an MRI simulator [22] developed at the
Montreal Neurological Institute (MNI) [28]. The images are
generated using a labeled source image that allows users to
independently control various acquisition parameters and
obtain realistic MR images. The ground truth of the phantom
is provided in the form of membership functions for each voxel

153

belonging to different tissue types, such as the skull, CSF, gray
matter, and white matter.

We tested our cortical coupled surface segmentation algo-
rithm on simulated T1-weighted images of a normal brain
from the MNI simulator. Starting from the unedited images,
user interaction is required to initialize the concentric spheres
within the white matter. The spheres grow out and automa-
tically lock onto the inner and outer cortical surfaces. As long
as the spheres are placed inside the white matter, the algorithm
is robust to starting position. To evaluate the segmentation
result we defined the following measures. TP rate for a
particular tissue type T is defined as the percent of phantom
defined tissue voxels that were found by the algorithm. FP rate
is defined as the percentage of algorithm defined tissue voxels
that were not defined by the phantom. We also define the
volume ratio to be the volume of all the voxels segmented as of
tissue type T by our algorithm to the total partial volume of
tissue type T specified by the phantom ( partial volume voxels
contribute proportionally). Table 1 shows our measurement
results over four types: total brain tissue (including white and
gray matter), cortical gray matter in selected slices, and frontal
white matter. Since the algorithm is designed specifically for
the nearly constant thickness of the cerebral cortex, it recovers
only part of the gray matter in the brain stem and the
cerebellum where the constant thickness constraint is not
satisfied. These regions account for most of the errors in the TP
rate and volume ratio for the whole brain tissue. We compare
the cortical gray matter volume on 49 frontal and 56 coronal

FIGURE 6 Results of coupled level set cortical segmentation. (a) Initialization of pairs of concentric spheres in 3D MR brain images (frontal part); (b)
intermediate step; (c) final result of the outer (top) and inner (bottom) cortical surfaces of the frontal lobe; (d) single vs coupled surfaces approach.
(Upper) Surfaces resulting from single surface approach shown on a sagittal image (finding the inner and outer cortical surfaces separately). (Lower)

Results from the coupled surfaces approach run on original 3D data overlaid on a sagittal slice of the expert tracing result. The outer cortical surface
resulting from the coupled algorithm nicely fits the boundary from the expert tracing. Coupling prevents the inner surface from collapsing into CSF(*1)
and the outer surface from penetrating nonbrain tissue(*2). See also Plate 9.
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FIGURE 7 From left to right, evolving coupled level set for heart segmentation showing initialization, through intermediate and final results

on the epicardium (red) and endocardium (green). See also Plate 10.

slices where there is only white matter and cortical gray matter.
These results show that our algorithm performs well in
isolating the brain from non-brain tissues and in segmenting
the cortex from simulated data.

5.4 Images from Human Subjects

We have applied our cortical segmentation to true image data
in an effort to further evaluate our approach. A quantitative
comparison of our algorithm’s results and those obtained by
expert manual tracing was performed using a small set
(N =14) of studies. We compared either whole brain
volume or cortical gray matter volume using our algorithm
with that from the expert tracing. We found an average true
positive rate of 95.2% for whole brain, a false positive rate of
3.9% for whole brain, and a true positive rate of 86.6% for
cortical gray matter. These rates are very good and could be
improved even further by adding the missing part of the brain
stem and cerebellum by hand editing within minutes.

5.5 Cortical Shape, Thickness, and Surface Area

A large battery of measurements have been recorded, including
measures related to both cortical and subcortical volume and
shape. Figure 8 shows the inner and outer cortical surfaces of a
frontal lobe colored with their shape indices [21], enabling
automatic identification of gyri (mostly ridges) and sulci

TABLE 1 Cortex segmentation validation: comparison of coupled
algorithm volume measurements with MNI phantom ground truth®

Whole Cortical gray White
TP rate 92.3 93.0 92.4
FP rate 2.0 6.0 3.3
Volume ratio 96.3 103.3 98.1

*Whole brain includes gray and white matter; cortical gray is measured on
coronal and axial slices with no subcortical structure.

(mostly ruts). For any point on the outer cortical surface, the
absolute value of ¥;, at the point is simply the distance from
the point to the inner cortical surface. Using this measure, we
obtain a thickness map between the inner and outer cortical
surfaces, which can be used to study the normal thickness
variations in different regions as well as abnormalities. We have
recorded the spatial variation in normal thickness for N = 30
normal subjects as seen in Fig. 9. These measurements are in
good agreement with direct measurement of thickness in
postmortem samples, which average about 3 mm across the
whole brain [3]. Moreover, the cortical thickness of the frontal
lobes is significantly greater (paired #(28) = 10.4, p<.0001)
than the thickness of the posterior cortex. This is consistent
with other sources on cortical thickness, including postmortem
data [3]. Also, two areas of posterior cortex expected to be
thinner, the postcentral gyrus and the primary and secondary
visual cortices in the occipital lobe, across the 30 control
subjects tested, are found to be consistently relatively thinner as
expected, as seen in Fig. 9, providing a degree of further
validation.

Cortical surface area is also easily captured and measured
from our segmentation approach. Our method yields area
measurements from the inner and outer cortical surfaces for the
entire cerebrum. Both inner (GM/WM) (1823 + 170 cm?) and
outer (GM/CSF) surface area estimates (15274271 cm?) are
commensurate with postmortem neuroimaging estimates of
about 1600 mm* [15,18]), suggesting that our approach is
accurate. However, the smaller outer compared to inner surface
area points to some error in our method due to incomplete
representation of the outer surface deep within some of the
more tightly packed sulci.

5.6 Sulcal Surface Determination

Cortical surface determination facilitates further analysis by the
determination of sulcal surfaces [46]. First, sulcal curves at the
top and bottom of the sulcus can be automatically traced after
the specification of start and end points using dynamic
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FIGURE 8 The inner and outer cortical surfaces of a brain colored according to the
corresponding shape index [21]. See also Plate 11.

Oceipital Cortex Postceniral Gyrus
Region Thickness
(Lobe) (mm) (+ SD)
Left Frontal 3.40(0.43)
Right Frontal 3.25(0.42)
Left Posterior* 3.06(0.41)
Right Posterior* 3.00(0.40)

thickness(mm)

1 2 3 4 5
FIGURE 9 Measurement of cortical thickness. (Left) Table reporting mean thickness values for N = 30 normal control males. Note:
*Posterior region encompasses all parietal, temporal, and occipital cortical tissue. (Right) Thickness plots of two normal brains (one brain:

a,b; second brain: ¢) showing marked thinning in the postcentral gyrus and primary and secondary visual cortices in the occipital lobe. See
also Plate 12.

(b)

FIGURE 10 Sulcal surfaces shown with cutaway view of brain (b) and on outer cortical rendering (c). See also Plate 13.
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programming based on a surface maximum principal curva-
ture cost function. Sulcal ribbon surfaces (shown in Fig. 10)
can then be determined between these curves, deforming the
surface between these curves based on the distance function of
the surface within the sulcus.

6 Conclusions

Although the situations requiring global shape models and
more generic constraints are different, ultimately, these
techniques will likely benefit from each other. Generic
constraints could be incorporated into global shape methods
to augment their descriptive power, while global shape models
could be incorporated into level set methods to take
advantage of their convergence properties. This would allow
both global shape and generic properties to be applied, to the
degree they are available, resulting in increased robustness and
accuracy.
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1 Introduction

Deformable models are curves or surfaces defined within an
image domain that can move under the influence of internal
forces coming within the model itself and external forces
computed from the image data. The internal and external
forces are defined so that the model will conform to an object
boundary or other desired features within an image.
Deformable models are widely used in many applications,
including edge detection [5,10], shape modeling [15,18],
segmentation [8, 12], and motion tracking [12, 19].

There are two general types of deformable models in the
literature today: parametric deformable models [4, 10,15, 18]
and geometric deformable models [2,3,14]. In this chapter, we
focus on parametric deformable models, which synthesize
parametric curves or surfaces within an image domain and
allow them to move toward desired features, usually edges.
Typically, the models are drawn toward the edges by potential
forces, which are defined to be the negative gradient of potential
functions. Additional forces, such as pressure forces [4],
together with the potential forces make up the external forces.
There are also internal forces designed to hold the model
together (elasticity forces) and to keep it from bending too
much (bending forces).

There have been two key difficulties with parametric
deformable models. First, the initial model must, in general,
be close to the true boundary, or else it will likely converge to
the wrong result. Several methods have been proposed to
address this problem, including multiresolution methods [11],

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

pressure forces [4], and distance potentials [5]. The basic idea
is to increase the capture range of the external force fields and to
guide the model toward the desired boundary. The second
problem is that deformable models have difficulties progres-
sing into boundary concavities [1,7]. There has been no
satisfactory solution to this problem, although pressure forces
[4], control points [7], domain-adaptivity [6], directional
attractions [1], and the use of solenoidal fields [16] have been
proposed. Most of the methods proposed to address these
problems, however, solve only one problem while creating new
difficulties. For example, multiresolution methods have
addressed the issue of capture range, but specifying how the
deformable model should move across different resolutions
remains problematic. Another example is that of pressure
forces, which can push a deformable model into boundary
concavities, but cannot be too strong or “weak” edges will be
overwhelmed [17]. Pressure forces must also be initialized to
push out or push in, a condition that mandates careful
initialization.

In this chapter, we present a class of external force fields for
deformable models that addresses both problems just listed.
These fields, which we call gradient vector flow (GVF) fields, are
dense vector fields derived from images by solving a vector
diffusion equation which diffuses the gradient vectors of a
gray-level or binary edge map computed from the image. GVF
was first introduced in [23] and a generalization to GVF was
then proposed in [22]. In this chapter, we present the GVF in
the context of its generalized framework. We call the deform-
able model that uses the GVF field as its external force a GVF
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deformable model. The GVF deformable model is distinguished
from nearly all previous deformable model formulations in
that its external forces cannot be written as the negative
gradient of a potential function. Because of this, it cannot be
formulated using the standard energy minimization frame-
work; instead, it is specified directly from a dynamic force
equation.

Particular advantages of the GVF deformable model over a
traditional deformable model are its insensitivity to initializa-
tion and its ability to move into boundary concavities. As we
show in this chapter, its initializations can be inside, outside, or
across the object’s boundary. Unlike deformable models that
use pressure forces, a GVF deformable model does not need
prior knowledge about whether to shrink or expand toward the
boundary. The GVF deformable model also has a large capture
range, which means that, barring interference from other
objects, it can be initialized far away from the boundary. This
increased capture range is achieved through a spatially varying
diffusion process that does not blur the edges themselves, so
multiresolution methods are not needed. The external force
model that is closest in spirit to GVF is the distance potential
forces of Cohen and Cohen [5]. Like GVE, these forces originate
from an edge map of the image and can provide a large capture
range. We show, however, that unlike GVE, distance potential
forces cannot move a deformable model into boundary
concavities. We believe that this is a property of all conservative
forces that characterize nearly all deformable model external
forces, and that exploring nonconservative external forces,
such as GVE is an important direction for future research in
deformable models.

This chapter is organized as follows. We focus our most
attention on the 2D case and introduce the formulation for
traditional 2D parametric deformable models in Section 2. We
next describe the 2D GVF formulation in Section 3 and
demonstrate its performance on both simulated and real
images in Section 4. We then briefly present the formulation for
3D GVF deformable models and their results in two examples
in Section 5. Finally, in Section 6, we conclude this chapter and
point out future research directions.

2 Background

2.1 2D Parametric Deformable Models

A traditional 2D parametric deformable model or deformable
contour is a curve x(s) = [x(s),y(s)],s€[0,1], that moves
through the spatial domain of an image to minimize the energy
functional

E= [ RO+ A OP) + Ealx(ods ()

where o and f are weighting parameters that control the
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deformable contour’s tension and rigidity, respectively, and
x'(s) and x”(s) denote the first and second derivatives of x(s)
with respect to s. The external potential function E_, is derived
from the image so that it takes on its smaller values at the
features of interest, such as boundaries. Given a gray-level
image I(x,y) viewed as a function of continuous position
variables (x,y), typical external potential functions designed to
lead a deformable contour toward step edges are [10]

EN (x,y) = —|VI(x, )| 2)

ES (x,y) = —IV(G,(x.7) * I(x, )’ (3)

where G, (x,y) is a two-dimensional Gaussian function with
standard deviation ¢ and V is the gradient operator. If the
image is a line drawing (black on white), then appropriate
external energies include [4]

EQ)(x,) = I(x,y) (4)

EX)(x,7) = G,(x,y) * I(x,y). (5)

It is easy to see from these definitions that larger ¢’s will cause
the boundaries to become blurry. Such large ¢’s are often
necessary, however, in order to increase the capture range of
the deformable contour.

A deformable contour that minimizes E must satisfy the
Euler equation [10]

ox”(s) — Bx"(s) — VE,, = 0. (6)

This can be viewed as a force balance equation
Fiu + E{L =0 (7)

where Fy,, = ax(s) — px"'(s) and F®) = —VE,. The
internal force F;, discourages stretching and bending while
the external potential force ng pulls the deformable contour
toward the desired image edges.

To find a solution to (6), the deformable contour is made
dynamic by treating x as function of time ¢ as well as s—i.e,,
x(s, t). Then, the partial derivative of x with respect to tis then

set equal to the left-hand side of (6) as follows:
x,(s,t) = ax"(s,t) — Bx""(s,t) — VE,. (8)

When the solution x(s, t) stabilizes, the term x,(s, t) vanishes
and we achieve a solution of (6). A numerical solution to (8)
can be found by discretizing the equation and solving the
discrete system iteratively (cf. [10]). We note that most
deformable contour implementations use either a parameter
that multiplies x, in order to control the temporal step size, or
a parameter that multiplies VE,,, which permits separate
control of the external force strength. In this chapter, we
normalize the external forces so that the maximum magnitude
is equal to 1, and use a unit temporal step size for all the
experiments.
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2.2 Behavior of Traditional Deformable Contours

An example of the behavior of a traditional deformable
contour is shown in Fig. 1. Figure la shows a 64 x 64-pixel
line-drawing of a U-shaped object (shown in gray) having a
boundary concavity at the top. It also shows a sequence of
curves (in black) depicting the iterative progression of a
traditional deformable contour (o = 0.6, = 0.0) initialized
outside the object but within the capture range of the
potential force field. The potential force field th) = —VES,;)
where ¢ = 1.0 pixel is shown in Fig. 1b. We note that the final
solution in Fig. la solves the Euler equations of the
deformable contour formulation, but remains split across
the concave region.

The reason for the poor convergence of this deformable
contour is revealed in Fig. 1c, where a close-up of the external
force field within the boundary concavity is shown. Although
the external forces correctly point toward the object boundary,
within the boundary concavity the forces point horizontally in
opposite directions. Therefore, the deformable contour is pulled
apart toward each of the “fingers” of the U-shape, but not
made to progress downward into the concavity. There is no
choice of o and f that will correct this problem.

Another key problem with traditional deformable contour
formulations, the problem of limited capture range, can be
understood by examining Fig. 1b. In this figure, we see that the
magnitude of the external forces die out quite rapidly away
from the object boundary. Increasing ¢ in (5) will increase this
range, but the boundary localization will become less accurate
and distinct, ultimately obliterating the concavity itself when ¢
becomes too large.

Cohen and Cohen [5] proposed an external force model that
significantly increases the capture range of a traditional

(a)

FIGURE 1

161

deformable model. These external forces are the negative
gradient of a potential function that is computed using a
Euclidean (or chamfer) distance map. We refer to these forces
as distance potential forces to distinguish them from the
traditional potential forces defined in Section 2.1. Figure 2
shows the performance of a deformable contour using distance
potential forces. Figure 2a shows both the U-shaped object (in
gray) and a sequence of contours (in black) depicting the
progression of the deformable contour from its initialization
far from the object to its final configuration. The distance
potential forces shown in Fig. 2b have vectors with large
magnitudes far away from the object, explaining why the
capture range is large for this external force model.

As shown in Fig. 2a, this deformable contour also fails to
converge to the boundary concavity. This can be explained by
inspecting the magnified portion of the distance potential
forces shown in Fig. 2c. We see that, like traditional potential
forces, these forces also point horizontally in opposite direc-
tions, which pulls the deformable contour apart but not
downward into the boundary concavity. We note that Cohen
and Cohen’s modification to the basic distance potential forces,
which applies a nonlinear transformation to the distance map
[5], does not change the direction of the forces, only their
magnitudes. Therefore, the problem of convergence to
boundary concavities is not solved by distance potential forces.

3 GVF Deformable Contours

Our overall approach is to use the dynamic force equation (8)
as a starting point for designing a deformable contour. We now

(b) (¢)

(a) The convergence of a deformable contour using (b) traditional potential forces, (c) shown close-up within the boundary

concavity. Reprinted from C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 7(3):359-369,

March, 1998. ©1998 IEEE.
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(a) The convergence of a deformable contour using (b) distance potential forces, (c) shown close-up within the boundary

concavity. Reprinted from C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 7(3):359-369,

March, 1998. ©1998 IEEE.

define a novel external force field v(x) called gradient vector
flow (GVF) field and replace the potential force — VE,, in (8)
with v(x), yielding

x,(s,t) = ax"(s,t) — Bx"" (s, t) + v(x). (9)

We call the parametric curve solving this dynamic equation a
GVF deformable contour. It is solved numerically by discretiza-
tion and iteration, in identical fashion to the traditional
deformable contour [10].

Although the final configuration of a GVF deformable
contour will satisty the force-balance equation (7), this
equation does not, in general, represent the Euler equations
of the energy minimization problem in (1). This is because v(x)
cannot, in general, be written as the negative gradient of a
potential function. The loss of this optimality property,
however, is well compensated by the significantly improved
performance of the GVF deformable contour.

3.1 Edge Map

We begin by defining an edge map f (x) derived from the image
I(x) having the property that it is larger near the image edges."
We can use any gray-level or binary edge map defined in the
image processing literature (cf. [9]); for example, we could use

f(x) = —El(x) (10)

where i = 1, 2, 3 or 4. Three general properties of edge maps
are important in the present context. First, the gradient of an

'Other features can be sought by redefining f(x) to be larger at the desired
features.

edge map Vfhas vectors pointing toward the edges, which are
normal to the edges at the edges. Second, these vectors
generally have large magnitudes only in the immediate vicinity
of the edges. Third, in homogeneous regions, where I(x) is
nearly constant, Vfis nearly zero.

Now consider how these properties affect the behavior of a
traditional deformable contour when the gradient of an edge
map is used as an external force. Because of the first property, a
deformable contour initialized close to the edge will converge
to a stable configuration near the edge. This is a highly
desirable property. Because of the second property, however,
the capture range will be very small, in general. Because of the
third property, homogeneous regions will have no external
forces whatsoever. These last two properties are undesirable.
Our approach is to keep the highly desirable property of the
gradients near the edges, but to extend the gradient map farther
away from the edges and into homogeneous regions using a
computational diffusion process. As an important benefit, the
inherent competition of the diffusion process will also create
vectors that point into boundary concavities.

3.2 Gradient Vector Flow

We define the GVF field v(x) as the equilibrium solution to the
following vector diffusion equation:

u, = g(|Vf))V*u — h(|Vf])(u - Vf)
u(x,0) = Vf(x).

In Eq. (11a), the first term on the right is referred to as the
smoothing term since this term alone will produce a smoothly
varying vector field. The second term is referred as the data
term since it encourages the vector field u to be close to Vf

(11a)
(11b)
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computed from the data. The weighting functions g(-) and k()
apply to the smoothing and data terms, respectively. Since
these weighting functions are dependent on the gradient of the
edge map, which is spatially varying, the weights themselves are
spatially varying, in general. Since we want the vector field u to
be slowly varying (or smooth) at locations far from the edges,
but to conform to Vf near the edges, g(-) and h(-) should be
monotonically nonincreasing and nondecreasing functions of
IVf1, respectively.
In [23], the following weighting functions were chosen:

gV =
h(\Vf]) = [VfI".

Since g(-) is constant here, smoothing occurs everywhere;
however, h(-) grows larger near strong edges, and should
dominate at the boundaries. Thus, GVF computed using such
weighting functions should provide good edge localization.
The effect of smoothing becomes apparent, however, when
there are two edges in close proximity, such as when there is a
long, thin indentation along the boundary. In this situation,
GVF tends to smooth between opposite edges, losing the forces
necessary to drive a deformable contour into this region.

To address this problem, in [22] we proposed weighting
functions in which g(-) gets smaller as h(-) becomes larger.
Then, in the proximity of large gradients, there will be very
little smoothing, and the effective vector field will be nearly
equal to the gradient of the edge map. There are many ways to
specify such pairs of weighting functions. In [22], the following
weighting functions were used:

(12a)

(12b)

g(Vf]) = e (VKT
H(VfD) =1 = g(IVf1)-

The GVF field computed using such weighting functions will
conform to the edge map gradient at strong edges, but will vary
smoothly away from the boundaries. The specification of K
determines to some extent the degree of trade-off between field
smoothness and gradient conformity.

The vector diffusion equation (11) specifying GVF with
various weighting functions can be implemented using an
explicit finite difference scheme described in [23], which is
stable if the time step At and the spatial sample intervals Axand
Ay satisfy

(13a)
(13b)

< AxAy
- 4gmax

At

where g, is the maximum value of g(-) over the range of
gradients encountered in the edge map image. Although an
implicit scheme for the numerical implementation of (11)
would be unconditionally stable and therefore not need this
condition, the explicit scheme is faster. Still faster methods —
for example, the multigrid method — are possible.
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In most examples, the use of either (12) or (13) produces
very similar results. Here, we will demonstrate most of the
properties of GVF using (12). When necessary to contrast their
performance, we will refer to the GVF using (12) and (13) as
GVF-I and GVEF-II, respectively.

4 Experiments

In this section, we first show several examples of GVF field
computations on simple objects and demonstrate several key
properties of GVF deformable contours. We then show the
results of applying GVF deformable contours on both a noisy
image and a real MR image. We used o = 0.6 and f§ = 0.0 for
all deformable contours and p = 0.2 for GVF unless stated
separately. The deformable contours were dynamically repar-
ameterized to maintain contour point separation to within
0.5-1.5 pixels (cf. [13]). All edge maps used in GVF computa-
tions were normalized to the range [0, 1].

4.1 Convergence to Boundary Concavity

In our first experiment, we computed the GVF field for the
same U-shaped object used in Figs 1 and 2. The results are
shown in Fig. 3. Comparing the GVF field shown in Fig. 3b
to the traditional potential force field of Fig. 1b reveals
several key differences. First, like the distance potential force
field (Fig. 2b), the GVF field has a much larger capture range
than traditional potential forces. A second observation,
which can be seen in the close-up of Fig. 3¢, is that the
GVF vectors within the boundary concavity at the top of the
U shape have a downward component. This stands in stark
contrast to both the traditional potential forces of Fig. 1c and
the distance potential forces of Fig. 2c. Finally, it can be seen
from Fig. 3b that the GVF field behaves in an analogous
fashion when viewed from the inside of the object. In
particular, the GVF vectors are pointing upward into the
“fingers” of the U shape, which represent concavities from
this perspective.

Figure 3a shows the initialization, progression, and final
configuration of a GVF deformable contour. The initialization
is the same as that of Fig. 2a, and the deformable contour
parameters are the same as those in Figs 1 and 2. Clearly, the
GVF deformable contour has a broad capture range and
superior convergence properties. The final deformable con-
tour configuration closely approximates the true boundary,
arriving at a subpixel interpolation through bilinear inter-
polation of the GVF force field.

As discussed in Section 3.2, the GVF-I field tends to smooth
between opposite edges when there is a long, thin indentation
along the object boundary while the GVF-II field does not.
Figure 4 demonstrates this performance difference. Using an
edge map obtained from the original image shown in Fig. 4a,



164

(a)

(b)

- -
E il
A
- -

II Segmentation

8w owm om

T T

(I Y g_'., .

[ l‘,--' L
]

o o T

& —i—

- R e

e

o o e W

&

. ———-—

e T b
L]

= ‘- o

- ome =

s ‘,‘.- .. .
LT

(c)

FIGURE 3 (a) The convergence of a deformable contour using (b) GVF external forces, (c) shown close-up within the boundary concavity.
Reprinted from C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 7(3):359—369, March, 1998.
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FIGURE 4 (a) A square with a long, thin indentation and broken boundary; (b) GVF-I field (zoomed); (c) GVF-II field (zoomed); (d) initial
contour position for both the GVF-I deformable contour and the GVF-II deformable contour; (e) final result of the GVF-I deformable contour; and
(f) final result of the GVF-II deformable contour. Reprinted from Signal Processing, 71, C. Xu and J. L. Prince, Generalized gradient vector flow

external forces for active contours, 131-139, © 1998 with permission from Elsevier Science.
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both the GVF-I field (1 =0.2) and the GVF-II field
(K =0.05) were computed, as shown zoomed in Figs 4b
and 4c, respectively. We note that in this experiment both the
GVF-I field and the GVF-II field were normalized with respect
to their magnitudes and used as external forces. Next, a
deformable contour (o = 0.25, = 0) was initialized at the
position shown in Fig. 4d and allowed to converge within
each of the external force fields. The GVF-I result, shown in
Fig. 4e, stops well short of convergence to the long, thin,
boundary indentation. On the other hand, the GVF-II result,
shown in Fig. 4f, is able to converge completely to this same
region. It should be noted that both GVF-I and GVF-II have
wide capture ranges (which is evident because the initial
deformable contour is fairly far away from the object), and
they both preserve subjective contours (meaning that they
cross the short boundary gaps).

(c)
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4.2 Results on Gray-Level Images

The underlying formulation of GVF is valid for gray-level
images as well as binary images. To compute GVF for gray-level
images, the edge-map function f(x, y) must first be calculated.
Two possibilities are f()(x,y) = |VI(x,y)| or fP(x,y) =
[V(G,(x,y) * I(x, y))|, where the latter is more robust in the
presence of noise. Other more complicated noise-removal
techniques such as median filtering, morphological filtering,
and anisotropic diffusion could also be used to improve the
underlying edge map. Given an edge-map function and an
approximation to its gradient, GVF is computed in the usual
way as in the binary case.

Figure 5a shows a gray-level image of the U-shaped object
corrupted by additive white Gaussian noise; the signal-to-noise
ratio is 6 dB. Figure 5b shows an edge-map computed using

(d)

FIGURE 5 (a) A noisy 64 x 64-pixel image of a U-shaped object; (b) the edge map |V(G, * I)|* with o = 1.5; (c) the GVF
external force field; and (d) convergence of the GVF deformable contour. Reprinted from C. Xu and J. L. Prince, Snakes, shapes,
and gradient vector flow. IEEE Trans. on Image Processing, 7(3):359—369, March, 1998. ©1998 IEEE.
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f(x,y) = f@(x, y) with ¢ = 1.5 pixels, and Fig. 5c shows the
computed GVF field. It is evident that the stronger edge-map
gradients are retained while the weaker gradients are smoothed
out. Superposed on the original image, Fig. 5d shows a
sequence of GVF deformable contours (plotted in a shade of
gray) and the GVF deformable contour result (plotted in
white). The result shows an excellent convergence to the
boundary, despite the initialization from far away, the image
noise, and the boundary concavity.

Another demonstration of GVF applied to gray-scale
imagery is shown in Fig. 6. Figure 6a shows a magnetic
resonance image (short-axis section) of the left ventricle of a
human heart, and Fig. 6b shows an edge map computed using
f(x,y) = f@(x,y) with ¢ = 2.5. Figure 6¢ shows the com-
puted GVE and Fig. 6d shows a sequence of GVF deformable
contours (plotted in a shade of gray) and the GVF deformable

II Segmentation

contour result (plotted in white), both overlaid on the
original image. Clearly, many details on the endocardial
border are captured by the GVF deformable contour result,
including the papillary muscles (the bumps that protrude into
the cavity).

5 3D GVF Deformable Models and
Results

Both the GVF and the deformable contour formulations can be
readily extended into three dimensions. In fact, 3D GVF has the
identical formulation as the 2D GVF described in Eq. (11) since
it is written in a dimension-independent form. Examples of
work on 3D deformable models, known also as deformable
surfaces, can be found in [5, 15].

()

(d)

FIGURE 6 (a) A 160 x 160-pixel magnetic resonance image of the left ventricle of a human heart; (b) the edge map
|V(G, * I)| with ¢ = 2.5; (c) the GVF field (shown subsampled by a factor of 2); and (d) convergence of the GVF deformable
contour. Reprinted from C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing,

7(3):359-369, March, 1998. © 1998 IEEE.
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FIGURE 7 (a) Isosurface of a 3D object defined on a 64> grid; (b) positions of planes A and B on which the 3D GVF vectors are depicted in (c) and (d),
respectively; (e) the initial configuration of a deformable surface using GVF and its positions after (f) 10, (g) 40, and (h) 100 iterations. Reprinted from
C. Xu and J. L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 7(3):359-369, March, 1998. ©1998 IEEE.

FIGURE 8 A surface rendering of reconstructed cortical surface from one subject displayed from multiple views: (a) top, (b) left, and
(c) medial. Cross-sectional views of the same reconstructed cortical surface superimposed on the extracranial-tissues-removed MR
brain images: (d) axial, (e) coronal, and (f) sagittal. Reprinted from C. Xu, D. L. Pham, M. E. Rettman, D. N. Yu, and J. L. Prince.
Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. on Medical Imaging, 18(6):467—-480, June
1999. © 1999 IEEE.
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Figure 7 shows an experiment using a GVF deformable surface
on a simulated 3D image created on a 64° grid. The object to be
reconstructed, rendered using an isosurface algorithm, is
shown in Fig. 7a. The 3D GVF field was computed using a
numerical scheme similar to the one of 2D with u = 0.15. This
GVF result on the two planes shown in Fig. 7b is shown
projected onto these planes in Figs 7c and 7d. The same
characteristics observed in the 2D GVF field are apparent here
as well. A deformable surface using 3D GVF was initialized as
the sphere shown in Fig. 7e, which is neither entirely inside nor
entirely outside the object. Intermediate results after 10 and 40
iterations of the deformable surface algorithm are shown in
Figs 7f and g. The final result after 100 iterations is shown in
Fig. 7h. The resulting surface is smoother than the isosurface
rendering because of the internal forces in the deformable
surface model.

Figure 8 shows an example of using the GVF deformable
surface to reconstruct a surface representation of the central
layer of the human cerebral cortex from a 3D MR brain image.
Details of this work can be found in [20, 21].

6 Conclusions

We have introduced a novel external force model for deform-
able models, which we called the gradient vector flow (GVF)
field. The field is calculated as a diffusion of the gradient
vectors of a gray-level or binary edge map. We have shown that
it allows for flexible initialization of the deformable model and
encourages convergence to boundary concavities.

Further investigations into the nature and uses of GVF are
warranted. In particular, a complete characterization of the
capture range of the GVF field would help in deformable model
initialization procedures. It would also help to more fully
understand the GVF-I parameter u and the GVF-II parameter
K, perhaps finding a way to choose them optimally for a
particular image, and to understand the interplay between the
GVF parameters and the deformable model parameters o and
p. Also, the GVF framework might be useful in defining new
connections between parametric and geometric deformable
models, and might form the basis for a new geometric
deformable model. Finally, making connections between GVF
and other applications in image processing, computer vision,
and medical imaging might provide some new insights or even
new solutions to existing problems.
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1 Introduction

In studies of brain pathology, such as multiple sclerosis (MS)
[25], regions of interest (ROIs) that must be well defined are
often examined in detail in magnetic resonance images (MRIs).
Traditionally, ROIs are outlined manually by a skilled operator
using a mouse or cursor. Computer-assisted methods are used
for specific applications such as extraction of MS lesions from
MRI brain scans [18,36], or extraction of the cerebral
ventricles in schizophrenia studies [11]. In many cases, the
computer-assisted tasks need to segment the whole brain from
the head. Typically this may be required either because the
whole brain is the ROI, such as in studies of alcoholics [16] or
Alzheimer’s patients [13], or because automated extraction
using statistical methods is facilitated if the skull and scalp have
been removed from the image [18]. In this chapter we present a
fully automated method we have developed that is in common
use in our research setting [4]. The chapter also includes an
overview of several other methods for automated segmentation
of the brain in MRI.

Fully automated segmentation algorithms have to set their
parameters such as thresholds automatically, they must address
the partial volume effect in a reasonable manner, and they must
work in the presence of typical radio-frequency (RF) inhomo-
geneities. Fully automated methods must be robust— in other
words, they must provide consistent segmentation on images
acquired from any MR scanner using different fields-of-view,
relaxation times, and slice thicknesses.

Hybrid methods that include both image-processing and

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

model-based techniques are particularly effective for brain
segmentation [1,4,19,21]. The hybrid method [4] presented
in this chapter starts with a thresholding step followed by a
morphological erosion to remove small connections between
the brain and surrounding tissue. It removes eyes and other
nonbrain structures with a model-based approach followed by
more image processing consisting of a morphological dilation
to recover some of the eliminated tissue. A final refinement of
the brain contour is achieved by an active contour algorithm
[20].

In our method, the threshold for an initial segmentation is
computed automatically by applying an anisotropic diffusion
filter to the image and using the resulting voxel intensity
histogram. The method, which is based partly on 2D data and
partly on 3D data, operates best on routine axially displayed
multispectral dual-echo proton density (PD) and T2 (spin—
spin relaxation time) sequences. This method has been
successfully used to segment the brain in each slice of many
head images from many different MRI scanners (all 1.5 tesla),
using several different spin-echo images with different echo
times. Examples of brain segmentations obtained with this
method are shown in Fig. 1.

This method also works well on axial and coronal 3D T1-
weighted SPGR (Spoiled Gradient) sequences. However, on
sagittally displayed 3D T1-weighted images, it cannot be used
in a fully automated manner because such images require
accurate localization of cortical convolutions. In these images
parameters have to be adjusted to ensure that the thin dark
brain areas will be included and to keep the cerebellum

171
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FIGURE 1 Automatic brain segmentation using our method.

attached to the rest of the brain, which has to be separated from
the back of the neck tissue and the cheeks. Sagittally displayed
images can be segmented with other techniques such as those
described in [1, 10, 14, 16, 19].

2 Brain Segmentation Method

Segmentation is achieved in three stages as shown in Fig. 2:
removal of the background using intensity histograms, gen-
eration of an initial mask that determines the intracranial
boundary with a nonlinear anisotropic diffusion filter, and
final segmentation with an active contour model [22]. The use
of a visual programming environment such as WiT [3] makes
prototype development more convenient by allowing some
exploration [5]. Preferably the T2-weighted image is used;
otherwise the PD-weighted or T1-weighted image may also be
used for segmentation. RF inhomogeneities are addressed by
the smoothing obtained with the nonlinear anisotropic diffu-
sion, which also reduces the intensity of regions that do not
belong to the brain." In the third stage, the relative insensitivity
of the active contours to partial volume effects provides
consistent edge tracking for the final segmentation. This
sequence of operations provides a relatively robust approach
that results in good segmentation even in the presence of RF
inhomogeneity, where simple thresholding techniques would
be difficult to use.

Two types of prior knowledge are needed in the second stage,
wherease the first and third stages do not require prior
information. The first type of prior information relates to
tissues other than the brain, for example, the scalp and eyes.
Knowledge of the anatomic location of the different structures
indicates that the centroid of the brain has to be close to the
centroid of the entire slice image. The fact that the brain has a

'Sled’s method can be used to correct severe inhomogeneities [28].

relatively higher intensity than other tissue in MR images
constitutes the second type of prior information. Using the
anisotropic diffusion filter on T2 (or PD) images, the majority
of the tissue other than the brain can be darkened, allowing a
simple threshold to be used subsequently for segmentation.

| PD Image I | T2 Image

Generate
Initial Brain
Mask

Diffused
T2 Image

X

Initial
Brain Mask

¥

Generate
Final Brain
Mask
3

FIGURE 2 A simplified data flow diagram representing automatic
intracranial boundary detection. Reprinted from M. S. Atkins and B.
Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE
Transactions on Medical Imaging, 17(1):98-107, February, 1998. © 1998
IEEE.
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2.1 Background Removal

Considering the fact that MR scanners typically generate
normally distributed white noise [12], the best threshold for
separating background noise is determined with the technique
of Brummer et al. [7]. In reconstructed MR data, background
noise has a Rayleigh distribution [17] given by

el = L o~ L5, 0

where fis the intensity and ¢ is the standard deviation of the
white noise. This distribution is observed in the lower
intensities of the uncorrected histogram of MR volumes as
illustrated in Fig. 3. A bimodal distribution g(f) is obtained if
the best fit Rayleigh curve, r(f), is subtracted from the volume
histogram, h(f):

g(f) = h(f) — r(f)- (2)

We can obtain a minimum error threshold, 7, by minimizing
an error term ¢, given by

o0

b= g+ o). )
f=0 f=t

Segmentation of the original image in Fig. 4a with this
automatic threshold 7 produces the head mask in Fig. 4b,
where some misclassified pixels within the head region and
speckle outside the head region are apparent. Morphological
operations with a small structuring element such as a 5x5
kernel can effectively remove such noise components [22], as
shown in Fig. 4c.
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FIGURE 3 A truncated histogram of a PD-weighted MR volume. The
background noise at the low end of the histogram is characterized by a
Rayleigh distribution. Reprinted from M. S. Atkins and B. Mackiewich.
Fully automatic segmentation of the brain in MRI. IEEE Transactions on
Medical Imaging, 17(1):98-107, February, 1998. © 1998 IEEE.
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2.2 Initial Brain Mask

The process that generates the initial brain mask has three
steps. First, it smooths the brain image using 2D nonlinear
anisotropic diffusion and attenuates narrow nonbrain regions.
Then, it sets an automated threshold to the diffused MR
volume and produces a binary mask. Third, it removes
misclassified nonbrain regions such as the eyes from the
binary mask based on morphology and spatial information
obtained from the head mask.

Nonlinear Anisotropic Diffusion

Nonlinear anisotropic diffusion filters introduced by Perona
and Malik [26] are tunable iterative filters that can be used to
enhance MR images [15]. Nonlinear anisotropic diffusion
filters can be used also to enhance and detect object edges
(24,26, 2].

The anisotropic diffusion filter is a diffusion process that
facilitates intraregion smoothing and inhibits interregion
smoothing:

%I(E, t) =Ve(c(x, t)VI(X,1)). (4)
Consider I(x, t) to be the MR image where X represents the
image coordinates (i.e., x, y), t is the iteration step, and ¢(%, t),
the diffusion function, is a monotonically decreasing function
of the image gradient magnitude. Edges can be selectively
smoothed or enhanced according to the diffusion function. An
effective diffusion function is [26]

(5. 1) = exp ( ('V}T”» )

where K is the diffusion or flow constant that dictates the
behavior of the filter. Good choices of parameters that produce
an appropriately blurred image for thresholding are K = 128
with 25 iterations and a time step value of just under 0.2.
Filtering can be fairly sensitive to these three parameters [22];
however, for all the PD-, T2-, and T1-weighted data sets
displayed axially or coronally, the preceding parameter settings
provide a good initial brain segmentation. The discrete
diffusion updates each pixel by an amount equal to the flow
contributed by its four nearest neighbors. If the flow
contribution of the diagonal neighbors is scaled according to
their relative distance from the pixel of interest, then eight
nearest neighbors can also be used [15] for diffusion. With this
approach anisotropic data also can be addressed.

Once nonlinear anisotropic diffusion attenuates the intensity
of the skull and other nonbrain regions, a simple low threshold
can be used to segment the brain and the eyes as shown in
Fig. 5. Simple thresholding would not be effective without
prior filtering with the diffusion technique.



174 II Segmentation

FIGURE 4 A head mask produced using automatic thresholding and morphological filtering. (a) Original image. (b) Initial head mask.
(c) Head mask after morphological filtering.
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FIGURE 5 Intracranial boundary detection using 2D nonlinear anisotropic diffusion filtering. (a) Original T2-weighted image. (b) 2D diffused image.
Diffusion reduces nonbrain tissues, enabling a simple threshold to segment the brain. Reprinted from M. S. Atkins and B. Mackiewich. Fully automatic
segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98-107, February, 1998. © 1998 IEEE.
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Automated Threshold

After diffusion filtering, brain voxel distribution becomes close
to normal for T2-weighted and even PD images. Consequently,
the threshold can be determined by fitting a Gaussian curve to
the histogram of the diffused volume data. For PD- and T2-
weighted slices, a good threshold is set at two standard
deviations below the mean [7]. For Tl-weighted axially
displayed images, the minimum value in the brain histogram
plot is selected as the threshold. This value typically corre-
sponds to about 0.5 standard deviations below the mean of the
fitted Gaussian. The voxel intensity histogram of a diffused T2-
weighted volume, the best fit Gaussian curve, and the selected
threshold are illustrated in Fig. 6. A binary mask produced by
the threshold is shown in Fig. 7.

Refinement of Mask

Misclassified regions, such as the eyes, that occur after
automatic thresholding (Fig. 7b) are removed using morpho-
logical filtering and spatial information provided by the head
mask. In each region of the binary mask, first holes are filled
and then binary erosion separates weakly connected regions.
The erosion operation uses a 10 x 10 binary matrix of 1’s whose
four corners have six symmetrically located 0’s providing a
hexagonal symmetric element with four pixels on each edge.
The width of this element is sufficient to separate the brain
from the eyes in all axial slices we studied whose fields of view
were between 200 and 260 mm. After the erosion operation, the
algorithm discards regions whose centroids are outside a
bounding box defined by the head mask illustrated in Fig. 8.
Dimensions of the bounding box in Fig. 8 yield good results for
data sets with the eyes up, for several fields of view. Different
parameters are needed for images with the eyes down, and for
coronally and sagittally displayed images. Two bounding boxes
will be required for sagitally displayed images where there is no
symmetry. The remaining regions are returned close to their
original size with binary dilation using the same 10 x 10 kernel.
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FIGURE 6 A histogram of the diffused T2-weighted MR scan with the
best fit Gaussian curve and threshold levels overlaid. Reprinted from M. S.
Atkins and B. Mackiewich. Fully automatic segmentation of the brain in
MRI. IEEE Transactions on Medical Imaging, 17(1):98-107, February, 1998.
© 1998 IEEE.

Since thresholding eliminates the darkest pixels at the brain
edge, this dilation step ensures that the mask is closer to the
required edge. The steps of mask refinement are illustrated in
Fig. 9.

2.3 Final Brain Mask

The final boundary between the brain and the intracranial
cavity is obtained with an active contour model algorithm that

FIGURE 7 A binary mask produced by automatic thresholding. (a) The diffused image slice.

(b) The corresponding binary mask.
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FIGURE 8 Spatial information from the head mask is used to eliminate
regions that are unlikely to correspond to brain tissue. Features whose
centroids fall outside the brain region bounding box are discarded.
Reprinted from M. S. Atkins and B. Mackiewich. Fully automatic
segmentation of the brain in MRI. IEEE Transactions on Medical
Imaging, 17(1):98-107, February, 1998. © 1998 IEEE.

Il Segmentation

uses the initial brain mask as its initial condition. The active
contour model, extended from the “Snakes” algorithm
introduced by Kass et al. [20], gradually deforms the contour
of the initial brain mask to lock onto the edge of the brain. The
active contour, described in Chapter 8, is defined as an ordered
collection of n points in the image plane such that

7vn}
i={1,...n}.

An energy minimization criterion iteratively brings the points
of the contour closer to the intracranial boundary. For each
point, v;, an energy matrix, E(v;), is computed:

V=1{v,...
{ (6)
vi = (%3, 71)s

(7)

Here, E,,,,,(v;) is a “continuity” energy function that forces the
contour to take a smooth shape, E,;(v;,) is an adaptive
“balloon” force used to push the contour outward until a
strong gradient is encountered [9], E,,,(v;) is an “intensity”
energy function, computed from the PD-weighted MRI
volume, that tends to move the contour toward low-intensity
regions, and E,,;(v;) is a “gradient” energy function, com-
puted from the diffused MRI volume, that draws the contour
toward regions where the image gradient is high. Relative

E(Vi) = aEcant(Vi) + ﬁEbal(Vi) + VEint(Vi) + KEgmd(Vi)’

FIGURE 9 Elimination of misclassified regions from the initial brain mask. The mask (a) produced by thresholding, (b) after
regions have been filled, (c) after binary erosion, (d) after elimination of nonbrain regions, and (e) after binary dilation. (f) shows
the initial brain mask overlaid on the PD-weighted slice.
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weights of the energy terms are provided by the scalar constants
o, B, 7, and x. This procedure moves each v; to the point of
minimum energy in its neighborhood. The active contour
model algorithm finds the intracranial boundary in all image
slices using the same relative energy weightings for the
combination of energy functions described earlier. The initial
brain mask falls completely within the brain owing to the
diffusion filtering. When this mask is poor, the adaptive
balloon force aides the active contour to reach the desired
edges. When partial volume effects are severe, the intensity
energy term guides the active contour and produces consistent
results. The gradient energy term computed on the diffused
volume significantly stabilizes the active contour algorithm
because the gradient derivatives are small in the diffused
volume data [22]. Figure 10 illustrates the active contour
model algorithm applied to the MR slice shown in Fig. 10.
Good results were obtained with o« =1, =2,y = 1.5, and
Kk = 2 on all data sets mentioned below [22].

2.4 Brain Studies and Validation

PD and T2 data sets were acquired axially on a GE 1.5 tesla MRI
scanner, with repetition time TR = 2000 ms, and echo times of
35 and 70 ms, respectively. The slice thickness was 5 mm and
the pixel size was 0.781 mm?®. Each data set had 22 slices with
256 x 256 pixels per slice and was scaled linearly from the
original 12-bit data to 8-bits. Figure 11 shows the intracranial
boundary determined by the algorithm on selected slices of
PD-weighted MR data where the boundary is accurate in all
slices, except in slices 6 and 7, where the pituitary gland and
basilar artery are included, and slice 5, where there is
insufficient exclusion of the petrous temporal bone. The
inclusion of pituitary gland and the petrous temporal bone
generally do not affect subsequent analysis of the brain data.
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Particularly in the high slices, the algorithm deals with the
partial volume effects consistently.

Comparable results are obtained with our algorithm on
more than 30 data sets from five scanners with fields of view
varying from 200 to 260 mm. The algorithm also works on
images acquired on a GE scanner with a SPRG sequence, with
TR 39 msec and Te 8 msec, pixel size 1.0156 mm?, and slice
thickness 2.5mm. The computer processing time for each
study for all the stages was less than 5min on a SUN SPARC
workstation — even the 120-slice 3D studies. In all cases, our
algorithm detects the intracranial boundary without user
interaction and without changing the parameters.

Tissue contours determined with a fully automated algo-
rithm have to be validated with a study that compares them to
contours traced manually by an expert. The similarity index
described by Zijdenbos et al. [36], derived from the kappa
statistic, can be used to compare an automated contour to one
drawn manually. Each binary segmentation can be considered
as a set A of pixels. The similarity between two segmentations
A, and A, is computed with a real number Se {0.. .1} defined
by

a0y

§=2 21 2l
A+ 14,

(8)

This similarity index is sensitive to both size and location
since it depends on their intersection as well as the sum of
their sizes. Two regions with equal size that overlap with half
of their area have S = 1/2, whereas a region that completely
covers a smaller one of half its size yields S =2/3. In this
manner, two regions where one fully encompasses the other
are more similar than two partially overlapping regions.
According to [36], good agreement is indicated by $>0.7,
but the absolute value of S may be difficult to interpret. As

FIGURE 10 Refinement of the intracranial contour. (a) The contour defined by the perimeter of the initial

brain mask. (b) The intracranial contour detected using the active contour model algorithm.
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an example, the similarity index for the two images in Figs
12a and 12b is 0.942.

In a validation study that we conducted, three volumes were
chosen and each volume was acquired using a different PD/T2-
weighted echo sequence, and a different field of view size. For
each volume, some axial slices were selected, such that the
entire range of the image volume from “low” to “high” slices
was covered. An expert radiologist traced the brain contour
manually on each slice and the manual contour was compared
with the automatically drawn contour using the similarity
index. Table 1 shows the number of pixels included inside the
manually drawn and automatically calculated brain contours as
well as the similarity index.

In axial slices containing the eyes, the algorithm usually
included the pituitary gland and basilar artery, and some-
times the internal carotid artery, whereas the radiologist
excluded these structures (Fig. 11, slices, 6 and 7). Also,
whereas the radiologist drew carefully around the petrous
temporal bone, it was often included by the algorithm (Fig.
10b). Figure 12 illustrates one of these eye slices where the
manual contour is in Fig. 12a and the automated contour is
in Fig. 12b.

In the high slices, manual contours were comparable to the
automated ones except in the extreme case of the top slice of
the 5mm thick datasets where the partial volume effect was
noticeable. The sagittal sinus was usually included by the
algorithm, whereas it was always excluded by the radiologist
(Fig. 11, slices 18, 20, and 22).

Overall, this algorithm provided a similarity index always
above 0.925, it was maximal 0.99 on middle slices, and dropped
to 0.95 on the highest slices. These results compare favorably
with those reported by others [19,1] as the brain volumes are
within 4% in most cases.

II Segmentation

3 Other Brain Segmentation Techniques

Many useful techniques are presented in Clarke et al.’s survey
of segmentation methods for MR images [8] where the
important question of validation is also discussed.
Techniques for segmenting the brain can be divided into
three main groups: simple threshold-based extraction of the
brain followed by refinement of brain contours; new atlas-
based methods; and statistical and region-growing methods. In
the following we summarize some examples by assuming that
intensity inhomogeneity has been corrected using a method
such as that of Sled et al. [28] so that thresholding techniques
can be used. Semiautomatic methods such as [35], where an
automatic threshold is found to guide the operator, are not
considered here.

3.1 Automated Thresholding for Brain Extraction

Aboutanos and Dawant [1] use histogram analysis to set the
threshold for 3D T1-weighted MP-RAGE (magnetization-
prepared rapid gradient echo) images where the gray matter is
darker than the white. The peak intensity of the gray matter
is selected as a lower threshold, and an upper threshold is set in
the vicinity of the upper boundary of the white matter where
the brain lobe starts to flatten. These parameters can be set
automatically, but in some cases, the resulting brain segmenta-
tion may underestimate the gray matter and may allow
attachment of the dura to the brain. This method for setting
threshold values is unique to the MP-RAGE acquisition
sequence. However, we have incorporated their thresholds
for 3D MP-RAGE volumes in our algorithm with some success,
although our results have yet to be validated.

TABLE 1 Comparison of manual and automated brain segmentation
Area of manual Area of automated
Slice contour contour Similarity

Dataset number (pixels) (pixels) index
1 4 8,912 10,269 0.925
1 20,264 22,472 0.929
1 8 22,035 23,918 0.954
1 23 20,109 20,341 0.980
1 24 15,909 17,201 0.958
1 25 12,122 13,194 0.952
2 2 15,386 16,549 0.942
2 25,935 26,072 0.986
2 12 27,402 27,346 0.989
3 7 14,705 15,639 0.961
3 8 17,648 18,645 0.967
3 17 17,552 18,027 0.984

Reprinted from M. S. Atkins and B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98-107,

February, 1998. © 1998 IEEE.
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FIGURE 11 An automatically detected intracranial contour overlaid on selected slices of a PD-weighted scan. Reprinted from M. S. Atkins and
B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98-107, February, 1998. © 1998 IEEE.

A fast hybrid automated technique suggested by Lemieux et
al. [21] for segmentation of the brain in T1-weighted volume
MRI data is similar to the one presented in this chapter, and it is
based on thresholding and 3D connectivity analysis. It requires
an accurate characterization of the gray matter and white matter

intensity histogram and also uses a model of the brain and
surrounding tissues in these images. The method is composed
of several image processing steps and has been validated on 20
normal scans. It is fast and appears to offer a useful complement
to our method for T1 sagitally displayed images.
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(a)

FIGURE 12

II Segmentation

(b)

Comparison of manual contour with automatic contour. (a) The intracranial contour

manually drawn by a radiologist. (b) The intracranial contour detected using the active contour model
algorithm. The similarity index of these two contours is 0.942. Reprinted from M. S. Atkins and
B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging,

17(1):98-107, February, 1998. © 1998 IEEE.

3.2 Brain Contour Refinement

Many contour refinement algorithms are based on the active
contour model algorithm, or snakes [20,23], described in
Chapter 8. Given an initial estimate of an object boundary,
active contours approach the actual boundary by solving an
energy minimization problem. Different enhancements are
required for different application domains. One enhancement
to the classic snakes algorithm for contouring the hippo-
campus in MR images is described in [27]. For brain images,
Vaillant and Dzavatzikos propose the use of a new active
contour algorithm for modeling the brain cortex as thin
convoluted ribbons embedded in three dimensions, which is
specifically designed for mapping the human cortex [33]. Their
results are promising, particularly for tracking into cortical
convolutions in high-resolution MR images. However, all these
methods require a good initial contour.

Aboutanos and Dawant [1] describe a geometric deformable
model used to refine an initial brain mask. Their deformable
model uses the pixel intensity along lines that are placed
approximately perpendicular to the initial contour. A five-term
cost matrix is associated with transforming the image to hug the
contours; in addition, a sixth term is required to repel the
optimum curve from image locations such as eye and skin
locations in T1-weighted images. The authors have found values
for these parameters that perform well on sagittally displayed
brain contours of 3D T1-weighted MP-RAGE volumes on many
volunteers, although the method requires a very good initial
contour and excess fat can affect results. Two iterations are
applied, and the blurred image is used to reduce the effect of
noise. This method looks very promising for T1 images, but no
results are presented for PD- and T2-weighted images.

3.3 Atlas-Based Methods

A recent automatic approach for segmentation of sagittally
acquired spoiled gradient echo pulse sequence head images
has been reported by Hartmann et al. for the study of brain
atrophy in alcoholic patients [16] (see Fig. 13). This method
starts with a rigid registration to register an atlas volume with
each patient volume and brings the volumes into global
correspondence. Then it uses a nonrigid transformation based
on Thirion’s method [30] to deform the volumes into local
correspondence. In this method, binary volumes of the brain
and cerebellum in the atlas are generated with manual
segmentation. The deformation field that warps the atlas to
the patient is applied to these binary volumes to create
intradural and cerebellum masks in that patient volume.
Contours have to be drawn on the atlas once, and all
subsequent segmentations are fully automatic. These auto-
matic brain and cerebellum segmentations are seen to be
accurate enough for measuring the brain volume. The
threshold for the elimination of CSF must be carefully
chosen and is done automatically in this case. This method
has been shown to work well on several patients, using an
atlas volume acquired in the same manner as those of the
patients. Hartmann’s technique shows great promise for
future development and use with sagittal T1-weighted MR
images, and possibly for conventional spin-echo pulse
sequence images.

Another atlas-based method has been developed by Collins et
al. for automatic segmentation of gross anatomical structures
of the brain [10]. Their method uses a probabilistic atlas and is
particularly effective for isolating the gyri. It has been validated
on 20 MRI volumes.
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FIGURE 13 Atlas-based automatic brain segmentation results.

3.4 Statistical Methods for Brain Segmentation

The performance and limitations of many supervised and
unsupervised statistical methods for MR segmentation are
discussed in a review by Bezdek et al. [6].

Kapur et al. [19] segment the brain in 3D gradient-echo MR
images by combining the statistical classification of Wells et al.
[34] with image processing methods. A single channel, non-
parametric, multiclass implementation of Well’s classifier based
on tissue type training points is used to classify brain tissues.
Further morphological processing is needed to remove con-
nected nonbrain components. The established brain contours
arerefined using an algorithm based on snakes. The combination
of statistical classification of brain tissue, followed by morpho-
logical operators, is effective in segmenting the brain from other
structures such as orbits in a semiautomated fashion.
Furthermore, Wells’s statistical classification method also
reduces the effect of RF inhomogeneity. However, Kapur’s
method requires some interaction to provide tissue training
pixels, and in 10% of volumes studied interaction is needed to
remove nonconnected brain tissue. The method is computa-
tionally intensive and has only been used on 3D T1 gradient-echo
data with slice thickness of 1.5 mm. Its performance on PD-T2
images with slice thickness of 5 mm remains to be determined.

Stringham et al. use the gradient magnitude as well as voxel
intensity with a statistical relaxation method for brain
segmentation [29]. This segmentation algorithm is robust in
the presence of RF inhomogeneity, but may not be able to
distinguish the brain form other tissues such as the eyes, as do
most Bayesian relaxation-based techniques [18]. User interac-
tion is required to seed the relaxation process.

Fuzzy-connectedness methods developed by Udupa and
Samarasekera [31] are based on knowledge of tissue intensities,
followed by statistical region-growing methods. This method
has been successfully used to segment the brain in 1000 multiple
sclerosis patients [32], but is rather computationally intensive.
Again, user interaction is required to seed the regions.

4 Summary

This chapter presented a fully automated hybrid intracranial
boundary detection algorithm that has proven effective on
clinical and research MR data sets acquired from several
different scanners using PD-T2 spin-echo sequences. The
algorithm has three sequential steps that provide first back-
ground removal, then an initial brain mask, and then a final
brain mask. In the first step, the head is localized using
histogram analysis, and a region that completely surrounds the
brain is generated. The second step applies a nonlinear
anisotropic diffusion filter and sets an automated threshold
to produce a mask that isolates the brain within the head region
of the first step. The third step uses this mask as an initial
position for an active contour algorithm to determine the final
intracranial boundary. This algorithm was robust in the
presence of RF inhomogeneities and partial volume effects. It
is in regular use for studies of multiple sclerosis lesions and
MRI-PET registration studies. The chapter also surveyed
several other methods for segmenting the brain from the
head, including T1 MR images.

Acknowledgments

Thanks go to the Natural Sciences and Engineering Research
Council of Canada and to the Multiple Sclerosis Society of
Canada for funding our research. The authors thank radio-
logist Dr. Benjamin Wong of the University of British
Columbia Hospital for providing expert advice and for
manually outlining the brain contours. We also thank Dr.
Don Paty and Dr. David Li of the University of British
Columbia MS/MRI Group for providing some of the MRI data
on which the algorithms were tested. We also thank Dr. Alex
MacKay, Dr. Ken Whittall, Andrew, Riddehough and Keith
Cover of the University of British Columbia MS/MRI Group
for providing expert advice, Dr. DeCarli from the NIH, for



182

providing some of MRI data sets used in these studies, and
Benoit Dawant and Steve Hartmann at Vanderbilt University
for providing some of the MRI data used in this chapter.

References

1.

10.

11.

G. B. Aboutanos and B. M. Dawant. Automatic brain
segmentation and validation: Image-based versus atlas-
based deformable models. Proceedings of the SPIE—
Medical Imaging 1997, 3034:299-310, February 1997.

. Luis Alvarez, Pierre-Louis Lions, and Jean-Michel Morel.

Image selective smoothing and edge detection by nonlinear
diffusion. SIAM ] Number. Anal., 29(3):845-866, June
1992.

. T. Arden and J. Poon. WiT User’s Guide. Logical Vision

Ltd., Burnaby, Canada, October 1999. Version 5.1. http://
www.logical-vision.com

. M. S. Atkins and B. Mackiewich. Fully automatic

segmentation of the brain in MRI. IEEE Transactions on
Medical Imaging, 17(1):98-107, Feb. 1998.

. M. S. Atkins, T. Zuk, B. Johnston, and T. Arden. Role of

visual languages in developing image analysis algorithms.
In Proceedings of the IEEE Conference on Visual Languages,
pages 262-269, St. Louis, MO, October 1994. IEEE.

. J. C. Bezdek, L. O. Hall, and L. P. Clarke. Review of MR

image segmentation techniques using pattern recognition.
Medical Physics, 20(4):1033-1048, 1993.

. M. Brummer, R. Mersereau, R. Eisner, and R. Lewine.

Automatic detection of brain contours in MRI data sets.
IEEE Transactions on Medical Imaging, 12(2):153-166,
June 1993.

. L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine,

M. Vaidyanathan, L. O. Hall, R. W. Thatcher, and M. L.
Silbiger. MRI segmentation: Methods and applications.
Magnetic Resonance Imaging, 13(3):343-368, 1995.

. L. Cohen. On active contour models and balloons.

Computer Vision, Graphics, and Image Processing: Image
Understanding, 53(2):211-218, March 1991.

D. L. Collins, A. Zijdenbos, W. Baare, and A. Evans.
ANIMAL + INSECT: improved cortical structure segmen-
tation. In A. Todd-Pokropek A. Kuba, M. Samal, editor,
Information Processing in Medical Imaging, LNCS
1613:450-455. Springer-Verlag, 1999.

D. Dean, P. Buckley, E Bookstein, J. Kamath, D. Kwon, L.
Friedman, and C. Lys. Three dimensional MR-based
morphometric comparison of schizophrenic and normal
cerebral ventricles. In Proceedings of Visualisation in Bio-
medical Computing 96, Vol. 1131, pages 363-372.
Springer-Verlag Lecture Notes in Computer Science,
Sept. 1996.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

II Segmentation

W. A. Edelstein, P. A. Bottomley, and L. M. Pfeifer. A
signal-to-noise calibration procedure for NMR imaging
systems. Medical Physics, 11(2):180-185, 1984.

P. A. Freeborough and N. C. Fox. Assessing patterns and
rates of brain atrophy by serial MRI: a segmentation,
registration, display and quantification procedure. In
Proceedings of Visualisation in Biomedical Computing 96,
Vol. 1131, pages 419-428. Springer-Verlag Lecture Notes
in Computer Science, Sept. 1996.

Y. Ge, J. M. Fitzpatrick, B. Dawant, J. Bao, R. Kessler, and
R. Margolin. Accurate localization of cortical convolutions
in MR brain images. IEEE Transactions on Medical
Imaging, 15(4):418—428, August 1996.

G. Gerig, O. Kiibler, R. Kikinis, and E Jolesz. Nonlinear
anisotropic filtering of MRI data. IEEE Transactions on
Medical Imaging, 11(2):221-232, June 1992.

S. L. Hartmann, M. H. Parks, H. Schlack, W. Riddle, R. R.
Price, P. R. Martin, and B. M. Dawant. Automatic
computation of brain and cerebellum volumes in normal
subjects and chronic alcoholics. In A. Todd-Pokropek, A.
Kuba, M. Samal, editors, Information Processing in Medical
Imaging, LNCS 1613:450—455. Springer-Verlag, 1999.

M. Henkelman. Measurement of signal intensities in the
presence of noise in MR images. Medical Physics,
12(2):232-233, 1985.

B. Johnston, M. S. Atkins, B. Mackiewich, an M. Anderson.
Segmentation of multiple sclerosis lesions in intensity
corrected multispectral MRI. IEEE Transactions on Medical
Imaging, 15(2):154-169, April 1996.

T. Kapur, W. E. L. Grimson, W. M. Wells III, and R. Kikinis.
Segmentation of brain tissue from magnetic resonance
images. Medical Image Analysis, 1(2), 1996.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer Vision,
321-331, 1988.

Louis Lemieux, Georg Hagemann, Karsten Krakow, and
Friedrich Woermann. Fast, automatic segmentation of the
brain in T1-weighted volume MRI data. Proceedings of the
SPIE— Medical Imaging 1999, 3661:152-160, February
1999.

B. Mackiewich. Intracranial boundary detection and radio
frequency correction in magnetic resonance images.
Master’s thesis, Simon Fraser University, Computer
Science Department: http://www.cs.sfu.ca/people/Faculty/
Atkins/grads.html, Burnaby, B.C., August 1995.

T. McInerney and D. Terzepoulos. Deformable models in
medical image analysis: a survey. Medical Image Analysis,
1(2):91-108, 1996.

N. Nordstrom. Biased anisotropic diffusion—a unified
generalization and diffision aapproach to edge detection.
Image Vision Comput., 8(4):318-327, 1990.

D. Paty. Interferon beta-1b in the treatment of multiple
sclerosis: Final outcome of the randomized controlled trial.
Neurology, 45:1277-1285, July 1995.



11

26.

27.

28.

29.

30.

31.

Fully Automated Hybrid Segmentation of the Brain

P. Perona and J. Malik. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(7):629-639, July
1990.

J. Schnable, L. Lemieux, U. Wieshmann and S. Arridge.
Measurement of hippocampal volume changes in serial
MRI scans. Proceedings of the SPIE— Medical Imaging
1999, 3661:1367-1376, February 1999.

J. Sled, A. Zijdenbos, and A. Evans. A non-parametric
method for automatic correction of intensity non-
uniformity in MRI data. IEEE Transactions on Medical
Imaging, 17(1):87-97, Feb. 1998.

R. R. Stringham, W. A. Barrett, and D. C. Taylor.
Probabilistic segmentation using edge detection and
region growing. In Proceedings of the SPIE: Visualization
in Biomedical Computing, 1992, Vol. 1808, pages 40-51,
Chapel Hill, NJ, 1992.

J-P. Thirion. Image matching as a diffusion process: an
analogy with Maxwell’s demons. Medical Image Analysis,
2(3):243-260, 1998.

J. Udupa and S. Samarasekera. Fuzzy connectedness and
object definition: theory, algorithms and applications in

32.

33.

34.

35.

36.

183

image segmentation. Graphical Models
Processing, 58(3):246-261, May 1996.

J. Udupa, R. Grossman, L. Nyul, Y. Ge, and L. Wei.
Multiprotocol MR image segmentation in Multiple
Sclerosis: experience with over 1000 studies. Proceedings
of the SPIE — Medical Imaging 2000, 3797:pages to appear,
February 2000.

M. Vaillant and C. Dzavatzikos. Finding parametric
representations of the cortical sulci using an active contour
model. Medical Image Analysis, 1(4):91-108, 1997.

W. M. Wells ITI, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz.
Adaptive segmentation of MRI data. IEEE Transactions on
Medical Imaging, 15(4):429—443, August 1996.

A. Worth, N. Makris, J. Meyer, V. Caviness and D.
Kennedy. Semiautomatic segmentation of brain exterior in
magnetic resonance images driven by empirical procedures
and anatomical knowledge. Medical Image Analysis,
2(4):315-324, 1998.

A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer.
Morphometric analysis of white matter lesions in MR
images: Method and validation. IEEE Transactions on
Medical Imaging, 13(4):716—724, December 1994.

and Image






12

Volumetric Segmentation

Alberto F. Goldszal I INtrodUction . .« .t vttt et e e e e 185
Dzung L. Pham 20 Background. . . ... 185
National Institutes of Health 3 TImage Segmentation Methods . . .. ...ttt 186
3.1 Thresholding « 3.2 Region Growing ¢ 3.3 k-Nearest-Neighbor (kNN) Classifier 3.4 Gaussian
Classifier/Clustering Methods « 3.5 Parzen Window Classifier « 3.6 Neural Networks « 3.7 Adaptive
Fuzzy c-Means Segmentation + 3.8 Adaptive Bayesian Segmentation
4 Comparison and Validation. . ......... .. .. i 190
5 Brain Image Segmentation via Normalization into Stereotaxic Space ........... 191
6 Concluding Remarks . ... ... it 192
References. ... ... 193

1 Introduction

In many medical imaging applications three-dimensional data
sets have to be segmented. In these cases, segmentation involves
categorizing voxels into object classes based on their local
intensity, spatial location, neighborhood, or shape character-
istics of a certain object class. The term “classification” is
sometimes loosely used in lieu of “segmentation”.

Segmentation plays an important role in biomedical image
processing. It is often the starting point for other processes,
including registration, shape analysis, motion detection,
visualization, and quantitative estimations of linear distances,
areas, and volumes. It is clear, however, that a single
segmentation technique is not capable of yielding acceptable
results for all different types of biomedical images. Quite often,
methods are optimized to deal with specific medical imaging
modalities such as magnetic resonance (MR) imaging and
X-ray computed tomography (CT), or modeled to segment
specific anatomic structures such as the brain, the liver, and the
vascular system.

In this chapter, we provide an overview of segmentation
methods used for quantitative volumetric analysis of human
brain images. Measurement of tissue volumes is an increasingly
important goal in medical imaging for studying structural
changes over time and correlating anatomical information with
functional activity or pathology. We describe and numerically
compare several methods that seek to segment MR images of
the brain into white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). Comparisons are made between
different methods solely for the purpose of tissue volumetrics.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

However, these methods may be employed for different tasks,
including diagnosis, localization of pathology, anatomy deli-
neation, computer-aided neurosurgery, treatment planning, or
correlation analysis with functional data. In addition, these
methods, with appropriate modifications, can be applied to
different anatomic regions, to different species, and to different
imaging modalities.

Section 2 provides a general overview of the segmentation of
MR brain images for quantification of tissue volumes. Next, in
Section 3, we describe several image segmentation algorithms,
including more recent techniques such as the adaptive Bayesian
[12,18] and the adaptive fuzzy c-means [34] algorithms. In
Section 4, the volumetric accuracy of these segmentation
methods is tested. Next, in Section 5; the concept of
transforming the segmentation problem into a registration
task is introduced for volumetric quantification of specific
brain structures. As an example, we describe a recently
proposed method based on stereotaxic normalization that
can be used for segmenting specific subcortical nuclei such as
the hippocampus, lenticular nucleus, and caudate nucleus [12].
Finally, in the concluding remarks we highlight the trends and
research opportunities in the medical image segmentation
field.

2 Background

Global quantification of tissue volumes from MR brain images
is typically accomplished using segmentation methods that

185
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attempt to classify each voxel in the image as GM, WM, or CSE
This classification is based predominantly on intensity
information from the image. In MR images, contrast between
tissue classes can vary according to the pulse sequence of the
acquisition. Furthermore, multiple MR images with varying
contrasts can be acquired of the same subject, thereby yielding
additional information for separating classes. The type of MR
data, as well as artifacts that may be present, can have
significant effects on segmentation performance.

Much of the literature has focused on quantifying volumes
using multi-spectral data like double-echo images formed by
spin density and T2-weighted sequences [1-7] or high-
resolution T1-weighted scalar data [8-12]. Figures 1la and 1b
illustrate a typical double-echo imaging of the brain, whereas
Fig. 1c depicts a T1-weighted image of the same brain. Figure
1d shows an example of a segmentation computed using the
T1-weighted image.

Double-echo images have been widely used in clinical
settings. They provide excellent contrast between CSF and
brain tissue. However, these images generally have thicker
slices and lower GM/WM contrast than high-resolution scalar
acquisitions. T1-weighted images, on the other hand, are
becoming the de facto standard for MR volumetrics. They
provide high-resolution data, good tissue contrast, and low
noise without major increases in acquisition time. One of the
main disadvantages of these images, however, is that contrast
between CSF and nonbrain tissue (e.g., dura) can be poor,
presenting difficulties in separating these tissue classes [12].

Two artifacts that can significantly affect the performance of
segmentation methods are partial volume effects and intensity
inhomogeneities. Partial volume effects occur where multiple
tissues contribute to a single voxel in the image, resulting in a
blurring of tissue boundaries. These artifacts can be modeled
using soft segmentation methods, which allow tissue classes to
overlap, rather than exclusively assigning a tissue class to a
voxel. There have been few results, however, demonstrating the
application of soft segmentations for volumetric quantification
purposes [13, 34]. Instead, soft segmentations typically are
converted into hard segmentations before volumes are meas-
ured. Intensity inhomogeneities cause a shading artifact to
appear over the image, degrading the performance of methods
that assume the intensity of a tissue class is constant over the
range of the image. Attempts to compensate for these artifacts
use either a prefilter that removes the inhomogeneities [3, 14—
16], or an adaptive segmentation that simultaneously com-
pensates for the shading (8,9, 12,17, 18].

In the next section, we describe several segmentation
methods. Although each method is described separately,
different techniques may be used in conjunction with one
another to optimize the segmentation of a scene. In addition,
removal of unwanted regions present in the scene may
considerably improve the speed and accuracy of the segmenta-
tion. In particular for MR images of the brain, removal of the
skull (bone), muscles and fat greatly increases the algorithms’
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efficiency and improves the segmentation accuracy of brain
tissue and CSE In this case, the elimination of an unwanted
tissue type (e.g., bone) may be accomplished by a sequential
application of morphological operators, thresholding and
seeded region growing [12].

3 Image Segmentation Methods

In this section, we describe volumetric segmentation methods
that will later be compared numerically. Some of these have
been implemented in commercial packages such as Mayo
Clinic’s Analyze software [19] and MEDx image-processing
software (Sensor Systems, Sterling, VA). Here our goal is to
present a representative sample of available intensity-based
segmentation methods for MR images. Greater detail is
provided in describing the more recently developed techniques.
For additional surveys on medical image segmentation, in
particular MR image segmentation, the reader should refer to
[20-24].

3.1 Thresholding

Threshold-based segmentation [25] seeks to determine an
intensity value, or range of intensities, which isolates a target
region of interest (ROI) from a scene. Thresholding works best
when the objects of interest have nonoverlapping intensities or
nearly so, making possible the removal of voxels above or
below a certain intensity value, called the threshold. For
instance, bone is easily separated from soft tissue in X-ray
CT images by thresholding manipulation. On the other hand,
cerebral GM and WM in MR images, which have overlapping
intensity levels, are often poorly differentiated by thresholding
methods.

3.2 Region Growing

Region growing [26] is a segmentation method used to extract
a connected region of acceptably similar voxels from a scene.
The similarity criteria are, in general, determined by a range of
intensity values or by well-defined edges in the image. A seeded
region growing requires an initialization seed, usually provided
by the operator, to be placed within the target ROI. The
algorithm then examines neighboring voxels, one at a time,
adding those that fall within the acceptance criteria. Since each
voxel is examined individually, the complete scene classifica-
tion may be slow. In addition, region growing can also be
sensitive to noise, and the segmentation of multiple regions
requires at least one seed for each region to be classified.
Because of the requirement of a manually selected seed, region
growing is not well adapted for segmenting large, complex
images such as MR acquisitions of the brain. However, it can be
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(d)

FIGURE 1 All images depict the same brain. (a) Spin density and (b) T2-weighted double-echo images. Image
parameters: TEs/TR = 34/100/3000 ms, in-plane resolution = 0.94 mm?, slice thickness = 5mm. (c) T1-weighted
spoiled grass (SPGR) image, TE/TR = 5/35 ms, in-plane resolution = 0.94 mm?, slice thickness = 1.5 mm. (d) Image
shown in (c) segmented into white matter, gray matter, and cerebrospinal fluid with the adaptive Bayesian method.

TE/TR =echo time/repetition time.

useful when used in conjunction with thresholding for the
classification of isolated tumors or lesions.

3.3 k-Nearest-Neighbor (kNN) Classifier

The nearest-neighbor technique requires certain voxels to be
defined by the operator and then used as references for
automated classification of new data. Following the supervised
training of the data in which a few characteristic voxels are

sampled and labeled manually the algorithm assigns each
unclassified voxel to the class of its closest neighbor in the
feature space. The feature space can be made of parameters or
any function of the images such as gradient information or
texture, although the image intensities are typically used to
form the feature space. For example, in double-echo MR
images, two image intensities are acquired at each voxel,
thereby forming a two-dimensional feature space. The k-
nearest-neighbor (KNN) classifier [20,27] extends the pre-
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ceding concept to the k nearest neighbors among the class
samples, classifying new voxels according to the majority vote
of the k closest neighbors in the training set. A voxel may be left
unclassified if the nearest neighbor in the training set is further
than some predetermined distance.

3.4 Gaussian Classifier/Clustering Methods

Gaussian classifier and clustering algorithms model the
distribution of each tissue class in the image as a mixture of
Gaussian probability density functions. This model is described
by

K
FO5 o 00m) = > w3 e 07, (1)
k=1
where y; is the intensity of voxel j, and f; is the Gaussian
distribution parameterized by a mean y; and variance o}. The
variables 7, are mixing coefficients that weight the contribu-
tion of each density function. Gaussian classifiers require
training data similar to the kNN classifier implementation [20].
Using the training data, the parameters u, o, and m are
estimated for each class. Gaussian clustering is an unsupervised
technique in which no interactive training of the data is
performed [28], and it is typically implemented using the
expectation maximization algorithm [7]. A voxel is then
classified into the class that yields the highest posterior
probability. A voxel may be left unclassified if it is located
further than a predetermined number of standard deviations
from all the class centers.

3.5 Parzen Window Classifier

The Parzen window classifier [20,27] is similar to the kNN
classifier in that it is nonparametric. It obtains a nonparametric
probability density estimate of the feature space for each class,
allowing the class of each voxel to be determined according to
the resulting posterior probabilities. In its most basic form, a
voxel is assigned to the class that has the most training samples
within a predetermined window of the feature space centered
at the unclassified voxel. Because the Parzen window method
(as well as Gaussian clustering and kNN methods) classifies
voxels independently, it may yield noisy segmentations; there-
fore, smoothing of the originally classified data may be
performed (e.g., with iterative relaxation methods) improving
the appearance of the segmented image.

3.6 Neural Networks

Artificial neural networks are found in many biomedical
applications. In particular, they have been employed for
supervised [29,30] and unsupervised [20,31] biomedical
image segmentation as well as in probabilistic [32] image
classification schemes. These networks simulate biological
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learning and easily incorporate intensity and spatial informa-
tion into its classification rules. Neural networks are
intrinsically parallel processes, but not necessarily imple-
mented as such. The method employed in our comparisons
is a three-layer feed forward neural network implemented in
the Analyze software [19].

3.7 Adaptive Fuzzy c-Means Segmentation

The adaptive fuzzy c-means algorithm (AFCM) [34] is an
unsupervised technique that clusters data by iteratively
computing a fuzzy membership function, mean value estimates
for each tissue class, and an estimate of intensity inhomogen-
eities present in the image. The fuzzy membership function,
constrained to be between zero and one, reflects the degree of
similarity between the data value at that location and the
prototypical data value, or centroid, of its class. Thus, a high
membership value near unity signifies that the data value at
that location is “close” to the centroid for that particular class.
AFCM generalizes the fuzzy c-means algorithm [20,33] to
images with intensity inhomogeneities, which are modeled as a
smoothly varying gain field. It is formulated as the minimiza-
tion of the following objective function with respect to the
membership functions u, the centroids v, and gain field g

]AFCM_ZZ k||}’] g]vk” +’°122D *g
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+4, 3 > > (D x Dy xg); (2)

jeQ r=1 s=1

Here, Q is the set of voxel locations in the image domain, qis a
parameter that satisfies > 1, u; is the membership value at
voxel location j for class k such that Y, ug =1, y; is the
observed (multispectral) image intensity at location j, v, is the
centroid of class k, and g; is the gain field at voxel j. D; is a
(known) finite difference operator along the ith dimension of
the image. The notation (D x g) refers to the convolution of g
with the kernel D and taking the resultlng value at the jth voxel.
The total number of classes C is assumed to be known. The
parameter ¢ is a weighting exponent on each fuzzy membership
and determines the amount of “fuzziness” of the resulting
classification and is typically set to a value of 2.

The AFCM objective function (Eq. (2)) is minimized when
high membership values are assigned to voxels whose intens-
ities are close to the centroid for its particular class, and low
membership values are assigned when the voxel intensity is far
from the centroid. The brightness variation of the inhomo-
geneities is modeled by multiplying the centroids by the gain
field g. The last two terms are first- and second-order
regularization terms used to ensure that g; is spatially smooth
and slowly varying. The finite difference operators act like
derivatives, except they are performed on a discrete domain.
The objective function is minimized using an iterative process



12 Volumetric Segmentation

where the membership functions are computed using a current
guess of the centroids and gain field, the centroids are then
updated using current estimates of the membership functions
and gain field, and finally, the gain field is updated.

Because the fuzzy membership functions provide a soft
segmentation and a model for partial volume effects, they have
been previously used in the literature for computing tissue
volumes [43]. In the comparison provided in this chapter,
however, a hard segmentation, obtained by classifying each
voxel in the tissue class of highest membership, was used.
Figure 2 shows slices from a segmentation obtained by applying
AFCM to a double-echo MR data set. Figure 2c¢ is a hard
segmentation computed by assigning each pixel to the class
with the highest membership value. The membership functions
are shown in Figs 2d-2f.

189

3.8 Adaptive Bayesian Segmentation

This technique [12, 18] segments single- or multispectral brain
images into k different tissue types using an enhanced version
of the k-means algorithm. In most cases, k = 3 for WM, GM,
and CSE Fach scalar-valued image y (e.g., an MR image
volume) is modeled as a collection of regions with slowly
varying intensity, described by B-spline functions, plus white
Gaussian noise. Spatial smoothness of the segmentation is
obtained by modeling voxel dependencies by a 3D, second-
order Markov random field (MRF). The general procedure is
described by the minimization of the objective function shown
in Eq. (3). The optimization is obtained by an approach based
on iterated conditional modes (ICMs). Equation (3) is also
known as the joint log a posteriori probability function:

(f)

FIGURE 2 Results of the adaptive fuzzy c-means algorithm on double-echo MR data. (a) PD-weighted MR image after preprocessing, (b)
T2-weighted MR image after preprocessing, (c¢) maximum membership segmentation computed using AFCM, (d) gray matter fuzzy
membership function, (e) white matter fuzzy membership function, (f) cerebrospinal fluid fuzzy membership function.
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Jmre = Z Z(}’m,j - /124)2 + Z Vi(x). (3)
g
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Here, y,, ; is the intensity value of the mth single 3D image at
the jth voxel location, x; is the tissue type at the jth voxel, and
,uﬁ% ; is the mean value of the mth single image at voxel location j
with tissue type k. The last term is introduced to model spatial
interactions between neighboring labels, with L being the 3D,
second-order neighborhood system. That is,

0, if x, = x,

Vi(x) = B, if x, # Xy, where s and g are direct neighbors

B/V2, if x, # x,, where s and q are diagonal neighbors

where s is the voxel being examined and g its neighbor. f§ is a
parameter that controls the degree of smoothness of the
segmentation. High f values yield greater dependency on
the neighbors’ classification. When f is equal to zero, the
segmentation is based on the voxel intensity information only.

Under this Bayesian model, the goal of the segmentation is to
estimate mean intensity x4 and label image x, given data y. The
algorithm maximizes the a posteriori probability jointly over
tissue types and mean intensities in an iterative and adaptive
fashion. For each iteration, it estimates the mean intensities for
each tissue type via a least squares fitting of the B-spline
function, and the tissue type regions modeled by an MRE By
increasing the number of control points of the B-spline
functions, the algorithm slowly adapts to regional intensity
variations that, in the case of MR images, may be caused by
shading artifacts due to MR field inhomogeneities.

The segmentation algorithm is fully automated. As an initial
step, the algorithm presegments the data with a k-means
clustering technique that groups the voxels in the image into k
clusters through the minimization of the total intercluster
variance (a maximum likelihood estimation). The result of the
presegmentation is then used as an initial classification for the
adaptive and iterative model. Figure 1d depicts the segmenta-
tion of the brain image shown in Fig. lc with the adaptive
Bayesian method. In Fig. 3, a qualitative comparison among
several segmentation methods is presented. Quantitative results
are presented in Table 1.

Note that there is a fundamental difference between the way
inhomogeneities are handled by the adaptive Bayesian method
and the adaptive fuzzy c-means algorithm. The former method
assumes that the mean value of each tissue class spatially varies
independently from the other tissue classes. The latter method
assumes that they all vary according to a multiplicative gain
field. Both methods assume that the variation is smooth,
however. It is unclear which of these models is more realistic,
but the gain field model offers advantages of reduced
computation and reduced model complexity.
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(b) (0)

(d) (e) (f)

FIGURE 3 Comparison among several segmentation techniques. (a)
Original Tl-weighted phantom. Segmentation results: (b) adaptive
Bayesian, (c) neural networks, (d) Parzen window, (e) k-nearest neighbor
(k=3), (f) nearest neighbor. Although the segmentation results may
appear similar, the computed volumes for WM, GM, and CSF are in fact
substantially distinct among the methods tested (as shown in Table 1). See
also Plate 14.

4 Comparison and Validation

In this section, we compared several methods based on their
volumetric segmentation accuracy when applied to single-
channel as well as two-channel MR data. For that purpose, we
employed digital MR phantoms of neuroanatomy [12] that
simulated the appearance and image characteristics of the T1-
weighted images and double-echo images in elderly popula-
tions, which generally have lower contrast-to-noise ratio than
younger subjects. Because tissue volumes are typically mea-
sured across a wide range of ages, this phantom provides a
conservative measure of segmentation performance. There are
many advantages for using digital phantoms rather than real
image data for comparing segmentation methods. These
advantages include prior knowledge of the true compartment
volumes (i.e., WM, GM, and CSF volumes) and control over
image parameters such as mean intensity values, noise, slice
thickness, partial volume effects, and magnetic field intensity
inhomogeneities.

Tables 1 and 2 summarize our findings. In Table 1, several
techniques were compared using a 3D high-resolution T1-
weighted phantom (in-plane resolution = 0.94 mm?, slice
thickness = 1.5mm, Gaussian noise with ¢ = 6.0, 3D linear
shading 7% in each direction). The results revealed that the
adaptive Bayesian method presented the best overall accuracy
for segmentation of WM, GM, and CSF volumes. The adaptive
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TABLE 1 Tl-weighted phantom segmentation errors”
Absolute volumetric error (%)%

Technique WM GM BV CSF
Region growing —37.46 —-9.73 —18.78 —26.81
Thresholding 25.93 —9.88 4.82 —10.77
Gaussian classifier 32.80 —21.59 —3.83 3.48
Gaussian clustering —11.75 4.95 —0.51 1.94
Nearest-neighbor 8.22 —8.89 —3.30 —4.86
k-Nearest-neighbor 13.71 —9.50 —1.92 —3.28
Parzen window 13.71 —10.49 —2.58 —-0.73
Neural networks 8.69 —6.22 —1.35 —5.15
Adaptive fuzzy c-means 19.61 —9.87 —0.25 0.95
Adaptive Bayesian 2.71 —1.96 —0.43 1.67

“Key: WM = white matter, GM = gray matter, BV =brain volume (WM + GM), CSF = cerebrospinal fluid.

YAbsolute volumetric error =

Estimated compartment vol - True compartment vol % 100%.

True compartment vol

fuzzy c-means also showed excellent volumetric segmentation
accuracy for the total brain volume (BV) and CSF, but poorer
discrimination between WM and GM. Although the remaining
methods may be employed for specific tasks, their overall
volumetric accuracy are rather limited. The main reason for the
superiority of the adaptive Bayesian method is likely because of
its incorporation of a Markov random field model that
increases the robustness of the algorithm to noise.

Table 2 depicts the results for various techniques in
segmenting a 3D double-echo (spin density/T2-weighted)
phantom (in-plane resolution = 0.94 mm?, slice thickness =
4.5 mm, Gaussian noise with ¢ = 9.0, 3D linear shading 7% in
each direction). The adaptive fuzzy c-means technique pre-
sented the best overall accuracy, whereas the adaptive Bayesian
showed good volumetric accuracy for segmentation of the total
BV and total intracranial volume (ICV). In general, because of
heavy partial volume effects present on double-echo images,
segmentation of the total BV into WM and GM yields large
errors for all techniques, with the most accurate technique

TABLE 2 Double-echo (spin density/T2) phantom segmentation errors”

being the adaptive fuzzy c-means (results not shown). Not
surprisingly, these results showed that for global volumetric
measurements in the brain, the T1-weighted segmentations
offered much greater accuracy.

Implementation issues such as speed, algorithm complexity,
amount of manual interaction, and robustness were not
directly compared here, but may be inferred from the methods’
descriptions and their references. Unsupervised methods are
clearly favorable in terms of reducing manual interaction and
increasing reliability.

5 Brain Image Segmentation via
Normalization into Stereotaxic Space

Thus far, we have focused on the segmentation of global tissue
volumes in the brain. In this section, we describe a method that
incorporates information gained from a global segmentation

Absolute volumetric error (%)?

Technique BV CSF ICV

Gaussian classifier —13.65 —51.09 —21.39
Gaussian clustering —5.59 17.33 —0.85
Neural networks —6.78 21.91 —0.85
Nearest neighbor —4.64 —13.90 —6.56
k-Nearest-neighbor (k = 3) —4.35 —13.90 —6.32
Parzen window —3.01 —7.58 —3.95
Adaptive Bayesian 0.86 —7.40 —0.85
Adaptive fuzzy c-means —0.31 —2.93 —0.85

“Key: BV =brain volume (WM + GM), CSF = cerebrospinal fluid, ICV = intracranial volume (WM + GM + CSF).

bAbsolute volumetric error =
True compartment vol

Estimated compartment vol - True compartment vol 10

0%.
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with image registration in order to segment specific brain
structures, including the segmentation of subcortical nuclei.
Registration can be accomplished by spatially normalizing
image data to a brain template that resides in a common
reference space, namely the stereotaxic space. A commonly
employed stereotaxic space in MR imaging is the Talairach
space [35].

In MR brain imaging, the concept of segmenting image data
via registration is often called atlas-guided segmentation. These
methods seek to accurately register brain image data to a
presegmented and prelabeled brain atlas (a template). If
registration is successful, then both structural information
and labels are transferred from the atlas to the image. The
process of warping an atlas to a target image can be
accomplished by linear [35-37] or nonlinear [38—41] trans-
formations; however, because of large anatomical variability,
precise segmentation of intricate brain structures, such as the
cerebral cortex and specific thalamic nuclei, still remains a
difficult problem.

A recently reported atlas-guided approach [12] showed high
accuracy and reproducibility for segmentation of brain
compartments such as the frontal, parietal, temporal, and
occipital regions, as well as subcortical brain structures such as
the caudate and lenticular nuclei, the hippocampus, and other
specific ROIs. This method works as follows. Global volumetric
distributions for WM, GM, and CSF are obtained with the
adaptive Bayesian segmentation technique (refer to Section 3)
and then individually normalized into the Talairach space [35],
preserving the tissue volumetric units, with a 3D elastic
warping model [39]. A coregistered (in Talairach space) digital
atlas of neuroanatomy [42] is then used to transfer the labels
and guide the volumetric segmentation of the normalized data.
The accuracy of this segmentation approach lies in the
precision of the warping transformation between the brain
data and the prelabeled atlas. Figure 4 illustrates how the
method works.

6 Concluding Remarks

There are numerous research challenges in the field of
biomedical image segmentation. Some of these research
opportunities are extensions, generalizations, and improve-
ments over existing methods. For instance, a method that
combines intensity and anatomic (shape) information for
segmentation of brain images and accurate elastic registration
of brain images into a prelabeled stereotaxic space would allow
automated quantification of the regional and global volumetric
structure of the brain. Other major challenges include the
development of more general segmentation methods that do
not depend on specific conditions such as imaging modality,
protocols, image resolution, and specie being imaged. In
addition, there is a substantial need to develop methods that

II Segmentation

Caudate Nucleus

Lenticular Nucleus

FIGURE 4 The figure on the right represents the average gray matter
distribution for 20 individuals. These images have been spatially
normalized to the template (atlas) shown on the left. Once the atlas and
the image data are in a common stereotaxic space, labels can be transferred
from the atlas to the data. Here we illustrate the process for two subcortical
structures: the caudate and lenticular nuclei. Volumes can also be
computed because the normalization procedure preserves the tissue
volumetric units in stereotaxic space. See also Plate 15.

accurately deal with abnormalities such as tumors, atrophy,
and anomalous tissue types.

In the functional brain image analysis field, segmentation
allows information obtained about brain function, via func-
tional MR imaging (fMRI) or positron emission tomography
(PET), to be directly correlated with the underlying anatomy.
Studies examining the association of functional activity with
tissue volume, as in functional studies investigating and
quantifying the effects brain atrophy in Alzheimer’s patients,
or research examining the functional importance of the cortical
geometry, are made possible with accurate brain segmentation
methods. In addition, improved localization, visualization, and
quantification of brain compartments, yielded by image
segmentation methods, are critically important to the fields
of computer-aided neurosurgery, radiation therapy, surgical
planning, drug delivery evaluation, and assessment of therapy
effectiveness.

Many other challenges remain in the biomedical image
segmentation field. Although most of our examples were
applicable to MR images of the human brain, they are
extensible to other organs, other species, and other imaging
modalities. These techniques can make major contributions to
the interpretation of images from the heart, lungs, abdomen,
pelvis, and vascular system. They can also help in the
quantitative analysis of vertebrate and microscopic imaging.



12

Volumetric Segmentation

With increased utilization of new and improved biomedical
imaging hardware in the hospitals, clinics, and research labs,
and concomitant increase in image resolution and size, image
segmentation stands as one of the most important and
promising areas of image processing for biomedicine.
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The distribution of different material types can be identified in
volumetric datasets such as those produced with magnetic
resonance imaging (MRI) or computed tomography (CT). By
allowing mixtures of materials and treating voxels as regions, the
technique presented in this chapter reduces errors that other
classification techniques can create along boundaries between
materials and is particularly useful for creating accurate
geometric models and renderings from volume data. It also
has the potential to make more accurate volume measurements
and to segment noisy, low-resolution data well.

There are two unusual aspects to the approach. First, it uses
the assumption that, because of partial-volume effects, or
blurring, voxels can contain more than one material, e.g., both
muscle and fat; it computes the relative proportion of each
material in the voxels. Second, the approach incorporates

Based on “Partial-Volume Bayesian Classification of Material Mixtures in
MR Volume Data Using Voxel Histograms” by David H. Laidlaw, Kurt W.
Fleischer, and Alan H. Barr, which appeared in IEEE Transactions on
Medical Immaging, Vol. 17, No. 1, pp. 74-86. © 1998 IEEE.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

information from neighboring voxels into the classification
process by reconstructing a continuous function, p(x), from
the samples and then looking at the distribution of values that
p(x) takes on within the region of a voxel. This distribution of
values is represented by a histogram taken over the region of
the voxel; the mixture of materials that those values measure is
identified within the voxel using a probabilistic Bayesian
approach that matches the histogram by finding the mixture of
materials within each voxel most likely to have created the
histogram. The size of regions that are classified is chosen to
match the spacing of the samples because the spacing is
intrinsically related to the minimum feature size that the
reconstructed continuous function can represent.

1 Introduction

Identifying different materials within sampled datasets can be
an important step in understanding the geometry, anatomy, or

195
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pathology of a subject. By accurately locating different
materials, individual parts can be identified and their size
and shape measured. The spatial location of materials can also
be used to selectively visualize parts of the data, thus better
controlling a volume-rendered image [1], a surface model [2],
or a volume model created from the data, and making visible
otherwise obscured or subtle features. Classification is a key
step toward understanding such geometry, as shown in Fig. 1.
Figure 2 shows an example of classified MRI data; each color
represents a single material identified within the data.

Applications of classified images and geometric models
derived from them include surgical planning and assistance,
diagnostic medical imaging, conventional computer anima-
tion, anatomical studies, and predictive modeling of complex
biological shapes and behavior.

1.1 A Partial-Volume Classification Approach
Using Voxel Histograms

Bayesian probability theory can be used to estimate the
highest-probability combination of materials within each
voxel-sized region. The estimation is based on the histogram

Geometric [ Dynamic Models

II Segmentation

of data values within the region. The posterior probability,
which is maximized, is based on conditional and prior
probabilities derived from the assumptions about what is
being measured and how the measurement process works
[3]. With this information the materials contained within
each voxel can be identified based on the sample values for
the voxel and its neighbors. Each voxel is treated as a region
(see Fig. 3), not as a single point. The sampling theorem [4]
allows the reconstruction of a continuous function, p(x),
from the samples. All of the values that p(x) takes on
within a voxel are then represent by a histogram of p(x)
taken over the voxel. Figure 4a shows samples; Fig. 4b
shows the function p(x) reconstructed from the samples;
and Fig. 4c shows a continuous histogram calculated from
p(x).

Each voxel is assumed to be a mixture of materials, with
mixtures occurring where partial-volume effects occur, i.e.,
where the band-limiting process blurs measurements of pure
materials together. From this assumption, basis functions are
derived that model histograms of voxels containing a pure
material and of voxels containing a mixture of two materials.
Linear combinations of these basis histograms are fit to each

Real World Objects

Data Collection

Sampled Volume Data (MR, CT)

l Classification

Identificd Materials

Maodel Velume Rendering/
Bulding Viswalization

Images / Animation

\/in‘rfynr-i

Inzight into Objects and Phenomena

FIGURE 1

Classification is a key step in the process of the process of visualizing and

extracting geometric information from sampled volume data. For accurate geometric
results, some constraints on the classification accuracy must be met.
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FIGURE 2 One slice of data from a human brain. (a) The original two-
valued MRI data. (b) Four of the identified materials, white matter, gray
matter, cerebrospinal fluid, and muscle, separated out into separate
images. (c) Overlaid results of the new classification mapped to different
colors. Note the smooth boundaries where materials meet and the much
lower incidence of misclassified samples than in Fig. 5. See also Plate 16.
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Hh
=
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FIGURE 3 Definitions: A sample is a scalar or vector valued element of a
2D or 3D dataset; a voxel is the region surrounding a sample.

voxel, and the most likely combination of materials is chosen
probabilistically.

The regions that are classified could be smaller or larger than
voxels. Smaller regions would include less information, and so
the context for the classification would be reduced and
accuracy would suffer. Larger regions would contain more
complicated geometry because the features that could be
represented would be smaller than the region. Again, accuracy
would suffer. Because the spacing of sample values is
intrinsically related to the minimum feature size that the
reconstructed continuous function, p(x), can represent, that
spacing is a natural choice for the size of regions to be classified.

1.2 Related Work

Many researchers have worked on identifying the locations of
materials in sampled datasets [5-8]. Clarke et al. [9] give an
extensive review of the segmentation of MRI data. However,
existing algorithms still do not take full advantage of all the
information in sampled images; there remains room for
improvement. Many of these algorithms generate artifacts
like those shown in Fig. 5, an example of data classified with a
maximum-likelihood technique based on sample values. These
techniques work well in regions where a voxel contains only a

“feature space”
W v v

hif)

(b} eontinuous (e} histogram

raconsiructon

{a) sampled data

FIGURE 4 Continuous histograms. The scalar data in (a) and (b)
represent measurements from a dataset containing two materials, A & B, as
shown in Fig. 6. One material has measurement values near v, and the
other near vz. These values correspond to the Gaussian-shaped peaks
centered around v, and vy in the histograms, which are shown on their
sides to emphasize the axis that they share. This shared axis is “feature
space”.
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FIGURE 5 Discrete, maximum-likelihood (DML) classification of the
same brain data shown in Figure 2. This existing method assigns each
voxel to a single material class. The class is identified here by its color: gray
for gray matter, blue for CSF/fluid, white for white matter, red for muscle.
Note the jagged boundaries between materials within the brain and the
layer of misclassified white matter outside of the skull. See Section 7 for
more detail. See also Plate 17.

single material, but tend to break down at boundaries between
materials. In Fig. 5, note the introduction of both stair-step
artifacts, as shown between gray matter and white matter
within the brain, and thin layers of misclassified voxels, as
shown by the white matter between the skull and the skin. Both
types of artifacts can be ascribed to the partial-volume effects
ignored by the segmentation algorithms and to the assignment
of discrete material types to each voxel.

Joliot and Mazoyer [10] present a technique that uses a priori
information about brain anatomy to avoid the layers of
misclassified voxels. However, this work still produces a
classification where each voxel is assigned to a single, discrete
material; results continue to exhibit stair-step artifacts. It is also
very dependent on brain anatomy information for its accuracy;
broader applicability is not clear.

Drebin et al. [11] demonstrate that accounting for mixtures
of materials within a voxel can reduce both types of artifacts,
and approximate the relative volume of each material
represented by a sample as the probability that the sample is
that material. Their technique works well for differentiating air,
soft tissue, and bone in CT data, but not for differentiating
materials in MR data, where the measured data value for one
material is often identical to the measured value for a mixture
of two other materials.

Windham et al. [12] and Kao et al. [13] avoid partial-volume
artifacts by taking linear combinations of components of
vector measurements. An advantage of their techniques is that
the linear operations they perform preserve the partial-volume

II Segmentation

mixtures within each sample value, and so partial-volume
artifacts are not created. A disadvantage is that the linear
operations are not as flexible as nonlinear operations, and so
either more data must be acquired or classification results will
not be as accurate.

Choi et al. [14] and Ney et al. [15] address the partial-
volume issue by identifying combinations of materials for each
sample value. As with many other approaches to identifying
mixtures, these techniques use only a single measurement
taken within a voxel to represent its contents. Without the
additional information available within each voxel region,
these classification algorithms are limited in their accuracy.

Santago and Gage [16] derive a distribution of data values
taken on for partial volume mixtures of two materials. The
technique described here shares the distribution that they
derive. Their application of the distribution, however, fits a
histogram of an entire dataset and then quantifies material
amounts over the entire volume. In contrast with this work,
they represent each voxel with a single measurement for
classification purposes, and do not calculate histograms over
single voxels.

Wu et al. [17] present an interesting approach to partial-
volume imaging that makes similar assumptions about the
underlying geometry being measured and about the measure-
ment process. The results of their algorithm are a material
assignment for each subvoxel of the dataset. Taken collectively,
these multiple subvoxel results provide a measure of the
mixtures of materials within a voxel but arrive at it in a very
different manner than is done here. This work has been applied
to satellite imaging data, and so their results are difficult to
compare with medical imaging results, but aspects of both may
combine well.

Our earlier work gives an overview of the technique
presented below in the context of the Human Brain Project
[18], gives a complete description [19] and describes an
imaging protocol for acquiring MRI data from solids and
applies the classification technique to the extraction of a
geometric model from MRI data of a human tooth [20] (see
Fig. 11).

2 Overview

This section describes the classification problem, defines terms,
states assumptions made about the imaging data to be
classified, and sketches the algorithm and its derivation.
Sections 3—-6 give more information on each part of the
process, with detailed derivations in Sections 8 and 9. Section 7
shows results of the application of the algorithm to simulated
MR data and to real MR data of a human brain, hand, and
tooth. Some limitations and future extensions are discussed in
Section 10 and a summary and conclusion are made in Section
11.
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2.1 Problem Statement

The input to the classification process is sampled measurement
data, from which a continuous, band-limited function, p(x),
can be reconstructed. p(x) measures distinguishing properties
of the underlying materials. The output is sampled data
measuring the relative volume of each material in each
voxel.

2.2 Definitions

The coordinate system of the space containing the object to be
measured is referred to as “spatial coordinates,” and points are
generally labeled x € X. This space is n-dimensional, where # is
3 for volume data, can be 2 for slices, and is 1 for the example in
Fig. 4. Each measurement, which may be a scalar or vector, lies
in “feature space” (see Fig. 4), with points frequently denoted
as ve V. Feature space is n,-dimensional, where n, is 1 for
scalar-valued data, 2 for two-valued vector data, etc. Tables 5
and 6 in Section 9 contain these and other definitions.

2.3 Assumptions

The following assumptions are made about the measured
objects and the measurement process.

(1) Discrete materials. The first assumption is that
materials within the objects to be measured are discrete
at the sampling resolution. Boundaries need not be
aligned with the sampling grid. Figure 6a shows an
object with two materials. This assumption is made
because the technique is geared toward finding
boundaries between materials, and because its input is
sampled data, where information about detail finer than
the sampling rate is blurred.

This assumption does not preclude homogeneous
combinations of submaterials that can be treated as a
single material at the sampling resolution. For example,
muscle may contain some water, and yet be treated as a
separate material from water. This assumption is not
satisfied where materials gradually transition from one
to another over many samples or are not relatively
uniformly mixed; however, the algorithm appears to
degrade gracefully even in these cases.

(2) Normally distributed noise. The second assumption is
that noise from the measurement process is added to
each discrete sample and that the noise is normally
distributed. A different variance in the noise for each
material is assumed. This assumption is not strictly
satisfied for MRI data, but seems to be satisfied
sufficiently to classify data well. Note that the sample
values with noise added are interpolated to reconstruct
the continuous function, p(x). The effect of this band-
limited noise is discussed further in Section 6.
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(3) Sampling theorem is satisfied. The third assumption is
that the sampled datasets satisfy the sampling theorem
[4]. The sampling theorem states that if a sufficiently
band-limited function is point sampled, the function can
be exactly reconstructed from the samples, as demon-
strated in Fig. 4b. The band-limiting creates smooth
transitions in p(x) as it traverses boundaries where
otherwise p(x) would be discontinuous. The inter-
mediate region of Fig. 6b shows a sampling grid and the
effect of sampling that satisfies the sampling theorem.
Partial-volume mixing of measurements occurs in the
region labeled “A&B.” Multislice MRI acquisitions do
not satisfy this assumption in the through-plane
direction. For these datasets the data can be interpolated
only within each plane.

(4) Linear mixtures. Each voxel measurement is a linear
combination of pure material measurements and
measurements of their pairwise mixtures created by
band limiting (see Fig. 6).

4
i
=

L

(b)

FIGURE 6 Partial-volume effects. The derivation of the classification
technique starts from the assumption that in a real-world object each
point is exactly one material, as in (a). The measurement process creates
samples that mix materials together; from the samples a continuous, band-
limited measurement function, p(x), is reconstructed. Points P, and P, lie
inside regions of a single material. Point P; lies near a boundary between
materials, and so in (b) lies in the A&B region where materials A and B are
mixed. The grid lines show sample spacing and illustrate how the regions
may span voxels.
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(5) Uniform tissue measurements. Measurements of the
same material have the same expected value and variance
throughout a dataset.

Box filtering for voxel histograms. The spatial
measurement kernel, or point-spread function, can be
approximated by a box filter for the purpose of deriving
histogram basis functions.

Materials identifiable in histogram of entire dataset.
The signatures for each material and mixture must be
identifiable in a histogram of the entire dataset.

(6)

(7)

For many types of medical imaging data, including MRI and
CT, these assumptions hold reasonably well, or can be satisfied
sufficiently with preprocessing [21]. Other types of sampled
data, e.g., ultrasound, and video or film images with lighting
and shading, violate these assumptions; thus, the technique
described here does not apply directly to them.

2.4 Sketch of Derivation

Histograms represent the values taken on by p(x) over various
spatial regions. Section 3 describes the histogram equation for a
normalized histogram of data values within a region. Section 4
describes how the histogram equation can be used to create basis
functions that model histograms taken over small, voxel-sized
regions. These basis functions model histograms for regions
consisting of single materials and for regions consisting of
mixtures of two materials. Using Bayes’ theorem, the histogram
of an entire dataset, the histogram model basis functions, and a
series of approximations, Section 5 derives an estimate of the
most likely set of materials within an entire dataset. Similarly,
given the histogram of a voxel-sized region, Section 6 derives an
estimate of the most likely density for each material in that
voxel. The classification process is illustrated in Fig. 7.

3 Normalized Histograms

This section presents the equation for a normalized histogram
of a sampled dataset over a region. This equation will be used as
a building block in several later sections, with regions that vary
from the size of a single voxel to the size of the entire dataset. It
will also be used to derive basis functions that model
histograms over regions containing single materials and
regions containing mixtures of materials.

For a given region in spatial coordinates, specified by %, the
histogram h”(v) specifies the relative portion of that region
where p(x) = v, as shown in Fig. 4. Because a dataset can be
treated as a continuous function over space, histograms,
h”(v) : R™ —R, are also continuous functions:

W) = [ 23000 - v)ds. (1)
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Voxel-sized
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FIGURE 7 The classification process. MR data is collected, and a
histogram of the entire dataset, #(v), is calculated and used to determine
parameters of histogram-fitting basis functions. One basis function
represents each pure material and one represents each mixture in the
dataset. Histograms are then calculated for each voxel-sized region, h"*(v),
and used to identify the most likely mixture of materials for that region. The
result is a sampled dataset of material densities within each voxel.

Equation (1) is the continuous analogue of a discrete
histogram. %(x) is nonzero within the region of interest and
integrates to 1. %(x) is set constant in the region of interest,
making every spatial point contribute equally to the histogram
h”(v), but Z(x) can be considered a weighting function that
takes on values other than 0 and 1 to more smoothly transition
between adjacent regions. Note also that h”(v) integrates to 1,
which means that it can be treated as a probability density
function, or PDF. ¢ is the Dirac delta function.
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3.1 Computing Voxel Histograms

Histograms can be calculated in constant-sized rectangular
“bins,” sized such that the width of a bin is smaller than the
standard deviation of the noise within the dataset. This ensures
that significant features are not lost in the histogram.

The bins are first initialized to zero. Each voxel is subdivided
into subvoxels, usually four for 2D data or eight for 3D data,
and p(x) and its derivative evaluated at the center of each
subvoxel. p(x) is interpolated from the discrete data using a
tricubic B-spline basis [22] that approximates a Gaussian.
Thus, function and derivative evaluations can be made not
only at sample locations, but anywhere between samples as
well. From the function value and the derivative, Eq. (1) is used
to calculate the contribution of a linear approximation of p(x)
over the subvoxel to each histogram bin, accumulating the
contributions from all subvoxels. This provides a more
accurate histogram than would be obtained by evaluating
only the function values at the same number of points.

4 Histogram Basis Functions for Pure
Materials and Mixtures

This section describes basis functions that model histograms of
regions consisting of pure materials and regions consisting of
pairwise mixtures of materials. Other voxel contents are also
possible and are discussed in Section 10. The parameters of the
basis functions specify the expected value, ¢, and standard
deviation, s, of each material’s measurements (see Fig. 8).
Equation (1) can be used to derive these basis functions,
which are subsequently fitted to histograms of the data. The
equations provide reasonable fits to typical MR data, which
gives confidence that the assumptions about the measurement

[ [ 0 o i
(a) (b)

FIGURE 8 Parameters for histogram basis function. (a) Single-material
histogram parameters include ¢, the mean value for the material, and s,
which measures the standard deviation of measurements (see Eq. (2)). (b)
Corresponding parameters for a two-material mixture basis function. s,
and s, affect the slopes of the two-material histogram basis function at
either end. For vector-valued data, ¢ and s are vectors and are the mean
values and standard deviations of the noise for the two constituent
materials (see Eq. (3)).
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function, p(x), are reasonable. The details of the derivations are
in Section 8.

For a single material, the histogram basis function is a
Gaussian distribution,

n,

1 1 T vi— ¢ 2
. ; — R - - 2
fsmgle(v [ 5) i|:|1 s, o exp 2 ?:1 ( 5; ’ ( )

where cis the vector-valued mean, s the vector-valued standard
deviation, and v;, ¢;, and s; scalar components of v, ¢, and s,
respectively. This equation is derived by manipulating Eq. (1)
evaluated over a region of constant material, where the
measurement function, p(x), is a constant value plus additive,
normally distributed noise. Because the noise in different
channels of multivalued MRI images is not correlated, the
general vector-valued normal distribution reduces to this
equation with zero covariances.

For mixtures along a boundary between two materials,
another equation can be derived similarly:

f;iouble(v; ¢, 5) = /0 kn((l - t)Cl + tc, — v, S)dt. (3)

As with the single-material case, this derivation follows from
Eq. (1) evaluated over a region where two materials mix. In this
case, the band-limiting filter that causes partial-volume effects
is approximated with a box filter and an assumption is made
that the variance of the additive noise is constant across the
region. This basis function is a superposition of normal
distributions representing different amounts of the two
constituent pure materials. k, is the normal distribution,
centered at zero; t is the relative quantity of the second
material; ¢ (comprising ¢; and ¢,) the expected values of the
two materials; and s is the standard deviation of measurements.

The assumption of a box filter affects the shape of the
resulting histogram basis function. Similar equations for
different filters (triangle, Gaussian, and Hamming) can also
be derived, but a box filter is sufficiently accurate in practice
and is numerically more efficient.

5 Estimating Histogram Basis Function
Parameters

This section describes parameter-estimation procedures for
fitting histogram basis functions to a histogram of an entire
dataset. For a given dataset the histogram, h¥!(v), is first
calculated over the entire dataset. The second step combines an
interactive process of specifying the number of materials and
approximate feature-space locations for them with an auto-
mated optimization [21] to refine the parameter estimates.
Under some circumstances, users may wish to group materials
with similar measurements into a single “material,” whereas in
other cases they may wish the materials to be separate. The
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result of this process is a set of parameterized histogram basis
functions, together with values for their parameters. The
parameters describe the various materials and mixtures of
interest in the dataset. Figure 9 shows the results of fitting a
histogram. Each colored region represents one distribution,
with the labeled spot-shaped regions representing pure
materials and connecting shapes representing mixtures.

To fit a group of histogram basis functions to a histogram, as
in Fig. 9, the optimization process estimates the relative volume
of each pure material or mixture (vector o) and the mean
value (vector ¢) and standard deviation (vector s) of measure-
ments of each material. The process is derived from the
assumption that all values were produced by pure materials
and two-material mixtures. n,, is the number of pure materials
in a dataset, and ny the number of histogram basis functions.
Note that ne > n,, since ny includes any basis functions for
mixtures, as well as those for pure materials.

The optimization minimizes the function

all

with respect to a*", ¢, and s, where

qlvia e5) = K (v) =Y ad'fi(vi g, ). (5)

Note that f; may be a pure or a mixture basis function and that

FIGURE 9 Basis functions fit to histogram of entire dataset. This figure
illustrates the results of fitting basis functions to the histogram of the hand
dataset. The five labeled circular regions represent the distribution of data
values for pure materials, while the colored regions connecting them
represent the distribution of data values for mixtures. The mixture
between muscle (red) and fat (white), for example, is a salmon-colored
streak. The green streak between the red and yellow dots is a mixture of
skin and muscle. These fitted basis functions were used to produce the
classified data used in Fig. 12. See also Plate 18.
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its parameter ¢; will be a single feature-space point for a pure
material or a pair for a mixture. The function w(v) is analogous
to a standard deviation at each point, v, in feature space, and
gives the expected value of |g(v)|. w(v) can be approximated as
a constant; it is discussed further in Section 10.

Equations (4) and (5) are derived in Section 9 using Bayesian
probability theory with estimates of prior and conditional

probabilities.

6 Classification

This section describes the process of classifying each voxel. This
process is similar to that described in Section 5 for fitting the
histogram basis functions to the entire dataset histogram, but
now histograms taken over small, voxel-sized regions are being
fitted. The previously computed histogram basis functions
calculated from the entire dataset histogram are used. The
mean vector ¢ and standard deviation s are no longer varied.
The only parameters allowed to vary are the relative material
volumes (vector o"°¥) and an estimate of the local noise in the
local region (vector N) (see Egs. (6) and (7)).

Over large regions including many voxels, the noise in p(x)
is normally distributed, with zero mean; however, for voxel
regions the noise mean is generally nonzero. This is because
normally distributed noise is added to each sample value, not
to each point of p(x). When the samples are used to
reconstruct p(x), the values p(x) takes on near a particular
sample tend to be similar and so have a non-zero mean. The
local mean voxel noise value is labeled N. As derived in Section
9, the equation that is minimized, with respect to «*°* and N, is

st =355 () L f (Y g

where
ny
q(v; o™ N) = ' (v = N) = > 0" f(v), (7)
=1
the minimization is subject to the constraints

n
y

0 <o <1and E =1,
=

and vector ¢ is the standard deviation of the noise over the
entire dataset. For MR data the standard deviations in the
signals for different materials are reasonably similar, and o is
estimated to be an average of the standard deviations of the
histogram basis functions.

With optimal vector o' for a given voxel-sized region and
the mean value, vector ¥, within that region, the amount of
each pure material contributed by each mixture to the voxel is
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estimated. This is the output, estimates of the amount of each
pure material in the voxel-sized region:

- / (h““( ) - Zmaifsmgk(v))dv. (8)

i=1

¥ contains the mean signature of the portion of the histogram
that arises only from regions with partial-volume effects. The
algorithm determines how much of each pure component of
pairwise mixture materials would be needed to generate 7,
given the amount of each mixture that o*°* indicates is in the
voxel. t, represents this relative amount for mixture k, with
t, = 0 indicating that the mixture contains only the first pure
component, #, = 1 indicating that it contains only its second
component, and intermediate values of #, indicating inter-
mediate mixtures. The f, values are calculated by minimizing
the following equation with respect to f, subject to the
constraint 0 < . < 1:

nf
&.(1) = <v Z

k=n,,+1

e (tece + (1 — fk)%)) - 09

Vector ¢, is the mean value for the first pure material
component of mixture k, and vector ¢, the mean value for the
second component. The total amount of each material is the
amount of pure material added to the f,-weighted portion of
each mixture.

7 Results

This section shows the results of voxel-histogram classification
applied to both simulated and collected MRI datasets. When
results can be verified and conditions are controlled, as shown
with the classification of simulated data, the algorithm comes
very close to “ground truth,” or perfect classification. The
results based on collected data illustrate that the algorithm

A 444

(a) Ground truth (b) DML

(c) PVB
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works well on real data, with a geometric model of a tooth
showing boundaries between materials, a section of a human
brain showing classification results mapped onto colors, and a
volume-rendered image of a human hand showing complex
geometric relationships between different tissues.

The partial volume Bayesian algorithm (PVB) described in
this chapter is compared with four other algorithms. The first,
DML (discrete maximum likelihood), assigns each voxel or
sample to a single material using a maximum likelihood
algorithm. The second, PPVC (probabilistic partial volume
classifier), is described in [23]. The third is a Mixel classifier
[14], and the fourth is eigenimage filtering (Eigen)[12].

PVB significantly reduces artifacts introduced by the other
techniques at boundaries between materials. Figure 10 com-
pares performance of PVB, DML, and PPVC on simulated data.
PVB produces many fewer misclassified voxels, particularly in
regions where materials are mixed because of partial-volume
effects. In Figs 10b and 10d the difference is particularly
noticeable where an incorrect layer of dark background
material has been introduced between the two lighter regions,
and where jagged boundaries occur between each pair of
materials. In both cases this is caused by partial-volume effects,
where multiple materials are present in the same voxel.

Table 1 shows comparative RMS error results for the PPVC,
Eigen, and PVB simulated data results, and also compares
PPVC with the Mixel algorithm. Signal-to-noise ratio (SNR)
for the data used in PPVC/Eigen/PVB comparison was 14.2.
SNR for the data used in PPVC/Mixel comparison was 21.6.
Despite lower SNR, PPVC/PVB RMS error improvement is
approximately double that of the PPVC/Mixel improvement.
RMS error is defined as

; |3 )~ e,

where o(x) is classified data and p(x) is ground truth. The sum
is made only over voxels that contain multiple materials. # is
the number of voxels summed.

(d) PPVC

(e) Slice geometry

FIGURE 10 Comparison of DML classification (b), the PVB classification (c), and PPVC classification (d). (a) is a reference for
what “ideal” classification should produce. Note the band of dark background material in (b) and (d) between the two curved
regions. This band is incorrectly classified and could lead to errors in models or images produced from the classified data. The
original dataset is simulated, two-valued data of two concentric shells, as shown in (e), with SNR of 14.2.
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TABLE 1 Comparative RMS error for the four algorithms: PVB, PPVC,
Mixel, and Eigen”

II Segmentation

TABLE 3 Comparison of voxel histogram classification (PVB) with
Eigenimage filtering (Eigen) for voxels having no partial volume effects”

RMS error
Improvement ratio
PPVC(%)  Eigen(%) PVB(%)  PPVC/PVB
Background 20 11.7 6.5 3.09
Outer 25 24.1 4.3 5.79
Inner 20 9.8 6.5 3.04
PPVC(%) Mixel(%) PPVC/Mixel
Background 16 9.5 1.68
Tumor 21 13.5 1.56
White matter 37 16.0 2.31
Gray matter 36 17.0 2.11
CSF 18 13.0 1.38
All other 20 10.0 2.00

“The PPVC/Eigen/PVB comparison is from the simulated data test case
illustrated in Fig. 10, SNR = 14.2. The PPVC/Mixel comparison is taken
from Figs 7 and 8 in [14], SNR = 21.6. PVB, in the presence of more
noise, reduces the PPVC RMS error to approximately half that of the Mixel
algorithm.

Table 2 shows similar comparative results for volume mea-
surements made between PPVC and PVB on simulated data,
and between PPVC and Mixel on real data. Volume measure-
ments made with PVB are significantly more accurate than
those made with PPVC, and the PPVC to PVB improvement is
better than the PPVC to Mixel improvement. Table 3 compares
noise levels in PVB results and Eigen results. The noise level for
the PVB results is about 25% of the level for the Eigen results.

Figures 2 and 5 also show comparative results between PVB
and DML. Note that the same artifacts shown in Fig. 10 occur
with real data and are reduced by the technique described here.

Models and volume-rendered images, as shown in Figs 11
and 12, benefit from the PVB technique because less incorrect
information is introduced into the classified datasets, and so
the images and models more accurately depict the objects they
are representing. Models and images such as these are
particularly sensitive to errors at geometric boundaries because
they illustrate the underlying geometries.

Table 4 lists the datasets, the MRI machine they were

TABLE 2 Comparative volume measurement error for four algorithms
(PVB, PPVC, Mixel, and Eigen)”

PPVC(%) Eigen(%) PVB(%) PPVC(%) Mixel(%)
2.2 —0.021 0.004 5.6 1.6

—-53 0.266 —0.452 44.1 7.0
0.3 —0.164 0.146

“The PPVC/Eigen/PVB comparison is from the simulated data test case
illustrated in Fig. 10, SNR = 14.2. Note that the Eigen results are based on
3-valued data while the other algorithms used 2-valued data. The PPVC/
Mixel comparison is taken from Fig. 9 and Table V in [14], SNR = 21.6.

Eigen PVB
(3-valued data) (2-valued data)
Mean Std. dev. Mean Std. dev.
Desired signatures
Material 1 1.0113 0.241 0.9946 0.064
Material 2 0.9989 0.124 0.9926 0.077
Background 0.9986 0.113 0.9976 0.038
Undesired signatures
Material 1 —0.0039 0.240 0.0013 0.017
Material 2 —0.0006 0.100 0.0002 0.004
Background 0.0016 0.117 0.0065 0.027

“Desired signatures should be mapped to 1.0 and undesired signatures to
0.0. Note that the PVB classification has consistently smaller standard
deviations—the Eigen results have noise levels 2—4 times higher despite
having 3-valued data to work with instead of the 2-valued data PVB was
given.

FIGURE 11 A geometric model of tooth dentine and enamel created by
collecting MRI data samples using a technique that images hard solid
materials [20] and classifying dentine, enamel, and air in the volume data
with the PVB algorithm. Polygonal isosurfaces define the bounding
surfaces of the dentine and enamel. The enamel-dentine boundary, shown
in the left images, is difficult to examine non-invasively using any other
technique.
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TABLE 4 MRI dataset sources, acquisition parameters, and figure
references

Object  Machine Voxel Size (mm)  Ty/Tg /Ty, (s/ms/ms)  Figs
Shells Simulated 1.92x3 N/A 10
Brain GE 0.94%> x3 2/25/50 2,5
Hand GE 0.72x3 2/23/50 12
Tooth  Bruker 0.312° 15/0.080 11

FIGURE 12 A volume-rendering image of a human hand dataset. The
opacity of different materials is decreased above cutting planes to show
details of the classification process within the hand. See also Plate 19.

collected on, some collection parameters, the voxel size, and
the figures in which each dataset appears. The GE machine was
a 1.5T Signa. The Bruker machine was an 11.7T AMX500.
Acquired data were collected with a spin-echo or fast spin-echo
protocol, with one proton-weighted and one T,-weighted
acquisition. The tooth was acquired with a technique described
in Ghosh et al. [20]. Preprocessing was only performed on data
used for the hand example (Fig. 12). For this case each axial
slice was multiplied by a constant and then offset by another to
compensate for intensity falloff as a function of the distance
from the center of the RF coil. The constants were chosen to
make the mean values of user-identified material regions
consistent from slice to slice.

8 Derivation of Histogram Basis
Functions

This section derives parameterized model histograms that are
used as basis functions, f;, for fitting histograms of data. Two
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forms of basis functions are derived: one for single, pure
materials; another for two-material mixtures that arise due to
partial-volume effects in sampling. Equation (1), the histogram
equation, is

W (v) = / R()5(p(x) — v)dx

and measures a histogram of the function p(x) over a region
defined by 2(x). x ranges over spatial locations, and v over
feature space. Note that if p(x) contains additive noise, n(x; s),
with a particular distribution, k,(v; s), then the histogram of p
with noise is the convolution of k,(v;s) with p(x) — n(x;s)
(i.e., p(x) without noise). k,(v;s) is, in general, a normal
distribution. Thus,

h%(v) = k,(v;s) * /,@(x)é((p(x) —n(x;s)) — v)dx. (10)

8.1 Pure Materials

For a single pure material it is assumed that the measurement
function has the form
(11)

psingle<x; ) 5) =c+ n(x; 5)7

where cis the constant expected value of a measurement of the
pure material, and s is the standard deviation of additive,
normally distributed noise.

The basis function used to fit the histogram of the
measurements of a pure material is

f;ingle(v; c,s) = /g(x)é(psingle(x; ¢,s) —v)dx
= /gi’(x)é(c + n(x;s) — v)dx
= k,(v;s) * /%(x)é(c — v)dx

= k,(v;5) * (5(c - V)/gf(x)dx>

k,(v;s)*d(c—w)
kﬂ

(v—c¢s)

({1 (155 ) o

Thus, finge(v; ¢, 5) is @ Gaussian distribution with mean ¢ and
standard deviation s. v;, ¢;, and s; are scalar components of v, ¢,
and s. The noise is assumed to be independent in each element
of vector-valued data, which for MRI appears to be reasonable.
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8.2 Mixtures

For a mixture of two pure materials, the measurement function
is assumed to have the form

(13)

where 44, approximates the band-limiting filtering process,
a convolution with a box filter, by interpolating the values
within the region of mixtures linearly between ¢; and c,, the
mean values for the two materials:

pdoub]e(x; G 5) = edouble(x; 1y 52) + n(x; 5),

Laouple = (1 = t)c; + to (14)
faouble (Vi €,5) = /'%(x)a(pdouble(x§ ¢,s) — v)dx
= [ A0t 0) + ) — v
—k(59) ¢ [ ROl ) — V)

= /1 k,(v;s)«0((1 — t)e, + tc, — v)dt

1
= / k,((1 —t)e, + tc, — v;s)dt.
0

9 Derivation of Classification Parameter
Estimation

The following two sections can be safely skipped on a first
reading. They present detailed derivations and information
helpful for implementing the algorithm or for creating an
analogous one.

This section contains a derivation of the equations that are
used to find model histogram parameters and to classify voxel-
sized regions. Bayesian probability theory [3] is employed to
derive an expression for the probability that a given histogram
was produced by a particular set of parameter values in the
model. This “posterior probability” is maximized to estimate
the best-fit parameters:

maximize P(parameters | histogram).

(16)

The optimization procedure is used for two purposes:

o Find model histogram parameters. Initially, it is used to
estimate parameters of basis functions to fit histograms
of the entire dataset k. This results in a set of basis
functions that describes histograms of voxels containing
pure materials or pairwise mixtures.

o Classify voxel-sized regions. Subsequently, the optimi-
zation procedure is used to fit a weighted sum of the
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basis functions to the histogram of a voxel-sized region
h¥°*. This produces the classification results (in terms of
the weights o).

The posterior probabilities P! and P'* share many
common terms. In the following derivation they are distin-
guished only where necessary, using P where their definitions
coincide.

9.1 Definitions

Table 5 lists Bayesian probability terminology as used in [3]
and in the derivations. Table 6 defines additional terms used in
this section.

9.2 Optimization

The following optimization is performed to find the best-fit
parameters:

(17)

With P= P!, the histogram basis function parameters ¢, s,
o2l are fitted to the histogram of an entire dataset, h*!!(v). With
P=P"%, the parameters "%, N are fitted to classify the
histogram of a voxel-sized region, h**(v).

maximize P(a, ¢, s, N|h).

9.3 Derivation of the Posterior Probability,
P(a,c,s,N|h)

The derivation begins with Bayes’ theorem, expressing the
posterior probability in term of the likelihood, the prior
probability, and the global likelihood:

_ P(a,¢,s,N)P(hla,c,s,N)

P(a,c,s,N|h) 20

(18)

Each of the terms on the right side is approximated in what
follows, using p,_ to denote positive constants (which can be
ignored during the optimization process).

Prior Probabilities

It is assumed that o, ¢, 5, and N are independent, so
P(a, ¢,s,N) = P(a)P(c,s)P(N). (19)

Because the elements of o represent relative volumes, they are
constrained to sum to 1 and are all positive:

TABLE 5 Probabilities, using Bayesian terminology from [3]

P(a, ¢, s, N|h) Posterior probability (maximized)
P(a, ¢,s,N) Prior probability

P(h|a, c,s,N) Likelihood

P(h) Global likelihood
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TABLE 6 Definitions of terms used in the derivations
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Term Dimension Definition
n, Scalar Number of pure materials
1y Scalar Number of pure materials and mixtures
n, Scalar Dimension of measurement (feature space)
o ng Relative volume of each mixture and material within the region
c nexn, Mean of material measurements for each material
s nexn, Standard deviation of material measurements (chosen by procedure discussed in Section 5) for each material
N n, Mean value of noise over the region
Prs Scalars Arbitrary constants
U (v) R"™ >R Histogram of an entire dataset
h¥ox(v) R >R Histogram of a tiny, voxel-sized region
0 if Z}"L Lo A1 Global Likelihood
Pla)=1< 0 if ;<0 or a;>1. (20)  Note that the denominator of Eq. (18) is a constant normal-

p (constant) otherwise

A different assumption is used for P(c, s) depending on which
fit is being done (1! or h'°¥). For fitting h¥!(v), all values of ¢, s
are considered equally likely:

P(c,5) = pe. (21)

For fitting h'°*, the means and standard deviations, ¢, s, are
fixed at % s° (the values determined by the earlier fit to the

entire data set):
P (c,s) = d(c — ", s — ). (22)

For a small region, it is assumed that the mean noise vector,
N, has normal distribution with standard deviation o:

2
N (N
onx(N) :p2€ 22{:1(”,) .

For a large region, the mean noise vector, N, should be very
close to zero; hence, PaH(N ) will be a delta function centered at
N =o.

(23)

Likelihood

The likelihood, P(h|x, c, s, N), is approximated by analogy to a
discrete normal distribution. g(v) is defined as the difference
between the “expected” or “mean” histogram for particular o,
¢ s, N and a given histogram h(v):

q(vio,c,s,N) =h(v—N) — z[:ocjﬁ(v; c,s).

=1

(24)

Now a normal-distribution-like function is created. w(v) is
analogous to the standard deviation of g at each point of
feature space:

q(v:z.c.s.N)) de

P(Ha, ¢, 5, N) = pye ) (5 (25)

ization of the numerator:

P(h) = / P(a,¢,5 N)P(h|a, ¢, s, N)dadedsdN — (26)

= P4 (27)

Assembly

Using the approximations just discussed, we can calculate the
following expression for the posterior probability:

P(x,¢c,s,N|h)

= psP(a) P(c, s) exp <_ % i (Ifjl) 2)

i=1

SN 2
1 : N
exp ——/ q(vi.c 5 N) v |. (28)
2 w(v)
For fitting Kl the mean noise is assumed to be zero, so

maximizing Eq. (28) is equivalent to minimizing & to find
the free parameters (ol c, ),

. 2
sl ¢ 5) = l/(q(";a e s)> v,

2 w(v) (29)

subject to P(c!') # 0. Because both P(¢®") and P¥(c,s) are
constant valued in that region, they are not included.

For fitting h'°*, the parameters ¢ and s are fixed, so
maximizing Eq. (28) is equivalent to minimizing §*** to find
the free parameters (¢'°%, N),

_ 1SS /NN 1 q(v; o N) 2
éﬂVOX MVOX,N — 71 4»7/ b ) dV7 30
(™ 5) ZZ(> 2/ U ) G0)
subject to P(a"*¥) #£ 0.
As stated in Eq. (6), Section 6, Eq. (30) is minimized to
estimate relative material volumes, o¥°%, and the mean noise
vector, N.
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10 Discussion

Several assumptions and approximations were made while
developing and implementing this algorithm. This section will
discuss some of the trade-offs, suggest some possible directions
for further work, and consider some related issues.

10.1 Mixtures of Three or More Materials

It was assumed that each measurement contains values from at
most two materials. Two-material mixtures were chosen based
on a dimensionality argument. In an object that consists of
regions of pure materials, as shown in Fig. 6, voxels containing
one material will be most prevalent because they correspond to
volumes. Voxels containing two materials will be next most
prevalent, because they correspond to surfaces where two
materials meet. As such, they are the first choice to model after
those containing a single material. The approach can be
extended in a straightforward manner to handle the three-
material case as well as cases with other less frequent
geometries, such as skin, tubes, or points where four materials
meet. This extension could be useful for identifying subvoxel-
sized geometry within sampled data, thus extending the
resolution.

10.2 Mixtures of Materials Within an Object

Based on the assumptions, voxels only contain mixtures of
materials when those mixtures are caused by partial-volume
effects. These assumptions are not true in many cases. By
relaxing them and then introducing varying concentrations of
given materials within an object, one could derive histogram
basis functions parameterized by the concentrations and could
fit them to measured data. The derivation would be substan-
tially similar to that presented here.

10.3 Benefits of Vector-Valued Data

As with many other techniques, what is described here works
on vector-valued volume data, in which each material has a
characteristic vector value rather than a characteristic scalar
value. Vector-valued datasets have a number of advantages and
generally give better classification results. Such datasets have
improved SNR and frequently distinguish similar materials
more effectively (see Fig. 13).

10.4 Partial Mixtures

Note that the histograms, h"*(v), for some voxel-sized regions
are not ideally matched by a linear sum of basis functions.
There are two possible sources of this mismatch.

The first source is the assumption that within a small region
there is still normally distributed noise. N models the fact that
the noise no longer averages to zero, but there is no attempt to
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FIGURE 13 Benefits of histograms of vector-valued data. These figures
show histograms of an object consisting of three materials. (a) This
histogram of scalar data shows that material mean values are collinear.
Distinguishing among more than two materials is often ambiguous. (b)
and (c) are two representations of histograms of vector-valued data and
show that mean values often move away from collinearity in higher
dimensions, and so materials are easier to distinguish. High/bright
locations indicate more common (v, v;) data values. While less likely, (d)
shows that the collinearity problem can exist with vector-valued data.

model the change in shape of the distribution as the region size
shrinks.

The second source is related. A small region may not contain
the full range of values that the mixture of materials can
produce. The range of values is dependent on the bandwidth of
the sampling kernel function. As a result, the histogram over
that small region is not modeled ideally by a linear combina-
tion of pure material and mixture distributions. Other model
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histogram basis functions with additional parameters can
better match histograms [18,19]. Modeling the histogram
shape as a function of the distance of a voxel from a boundary
between materials is likely to address both of these effects and
give a result with a physical interpretation that will make
geometric model extraction more justifiable and the resulting
models more accurate.

These two effects weight the optimization process such that
it tends to make N much larger than expected. As a result,
experience shows that setting w(v) to approximately 30 times
the maximum value in #"°*(v) gives good classification results.
Smaller values tend to allow N to move too much, and larger
values hold it constant. Without these problems w(v) should
take on values equal to some small percentage of the maximum
of h"*(v).

10.5 Nonuniform Spatial Intensities

Spatial intensity in MRI datasets can vary because of
inhomogeneities in the RF or gradient fields. It is assumed
that they are small enough to be negligible for this algorithm,
but it would be possible to incorporate them into the
histogram basis functions by making the parameter ¢ vary
spatially.

10.6 Quantitative Comparison with Other
Algorithms

Because of the lack of a “gold standard” against which
classification algorithms can be measured, it is difficult to
compare the technique described here with others. Each
technique presents a set of results from some application area,
and so anecdotal comparisons can be made, but quantitative
comparisons require reimplementing other algorithms. Work
in generating a standard would greatly assist in the search for
effective and accurate classification techniques. The voxel
histogram technique appears to achieve a given level of
accuracy with fewer vector elements than the eigenimages of
Windham et al. [12] or the classification results of Choi et al.
[14], which use three-valued data. Their results are visually
similar to the voxel histogram results and underscore the need
for quantitative comparison. Because neighboring sample
values are interpolated, a given accuracy can be achieved
with two-valued or even scalar data, while their technique is
likely to require more vector components. Kao et al. [13] show
good results for a human brain dataset, but their technique
may be less robust in the presence of material mixture
signatures that overlap, a situation their examples do not
include.

10.7 Implementation

The examples were calculated using an implementation in C
and C4++ on Unix workstations. It uses a sequential-quadratic-
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programming (SQP) constrained-optimization algorithm [24]
to fit h'°* for each voxel-sized region, and a quasi-Newton
optimization algorithm for fitting #*!. The algorithm classifies
approximately 10 voxels per second on a single HP9000/730,
IBM RS6000/550E, or DEC Alpha AXP 3000 Model 500
workstation.

11 Conclusions

The algorithm described in this chapter for classifying scalar-
and vector-valued volume data produces more accurate
results than existing techniques in many cases, particularly at
boundaries between materials. The improvements arise
because (1) a continuous function is reconstructed from
the samples, (2) histograms taken over voxel-sized regions
are used to represent the contents of the voxels, (3) subvoxel
partial-volume effects caused by the band-limiting nature of
the acquisition process are incorporated into the model, and
(4) a Bayesian classification approach is used. The technique
correctly classifies many voxels containing multiple materials
in the examples of both simulated and real data. It also
enables the creation of more accurate geometric models and
images. Because the technique correctly classifies voxels
containing multiple materials, it works well on low-resolu-
tion data, where such voxels are more prevalent. The
examples also illustrate that it works well on noisy data
(SNR <15).

The construction of a continuous function is based on the
sampling theorem, and although it does not introduce new
information, it provides classification algorithms with a richer
context for the information. It incorporates neighbor informa-
tion into the classification process for a voxel in a natural and
mathematically rigorous way and thereby greatly increases
classification accuracy. In addition, because the operations that
can be safely performed directly on sampled data are so limited,
treating the data as a continuous function helps to avoid
introducing artifacts.

Histograms are a natural choice for representing voxel
contents for a number of reasons. First, they generalize single
measurements to measurements over a region, allowing
classification concepts that apply to single measurements to
be generalized. Second, the histograms can be calculated easily.
Third, the histograms capture information about neighboring
voxels; this increases the information content over single
measurements and improves classification results. Fourth,
histograms are orientation independent; orientation indepen-
dence reduces the number of parameters in the classification
process, hence simplifying and accelerating it.

Partial-volume effects are a nemesis of classification algo-
rithms, which traditionally have drawn from techniques that
classify isolated measurements. These techniques do not take
into account the related nature of spatially correlated measure-
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ments. Many attempts have been made to model partial-
volume effects, and this work continues that trend, with results
that suggest that continued study is warranted.

The Bayesian approach described is a useful formalism for
capturing the assumptions and information gleaned from the
continuous representation of the sample values, the histograms
calculated from them, and the partial-volume effects of
imaging. Together, these allow a generalization of many
sample-based classification techniques.
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I I edical image analysis benefits significantly from the precise, fast, repeatable, and objective
measurements made by computational resources. These quantitative measurements con-
tribute to the analysis of structure and function in normal and abnormal cases by addressing

many aspects of the data, such as tissue shape, size, texture, and density; musculoskeletal angle,

kinematics, and stress; as well as ventricular motion, myocardial strain, and blood flow. The shape of
tissue structures or organs is of particular interest in visual interpretation of images, and automated
techniques provide many quantitative measures that can contribute to the examination. The smoothness
or homogeneity of the tissue is also often used in visual examination to assess the state of the tissue.

Chapter 14 presents fundamental techniques for shape and texture quantification in two-dimensional

images, including spatial, statistical, and spectral methods. Texture information is also present in

volumetric data and can be quantified by setting an appropriate framework for three-dimensional
tessellation. Chapter 15 describes relatively new concepts and methods for three-dimensional texture
analysis based on gradient estimation as well as a generalization of cooccurrence matrices introduced in

Chapter 14. In some cases, the shape of a structure can be characterized by comparing it to a preset

template. In such cases, shape is quantified with the parameters of a transformation function that needs to

be applied to the template in order to match it to the image structure’s shape. Shape quantification with
deformable template transformations can be used on anatomical as well as functional data. Concepts and

213
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techniques used for shape transformation are explained in Chapter 16, in the context of brain imaging,
where this approach is of particular interest.

Some applications in medical imaging require a specialized approach that addresses the unique
structure and properties of the data. One example is the analysis of branching structures such as the
arterial tree. Both segmentation and quantification techniques for analyzing arterial trees have to relate to
the tubular bifurcating shapes. Chapter 17 reviews techniques used for arterial tree morphometry and
presents quantitative measures obtained from three-dimensional images. Quantitative image analysis also
contributes to the study of the musculoskeletal system using biomechanical models that yield static,
dynamic, and stress parameters. Chapter 18 introduces biomechanical models derived from three-
dimensional images, presents techniques for quantifying bone structure and material properties, and
provides illustrative applications. Quantification of angles between bone structures is of interest in the
study of the musculoskeletal system for diagnosis as well as planning of treatment. Chapter 19 presents a
technique for bone angle quantification using three-dimensional data.

Quantitative measures obtained from medical images are typically used for making decisions regarding
the structure or function of tissue. When automated techniques are used to assist such decisions, an
additional layer of decisions is imposed. The user must select images for training pattern recognition
algorithms and determine the measurements, often called features, that have appropriate discrimination
power. These decisions also can be guided by automated techniques described in Chapter 20, which
discusses database selection criteria and feature evaluation methods. This chapter also introduces two
commonly used pattern recognition techniques: the feed-forward neural network and the Bayesian
network.

Interpretation of mammograms is an area where detailed analysis of both shape and texture is of
particular interest. Risk of breast cancer has been correlated to the density of mammograms, quantified
with brightness as well as texture. Chapter 21 reviews the physical foundations of radiographic imaging in
mammography, establishes the factors that dictate the optical density of mammograms, and describes
techniques for characterizing their brightness and texture. Chapter 22 presents a review of lesion
classification in mammograms using shape and texture quantification and discusses the evaluation of
classification techniques. The contribution of automated techniques to the visual interpretation of
radiologists is also addressed in Chapter 22.

Many techniques for quantification of volume, motion, and flow are available for analyzing
cardiovascular images. The main parameters of interest are ventricular volume and ejection ratio, blood
flow, and ventricular wall motion. Chapter 23 describes techniques for quantifying these parameters using
geometric, densitometric, and spectral methods. The delineation of the left ventricular wall can be
accomplished using segmentation techniques described in the previous section, and parts of the
cardiovascular system can be inspected visually using visualization techniques described in the next
section. The performance of the heart, especially myocardial strain, is also addressed with the tagged MRI
technique that led to new computational methods for quantification of cardiac function. Chapter 24 first
establishes the analytical framework for representing three-dimensional tissue motion and strain, and
also describes the fundamentals of tagged MRI in the same framework. It then reviews image processing
techniques for deriving motion measurements in two-dimensional images and describes the combination
of these measurements to estimate the three-dimensional motion and strain of material points inside the
left ventricle.

The last chapter in this section is a comprehensive survey of techniques used for an essential image
processing function that has universal applicability. Interpolation and resampling, addressed in Chapter
25, are used in many applications where estimates of image values at points other than the original grid
are required. Applications include zooming and coordinate transformations in two-dimensional data,
rescaling, reslicing, and rendering in volumetric data, tomographic reconstructions, and image
registration. Selection of a technique is often difficult because of assumptions, possible approaches,
and the diversity of models involved. Chapter 25 clarifies the terminology and fundamental concepts, sets
the analytical foundation of generalized linear interpolation, establishes the desirable properties that
interpolation and resampling should have, describes several types of interpolation functions, and
illustrates their performance.
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Two of the most informative visual cues in medical image
interpretation, shape, and texture can be quantified with
numerous automated techniques that address different aspects
of the data. This chapter describes relatively established
techniques for two-dimensional (2D) shape and texture
quantification, which contribute to many clinical and research
applications.

Section 1 presents shape quantification techniques, that
operate on the segmented image in three different ways.
Compactness and spatial moments provide quantitative shape
measures by applying geometric and statistical computations
to all pixels within a segmented region. Radial distance
measures, chain codes, and Fourier descriptors operate only on
boundary pixels by using geometric, statistical, and spectral
computations to provide mechanisms for encoding and
representing a closed contour. When structures of interest
are elongated or branching, the essential shape information is
contained in the medial lines that can be obtained by thinning
algorithms. Quantitative shape measures such as length, angle,
curvature, or orientation can be computed subsequently on the
skeletonized representation.

Examination of medical images often requires interpretation
of tissue appearance, which is generally described with terms
such as smoothness, grain, regularity, or homogeneity. This
attribute relates to the local intensity variations and can be
quantified by using texture metrics discussed in Section 2.
Statistical moments are derived directly from the intensity
histogram of the image. Co-occurrence matrix measures are
computed from a 2D histogram, which preserves spatial
information. Spectral measures obtained from the Fourier
transform of the image can quantify texture, particularly when

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

repetitive patterns are present. The field of fractals provides the
fractal dimension, which can be used as a texture metric based
on analysis at multiple scales. The run-length statistics quantify
texture by analyzing linear pixel strands that have the same
value in the image.

Unlike shape, texture is a representation of a selected region.
It can be assigned to a small local area as well as to a relatively
large image section, within a segmented region, or inside a
preset region of interest. A local texture measure can be
associated with each pixel of the entire image and the resulting
texture image may be used for segmentation when the distinct
structures of interest have similar intensity levels but differ in
smoothness.

1 Shape Quantification

1.1 Compactness

A common shape measure is compactness, computed by using
the perimeter P and area A of a segmented region with

C=P/A (1)

which quantifies how close an object is to the smoothest shape,
the circle. The value of this unitless metric is minimal (47) fora
perfect circle because it is the shape that encloses a given area
with the shortest perimeter. For spatially quantized circles, C
can be slightly higher than 4z, such as in Fig. la where
C = 13.6. The value of compactness increases with increasing
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FIGURE 1 Three binary regions for which compactness is (a) 13.6,
(b) 15.4, and (c) 27.6.

shape complexity; for example, the region in Fig. 1b has
C=15.4. Due to this property, visual shape roughness
perception often may have a good correlation with C; however,
this common metric is not always a robust estimator of shape
complexity. Although the elongated region in Fig. 1c is not
perceived as rougher than that in Fig. 1b, it has a compactness
of C =27.6. Compactness should be used cautiously, by
considering that it is simply a measure of similarity to a circle.
Its advantages are computational simplicity as well as
translation, rotation, and scale invariance within limits
introduced by sampling and segmentation. A normalized
variant C' = 1 — 4n/C ranging between zero and one also is
commonly used. The values of C' for benign and malignant
calcifications in mammograms are illustrated in Figs. 2 and 3.
Compactness has been used, for example, for quantifying
calcifications [1] and breast tumors [2—4].

(a)
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FIGURE 3 Distributions of normalized compactness C’ defined in
Section 1.1, the radial distance metric f,; defined in section 1.3, and
normalized Fourier descriptor FF defined in section 1.5, for 64 benign and
79 malignant microcalcifications in mammograms. C’ (a) and (d), f5; (b)
and (e), and FF (c) and (f) for benign and malignant microcalcifications
respectively. Courtesy of L. Shen, Array Systems Computing Inc. and
R. Rangayyan, University of Calgary.

1.2 Spatial Moments

The concept of moments used to analyze statistical distribu-
tions can also be used to represent the spatial distribution of
values in a 2D function [5]. Moments of a digital M by N image

f(4,7) are given by

(b)

FIGURE 2 Examples of benign (a) and malignant (b) microcalcifications in mammograms. The side of each frame is 17mm. Courtesy of L. Shen, Array

Systems Computing Inc. and R. Rangayyan, University of Calgary.
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where p 4 g is the moment order in two dimensions. Note that
moments can be computed for binary images as well as gray-
scale images. In binary images, moments quantify strictly the
shape of the segmented region; in contrast, moments applied to
gray scale images include information regarding the intensity
distribution in addition to shape. Moments constitute an
infinite set of transform coefficients from which f (4, j) can be
uniquely recovered. The finite number of moments used in
practice do not retain all the image information, but they can
provide an effective set of shape descriptors and can contribute
to classification.

Translation invariance can be obtained by using central
moments
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where

i= mlO/mOO and ]T: m01/moo~ (4)

This definition yields u;, = uy, = 0. Central moments can be
obtained in terms of noncentral moments. Some examples are:

Hoo = Mg
Hyp = My — Mooy
Myo
Hag = My — ity
Hop = Mgy — jiMgy
fyy = myy — 2jmyy — img, + 257 my,
Hyy = my; — 2imy, — jmy + 2i%my,
Hzo = mizg — 3irmyy + 217 my
Ho3 = Mgy — 3jmgy + 25 my, (5)

If an image is scaled up by a coefficient s larger than 1, so that
the scaled image is

f1G,5) = f(i/s,j/s) (6)

its moments will be
I pHqt2
Hpg =71ty (7)

One way of achieving scale invariant quantification is to scale
images first to a standard size by using a scale coefficient
commensurate with the size of the object. The area of the object
is given by p,,, and the object could be conceptually reduced to
unit area by scaling down each axis with /i, that is
f(i\/Hoo» jy/Hgo)- This transformation is equivalent to defining
the scale invariant central moment
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(p+q+2)/2

Npq :upq/:u p+q=23,... (8)

which can be used to quantify shape independently from
location and size.

In applications where the shape of a segmented region must
be quantified in a manner that is insensitive to its orientation,
rotation invariant metrics are used. The scale invariant central
moments given in Eq. (8) can be combined further to obtain
translation, scale, and rotation invariant descriptors [5].

¢y =1y + 1oy 9)
by = (20 — 1102)” + 4%, (10)
$3 = (13 — 37712)2 + (3131 — ’703)2 (11)
by = (130 +112)" + (121 +103)’” (12)
$s = (130 — 3112) (M2 + 7130) [(’112 +1130)” = 3(121 + o3 2]

+ (3121 = Mo3) (a1 + 1o3) {3(7712 + ’730)2 — (ny + 7703)2}
(13)

b6 = (120 — No2) [(’112 + '730)2 = (my + ’703)2}

+ 41y, (115 4 130) (21 + Mo3) 14)

(
$7 = (3121 — Mo3) (12 + N30) |:(;712 +1130)" = 3(ny + ’703)2}

+ (3112 — 1130) (21 + 1o3) {3(’712 + ’130)2 = (ny + ’703)2}
(15)

The first row of Fig. 4 shows three shapes with increasing
roughness. The shapes are scaled by a factor of two in the
second row and rotated 60° counterclockwise in the third row
of Fig. 4. The values of ¢, for these nine shapes are

0.16766 0.17150 0.17601
0.16796 0.17189 0.17618
0.16792 0.17185 0.17616

¢ =

where each value is shown in the position of the corresponding
shape in Fig. 4. Each column corresponds to one shape and
exhibits a noteworthy level of invariance. A monotonous
increase in the value of ¢, is also observed with increasing
shape roughness. The other invariant descriptors also have
similar trends; for example the values of ¢ for shapes of Fig. 4
are:

1.5608 10™* 2.6099 10~* 8.6513 10~*
¢5=|1.6021 107* 2.4246 10~* 8.7308 10*
1.6022 107* 2.5167 107* 8.5768 1074

The orientation of an object, defined as the direction along
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FIGURE 4 Top row: three shapes with increasing roughness. Middle
row: same shapes scaled up by two. Bottom row: shapes rotated
counterclockwise by 60°.

which the object is most elongated can be obtained with the
angle 0:

1 1

2
9 = —tan &
2

(16)
Hao — Moz

This orientation and the one orthogonal to it are the principal
axes of the object. The eccentricity of an object is given by

2
e — (a0 — ton)” + 411t (17)

7
(Ha0 + o)

that ranges from 0 for a perfect circle to 1 for a straight line.

Spatial moments have been used to quantify breast tumors
[2,4], mammographic calcifications [1], and blood cells [6].
The effectiveness of spatial moments has been shown to
deteriorate when the object is less than about fifteen pixels wide
or when parts of the objects are relatively small [7]. A modified
set of invariant spatial moments normalized with respect to
standard deviation [8] has been reported to improve classifi-
cation and sensitivity to noise.

1.3 Radial Distance Measures

The shape of a structure of interest can be determined by
analyzing its boundary, the variations and curvature of which
constitute the information to be quantified. This is achieved by
transforming the boundary into a 1D signal and analyzing its
structure. A common technique is based on the radial distance
measured from a central point in the region to each pixel
(x(n), y(n)) on the boundary. Generally the centroid (x, y,) is
used as the central point and the radial distance sequence
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d(n) = \JIx(n) = xJ+ly(n) -y n=0,1,...,N—1

(18)

is obtained by tracing all N pixels of the boundary. To achieve
scale invariance, the normalized radial distance sequence r(n)
is obtained by normalizing d(n) with the maximal distance.
The sequence r(n) is analyzed further to extract shape metrics
such as the entropy

K
E=—> Mhlogh (19)
k=1

where A, is the K-bin probability histogram that represents the
distribution of r(n), as well as statistical moments

=2 (20)
and
by =3y 2 () = @

where the latter is the central moment and p is the moment
order. Normalized moments invariant to translation, rotation,
and scaling [1, 9] are obtained with

m
M, = p—fz (22)
1
and
_
L, = ﬁ p#2. (23)
H

Typically moment orders larger than 4 are not used since such
high-order moments have a large dynamic range and high
sensitivity to noise. For the shapes shown in Fig. 4, the values of
,, M, and [i, are:

[76.074 50.080 37.882

m, = | 75.754 49.098 38.174
| 71.739  50.435 39.541

[6084.93 2714.65 1594.94
my = | 6035.35 2614.59 1620.81
| 5428.31 2752.00 1731.75

[1.9935 2.6930 2.8414
T, = | 1.9485 2.6972 2.8653

| 1.8845 2.7425 2.8427

Two features
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- (23)

and their difference f,; = f, — f; have been reported to have
good invariance properties and monotonic increase with shape
complexity [1]. The distributions of f,; are illustrated in Figs 2
and 3 for benign and malignant microcalcifications in
mammograms.

The number of times the signal r(n) crosses its mean and
other similar metrics can be used as a measure of boundary
roughness [10]. The information in the r(n) signal can be
analyzed in the spectral domain with the discrete Fourier
transform (DFT)

1 N-1 )
a(u) = NZ r(n)e—ﬂﬂnu/N u= 07 17 s 7N - 1 (26)
n=0

whose coefficients with highest values convey the essential
shape information. It is also possible to quantify the shape of
the boundary with the discrete Wavelet transform (DWT) of
the r(n) signal by using a selected wavelet [11-13]. Radial
distance measures have been used to quantify the shape of
breast tumors [2, 3, 10] and calcifications [1].

1.4 Chain Codes

The shape of a region can be represented by quantifying the
relative position of consecutive points on its boundary. The
chain code technique achieves this representation by analyzing
each point on the boundary in sequence (e.g., counterclock-
wise) and assigning a code digit to the transition from each
point to the next. The term point rather than pixel was
deliberately used because, depending on the image resolution
and object size, a chain code that addresses each boundary pixel
may be too large. Furthermore, using each pixel causes all
minor boundary deviations related to noise or segmentation
pitfalls to be considered part of the object shape. Therefore, a
boundary is typically prepared for chain codes by reducing the
spatial resolution with a new x-y grid. Figure 5a illustrates
segmented boundary pixels on a vertebral contour, the lower
resolution grid, and the points used for the chain code. The
transition from one point to the next can be coded with
4-connectivity, considering the 4 nearest neighbors, or 8-
connectivity, where transitions to all adjacent points are coded.
Here we consider the chain code based on 8-connectivity as
defined in Fig. 6. For example, when the boundary passes from
a point to the one located to its right, the code for the transition
is 0; when the boundary goes from a point to its upper left, the
code is 3. Figure 5b shows the chain code points and the
directional digit associated with each transition. In this
example, the chain code starting from the point labeled with

219

(a) (b)

FIGURE 5 (a) Vertebral contour and grid for chain code. (b) Chain code
points and transition labels.

an S and progressing counterclockwise is shown in Fig. 7a. The
chain code can be analyzed further to extract metrics that
quantify the boundary shape.

Before discussing shape quantification, some normalization
issues have to be addressed. Because the chain code changes
with the selected starting point, it is clear that a given boundary
can be represented with as many chain codes as the number of
points that it has. To eliminate this ambiguity, we select the
starting point that produces the chain code with minimal
numerical value. In this manner, only one chain code is
associated with the boundary.

A rotation invariant code sequence also can be obtained by
using the first difference of the chain code; the difference
between two consecutive digits is defined as the number of
directions between them, which is taken to be positive when
counterclockwise. For example, in the chain code of Fig. 7a,
passage from the first digit to the second entails a direction
change of one clockwise step; referring to Fig. 6, the first
element of the differential chain code is — 1. On the other
hand, passage from the 5th element (2) to the next (3) occurs
with a counterclockwise change of 1 digit, producing a
difference of 1. The differential chain code shown in Fig. 7b,
considered a circular sequence, is a unique, rotation-invariant
representation of the boundary obtained for all its topologically
homologous rotations in the image plane. Note that generally,
when the same object is imaged at two different orientations,
pixels on the segmented boundary in one orientation are not

3 2 1
4

4~ ()
Y

5 6 7

FIGURE 6 Transition label definitions for the 8-connected chain code.
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homologous to those of the other orientation. In order to
ensure a rotation-invariant representation with the differential
code described above, the new grid cell size has to be large
enough to become insensitive to imaging and segmentation
variations due to object rotation.

The differential chain code is different for different bound-
aries, and it can be used to distinguish shapes, but it cannot be
used directly to quantify a given aspect of a shape or to
compare shapes with a scale. The differential chain code is a
rotation and translation-invariant encoding of the boundary,
but it is not a measure of any shape attribute. However, because
it contains all the essential shape information, several metrics
can be extracted from it. For example, boundary smoothness is
related to the local curvature of the boundary and can be
quantified directly from the differential chain code. If the
boundary is relatively smooth, the transitions between adjacent
points in a local section of the boundary, tend to be in either
the same direction or closely spaced directions. Consequently,
the differences between consecutive digits of the original chain
code are small and the differential sequence has relatively small
digits. The mean of the absolute value of all digits in the
differential chain code can be used as a smoothness measure
that takes a low value for smooth boundaries.

Boundary symmetry also manifests itself in the differential
chain code. If the starting point is on the axis of symmetry, the
differential chain code is also symmetric around its middle. If
the starting point is arbitrary, the differential chain code
generally has two parts that are symmetric around their own
middles, as in Fig. 7b. Such symmetric sections can be
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(a) Chain code of boundary in Fig. 5. (b) Corresponding differential chain code.

determined by parsing the differential chain code, and the axis
of symmetry of the boundary can be inferred by further
analysis.

The presence of concave sections in the boundary also can be
determined from the differential chain code. With the
difference definition as stated above, a convex boundary has
a differential chain code made of only positive digits. Any point
that lies on a concave turn produces a negative digit. The
amount of convex and concave sections can be quantified by
analyzing the positive and negative runs of the differential
chain code.

Chain codes have been used for autoradiographic brain and
neural tissue analysis [14], quantification of the nuclear
contour of cervical cells [15], analysis of single and overlapping
lymphocytes [16], quantification of nerve fibers [17], recogni-
tion of abnormal pap smear cells [18], region coding in
volumetric data [19], and quantification of left ventricular
boundary in echocardiograms [20].

1.5 Fourier Descriptors

Each pixel on the contour ¢ of a binary region can be
represented by a complex number, the real and imaginary parts
of which are the x and y coordinates of the pixel. This allows
the contour to be expressed as a 1D complex sequence obtained
by tracing around the contour in a selected direction, starting
from a selected pixel:

c(n) =x(n)+jy(n) n=0,1,...,.N—1 (27)
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where 7 is the pixel index and N is the number of pixels on the
contour, and j here is the imaginary unit number. The DFT of
this sequence
1 No1
_ = —i2nnu/N _ _
d(u)—NnZ:oc(n)e u=0,1,...,N—1 (28)
contains all the shape information of the contour that can be
recovered with the inverse transform

N-1

c(n)de(u)ejZ”“”/N n=0,1,...,N—1. (29)
u=0

The essential shape information is typically contained in the

low-order coefficients of d(u) which constitute the Fourier

shape descriptors.

The first coefficient d(0) is the centroid of the contour and
varies with translation, while the remaining coefficients are all
translation-invariant. All coefficients, however, depend on the
pixel selected as the starting point. Consider dy(u) to be the
Fourier coefficients obtained by starting the sequence c(n)
from pixel p,. If the sequence is started #, pixels further than p,,
the coefficients will be

d(u) = dy(u)e PN (30)

due to the shift property of the Fourier transform. If the
contour is scaled by a factor g, the coefficients are also scaled by
the same factor. Rotating the contour around the origin by an
angle 0 imparts a multiplicative factor of e/’ to the Fourier
coefficients. Therefore, the effects of starting point, scaling, and
rotation can be summarized with

d (1) = dy(u)ae 72 /N ¥

(31)

Fourier descriptors that are invariant to starting point,
translation, scale, and rotation [21] are obtained with

A1+ u)d(1 — u)
(1)

The coefficient d(1) relates to the radius of the circle that
approximates the shape, and its value is typically nonzero. The
magnitudes of the normalized descriptors

d(u)

d(1)

dinv(u) = (32)

d,(u) = u#0 (33)
can be used as scale invariant metrics.
A shape factor [4] based on the magnitudes of the

coefficients

N/2

2 @)/ Nl

u=—-N/2+1
N/2

2 4Gl

u=—N/2+1

FF=1-—

u##0 (34)

has been reported to have low sensitivity to noise as well as
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invariance to translation, rotation, scale, and starting point.
The value of FF varies between 0 and 1, and it increases with
increasing object shape complexity and roughness. Figures 2
and 3 show the distributions of FF for benign and malignant
microcalcifications in mammograms.

The formulation of Eq. (28) is based on the assumption that
the elements of the sequence c(n) are equidistant on the path of
the contour. If adjacent boundary pixels must be used, this
uniform sampling can be achieved using 4-connected pixels.
However, this sampling can significantly overestimate the
length of contour segments that have an orientation around
diagonals. Consequently, when adjacent pixels are used, both
4-connected and 8-connected contours have advantages and
pitfalls for the computation of Fourier descriptors. If the region
is large enough, an alternative is to select equidistant points
along the contour to form c¢(n). If the fast Fourier transform
(FFT) algorithm is used, the appropriate step size is computed
with p./2%, where p, is the contour perimeter in pixels
computed with a step of /2 for diagonally connected pixels,
and where ks the lowest integer power that yields 25> p_. After
points are selected with this step size, the sequence is zero
padded to 2F to obtain c(n).

Among many applications, Fourier descriptors have been
used to represent motion profiles for the diagnosis of low back
disorders [22], to recognize human corneal endothelial cells
[23], to represent the shape of prostate glands in magnetic
resonance images [24], to quantify the shape of calcifications
[1] and tumors [4] in mammograms, and to analyze chromo-
somes [25]. Fourier descriptors also have been extended to 3D
and applied to magnetic resonance image data [26].

1.6 Thinning

In many applications, the essential shape information of a
structure is obtained by representing it with its skeleton made
of the medial lines along the main components of the structure.
Thinning algorithms produce the skeleton by using criteria that
search for the medial lines. The medial axis transform (MAT)
[27-29] determines the medial line by computing the distance
d(i,j) from each interior pixel i of a binary structure to each
boundary pixel j. When the minimal distance of an interior
pixel i, occurs for two boundary pixels j, and j,,

min{d(iy,j)} = d(ig, ji) = d(ig, ) (35)

the pixel i, is labeled as an MAT pixel. In some cases, more than
two boundary pixels may yield the minimal distance. The result
of the MAT depends on the selected distance measure, but
typically the Euclidean distance is used. The example shown in
Fig. 8a is obtained with the Euclidean distance. The computa-
tional complexity of the MAT is high because it requires
computation of a large number of distances. Consequently,
many iterative algorithms have been developed to determine
the medial lines with fewer computations [28,29]. Among
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FIGURE 8 (a) Thinning with the MAT. (b) Thinning with the Zhang and
Suen algorithm.

them, the algorithm by Zhang and Suen is particularly effective
[30].

The Zhang and Suen algorithm is an iterative method
whereby a border pixel is removed from the contour of the
binary region only if it meets a set of conditions based on its
neighborhood. The conditions are designed to ensure that the
removal of the border pixel will not lead to splitting the region
to be thinned. Consider a binary region to be thinned where
pixels have a value of 1, while background pixels are
represented with 0. For each pixel in the binary region, the
algorithm computes two sums defined by using the labels in
Fig. 9a where the considered pixel is p; and neighbor pixels can
take a value of 0 or 1. The sum, #n(p,) is defined as the number
of nonzero neighbors or

n(p) =Y pi

1=2

(36)

In the example of Fig. 9b, the sum is 5. The second sum, s(p, ),
is the sum of 0-to-1 transitions in the sequence of neighbor

a =
BB |5 0| 1)1
p| B | 1] g1
p| B |5 100

FIGURE 9 (a) Neighborhood pixel labels. (b) Example neighborhood.

III Quantification

pixels, computed by considering all nine transitions around the
pixel p;, starting with p, to p; and ending with p, to p,. The
value of s(p,) is 2 for the example in Fig. 9b.

The algorithm has two steps in each iteration. In step 1, the
algorithm first checks the entire image and determines border
pixels, which are defined as pixels that have a value of 1 and at
least one 8-connected pixel equal to 0. In this step, a border
pixel is deleted if four conditions are satisfied simultaneously:

Condition 1: 2 < n(p;) < 6

If p, has only one neighbor, it is the end of a pixel strand
and should not be deleted. If p; has 7 neighbors,
deleting it may deplete the region and lead to splitting.

Condition 2: s(p;) =1

If the neighborhood has more than one 0-to-1 transition,
deleting p; may lead to splitting the region.

Condition 3: p, - p, - ps =0
Condition 4: p, - ps - ps =0

These two conditions are satisfied simultaneously if
ps =0, or pg =0, or p, = pg = 0. When conditions 1
and 2 are met, these three possibilities refer to the
three cases illustrated in Fig. 10, which correspond to
an east border, south border, and northwest corner,
respectively. In each of these three cases, the pixel p,
should be deleted for thinning.

If all four conditions are met, then pixel p, is marked for
deletion but not deleted until all the pixels in the
image are evaluated. After the complete evaluation, all
marked pixels are deleted.

Step 2 of the algorithm is applied to the result of step 1, also
using four conditions. The first two conditions are the same as
those of step 1, but the other two are modified as:

Condition 3: p, - p, - ps =0
Condition 4: p, - pg - ps =0

These two conditions address the cases of north border,
west border, and southeast corner in a manner similar
to step 1.

In step 2 also, a pixel is marked for deletion if all four
conditions are met; all marked pixels are deleted after each
pixel in the image is visited. When step 2 is completed, the
algorithm starts another iteration by applying step 1 to the
outcome of step 2. This iterative process is terminated when no
pixel is marked in step 1 and step 2. This algorithm yields a
skeleton made of a strand of 8-connected pixels. Figure 11
shows the result of thinning a small section of an image with
the Zhang and Suen algorithm. Figure 8 compares this
algorithm with the MAT on a femur image. The two produce
similar results with a few differences. Although the Zhang and
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FIGURE 10 East border (a), south border (b), and northwest corner (c) in Zhang and

Suen algorithm.

Suen algorithm does not reproduce all details that are obtained
with the more rigorous MAT, in many applications it provides
a very good approximation that requires considerably fewer
computations. In an application where the location of the
central axis of the bone is sought, for example, both algorithms
would lead to almost the same result. When the length of an
elongated structure has to be measured, thinning can be used
to determine the medial axis; distances between consecutive
pairs of pixels can be added to obtain an estimate of length.
Although the distance between two pixels that share a side is
the width of one pixel, the distance between two pixels
connected at their corners is /2 times longer. Figure 12
illustrates the use of thinning to quantify the length of DNA
fragments [31]. The atomic force microscope image of DNA
fragments in Fig 12a is segmented in Fig. 12b. The image in Fig.
12¢ shows the outcome of thinning where objects that are too
short and those that touch the image edge are removed.

Thinning is used in numerous applications, including
coronary arterial tree analysis [32], gastrointestinal endoscopic
imaging [33], atomic force microscopy images of DNA
fragments [31], ocular fundus imaging [34], and quantification
of chromosome shapes [35]. Thinning algorithms that have
only one step per iteration [36] and others that operate directly
on the gray-scale image [37-39] are also available. Since the use
of medial lines is particularly important in volumetric
information, thinning algorithms for 3D data also have been
suggested, using various approaches such as a 3D general-
ization of the Vornoi skeleton concept [40], hybrid thinning
techniques [41], and voxel-coding [42].

2 Texture Quantification

2.1 Statistical Moments

Since a smooth region contains pixels with values close to each
other and a rough region has wide variability in pixel values,
statistical moments of the region histogram can be used as
texture metrics. In an image with K gray levels, consider a
region with mean value g, and histogram h(k) with k ranging

from 0 to K— 1. The nth moment about the mean for this
histogram is given by:

K-1

> (k= )" h(k)

k=0

1

K

m, = (37)

n

The second moment m, or variance is a common texture
measure; it correlates well with the visual roughness percep-
tion, and it is relatively fast to compute. The third and fourth
moments, skewness and kurtosis, reflect respectively the
asymmetry and uniformity of the histogram. Although these
moments relate to the intensity variations within the region,
they have to be used cautiously because they do not always
correlate well with the visual texture interpretation.
Nevertheless, they can be used as extracted features in pattern
recognition applications where their potential value is explored
with a quantitative analysis. The variance and kurtosis of three
textures are illustrated with Fig. 13 and Table 1.

Statistical moments have been used for applications such as
texture quantification in ultrasonic images of liver tissue [43].
Statistical moments do not contain spatial information because
they are derived from the image histogram. Since the concept
of roughness is often associated with the size of the grain in the
object, texture measures that convey spatial information may
be valuable.

FIGURE 11
process. (a) Small section of an image. (b) Outcome of thinning with the
algorithm, black pixels remain, and gray pixels are removed.

A pixel representation of the Zhang and Suen thinning
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FIGURE 12  Application of thinning for sifting out objects of different lengths. (a) An atomic force microscope image of DNA fragments. (b)
Image after thresholding. (c) Image after thinning with Zhang and Suen algorithm, and removing objects that are too short or touching the

edge of the image.

2.2 Co-Occurrence Matrix Measures

Several texture metrics that contain spatial information are
based on the co-occurrence matrix, also known as spatial gray-
level dependence matrix. Just as building the histogram is a
preprocessing step that prepares the data for statistical
moments, forming the co-occurrence matrices is an initial
step that compiles spatial as well as statistical information for
computing the texture metrics described below. The spatial
information considered is the relative position of pairs of
pixels, defined with distance d and orientation 0 that describe

the location of the second pixel with respect to the first. A co-
occurrence matrix is formed for each such position. In this
manner, each co-occurrence matrix prepares the data to
emphasize primarily structure or streaks in a given direction
and a grain size that is at least as large as the selected distance.
Typically, four values of 6, namely 0°, 45°, 90°, and 135°, cover
the orientations, and the most common choice of distance
is d =1 when 0 is 0° or 90°, and d = v/2 when 0 is 45° or
135°.

For an image with number of pixels P = 36, gray levels
K = 4, and pixel values

FIGURE 13 Ultrasound image sections of normal liver (lef?), fatty liver (middle), and liver with cirrhosis

(right).
TABLE 1 Some texture metrics obtained from the ultrasonic liver image sections shown in Fig. 13
Normal Fatty Cirrhosis

Statistical moments

Variance 464.9 366.2 365.5

Kurtosis 2.45 2.87 3.58
Co-occurrence matrix measures

Angular second moment 82x10* 89x 10 * 93x10*

Inertia 601.4 529.4 532.5

Sum entropy 4.85 4.69 4.68
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consider, for example, pairs of pixels positioned diagonally
next to each other from lower left to upper right where d = v/2
and 0 = 45°. A Kby K matrix H(d, 0) is formed such that each
element h;; is the number of times a pixel with value i and
another with value jare located in the selected relative position.
For example, the count A, is 3 and the count h;; is 4. The
complete matrix H(+/2,45°) for this image is:

j:
0o 1 2 3

The number of pixel pairs P’ used to build H(d, 6) is always
smaller than P because, for each choice of d and 6, pixels on
some edges do not form pairs. In the above example, the 11
pixels in the top and right edge do not contribute pairs and P’
is 25. The value of P’ gets smaller as the selected distance
increases because a larger number of rows and columns along
the edges are excluded from the counts.

In the most general case, assuming an image with M rows
and N columns, when 0 is 45°, there will be M — d/+/2 pairs
along each row and only N — d/v/2 rows will contribute,
resulting in a total of P = (M — d/+/2)(N — d/+/2) pairs to
be used in forming the co-occurrence matrix. Expressions of P’
for the four main orientations are:

P =M(N—d) for 0=0°
P =N(M - d) for 0 =90°
P'=(M-d/V2)(N—d/V2)  for 0=45 and 0 =135

The value of P’ given by . h; can also be accumulated
during computation of H(d, 0).

The co-occurrence matrix C(d,0) is made of elements
¢; = h;j/P' namely the probability of having pixel pairs with
values i and j in locations that exhibit the selected relative
position. The size of the co-occurrence matrix that depends on
the number of gray levels in the image can be inconveniently
large in many cases. For example, a 10-bit image would yield a
1024 x 1024 co-occurrence matrix, the storage and computa-
tional load of which may be too large for many applications.
Often, the pixel values of the image are mapped to new values
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in a scale with fewer quantization levels, possibly producing a
new image with K = 64 or lower. Although some of the image
information is eliminated, texture information can be retained
and texture metrics derived from the co-occurrence matrices
remain valuable, if the mapping is appropriate.

Linear mapping, however, may not be always the best choice.
For example, if the structure of interest has pixels distributed
approximately evenly between 128 and 138 in an 8-bit image, a
linear mapping to a 5-bit image will map about 80% of the
pixels in this structure to the same new gray level. This will
obliterate the statistical information within that structure by
severely reducing the pixel variations. However, a nonlinear
mapping that uses larger steps at gray levels with insignificant
information and small or unchanged steps at critical gray levels
imparts the desired reduction in K without adversely affecting
the texture metrics.

Many texture metrics can be derived from the co-occurrence
matrices [44], some of which are described below. The angular
second moment, also known as energy,

~
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~

]

(38)

=

I
o
I
)

i=0j
quantifies homogeneity. In a homogeneous region, there are few
gray level transitions and most of the pixel pairs have the same or
close values. This concentrates most of the probability on and
around the diagonal of C(d, 0), leaving most of the c; elements
to be zero. On the other hand, an inhomogeneous image has
many gray level transitions, and the probability is more evenly
distributed across the entire co-occurrence matrix, resulting in
very small values for each ;. Consequently, an inhomogeneous
region has an angular second moment that is lower than that ofa
homogeneous region. This metric is sensitive to intensity
transitions but insensitive to the magnitude of the transitions.
That is, higher local intensity contrast within the inhomoge-
neous region does not increase this metric.

The inertia measure quantifies the texture contrast and is
given by

K—-1K-1

L= Z Z(l - j)zcij

i=0j=0

(39)

(.

which weighs each element ¢;; with the gray level difference i — j
that produced it. In this manner, larger transitions are
emphasized, and this metric becomes sensitive to the local
contrast of the inhomogeneity. The inertia metric will have low
values for homogeneous regions, and high values for inhomo-
geneous regions with high contrast. A metric that penalizes the
regions with higher contrast is the inverse difference moment:

K-1K-1
1

t, = Zi—q—j.

i:oj:01+<i_j)2 40

The entropy measure
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K—-1K-1

t, = fZZcijlogc,-j

i=0j=0

(41)

quantifies the level of randomness in the region and has its
highest value when all ¢;; are equal. This is the case where all
intensity transitions are equally likely. Although this case is
often not observed in practice, it illustrates the type of
information that this metric conveys. The entropy metric may
be used to distinguish tissue with somewhat structured texture
from tissue with less structure. The first yields a relatively lower
entropy than the second.

Other texture metrics can be computed by using marginal

distributions derived from the co-occurrence matrix:

o (i) = D G and ¢,(j) = D G (42)

The means and standard deviations of these marginal dis-
tributions are represented by i, i, 0, and o,,.. In addition, the
sums of probabilities that relate to specified intensity sums or
differences are defined by

cry()=> ¢  k=0,1,2,...2Kk-2  (43)
ivj=k
and
G, (=Y ¢ k=012 ,K-1L (44)
li—jl=k
Some texture metrics based on these distributions are:
K-1K-1
'ZO VE()(I])Cij - :ux,uy
Correlation f=—1— (45)
0,0,
2K=2
Sum average f, = Z ke, (k) (46)
k=0
K-1
Difference average 5 = ke, (k) (47)
k=0
2K=2
Sum entropy = — Z ey y(K) log{c,y (k) } (48)
k=0
K-1
Difference entropy fy = — Z ¢y (k)log{c,_,(k)} (49)
k=0

Each of the texture metrics #; through #, can be obtained for
each of the four 0 values at the selected distance d. While this
orientation dependence may be desired in some cases, if a
texture metric that addresses all directions is needed, the four
co-occurrence matrices can be averaged and metrics can be
derived from this multi-orientation matrix. Three co-occur-
rence matrix measures are illustrated with Fig. 13 and Table 1.
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Co-occurrence matrix measures have been used for non-
invasive analysis of tumors in dermatology [45],
quantification of texture in echographic images [46], for
classification of heart diseases in echocardiography [47],
for discrimination of prostatic tissues [48], for analyzing
ultrasonic liver images [49], for quantification of tissue texture
surrounding microcalcifications in mammograms [50], and for
analyzing tissue texture in ultrasonic images of the breast [51].
An approach for detecting the texture periodicity using the co-
occurrence matrix also has been suggested [52].

The use of co-occurrence matrices for texture analysis in 2D
explained here can be extended to the quantification of texture
in 3D as described in Chapter 15.

for

2.3 Spectral Measures

Especially textures that have periodic or almost periodic
structure lend themselves well to quantification using the
Fourier transform. The DFT of an M by Nimage f (x, y) given by

M—-1N-1
1

F(u7 V) = m Z Zf(x7y)efj2n(ux/M+vy/N)

x=0y=0

(50)

contains information on the texture orientation, grain size, and
texture contrast of the image. The DFT is a good approach for
texture quantification because repetitive global patterns are
difficult to describe with spatial techniques but relatively easy
to represent with peaks in the spectrum. First, the magnitude of
the DFT is obtained with

S(u,v) = /F(u,v)F*(u,v)

(51)

where F*(u, v) is the complex conjugate of F(u, v). This power
spectrum is expressed in polar coordinates as a new function
Q(r,0) where each pixel now is indicated by a distance
r = /1?2 + v2 from the origin and an angle 6 = tan~!(v/u).
The distance r is the frequency of the pixel, and the angle 0
provides its orientation in the spatial domain. For a texture
with a given periodicity and direction, the spectrum exhibits a
peak at the corresponding frequency r and orientation 0.

The presence of texture with a given periodicity in any
direction can be quantified by forming the sum based on the
corresponding spatial frequency r,

T
T(r) =Y Q(r,0). (52)
9=0
The limits of this summation may need to be restricted if
texture in a selective range of orientations is relevant. Texture
of any size in a desired orientation 0, can be measured with

rﬂl

T(0,) = Z Q(r,0,)

r=r

(53)

where 7, and r,, are the lower and maximal frequencies of
interest which should be selected to represent the largest and
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smallest texture grain sizes respectively. The two functions
T(r,) and T(0,) obtained by varying the selected r, or 0,
convey comprehensive information of the texture in the
analyzed region. Statistical analysis of these two functions allow
further data reduction and parsimonious quantification of
image texture. For example the highest value in each of these
functions indicate the dominant periodicity and orientation,
wheras their means can provide more global representation
when periodicity or orientation are distributed. The variance
and other statistical moments of these functions can also be
used as descriptors.

2.4 Fractal Dimension

The recent theory of fractals introduced by Mandelbrot [53]
provided a new framework for analyzing complex geometric
shapes, particularly their roughness, which can be quantified
with the fractal dimension. Consider a geometric object that
resides in an N-dimensional space where N is the smallest
integer that allows the space to contain the object, such as
N =2 for a curve, or N =3 for an arbitrary surface. The
number of small spheres (or cubes) with diameter (or side) ¢
needed to cover the object is

n(e) = ag P (54)

where a is a scaling constant and D is the Hausdorff dimension.
A line or a smooth curve have D = 1, indicating that these are
topologically 1D objects embedded in a 2D Euclidean space
and D = N — 1. However, in the same 2D space, the Hausdorff
dimensions of meandrous curves with numerous turns are not
integers and can have, for example, values as high as 1.98 for
very rough curves. In these cases where the Hausdorff
dimension is fractional, it is also called fractal dimension. The
same observations apply to surfaces in 3D space where D is 2
for smooth surfaces and increases toward 3 with increasing
roughness. Fractal dimension can be used as an image texture
metric if the image structure is considered as a surface in a 3D
space where two dimensions are those of the image plane and
the third is the pixel intensity. The area A(¢) of this intensity
surface can be expressed as

A(e) = n(e)e* = ag®™P (55)

as a function of the element ¢ which can take sizes such as one,
two, or more pixels for a digital image. The fractal dimension D
of the image can be calculated by using the area A(¢) estimated
at several sizes of ¢ and applying linear regression on

log A(¢) =loga+ (2 — D)loge. (56)

The value of A(¢) can be estimated with the box-counting
concept [54] which has been applied to medical image analysis
[55], as discussed and illustrated in Chapter 21 in the context
of mammogram texture quantification.

The fractal dimension also can be computed by representing
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the image intensity surface with a fractional Brownian-motion
model. According to this model, the distance Ar between pairs
of pixels (x;, y;) and (x,,y,) given by

Ar = \/(x2 - xl)2 + (- }’1)2

and the absolute difference between the intensity values
I(x,,y,) and I(x,, y,) of these pixels

AIAr = ‘I(xZayZ) - I(xl7yl)|

are related with

(57)

(58)

E[AlL,] = bAr® (59)

where E[.] is the expectation operator, b is a proportionality
constant, and H is the Hurst coefficient. The fractal dimension
[56,57] is given by

D=3—H. (60)

In practice, the smallest value of Ar is Ar,,;, = 1 pixel and the
highest value Ar,,,, is dictated by the size of the structure under
consideration. To limit the values of Ar further, only integer
values can be used [56], in which case Ar may be computed
along horizontal and vertical directions only. The value of H is
computed with linear regression on

log E[AI,,] = logb+ HlogAr (61)

using the selected Ar values. Rough textures yield large values
for D and low values for H.

Fractal dimension has been used for texture analysis in
ultrasonic liver images [56, 58], radiographic images of the
calcaneus [59], mammograms [55], colorectal polyps [60],
trabecular bone [61], and CT images of pulmonary par-
enchyma [62]. Computation of fractal dimension using
maximum likelihood [59] and fractal interpolation functions
[63] also have been suggested.

2.5 Run-length Statistics

Consecutive pixels along a selected orientation tend to have the
same intensity in a smooth region while their values change
significantly in rough regions. A run is defined as a string of
pixels with same value, aligned in a given orientation. The run
length information is collected typically by using the orienta-
tions 6 = 0°, 45°, 90°, and 135°. For each orientation 0, the
number of runs with a length of m pixels at gray scale k is
computed to form the run-length histogram hy(m, k). A
smooth structure produces more runs at large values of m than
a rough structure. In striated tissue, long runs occur in the
direction of the striation, whereas the orthogonal direction
yields numerous short runs. Texture can be quantified by
analyzing the run-length histograms for different orientation.
A common metric, the run percentage is given by
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M
hg(ﬂ’l7 k)

m=1

Py = (62)

1 K-1
D
k=0

Z|

where N is the number of pixels in the image, K is the number
of gray scales, and M is the longest run-length. The four p,
values form a feature vector that can be used to characterize the
tissue. The mean and standard deviation of the p, values which
provide more global metrics can be used for texture quanti-
fication.
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1 Introduction

In recent years there has been proliferation of sensors that
create 3D data, particularly in medicine. These sensors either
operate in the plane, creating multiple slices that can be treated
as volume data if they are dense enough, or operate in 3D space
directly, such as new PET techniques that reconstruct volume
data by considering out-of-plane coincident events. Generally
volume data are analyzed and viewed as a set of 2D images.
Often this is due to the fact that only sparse slices are available.
However, even when sufficient volume data are availably
analysis and visualization of volume data are typically guided
by the limited abilities of human perception, which is not
suited well to process volume data. As a result, a large part of
the information content of the data may be ignored.
Computerized analysis offers the exciting option of escaping
from the anthropocentric description of images, and go
beyond the limitations of the human visual and cognitive
system. This chapter is a very small step in that direction. We

Based on “Texture Anisotrophy in 3D Images,” by V.A. Kovalev, M.
Petrou, and Y.S. Bondar which appeared in IEEE Transactions on Image
Processing. vol. 8, pp. 346-360. © 1999 IEEE.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

present some techniques appropriate for the texture analysis of
volume data in the context of medical applications. The
microstructural features that can be calculated this way offer a
totally new perspective to the clinician, and the exciting
possibility of identifying new descriptions and new indicators
that may prove valuable in the diagnosis and prognosis of
various conditions.

Although the field of 2D texture analysis has been very
extensively studied, there has been very little work done in the
area of characterization and estimation of 3D textures, with a
few notable exceptions. Waksman and Rosenfeld [28,29]
specifically dealt with the problem of characterizing 3D
textures consisting of opaque planar texels uniformly distrib-
uted in volume (“snowflakes”). Their main concern was the
evaluation of visibility through such a medium for various texel
orientation models. In general, extension of 2D methods to
three dimensions has largely been confined to the development
of 3D edge detectors [21,30]. However, the use of edge
detector filters for the estimation of gradients for texture
analysis in 3D is hindered by the fact that most edge detection
methods assume that they are dealing with isolated edges and
they cannot cope with the interference caused by the presence
of multiple edges. Liou and Singh [20] developed gradient
estimation operators that are more appropriate for high-
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resolution medical images. In a similar way, when the density
of lines is very high, as is the case of angiograms and
mammograms, the optimal linear filters of [22] suffer from
interference and fail. Much simpler linear filters have been
proved more effective in these cases [31].

In this chapter, we first discuss ways in which one can
construct and visualize the orientation histogram of volume
data. Then we concentrate on the calculation of features from
the orientation histogram, and in particular features that
encapsulate the anisotropy of the texture. Finally, we present
some examples of applying these techniques to medical data.

2 Issues Related to 3D Texture Estimation
and Representation

There are three major issues related to the calculation and
visualisation of a 3D orientation histogram:

o Tesselation of the unit sphere
e Visualization of the 3D histogram
® Anisotropic sampling

The first two topics have been extensively discussed in
relation to 3D object representation (e.g., [11]; the third is
intrinsic to the medical topographic data acquisition protocols.

The issue of tesselating the unit sphere arises from the need
to quantize the directions in three dimensions. Clearly, one
needs to consider equal solid angles. As a solid angle is
measured by the area over which it extends on the surface of
the unit sphere, this requirement is equivalent to requiring the
tesselation of the surface of the unit sphere in patches of equal
area. There are various ways by which this can be achieved,
particularly with the help of regular or semiregular polyhedra
[9, 11, 16, 27]. However, in all such approaches the number of
quantized directions created is very limited, leading to
representations of poor orientational resolution. Besides, the
use of such representations leads to orientational cells with
complicated defining boundaries, which in turn leads to
expensive and cumbersome ways of testing to which cell a
certain point on the unit sphere belongs. The two most
straightforward ways of defining a point on the unit sphere
(and by extension a certain orientation) is to define it in terms
of two angles, ¢ and V, corresponding to longitude and
latitude on the sphere, respectively, or to define it in terms of
the longitude ¢ measured along the equator of the sphere, and
the height z above the equatorial plane. For a quick quantiza-
tion test, we should have bins that are of equal size either in ¢
and i, or in ¢ and z. It turns out that cells defined by dividing
¢ and ¥ in equally sized sections are not of equal area. On the
other hand, cells defined by dividing ¢ and z in equally sized
sections are of equal area. Thus, we choose this tesselation of
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the unit sphere. The division of 0 < ¢ <360° into M equal
intervals and the division of —1 < z < 1 in N equal segments
results in (N — 2) x M spherical quadrangles and 2M spherical
triangles, all sustaining the same solid angle of 47/(NM).
Then, an arbitrary direction defined by vector (a, b, ¢) belongs
to bin (4, ) if the following two conditions are met:

2n 2n b
i<¢p<—(i+1), where sing R
and cos ¢ = 2 (1)

1+ 2j<e< 1+—2('+1)
_ Fe —
N’ = N

(=—F—. (2)

The issue of visualization is a little more difficult, as one has
the medium of a 2D page to visualize a volume descriptor. In
the context of 3D shape representation the extended Gaussian
image has been used to unfold the Gaussian sphere [10]. This is
a 2D representation where the two angles ¢ and Y are
measured along the two axes and the gray value of each cell is
proportional to the number density of that cell. Figure la
shows a 3D section of a liver scan, and Fig. 1b its orientation
histogram representation that corresponds to the extended
Gaussian image. An alternative way is to present the latter as a
landscape seen in perspective. This is shown in Fig. 1c. Finally,
one may try to represent the orientation histogram as a 3D
structure, with coordinates ¢ and z of the center of each cell
defining the orientation, and the accumulated value in each bin
measured along the radius [6]. Again this 3D structure has to
be viewed in projection on the plane. This representation is
shown in Fig. 1d. We find this the most expressive of the three
representations, and we use it throughout this chapter. It
should be clarified here that for each region or window in the
image, one has to have such a representation constructed
separately, as it will not be possible to visualize the orientation
histograms referring to two different images, one on the top of
the other. This is contrary to the 2D case, where the histograms
of two regions can be superimposed to visualize differences. To
facilitate comparisons between two such structures, all 3D
orientation histograms produced are projected on the 2D page
in the same way.

The problem of anisotropic sampling is relevant when metric
3D calculations are performed with the image. As the creation
from the orientation histogram necessarily involves metric
calculations, the issue of anisotropic sampling is important. It
is a common practice when acquiring tomographic data to
choose slice separation much larger than the pixel size on each
slice. Thus, the voxels of the acquired image in reality are not
cubes but elongated rectangular parallelepipeds with the
longest side along the z axes, i.e., the axis of slice separation.
The metric used for the various calculations, then, is the
Euclidean metric with a scaling factor multiplying the z value

where
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FIGURE 1 Ways of representing the 3D orientation histogram. (a) Original CT liver image volume. Its
orientation histogram was constructed with 24 bins in zand 11 in ¢. (b) Histogram displayed as a 24 x 11
gray image. (c) Histogram displayed as a landscape. (d) Histogram displayed as a 3D orientation indicatrix.

to balance this difference. Figure 2 demonstrates the effect on
the orientation histogram, if the rate of sampling along each
axis is not taken into consideration. In Fig. 2a a section of an
especially constructed test image is shown. An original image
consisting of 151 x 151 x 151 voxels and with intensity
increasing uniformly and isotropically from its center toward
its outer bounds was first constructed. Then this image was
subsampled with rate 1:2:3 along the x, y and z axes,
respectively, to emulate anisotropic sampling. The orientation
histogram of the 151 x 76 x 50 image that resulted is shown in
Fig. 2b without any scale correction and in Fig. 2c¢ with the
correct scaling used. As expected, the effect of ignoring the

i

scaling factor is crucial to such a representation. In all the
discussion that follows, the scaling factor in the metric is used,
without actually appearing anywhere explicitly, in order to
preserve the simplicity of the presentation.

3 3D Texture Representation

The first texture descriptor we examine is based on a “gradient
density” (GD) measure, and the second on an intensity
variation (INV) measure.

b c

FIGURE 2 Overcoming the problem of anisotropic sampling: (a) An image created originally with
isotropic sampling, subsequently subsampled with rates 1:2:3. (b) Its orientation indicatrix if the

anisotropic sampling is ignored. (c) Its orientation indicatrix if scaling is used.
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3.1 Gradient Density Measures (GD)

As mentioned earlier, the 2D “optimal” filters that have been
developed for 2D edge detection are not appropriate for
estimating the local gradient in textured images because of the
multiplicity of edges present in them. Much more appropriate
are small filters that avoid the problem of interference. Such a
filter for 3D images has been proposed by Zucker and Hummel
[30]. This filter is 3 x 3 x 3 in size and is represented here by its
three cross-sections orthogonal to the direction of convolution:
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The convolution of the image with this mask along the three
axes produces the three components of the gradient vector at
each voxel. Two versions of the orientation histogram are then
possible: Each gradient vector calculated is assigned to the
appropriate bin of the histogram according to the method
described in Section 2, and the bin value is incremented by the
magnitude of the gradient vector. Alternatively, the bin of the
orientation histogram may be accumulated by 1 every time a
vector is assigned to it, irrespective of the magnitude of that
vector. The latter approach was proved more robust when the
weakest 5-7% of the gradient values were trimmed off when
the orientation histogram was created, because such gradient
vectors have very poorly defined orientations. This is the
approach adopted in all experiments with real data presented
in Section 6.

III Quantification

Examples of the resultant orientation histograms of the two
approaches for the same volume of a CT vertebral image are
shown in Fig. 3. The difference in the two appearances reflects
the bone structure of the spinal cord, which had strong edges in
four dominant orientations. These edges dominate the orien-
tation histogram when the gradient magnitudes are added.
However, their role is diminished when only gradient vectors
are counted, as they are fewer in number than average and
weak textural gradients. For this reason, the approach of
ignoring the actual gradient magnitudes is considered more
appropriate for describing microtextures.

3.2 Intensity Variation Measure

This method is based on the 3D version of the spatial gray-level
dependence histogram (SGLDH). For this purpose,
Chetverikov’s 2D approach [3] is generalized to three dimen-
sions for arbitrary relative positions of the compared density
values.

First we define the five-dimensional cooccurrence histogram
with elements that count the number of pairs of voxels that
appear at a certain relative position with respect to each other
and have certain gray values. For example, element
h(i,j, d, z,d) of this histogram indicates the number of pairs
of voxels that were found to be distance d apart, in the (¢, z)
direction, and have density values i and j, respectively. The
value of the image at noninteger positions is obtained by
trilinear interpolation: The gray value at a general position
(x,y,z) is assumed to be a trilinear function of the position
itself, i.e.,

d

FIGURE 3 Two versions of the gradient-based indicatrix: (a) An original CT vertebral column image
of size 159 x 159 x 289. (b) Orientation histogram where the absolute values of the gradient vectors are
added up. (c) Orientation histogram where simply vectors in each orientation cone are counted.
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g(x,y,2) = x4+ oy + 03z + oy Xy + 05Xz + 06 yz
(4)

where o,,...,ug are some parameters. The values of these
parameters are determined from the known values at
the eight integer positions that surround the general position
(7,20 (52, (D [+ 1), (el )+ 1, [2),
(6 + LI D) (D + L+ 1)+ L)+ L, 2],
(0 + 1L, D [ + 1), (5] +1, ]+ 1,[2] + 1), where  [w]
means integer part of w.

Following Conners and Harlow [5], we define the inertia of
the image with the help of this histogram as

+agxyz + as,

Ngleg—l
(¢, zd)= " > (i—)h(i.j, b,z d)

i=0 j=0

(5)

where N, is the number of gray values in the image, and we
have used a semicolon to separate d from the rest of the
variables in order to indicate that in our calculations we shall
keep d fixed. We use I(¢, z; d) to characterize the texture of the
image and visualize it as a 3D structure showing the magnitude
of I(¢, z; d) in the direction (¢, z).

In practice, of course, we never construct the five-dimen-
sional array h(i, j, @, z; d). Instead, we fix the value of d and the
values of the directions (¢, z) at which function I(¢, z; d) will
be sampled. Then, each voxel is visited in turn and its pair
location is found at the given distance and given direction; the
gray value at that location is calculated, its difference from the
gray value of the voxel is found, and it is squared and
accumulated. This is repeated for all chosen sampling direc-
tions (¢, z). These directions could, for example, be the centers
of the bins used for the GD method. However, there is a
fundamental difference in the nature of the two approaches: In
the GD approach, the more directions we chose, the larger the
number of bins we have to populate by the same, fixed number
of gradient vectors. As a result, the more bins we have, the
more rough and noisy the indicatrix looks because the number
of vectors we have to populate them becomes less and less
sufficient. Here, the number of directions we choose are simply
points at which we sample a continuous function of (¢, z). The
more sampling points we choose, the better the function is
sampled and the smoother it looks.

4 Feature Extraction

In principle, the whole orientation histogram can be used to
characterize the texture of 3D data. However, this is a rather
cumbersome representation and ideally one would like to use
only a few features to describe its shape. Perhaps the grosser
characteristic one may observe in the orientation histogram is
its symmetry: A spherically symmetric histogram implies a
totally isotropic volume, whereas any deviation from that is a
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cue to the anisotropic structure of the underlying material. In
what follows, therefore, we use the orientation histogram in
order to characterize the anisotropy of the data.

4.1 Anisotropy in Material Sciences and
Cognition

Texture anisotropy is a very important cue in object recogni-
tion. Its importance from the physiological point of view is
underlined by the fact that the mammalian vision systems
include orientation-selective mechanisms in the visual cortex
[12, 13], and from the psychophysical point of view by the fact
that orientation is one of the cues used by humans in the
perceptual grouping of patterns [14,24]. Gorkani and Picard
[7] showed that a simple measure, such as the “dominant
perceived orientation,” may suffice for the quick coarse
classification of certain kinds of image scenes. For example, it
is known that pigeons classify cities and countries in a similar
way [8]. Sato and Cipolla used the moments of local texture to
perform image registration and estimate surface orientation
exploiting the anisotropy induced by projection [25].

The importance of anisotropy in materials has also been
widely recognized, and so it has been studied by several
methods in many other disciplines. For example, anisotropy
can be used as a diagnostic tool for the identification of faults
[23] and the behavior of the formation process of the imaged
structure [2, 15, 17]. In mechanics, anisotropy has been
estimated with the help of angular scattering of coherent light
across rough surfaces [4], the calculation of the maximum to
minimum ratio of radii of the covariance function computed
for several azimuthal directions [1], etc. Anisotropy character-
ization at many scales has also been used for the analysis of
engineering surfaces [17] and tumors in liver ultrasound
images [18].

4.2 Features Expressing Texture Anisotropy

Although the visual comparison of the orientation indicatrices
makes immediately explicit the textural difference of the
corresponding 3D images, the comparison of the indicatrices
by a computer requires the description of their shapes. Ideally,
one or two features that capture the most prominent features
of the shape of each indicatrix should be extracted from them
and used for their comparison. We propose here three such
measures:

® Anisotropy coefficient:

H
Fy =—=, (6)
Hmin
where H,;, and H,,,, correspond to the minimum and

the maximum values of the indicatrix, respectively.

o Integral anisotropy measure:
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where H,, is the mean value of the indicatrix and H(j, j) is
the value at cell (3,). This integral feature can be
considered as the standard deviation of the distribution
of the local gray level difference over the different
orientations.

® Local mean curvature:

S S (Hj) — Y (H(i—1,j) + H(i+ 17];)
+H(i,j— 1)+ H(i,j + 1))
NM

F, =

(8)

This local mean curvature is expressed by the average
value of the Laplacian calculated for all directions of the
indicatrix.

It should be emphasised that the choice of features is largely
dependent on the application area and the purpose of the
analysis performed. The preceding three should be treated as
mere examples of the various possibilities.

5 Simulated Data Studies

In this section we investigate the properties of the two
approaches to texture mentioned earlier with the help of
simulated images. In particular we examine the effect of the
various parameter values on the behavior of the anisotropy
measures, and the influence of varied degrees of noise on them.

The simulated 3D image used is shown in the top left of
Fig. 4. The image shows a fourfold symmetry, and although it is
isotropic along the three axes, it is in general anisotropic. The
dark areas have gray value 100 and the bright planes are 1 voxel
thick, have gray value 180, and are 10 voxels apart.

The INV method relies on the displacement parameter d.
One usually does not have a priori knowledge of its correct
value, so it is necessary for a range of values to be used. The first
and second column of plots in Fig. 4 show the indicatrices
computed with values of d equal to 2, 5, 10, and 15. A 3D
version of the indicatrix is shown as well as its projection on
one of its principal planes. All projections on the three
principal planes must be identical because of the symmetry of
the image. However, some differences in appearance are
expected because the sampling points are not homogeneously
arranged on the surface of the unit sphere and the triangulation
created from them, as a consequence, introduces some
anisotropy in the appearance of the structure. This apparent
anisotropy becomes unnoticeable when the number of sam-

III Quantification

pling points used to tessellate the orientations is increased. The
consequence, of course, is increase in the computational cost.

It is interesting to note that the indicatrix is relatively smooth
when the choice of d s less than the texture periodicity, whereas
it shows very high anisotropy when d has been chosen to be
equal to the texture characteristic length. We can monitor this
behavior best with the help of feature F;: Its value from a modest
2.43 for d = 2 and 2.91 for d = 5 shoots up to 17.34 for d = 10,
only to drop again to 3.71 for d = 15. The other two features
also increase in value, but not in such a dramatic way. This
behavior of INV is preserved for moderate levels of noise: The
second column of results shown in Fig. 4 and those shown in Fig.
5 have been computed from the same image with 20, 50, and
80% noise added to it. The noise is zero mean uniformly
distributed and 20% means that its range is 16 units, while the
contrast in the image is 80 units. From these results we may say
that the value of F, remains a good indicator of whether the
value of d coincides with the basic periodicity of the texture or
not, for quite high levels of noise (up to 50%). We used
uniformly distributed noise as one of the worse types of noise. In
reality the distribution of noise will probably be more centrally
concentrated and its effect will be even less prominent.

This behavior of the INV method is not surprising, as this
approach is based on integration and therefore it is expected to
be robust to noise. The behavior of the gradient-based method,
however, is not expected to be as robust. The gradient-based
method does not rely on any parameter, but as it estimates the
local gradient at each voxel by using masks that only take into
consideration the immediate neighbors of a voxel, it is expected
to produce results that are different for different characteristic
lengths of the texture. We do not present results here for zero
noise situations because the indicatrix in that case consists of
four line segments perpendicular to each other (the delta
functions that represent the derivatives of perfect step edges),
except for a few extra short lines arising from the misbehavior
of the gradient masks at the intersection places of the bright
planes. Figures 6, 7, and 8 show the results of applying the
method to images where the characteristic length of the texture
is 4, 6, and 10 respectively. In all cases, results obtained in the
presence of noise are also shown. In particular, examples with
20, 50, and 80% added noise are included. It can be seen that
the indicatrix becomes rounder and rounder as noise increases,
while the values of the features change very quickly so that they
cannot be used to identify a texture irrespective of the level of
noise. This method, however, is very fast and for setups where
the level of noise is expected to be constant, it can be used to
characterize texture locally.

The INV method also can be used for local calculations, if we
choose d =1. However, the two methods produce very
different results: INV projects the gradients of all the voxels
along certain directions (the sampling directions on the unit
sphere) and adds up all the square magnitudes of those
projections. The GD method, on the other hand, simply counts
how many voxels have gradient in a certain cone of directions.
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d=3, Fl=291, d=3 Fil=2.60,

d=15, Fl=3.71. F2=0.239, F3=0.049 d=[5, Fi=334, F2=0223, F3=0047

FIGURE 4 Experiments with a synthetic texture without noise and with 20% additive uniform noise. The indicatrices
calculated by the INV method are presented as 3D structures and in projection on the plane z = 0.
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d=15, FI=2.63, F2=0.177, Fi=0.0318 d=15, FI=211, F2=0.133, F3=0.030

FIGURE 5 Experiments with a synthetic texture with 50% and 80% noise added. The indicatrices calculated by
the INV method are presented as 3D structures and in projection on the plane z = 0.
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c=4, noise=20% Fi=9052, F2=0.704, F3=1.906

Fi=3581, F2=0173, F3=0.334

c=4, mf.re=8ﬂ%

Fi=1.89 F2=0.049, F3=0.079

FIGURE 6 Experiments with a synthetic texture with periodicity 4 along each axis, and with various levels of additive
uniform noise. The orientation histograms calculated by the GD method are presented as 3D structures and in projection

on the plane z = 0.
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T —F

c=6, noise=2012% Fi=54.89, F2=04853, F3=2154

e=0, noise=50% Fi= 1230, F2=0288 F3=044%

c=0, noise=80% Fl=434, F2=0138, F3=0140

FIGURE 7 Experiments with a synthetic texture with periodicity 6 along each axis, and with various levels of additive
uniform noise. The orientation histograms calculated by the GD method are presented as 3D structures and in projection
on the plane z = 0.
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c=10, noise=20% Fl= 3080, F2=0.789, F3=1.993

s &

» I ‘- :
c=10, noise=350% Fi= 1007, F2=0.298 F3=0449

Q

i ANy
e=10, noise=80% Fi= 473, F2=0160, F3=0]54

FIGURE 8 Experiments with a synthetic texture with periodicity 10 along each axis, and with various levels of additive
uniform noise. The orientation histograms calculated by the GD method are presented as 3D structures and in projection
on the plane z = 0.
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That is why the indicatrix of the GD method in the absence of
noise consists of spikes, whereas the indicatrix of INV is
rounder, i.e., it has nonzero values in almost all directions,
since it projects even well-ordered gradients on all sampling
directions. This makes the INV method rather an inap-
propriate tool for studying anisotropy of microtextures: It is
too robust for the job. This conclusion will be reinforced in the
next section, where real images are used for experimentation.

6 Application to Medical Image
Characterization

Two series of experiments with real images are presented. In the
first series, the objective is to characterize the texture of some
MR-12 brain images for the purpose of finding features that
characterize the presence of pathologies with nonlocal man-
ifestation, i.e., pathologies that result in the change of the
textural appearance of the brain rather than the development
of a tumor. In the second series of experiments, the change in
the anisotropy descriptor of the brain images of some patients
is studied with the help of images from the same subjects
obtained with some time difference from each other. In total,
seven MR-t2 and 2MR-t1 images are used for the first series of
experiments and 14 for the second.

Figure 9 shows the coronal plane of a typical MR image. The
horizontal lines mark the volume of interest, i.e., the range of
slices used in the first experiment. The number of axial slices
used are 35 for each image involved in this experiment, which
is contacted with MR-t2 images.

FIGURE 9 Coronal plane of a 3D MR image with the horizontal lines
indicating the part of the brain used for the first series of experiments.

III Quantification

Characterizing the texture anisotropy of a structure requires
first the isolation of the structure of interest. Even after the
brain component has been isolated in an MRI image, it is not
desirable to try to characterize the anisotropy of the brain as a
whole. Such an approach would be dominated by the
anisotropy of the surface of the brain, which contains many
folds that result in the creation of “shadows” with large
gradient values. We are really interested in characterizing the
texture of the brain volume rather than the roughness of its
surface. For this purpose, in the first set of experiments, we use
only the interior part of the brain, excluding the gray matter
that concentrates on its surface. Brain segmentation is
addressed in several chapters of the Segmentation Section in
this Handbook. Here we simply use gray level thresholding and
morphological postprocessing to remove “holes.” The com-
ponent we use corresponds to the dark interior part of the
segments shown at the top of Fig. 10. On the left is the image of
a normal brain, while on the right the image has been taken
from a patient with advanced Alzheimer’s disease. In Figs. 10c
and 10d we show the orientation histograms constructed from
the whole brain component of each image, using the gradient
method. Next to each histogram, its projection on the z =0
plane is shown. In Figs. 10e and 10f we show the results
obtained when the method is applied to the interior compo-
nent of the brain only. In Figs. 10g and 10h the indicatrices
computed by the INV method are presented for the whole
brain, and in Figs. 10i and 10j for the interior component only.

By comparing Figs. 10c and 10 g, we see that the elongation of
the two indicatrices are in orthogonal directions. This indicates
that the texture we are analyzing has a few strong edges in the
vertical direction, whereas most of the gradients are oriented in
the plane z = 0. This results in the observed difference in the two
indicatrices because INV projects the various gradients on the
chosen directions and sums up their square magnitudes. On the
other hand, the GD method just counts vectors and ignores their
magnitude (except the weakest 5%, which are ignored, because
their orientation cannot really be calculated reliably). It is also
interesting to note that when only the dark part of the image is
retained, the two INV indicatrices (Figs. 10i and 10j) become
very round, almost spherical. This confirms the observation
from the simulated data that this method is not very appropriate
for describing microtextures.

Figure 11 is similar to Fig. 10, except that it shows results
concerning MR-tl images. The difference between the two
images is made more explicit here: The projection on the z = 0
plane of the orientation histogram of the normal brain on the
left is much more anisotropic than the same projection of the
orientation histogram of the Alzheimer’s brain on the right.

In Fig. 12 we plot as bar charts the values of features F; and
F, calculated from results like those shown in Fig. 10, for seven
different MR-t2 images, two from healthy subjects and five
from various pathological cases. Although the clinical inter-
pretation of these results is not addressed here we note that the
GD method shows a trend of increased anisotropy in the
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(dy Fi=5.01,

(e) Fl=4.49, F2=0.120 (f) Fi=513 F2=0155

(i) FI=r49, FI=0.236 (j) Fi=1.32, F2=0.159

FIGURE 10 Experiments with MR-t2 images. All indicatrices and orientation histograms are shown as 3D structures
and in projection on the z = 0 plane. (a) An MR-t2 image of a healthy brain. (b) An MR-t2 image of the brain of an
Alzheimer’s sufferer. (¢, d) The corresponding orientation histograms constructed from the full brain component, with
the GD method. (e, f) The corresponding orientation histograms constructed from the thresholded darkest component
(the interior of the brain) with the GD method. (g, h) The corresponding indicatrices constructed from the full brain
component, with the INV method. (i, j) The corresponding indicatrices constructed from the thresholded darkest
component (the interior of the brain) with the INV method.
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FIGURE 11 Experiments with MR-t1 images. (a) An MR-tl image of a healthy brain. (b) An MR-t1
image of the brain of an Alzheimer’s sufferer. (¢, d) The corresponding orientation histograms
constructed from the full brain component, with the GD method. (e, f) Projections of the orientation
histograms on the z = 0 plane.
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FIGURE 12 Features computed for seven MR-t2 images: 1,2 from
normal subjects; 3,4 from Alzheimer’s sufferers; 5 from a vascular
dementia sufferer; 6 from a chronic subdural hematoma sufferer; 7 from
an AIDS dementia sufferer. In the left column we plot F, and in the right
F,. (a) Features computed from the GD orientation histograms for the
whole brain component. (b) Features computed from the INV indicatrices
for the whole brain component. (c) Features computed from the GD
orientation histograms for the interior component of the brain only. (d)
Features computed from the INV indicatrices for the interior component
of the brain only.

texture of the brain when pathology is present. This is observed
when either of the two features is used (F, presented on the
left, F, on the right) and when the analysis is performed either
for the whole brain (Fig. 12a) or for the darkest component
only (Fig. 12¢). The results obtained with the INV method do
not show as much consistency for this particular data set.
Finally, in Fig. 13 we present some results of calculating
feature F; from the GD orientation histograms of 14 images of
various modalities, referring to seven different patients with
various conditions and forming pairs obtained a few months
apart. The figure shows some typical slices of these images,
although the actual analysis has of course taken place in three
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dimensions. In all cases the value of F; appears to reduce with
time, indicating a brain that tends to become less organized,
with its indicatrix becoming smoother and rounder. The only
exception appeared to be that of case (g) coming from a
cavernous hemangioma sufferer. However, this case does not
correspond to a diffuse pathology; instead it contains a localised
tumor. When the region of the tumor alone is considered, the
value of F; again reduces from the first scan to the second.

7 Conclusions

In this chapter we demonstrated two different approaches to
analysing 3D textures. One is just the 3D orientation histogram
of the texture computed by counting gradient vectors in
various orientation bins. The other is an extension to 3D of
Chetverikov’s method [3] of cooccurrence matrices of arbitrary
displacement and calculation of the inertia as proposed by [5].
This method effectively projects all gradients on all directions
and adds their square magnitudes. It is more robust to noise
than the gradient method, but less sensitive to microtexture
analysis and certainly much more time-consuming. Time is a
very important factor when dealing with 3D data, so for most
of our experiments with real data we adopted the gradient
method, as it was also more appropriate for the analysis of the
microtextures that are present in medical images. The robust-
ness of the INV method, on the other hand, makes it more
appropriate for the global description of macrotextures.

This chapter presented the potential that 3D texture
measures have for diagnosing a pathology, quantifying its
severity, and quantifying its change with time. Extensive studies
are needed to determine the clinical value of 3D texture
quantification, and some studies are currently in progress. For
example, Segovia-Martinez et al. [26] recently reported a trend
in anisotropy measures F, and F; related to the severity of the
condition in Alzheimer’s patients, using CT data from 24 cases.
This chapter is about demonstrating the potential of such an
analysis in (1) diagnosing a pathology, (2) quantifying the
severity of the pathology, (3) quantifying the change with time
of a certain pathological condition.

The anisotropy measures presented in this chapter are only
illustrative examples. Many other metrics, inspired from two
dimensions, can be used depending on image modality, type of
pathology, and the task at hand.
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FIGURE 13 Monitoring change in various pathological cases, with the help of feature F;. Underneath each pair of
bars, which represent F; for the same patient but with time lapse between the two scans, we show two corresponding
slices from the 3D scans. (a) MR-t2 images obtained from a multiple sclerosis patient with 2 months’ time lapse. (b)
MR-t2 images of an acute stroke patient obtained with 6 days’ difference. (c) MR-t2 images of a patient with
Creutzfeld-Jakob disease with 2 months’ time lapse. (d) MR-t2 images of a patient with meningioma with 2 months’
time lapse. (e) CT images of a patient with acute stroke due to embolism obtained with 4 days’ difference. (f) Two
SPECT-Tc images of a patient with AIDS dementia, with 8 months’ time lapse. (g) MR-t2 images of a patient with
cavernous hemangioma with 4 months’ time lapse. (h) Same as in (g) but only the tumor area considered.
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The explosive growth of modern tomographic imaging
methods has provided clinicians and scientists with the
unique opportunity to study the structural and functional
organization of the human brain, and to better understand
how this organization is disturbed in many neurological
diseases. Although the quest for understanding the anatomy
and function of the brain has been very old, it has previously
relied primarily on qualitative descriptions. The development
of modern methods for image processing and analysis during
the past 15 years has brought great promise for describing brain
anatomy and function in quantitative ways, and for being able
to characterize subtle yet important deviations from the norm,
which might be associated with or lead to various kinds of
diseases or disorders. Various methods for quantitative medical
image analysis seem to be converging to the foundation of the
emerging field of computational neuroanatomy, or more
generally, computational anatomy.

Despite the promises of modern imaging technology, there
are many difficulties involved in quantitative studies of brain
morphology. First, the structural and functional organization
of the human brain is very complex and variable across
individuals, which necessitates the development of highly
sophisticated methods. Second, brain function often has very
focal character. For example, an abnormally shaped cortical
gyrus might be completely unrelated to a neighboring normally
shaped gyrus that might perform a totally different function.
Moreover, subtle localized abnormalities can have large effects
on brain function. Therefore, gross anatomical descriptions are
of very limited use. Finally, the exploding volume of image data
acquired throughout the world makes it imperative to develop
highly automated computerized image analysis methodologies.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

Although plenty of quantitative methods have been used in
the past for analyzing tomographic images, they have been
often limited by the lack of sophistication. As an example we
will consider a brain structure called the corpus callosum, which
includes the majority of the nerve fibers connecting the two
hemispheres of the brain, and which is shown schematically in
Fig. 1. The corpus callosum has been believed to be implicated
in several neurological diseases and in normal aging. It also is
believed to display sex differences. A widespread method for
obtaining local measurements of callosal size from tomo-
graphic images has been to divide the anteroposterior extent of
the structure in five partitions of equal length, and measure the
corresponding areas of the callosal subdivisions, as depicted in
Fig. 1. Area measurements of these compartments have been
used as indicators of interhemispheric connectivity of the
corresponding cortical regions. Figure 1 demonstrates some
limitations of this method. In particular, the partitioning of the
structure depends on its curvature and shape. Therefore, the
subdivisions of the callosum in two different brains might
differ, depending on each individual’s morphology (Fig. 1,
top). Moreover, a region of reduced interhemispheric con-
nectivity, which presumably is a region of relatively smaller
area, might fall in between two partitions (Fig. 1, bottom), or it
might only be a part of a partition. Therefore, when examining
area measurements of the whole partition, the results might be
washed out. Finally, the extension of such measurements
methods to 3D is extremely difficult, since they would require
the manual outlining of regions of interest, which often have
complex shapes, so that measurements from these regions can
be obtained. Mathematical methods, such as the ones described
in the following sections, coupled with computer algorithms
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FIGURE 1 A demonstration of some of the limitations of traditionally
used methods for measuring the morphology of a brain structure, the
corpus callosum. The anterior—posterior (left-right) extent of the
structure is divided into 5 equal intervals, and each of the 5 corresponding
areas are measured. As the top row demonstrates, the partitioning
resulting from this procedure might be affected by the curvature or, in
general, the shape of the structure under analysis. Clearly, the first and the
last compartments of the structure are not divided similarly in the two
structures. Moreover, a region of interest, e.g., a region that might be
affected by some disease process, might fall in between two partitions, as in
the bottom image. Since the shaded region occupies only part of two of the
partitions of the structure, an effect in that region might be washed out.

that implement these methods efficiently, will eventually help
us overcome most of the difficulties just described.

1 Quantifying Anatomy via Shape
Transformations

This section presents a general mathematical framework for
representing the shape characteristics of an individual’s brain.
Since this framework is based on a shape transformation, we first
define exactly what we mean by this term. Consider a three-
dimensional (volumetric) image, .#, of an individual’s brain.
Let each point in this image be denoted by x ~ x, y, z . A shape
transformation, ., of .# is a map that takes each point x€.¥
and maps it to some point J x . In the context of our
development, x belongs to the brain of one individual, and
J x Dbelongs to the brain of another individual. Moreover,
these two points are homologous to each other. In other words,
the transformation .7 is not just any transformation that
morphs one brain to another, but it is one that does this
morphing so that anatomical features of one brain are mapped
to their counterparts in another brain.

Several investigators have used shape transformations to

III Quantification

study brain anatomy [1-6]. However, this approach has its
roots in the early century’s seminal work by D’Arcy Thompson
[7], who visualized the differences between various species by
looking at transformations of Cartesian grids, which were
attached to images of samples from the species. Although
D’Arcy Thompson, with his insightful analysis, placed the roots
for modern computational anatomy, his vision came short of
realizing that this technique can be far more powerful than
merely quantifying gross morphological differences across
species. This is because modern image analysis techniques have
made it possible to morph one anatomy to another with much
higher accuracy than D’Arcy Thompson’s transformations. We
will see some examples later in this chapter.

In order to provide the reader with an intuitive under-
standing of how one can precisely quantify the anatomy of an
individual brain, we will draw upon an analogy from a
standard measurement problem: How do we measure the
length of an object? Three steps are involved. First, we need to
define a standard, a measurement unit. What exactly we choose
as our unit is relatively unimportant; it can be the meter, the
inch, or any other unit of length. However, we do need to have
a unit, in order to be able to place a measurement in a reference
system. Second, we need to define a way of comparing the
length of an object with the unit; we do this by stretching a
measure over the object, and measuring how many times our
measure fits into the object’s length. Third, we need to define a
means of comparing the lengths of two objects; this is what the
arithmetic of real numbers does. For example, a 3-meter object
is longer than a 2-meter object. Note that we cannot directly
compare 3 meters with 15 inches; we first need to place both
measurements in the same measurement system. A general-
ization of the comparison between two lengths, which is of
relevance to our discussion, is the comparison of two groups of
lengths. For example, we might want to know if nutrition and
other factors have an effect on a population’s height. Standard
statistical methods, such as #tests or an analysis of variance,
will do this, by taking into consideration the normal variability
of height within each population.

Placing this analogy in the context of computational
neuroanatomy, we need three steps in order to construct a
representation of an individual’s anatomy. First, we must
choose a unit. Here, the unit is a template of anatomy, perhaps
an anatomical atlas [8] or the result of some statistical
averaging procedure yielding an “average brain” [3]. Second,
we need to define a procedure for comparing an individual
brain with the template. In the framework described herein,
this is accomplished via a shape transformation that adapts the
template to the shape of the brain under analysis. This shape
transformation is analogous to the stretching of a measure over
the length of an object. Embedded in this transformation are all
the morphological characteristics of the individual brain,
expressed with respect to those of the template. Finally, the
third component necessary for shape comparisons is a means
of comparing two brains whose morphology has been
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represented in terms of the same unit, i.e., in terms of the same
template. This can be accomplished by comparing the
corresponding shape transformations. Figure 2 demonstrates
this principle. In particular, the top row in Fig. 2 shows a
synthesized template (left), and two synthesized shapes to be
compared (middle and right). Our goal here is to be able to put
in numbers the shape differences between these two synthe-
sized objects, using this particular template as measurement
unit. The bottom row of Fig. 2 shows the result of a method for
doing so, which will be described in the following two sections.
In particular, the color code reflects the amount of stretching
which the template had to undergo in order to be adapted to
each of the two shapes. Red reflects stretching while green
reflects shrinkage. Therefore, the color-coded intensity of these
deformation functions reflects local size differences between
these two shapes. Consequently, one could directly compare
the color-coded functions shown in Fig. 2 for two different
subjects or populations, provided that the same shape is used as
the template (in this case, the shape of Fig. 2 top-left). In the
approach described herein, this comparison is performed
pointwise, i.e., for each point xe.#.

FIGURE 2 An illustration of the principle of computational neuroa-
natomy using shape deformations. The image on the top left represents an
anatomical template. The top center shows a hypothetical structure of one
individual and top right shows the same structure in another individual. In
order to compare the two structures, we use the template as a
measurement unit. The amount of stretching applied during the elastic
adaptation of the template to each individual shape is shown on the
bottom row as a color image, where red corresponds to highest expansion
and green to highest contraction. It is clear that the deformation of the
template reflects the shape properties of each of the two structures. Since
the deformation is defined with respect to the same template in both cases,
it can be directly compared across individuals. For example, a pointwise
comparison of the deformation for these two shapes would immediately
show a relative expansion on the right side and a relative narrowing in the
middle for the top-right relative to the top-middle shape. Since the shape
transformation of the template to each structure under analysis can be
described mathematically, and not simply visually, morphometric analysis
of brain structures can be performed quantitatively via such a shape
transformation. See also Plate 20.

251

2 The Shape Transformation

During the past 10 years, a substantial amount of research has
been dedicated to computational models for determining
shape transformations 7 x , based on tomographic images.
We now give a brief review of this work. This review is by no
means exhaustive, but is meant to give the reader representa-
tive examples of models that have been investigated, as well as
their merits and limitations.

Many of the models that have been pursued have been based
on physical concepts. In particular, the first attempt to develop
algorithms for morphing one brain image to another dates
back to the early 1980s and used a two-dimensional elastic
transformation [9]. The goal there was to maximize some
measure of similarity between the image being transformed
and the target image. The image cross-correlation was used as
the similarity measure. The optimal transformation, i.e., the
transformation that resulted in maximal cross-correlation, was
found via an iterative numerical optimization procedure. That
method was later developed in three dimensions [10,11].
Several models that succeeded this method were similar, in that
they attempted to maximize the similarity between two brain
images, but they used different transformation models [2, 12—
15].

The most important characteristic of the methods just
described is that they take advantage of the full resolution of
image data, i.e., the image similarity is examined on each
individual point of the brain, and accordingly each point is
freely transformed to maximize the similarity. Consequently,
these methods have many degrees of freedom and therefore
they are flexible to morph any brain to another brain. A main
limitation, however, of these methods is that they are based on
image similarity criteria. Images of similar brains can differ. For
example, they can be MR images acquired with different
protocols, or they can be digitized atlases [16]. Moreover, aging
or diseases can change the signal characteristics of a tomo-
graphic image of a brain. Such signal changes then can
potentially adversely affect the spatial transformation. A second
limitation of image matching methods is that they do not take
into account geometric information, such as curvature or other
shape indices, which often have a biological substrate.

The second major family of methods for shape transforma-
tions in brain imaging has been based on anatomical features.
The main idea is to match distinct features, which are first
extracted from the tomographic images, as opposed to using
image similarity criteria. The features can be individual
landmark points [1], curves [17-20], or surfaces [20,21]. In
the remainder of this section we will briefly describe a feature-
based method that was developed in our laboratory [19,22]
and that is based on a surface-driven elastic transformation.

Consider a number of anatomical surfaces extracted from a
tomographic brain image. Figure 3 shows some representative
features: the outer cortical surface, the ventricular boundary,
and various sulci. All of these surfaces are determined using
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FIGURE 3 Examples of several anatomical surfaces extracted from
magnetic resonance images via the methods described in [21, 23]. The top
shows the boundary of the lateral ventricles, the middle shows the outer
cortical surface, and the bottom image shows several sulci of a single brain.
A mathematical representation of each of these surfaces is obtained
simultaneously with these visual representations. Consequently, measure-
ments of geometric properties of these surfaces, such as curvature, shape
index, geodesics, or depth, can be measured quantitatively.

deformable parametric models, such as the ones described in
[21,23,24]. A parametric model is always defined in a
parametric domain, which in our models is either the unit
square or the unit sphere. Consider, now, a particular surface,
such as the outer cortical surface, whose parametric represen-
tation on the unit sphere has been extracted from a set of
tomographic images for two different brains. The resulting
surfaces are both defined in the same domain, in this particular
case the unit sphere. However, homologous anatomical
features do not necessarily have the same parametric coordi-

III Quantification

FIGURE 4 (a, b) A network of curves (sulci) overlaid on 3D renderings
of the outer brain boundaries of two individuals. (¢) The locations of these
curves on the unit sphere for the two individuals (green corresponds to (a)
and red to (b)). (d) An elastic reparameterization, i.e., a map of the unit
sphere to itself, of the surface in (a), so that the two networks of curves
have the same parametric coordinates (longitude and latitude) on the unit
sphere. The warping of a “latitude grid” is shown for visual appreciation of
the effect of the elastic reparameterization. See also Plate 21.

nates on the sphere. For example, the same cortical fold might
have different longitude and latitude in the two brains. For
illustration, Fig. 4 shows two spherical maps obtained from two
different subjects, on which we have drawn the outlines of
several sulci. In order to force corresponding features, such as
the curves shown in Fig. 4, to have the same parametric
coordinates, we reparameterize one of the two surfaces
[19,22,25]. Effectively, this applies a local stretching or
shrinking of the parametric grid of one of the two surfaces,
so that certain anatomical features, such as prominent cortical
folds, have the same parametric coordinates for both brains. In
the context of the shape transformation we discussed earlier,
we reparameterize the surfaces derived from the template (the
atlas) so that their parametric grids match the surfaces derived
from a brain under analysis.

Once a surface-to-surface map has been determined; the
transformation . is then determined in the remainder of the
brain by elastic interpolation. In particular, let x be a point on a
surface defined as before from the template, and let g x be its
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counterpart in an individual brain. Define a force field that is
applied to the template brain and is equal to

Fx gx J «x 1

on the points lying on the anatomical surfaces used as features,
and 0 elsewhere. Equation (1) implies that points that lie on a
surface in the template should be transformed via the spatial
transformation . to their counterparts, g x , in the
individual brain. Otherwise, a force that is proportional to
the distance between g x and 7 x is applied that tends to
modify 7 so that these point correspondences are eventually
satisfied. More specifically, the transformation 7 is the one
satisfying the following differential equations, which describe
the elastic deformation of the template under the influence of
the external force field defined in (1):

Fx AVTJ x A wVDivZ x 0. 2

The first term in this equation is a force field that attempts to
match the features described earlier. The remaining terms
describe the deformation of a linear elastic object [26]. These
equations are solved numerically after discretization. In
particular, the continuous transformation 7 is typically
sampled on every other point in the image, which results in a
number of unknown parameters of the order of 1 million. The
discrete equivalent of the differential equation in (2) is a large,
sparse linear system of equations, which is solved via well-
known iterative techniques, such as successive overrelaxation
[27].

Figure 5 shows a template of the corpus callosum, and three
elastic adaptations of this template to match the anatomy of
three different subjects. The corresponding MR images of these
subjects are also shown in the same figure.

3 Measurements Based on the Shape
Transformation

3.1 Measurements from Volumetric Images

As we mentioned in Section 1, the transformation determined
by elastically morphing a template to an individual brain
carries all the morphological characteristics of the individual
brain. From this transformation, various quantities, each
reflecting different aspects of anatomy, can be calculated. In
most of this section we focus on regional volumetric
measurements, which have long been of interest in the brain
imaging community. By regional volumetric measurements we
mean local size measurements. For example, a locally relatively
reduced size of a brain structure in an individual or in a
population might be due to regional brain atrophy, i.e.,
regional loss of brain tissue. Several diseases have been
associated with localized brain atrophy. For example,
Alzheimer’s patients are believed to have hippocampal atrophy.
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Using techniques similar to ours, frontal lobe abnormalities
also have been reported [6] for Alzheimer’s patients. Similar
techniques have also been used to characterize anatomical
differences in the hippocampus between normal and schizo-
phrenic brains [28].

Regional size measurements, however, are useful not only in
detecting and quantifying brain atrophy, but in studying the
structural organization of the normal brain, as well. An
example, which will be revisited later in this section, is the
corpus callosum, a structure composed of nerve fibers that
connect the two hemispheres. There is evidence that the size of
the corpus callosum is proportional to the number of nerve
fibers crossing from one hemisphere to the other [29]. These
fibers tend to be fairly clustered; the anterior region of the
corpus callosum includes fibers connecting the frontal lobes of
the brain, while the posterior region includes fibers connecting
the posteriorly located visual cortical regions, and so forth.
Accordingly, if a region of the corpus callosum tends to be
relatively larger in an individual or in a group of individuals,
this might imply a relatively increased interhemispheric
connectivity in that individual or group, in the corresponding
cortical region. Consequently, size differences between two
groups might be very localized, and difficult to detect in the
presence of a very high interindividual variability.

A detailed and very localized representation of the size of a
structure can be obtained via the shape transformation
approach described earlier. For clarity, we will use the example
of the corpus callosum in the remainder of the section; however,
our model is generally applicable. Specifically, consider a
template of the corpus callosum, such as the one shown in Fig. 5
on the top left. Consider, also, the transformation  x that
maps each point of the template to the corpus callosum of an
individual brain, such as the ones on the top row in Fig. 5.
Finally, consider the scalar function d x , which we will refer to
as the deformation function and is defined as

FIGURE 5 The elastic transformation of a template of the corpus
callosum (top left) to the shape of the corpus callosum in three different
brains, whose magnetic resonance images are shown on the bottom.
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dx det VI x | 3

where det  is the determinant of a matrix and V is the
gradient of a multivariate vector field. The deformation
function quantifies how much we locally need to stretch the
template in order to adapt it to the shape of the corpus
callosum in the individual brain under measurement.
Therefore, the deformation function quantifies how large the
corpus callosum of the individual brain is in the vicinity of each
point x, relative to the template. Consequently, the function
d x is a very localized measure of size, was shown in Fig. 2.
More generally, the transformation 7 x reflects shape
characteristics of the brain under measurement, relative to
the template, around x.

If we want to compare two different corpora callosa, we can
do so by comparing the corresponding values of d x at each
point x. By grouping together regions in which the deforma-
tion functions differ, and by measuring how much they differ
in those regions, we can precisely define regional size
differences. Typically, we are not simply interested in mea-
suring size differences between two individuals, but in
measuring possible size differences between two groups. In
that case, the deformation functions of the two groups might
differ on the average, but the within-group variability might be
very high, possibly making any average difference uncertain.
The simplest way to measure size differences between two
populations is by applying pointwise #-tests [30] on the
deformation functions. By grouping together the points in
which a significant difference is found, we can define the region
in which two brains or two populations differ, without being
restricted by a priori assumptions such as the one in Fig. 1.

In order to better demonstrate the principles of this
computational model, we briefly describe its application to a
previously published study on sex differences of the corpus
callosum [3,31]. It has been previously hypothesized that the
posterior part of the female corpus callosum is more bulbous,
possibly reflecting an anatomical difference in interhemi-
spheric connectivity between the two sexes. In order to test this
hypothesis via the computational models just described, we
examined images from a population of 114 subjects, 68 men
and 46 women. The deformation analysis described above was
applied, and the resulting deformation functions were com-
pared statistically at each point in the corpus callosum of the
template, i.e., at each point within the measurement reference
frame. Points for which the deformation functions of women
differed significantly from those of men are shown as white in
Fig. 6. These points form the region within which it can be
hypothesized that there is a sex difference in inter-hemispheric
connectivity. Note that this region falls exactly on the border
between two of the partitions shown in Fig. 1, which means
that conventionally performed area measurements would
severely blur the results. The contradictory findings reported
in the literature might be partly due to this fact (see [31] for
related references).
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FIGURE 6 The region in which morphological differences between men
and women were found in a group of 114 normal individuals. In
particular, the highlighted region of the corpus callosum was relatively
more bulbous in women than in men, possibly reflecting sex differences in
interhemispheric connectivity.

The quantitative descriptions of size, or in general of shape,
can be directly associated with other, nonmorphologic vari-
ables. For example, for the corpus callosum study just
described, the correlation of callosal size, quantified by the
deformation function, with age is shown as an image in Fig. 7
for men (left) and women (right). Here, the correlation
coefficient between the value of the deformation function and
age was calculated from the same 114 subjects at each point in
the corpus callosum. White regions in Fig. 7 displayed
statistically significant correlation between size and age.
Therefore, regions in which a significant rate of loss of
interhemispheric connections is present can be identified by
this analysis, under the assumption that interhemispheric
connectivity is reflected by callosal size. Associations between
the deformation function and various other variables,
including activation images obtained through functional
imaging or measures of neurocognitive performance, can be
examined in a similar fashion [31]. Therefore, relationships
between structure and function or cognition can be examined
in greater detail.

3.2 Measurements on Surfaces

Up to now, we have been concerned with shape transforma-
tions that map a 3D anatomical template to a 3D brain image.
It is often more intuitive, however, to consider certain
anatomical structures as surfaces embedded in three dimen-
sions. Examples are the cortical mantle, a sulcus, or the
boundary of a subcortical structure. For example, one might be

FIGURE 7

Correlation analysis between and any other measurement can
be performed. For example, this figure shows the regions in which a
significant correlation between measured for men (leff) and women
(right).



16 Computational Neuroanatomy Using Shape Transformations

interested in measuring the geodesic, i.e., the minimum
distance, between two points on the cortical mantle [32], or
the depth [33] or the curvature [21] of a sulcal ribbon. In the
remainder of this section, we briefly describe a few examples of
measurements performed on the cortical sulci, which we model
as thin convoluted ribbons that are embedded in 3D. Figure 3
(bottom) shows examples of four different sulcal ribbons,
which were extracted from the MRI of a normal brain.

In order to perform measurements on a surface embedded
in 3D, we first need to obtain a mathematical representation
of the surface. We have previously developed two methods for
determining a parametric representation of sulcal ribbons
[21,23]. The parameterization of a surface is represented by a
map from a planar domain, such as the unit square, to the
three-dimensional space. Effectively, a parameterization places
a grid of the surface, in our case on the sulcal ribbon. This
allows for various measurements to be made. In particular,
we can obtain estimates of the local curvature of the sulcus or
of the depth of the sulcus. Depth measurements are of
particular interest, since they can potentially provide useful
information to algorithms for the automated identification of
the cortical sulci. In order to measure the depth of a sulcus,
we have developed a dynamic programming algorithm, which
is described in detail in [33]. This algorithm simulates the
placement of a flexible probe along the depth of the sulcus,
and perpendicularly to the outer (exposed) edge of the sulcus.

FIGURE 8
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Figure 8 shows an example of a sulcus together with a
number of depth probes determined via this dynamic
programming algorithm. The resulting depth measurements
are also shown.

4 Spatial Normalization of Image Data

In our discussion up to now, we have described how the
morphology of an individual brain can be mathematically
represented by adapting a template to the shape of that brain.
Very often in the brain imaging literature researchers use a dual
technique for analyzing image data. In particular, they spatially
transform image data to a common reference system, which is
associated with a template. This transformation is actually the
inverse of the transformation we discussed earlier: It takes a
point in the individual’s brain and maps it to a point in the
template brain, which resides in a common reference space
often called a stereotaxic space. Image data mapped this way can
be structural images, in which the various kinds of brain tissues
have been labeled according to some segmentation metho-
dology [34], or functional images, such as positron emission
tomography (PET) or functional magnetic resonance imaging
(fMRI), that reflect activation of the brain during certain tasks.
We will treat these two separately.
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(a) An example of a sulcal ribbon overlaid on which are shown several depth probes found via a dynamic programming algorithm [33].

Roughly, these probes represent paths along the surface that connect the outer edge of the sulcus with the deepest edge of the sulcus, and that are as close
as possible to a plane that is normal to the ribbon. (b) The resulting depth measurements along the sulcus, as a function of arc length.
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4.1 Structural Images

One of the most common kinds of analysis of structural images
has been volumetric analysis. More specifically, a brain image is
partitioned into a number of structures that are of interest to
the investigator, and the volume of each structure is then
measured and compared across subjects. Spatial normalization
offers a highly automated and powerful way of performing
volumetric analysis. We will follow our previous work on a
method for regional volumetric analysis, referred to as Regional
Analysis of Volumes Examined in Stereotaxic space (RAVENS)
[35]. Consider a brain image, .#, with sufficient contrast to
allow segmentation into three major tissues: gray matter, white
matter, and cerebrospinal fluid (CSF). This approach can be
generalized to include an arbitrary number of tissue types.
Apply a spatial transformation that morphs this brain to a
template brain, such as an atlas. To each point in the atlas
attach one counter for each tissue, whose purpose is to measure
a small volume (in the continuum, an infinitesimal volume).
Take each point in .# and map it to some point in the template,
according to this spatial transformation. According to the type
of the tissue being mapped to the template, increment the
corresponding counter in the arrival location by the volume of
the tissue contained in a discrete image element. This
procedure results in a number (three in our case) of spatial
distributions in the stereotaxic space, one for each tissue. If the
counters in each location in the stereotaxic space are put
together to form three images, one for each tissue, then the
intensity of each image is proportional to the amount of tissue
present in that particular brain.

We will make this more specific through an example.
Figures 9a and 9d show a representative magnetic resonance
image for each of two individuals. Figures 9b and 9c¢ show
the corresponding spatial distributions of the ventricular
CSE. Following the definition of these spatial maps, if we
integrate the density of the images in Figs 9b and 9c¢ within
the ventricular region, we will obtain the volumes of the
ventricles in the original images. This is in agreement with
the fact that the image intensity of Fig. 9b is higher than
that of Fig. 9c (more ventricular CSF was forced to fit into
the same template for Fig. 9a than for Fig. 9d). The
important issue is that these images can be compared
pointwise, since the shapes of the ventricles of these two
subjects are almost identical to the shape of the ventricles of
the template. Therefore, highly localized differences can be
detected and precisely quantified. For example, if in a small
region the image intensity of Fig. 9d is 20% higher than that
of Fig. 9¢c, this reflects a 20% percent difference in the
volume of the ventricles in that region. Figure 9e shows a
comparison of the spatial ventricular CSF maps of 10
relatively older individuals (average age: 75) with 10
relatively younger individuals (average age: 62). The red
regions indicate relatively larger ventricles, obtained after
subtracting the average CSF map of the younger group from

III Quantification

the corresponding map of the older group, after spatial
normalization to the same template.

Although the ventricles were used for illustration purposes,
the primary interest of regional volumetric analyses is in
measuring volumes of gray matter and of white matter, which
might, for example, reflect neuronal or axonal loss with aging,
disease, or other factors. In Fig. 10 we show the average
distribution of gray matter obtained from 100 individuals [36].
Regions of local atrophy caused by aging, for example, can be
identified by pointwise subtracting the corresponding volu-
metric maps of a relatively older population from a relatively
younger population. A similar kind of analysis was adopted in
[6] to point regions of local atrophy in Alzheimer’s patients.

At this point we need to clarify an important issue. If the

FIGURE 9 A demonstration of volumetric measurements using the
RAVENS approach. (a, d) Magnetic resonance images from two
individuals that present different degrees of atrophy. The brain (a) has
much higher ventricles (the dark regions in the middle) than the brain in
(d). The corresponding distributions of ventricular cerebrospinal fluid
(CSF) in a stereotaxic reference frame are shown in (b) and (c); the
brighter the image, the more ventricular CSF is present. It is clear that the
difference in these two subjects can be demonstrated simply by subtracting
the two images (b) and (c). (e) A color-coded image of the difference
between two groups, a relatively younger group and a relatively older
group. The red corresponds to regions of relatively larger expansion of the
ventricular cavities, resulting from the loss of brain tissue with aging. See
also Plate 22.
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Caudate Nucleus

FIGURE 10 The average gray matter distribution of 100 healthy
individuals is shown on the left. The atlas that was used as the template
in the spatial normalization of these 100 images is shown on the right. A
few representative structures that can be identified from the average gray
matter distribution are labeled and are also identified on the atlas
template. The reason why structures can be identified in the average image
on the left is that all 100 brain images were morphed to the same target: the
atlas on the right. See also Plate 23.

spatial transformation that maps images from different
individuals is “perfect,” i.e., if it is capable of completely
morphing each brain to the template, then the resulting
transformed images will have the exact same shape, though the
intensities of the corresponding volumetric maps will vary
according to the original volumes. Under such a scenario, any
kind of average, like the one of Fig. 10, will have exactly the
shape of the template to which each image was spatially
transformed. From Fig. 10 this is clearly not the case, especially
in the cortical region. The fuzziness in Fig. 10 reflects the
imperfection of the spatial transformation. We note, however,
that volumetric measurements can still be obtained. For
example, in Fig. 11 we have outlined the regions of two brain
structures, the lenticular nucleus and the caudate nucleus,
based on the average spatial distribution of the gray matter.
Notice that although these structures are not in perfect
registration (spatial coincidence) as revealed by the fuzzy
boundary of the average gray matter distribution, the margins
of the outlines counterbalance, to some extent, this problem,
allowing volumetric measurements to be obtained. This is what
makes the spatial normalization method described here more
robust than the deformation analysis method described in
Section 3: The inability to completely morph a brain to a
template affects the accuracy of the deformation analysis much
more than the accuracy of the regional volumetric measure-
ments. We note, however, that the deformation analysis is far
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FIGURE 11 The spatial normalization of images allows for the

collection of statistics on the volume of a particular structure over a
population. As it is demonstrated here for two structures, the caudate
nucleus and the lenticular nucleus, a region that encompasses the
structure of interest in the average map can be defined manually, and
volumetric measurements for each subject can be subsequently obtained.
This is possible because all images have been spatially normalized to the
same template. See also Plate 24.

more general than regional volumetrics, in that it not only
measures volumes, but various shape parameters as well.
Current work in our laboratory focuses on the more accurate
registration of the relatively more variable cortical region [25].

4.2 Functional Activation Images

In the previous section we described a procedure for analyzing
anatomical data in a standardized reference system, often called
a stereotaxic system, by morphing all brain images into shape
conformation with an anatomical template such as a brain
atlas. The same approach can be used for analyzing functional
activation images, such as PET or fMRI images. Perhaps the
most widespread approach for functional image analysis is
based on statistical parametric mapping [37]. In this paradigm,
images from many different individuals are first merged
together, and regions that are consistently activated during a
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particular task across subjects are identified through elaborate
statistical analysis methods. In order, however, to properly
combine functional images of different subjects, we first need
to remove anatomic variability. In [37], gross morphological
differences across subjects were accounted for using a global
polynomial transformation maximizing the similarity of the
spatially normalized functional images.

We have taken a different approach, which can potentially
improve the registration accuracy of the spatial normalization
procedure. In particular, we determine the spatial normal-
ization transformation from the relatively higher resolution
anatomic images of a subject. These images are first coregis-
tered with the functional images via a rigid body registration
method such as the ones in [38, 39]. The elastic warping of the
anatomic images is then determined, as described in the
previous sections. The same transformation is finally applied to
the coregistered functional images, mapping them to the
stereotaxic space.

Figure 12 demonstrates the procedure for mapping a PET
image to the Talairach stereotaxic space. The spatial transfor-

FIGURE 12 A spatially normalized positron emission tomography
(PET) image, overlaid on the digitized atlas image used as the template.
The spatial transformation was determined from a higher resolution
anatomical image of the same subject, and was subsequently applied to
the lower resolution PET image. The PET and the anatomic images were

first brought into alignment by correcting for position and orientation
differences. See also Plate 25.

III Quantification

FIGURE 13 (Left, right) Two spine images of two different individuals.
(Middle) An elastic transformation of the image on the left that brings the
spine into registration with the one on the right. If a number of images are
spatially transformed to match the same template, then correlations
between the location or size of a spinal lesion and concomitant clinical
symptoms, such as pain, can be readily calculated.

mation here was determined from the corresponding anatomic
image, whose axial resolution was 1.5mm. Overlaid on the
spatially normalized PET image is shown the atlas associated
with the Talairach space, showing a good spatial correspon-
dence between the morphed PET image and the target template
image. Our experiments have shown that a substantial increase
in the accuracy and sensitivity of activation focus detection can
be achieved this way [40].

4.3 Other Applications

The problem of spatial normalization does not appear only in
the analysis of structural and functional images of the brain. It
appears, more generally, in applications in which image data
from different subjects must be combined and analyzed
together. In particular, in order to merge and directly compare
images from different individuals, morphologic variability
must first be removed. More specifically, images from different
subjects must be transformed spatially so that they all reside in
the same coordinate system, with anatomically corresponding
regions being in similar locations. Another representative case
in which spatial normalization is necessary is in studying the
relationship between spinal damage and associated pain or
other clinical symptoms. Figure 13 shows two spine images of
different individuals, as well as the elastic warping of one of the
images that brings the spinal region into registration with the
other. If this procedure is applied to a number of patients, then
associations between the location of a lesion in the spinal
region and clinical symptoms can be precisely quantified, and it
can be used in surgical planning.

5 Conclusion

We have presented some of the recent developments in the field
of computational models for brain image analysis. Despite
their many current limitations, modern computational models
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for brain image analysis have made it possible to examine brain
structure and function in greater detail than was possible via
traditionally used methods. For example, such models will
soon allow us to obtain structural and functional measure-
ments regarding individual cortical gyri or sulci, not merely of
larger structures such as lobar partitions of the brain.
Moreover, we will be able to perform such measurements on
large numbers of images, because of the high degree of
automation of algorithms emerging in this field.

Despite the recent progress, several issues will need to be
addressed in the future. In particular, most investigators have
focused on analysis methods for the normal brain, or for brain
that has been affected in relatively subtle ways by a disease.
Hence, it has been possible to map brain images from one
individual to those of another via transformations that are one-
to-one and onto. However, in many cases, gross morphological
changes occur in the brain, such as in the development of
tumors. Models that deal with such cases are still in their
infancy [41,42]. As a second example, we note the analysis of
images from animals whose genetic composition is altered, so
that morphological and physiological effects can be measured
[43]. Such genetic mutations can cause abnormalities well
beyond the ones that can be handled by current models and
algorithms.

Computational neuroanatomical models will evolve in
various directions during the next decade. However, the
main foundation that allows investigators to examine brain
structure and function in precise, quantitative ways has already
been laid.
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1 Introduction

Because of the critical nature of its function, distributing
oxygenated blood from the heart to all the organs of the body,
the arterial vascular system has been the object of extensive
study in medicine. Since a significant portion of human
morbidity and mortality is associated with vascular diseases,
diagnostic imaging methods for blood vessels, especially
arteries, have received a great deal of attention in the research
arena. New imaging and image processing methods produced
by the research are often rapidly and routinely applied in the
clinic.

Planar X-ray films were the only viable diagnostic imaging
method available for many decades after Roentgen’s discovery
of the new light. Methods to enhance the quality of X-ray
images of the vasculature were investigated before the turn of
the century, for instance, the injection of mercury into the
vessels of cadaver limbs and organs [1]. Much later, with the
improvements in nuclear medicine imaging methods and
ultrasound in the 1950s and ’60s, these techniques were applied
to advantage to the vascular system, the former for visualizing
and quantifying perfusion defects, and the latter for estimating
parameters such as blood velocity and ventricular ejection
fraction. Even more recently, computed tomography (CT) and
magnetic resonance imaging (MRI) have provided the possi-
bility of true three-dimensional imaging and characterization
of vascular structures and arterial tree morphology. For static
vessels CT and MR angiography (CTA and MRA) are already
capable of producing useful volumetric data sets in which
stenoses, aneurysms, and other pathological features can often
be appreciated and measured with greater clarity and con-
fidence than is possible with planar projection images.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

Unfortunately, the rapid and significant movement of the
heart, whose vessels are of paramount interest, makes the
coronary vasculature challenging to image even with planar,
but especially with (generally slower) 3D imaging modalities.
Electron beam CT (EBCT) and fast MRA methods show
promise of being capable of freezing heart motion by virtue of
data collection times on the order of tens of milliseconds.
During the next several years, improvements in MR gradients
and other relevant technologies promise to move 3D MRA into
the clinical arena. Fast, multi-detector-bank, spiral CT may
also make CTA a contender for truly three-dimensional clinical
imaging of moving vascular structures.

In the biological context, morphology might be defined as
the study of the structure, configuration, shape, or form of
animals or organs. Morphometry, then, relates to the process
and methods by which measurements of form or structure are
made. Arterial tree morphometry is important because the
structure, especially lumen diameters and branching patterns,
of a space-filling network of pipes has a profound impact on its
function of distributing and delivering fluid into a three-
dimensional space. For example, flow is proportional to the
fourth power of diameter, so the absolute patent diameter of
vessels is possibly the most fundamentally sought-after
quantity obtainable from diagnostic vascular images. The rate
at which arterial branches taper to ever smaller diameters
determines the level (that is to say, the vessel size range) in the
tree hierarchy that contains the resistance vessels: the primary
site of resistance to flow. It is widely accepted that endothelial
cells lining the arteries are responsive to shear stress. For
example, they may produce factors that signal smooth muscle
cells in the vessel media to proliferate, a phenomenon at the
root of a number of serious diseases, including systemic and
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pulmonary hypertension. Since the total flow through the tree
is knowable, characterization of the tree morphometry may
make possible the identification of sites of increased shear
stress that may become sites of elevated resistance or plaque
formation in pathological conditions. The manner in which the
arterial tree branches from the aorta to the periphery of the
body, as well as the branching pattern of the subtrees within
each organ, has a profound effect on the energy required to
pump the blood through the vascular circuit. This directly
determines the workload required of the heart. Branching
characteristics that are optimal in terms of minimizing energy
expenditure have therefore been the subject of a great deal of
study.

The purpose of this chapter is to briefly review the field of
research involved with exploiting imaging and image proces-
sing methods for the morphometric characterization of
vascular structures, arterial trees in particular. Some of the
basic research methods for arterial tree imaging and morpho-
metry employed in our laboratory and others are summarized
in somewhat greater detail. The field of vascular imaging, and
image processing methods applied to images of the vasculature,
is vast and precludes an exhaustive review. I attempt to
familiarize the reader with some of the highlights of research in
the field, including methods that have found clinical utility,
particularly methods based on x-ray images. But most of the
images and detail necessarily draws on our work in the basic
physiological research setting where, working with static,
excised organ preparations, we attempt to morphometrically
characterize arterial trees from the largest to the smallest
resolvable vessels.

1.1 The Functions of Arterial Trees

The primary function of the arterial system is to distribute
oxygenated blood from the heart to all the organs of the body.
Nutrients (energy; fuel) are made available to living tissues
primarily via the flowing blood. The arterial system is
miraculously complex. It is a system of tough, regenerable,
flexible, tapering pipes, created and forced by evolutionary
pressures to perform this function optimally in some sense,
constantly and under a daunting variety of conditions. The
pipes taper from about 2 cm at the aorta to 0.0010 cm at the
capillaries, which are of almost identical size and structure at
the periphery of all organ systems. In a resting adult, the
cardiac output of some tens of milliliters per beat is distributed
differentially and according to need to all the various organs
[2]. The total blood volume of about 5 liters is pumped by the
left ventricle through the high-pressure systemic circuit and by
the right through the low-pressure pulmonary circuit,
achieving a complete turnover once each minute. In exercise,
the demands of skeletal muscle for blood may increase
sevenfold; the arterial system dynamically adapts to the
dramatically changing distribution requirements for fuel and
nutrients.

III Quantification

Some have portrayed the major conducting arteries in the
tree, and in each organ’s subtree, as having a distribution
function, moving large amounts of blood rapidly over
relatively large distances, while the smaller vessels (<2 mm
diameter) through which blood moves over perhaps the final
several centimeters to the capillaries have been called the
delivery vessels [3]. It may be that the mophometry, the
diameters and branching characteristics, of distributing vessels
is optimized in a different sense than is that of the delivery
vessels. It will be seen at least qualitatively that the appearance
of the branching patterns of the large, conduit vessels is quite
different from species to species and from organ to organ,
whereas the characteristics of the smaller (arteries and
arterioles of less than about 1 mm diameter), precapillary
subtrees toward the periphery of all organs are quite similar
across species and tissue types.

1.2 Definitions

For the purposes of this chapter, only a few definitions are
required. Vascular tree morphology and morphometry have
already been defined as the shape or structure of the tree, and
methods (in this context particularly imaging-based methods)
for quantifying it, respectively. The repeated subunit as the tree
progresses from trunk to periphery is the bifurcation. A
bifurcation is a branch point in the tree where a parent vessel
divides to give rise to two daughter vessels as shown in Fig. 1
[4]. The unbranching tube between consecutive bifurcations is
called a vessel segment. At a bifurcation, the parent vessel
diameter is denoted by d,, and the larger and smaller daughter
diameters by d, and d,, respectively. The 3D midline of the
vessel lumen 1is called the vessel axis or the medial axis of the
vessel segment. The branching angles, 0, and 0,, measured in
the planes containing the parent and each daughter’s medial
axes, are the angles between the parent’s medial axis and the

FIGURE 1
branching angles at a bifurcation.

Nomenclature for vessel segment diameters and lengths and
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larger and smaller daughter’s medial axes, respectively. Zamir
has claimed that the three vessel axes for all coronary
bifurcations lie approximately in a plane, rendering the
three-dimensionality of bifurcations negligible [4]. The
space-filling characteristics of the entire tree are achieved by
translations and rotations of the numerous bifurcation planes
relative to each other. The bifurcation index is defined as the
ratio d,/d, and varies between 0.0 and 1.0. A symmetrical
bifurcation, in which the two daughters have approximately
equal diameters, would have a bifurcation index close to unity,
whereas for a side branch where a very small vessel branches off
a main trunk —a highly asymmetric bifurcation — this quan-
tity would approach zero. Thus, the primary fundamental
quantities of interest in arterial tree morphometry are vessel
segment lengths and diameters and the branching angles at
bifurcations. Other parameters reported on in the radiological
literature, such as the branching coefficient, defined as the ratio
of the cross-sectional area of the daughters to that of the parent
[5], can be derived from this base set of metrics assuming
circular vessel cross-sections. Of course, there are thousands or
even millions of these elementary measurements available from
a single 3D image of a complete arterial tree, so the necessity
arises to summarize their functional or hemodynamic signifi-
cance in some meaningful and intelligible or interpretable way.
There are also some higher order statistics such as measures of
connectivity that have been applied to vascular (the connec-
tivity matrix) [6-9] and other network-type structures (the
Euler number or Euler—Poincare index) [10-12], but these are
not emphasized in this chapter.

1.3 Properties of Arterial Trees

Although arterial trees in the various organs have markedly
differing morphologies, they are all similar in several important
respects: They are space-filling, asymmetrical, optimal in some
sense, and self-similar, and their terminal elements, the
capillaries, are all equivalent. Space-filling denotes the
notion — dictated by the physics of diffusion, a delivery
mechanism effective over only very short distances (tens of
microns) — that the arterial tree must supply all viable tissues
with the required amount of nutrients and oxygen via the
blood. Thus, if one envisions a single inlet (trunk of the tree) to
a 3D space, the tree must branch in such a way that the
capillary density is relatively uniform throughout the organ.
The general appearance of arterial trees, therefore, is char-
acterized by several large distribution branches that carry high
flows of blood to tissue volumes remote from the inlet, and a
larger number of smaller delivering branches or subtrees that
carry smaller volumes of blood from the high-flow conduits to
the capillaries.

Teleological principles would suggest that natural processes
are directed toward the end of physiological efficiency, and it is
generally acknowledged that the structure of arterial trees has
evolved toward some sort of optimality. In his classic book,
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Thompson suggested that the cost of operating a given section
of arteries is a combination of the cost of the power required to
overcome its resistance and the cost of supplying the blood to
fill it [13]. In 1842 Sir Charles Bell had pointed out that the
laws of hydraulics, which take into account only the first of
these factors, are inadequate to explain the structure of the
arterial tree and that the cost of blood must be taken into
account. For example, if blood were free and the diameter of all
arteries were doubled, quadrupling their volume, the work of
the heart would be reduced to one-sixteenth. Conversely, if
blood were more expensive than it is, the total arterial volume
would have evolved to become smaller, increasing the work of
the heart. A variety of cost functions could conceivably drive
this evolution, but the four most often suggested have been the
power required to pump blood through a bifurcation; the shear
or drag force exerted by the blood on the endothelial vessel
lining; the total blood volume; and the total lumen surface
[4,14-17]. Given three segment diameters at a bifurcation, the
magnitude of each of these cost functions depends on the
branching angles 0, and 0,; or given two branching angles, the
cost functions vary with the diameters. The diameters and
angles that produce the minimum value of the assumed cost
function are the optimal geometrical parameters. Although it is
beyond the scope of this chapter to summarize all the research
in this area, Zamir found, for the case of two human coronary
arterial trees when considering a cost function combining all
four of the above factors, that the branching angles and branch
diameters were strikingly close to optimal across the entire
range of bifurcation indices. In general, total (0, plus 0,)
branching angles, which would be expected to approach 90° to
minimize shear stress, tend to be somewhat below that on
average—around 57° for rat and 70° for human coronary
arterial trees [4,14,16].

Symmetric bifurcations tend to have smaller branching
angles, whereas highly asymmetric (small) side branches tend
to come off closer to 90°.

2 Data Acquisition for Vascular
Morphometry

This section provides an overview of the most important
methods that have been used to acquire data from which to
extract or calculate arterial tree morphometry. Such methods
fall into two major categories: the older destructive techniques,
including histology and vascular casting, and the increasingly
useful nondestructive imaging methods that are the subject of
this chapter.

Historically, most anatomical data, particularly “microana-
tomical” data on the remodeling of small arteries, was derived
from histological sections. In fact, the words “morphometry”
and “morphometric” are probably used more often in the
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histological context, where they are synonymous with ultra-
structure and ultrastructural, than they are in the context in
which we use them here. This dual usage of the terminology
can become particularly confounding, since many of the
changes in gross tree structure in which we are interested,
including luminal narrowing and decreases in the number of
parallel vessels in the arterial network, are preceded chron-
ologically and etiologically by changes, usually in arterial wall
structure, that are best observed and quantified by histological
studies. Serial section reconstructions in histology are obtained
by microtomy and microscopy of tissue blocks followed by
stacking of the digitized photomicrographs in software [18].
Although histological observation of stained sections of vessels
is an excellent way to observe the cellular and subcellular
changes implicated in conditions and diseases that affect
arterial tree structure and function, this method does not lend
itself to appreciation of the intact tree structure as a whole. It is
difficult, if not impossible, to precisely maintain the position
and orientation of the thousands of sections it would take to
“reconstruct” any significant portion of the tree, and therefore
tedious to arrange them in software in a visually meaningful
and accurate way. Thus, serial section reconstruction methods
have been applied to most advantage to the peripheral zones of
the circulatory system, including the capillaries [19-21].
Corrosion casting refers to a class of methods in which a
polymeric material (such as silicon rubber or Batsons No. 17, a
modified methyl methacrylate whose viscosity can be adjusted
over a wide range to govern, in conjunction with the injection
pressure, the microvascular level to which the tree is filled) is
injected into the arterial or venous tree [9,22-29]. After filling
the vessels, the cast hardens and the tissue of the surrounding
organ is corroded away, typically with a potassium hydroxide
solution. The remaining plastic structure can represent an
intricate and beautiful positive cast of the vascular lumen,
though dimensional accuracy may vary with experimental
conditions. These casts can then be conductively coated and
viewed and photomicrographed in the scanning electron
microscope (SEM). Morphometry has then been carried out
by many groups, by meticulously breaking apart the tree and
measuring the segments’ and branching angles’ geometric
parameters. Some researchers have used morphometric para-
meters obtained in this manner as inputs to mathematical
hemodynamic models [6,30]. Although highly valuable, casting
methods are tedious to carry out and do not lend themselves to
studies involving significant numbers of specimens or animals.
In fact, until recently, most of the available data on the
geometry of the pulmonary arterial tree, for example, were
obtained from measurements on only a few (one rat [9], one
cat [31], two dog [6,32], and three human [33]) plastic
corrosion casts. Tedious measurements of individual vessel
segment numbers, lengths and diameters have been made and
several methods used to summarize these data as discussed
later. One of the promises of newer 3D imaging technologies is
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to provide similar structural data in a nondestructive manner
and with the potential for much higher throughput.

Microsphere embolization has been used in a number of
laboratories as an indirect method to quantify the structure or,
perhaps more accurately, the delivery capacity of the arterial
tree [34-36]. For example, Seiler ef al. found a linear relation-
ship between myocardial mass supplied and the sum of branch
segment lengths distal to any point in the coronary arterial tree
and a two-thirds power relationship between luminal cross-
sectional area and myocardial mass supplied [37]. Again,
though valuable, these techniques are acute and, used in
isolation, do not retain information about the 3D branching
structure of the tree or, for example, about focal obstructions
in large vessels, both of which are sought in imaging studies.

We are primarily concerned with imaging and image
processing methods for quantifying arterial tree morphometry.
As mentioned previously, for many decades after 1895 planar
X-rays recorded on film were the predominant method
available to image the vasculature or any other type of
structure. Today, the inherently planar methods available to
clinicians and researchers for studying vascular structure and
disorders fall into the two broad categories of radiography
(including mobile units in the clinical setting) and fluoroscopy.
Fluoroscopic methods include the highly specialized and
sophisticated variants employed in angiography suites and
cardiac catheterization laboratories. Whereas radiographic
methods are static in nature, fluoroscopic methods permit
dynamic image acquisition (15 to 60 frames per second) and
are therefore useful for freezing the motion of structures such
as the beating heart in the interest of extracting accurate
quantitative measurements. Arteriography is a term which has
been variously applied to both static [38] and dynamic
(fluoroscopic) [39—41] imaging methods.

Since the dose in X-ray imaging is always limited, the trade-
off between speed and image quality is an ever-present
problem: The more time available for imaging and the more
dose permissible, the greater the number of photons contri-
buting to image formation and the lower the noise level in the
image. Most of the physical processes involved in imaging,
including X-ray generation, penetration, and detection, follow
Poisson statistics, which means that, for large numbers of X-
rays, the X-ray quantum noise is equal to the square root of the
number of photons contributing to the image or image
element. Thus, if 1000 X-rays contribute to the information
available in an image pixel, the maximum possible signal-to-
noise ratio (SNR) obtainable, limited by dose alone, would be
32. If 1,000,000 X-ray quanta contributed, the SNR could be
1000. So while it may appear as if there are diminishing returns,
at the low fluences permissible in the clinic quantum noise is a
significant problem, and many of the challenges faced in the
processing of vascular imagery, particularly segmentation or
measurement of the smallest vessels, are caused by the high
noise levels. Additional sources of noise include the back-
ground fog always present in radiographic film, which limits its
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dynamic range to several hundred at best. The stochastic nature
of light production and light scattering in radiographic
intensifying screens used in conjunction with film exacerbates
the noise problem. For image processing of radiographs to be
possible, the film must first be digitized using a laser scanner or
other mechanism, which not only reduces the resolution of the
film but also increases the noise level relative to the signal.

Most X-ray imaging techniques for arterial morphometry do
not employ film as the detector, but use a high-gain image
intensifier to transform a very dim spatial pattern of X-ray
intensities into a bright visible-light image at the output of the
intensifier. This visible light image is then digitized, usually
with a high-resolution, low-noise tube-based (Vidicon,
Plumbicon, etc.) [42] or CCD (charge-coupled device)
camera [43]. The combination of the image intensifier, the
lenses coupling the light from the output window to the
camera sensor, and the camera chip itself is referred to as the
“imaging chain” and is the source of additional noise. Besides
additional statistical noise arising from the multistage conver-
sion processes within the device (X-rays to light in a scintillator
to electrons in a photocathode and back to light again — after
dramatic acceleration of the electrons through several tens of
keV—in an output phosphor), a background haze called
veiling glare [44] is superimposed upon the image, and the
illumination at the image periphery falls off relative to the
center of the field, a phenomenon called vignetting. An added
problem for quantitative imaging applications is the spatial
distortion caused in the image by even the highest quality
fluoroscopic imaging chains. These result primarily from the
fact that the image formation process requires the focusing of
high-energy electrons by electrostatic focusing plates, a process
that is imperfect and variable, partly due to the earth’s
magnetic field. Image processing methods to correct the spatial
distortions and to allow for robust performance in the
measurement of vessels in the presence of high noise levels
are discussed later.

Biplane angiography allows for the simultaneous acquisition
of two near-orthogonal views of the contrast-enhanced
vasculature in real time. This acquisition method has provided
the input data to a large number of algorithms designed to
reconstruct the arterial tree from as few as two projections [45—
59]. One requirement of all such few-view reconstruction
approaches is that the imaging system geometry, that is, the
relative positions of the two sources, the two detectors, and any
fiducial markers placed on the patient, be very precisely known.
Some methods have been developed to calibrate or calculate
the system geometry from information available in the images
[45-49].

The diftusion of computed tomographic imaging technology
starting 25 years ago triggered the 3D revolution in diagnostic
imaging. Of course, although the ability to reconstruct
anatomical maps, based on attenuation properties (tissue or
electron densities), of the interior of opaque objects immedi-
ately opened up the possibility of true 3D imaging and
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quantification, the perceptual, computational and algorithmic
complexities of volumetric analysis have made real progress in
this area quite slow. Starting in the 1980s, magnetic resonance
imaging, with its exquisite sensitivity to soft tissue properties
and ability to exploit a wide range of contrast mechanisms,
added fuel to the fire of activity in this burgeoning field of
research. MR techniques quickly gained in speed, with scan
times being reduced from about an hour to less than 15
minutes for clinically useful volumes. Scan times continue to
decrease, and 3D images of diagnostic quality covering several
axial centimeters can now be acquired in minutes [60].
Recently, CT research and diagnostic methods have been
given new life and expanded capabilities by the extension, from
single slice imaging, first to helical, and now to multislice
helical scanning [61]. Currently, four slices can be recon-
structed per half-second revolution of the source and detector
around the patient, making fast volumetric scanning clinically
useful for imaging entire organs in a single breath hold. Recent
developments in fast CTA [62-66] and MRA [60,67-71] are
certain to increase the value of these techniques in clinical
applications of quantitative 3D vascular morphometry. In the
1990s ultrahigh-frequency, high-resolution intravascular ultra-
sound (IVUS) methods were developed for imaging the
constituents of vascular walls [72]. All these improvements
and new methods have given added impetus and possible value
to the field of image processing for arterial tree morphometry.

3 Image Processing for Arterial Tree
Morphometry

Early studies of vascular structures relied solely on qualitative
visual interpretation of the acquired imagery. Severe stenoses
and vascular abnormalities such as arteriovenous shunts could
be observed and documented, for example as an aid to surgical
planning. Interpretation of histological structure, electron
micrographic ultrastructure and early “3D” methods such as
scanning microscopy of freeze-dried tissue or corrosion casts
was also purely qualitative. However, a great deal of physio-
logical knowledge was gained, in particular about the cellular
constituents and ultrastructure of the vascular wall, the
connectedness of the microvascular network and the spatial
relationships, for example, between alveolar sacs and the flat
capillary sheets that bathe them in blood separated from the air
by a two-cell-thick endothelial-epithelial wall [73]. The state of
early research in the field is well summarized by a collection of
papers covering all aspects of small vessel angiography from the
effects of focal spot size, X-ray spectrum, magnification, film-
screen types and combinations, and electronic imaging chain
imperfections to clinically relevant applications in the cerebral,
pulmonary, renal, pancreatic, and coronary circulations [74].
However, for clinical methods to be reliably applied in routine
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practice, the need for quantitative measures of vascular
morphometry was clearly evident. In the basic science arena,
it is equally clear that quantitative statistical methods are
required to distinguish significant differences between normal
and diseased structures, and between diseased structures of
varying pathology or pathogenesis.

An important early application of quantitative methods was
in the area of assessing the degree of stenosis, particularly of
coronary vessels [75]. Given a gray-level image of a vascular
tree such as those available from radiography, fluoroscopy, or
MRA, loosely called “angiograms” hereafter, there are two
basic approaches for extraction of quantitative metrics. (Either
may involve judicious preprocessing of the gray-level image
[76-78].) The first is to create a binary image from which
measurements can be made in a straightforward manner, and
the other is to operate on the gray-level image directly. To make
a binary image is to decide, based upon some criterion or set of
criteria, which pixels in the image belong to the vessels, usually
the intraluminal space filled with contrast agent, and which do
not. The vessel pixels are then turned on and all the other pixels
turned off, creating the two-phase or binary image. The process
of creating a binary image in this case is called segmentation of
the arterial tree. Possible criteria for selecting vessel pixels range
from thresholding procedures, wherein (for the case of a global,
or simple threshold) every pixel below a specified gray level is
called vessel and all pixels above the threshold background, to
more complex methods involving, for example, vessel tracking
with decisions based upon the location of the maximum
gradient magnitude at the vessel edge. Adaptive threshold
values may be based upon neighborhood gray-level statistics
such as the local histogram or more complex parameters such
as entropy [79]. Recently, rather sophisticated techniques for
segmentation of MRA data have been developed. One utilizes
assumed distributions for tissue-type gray levels and a
modification of the expectation maximization (EM) algorithm
to distinguish vessel from nonvessel voxels and has been
applied to cerebral time-of-flight MRA data [70]. Viergever et
al. developed a model-based approach wherein the vessel
medial axis was modeled using a B-spline curve and the vessel
wall with a deformable tensor product B-spline surface to
obtain a segmentation from which diameter assessment could
be performed with subvoxel precision [67].

Mathematical morphology-based methods including water-
shed analysis show promise for segmentation of complex
structures [80-82]. In gray-level mathematical morphology,
an image is treated as a topographical surface in which the
gray level corresponds to elevation [83,84]. The watershed
transform works by piercing holes in local minima in the
terrain and flooding the surface from below [85]. Each
minimum starts its own “catchment basin.” As the flood rises,
when the water from adjacent catchment basins is about to
meet, dams are built to keep them from joining, pixel by pixel.
When the process is complete, the water has risen to the level
of the highest peak, and the transformed image consists of the
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crest lines of the dams separating catchment basins. In the
case of a vascular image, these crest lines would ideally
correspond to vessel medial axes. Vessel contours can be
segmented by watershed transformation of the gradient
image. Brute force computation of the watershed transform
results in severe oversegmentation: Too many crest lines are
extracted if all local minima are used. Instead, a subset of
minima has to selected by use of a marker function whose
catchment basins correspond to the objects to be segmented.
The marker function is generally defined using a priori
knowledge about the nature of the objects to be segmented.
Region growing methods are also quite popular [86]. These
involve specification of a pixel or pixels, called “seeds,” that
are definitely contained within the vessel lumen, then growing
the regions around the pixels so designated either to include
all candidates between an upper and a lower threshold bound
(“hysteresis thresholding” [87]) or until a boundary satisfying
some criterion, such as gradient magnitude, is reached. These
boundaries are then the vessel edges. The analogy to over-
segmentation by watershed transformation in the case of
region growing would mean that portions of arterial tree
remained disconnected. In this case, boundaries may be
dissolved according to a chosen weakness criterion. One
reason for the popularity of seeded region growing methods
for segmenting structures such as arterial trees is that vascular
networks are known to be connected: Every pixel in the lumen
has to be connected to the arterial inlet. Incorporating a
connectivity constraint into a segmentation algorithm can
help to eliminate spurious background pixels or regions from
being included as vessel.

A method for segmenting tubular objects from gray-level
medical images has been developed by Aylward and Pizer et al.
[88,89]. It is a variant of their multiscale medial analysis
algorithms, such as marching cores [90,91] and exploits the
facts that vessels are tubular and the medial axes of tubular
objects imaged with imperfect imaging systems are well
approximated by their intensity ridges. The vessel intensity
ridges are tracked, and convolution with a Laplacian of a
Gaussian is used to calculate the local maximum in multiscale
medialness at each point along the ridge as an estimate of vessel
width. This method for vessel diameter estimation benefits
from the smoothly varying, nearly circular shape of tubular
cross-sections. The tubular object segmentation method makes
it possible, without imposing severe computational demands,
to extract representations that preserve the location, size, and
topology of objects in 3D images with minimal user interac-
tion, and is stable in the presence of noise. Figure 2a is a volume
rendering of 48 MRA slices depicting the cerebral vasculature.
The challenges for automated extraction of vessel boundaries,
including variations in vessel intensity and width, and the
complexity of the vascular structures in the noisy background
are clearly evident. Figure 2b shows the result of the tubular
segmentation algorithm. The surface rendering is based upon
105 ridges and their widths extracted from the data set of



17 Arterial Tree Morphometry

Fig. 2a. The ventricular contours and brain surface are shown
in green and red, respectively, for reference.

Creating a binary image is a required prerequisite for
producing surface shaded renderings and can facilitate some
feature extraction tasks such as obtaining the tree skeleton.
Binary skeletonization, also called thinning, is a well-estab-
lished technique, at least in two dimensions, whereas gray-level
thinning is not [92]. Skeletonization, in turn, achieves dramatic
data reduction and makes the specification of bifurcation
locations (branch points) and branching angles more straight-
forward, particularly in 2D images. The skeleton or
approximation of the medial axis for each segment can be
fitted to a line or a curve and the three midlines of a parent and
two daughter segments at a bifurcation forced to meet at a
common point as shown in Fig. 1. This midline juncture then
defines the branch point unambiguously. Skeletons properly
extracted preserve the topology of the branching tree, as well as
segment lengths and branching angles, though diameters,
unless retained as separate items in a data structure linked
either to medial axis points or segments, are lost. However,
although segmentation followed by skeletonization may be
appropriate in some circumstances, in general (particularly
where the accuracy of vessel diameter measurements is of
paramount importance, as is so often the case) it may not be
advantageous to segment the vascular image. Instead it is more
exact and precise to operate on the gray-level image data
directly. Gray-level image-based tree extraction schemes

(a)

FIGURE 2
of Stephen Aylward, University of North Carolina at Chapel Hill.
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capture the vessels’ medial axes and borders. If the whole tree
or large portions thereof are to be identified, they usually
involve tracking the vessel centerlines, starting at the arterial
inlet or other user specified point, and searching a rectangle or
sector distal to the current centerline point, symmetric about
the current centerline direction [93-96]. The dimensions of the
sector are dynamically adjusted to take into account the local
noise level [93,94] and vessel tortuosity, or curvature [97]: If
either or both of these are high, the search-ahead distance is
shortened in the interest of more reliable tracking. The
direction of search is updated by use of a matched filter, for
example a rect or triangular function, based on a model
incorporating the current vessel width and the expected shape
of the vessel’s cross-sectional intensity profile. Branch points
are detected by comparing the image brightness level outside
the current borders to the brightness at the vessel center. In
recursive tracking, once a major trunk and its branch points
have been identified, they are deleted from the image to avoid
repeated tracking. The new branch centerline directions at each
bifurcation are then determined, again by the use of a matched
filter, and smaller and smaller subtrees are tracked and deleted
in succession. Several parameters, including a minimal accep-
table vessel length, need to be adjusted depending on image
quality to avoid capture of nonvessel structures or noise in the
image.

Some of the most rigorous processing methods have been
developed for computerized systems designed to improve the

(a) Avolume rendering of 48 MRA slices of the cerebral vasculature. (b) The result of the tubular segmentation algorithm. Images courtesy



268

accuracy and objectivity of clinical assessment of stenosis
severity [75,98]. These methods are based on the classic work
of Canny who developed a computational approach to edge
detection for antisymmetric edges (f(x) = —f(—x), where the
true edge point is at x = 0) such as ridge, roof, and step edges
[99]. The requirements for reliable performance are good
detection and good localization. Good detection means that a
true edge is highly likely to be a detected and that the likelihood
of detecting an edge where there is none is low. Good
localization means that the error in the location of a detected
edge relative to that of the true edge should be small. Canny
developed mathematical forms for the criteria for low error
rate and good localization and showed that there is a trade-off
between the two that dictates a unique shape for the impulse
response of the optimal detector. Further, the detection—
localization trade-off varies with the spatial extent of the filter
and the noise level in the image, mandating a multiscale
approach followed by synthesis of the features detected by
operators at the various scales. Avariable-scale approach makes
sense in light of the fact that intensity changes occur over a
range of scale in real images [100]. An approximate realization
of the ideal filter for antisymmetric edges can be realized in the
spatial domain by designating edge points as the maxima in the
gradient magnitude of a Gaussian smoothed image, also called
the Gaussian-weighted gradient operator. Intuitively, this filter
is a derivative operator with a smoothing effect—in fact, the
first derivative of a Gaussian—so edges are located at the
maxima in the smoothed derivative of a line scan perpendi-
cular to the edge. In fact, Marr and Hildreth had pointed out
much earlier in the derivation of their Laplacian of Gaussian
operator that the optimal filter for the image averaging at
different scales had to be Gaussian, since this provides the best
compromise for the conflicting requirements for band limit-
edness (localization) in both spatial (because edge information
is highly localized) and frequency (to reduce the range of scales
over which intensity changes take place) domains [100]. In one
dimension, the zero crossings [101] produced by the Marr—
Hildreth operator correspond exactly to the maxima in
Canny’s Gaussian-weighted gradient operator, but Canny
claimed two advantages to his approach: The directional
properties of his operator enhance its detection and localiza-
tion properties in 2D implementations; and the amplitude of
the response at maxima provides a good estimation of edge
strength, which can be exploited by a subsequent thresholding
operation on the gradient image. An important contribution of
Reiber’s group was to extend Canny’s computational approach
to the analysis of asymmetric edges like those of density profiles
through arterial cross-sections. The consequence of asym-
metric edges is that two additional constraints on the operator
must be added: the precise shape or phase shift of the filter has
to be optimized for a particular arterial diameter and, when a
filter of the same spatial extent is applied to arteries of different
sizes, correction factors to the diameter estimate have to be
invoked. A suite of angiographic image analysis software
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incorporating the optimal edge detection algorithms was
developed at the Leiden University Medical Center to assist
in clinical decision making regarding severity of coronary
artery stenosis [102]. Figure 3 shows one display mode of the
image and results panel. An enlarged view of the portion of the
angiogram containing the lesion is shown, with the detected
arterial borders and highlighted stenosis displayed as a
graphical overlay on the image. A plot of artery diameter
versus length in the diseased region and a panel of quantitative
results are also displayed on the same screen. Phantom and
clinical experiments showed that the method performed
accurately and reproducibly for vessels between 1.2 and
6mm in diameter even in the presence of realistic noise
levels, and for lower noise levels performance remained
acceptable for vessels with diameters greater than 0.7 mm [98].

Focal stenoses can be readily appreciated and quantified with
reasonable accuracy from single angiograms by the methods
just described, but subtle disease may elude detection on
single-projection angiograms. Three-dimensional reconstruc-
tion techniques may facilitate accurate assessment of coronary
arterial disease from routinely acquired biplane angiograms,
even in cases of complex morphology. For example, at the
German Heart Institute of Berlin these methods have been
successfully applied to the quantification of diffuse coronary
artery diseases, conditions that may remain occult if only single
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FIGURE 3 Portion of a clinical coronary angiogram processed with the
software developed at the Leiden University Medical Center. The stenotic
lesion is highlighted, a plot of vessel diameter versus length in the diseased
region is displayed, along with a panel of the important quantitative results
including percent stenosis. Image courtesy of Johan Reiber, Leiden
University Medical Center. See also Plate 26.
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angiograms are evaluated in two dimensions [103—104]. Figure
4a shows four angiographic views of a normal subject: near-
orthogonal views of the left coronary arterial system in the
upper panels and of the right coronary arterial system (RCA) of
the same patient in the bottom panels. The left heart pair was
acquired simultaneously, as was the right at a later point in
time. A surface shaded rendering of the 3D reconstruction
from the views of Fig. 4a is shown in Fig. 4b. The RCA is
positioned anteriorly with the left circumflex artery behind it
and the left anterior descending (LAD) to the right. The
reconstructed 3D model allows accurate determination of
morphometric parameters of the vessel, such as spatial lengths
and volumes and mean segment or subtree diameter. The
length/volume evaluation can be performed on single vessel
segments, on a set of segments, or on subtrees. Avolume model
based on generalized elliptical conic sections is created for the
selected segments. Volumes and lengths (measured along the
vessel course) of those elements are summed and used to derive
the mean diameter. In this way, the morphological parameters
of a vessel subsystem can be set in relation to the parameters of
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(a)

FIGURE 4
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the proximal segment supplying it. These relations allow
objective assessments of diffuse coronary artery diseases.

Given this summary of various clinical techniques, the
remainder of this chapter describes the work in our laboratory
to develop methods for morphometric and mechanical
characterization of pulmonary arterial trees in a basic phy-
siology research laboratory setting.

4 Arterial Tree Morphometry in
Pulmonary Hypertension Research

We are developing imaging and analysis methods to char-
acterize the structural and mechanical properties of vascular
systems. Our group is particularly interested in pulmonary
hypertension, and we are working with rat models of the
disease. The long-term goals are to develop imaging tools,
based on high-resolution volumetric X-ray computed tomo-

LAO

(®)

(a) Source biplane angiograms: the upper pair depicts the left coronary artery system (LCA) in time-equivalent projections from right and

left anterior oblique (RAO/LAQO) views; the lower pair shows the right coronary artery system of the same subject in a second acquisition. (b)
Visualization of the 3D model reconstructed from the angiograms of Fig. 4a. The right coronary artery (RCA) is in the front, at the same level behind it to
the left circumflex artery (LCX), and to the right the left anterior descending artery (LAD). Images courtesy of Andreas Wahle, University of Iowa.
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FIGURE 5 Schematic of the micro-CT scanner.

graphy (micro-CT), required to quantify the geometric and
biomechanical properties of the pulmonary arterial tree, and to
apply these tools to determine the relative contributions of
vessel remodeling (e.g., narrowing of the lumen of the arterial
tree due to decreased unstressed vessel diameters and/or
decreased vessel distensibility) and changes in the vascular tree
structure (e.g., decrease in number of parallel vessels) in
causing the elevated pulmonary vascular resistance in pul-
monary hypertension of different etiologies. To date, we have
built the micro-CT scanner, developed image acquisition and
reconstruction protocols and algorithms to produce high-
resolution 3D image volumes of excised, contrast-enhanced rat
lungs, experimented with several methods for image processing
and data analysis, and applied the methods to a first model of
pulmonary hypertension: chronic hypoxia.

The micro-CT scanner is shown schematically in Fig. 5. The
main system components are the demountable microfocal X-
ray tube to the right, which is capable of producing focal spots
as small as three microns in diameter, the precision specimen
stage in the center, and the detector to the left, which consists
of a high-resolution 9-7-5” image intensifier coupled to a
10242, 12-bit CCD camera. Figure 6 shows a photo of the
scanner with a rat lung in place for imaging. Control and
experimental rats in which pulmonary hypertension has been
induced by exposure to chronic hypoxia (11% O, for 3 weeks)
are studied. The rats are anesthetized, the trachea and
pulmonary artery cannulated, and the lungs excised. The
vessels are flushed with a physiological saline solution to
remove the blood, then the lungs are suspended by the

cannulas from the top of a thin-walled polyacetate cylinder, as
can be seen in Fig. 6 where the cannulas are just visible at the
top. A brominated perfluorocarbon (Perflubron; perfluor-
ooctyl bromide) contrast agent is then introduced through the
arterial cannula. Because of the surface tension at the
perfluorocarbon—aqueous interface, when introduced into
the pulmonary artery, the contrast agent fills only the arterial
tree and can be held at a variety of intra-arterial pressures
spanning the physiological range. We image either whole lungs
or left lung lobes at magnifications ranging from 3.5 X to 9 x .

FIGURE 6 Photo of micro-CT scanner with rat lung in place for
imaging. X-ray source is to the right, specimen in the middle with arterial
and tracheal cannulas visible, and image intensifier to the left.
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Typical technique factors for image acquisition are 85kVp, 30
microamps, and 3 minutes total scanning time for 360 views.

Projection preprocessing includes correcting the pincushion
distortion of the image intensifier using a polynomial
unwarping technique in which the coefficients are determined
from the image of a precision grid of ball bearings (BB
phantom) [105-107]. The rotation axis is then centered with
the aid of a sinogram and the illumination nonuniformity
corrected by floodfield division. Images are reconstructed,
typically onto a 512° grid, using the Feldkamp conebeam
filtered backprojection algorithm [108] and a Shepp-Logan
filter [109]. Figure 7 shows as-acquired views of a mouse lung
from two representative angles on the left. The corresponding,
fully preprocessed projections are shown in the center, and
surface-shaded renderings, again from the same view angle, are
shown on the right. The mouse lung arterial tree structure
could be contained in an 8-mm sphere, and these projections
were acquired at a magnification of about 12 X using the 5"
image intensifier input diameter. The top panel of Fig. 8 shows
a projection and surface shaded rendering of a rat lung viewed
from the same angle. The rat lung structure would fit within a
2.5-cm sphere and was imaged at a magnification of about
4 x using the 7” image intensifier input. The bottom panel of
Fig. 8 shows a surface shaded rendering of another rat lung on
the left and of a dog lung on the right. Inspection of Figs. 7 and
8 reveals distinct interspecies differences in the pulmonary
arterial tree morphometry, at least on a gross scale (the
distribution vessels).
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The segmentation algorithm used to produce the renderings
of Figs. 7 and 8 is based on region growing and connectivity
list routines, similar to the seeded region growing with gray-
level hysteresis described earlier. The image volume is
traversed until a voxel is found within a specified gray-scale
window. This voxel is the first seed point for the region
growing and is added to a list of connected voxels, and the
corresponding bit in a previously initialized binary volume is
toggled. If a seed point is found, the routine repeatedly checks
whether the 26 neighbors fall within the specified gray-scale
range and whether they were previously detected as vessel
voxels. If they do and were not, they are added to the
connectivity list and the corresponding bit in the binary
volume is toggled. Processing continues until no more vessel
voxels are detected in the first region, in which case scanning
of the volume continues until the next seed point is found.
The routine builds a new connectivity list for each new seed
point it finds and will only accept voxels as seed points if they
are not already included on a connectivity list. When volume
scanning is complete, all vessels within the gray-scale window
will be members of one and only one connectivity list. The
user then specifies the minimum size of connectivity list to be
accepted in the segmentation (the smallest connected region
falling within the gray-scale window that is to be accepted as
vessel), and the connectivity lists of all smaller regions are
eliminated and the corresponding bits in the binary volume
toggled off. Thus, the binary volume becomes a segmented
volume of the vascular tree. The renderings themselves are

FIGURE 7 As-acquired (left) and fully preprocessed (center) projections of mouse lung. Right:
Surface shaded renderings of mouse lung viewed from same angles. See also Plate 27.
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FIGURE 8 Top: Rat lung projection (left) and surface shaded rendering (right) viewed from same angle. Bottom: Surface
shaded rendering of rat (left) and dog (right) pulmonary arterial trees. See also Plate 28.

produced using IDL (Interactive Data Language) software
[110].

One of the problems with quantitative analysis of a structure
as complex as the pulmonary arterial tree is the sheer amount
of data available in the 3D images. Pending complete automa-
tion of the segmentation and measurement processes, we are
exploring rational procedures for data reduction. In the past
several methods have been used to summarize the data on
segment lengths, diameters and numbers derived from arterial
casts. Discussions as to the advantages of the different methods
center around the kinds of information retained in the
morphometric summary [9,111]. These vessel classification
schemes can be categorized as centrifugal or centripetal
ordering. In centrifugal ordering, vessels are classified

according to generation proceeding from the pulmonary
artery to the peripheral, precapillary vessels [73,112]. This
has a simple logic when applied to a symmetrical homogeneous
tree, but as larger variations in the daughter diameter ratios are
encountered as one moves along the actual asymmetrical
heterogeneous tree, it results in grouping together vessels of
very different diameters in the same generation. In addition,
centrifugal ordering has difficulty coping with the wide range
in the number of generations between the inlet and periphery
between short and long pathways. As an alternative, centripetal
ordering has been advocated. For example, in Strahler
ordering, the classification begins with the precapillary arter-
ioles and proceeds up the tree with the order increasing toward
the pulmonary artery [7,8,28,111]. Centripetal ordering has
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some advantages for summarizing the morphometry of a
heterogeneous asymmetrical tree, but among the drawbacks for
imaging data is that imaging systems typically have limited
resolution, which makes starting with the smallest vessels
problematic. It is interesting that, despite the various ordering
systems used, the published corrosion cast data [6,9,31-33]
from several species appear to be quite consistent with respect
to linearity and slope if one plots, for example, the log of the
number of segments having a certain diameter vs log segment
diameter or the log of segment length vs log segment diameter.
This property of pulmonary arterial tree geometry suggests
alternatives to the problem of morphometric summary. For
example, viewed as a fractal structure, the three vessel segments
forming a bifurcation can be considered the repeating, scale-
independent element comprising the vascular tree [113,114].
Then, the diameters of the parent (D,) and daughter vessels
(Dy and D,) from a number of bifurcations can be used to
estimate a value of z defined by D, = D,*+ D,*. The
distribution of z is then the morphometric characterization
of the tree [115,116]. This approach is practical for imaging
data, but it has also required large numbers of measurements
and much of the information about the connectivity of the tree
is lost.

Ritman et al. used a method based on analysis of main trunks
of the pulmonary arterial tree, which is particularly useful in
the context of volumetric CT data [117]. Their results suggest
that a reasonable number of measurements of segment lengths
and diameters can be exploited to investigate hypotheses about
tree structure. One possible approach is to analyze the longest
pathway, or main trunk of the tree from the inlet to the smallest
resolvable precapillary arterioles. Since this principal pathway
contains vessel segments spanning the entire range of diameters
present in the structure, its taper might be representative of the
tree as a whole. Figure 9 shows a rendering of the rat
pulmonary arterial tree in the top left panel. The four longest
pathways through the tree are indicated by the colored lines.
The bottom left panel shows plots for the four pathways of
vessel segment diameter vs distance from the branchpoint off
the principal pathway. The top right panel shows a rendering of
the pruned principal pathway with the subsidiary pathways
rearranged to align the precapillary arterioles at the distal tip.
In the bottom right panel, vessel segment diameter is plotted vs
distance from the arterial inlet for all four pathways. Curves
fitted to the four data sets are statistically indistinguishable,
illustrating the correspondence of the tapers of these four
pathways. Our results indicate that the various pathways
through the tree are self-similar in the sense that all subtrees
distal to vessel segments of a given diameter are statistically
equivalent [118], and we will exploit the self-similarity of the
tree to extrapolate morphometric and mechanical parameters
derived from measurements on a small number of pathways to
the structure as a whole.

Accurate measurement of vessel segment diameters is a
simple concept, but is hampered in practice by a number of
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complicating factors related to the physics of the imaging
system and nuances of the image analysis and data extraction
procedures. Volume averaging causes the densities of vessels
less than about twice the width of the imaging system point
spread function (PSF), which is degraded by the finite focal
spot size, specimen stage imperfections, detector pixel size, and
the reconstruction algorithm, to be smeared out over a
considerably larger volume than they in fact occupy [119].
When subresolution tungsten wires are reconstructed to
characterize the system PSE the cross-sectional image of the
wire affects the densities of several pixels (the number of pixels
depends upon magnification, which in turn is dictated by
imaging geometry), even though each pixel represents more
than 10 microns, even at the highest magnifications we have
employed (35 x ). Therefore, we have developed a model of
the ideal vessel cross-section convolved with the imaging
system PSF to calibrate the imaging system for vessel diameter
measurements, assuming that artery cross-sections are circular.
Figure 10 illustrates how an ideal vessel lumen cross-section
larger than twice the full width at half maximum (FWHM) of
the system PSF, when convolved with the PSE, yields a density
profile whose width at FWHM is a good approximation to the
lumen diameter and whose height represents the attenuation
characteristics of the contrast agent. A small ideal vessel with
width about equal to the PSE on the other hand, when
convolved with the PSE, yields a density trace whose width at
FWHM significantly overestimates the vessel diameter and
whose height underestimates the contrast agent density. But
the areas under the density profiles are proportional to the
vessel diameters since, in spite of volume averaging, contrast
agent density is conserved in the reconstruction. We have
imaged wires and contrast agent-filled tubes of precisely known
diameters and found an exactly linear relationship with zero
intercept between the area under density profiles taken
orthogonal to the wire or tube axis and the true diameter.
Therefore, as long as at least one cylindrical object of known
diameter is contained within the reconstruction, we can
accurately measure vessels down to subpixel diameters using
a density profile area vs diameter calibration curve.

Before developing a reliable calibration method for small
vessel diameter measurements, we measured vessels larger than
the system PSF using the FWHM criterion. In order to measure
a statistically significant number of smaller vessels, high
magnification images of distal portions of the lung were
obtained as shown in Fig. 11. Density traces across vessels like
the one indicated by arrows on the left panel were analyzed, as
shown in the right panel, by fitting the line-scan data to a
model projection of an ideal circular vessel riding on a nonzero
and nonuniform baseline. The width of the model vessel was
then taken as the vessel diameter.

Since the arterial trees are reconstructed on cubic-voxel grids
of isotropic resolution, it is most straight forward to access
orthogonal (axial, sagittal, or coronal) slices from which to
extract density profiles and diameter measurements, as shown
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FIGURE 9 Top left panel illustrates the four longest pathways through a rendering of the rat pulmonary arterial tree. Bottom left
panel shows plots of vessel segment diameter vs. distance from branchpoint off the principal pathway. Top right panel shows pathways
rearranged to align the precapillary arterioles. Bottom right panel shows plots of vessel segment diameter vs. distance from pulmonary
arterial inlet. The fitted curves are statistically indistinguishable. See also Plate 29.

for axial slices in the left panel of Fig. 12. By interactively
“flying through” the stack of transaxial slices, bifurcation
locations can be reliably and reproducibly identified as the xyz
coordinates where two daughters have just separated, as shown
on the right of Fig. 12 in the third panel from top. After
recording the coordinates of all branch points for daughters
leaving a pathway, the diameters of the vessel segments
comprising the pathway can be measured by accessing the
slice equidistant between the contiguous branch points
defining the segment. However, as is evident in Fig. 12 and

shown in Fig. 13, many vessel segment orientations deviate
significantly from the vertical. In Fig. 13 transaxial (yellow) and
orthogonal (lavender) slices through a nearly horizontal vessel
are indicated on the left panel. The vessel cross-section in the
transaxial slice is a high-aspect-ratio ellipse, as shown in the top
right panel. It is nearly impossible to make reliable and
reproducible diameter measurements from this image data. We
have therefore developed software to access oblique slices
orthogonal to the vessel segment at the midpoint between
consecutive bifurcations off the pathway, as illustrated by the
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FIGURE 10 Left: Ideal vessel lumen cross section larger than twice the FWHM of the system PSF when
convolved with the PSF yields a density profile whose width at FWHM is a good approximation to the
lumen diameter and whose height represents the attenuation characteristics of the contrast agent. Right:
Small ideal vessel with width about equal to the PSF when convolved with the PSF yields a density trace
whose width at FWHM significantly overestimates the vessel diameter and whose height underestimates
the contrast agent density. But the areas under the density profiles are proportional to the vessel diameters.

lavender plane of Fig. 13. The vessel cross-section viewed in the
orthogonal slice is nearly circular, facilitating accurate diameter
measurement.

A major goal of our current research is to extract
functionally relevant morphometric parameters from 3D
images of arterial tree structures. Our current approach is to
analyze the principal pathway from the inlet to the periphery,
measuring the diameters of all segments of the main trunk and
of all the daughter branches immediately off the main trunk.

The upper curve in Fig. 14 shows a plot of vessel segment
diameter vs distance from the pulmonary arterial inlet for the
principal pathway of a hypertensive rat lung imaged at high
pressure. The lower plot shows the same relationship for the
smaller daughter vessel segments branching immediately off
the main trunk. Morphometric parameters available from such
plots include the parameters of the fitted curves (indicators of
slope and curvature) and the dispersion of the data about the
fits. The latter is greater for the daughter segments, since the

FIGURE 11

Shows method for measuring small vessel diameters from high-magnification projection

images. The model vessel diameter is indicated as 50 microns in the right panel.
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FIGURE 12 Left: Transaxial slices to which many vessels are nearly orthogonal can readily be accessed
from the reconstruction. However, many vessel segments can be seen to deviate significantly from the
vertical. Right: Bifurcation locations can be identified as the xyz coordinates where two daughters have just
separated as shown in the third panel from top. See also Plate 30.

Transaxial Slice

I Crhogonal Slice

FIGURE 13 Transaxial (yellow) and orthogonal (lavender) slices through a nearly-
horizontal vessel are indicated on the left panel. The vessel cross-section in the transaxial
slice is a high-aspect-ratio-ellipse, as shown in the top right panel, whereas the cross
section in the orthogonal slice is nearly circular. See also Plate 31.
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FIGURE 14 Plot of vessel segment diameter vs. distance from the
pulmonary arterial inlet for the principal pathway of a hypertensive rat
lung imaged at high pressure. The lower plot shows the same relationship
for the smaller daughter vessel segments branching immediately off the
main trunk.

main trunk tapers fairly steadily from inlet to periphery, while
small subtrees may branch off to perfuse proximal lung tissue
volumes.

To measure biomechanical properties of the vessels, we
obtain 3D reconstructions of each lung at a series of four
intravascular pressures spanning the physiological range (30,
21, 12, and 4mm Hg). Thus, for every vessel segment
measured, the diameter vs pressure relationship yields the
vessel distensibility as percent diameter change per unit change
in pressure (%/torr). Figure 15 shows projection images of a
hypertensive rat lung obtained at four intra-arterial contrast
agent pressures. The distension of the arteries at high pressure
is clearly evident.

Figure 16 shows graphs similar to those in Fig. 14 for the
main trunk of a normal lung imaged at low and relatively high
pressures. The slopes, intercepts, and curvatures are clearly
increased for the normoxic compared to the hypoxic lung, and
for the normoxic lung at high compared to low pressure. From
the diameter vs pressure relationships, we can calculate the
distensibility (absolute or percent diameter change per torr) of
the pulmonary arteries, either for individual vessel segments or
for the tree as a whole. The results for a large number of
individual vessel segments from several control and several
hypertensive lungs are shown in Fig. 17, where distensibility is
plotted for each vessel segment vs its diameter at the lowest
pressure (4 mm Hg). Though there is overlap in the data, the
method seems to separate normal from hypertensive animals
quite well. To calculate a global distensibility for the arterial
tree in a single lung, the diameter (D) vs distance (x) data for all
four pressures (P) is plotted as a three-dimensional graph as
shown in Fig. 18. The data is then fitted with a surface of the
form
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D(x, P) = a[l + aP(x)](1 — bx)*
where o is the global distensibility and a, b, and c¢ are

parameters of the fit. In the case of one normal and one
hypertensive rat the results were as below:

cx(mmHgl) a(mm) b(mm') c
Normoxic (21% O,) 0.031 1.34 0.031 0.49
Hypoxic (11% O,) 0.021 1.26 0.033 0.44

This shows a significant decrease in the arterial distensibility
of the diseased lung, but no significant difference between the
curve fit parameters. These early results demonstrate that
arterial wall distensibility is significantly lower in hypertensive
compared to normal pulmonary trees. Future studies will apply
these methods to investigate the mechanisms involved in other
models of pulmonary hypertension, and to studies of the
relative efficacies of interventions designed to slow or reverse
disease progression.

5 Discussion and Conclusions

Arterial tree morphometry is an important application of
image processing and analysis in clinical practice and the
biomedical sciences. The severity of coronary artery disease is
routinely assessed in the clinic with the aid of sophisticated
image processing software to quantify stenoses. Presurgical
planning for vascular abnormalities such as cerebral aneurysms
is facilitated by segmentation and visualization of the intracer-
ebral vasculature. Clinical studies provide information about
arterial morphology on a macro scale. On the other end of the
scale continuum, histological and electron microscopic
methods have a long history of providing valuable insights
into the cellular makeup and ultrastructure of vessel walls, and
the many forms of medial hypertrophy. Micro-CT techniques
such as those developed in our laboratory and others [120,121]
and micro-MR methods under development have the potential
to shed further light on the mechanisms implicated in diseases
such as pulmonary and systemic hypertension by providing
mesoscale images. Clinical imaging modalities cannot capture
dimensional changes in the small vessels most likely involved in
elevating the resistance of the arterial tree, nor can they localize
microemboli in isolated vessels less than about 500 microns in
diameter. Histology and vascular casting methods do not allow
an appreciation for where the observed pathological conditions
such as hypertrophy or obliteration occur in the branching tree
hierarchy as an intact structure. We and others are trying to
bridge the gap between micro- and macroscopic imaging
methods.

The methods we have developed for arterial tree morpho-
metry to date are capable of obtaining 3D image data rapidly
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FIGURE 15 Projections of a hypertensive rat lung imaged at 30, 21, 12, and 4 mmHg intra-arterial
contrast agent pressure.

while the organ is maintained in a near physiological state and
have demonstrated sensitivity to pulmonary hypertension in a
rat model of the disease. The image analysis methods are still
rather labor intensive, and future efforts will include the design
of algorithms and software to speed the 3D image analysis by
automating it insofar as possible. It may also prove fruitful to
try other methods of extracting statistical measures of structure
from the reconstructed volumes, perhaps related to those
utilized in the well-established science of stereology [122—126].
It is likely that for diffuse diseases such as hypertension it may
not be necessary or even desirable to analyze the tree structure
in a brute-force classical way, from top down, as we have been
attempting so far. The precise appearance on images of a
disease such as emphysema or diffuse vascular disorders,
including diabetes and hypertension, is likely quite different

from one animal to the next in its specifics, suggesting the
potential merits of a search for sensitive statistics of a higher
order than the simple lengths, diameters, and angles of classical
morphometry.

It is clear that new imaging technologies and increased
computational, storage, and transmission capacity will con-
tinue to provide more and better imagery at ever-increasing
rates. The major challenge in avoiding information overload
and data opacity certainly lies in the area of devising image
processing algorithms and data analysis methods that will yield
the highest discriminatory power and the keenest biological
insights into pathological vascular remodeling mechanisms
and thus provide the highest value, first for the animals and
time invested, and eventually in the form of improved
therapeutic and preventive strategies.
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FIGURE 16 Plot of vessel segment diameter vs distance from the
pulmonary arterial inlet for the principal pathway of a normal rat lung
imaged at relatively high and at low pressure.
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FIGURE 17 Distensibility as a function of baseline diameter D(0) for a

large number of vessels from control and hypertensive rats.
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FIGURE 18 Diameter vs distance data from rat lung imaged at four
intra-arterial contrast agent pressures. Surface fit yields a global

distensibility for the entire arterial tree.
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