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Preface 
This book presents an introduction to some of the main problems, techniques, and 
algorithms underlying the programming of distributed-memory systems, such as computer 
networks, networks of workstations, and multiprocessors. It is intended mainly as a textbook 
for advanced undergraduates or first-year graduate students in computer science and 
requires no specific background beyond some familiarity with basic graph theory, although 
prior exposure to the main issues in concurrent programming and computer networks may 
also be helpful. In addition, researchers and practitioners working on distributed computing 
will also find it useful as a general reference on some of the most important issues in the 
field. 

The material is organized into ten chapters covering a variety of topics, such as models of 
distributed computation, information propagation, leader election, distributed snapshots, 
network synchronization, self-stability, termination detection, deadlock detection, graph 
algorithms, mutual exclusion, program debugging, and simulation. Because I have chosen to 
write the book from the broader perspective of distributed-memory systems in general, the 
topics that I treat fail to coincide exactly with those normally taught in a more orthodox 
course on distributed algorithms. What this amounts to is that I have included topics that 
normally would not be touched (as algorithms for maximum flow, program debugging, and 
simulation) and, on the other hand, have left some topics out (as agreement in the presence 
of faults). 

All the algorithms that I discuss in the book are given for a "target" system that is 
represented by a connected graph, whose nodes are message-driven entities and whose 
edges indicate the possibilities of point-to-point communication. This allows the algorithms to 
be presented in a very simple format by specifying, for each node, the actions to be taken to 
initiate participating in the algorithm and upon the receipt of a message from one of the 
nodes connected to it in the graph. In describing the main ideas and algorithms, I have 
sought a balance between intuition and formal rigor, so that most are preceded by a general 
intuitive discussion and followed by formal statements regarding correctness, complexity, or 
other properties. 

The book's ten chapters are grouped into two parts. Part 1 is devoted to the basics in the 
field of distributed algorithms, while Part 2 contains more advanced techniques or 
applications that build on top of techniques discussed previously. 

Part 1 comprises Chapters 1 through 5. Chapters 1 and 2 are introductory chapters, 
although in two different ways. While Chapter 1 contains a discussion of various issues 
related to message-passing systems that in the end lead to the adoption of the generic 
message-driven system I mentioned earlier, Chapter 2 is devoted to a discussion of 
constraints that are inherent to distributed-memory systems, chiefly those related to a 
system's asynchronism or synchronism, and the anonymity of its constituents. The 
remaining three chapters of Part 1 are each dedicated to a group of fundamental ideas and 
techniques, as follows. Chapter 3 contains models of computation and complexity measures, 
while Chapter 4 contains some fundamental algorithms (for information propagation and 
some simple graph problems) and Chapter 5 is devoted to fundamental techniques (as 
leader election, distributed snapshots, and network synchronization). 



The chapters that constitute Part 2 are Chapters 6 through 10. Chapter 6 brings forth the 
subject of stable properties, both from the perspective of selfstability and of stability 
detection (for termination and deadlock detection). Chapter 7 contains graph algorithms for 
minimum spanning trees and maximum flows. Chapter 8 contains algorithms for resource 
sharing under the requirement of mutual exclusion in a variety of circumstances, including 
generalizations of the paradigmatic dining philosophers problem. Chapters 9 and 10 are, 
respectively, dedicated to the topics of program debugging and simulation. Chapter 9 
includes techniques for program re-execution and for breakpoint detection. Chapter 10 deals 
with time-stepped simulation, conservative event-driven simulation, and optimistic event-
driven simulation. 

Every chapter is complemented by a section with exercises for the reader and another with 
bibliographic notes. Of the exercises, many are intended to bring the reader one step further 
in the treatment of some topic discussed in the chapter. When this is the case, an indication 
is given, during the discussion of the topic, of the exercise that may be pursued to expand 
the treatment of that particular topic. I have attempted to collect a fairly comprehensive set of 
bibliographic references, and the sections with bibliographic notes are intended to provide 
the reader with the source references for the main issues treated in the chapters, as well as 
to indicate how to proceed further. 

I believe the book is sized reasonably for a one-term course on distributed algorithms. 
Shorter syllabi are also possible, though, for example by omitting Chapters 1 and 2 (except 
for Sections 1.4 and 2.1), then covering Chapters 3 through 6 completely, and then selecting 
as many chapters as one sees fit from Chapters 7 through 10 (the only interdependence that 
exists among these chapters is of Section 10.2 upon some of Section 8.3). 

 

Notation 
The notation logkn is used to indicate (log n)k. All of the remaining notation in the book is 
standard. 
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Part 1: Fundamentals 
Message-Passing Systems  
Intrinsic Constraints  
Models of Computation  
Basic Algorithms  
Basic Techniques  

Part Overview  

This first part of the book is dedicated to some of the fundamentals in the field of distributed 
algorithms. It comprises five chapters, in which motivation, some limitations, models, basic 
algorithms, and basic techniques are discussed. 

Chapter 1 opens with a discussion of the distributed-memory systems that provide the 
motivation for the study of distributed algorithms. These include computer networks, 
networks of workstations, and multiprocessors. In this context, we discuss some of the 
issues that relate to the study of those systems, such as routing and flow control, message 
buffering, and processor allocation. The chapter also contains the description of a generic 
template to write distributed algorithms, to be used throughout the book. 

Chapter 2 begins with a discussion of full asynchronism and full synchronism in the context 
of distributed algorithms. This discussion includes the introduction of the asynchronous and 
synchronous models of distributed computation to be used in the remainder of the book, and 
the presentation of details on how the template introduced in Chapter 1 unfolds in each of 
the two models. We then turn to a discussion of intrinsic limitations in the context of 
anonymous systems, followed by a brief discussion of the notions of knowledge in 
distributed computations. 

The computation models introduced in Chapter 2 (especially the asynchronous model) are in 
Chapter 3 expanded to provide a detailed view in terms of events, orders, and global states. 
This view is necessary for the proper treatment of timing issues in distributed computations, 
and also allows the introduction of the complexity measures to be employed throughout. The 
chapter closes with a first discussion (to be resumed later in Chapter 5) of how the 
asynchronous and synchronous models relate to each other. 

Chapters 4 and 5 open the systematic presentation of distributed algorithms, and of their 
properties, that constitutes the remainder of the book. Both chapters are devoted to basic 
material. Chapter 4, in particular, contains basic algorithms in the context of information 
propagation and of some simple graph problems. 

In Chapter 5, three fundamental techniques for the development of distributed algorithms are 
introduced. These are the techniques of leader election (presented only for some types of 
systems, as the topic is considered again in Part 2, Chapter 7), distributed snapshots, and 
network synchronization. The latter two techniques draw heavily on material introduced 
earlier in Chapter 3, and constitute some of the essential building blocks to be occasionally 
used in later chapters. 



 

Chapter 1: Message-Passing Systems 
Overview 
The purpose of this chapter is twofold. First we intend to provide an overall picture of various 
real-world sources of motivation to study message-passing systems, and in doing so to 
provide the reader with a feeling for the several characteristics that most of those systems 
share. This is the topic of Section 1.1, in which we seek to bring under a same framework 
seemingly disparate systems as multiprocessors, networks of workstations, and computer 
networks in the broader sense. 

Our second main purpose in this chapter is to provide the reader with a fairly rigorous, if not 
always realizable, methodology to approach the development of message-passing 
programs. Providing this methodology is a means of demonstrating that the characteristics of 
real-world computing systems and the main assumptions of the abstract model we will use 
throughout the remainder of the book can be reconciled. This model, to be described timely, 
is graph-theoretic in nature and encompasses such apparently unrealistic assumptions as 
the existence of infinitely many buffers to hold the messages that flow on the system's 
communication channels (thence the reason why reconciling the two extremes must at all be 
considered). 

This methodology is presented as a collection of interrelated aspects in Sections 1.2 through 
1.7. It can also be viewed as a means to abstract our thinking about message-passing 
systems from various of the peculiarities of such systems in the real world by concentrating 
on the few aspects that they all share and which constitute the source of the core difficulties 
in the design and analysis of distributed algorithms. 

Sections 1.2 and 1.3 are mutually complementary, and address respectively the topics of 
communication processors and of routing and flow control in message-passing systems. 
Section 1.4 is devoted to the presentation of a template to be used for the development of 
message-passing programs. Among other things, it is here that the assumption of infinite-
capacity channels appears. Handling such an assumption in realistic situations is the topic of 
Section 1.5. Section 1.6 contains a treatment of various aspects surrounding the question of 
processor allocation, and completes the chapter's presentation of methodological issues. 
Some remarks on some of the material presented in previous sections comes in Section 1.7. 

Exercises and bibliographic notes follow respectively in Sections 1.8 and 1.9. 

 
1.1 Distributed-memory systems 
Message passing and distributed memory are two concepts intimately related to each other. 
In this section, our aim is to go on a brief tour of various distributed-memory systems and to 
demonstrate that in such systems message passing plays a chief role at various levels of 
abstraction, necessarily at the processor level but often at higher levels as well. 

Distributed-memory systems comprise a collection of processors interconnected in some 
fashion by a network of communication links. Depending on the system one is considering, 
such a network may consist of point-to-point connections, in which case each 
communication link handles the communication traffic between two processors exclusively, 



or it may comprise broadcast channels that accommodate the traffic among the processors 
in a larger cluster. Processors do not physically share any memory, and then the exchange 
of information among them must necessarily be accomplished by message passing over the 
network of communication links. 

The other relevant abstraction level in this overall panorama is the level of the programs that 
run on the distributed-memory systems. One such program can be thought of as comprising 
a collection of sequential-code entities, each running on a processor, maybe more than one 
per processor. Depending on peculiarities well beyond the intended scope of this book, such 
entities have been called tasks, processes, or threads, to name some of the denominations 
they have received. Because the latter two forms often acquire context-dependent meanings 
(e.g., within a specific operating system or a specific programming language), in this book 
we choose to refer to each of those entities as a task, although this denomination too may at 
times have controversial connotations. 

While at the processor level in a distributed-memory system there is no choice but to rely on 
message passing for communication, at the task level there are plenty of options. For 
example, tasks that run on the same processor may communicate with each other either 
through the explicit use of that processor's memory or by means of message passing in a 
very natural way. Tasks that run on different processors also have essentially these two 
possibilities. They may communicate by message passing by relying on the message-
passing mechanisms that provide interprocessor communication, or they may employ those 
mechanisms to emulate the sharing of memory across processor boundaries. In addition, a 
myriad of hybrid approaches can be devised, including for example the use of memory for 
communication by tasks that run on the same processor and the use of message passing 
among tasks that do not. 

Some of the earliest distributed-memory systems to be realized in practice were long-haul 
computer networks, i.e., networks interconnecting processors geographically separated by 
considerable distances. Although originally employed for remote terminal access and 
somewhat later for electronic-mail purposes, such networks progressively grew to 
encompass an immense variety of data-communication services, including facilities for 
remote file transfer and for maintaining work sessions on remote processors. A complex 
hierarchy of protocols is used to provide this variety of services, employing at its various 
levels message passing on point-to-point connections. Recent advances in the technology of 
these protocols are rapidly leading to fundamental improvements that promise to allow the 
coexistence of several different types of traffic in addition to data, as for example voice, 
image, and video. The protocols underlying these advances are generally known as 
Asynchronous Transfer Mode (ATM) protocols, in a way underlining the aim of providing 
satisfactory service for various different traffic demands. ATM connections, although 
frequently of the point-to-point type, can for many applications benefit from efficient 
broadcast capabilities, as for example in the case of teleconferencing. 

Another notorious example of distributed-memory systems comes from the field of parallel 
processing, in which an ensemble of interconnected processors (a multiprocessor) is 
employed in the solution of a single problem. Application areas in need of such 
computational potential are rather abundant, and come from various of the scientific and 
engineering fields. The early approaches to the construction of parallel processing systems 
concentrated on the design of shared-memory systems, that is, systems in which the 
processors share all the memory banks as well as the entire address space. Although this 
approach had some success for a limited number of processors, clearly it could not support 
any significant growth in that number, because the physical mechanisms used to provide the 
sharing of memory cells would soon saturate during the attempt at scaling. 



The interest in providing massive parallelism for some applications (i.e., the parallelism of 
very large, and scalable, numbers of processors) quickly led to the introduction of 
distributed-memory systems built with point-to-point interprocessor connections. These 
systems have dominated the scene completely ever since. Multiprocessors of this type were 
for many years used with a great variety of programming languages endowed with the 
capability of performing message passing as explicitly directed by the programmer. One 
problem with this approach to parallel programming is that in many application areas it 
appears to be more natural to provide a unique address space to the programmer, so that, in 
essence, the parallelization of preexisting sequential programs can be carried out in a more 
straightforward fashion. With this aim, distributed-memory multiprocessors have recently 
appeared whose message-passing hardware is capable of providing the task level with a 
single address space, so that at this level message passing can be done away with. The 
message-passing character of the hardware is fundamental, though, as it seems that this is 
one of the key issues in providing good scalability properties along with a shared-memory 
programming model. To provide this programming model on top of a message-passing 
hardware, such multiprocessors have relied on sophisticated cache techniques. 

The latest trend in multiprocessor design emerged from a re-consideration of the importance 
of message passing at the task level, which appears to provide the most natural 
programming model in various situations. Current multiprocessor designers are then 
attempting to build, on top of the message-passing hardware, facilities for both message-
passing and scalable shared-memory programming. 

As our last example of important classes of distributed-memory systems, we comment on 
networks of workstations. These networks share a lot of characteristics with the long-haul 
networks we discussed earlier, but unlike those they tend to be concentrated within a much 
narrower geographic region, and so frequently employ broadcast connections as their chief 
medium for interprocessor communication (point-to-point connections dominate at the task 
level, though). Also because of the circumstances that come from the more limited 
geographic dispersal, networks of workstations are capable of supporting many services 
other than those already available in the long-haul case, as for example the sharing of file 
systems. In fact, networks of workstations provide unprecedented computational and storage 
power in the form, respectively, of idling processors and unused storage capacity, and 
because of the facilitated sharing of resources that they provide they are already beginning 
to be looked at as a potential source of inexpensive, massive parallelism. 

As it appears from the examples we described in the three classes of distributed- memory 
systems we have been discussing (computer networks, multiprocessors, and networks of 
workstations), message-passing computations over point-to-point connections constitute 
some sort of a pervasive paradigm. Frequently, however, it comes in the company of various 
other approaches, which emerge when the computations that take place on those 
distributed-memory systems are looked at from different perspectives and at different levels 
of abstraction. 

The remainder of the book is devoted exclusively to message-passing computations over 
point-to-point connections. Such computations will be described at the task level, which 
clearly can be regarded as encompassing message-passing computations at the processor 
level as well. This is so because the latter can be regarded as message-passing 
computations at the task level when there is exactly one task per processor and two tasks 
only communicate with each other if they run on processors directly interconnected by a 
communication link. However, before leaving aside the processor level completely, we find it 
convenient to have some understanding of how a group of processors interconnected by 
point-to-point connections can support intertask message passing even among tasks that 



run on processors not directly connected by a communication link. This is the subject of the 
following two sections. 

 
1.2 Communication processors 
When two tasks that need to communicate with each other run on processors which are not 
directly interconnected by a communication link, there is no option to perform that intertask 
communication but to somehow rely on processors other than the two running the tasks to 
relay the communication traffic as needed. Clearly, then, each processor in the system must, 
in addition to executing the tasks that run on it, also act as a relayer of the communication 
traffic that does not originate from (or is destined to) any of the tasks that run on it. 
Performing this additional function is quite burdensome, so it appears natural to somehow 
provide the processor with specific capabilities that allow it to do the relaying of 
communication traffic without interfering with its local computation. In this way, each 
processor in the system can be viewed as actually a pair of processors that run 
independently of each other. One of them is the processor that runs the tasks (called the 
host processor) and the other is the communication processor. Unless confusion may arise, 
the denomination simply as a processor will in the remainder of the book be used to indicate 
either the host processor or, as it has been so far, the pair comprising the host processor 
and the communication processor. 

In the context of computer networks (and in a similar fashion networks of workstations as 
well), the importance of communication processors was recognized at the very beginning, 
not only by the performance-related reasons we indicated, but mainly because, by the very 
nature of the services provided by such networks, each communication processor was to 
provide services to various users at its site. The first generation of distributed-memory 
multiprocessors, however, was conceived without any concern for this issue, but very soon 
afterwards it became clear that the communication traffic would be an unsurmountable 
bottleneck unless special hardware was provided to handle that traffic. The use of 
communication processors has been the rule since. 

There is a great variety of approaches to the design of a communication processor, and that 
depends of course on the programming model to be provided at the task level. If message 
passing is all that needs to be provided, then the communication processor has to at least be 
able to function as an efficient communication relayer. If, on the other hand, a shared-
memory programming model is intended, either by itself or in a hybrid form that also allows 
message passing, then the communication processor must also be able to handle memory-
management functions. 

Let us concentrate a little more on the message-passing aspects of communication 
processors. The most essential function to be performed by a communication processor is in 
this case to handle the reception of messages, which may come either from the host 
processor attached to it or from another communication processor, and then to decide where 
to send it next, which again may be the local host processor or another communication 
processor. This function per se involves very complex issues, which are the subject of our 
discussion in Section 1.3. 

Another very important aspect in the design of such communication processors comes from 
viewing them as processors with an instruction set of their own, and then the additional issue 
comes up of designing such an instruction set so to provide communication services not only 
to the local host processor but in general to the entire system. The enhanced flexibility that 
comes from viewing a communication processor in this way is very attractive indeed, and 



has motivated a few very interesting approaches to the design of those processors. So, for 
example, in order to send a message to another (remote) task, a task running on the local 
host processor has to issue an instruction to the communication processor that will tell it to 
do so. This instruction is the same that the communication processors exchange among 
themselves in order to have messages passed on as needed until a destination is reached. 
In addition to rendering the view of how a communication processor handles the traffic of 
point-to-point messages a little simpler, regarding the communication processor as an 
instruction-driven entity has many other advantages. For example, a host processor may 
direct its associated communication processor to perform complex group communication 
functions and do something else until that function has been completed system-wide. Some 
very natural candidate functions are discussed in this book, especially in Chapters 4 and 5 
(although algorithms presented elsewhere in the book may also be regarded as such, only at 
a higher level of complexity). 

 
1.3 Routing and flow control 
As we remarked in the previous section, one of the most basic and important functions to be 
performed by a communication processor is to act as a relayer of the messages it receives 
by either sending them on to its associated host processor or by passing them along to 
another communication processor. This function is known as routing, and has various 
important aspects that deserve our attention. 

For the remainder of this chapter, we shall let our distributed-memory system be represented 
by the connected undirected graph GP = (NP,EP), where the set of nodes NP is the set of 
processors (each processor viewed as the pair comprising a host processor and a 
communication processor) and the set EP of undirected edges is the set of point-to-point 
bidirectional communication links. A message is normally received at a communication 
processor as a pair (q, Msg), meaning that Msg is to be delivered to processor q. Here Msg 
is the message as it is first issued by the task that sends it, and can be regarded as 
comprising a pair of fields as well, say Msg = (u, msg), where u denotes the task running on 
processor q to which the message is to be delivered and msg is the message as u must 
receive it. This implies that at each processor the information of which task runs on which 
processor must be available, so that intertask messages can be addressed properly when 
they are first issued. Section 1.6 is devoted to a discussion of how this information can be 
obtained. 

When a processor r receives the message (q, Msg), it checks whether q = r and in the 
affirmative case forwards Msg to the host processor at r. Otherwise, the message must be 
destined to another processor, and is then forwarded by the communication processor for 
eventual delivery to that other processor. At processor r, this forwarding takes place 
according to the function nextr (q), which indicates the processor directly connected to r to 
which the message must be sent next for eventual delivery to q (that is, (r,nextr(q)) ∊ EP). 
The function next is a routing function, and ultimately indicates the set of links a message 
must traverse in order to be transported between any two processors in the system. For 
processors p and q, we denote by R (p,q) � EP the set of links to be traversed by a message 
originally sent by a task running on p to a task running on q. Clearly, R(p,p) = Ø and in 
general R(p,q) and R(q,p) are different sets. 

Routing can be fixed or adaptive, depending on how the function next is handled. In the fixed 
case, the function next is time-invariant, whereas in the adaptive case it may be time-
varying. Routing can also be deterministic or nondeterministic, depending on how many 



processors next can be chosen from at a processor. In the deterministic case there is only 
one choice, whereas the nondeterministic case allows multiple choices in the determination 
of next. Pairwise combinations of these types of routing are also allowed, with adaptivity and 
nondeterminism being usually advocated for increased performance and fault-tolerance. 
Advantageous as some of these enhancements to routing may be, not many of adaptive or 
nondeterministic schemes have made it into practice, and the reason is that many difficulties 
accompany those enhancements at various levels. For example, the FIFO (First In, First 
Out) order of message delivery at the processor level cannot be trivially guaranteed in the 
adaptive or nondeterministic cases, and then so cannot at the task level either, that is, 
messages sent from one task to another may end up delivered in an order different than the 
order they were sent. For some applications, as we discuss for example in Section 5.2.1, this 
would complicate the treatment at the task level and most likely do away with whatever 
improvement in efficiency one might have obtained with the adaptive or nondeterministic 
approaches to routing. (We return to the question of ensuring FIFO message delivery among 
tasks in Section 1.6.2, but in a different context.) 

Let us then concentrate on fixed, determinist routing for the remainder of the chapter. In this 
case, and given a destination processor q, the routing function nextr(q) does not lead to any 
loops (i.e., by successively moving from processor to processor as dictated by next until q is 
reached it is not possible to return to an already visited processor). This is so because the 
existence of such a loop would either require at least two possibilities for the determination 
of nextr(q) for some r, which is ruled out by the assumption of deterministic routing, or 
require that next be allowed to change with time, which cannot be under the assumption of 
fixed routing. If routing is deterministic, then another way of arriving at this loopfree property 
of next is to recognize that, for fixed routing, the sets R of links are such that R(r,q) � R(p,q) 
for every processor r that can be obtained from p by successively applying next given q. The 
absence of loops comes as a consequence. Under this alternative view, it becomes clear 
that, by building the sets R to contain shortest paths (i.e., paths with the least possible 
numbers of links) in the fixed, deterministic case, the containments for those sets appear 
naturally, and then one immediately obtains a routing function with no loops. 

Loops in a routing function refer to one single end-to-end directed path (i.e., a sequence of 
processors obtained by following nextr(q) from r = p for some p and fixed q), and clearly 
should be avoided. Another related concept, that of a directed cycle in a routing function, can 
also lead to undesirable behavior in some situations (to be discussed shortly), but cannot be 
altogether avoided. A directed cycle exists in a routing function when two or more end-to-end 
directed paths share at least two processors (and sometimes links as well), say p and q, in 
such a way that q can be reached from p by following nextr(q) at the intermediate r's, and so 
can p from q by following nextr(p). Every routing function contains at least the directed cycles 
implied by the sharing of processors p and q by the sets R(p,q) and R(q,p) for all p,q ∈ NP. A 
routing function containing only these directed cycles does not have any end-to-end directed 
paths sharing links in the same direction, and is referred to as a quasi-acyclic routing 
function. 

Another function that is normally performed by communication processors and goes closely 
along that of routing is the function of flow control. Once the routing function next has been 
established and the system begins to transport messages among the various pairs of 
processors, the storage and communication resources that the interconnected 
communication processors possess must be shared not only by the messages already on 
their way to destination processors but also by other messages that continue to be admitted 
from the host processors. Flow control strategies aim at optimizing the use of the system's 
resources under such circumstances. We discuss three such strategies in the remainder of 
this section. 



The first mechanism we investigate for flow control is the store-and-forward mechanism. 
This mechanism requires a message (q,Msg) to be divided into packets of fixed size. Each 
packet carries the same addressing information as the original message (i.e., q), and can 
therefore be transmitted independently. If these packets cannot be guaranteed to be 
delivered to q in the FIFO order, then they must also carry a sequence number, to be used 
at q for the re-assembly of the message. (However, guaranteeing the FIFO order is a 
straightforward matter under the assumption of fixed, deterministic routing, so long as the 
communication links themselves are FIFO links.) At intermediate communication processors, 
packets are stored in buffers for later transmission when the required link becomes available 
(a queue of packets is kept for each link). 

Store-and-forward flow control is prone to the occurrence of deadlocks, as the packets 
compete for shared resources (buffering space at the communication processors, in this 
case). One simple situation in which this may happen is the following. Consider a cycle of 
processors in GP, and suppose that one task running on each of the processors in the cycle 
has a message to send to another task running on another processor on the cycle that is 
more than one link away. Suppose in addition that the routing function next is such that all 
the corresponding communication processors, after having received such messages from 
their associated host processors, attempt to send them in the same direction (clockwise or 
counterclockwise) on the cycle of processors. If buffering space is no longer available at any 
of the communication processors on the cycle, then deadlock is certain to occur. 

This type of deadlock can be prevented by employing what is called a structured buffer pool. 
This is a mechanism whereby the buffers at all communication processors are divided into 
classes, and whenever a packet is sent between two directly interconnected communication 
processors, it can only be accepted for storage at the receiving processor if there is buffering 
space in a specific buffer class, which is normally a function of some of the packet's 
addressing parameters. If this function allows no cyclic dependency to be formed among the 
various buffer classes, then deadlock is ensured never to occur. Even with this issue of 
deadlock resolved, the store-and-forward mechanism suffers from two main drawbacks. One 
of them is the latency for the delivery of messages, as the packets have to be stored at all 
intermediate communication processors. The other drawback is the need to use memory 
bandwidth, which seldom can be provided entirely by the communication processor and has 
then to be shared with the tasks that run on the associated host processor. 

The potentially excessive latency of store-and-forward flow control is partially remedied by 
the second flow-control mechanism we describe. This mechanism is known as circuit 
switching, and requires an end-to-end directed path to be entirely reserved in one direction 
for a message before it is transmitted. Once all the links on the path have been secured for 
that particular transmission, the message is then sent and at the intermediate processors 
incurs no additional delay waiting for links to become available. The reservation process 
employed by circuit switching is also prone to the occurrence of deadlocks, as links may 
participate in several paths in the same direction. Portions of those paths may form directed 
cycles that may in turn deadlock the reservation of links. Circuit switching should, for this 
reason, be restricted to those routing functions that are quasi-acyclic, which by definition 
pose no deadlock threat to the reservation process. 

Circuit switching is obviously inefficient for the transmission of short messages, as the time 
for the entire path to be reserved becomes then prominent. Even for long messages, 
however, its advantages may not be too pronounced, depending primarily on how the 
message is transmitted once the links are reserved. If the message is divided into packets 
that have to be stored at the intermediate communication processors, then the gain with 
circuit switching may be only marginal, as a packet is only sent on the next link after it has 



been completely received (all that is saved is then the wait time on outgoing packet queues). 
It is possible, however, to pipeline the transmission of the message so that only very small 
portions have to be stored at the intermediate processors, as in the third flow-control 
strategy we describe next. 

The last strategy we describe for flow control employs packet blocking (as opposed to 
packet buffering or link reservation) as one of its basic paradigms. The resulting mechanism 
is known as wormhole routing (a misleading denomination, because it really is a flow-control 
strategy), and contrasting with the previous two strategies, the basic unit on which flow 
control is performed is not a packet but a flit (flow-control digit). A flit contains no routing 
information, so every flit in a packet must follow the leading flit, where the routing information 
is kept when the packet is subdivided. With wormhole routing, the inherent latency of store-
and-forward flow control due to the constraint that a packet can only be sent forward after it 
has been received in its entirety is eliminated. All that needs to be stored is a flit, significantly 
smaller than a packet, so the transmission of the packet is pipelined, as portions of it may be 
flowing on different links and portions may be stored. When the leading flit needs access to a 
resource (memory space or link) that it cannot have immediately, the entire packet is 
blocked and only proceeds when that flit can advance. As with the previous two 
mechanisms, deadlock can also arise in wormhole routing. The strategy for dealing with this 
is to break the directed cycles in the routing function (thereby possibly making pairs of 
processors inaccessible to each other), then add virtual links to the already existing links in 
the network, and then finally fix the routing function by the use of the virtual links. Directed 
cycles in the routing function then become "spirals", and deadlocks can no longer occur. 
(Virtual links are in the literature referred to as virtual channels, but channels will have in this 
book a different connotation—cf. Section 1.4.) 

In the case of multiprocessors, the use of communication processors employing wormhole 
routing for flow control tends to be such that the time to transport a message between nodes 
directly connected by a link in GP is only marginally smaller than the time spent when no 
direct connection exists. In such circumstances, GP can often be regarded as being a 
complete graph (cf. Section 2.1, where we discuss details of the example given in Section 
1.6.2). 

To finalize this section, we mention that yet another flow-control strategy has been proposed 
that can be regarded as a hybrid strategy combining store-and-forward flow control and 
wormhole routing. It is called virtual cut-through, and is characterized by pipelining the 
transmission of packets as in wormhole routing, and by requiring entire packets to be stored 
when an outgoing link cannot be immediately used, as in store-and-forward. Virtual cut-
through can then be regarded as a variation of wormhole routing in which the pipelining in 
packet transmission is retained but packet blocking is replaced with packet buffering. 

 
1.4 Reactive message-passing programs 
So far in this chapter we have discussed how message-passing systems relate to 
distributed-memory systems, and have outlined some important characteristics at the 
processor level that allow tasks to communicate with one another by message passing over 
point-to-point communication channels. Our goal in this section is to introduce, in the form of 
a template algorithm, our understanding of what a distributed algorithm is and of how it 
should be described. This template and some of the notation associated with it will in Section 
2.1 evolve into the more compact notation that we use throughout the book. 



We represent a distributed algorithm by the connected directed graph GT = (NT,DT), where 
the node set NT is a set of tasks and the set of directed edges DT is a set of unidirectional 
communication channels. (A connected directed graph is a directed graph whose underlying 
undirected graph is connected.) For a task t, we let Int ⊆ DT denote the set of edges directed 
towards t and Outt ⊆ DT the set of edges directed away from t. Channels in Int are those on 
which t receives messages and channels in Outt are those on which t sends messages. We 
also let nt = |Int|, that is, nt denotes the number of channels on which t may receive 
messages. 

A task t is a reactive (or message-driven) entity, in the sense that normally it only performs 
computation (including the sending of messages to other tasks) as a response to the receipt 
of a message from another task. An exception to this rule is that at least one task must be 
allowed to send messages out "spontaneously" (i.e., not as a response to a message 
receipt) to other tasks at the beginning of its execution, inasmuch as otherwise the assumed 
message-driven character of the tasks would imply that every task would idle indefinitely and 
no computation would take place at all. Also, a task may initially perform computation for 
initialization purposes. 

Algorithm Task_t, given next, describes the overall behavior of a generic task t. Although in 
this algorithm we (for ease of notation) let tasks compute and then send messages out, no 
such precedence is in fact needed, as computing and sending messages out may constitute 
intermingled portions of a task's actions. 

Algorithm Task_t:  
 

    Do some computation; 

    send one message on each channel of a (possibly empty) subset of 
Outt; 

    repeat 
        receive message on c1 ∈ Int and B1→ 
           Do some computation; 

           send one message on each channel of a (possibly empty) 
subset of Outt 

      or… 

      or 
      receive message on cnt ∈ Int and Bnt→ 
          Do some computation; 

          send one message on each channel of a (possibly empty) 
subset of Outt 

   until global termination is known to t. 
 

 

There are many important observations to be made in connection with Algorithm Task_t. The 
first important observation is in connection with how the computation begins and ends for 
task t. As we remarked earlier, task t begins by doing some computation and by sending 



messages to none or more of the tasks to which it is connected in GT by an edge directed 
away from it (messages are sent by means of the operation send). Then t iterates until a 
global termination condition is known to it, at which time its computation ends. At each 
iteration, t does some computation and may send messages. The issue of global termination 
will be thoroughly discussed in Section 6.2 in a generic setting, and before that in various 
other chapters it will come up in more particular contexts. For now it suffices to notice that t 
acquires the information that it may terminate its local computation by means of messages 
received during its iterations. If designed correctly, what this information signals to t is that 
no message will ever reach it again, and then it may exit the repeat…until loop. 

The second important observation is on the construction of the repeat…until loop and on 
the semantics associated with it. Each iteration of this loop contains nt guarded commands 
grouped together by or connectives. A guarded command is usually denoted by 

                    guard → command, 

where, in our present context, guard is a condition of the form 

                  receive message on ck ∈ Int and Bk 

for some Boolean condition Bk, where 1 ≤ k ≤ nt. The receive appearing in the description 
of the guard is an operation for a task to receive messages. The guard is said to be ready 
when there is a message available for immediate reception on channel ck and furthermore 
the condition Bk is true. This condition may depend on the message that is available for 
reception, so that a guard may be ready or not, for the same channel, depending on what is 
at the channel to be received. The overall semantics of the repeat…until loop is then the 
following. At each iteration, execute the command of exactly one guarded command whose 
guard is ready. If no guard is ready, then the task is suspended until one is. If more than one 
guard is ready, then one of them is selected arbitrarily. As the reader will verify by our many 
distributed algorithm examples along the book, this possibility of nondeterministically 
selecting guarded commands for execution provides great design flexibility. 

Our final important remark in connection with Algorithm Task_t is on the semantics 
associated with the receive and send operations. Although as we have remarked the use of 
a receive in a guard is to be interpreted as an indication that a message is available for 
immediate receipt by the task on the channel specified, when used in other contexts this 
operation in general has a blocking nature. A blocking receive has the effect of suspending 
the task until a message arrives on the channel specified, unless a message is already there 
to be received, in which case the reception takes place and the task resumes its execution 
immediately. 

The send operation too has a semantics of its own, and in general may be blocking or 
nonblocking. If it is blocking, then the task is suspended until the message can be delivered 
directly to the receiving task, unless the receiving task happens to be already suspended for 
message reception on the corresponding channel when the send is executed. A blocking 
send and a blocking receive constitute what is known as task rendez-vous, which is a 
mechanism for task synchronization. If the send operation has a nonblocking nature, then 
the task transmits the message and immediately resumes its execution. This nonblocking 
version of send requires buffering for the messages that have been sent but not yet 
received, that is, messages that are in transit on the channel. Blocking and nonblocking 
send operations are also sometimes referred to as synchronous and asynchronous, 
respectively, to emphasize the synchronizing effect they have in the former case. We refrain 



from using this terminology, however, because in this book the words synchronous and 
asynchronous will have other meanings throughout (cf. Section 2.1). When used, as in 
Algorithm Task-t, to transmit messages to more than one task, the send operation is 
assumed to be able to do all such transmissions in parallel. 

The relation of blocking and nonblocking send operations with message buffering 
requirements raises important questions related to the design of distributed algorithms. If, on 
the one hand, a blocking send requires no message buffering (as the message is passed 
directly between the synchronized tasks), on the other hand a nonblocking send requires the 
ability of a channel to buffer an unbounded number of messages. The former scenario poses 
great difficulties to the program designer, as communication deadlocks occur with great ease 
when the programming is done with the use of blocking operations only. For this reason, 
however unreal the requirement of infinitely many buffers may seem, it is customary to start 
the design of a distributed algorithm by assuming nonblocking operations, and then at a later 
stage performing changes to yield a program that makes use of the operations provided by 
the language at hand, possibly of a blocking nature or of a nature that lies somewhere in 
between the two extremes of blocking and nonblocking send operations. 

The use of nonblocking send operations does in general allow the correctness of distributed 
algorithms to be shown more easily, as well as their properties. We then henceforth assume 
that, in Algorithm Task_t, send operations have a nonblocking nature. Because Algorithm 
Task_t is a template for all the algorithms appearing in the book, the assumption of 
nonblocking send operations holds throughout. Another important aspect affecting the 
design of distributed algorithms is whether the channels in DT deliver messages in the FIFO 
order or not. Although as we remarked in Section 1.3 this property may at times be essential, 
we make no assumptions now, and leave its treatment to be done on a case-by-case basis. 
We do make the point, however, that in the guards of Algorithm Task_t at most one 
message can be available for immediate reception on a FIFO channel, even if other 
messages have already arrived on that same channel (the available message is the one to 
have arrived first and not yet received). If the channel is not FIFO, then any message that 
has arrived can be regarded as being available for immediate reception. 

 
1.5 Handling infinite-capacity channels 
As we saw in Section 1.4, the blocking or nonblocking nature of the send operations is 
closely related to the channels ability to buffer messages. Specifically, blocking operations 
require no buffering at all, while nonblocking operations may require an infinite amount of 
buffers. Between the two extremes, we say that a channel has capacity k ≥ 0 if the number 
of messages it can buffer before either a message is received by the receiving task or the 
sending task is suspended upon attempting a transmission is k. The case of k = 0 
corresponds to a blocking send, and the case in which k → ∞ corresponds to a nonblocking 
send. 

Although Algorithm Task_t of Section 1.4 is written under the assumption of infinite-capacity 
channels, such an assumption is unreasonable, and must be dealt with somewhere along 
the programming process. This is in general achieved along two main steps. First, for each 
channel c a nonnegative integer b(c) must be determined that reflects the number of buffers 
actually needed by channel c. This number must be selected carefully, as an improper 
choice may introduce communication deadlocks in the program. Such a deadlock is 
represented by a directed cycle of tasks, all of which are suspended to send a message on 
the channel on the cycle, which cannot be done because all channels have been assigned 



insufficient storage space. Secondly, once the b(c)'s have been determined, Algorithm 
Task_t must be changed so that it now employs send operations that can deal with the new 
channel capacities. Depending on the programming language at hand, this can be achieved 
rather easily. For example, if the programming language offers channels with zero capacity, 
then each channel c may be replaced with a serial arrangement of b(c) relay tasks 
alternating with b(c) + 1 zero-capacity channels. Each relay task has one input channel and 
one output channel, and has the sole function of sending on its output channel whatever it 
receives on its input channel. It has, in addition, a storage capacity of exactly one message, 
so the entire arrangement can be viewed as a b(c)-capacity channel. 

The real problem is of course to determine values for the b(c)'s in such a way that no new 
deadlock is introduced in the distributed algorithm (put more optimistically, the task is to 
ensure the deadlock-freedom of an originally deadlock-free program). In the remainder of 
this section, we describe solutions to this problem which are based on the availability of a 
bound r(c), provided for each channel c, on the number of messages that may require 
buffering in c when c has infinite capacity. This number r(c) is the largest number of 
messages that will ever be in transit on c when the receiving task of c is itself attempting a 
message transmission, so the messages in transit have to be buffered. 

Although determining the r(c)'s can be very simple for some distributed algorithms (cf. 
Sections 5.4 and 8.5), for many others such bounds are either unknown, or known 
imprecisely, or simply do not exist. In such cases, the value of r(c) should be set to a "large" 
positive integer M for all channels c whose bounds cannot be determined precisely. Just how 
large this M has to be, and what the limitations of this approach are, we discuss later in this 
section. 

If the value of r(c) is known precisely for all c ∈ DT, then obviously the strategy of assigning 
b(c) = r(c) buffers to every channel c guarantees the introduction of no additional deadlock, 
as every message ever to be in transit when its destination is engaged in a message 
transmission will be buffered (there may be more messages in transit, but only when their 
destination is not engaged in a message transmission, and will therefore be ready for 
reception within a finite amount of time). The interesting question here is, however, whether 
it can still be guaranteed that no new deadlock will be introduced if b(c) < r(c) for some 
channels c. This would be an important strategy to deal with the cases in which r(c) = M for 
some c ∈ DT, and to allow (potentially) substantial space savings in the process of buffer 
assignment. Theorem 1.1 given next concerns this issue. 

Theorem 1.1 

Suppose that the distributed algorithm given by Algorithm Task_t for all t ∈ NT is deadlock-
free. Suppose in addition that GT contains no directed cycle on which every channel c is 
such that either b(c) < r(c) or r(c) = M. Then the distributed algorithm obtained by replacing 
each infinite-capacity channel c with a b(c)-capacity channel is deadlock-free. 

Proof: A necessary condition for a deadlock to arise is that a directed cycle exists in GT 
whose tasks are all suspended on an attempt to send messages on the channels on that 
cycle. By the hypotheses, however, every directed cycle in GT has at least one channel c for 
which b(c) = r(c) < M, so at least the tasks t that have such channels in Outt are never 
indefinitely suspended upon attempting to send messages on them. 

The converse of Theorem 1.1 is also often true, but not in general. Specifically, there may be 
cases in which r(c) = M for all the channels c of a directed cycle, and yet the resulting 



algorithm is deadlock-free, as M may be a true upper bound for c (albeit unknown). So 
setting b(c) = r(c) for this channel does not necessarily mean providing it with insufficient 
buffering space. 

As long as we comply with the sufficient condition given by Theorem 1.1, it is then possible 
to assign to some channels c fewer buffers than r(c) and still guarantee that the resulting 
distributed algorithm is deadlock-free if it was deadlock-free to begin with. In the remainder 
of this section, we discuss two criteria whereby these channels may be selected. Both 
criteria lead to intractable optimization problems (i.e., NP-hard problems), so heuristics need 
to be devised to approximate solutions to them (some are provided in the literature). 

The first criterion attempts to save as much buffering space as possible. It is called the 
space-optimal criterion, and is based on a choice of M such that 

 

where C+ is the set of channels for which a precise upper bound is not known. This criterion 
requires a subset of channels C ⊆ DT to be determined such that every directed cycle in GT 
has at least one channel in C, and such that 

 

is minimum over all such subsets (clearly, C and C+ are then disjoint, given the value of M, 
unless C+ contains the channels of an entire directed cycle from GT). Then the strategy is to 
set 

 

which ensures that at least one channel c from every directed cycle in GT is assigned b(c) = 
r(c) buffers (Figure 1.1). By Theorem 1.1, this strategy then produces a deadlock-free result 
if no directed cycle in GT has all of its channels in the set C+. That this strategy employs the 
minimum number of buffers comes from the optimal determination of the set C. 

The space-optimal approach to buffer assignment has the drawback that the concurrency in 
intertask communication may be too low, inasmuch as many channels in DT may be 
allocated zero buffers. Extreme situations can happen, as for example the assignment of 
zero buffers to all the channels of a long directed path in GT. A scenario might then happen 
in which all tasks in this path (except the last one) would be suspended to communicate with 
its successor on the path, and this would only take place for one pair of tasks at a time. 
When at least one channel c has insufficient buffers (i.e., b(c) < r(c)) or is such that r(c) = M, 
a measure of concurrency that attempts to capture the effect we just described is to take the 
minimum, over all directed paths in GT whose channels c all have b(c) < r(c) or r(c) = M, of 
the ratio 

 



where L is the number of channels on the path. Clearly, this measure can be no less than 
1/|NT| and no more than 1/2, as long as the assignment of buffers conforms to the 
hypotheses of Theorem 1.1. The value of 1/2, in particular, can only be achieved if no 
directed path with more than one channel exists comprising channels c such that b(c) < r(c) 
or r(c) = M only. 

Another criterion for buffer assignment to channels is then the concurrency-optimal criterion, 
which also seeks to save buffering space, but not to the point 

 
Figure 1.1: A graph GT is shown in part (a). In the graphs of parts (b) through (d), 
circular nodes are the nodes of GT, while square nodes represent buffers assigned to 
the corresponding channel in GT. If r(c) = 1 for all c ∈ {c1, c2, c3, c4}, then parts (b) 
through (d) represent three distinct buffer assignments, all of which deadlock-free. Part 
(b) shows the strategy of setting b(c) =r(c) for all c ∈{c1, c2,c3, c4}. Parts (c) and (d) 
represent, respectively, the results of the space-optimal and the concurrency-optimal 
strategies.  

that the concurrency as we defined might be compromised. This criterion looks for buffer 
assignments that yield a level of concurrency equal to 1/2, and for this reason does not allow 
any directed path with more than one channel to have all of its channels assigned insufficient 
buffers. This alone is, however, insufficient for the value of 1/2 to be attained, as for such it is 
also necessary that no directed path with more than one channel contain channels c with r(c) 
= M only. Like the space-optimal criterion, the concurrency-optimal criterion utilizes a value 
of M such that 

 

This criterion requires a subset of channels C ⊆ DT to be found such that no directed path 
with more than one channel exists in GT comprising channels from C only, and such that 
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is maximum over all such subsets (clearly, C+ ⊆ C, given the value of M, unless C+ contains 
the channels of an entire directed path from GT with more than one channel). The strategy is 
then to set 

 

thereby ensuring that at least one channel c in every directed path with more than one 
channel in GT is assigned b(c) = r(c) buffers, and that, as a consequence, at least one 
channel c from every directed cycle in GT is assigned b(c) = r(c) buffers as well (Figure 1.1). 
By Theorem 1.1, this strategy then produces a deadlock-free result if no directed cycle in GT 
has all of its channels in the set C+. The strategy also provides concurrency equal to 1/2 by 
our definition, as long as C+ does not contain all the channels of any directed path in GT with 
more than one channel. Given this constraint that optimal concurrency must be achieved (if 
possible), then the strategy employs the minimum number of buffers, as the set C is 
optimally determined. 

 
1.6 Processor allocation 
When we discussed the routing of messages among processors in Section 1.3 we saw that 
addressing a message at the task level requires knowledge by the processor running the 
task originating the message of the processor on which the destination task runs. This 
information is provided by what is known as an allocation function, which is a mapping of the 
form 

 

where NT and NP are, as we recall, the node sets of graphs GT (introduced in Section 1.4) 
and GP (introduced in Section 1.3), respectively. The function A is such that A(t) = p if and 
only if task t runs on processor p. 

For many of the systems reviewed in Section 1.1 the allocation function is given naturally by 
how the various tasks in NT are distributed throughout the system, as for example computer 
networks and networks of workstations. However, for multiprocessors and also for networks 
of workstations when viewed as parallel processing systems, the function A has to be 
determined during what is called the processor allocation step of program design. In these 
cases, GT should be viewed not simply as the task graph introduced earlier, but rather as an 
enlargement of that graph to accommodate the relay tasks discussed in Section 1.5 (or any 
other tasks with similar functions—cf. Exercise 4). 

The determination of the allocation function A is based on a series of attributes associated 
with both GT and GP. Among the attributes associated with GP is its routing function, which, 
as we remarked in section 1.3, can be described by the mapping 

 



For all p,q ∈ NP,R(p,q) is the set of links on the route from processor p to processor q, 

possibly distinct from R(q,p) and such that R(p, p) = . Additional attributes of GP are the 
relative processor speed (in instructions per unit time) of p ∈ NP, sp, and the relative link 
capacity (in bits per unit time) of (p,q) ∈ EP, c(p,q) (the same in both directions). These 
numbers are such that the ratio sp/sq indicates how faster processor p is than processor q; 
similarly for the communication links. 

The attributes of graph GT are the following. Each task t is represented by a relative 
processing demand (in number of instructions) ψt, while each channel (t → u) is represented 
by a relative communication demand (in number of bits) from task t to task u, ζ(t→u), 
possibly different from ζ(u→t)The ratio ψt/ψu is again indicative of how much more 
processing task t requires than task u, the same holding for the communication 
requirements. 

The process of processor allocation is generally viewed as one of two main possibilities. It 
may be static, if the allocation function A is determined prior to the beginning of the 
computation and kept unchanged for its entire duration, or it may be dynamic, if A is allowed 
to change during the course of the computation. The former approach is suitable to cases in 
which both GP and GT, as well as their attributes, vary negligibly with time. The dynamic 
approach, on the other hand, is more appropriate to cases in which either the graphs or their 
attributes are time-varying, and then provides opportunities for the allocation function to be 
revised in the light of such changes. What we discuss in Section 1.6.1 is the static allocation 
of processors to tasks. The dynamic case is usually much more difficult, as it requires tasks 
to be migrated among processors, thereby interfering with the ongoing computation. 
Successful results of such dynamic approaches are for this reason scarce, except for some 
attempts that can in fact be regarded as a periodic repetition of the calculations for static 
processor allocation, whose resulting allocation functions are then kept unchanged for the 
duration of the period. We do nevertheless address the question of task migration in Section 
1.6.2 in the context of ensuring the FIFO delivery of messages among tasks under such 
circumstances. 

1.6.1 The static approach 
The quality of an allocation function A is normally measured by a function that expresses the 
time for completion of the entire computation, or some function of this time. This criterion is 
not accepted as a consensus, but it seems to be consonant with the overall goal of parallel 
processing systems, namely to compute faster. So obtaining an allocation function by the 
minimization of such a function is what one should seek. The function we utilize in this book 
to evaluate the efficacy of an allocation function A is the function H(A) given by 

 

where HP(A) gives the time spent with computation when A is followed, HC(A) gives the time 
spent with communication when A is followed, and α such that 0 < α < 1 regulates the 
relative importance of HP(A) and HC(A). This parameter α is crucial, for example, in 
conveying to the processor allocation process some information on how efficient the routing 
mechanisms for interprocessor communication are (cf. Section 1.3). 

The two components of H(A) are given respectively by 



 

and 

 

This definition of HP(A) has two types of components. One of them, ψt/sp, accounts for the 
time to execute task t on processor p. The other component, ψtψu/sp, is a function of the 
additional time incurred by processor p when executing both tasks t and u (various other 
functions can be used here, as long as nonnegative). If an allocation function A is sought by 
simply minimizing HP(A) then the first component will tend to lead to an allocation of the 
fastest processors to run all tasks, while the second component will lead to a dispersion of 
the tasks among the processors. The definition of HC(A), in turn, embodies components of 
the type ζ(t→u)/c(p,q), which reflects the time spent in communication from task t to task u on 
link (p,q) ∈ R(A(t), A(u)). Contrasting with HP(A), if an allocation function A is sought by 
simply minimizing HC(A), then tasks will tend to be concentrated on a few processors. The 
minimization of the overall H(A) is then an attempt to reconcile conflicting goals, as each of 
its two components tend to favor different aspects of the final allocation function. 

As an example, consider the two-processor system comprising processors p and q. 
Consider also the two tasks t and u. If the allocation function A1 assigns p to run t and q to 
run u, then we have. assuming α = 1/2, 

 

An allocation function A2 assigning p to run both t and u yields 

 

Clearly, the choice between A1 and A2 depends on how the system's parameters relate to 
one another. For example, if sp = sq, then A1 is preferable if the additional cost of processing 
the two tasks on p is higher than the cost of communication between them over the link 
(p,q), that is, if 

 

Finding an allocation function A that minimizes H(A) is a very difficult problem, NP-hard in 
fact, as the problems we encountered in Section 1.5. Given this inherent difficulty, all that is 
left is to resort to heuristics that allow a "satisfactory" allocation function to be found, that is, 
an allocation function that can be found reasonably fast and that does not lead to a poor 
performance of the program. The reader should refer to more specialized literature for 
various such heuristics. 
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1.6.2 Task migration 
As we remarked earlier in Section 1.6, the need to migrate tasks from one processor to 
another arises when a dynamic processor allocation scheme is adopted. When tasks 
migrate, the allocation funtion A has to be updated throughout all those processors running 
tasks that may send messages, according to the structure of GT, to the migrating task. While 
performing such an update may be achieved fairly simply (cf. the algorithms given in Section 
4.1), things become more complicated when we add the requirement that messages 
continue to be delivered in the FIFO order. We are in this section motivated not only by the 
importance of the FIFO property in some situations, as we mentioned earlier, but also 
because solving this problem provides an opportunity to introduce a nontrivial, yet simple, 
distributed algorithm at this stage in the book. Before we proceed, it is very important to 
make the following observation right away. The distributed algorithm we describe in this 
section is not described by the graph GT, but rather uses that graph as some sort of a "data 
structure" to work on. The graph on which the computation actually takes place is a task 
graph having exactly one task for each processor and two unidirectional communication 
channels (one in each direction) for every two processors in the system. It is then a complete 
undirected graph or node set NP, and for this reason we describe the algorithm as if it were 
executed by the processors themselves. Another important observation, now in connection 
with GP, is that its links are assumed to deliver interprocessor messages in the FIFO order 
(otherwise it would be considerably harder to attempt this at the task level). The reader 
should notice that considering a complete undirected graph is a means of not having to deal 
with the routing function associated with GP explicitly, which would be necessary if we 
described the algorithm for GP. 

The approach we take is based on the following observation. Suppose for a moment and for 
simplicity that tasks are not allowed to migrate to processors where they have already been. 
and consider two tasks u and v running respectively on processors p and q. If v migrates to 
another processor, say q′, and p keeps sending to processor q all of task u's messages 
destined to task v, and in addition processor q forwards to processor q′ whatever messages 
it receives destined to v, then the desired FIFO property is maintained. Likewise, if u 
migrates to another processor, say p′, and every message sent by u is routed through p first, 
then the FIFO property is maintained as well. If later these tasks migrate to yet other 
processors, then the same forwarding scheme still suffices to maintain the FIFO order. 
Clearly, this scheme cannot be expected to support any efficient computation, as messages 
tend to follow ever longer paths before eventual delivery. However, this observation serves 
the purpose of highlighting the presence of a line of processors that initially contains two 
processors (p and q) and increases with the addition of other processors (p′ and q′ being the 
first) as u and v migrate. What the algorithm we are about to describe does, while allowing 
tasks to migrate even to processors where they ran previously, is to shorten this line 
whenever a task migrates out of a processor by removing that processor from the line. We 
call such a line a pipe to emphasize the FIFO order followed by messages sent along it, and 
for tasks u and v denote it by pipe(u,v). 

This pipe is a sequence of processors sharing the property of running (or having run) at least 
one of u and v. In addition, u runs on the first processor of the pipe, and v on the last 
processor. When u or v (or both) migrates to another processor, thereby stretching the pipe, 
the algorithm we describe in the sequel removes from the pipe the processor (or processors) 
where the task (or tasks) that migrated ran. Adjacent processors in a pipe are not 
necessarily connected by a communication link in GP, and in the beginning of the 
computation the pipe contains at most two processors. 



A processor p maintains, for every task u that runs on it and every other task v such that (u 
→ v) ∈ Outu, a variable pipep(u, v) to store its view of pipe(u, v). Initialization of this variable 
must be consonant with the initial allocation function. In addition, for every task v, at p the 
value of A(v) is only an indication of the processor on which task v is believed to run, and is 
therefore denoted more consistently by Ap(v). It is to Ap(v) that messages sent to v by other 
tasks running on p get sent. Messages destined to v that arrive at p after v has migrated out 
of p are also sent to Ap(v). A noteworthy relationship at p is the following. If v ∈ Outu then 
pipep(u, v) = <p,…q> if and only if Ap(v) = q. Messages sent to Ap(v) are then actually being 
sent on pipe(u, v). 

First we informally describe the algorithm for the single pipe pipe(u,v), letting p be the 
processor on which u runs (i.e., the first processor in the pipe) and q the processor on which 
v runs (i.e., the last processor in the pipe). The essential idea of the algorithm is the 
following. When u migrates from p to another processor p′, processor p sends a message 
flush(u,v,p′) along pipep(u, v). This message is aimed at informing processor q (or processor 
q′, to which task v may have already migrated) that u now runs on p′, and also "pushes" 
every message still in transit from u to v along the pipe (it flushes the pipe). When this 
message arrives at q (or q′) the pipe is empty and Aq(u) (or Aq′(u)) may then be updated. A 
message flushed(u, v, q) (or flushed(u,v, q′)) is then sent directly to p′, which then updates 
Ap'(v) and its view of the pipe by altering the contents of pipep′(u, v). Throughout the entire 
process, task u is suspended, and as such does not compute or migrate. 

 
Figure 1.2: When task u migrates from processor p to processor p′ and v from q to q′, a 
flush(u, v, p′) message and a flush-request(u, v) message are sent concurrently, 
respectively by p to q and by q to p. The flush message gets forwarded by q to q′, and 
eventually causes q′ to send p′ a flushed(u, v, q′) message.  

This algorithm may also be initiated by q upon the migration of v to q′, and then v must also 
be suspended. In this case, a message flush_request(u, v) is sent by q to p, which then 
engages in the flushing procedure we described after suspending task u. There is also the 
possibility that both p and q initiate concurrently. This happens when u and v both migrate 
(to p′ and q′, respectively) concurrently, i.e., before news of the other task's migration is 
received. The procedures are exactly the same, with only the need to ensure that flush(u, v, 
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p′) is not sent again upon receipt of a flush_request(u, v), as it must already have been sent 
(Figure 1.2). 

When a task u migrates from p to p′, the procedure we just described is executed 
concurrently for every pipe(u, v) such that (u → v) ∈ Outu and every pipe(v, u) such that (v → 
u) ∈ Inu. Task u may only resume its execution at p′ (and then possibly migrate once again) 
after all the pipes pipe(u, v) such that (u → v) ∈ Outu and pipe(v, u) such that (v → u) ∈ Inu 
have been flushed, and is then said to be active (it is inactive otherwise, and may not 
migrate). Task u also becomes inactive upon the receipt of a flush_request(u, v) when 
running on p. In this case, only after pipep(u, v) is updated can u become once again active. 

Later in the book we return to this algorithm, both to provide a more formal description of it 
(in Section 2.1), and to describe its correctness and complexity properties (in Section 2.1 
and Section 3.2.1). 

 
1.7 Remarks on program development 
The material presented in Sections 1.4 through 1.6 touches various of the fundamental 
issues involved in the design of message-passing programs, especially in the context of 
multiprocessors, where the issues of allocating buffers to communication channels and 
processors to tasks are most relevant. Of course not always does the programmer have full 
access to or control of such issues, which are sometimes too tightly connected to built-in 
characteristics of the operating system or the programming language, but some level of 
awareness of what is really happening can only be beneficial. 

Even when full control is possible, the directions provided in the previous two sections 
should not be taken as much more than that. The problems involved in both sections are, as 
we mentioned, probably intractable from the standpoint of computational complexity, so that 
the optima that they require are not really achievable. Also the formulations of those 
problems can be in many cases troublesome, because they involve parameters whose 
determination is far from trivial, like for example the upper bound M used in Section 1.5 to 
indicate our inability in determining tighter values, or the α used in Section 1.6 to weigh the 
relative importance of computation versus communication in the function H. This function 
cannot be trusted too blindly either. because there is no assurance that, even if the 
allocation that optimizes it could be found efficiently, no other allocation would in practice 
provide better results albeit its higher value for H. 

Imprecise and troublesome though they may be, the guidelines given in Sections 1.5 and 1.6 
do nevertheless provide a conceptual framework within which one may work given the 
constraints of the practical situation at hand. In addition, they in a way bridge the abstract 
description of a distributed algorithm we gave in Section 1.4 to what tends to occur in 
practice. 

 
1.8 Exercises 
1. For d ≥ 0, a d-dimensional hypercube is an undirected graph with 2d nodes in which every 
node has exactly d neighbors. If nodes are numbered from 0 to 2d − 1, then two nodes are 
neighbors if and only if the binary representations of their numbers differ by exactly one bit. 
One routing function that can be used when GP is a hypercube is based on comparing the 
number of a message's destination processor, say q, with the number of the processor 



where the message is, say r. The message is forwarded to the neighbor of r whose number 
differs from that of r in the least-significant bit at which the numbers of q and r differ. Show 
that this routing function is quasi-acyclic.  
2. In the context of Exercise 1, consider the use of a structured buffer pool to prevent 
deadlocks when flow control is done by the store-and-forward mechanism. Give details of 
how the pool is to be employed for deadlock prevention. How many buffer classes are 
required?  
3. In the context of Exercise 1, explain in detail why the reservation of links when doing flow 
control by circuit switching is deadlock-free.  
4. Describe how to obtain channels with positive capacity from zero-capacity channels, 
under the constraint the exactly two additional tasks are to be employed per channel of GT.  
1. 

  

For d ≥ 0, a d-dimensional hypercube is an undirected graph with 2d nodes in which every 
node has exactly d neighbors. If nodes are numbered from 0 to 2d − 1, then two nodes are 
neighbors if and only if the binary representations of their numbers differ by exactly one bit. 
One routing function that can be used when GP is a hypercube is based on comparing the 
number of a message's destination processor, say q, with the number of the processor 
where the message is, say r. The message is forwarded to the neighbor of r whose number 
differs from that of r in the least-significant bit at which the numbers of q and r differ. Show 
that this routing function is quasi-acyclic. 

2. 
  

In the context of Exercise 1, consider the use of a structured buffer pool to prevent 
deadlocks when flow control is done by the store-and-forward mechanism. Give details of 
how the pool is to be employed for deadlock prevention. How many buffer classes are 
required? 

3. 
  

In the context of Exercise 1, explain in detail why the reservation of links when doing flow 
control by circuit switching is deadlock-free. 

4. 
  

Describe how to obtain channels with positive capacity from zero-capacity channels, under 
the constraint the exactly two additional tasks are to be employed per channel of GT. 
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Hassoun, Horwat, Kaplan, Song, Totty, and Wills (1987), Ramachandran, Solomon, and 
Vernon (1987), Barbosa and França (1988), and Dally (1990). The material in Barbosa and 
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messages (von Eicken, Culler, Goldstein, and Schauser, 1992; Tucker and Mainwaring, 
1994). 
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the store-and-forward case and Gerla and Kleinrock (1982) provide a survey of early 
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Kutten, and Peleg (1994) return to the subject of deadlock prevention in the store-and-
forward case. 

The template given by Algorithm Task_t of Section 1.4 originates from Barbosa (1990a), and 
the concept of a guarded command on which it is based dates back to Dijkstra (1975). The 
reader who wants a deeper understanding of how communication channels of zero and 
nonzero capacities relate to each other may wish to check Barbosa (1990b), which contains 
a mathematical treatment of concurrency-related concepts associated with such capacities. 
What this work does is to start at the intuitive notion that greater channel capacity leads to 
greater concurrency (present, for example, in Gentleman (1981)), and then employ (rather 
involved) combinatorial concepts related to the coloring of graph edges (Edmonds, 1965; 
Fulkerson, 1972; Fiorini and Wilson, 1977; Stahl, 1979) to argue that such a notion may not 
be correct. The Communicating Sequential Processes (CSP) introduced by Hoare (1978) 
constitute an example of notation based on zero-capacity communication. 

Section 1.5 is based on Barbosa (1990a), where in addition a heuristic is presented to 
support the concurrency-optimal criterion for buffer assignment to channels. This heuristic 
employs an algorithm to find maximum matchings in graphs (Syslo, Deo, and Kowalik, 
1983). 

The reader has many options to complement the material of Section 1.6. References on the 
intractability of processor allocation (in the sense of NP-hardness, as in Karp (1972) and 
Garey and Johnson (1979)) are Krumme, Venkataraman, and Cybenko (1986) and Ali and 
El-Rewini (1994). For the static approach, some references are Ma, Lee, and Tsuchiya 
(1982), Shen and Tsai (1985), Sinclair (1987), Barbosa and Huang (1988)—on which 
Section 1.6.1 is based, Ali and El-Rewini (1993), and Selvakumar and Siva Ram Murthy 
(1994). The material in Barbosa and Huang (1988) includes heuristics to overcome 
intractability that are based on neural networks (as is the work of Fox and Furmanski (1988)) 
and on the A* algorithm for heuristic search (Nilsson, 1980; Pearl, 1984). A parallel variation 
of the latter algorithm (Freitas and Barbosa, 1991) can also be employed. Fox, Kolawa, and 
Williams (1987) and Nicol and Reynolds (1990) offer treatments of the dynamic type. 



References on task migration include Theimer, Lantz, and Cheriton (1985), Ousterhout, 
Cherenson, Douglis, Nelson, and Welch (1988), Ravi and Jefferson (1988), Eskicioˇlu and 
Cabrera (1991), and Barbosa and Porto (1995)—which is the basis for our treatment in 
Section 1.6.2. 

Details on the material discussed in Section 1.7 can be found in Hellmuth (1991), or in the 
more compact accounts by Barbosa, Drummond, and Hellmuth (1991a; 1991b; 1994). 

There are many books covering subjects quite akin to our subject in this book. These are 
books on concurrent programming, operating systems, parallel programming, and distributed 
algorithms. Some examples are Ben-Ari (1982), Hoare (1984), Maekawa, Oldehoeft, and 
Oldehoeft (1987), Perrott (1987), Burns (1988), Chandy and Misra (1988), Fox, Johnson, 
Lyzenga, Otto, Salmon, and Walker (1988), Raynal (1988), Almasi and Gottlieb (1989), 
Andrews (1991), Tanenbaum (1992), Fox, Williams, and Messina (1994), Silberschatz, 
Peterson, and Galvin (1994), and Tel (1994b). There are also surveys (Andrews and 
Schneider, 1983), sometimes specifically geared toward a particular class of applications 
(Bertsekas and Tsitsiklis, 1991), and class notes (Lynch and Goldman, 1989). 



 

Chapter 2: Intrinsic Constraints 
Overview 
This chapter, like Chapter 1, still has the flavor of a chapter on preliminaries, although 
various distributed algorithms are presented and analyzed in its sections. The reason why it 
is still in a way a chapter on preliminary concepts is that it deals mostly with constraints on 
the computations that may be carried out over the model introduced in Section 1.4 for 
distributed computations by point-to-point message passing. 

Initially, in Section 2.1, we return to the graph-theoretic model of Section 1.4 to specify two of 
the variants that it admits when we consider its timing characteristics. These are the fully 
asynchronous and fully synchronous variants that will accompany us throughout the book. 
For each of the two, Section 2.1 contains an algorithm template, which again is used through 
the remaining chapters. In addition to these templates, in Section 2.1 we return to the 
problem of ensuring the FIFO delivery of intertask messages when tasks migrate discussed 
in Section 1.6.2. The algorithm sketched in that section to solve the problem is presented in 
full in Section 2.1 to illustrate the notational conventions adopted for the book. In addition, 
once the algorithm is known in detail, some of its properties, including some complexity-
related ones, are discussed. 

Sections 2.2. and 2.3 are the sections in which some of our model's intrinsic constraints are 
discussed. The discussion in Section 2.2 is centered on the issue of anonymous systems, 
and in this context several impossibility results are presented.Along with these impossibility 
results, distributed algorithms for the computations that can be carried out are given and to 
some extent analyzed. 

In Section 2.3 we present a somewhat informal discussion of how various notions of 
knowledge translate into a distributed algorithm setting, and discuss some impossibility 
results as well. Our approach in this section is far less formal and complete than in the rest 
of the book because the required background for such a complete treatment is normally way 
outside what is expected of this book's intended audience. Nevertheless, the treatment we 
offer is intended to build up a certain amount of intuition, and at times in the remaining 
chapters we return to the issues considered in Section 2.3.  

Exercises and bibliographic notes follow respectively in Sections 2.4 and 2.5.  

 
2.1 Full asynchronism and full synchronism 
We start by recalling the graph-theoretic model introduced in Section 1.4, according to which 
a distributed algorithm is represented by the connected directed graph GT = (NT, DT). In this 
graph, NT is the set of tasks and DT is the set of unidirectional communication channels. 
Tasks in NT are message-driven entities whose behavior is generically depicted by Algorithm 
Task_t (cf. Section 1.4), and the channels in DT are assumed to have infinite capacity, i.e., 
no task is ever suspended upon attempting to send a message on a channel (reconciling this 
assumption with the reality of practical situations was our subject in Section 1.5). Channels 
in DT are not generally assumed to be FIFO channels unless explicitly stated. 



For the remainder of the book, we simplify our notation for this model in the following 
manner. The graph GT = (NT, DT) is henceforth denoted simply by G = (N,D), with n = |N| and 
m = |D|. For 1 ≤ i, j ≤ n, ni denotes a member of N, referred to simply as a node, and if j ≠ i 
we let (ni → nj) denote a member of D, referred to simply as a directed edge (or an edge, if 
confusion may not arise). The set of edges directed away from ni is denoted by Outi � D, 
and the set of edges directed towards ni is denoted by Ini � D. Clearly, (ni → nj) � Outi if and 
only if (ni → nj) � Inj. The nodes ni and nj are said to be neighbors of each other if and only if 
either (ni → j) � D or (nj → nj) � D. The set of ni's neighbors is denoted by Neigi, and 
contains two partitions, I_Neigi and O_Neigi, whose members are respectively ni's neighbors 
nj such that (nj → ni) � D and nj such that (ni → nj) � D.  

Often G is such that (ni → nj) � D if and only if (nj → ni) � D, and in this case viewing these 
two directed edges as the single undirected edge (ni, nj) is more convenient. In this 
undirected case, G is denoted by G = (N, E), and then m = |E|. Members of E are referred to 
simply as edges. In the undirected case, the set of edges incident to ni is denoted by Inci � 
E. Two nodes ni and nj are neighbors if and only if (ni, nj) � E. The set of ni's neighbors 
continues to be denoted by Neigi. 

Our main concern in this section is to investigate the nature of the computations carried out 
by G's nodes with respect to their timing characteristics. This investigation will enable us to 
complete the model of computation given by G with the addition of its timing properties. 

The first model we introduce is the fully asynchronous (or simply asynchronous) model, 
which is characterized by the following two properties. 
� Each node is driven by its own, local, independent time basis, referred to as its local 

clock.  
� The delay that a message suffers to be delivered between neighbors is finite but 

unpredictable. 

The complete asynchronism assumed in this model makes it very realistic from the 
standpoint of somehow reflecting some of the characteristics of the systems discussed in 
Section 1.1. It is this same asynchronism, however, that accounts for most of the difficulties 
encountered during the design of distributed algorithms under the asynchronous model. For 
this reason, frequently a far less realistic model is used, one in which G's timing 
characteristics are pushed to the opposing extreme of complete synchronism. We return to 
this other model later in this section. 

One important fact to notice is that the notation used to describe a node's computation in 
Algorithm Task_t (cf. Section 1.4)is quite well suited to the assumptions of the asynchronous 
model, because in that algorithm, except possibly initially, computation may only take place 
at the reception of messages, which are in turn accepted nondeterministically when there is 
more than one message to choose from. In addition, no explicit use of any timing information 
is made in Algorithm Task_t (although the use of timing information drawn from the node's 
local clock would be completely legitimate and in accordance with the assumptions of the 
model). 

According to Algorithm Task_t, the computation of a node in the asynchronous model can be 
described by providing the actions to be taken initially (if that node is to start its computation 
and send messages spontaneously, as opposed to doing it in the wake of the reception of a 
message) and the actions to be taken upon receiving messages when certain Boolean 
conditions hold. Such a description is given by Algorithm A_Template, which is a template 
for all the algorithms studied in this book under the asynchronous model, henceforth referred 
to as asynchronous algorithms. Algorithm A_Template describes the computation carried out 



by ni � N. In this algorithm, and henceforth, we let N0 � N denote the nonempty set of nodes 
that may send messages spontaneously. The prefix A_ in the algorithm's denomination is 
meant to indicate that it is asynchronous, and is used in the names of all the asynchronous 
algorithms in the book. 

Algorithm A_Template is given for the case in which G is a directed graph. For the 
undirected case, all that needs to be done to the algorithm is to replace all occurrences of 
both Ini and Outi with Inci.  

Algorithm A_Template:  
 

        Variables: 
            Variables used by ni, and their initial values, are 
listed here. 

 
 

Listing 2.1  
 

        Input: 
            msgi = nil. 
        Action if ni � N0:                                           
            Do some computation; 

            Send one message on each edge of a (possibly empty) 
subset of 

            Outi. 
 

 

Listing 2.2  
 

        Input: 
            msgi such that origini(msgi) = ck �Ini with 1 ≤ k ≤ | 
Ini|. 

        Action when Bk: 
            Do some computation; 

            Send one message on each edge of a (possibly empty) 
subset of  

            Outi. 
 

 

Before we proceed to an example of how a distributed algorithm can be expressed 
according to this template, there are some important observations to make in connection 
with Algorithm A_Template. The first observation is that the algorithm is given by listing the 
variables it employs (along with their initial values) and then a series of input/action pairs. 
Each of these pairs, in contrast with Algorithm Task_t, is given for a specific message type, 



and may then correspond to more than one guarded command in Algorithm Task_t of 
Section 1.4, with the input corresponding to the message reception in the guard and the 
action corresponding to the command part, to be executed when the Boolean condition 
expressed in the guard is true. Conversely, each guarded command in Algorithm Task_t 
may also correspond to more than one input/action pair in Algorithm A_Template. In 
addition, in order to preserve the functioning of Algorithm Task_t, namely that a new guarded 
command is only considered for execution in the next iteration, therefore after the command 
in the currently selected guarded command has been executed to completion, each action in 
Algorithm A_Template is assumed to be an atomic action. An atomic action is an action that 
is allowed to be carried out to completion before any interrupt. All actions are numbered to 
facilitate the discussion of the algorithm's properties. 

Secondly, we make the observation that the message associated with an input, denoted by 
msgi, is if ni � N0 treated as if msgi = nil, since in such cases no message really exists to 
trigger ni's action, as in (2.1). When a message does exist, as in (2.2), we assume that its 
origin, in the form of the edge on which it was received, is known to ni. Such an edge is 
denoted by origini(msgi) � Ini. In many cases, knowing the edge origini(msgi) can be 
regarded as equivalent to knowing nj � I-Neigi for origini(msgi) = (nj → ni) (that is, nj is the 
node from which msgi originated). Similarly, sending a message on an edge in Outi is in 
many cases equivalent to sending a message to nj � O_Neigi if that edge is (ni → nj). 
However, we refrain from stating these as general assumptions because they do not hold in 
the case of anonymous systems, treated in Section 2.2. When they do hold and G is an 
undirected graph, then all occurrences of I_Neigi and of O_Neigi in the modified Algorithm 
A_Template must be replaced with occurrences of Neigi. 

As a final observation, we recall that, as in the case of Algorithm Task_t, whenever in 
Algorithm A_Template ni sends messages on a subset of Outi containing more than one 
edge, it is assumed that all such messages may be sent in parallel. 

We now turn once again to the material introduced in Section 1.6.2, namely a distributed 
algorithm to ensure the FIFO order of message delivery among tasks that migrate from 
processor to processor. As we mentioned in that section, this is an algorithm described on a 
complete undirected graph that has a node for every processor. So for the discussion of this 
algorithm G is the undirected graph G = (N, E). We also mentioned in Section 1.6.2 that the 
directed graph whose nodes represent the migrating tasks and whose edges represent 
communication channels is in this algorithm used as a data structure. While treating this 
problem, we then let this latter graph be denoted, as in Section 1.6.2, by GT = (NT, DT), along 
with the exact same notation used in that section with respect to GT. Care should be taken to 
avoid mistaking this graph for the directed version of G introduced at the beginning of this 
section. 

Before introducing the additional notation that we need, let us recall some of the notation 
introduced in Section 1.6.2. Let A be the initial allocation function. For a node ni and every 
task u such that A(u) = ni, a variable pipei(u, v) for every task v such that (u → v) � Outu 
indicates ni's view of pipe(u, v). Initially, pipei(u, v) = �ni, A(v)�. In addition, for every task v a 
variable Ai(v) is used by ni to indicate the node where task v is believed to run. This variable 
is initialized such that Ai(v) = A(v). Messages arriving at ni destined to v are assumed to be 
sent to Ai(v) if Ai(v) ≠ ni, or to be kept in a FIFO queue, called queuev, otherwise. 

Variables employed in connection with task u are the following. The Boolean variable activeu 
(initially set to true) is used to indicate whether task u is active. Two counters, pending_inu 
and pending_outu, are used to register the number of pipes that need to be flushed before u 
can once again become active. The former counter refers to pipes pipe(v, u) such that (v → 



u) � Inu and the latter to pipes pipe(u, v) such that (u → v) � Outu. Initially these counters 
have value zero. For every v such that (v → u) � Inu, the Boolean variable pending_inu(v) 
(initially set to false) indicates whether pipe(v, u) is one of the pipes in need of flushing for u 
to become active. Constants and variables carrying the subscript u in their names may be 
thought of as being part of task u's "activation record", and do as such migrate along with u 
whenever it migrates. 

Algorithm A_FIFO, given next for node ni, is an asynchronous algorithm to ensure the FIFO 
order of message delivery among migrating tasks. When listing the variables for this 
algorithm, only those carrying the subscript i are presented. The others, which refer to tasks, 
are omitted from the description. This same practice of only listing variables that refer to G is 
adopted everywhere in the book. 

Algorithm A_FIFO:  
 

       Variables: 
            pipei(u, v) = �ni, A(v)� for all (u → v) � DT such that 
A(u) = ni; 

            Ai(v) for all v � NT. 
 

 

Listing 2.3  
 

       Input: 
           msgi = nil. 
       Action when activeu and a decision is made to migrate u to nj: 
           activeu � false; 
           for all (u → v) � Outu do 
               begin 
                  Send flush(u, v, nj) to Ai(v); 

                  pending_outu� pending_outu + 1 

               end; 
           for all (v → u) � Inu do 
               begin 
                  Send flush_request (v,u) to Ai(v); 

                  pending_inu � pending_inu + 1; 

                  pending_inu(v)� true 
               end; 
           Ai(u) � nj; 

           Send u to nj. 
 

 



Listing 2.4  
 

       Input: 
           msgi = u. 

       Action: 
           Ai(u) � ni 

 
 

Listing 2.5  
 

       Input: 
           msgi = flush(v, u, nj). 

       Action: 
           if Ai(u) = ni then 
               begin 
                   Ai(v) � nj; 

                   Send flushed(v,u,ni) to nj; 

                   if pending_inu(v)then 
                        begin 
                            pending_inu(v) � false; 
                            pending_inu � pending_inu  −1; 

                            activeu 

                               � (pending_inu = 0) and (pending_outu 
= 0) 

                        end 
               end 
           else 
               Send flush(v,u,nj) to Ai(u). 

 
 

Listing 2.6  
 

       Input: 
           msgi = flush_request(u,v). 

       Action: 
           if Ai(u) = ni then 
               begin 
                   activeu � false; 
                   Send flush (u,v,ni) to Ai(v); 



                   pending_outu � pending_outu + 1 

               end. 
 

 

Listing 2.7  
 

       Input: 
           msgi = flushed(u, v,nj). 

       Action when Ai(u) = ni: 
           Ai(v) � nj; 

           pipei(u,v) � �ni, nj�; 
           pending_outu � pending_outu −1; 

           activeu � (pending_inu = 0) and (pending_outu = 0). 
 

 

Algorithm A_FIFO expresses, following the conventions established with Algorithm 
A_Template, the procedure described informally in Section 1.6.2. One important observation 
about Algorithm A_FIFO is that the set N0 of potential spontaneous senders of messages 
now comprises the nodes that concurrently decide to send active tasks to run elsewhere (cf. 
(2.3)), in the sense described in Section 1.6.2, and may then be such that N0 = N. In fact, the 
way to regard spontaneous initiations in Algorithm A_FIFO is to view every maximal set of 
nodes concurrently executing (2.3) as an N0 set for a new execution of the algorithm, 
provided every such execution operates on data structures and variables that persist (i.e., 
are not re-initialized) from one execution to another. 

For completeness, next we give some of Algorithm A_FIFO's properties related to its 
correctness and performance. 

Theorem 2.1. 
For any two tasks u and v such that(u → v) � Outu, messages sent by u to v are delivered in 
the FIFO order. 

Proof: Consider any scenario in which both u and v are active, and in this scenario let ni be 
the node on which u runs and nj the node on which v runs. There are three cases to be 
analyzed in connection with the possible migrations of u and v out of ni and nj, respectively. 

In the first case, u migrates to another node, say ni', while v does not concurrently migrate, 
that is, the flush(u,v,ni') sent by ni in (2.3) arrives at nj when Aj(v) = nj. A flushed(u,v, nj) is 
then by (2.5) sent to ni', and may upon receipt cause u to become active if it is no longer 
involved in the flushing of any pipe (pending_inu = 0 and pending_outu = 0), by (2.7). Also, 
pipei'(u,v) is in (2.7) set to �ni',nj�, and it is on this pipe that u will send all further messages 
to v once it becomes active. These messages will reach v later than all the messages sent 
previously to it by u when u still ran on ni, as by Gp's FIFO property all these messages 
reached nj and were added to queueu before nj, received the flush(u,v, ni'). 



In the second case, it is v that migrates to another node, say nj', while u does not 
concurrently migrate, meaning that the flush_request(u,v) sent by nj to nj in (2.3) arrives 
when Ai(u) = ni. What happens then is that, by (2.6), as pending_outu is incremented and u 
becomes inactive (if already it was not, as pending_outu might already be positive), a 
flush(u,v,ni) is sent to nj and, finding Aj(v) ≠ nj, by (2.5) gets forwarded by nj to nj'. Upon 
receipt of this message at nj', a flushed(u, v, nj') is sent to ni, also by (2.5). This is a chance 
for v to become active, so long as no further pipe flushings remain in course in which it is 
involved (pending_inv = 0 and pending_outv = 0 in (2.5)). The arrival of that message at ni 
causes pending_outv to be decremented in (2.7), and possibly u to become active if it is not 
any longer involved in the flushing of any other pipe (pending_inu = 0 and pending_outu = 0). 
In addition, pipei(u,v) is updated to �ni,nj'�. Because u remained inactive during the flushing 
of pipe(u,v), every message it sends to v at nj' when it becomes active will arrive at its 
destination later than all the messages it had sent previously to v at nj, as once again Gp's 
FIFO property implies that all these messages must have reached nj' and been added to 
queueu ahead of the flush(u,v,ni). 

The third case corresponds to the situation in which both u and v migrate concurrently, say 
respectively from ni to ni' and from nj to nj'. This concurrency implies that the flush(u,v,ni') sent 
in (2.3) by ni to nj' finds Aj(v) ≠ nj on its arrival (and is therefore forwarded to nj', by (2.5)), and 
likewise the flush_request(u, v) sent in (2.3) by nj to ni finds Ai(u) ≠ ni at its destination (which 
by (2.6) does nothing, as the flush(u,v,ni') it would send as a consequence is already on its 
way to nj or nj'). A flushed(u,v,nj') is sent by nj' to ni', where by (2.7) it causes the contents of 
pipei,(u,v) to be updated to �ni', nj'�. The conditions for u and v to become active are 
entirely analogous to the ones we discussed under the previous two cases. When u does 
finally become active, any messages it sends to v will arrive later than the messages it sent 
previously to v when it ran on ni and v on nj. This is so because, once again by Gp's FIFO 
property, such messages must have reached nj' and been added to queueu ahead of the 
flush(u,v,ni'). 

Let |pipe(u,v)| denote the number of nodes in pipe(u,v). Before we state Lemma 2.2, which 
establishes a property of this quantity, it is important to note that the number of nodes in 
pipe(u,v) is not to be mistaken for the number of nodes in ni's view of that pipe if ni is the 
node on which u runs. This view, which we have denoted by pipei(u,v), clearly contains at 
most two nodes at all times, by (2.7). The former, on the other hand, does not have a precise 
meaning in the framework of any node considered individually, but rather should be taken in 
the context of a consistent global state (cf. Section 3.1). 

Lemma 2.2. 
For any two tasks u and v such that(u → v)� Outu |pipe(u, v)| ≤ 4 always holds.  

Proof: It suffices to note that, if u runs on ni, |pipe(u, v)| is larger than the number of nodes in 
pipei(u,v) by at most two nodes, which happens when both u and v migrate concurrently, as 
neither of the two tasks is allowed to migrate again before the pipe between them is 
shortened. The lemma then follows easily from the fact that by (2.7) pipei(u,v) contains at 
most two nodes. 

To finalize our discussion of Algorithm A_FIFO in this section, we present its complexity. 
This quantity, which we still have not introduced and will only describe at length in Section 
3.2, yields, in the usual worst-case asymptotic sense, a distributed algorithm's "cost" in terms 
of the number of messages it employs and the time it requires for completion. The message 
complexity is expressed simply as the worst-case asymptotic number of messages that flow 



among neighbors during the computation ("worst case" here is the maximum over all 
variations in the structure of G, when applicable, and over all executions of the algorithm— 
cf. Section 3.2.1). The time-related measures of complexity are conceptually more complex, 
and an analysis of Algorithm A_FIFO in these terms is postponed until our thorough 
discussion of complexity measures in Section 3.2.  

For a nonempty set K � NT of tasks, we henceforth let mK denote the number of directed 
edges in DT of the form (u → v) or (v → u) for u � K and v � NT Clearly, 

 

Theorem 2.3. 
For the concurrent migration of a set K of tasks, Algorithm A_FIFO employs O(mK)messages  

Proof: When a task u � K migrates from node ni to node ni', ni sends |Inu| messages 
flush_request(v, u) for (v → u) � Inu and |Outu| messages flush(u,v,ni') for (u → v) � Outu. In 
addition, ni' receives |Inu| messages flush(v,u,nj) for (v → u) � Inu and some appropriate nj, 
and |Outu| messages flushed(u,v,nj) for (u → v) � Outu and some appropriate nj. Node ni' 
also sends |Inu| messages flushed(v,u,ni') for (v → u) � Inu. Only flush messages traverse 
pipes, which by Lemma 2.2 contain no more than four nodes or three edges each. Because 
no other messages involving u are sent or received even if other tasks v such that (v → u) � 
Inu or (u → v) � Outu are members of K as well, except for the receipt by ni of one innocuous 
message flush_request(u, v) for each v � K such that (u → v) � Outu, the concurrent 
migration of the tasks in K accounts for O(mK) messages. 

The message complexity asserted by Theorem 2.3 refers to messages sent on the edges of 
G, which is a complete graph. It would also be legitimate, in this context, to consider the 
number of interprocessor messages actually employed, that is, the number of messages that 
get sent on the edges of Gp. In the case of fixed, deterministic routing (cf. Section 1.3),a 
message on G corresponds to no more than n − 1 messages on Gp, so by Theorem 2.3 the 
number of interprocessor messages is O(nmK). However, recalling our remark in Section 1.3 
when we discussed the use of wormhole routing for flow control in multiprocessors, if the 
transport of interprocessor messages is efficient enough that Gp too can be regarded as a 
complete graph, then the message complexity given by Theorem 2.3 applies to 
interprocessor messages as well. 

In addition to the asynchronous model we have been discussing so far in this section, 
another model related to G's timing characteristics is the fully synchronous (or simply 
synchronous) model, for which the following two properties hold. 
� All nodes are driven by a global time basis, referred to as the global clock, which 

generates time intervals (or simply intervals) of fixed, nonzero duration. 
� The delay that a message suffers to be delivered between neighbors is nonzero and 

strictly less than the duration of an interval of the global clock. 

The intervals generated by the global clock do not really need to be of the same duration, so 
long as the assumption on the delays that messages suffer to be delivered between 
neighbors takes as bound the minimum of the different durations. 

The following is an outline of the functioning of a distributed algorithm, called a synchronous 
algorithm, designed under the assumptions of the synchronous model. The beginning of 



each interval of the global clock is indicated by a pulse. For s ≥ 0, pulse s indicates the 
beginning of interval s. At pulse s = 0, the nodes in N0 send messages on some (or possibly 
none) of the edges directed away from them. At pulse s > 0, all the messages sent at pulse s 
− 1 have by assumption arrived, and then the nodes in N may compute and send messages 
out. 

One assumption that we have tacitly made, but which should be very clearly spelled out, is 
that the computation carried out by nodes during an interval takes no time. Without this 
assumption, the duration of an interval would not be enough for both the local computations 
to be carried out and the messages to be delivered, because this delivery may take nearly 
as long as the entire duration of the interval to happen. Another equivalent way to approach 
this would have been to say that, for some d ≥ 0 strictly less than the duration of an interval, 
local computation takes no more than d time, while messages take strictly less than the 
duration of an interval minus d to be delivered. What we have done has been to take d = 0. 
We return to issues related to these in Section 3.2.2.  

The set N0 of nodes that may send messages at pulse s = 0 has in the synchronous case 
the same interpretation as a set of potential spontaneous senders of messages it had in the 
asynchronous case. However, in the synchronous case it does make sense for nodes to 
compute without receiving any messages, because what drives them is the global clock, not 
the reception of messages. So a synchronous algorithm does not in principle require any 

messages at all, and nodes can still go on computing even if N0 = Nevertheless, in order 
for the overall computation to have any meaning other than the parallelization of n 
completely indepenent sequential computations, at least one message has to be sent by at 
least one node, and for a message that gets sent at the earliest pulse that has to take place 
at pulse s = d for some d ≥ 0. What we have done has been once again to make the 
harmless assumption that d = 0, because whatever the nodes did prior to this pulse did not 
depend on the reception of messages and can therefore be regarded as having been done 
at this pulse as well. Then the set N0 has at least the sender of that message as member. 

Unrealistic though the synchronous model may seem, it may at times have great appeal in 
the design of distributed algorithms, not only because it frequently simplifies the design (cf. 
Section 4.3, for example), but also because there have been cases in which it led to 
asynchronous algorithms more efficient than the ones available (cf. Section 3.4). One of the 
chiefest advantages that comes from reasoning under the assumptions of the synchronous 
model is the following. If for some d > 0 a node ni does not receive any message during 
interval s for some s ≥ d, then surely no message that might "causally affect" the behavior of 
ni at pulse s + 1 was sent at pulses s − d,…, s by any node whose shortest distance to ni is 
at least d. The "causally affect" will be made much clearer in Section 3.1 (and before that 
used freely a few times), but for the moment it suffices to understand that, in the 
synchronous model, nodes may gain information by just waiting, i.e., counting pulses. When 
designing synchronous algorithms, this simple observation can be used for many purposes, 
including the detection of termination in many cases (cf., for example, Sections 2.2.2 and 
2.2.3).  

It should also be clear that every asynchronous algorithm is also in essence a synchronous 
algorithm. That is, if an algorithm is designed for the asynchronous model and it works 
correctly under the assumptions of that model, then it must also work correctly under the 
assumptions of the synchronous model for an appropriate choice of interval duration (to 
accommodate nodes' computations). This happens because the conditions under which 
communication takes place in the synchronous model is only one of the infinitely many 
possibilities that the asynchronous model allows. We treat this issue in more detail in Section 



3.3. The converse of this implication (i.e., that synchronous algorithms run correctly in the 
asynchronous model) can also be achieved with appropriate algorithm transformation, and is 
not at all immediate as its counterpart. This transformation lends support to our interest in 
the synchronous model and is our subject in Section 5.3, after we return to it in Sections 3.3 
and 3.4.  

Our last topic in this section is the presentation of Algorithm S_Template, which sets the 
conventions on how to describe a synchronous algorithm and is used as a template 
throughout the book. The prefix S_, similarly to the asynchronouscase discussed earlier, 
indicates that the algorithm is synchronous, and is used in all synchronous algorithms we 
present. For s ≥ 0 and ni � N, in Algorithm S_Template MSGi(s) is either the empty set (if s = 
0) or denotes the set of messages received by ni during interval s − 1 (if s > 0), which may 
be empty as well. The algorithm for ni is given next. As with Algorithm A_Template, 
Algorithm S_Template too is given for the case in which G is a directed graph. The 
undirected case is obtained by simply replacing Ini and Outi with Inci throughout the 
algorithm. 

Algorithm S_Template:  
 

       Variables: 
           Variables used by ni, and their initial values, are 
listed here. 

 
 

Listing 2.8  
 

       Input: 

           s = 0, MSGi(0) =  

       Action if ni � N0: 
           Do some computation; 

           Send one message on each edge of a (possibly empty) 
subset of 

           Outi. 
 

 

Listing 2.9  
 

       Input: 
           s > 0, MSGi(1),…, MSGi(s) such that origini(msg) = ck � Ini 

           with 1 ≤ k ≤ |Ini| for  MSGi(r). 

       Action: 
           Do some computation; 



           Send one message on each edge of a (possibly empty) 
subset of 

           Outi 
 

 

As in the case of Algorithm A_Template, Algorithm S_Template is presented as a set of 
input/action pairs whose actions are numbered for ease of reference ((2.8) corresponds to s 
= 0 and (2.9) to s > 0). The inputs now include information from the global clock (in the form 
of the nonnegative integer s), which is, as we have seen, what really drives the nodes. The 
atomicity of the actions comes as a consequence of the characteristics of the synchronous 
model, because no node performs more than one action per interval of the global clock. In 
fact, it is simple to see that every node performs exactly one action per interval of the global 
clock, because actions are now unconditional, that is, in describing Algorithm S_Template 
we have done away with the Boolean conditions that Algorithm A_Template inherited from 
the guard's of Algorithm Task_t of Section 1.4. The reason why we could do this is that such 
conditions are in the synchronous case evaluated only at the occurrence of pulses, and this 
can be treated inside the action itself (through the use of if's, as opposed to the use of 
when's in the asynchronous case). 

Another important observation regarding Algorithm S_Template is that we allow ni to have 
access, during its computation at interval s > 0, to all the sets MSGi(1),…,MSGi(s). Although 
normally only MSGi(s) is needed, the greater generality is useful for our purposes in various 
situations, as for example in Sections 2.2.3 and 3.3.  

 
2.2 Computations on anonymous systems 
The system represented by the graph G is said to be an anonymous system when its nodes 
do not have identifications that they can use in their computations. Of course, we as outside 
observers can still make use of the identifications n1,…, nn in describing the anonymous 
system, the computations that run on it, and the properties of those computations. The 
nodes themselves, however, cannot have access to such identifications for use in the 
algorithm, not even to identify a neighbor as the source or the destination of a message. In 
an anonymous system, all that is known to a node ni are the sets Ini and Outi of edges (Inci, 
in the undirected case), so messages have to be received and sent over these edges 
without explicit mention to the nodes on the other side, whose identifications are unknown. 
When receiving a message msgi, the only information related to the origin of msgi that ni can 
use is the identification of the edge on which the message arrived, and this is denoted by 
origini(msgi), as we discussed in Section 2.1. The reader should check that Algorithms 
A_Template and S_Template of Section 2.1 were written in this fashion, so they can be used 
directly to express algorithms on anonymous systems. 

The study of computations on anonymous systems is interesting from at least two 
perspectives. First of all, this study provides an opportunity to investigate the limits of what 
can be computed distributedly when nodes do not have, and cannot possibly obtain, 
complete information on the overall structure of G. The second perspective is that of 
systems that really should be regarded as anonymous, as many systems represented by 
massively parallel models that in fact can be viewed as performing distributed computations 
(cf. Section 10.2 for examples). 



One of the foremost consequences of assuming that a system is anonymous is that the 
algorithm describing the computation to be carried out by a node must be the same for all 
nodes. The reason why this property must hold is that differences in the algorithms 
performed by the nodes might provide a means to establish identifications that the nodes 
would then be able to use in their computations, in which case the system would no longer 
be anonymous. 

Our discussion throughout Section 2.2. will be limited to the cases in which G is an 
undirected graph with one single cycle, that is, an undirected ring. In the case of a ring, Inci 
has exactly two members for all ni � N, which we let be called lefti and righti. If every edge 
(ni, nj) is such that (ni, nj) = lefti = rightj, then we say that the ring is locally oriented, or, 
equivalently, that the assignment of denominations to edges locally at the nodes establishes 
a local orientation on the ring. Equivalently, this can be expressed by rephrasing the 
condition as (ni, nj) = leftj = righti for all (ni, nj) � E.  

Section 2.2.1 contains a discussion of two impossibility results under the assumption of 
anonymity. These two results refer to computations of Boolean functions and to the 
establishment of local orientations under certain assumptions on n, the number of nodes in 
the ring. The remaining two sections contain algorithms to compute Boolean functions 
(Sections 2.2.2) and to find a local orientation (Sections 2.2.2 and 2.2.3) when the conditions 
leading to the impossibility results of Section 2.2.1 do not hold. 

2.2.1 Some impossibility results 
Let f be a Boolean function of the form 

 

In this section, we consider algorithms to compute f when the n Booleans that constitute its 
arguments are initially scattered throughout the nodes, one per node, in such a way that at 
the end of the algorithm every node has the same value for f (we say that such an algorithm 
computes f at all nodes). Naturally, the assignment of arguments to nodes has to be 
assumed to be given initially, because an anonymous system cannot possibly perform such 
an assignment by itself. 

The first impossibility result that we discuss is given by Theorem 2.4, and is related to the 
availability of n to be used by the nodes in their computations. 

Theorem 2.4. 

No synchronous algorithm exists to compute f at all nodes if n is not known to the nodes.  

Proof: We show that any synchronous algorithm that computes f in the absence of 
information on n must in some cases fail, that is, we show that such an algorithm does not 
necessarily compute f at all nodes. 

For consider an algorithm to compute f when n is not known to the nodes. This algorithm 
must function independently of n, therefore for rings with all numbers of 



 
Figure 2.1: This is the 2 v (2�T/3� + 1)-node ring used in the proof of Theorem 2.4, 
here shown for v = 3 and T = 3. Each of the three portions in the upper half comprising 
three contiguous nodes each is assigned f's arguments according to af. Similar portions 
in the lower half of the ring follow assignment at.  

nodes. In particular, for a ring with n = v ≥ 3 nodes, let af and at be assignments of f's 
arguments to nodes, i.e., 

 

such that 

 

and 

 

Furthermore, let Tf and Tt be the numbers of pulses that the algorithm spends in computing f 
for, respectively, assignments af and at. Let T be such that 

 

The next step is to consider a ring with n = 2v(2�T/3� + 1) nodes, for which the algorithm 
must also work, and to assign arguments to the nodes as follows. Divide the ring into two 
connected halves, and within each half identify 2�T/3� + 1 portions, each with v contiguous 
nodes. To each such portion in one of the halves assign arguments as given by af. Then use 
at to do the assignments to each of the portions in the other half (Figure 2.1). 

Because the number of portions in each half is odd, we can identify a middle portion in each 
of the halves. Also, except for the nodes at either end of the two halves, every node is in the 
larger ring connected as it was in the smaller one (i.e., the Booleans assigned to a node's 
neighbors are the same in the two rings). In the synchronous model, it takes at least d 
pulses for a node to causally affect another that is d edges apart on a shortest path, so 
nodes in the middle portions of both halves cannot be causally affected by any other node in 
the other half within T pulses of the beginning of the computation. What these considerations 
imply is that the nodes in the middle portion of the half related to af will by pulse T have 
terminated and proclaimed the value of f to be false, because this is what happened by 

http://www.books24x7.com/viewer.asp?bkid=422&image_src=http://images.books24x7.com/bookimages/id_422/02fig01%5F0%2Ejpg&image_id=21&previd=IMG_21
http://www.books24x7.com/viewer.asp?bkid=422&image_src=http://images.books24x7.com/bookimages/id_422/02fig01%5F0%2Ejpg&image_id=21&previd=IMG_21


assumption under the same circumstances on the smaller ring. Similarly, nodes in the 
middle portion of the half related to at will have terminated and proclaimed f to have value 
true within T pulses of the beginning of the computation. 

Corollary 2.5. 

No algorithm exists to compute f at all nodes if n is not known to the nodes. 

Proof: This is a direct consequence of our discussion in Section 2.1, where we mentioned 
that every asynchronous algorithm easily yields an equivalent synchronous algorithm. So, if 
an asynchronous algorithm existed to compute f at all nodes in the absence of information 
on n at the nodes, then the resulting synchronous algorithm would contradict Theorem 2.4. 

If n is known to the nodes, then f can be computed at all nodes by a variety of algorithms, as 
we discuss in Section 2.2.2.  

The second impossibility result that we discuss in this section is related to establishing a 
local orientation on the ring when, for ni � N, the identifications lefti and righti are not 
guaranteed to yield a local orientation initially. This problem is related to the problem of 
computing f we discussed previously in the following manner. At node ni, the positioning of 
lefti and righti with respect to how its neighbors' edge identifications are positioned can be 
regarded as constituting a Boolean input. Establishing a local orientation for the ring can 
then be regarded as computing a function f on these inputs and then switching the 
denominations of the two edges incident to ni if the value it computes for f turns out to be, 
say, false. Now, this function is not in general expected to yield the same value at all nodes, 
and then Corollary 2.5 would not in principle apply to it. However, another Boolean function, 
call it f', can be computed easily once f has been computed. This function has value true if 
and only if the ring is locally oriented, and this is the value it would be assigned at each node 
right after that node had computed f and chosen either to perform the switch in edge 
identifications or not to. Clearly, f' is expected to be assigned the same value at all nodes, 
and then by Corollary 2.5 there is no algorithm to compute it at all nodes in the absence of 
information on n. As a consequence, there is no algorithm to compute f either. 

Even when n is known to the nodes, there are cases in which no algorithm can be found to 
establish a local orientation on the ring. Theorem 2.6 gives the conditions under which this 
happens. 

Theorem 2.6. 

No synchronous algorithm exists to establish a local orientation on the ring if n is even.  

Proof: Our argument is to show that any synchronous algorithm to establish a local 
orientation on the ring fails in some cases if n is even. To do so, we let n = 2v for some v ≥ 2, 
and then consider the following arrangement of lefti and righti for all ni � N. For 1 ≤ i ≤ v − 1, 
we let 

 

and for v + 2 ≤ i ≤ 2v we let 



 

Clearly, this arrangement also implies 

 

and 

 

so the ring is not locally oriented. 

Now we consider a mapping of the form 

 

such that, for 1 ≤ i ≤ 2v, 

 

for which it clearly holds that (Figure 2.2). This mapping is also such 
that, for 1 ≤ i ≤ 2v, if ni sends a message at a certain pulse (or receives a message during 

the corresponding interval) on edge lefti or edge righti, then does exactly the same at 

the same pulse, respectively on edge or edge Consequently, ni and 

reach the same conclusion on whether they 

 
Figure 2.2: The 2v-node ring used in the proof of Theorem 2.6 is depicted here for v = 5. 

Shown is also the mapping , emphasizing the symmetry 
among the nodes in the ring's upper half and the corresponding nodes in the lower half.  



should switch their incident edges' identifications or not, and the ring continues to be not 
locally oriented 

Corollary 2.7. 

No algorithm exists to establish a local orientation on the ring if n is even. 

Proof: The proof here is entirely analogous to that of Corollary 2.5. 

If n is known to the nodes and is odd, then a local orientation can be established on the ring. 
We give algorithms to do this in Sections 2.2.2 and 2.2.3.  

2.2.2 Boolean-function computations 
When n is known to the nodes, Corollary 2.5 does not apply and the function f introduced in 
Section 2.2.1 can be computed at all nodes. Also, if such a function is computed with the aim 
of eventually establishing a local orientation on the ring, then n has to be odd for Corollary 
2.7 not to apply. 

In this section, we start by presenting Algorithm A_Compute_f, which is an asynchronous 
algorithm to compute f at all nodes when n is known to the nodes. In addition, we present 
this algorithm in such a way that, if n is odd, then it may be used almost readily to establish a 
local orientation on the ring as well. 

In Algorithm A_Compute_f, bi � {false, true} denotes f's argument corresponding to ni � N. 
In order for the algorithm to be also suitable to the determination of a local orientation on the 
ring, the messages that it employs carry the pair of Booleans comprising one argument of f 
and a Boolean constant. 

So far as computing f goes, the essence of Algorithm A-Compute-f is very simple. If ni � N0, 
or upon receiving the first message if ni � N0, ni sends the pair (bi, false) on lefti and the pair 
(bi,true) on righti. For each of the �n/2� messages it receives on each of the edges incident 
to it, ni records the Booleans contained in the message and sends them onward on the 
edges opposite to those on which they were received. After all these messages have been 
received, ni has the Booleans originally assigned to every node and may then compute f 
locally. 

Node ni employs two variables to count the numbers of messages received, respectively 
count-lefti and count-righti for lefti and righti. Initially, these counters have value zero. In 

addition, ni employs the n Boolean variables to record the values of b1,…,bn when they 

are received in messages (if j ≠ i) for 1 ≤ j ≤ n. Initially, = bi (the others do not need any 
initial value to be set). Another variable ji is used to contain the subscripts to these variables. 

Because Algorithm A-Compute-f has to be exactly the same for all nodes in N, another 
Boolean variable, initiatedi (initially set to false), is employed by ni to indicate whether ni � 
N0 or not. This variable is set to true when ni starts its computation if it is a member of N0 
Nonmembers of N0 will have this variable equal to false upon receiving the first messages, 
and will then know that first of all it must send messages out. In the absence of anonymity, 
sometimes it is simpler to specify an algorithm for ni � N0 and another for ni � N0  



Algorithm A-Compute-f:  
 

      Variables: 
          count-lefti = 0; 

          count-righti = 0; 

           (= bi, if k = 1) for 1 ≤ k ≤ n; 

          ji = 1; 

          initiatedi = false. 
 

 

Listing 2.10  
 

      Input: 
          msgi = nil. 
      Action if ni � N0 
          initiatedi � true; 

          Send ( , false) on lefti; 

          Send ( , true) on righti. 
 

 

Listing 2.11  
 

     Input: 
         msgi = (b,B) 

 

     Action: 
        if not initiatedi then 
            begin 
                initiatedi � true; 

                Send ( , false) on lefti; 

                Send ( , true) on righti 
            end; 
        if origini(msgi) = lefti then 
            begin 
                count_lefti � count_lefti + 1; 



                ji � ji + 1; 

                if ji ≤ n then 
                     bji � b; 

                if count_lefti ≤ �n/2� − 1 then 
                     Send msgi on righti 

            end; 
        if origini (msgi) = righti then 
            begin 
                count_righti � count_righti + 1; 

                ji � ji + 1; 

                if ji ≤ n then 
                       bji � b; 

                if count_righti ≤ �n/2� − 1 then 
                       Send msgi on lefti 

            end; 
     if count_lefti + count_righti = 2�n/2� then 

            Compute  
 

 

An instructive observation at this point is that Algorithm A_Compute_f is indeed an algorithm 
for anonymous rings. Nowhere in the algorithm are the identities of the nodes mentioned, 
except in the description of (2.10), but this is only for notational consistency with Algorithm 
A_Template, because in any event the set N0 is determined by an "external agent." In fact, it 
is because of the system's anonymity that the b's that ni receives have to placed by (2.11) in 

the variables irrespective of their original senders, which would be simpler if 
the denominations of those senders could be used by the algorithm. In addition, the 
algorithm does make use of n, as anticipated by Corollary 2.5. 

Let us now examine Algorithm A_Compute_f carefully. During ni's computation, it receives 
the messages originally sent to it by its neighbors by (2.10) or (2.11), and whatever those 
neighbors forward to it by (2.11). Because by (2.11) a node only forwards to each of its 
neighbors �n/2� − 1 messages, ni actually receives 2 �n/2� messages, of which the last 
two it does not forward. Upon receipt of the last of the 2�n/2� messages, ni has either n (if n 
is odd) or n + 1 (if n is even) arguments of f, which it may then compute. Although it may be 
possible to modify the algorithm a little bit to ensure that exactly n arguments are received if 
n is even as well (cf. Exercise 1), as presented the last argument received is a repetition and 
may be dropped (as in (2.11)). 

In many cases, it may only be possible to compute f if the information ni receives is 
organized more orderly than as in Algorithm A_Compute_f. In other words, unless f is 
invariant with respect to the order of its arguments (as in the case of the AND and OR 

functions, for example), then the variables have to be replaced with two sets 



of similar variables, each with �n/2� variables to accommodate the Booleans received from 
each of ni's neighbors. In addition, if such an invariance does not hold, then the edges in E 
have to be assumed to be FIFO. Even so, however, because the system is anonymous f can 
only be computed if it is invariant under rotations of its arguments. 

As we mentioned earlier, Algorithm A_Compute_f can also be used to provide the ring with a 
local orientation, and this is the role of the B's that get sent along with every message. When 
the algorithm is used with this purpose, then the b's have no role and the B's are treated as 
follows at the step in which f would be computed in (2.11). A B that ni receives indivates 
either that its original sender had its left and right edges positioned like lefti and righti (if B = 
true is received on lefti or B = false is received on righti) or positioned otherwise (if B = false 
is received on lefti or B = true is received on righti). In either case, so long as n is odd (and n 
has to be odd, by Corollary 2.7), ni can decide whether its-edges are positioned like those of 
the majority of the nodes, in which case it maintains their positioning, or not, in which case it 
reverses their positioning. The result of these decisions system-wide is clearly to establish a 
local orientation on the ring. (Note that in this case Algorithm A_Compute_f would have to be 
modified to treat the B's, not the b's, ni receives—cf. Exercise 3.) 

Because each node receives 2�n/2� messages during the computation, the total number of 
messages employed by the algorithm is 2n�n/2�, and its message complexity is clearly 
O(n2). In Section 3.2.1, we return to Algorithm A_Compute_f to discuss its time-related 
complexity measures. 

In the remainder of this section and in Section 2.2.3, we show that synchronous algorithms 
exist whose message complexities are significantly lower than that of Algorithm 
A_Compute_f, so long as the generality of this algorithm can be given up. The synchronous 
algorithm that we discuss next is specific to computing the AND function, while the one we 
discuss in Section 2.2.3is specific to providing the ring with a local orientation. 

The key ingredient in obtaining the more efficient synchronous algorithm is that the AND 
function can be assumed to be true unless any of its arguments if false. In the synchronous 
case, this observation can be coupled with the assumptions of the synchronous model as 
follows. Only nodes with false arguments send their argument to neighbors. The others 
simply wait to receive a false or long enough to know that any existing false would already 
have reached them. In either case, computing the AND is a simple matter. Algorithm 
S_Compute_AND embodies this strategy and is given next. In this algorithm, N0 = N and a 
Boolean variable fi (initially set to true) is employed by ni to store the result of evaluating the 
AND function. 

Algorithm S_Compute_AND  
 

        Variables: 
            fi = true. 

 
 

Listing 2.12  
 

        Input: 

            s = 0, MSGi(0) =  



 

        Action if ni � N0: 
            if bi = false then 
                  begin 
                     fi � false: 
                     Send bi on lefti and on righti 

                  end. 
 

 

Listing 2.13  
 

        Input: 
           0 < s < �n/2�, MSGi(s). 

        Action: 
            if fi then 

                 if MSGi(s) ≠  then 
                      begin 
                          fi � false; 
                          if there exists msg � MSGi(s) such that 
                          origini(msg) = lefti then 
                               Send msg on righti; 

 

                          if there exists msg � MSGi(s) such that 
                          origini(msg) = righti then 
                               Send msg on lefti 

 

                      end. 
 

 

If ni is not such that bi = false, then the largest number of pulses that can go by before ni 
concludes that fi cannot be changed from its initial value of true is �n/2�, so that after pulse 
s = �n/2� = O(n) no further computation has to be performed and the algorithm may 
terminate. 

By (2.12) and (2.13), ni sends at most two messages during its computation, either initially if 
bi = false, by (2.12), or upon receiving the first message, if any messages are at all received, 
by (2.13). Clearly, then, the message complexity of Algorithm S_Compute_AND, is O(n). 

2.2.3 Another algorithm for local orientation 



In addition to Algorithm S_Compute_AND, another example of how to employ many fewer 
messages than those required by Algorithm A_Compute_f comes from considering a 
synchronous algorithm tailored specifically to establishing a local orientation on the ring. By 
Theorem 2.6, such an algorithm may only exist if n is odd, as we assume henceforth in this 
section. 

The basic strategy behind this algorithm employs the following terminology. Say that two 
nodes ni and nj are segment ends if (ni, nj) � E and furthermore (ni, nj) = lefti = leftj. Segment 
ends delimit segments, which are subsets of N inducing connected subgraphs of G with at 
least two nodes. If ni and nj are segment ends and (ni, nj) � E, then ni, and nj belong to 
different segments, unless the number of segments in the ring is exactly one. Clearly, a 
locally oriented ring contains no segment ends, while a ring that is not locally oriented 
contains a nonzero even number of segment ends, and half as many segments. Because n 
is odd, an odd number of segments must have an odd number of nodes each. 

The synchronous algorithm proceeds in iterations, each one comprising two phases. Initially, 
all nodes are said to be active, and the goal of each of the iterations is to reduce the number 
of active nodes. During an iteration, nodes that are not active function solely as message 
relays, so that the computation can always be looked at as being carried out on a ring 
containing the active nodes only, called the active ring. Iterations proceed until exactly one 
active node remains or until an active ring is reached which is locally oriented (in this case 
with more than one active node). A local orientation can then be established on the entire 
ring by the last active nodes. 

The number of iterations that the algorithm requires depends largely on how active nodes 
are eliminated from one iteration to the next. In Algorithm S_Locally_Orient, given next, this 
elimination takes place as follows. In the first phase of an iteration, segment ends are 
identified on the active ring. Then, in the second phase, the nodes, called center nodes, 
occupying the central positions in the segments having an odd number of nodes are 
identified and selected to be the only active nodes to remain through to the next iteration. By 
our preceding discussion, the number of center nodes must be odd, and then so must the 
number of nodes in every active ring, thereby guaranteeing the feasibility of every iteration. 
The last iteration is characterized by the absence of segment ends among the active nodes. 
Because at each iteration segments with an even number of nodes do not contribute with 
any active node to the next iteration, and considering that segments with odd numbers of 
nodes have at least three nodes each, clearly the number of iterations required is no larger 
than �log3n� = O (log n). 

Letting σ ≥ O indicate the pulses within each of the iterations, the following is how the two 
aforementioned phases within an iteration are implemented. At pulse σ = O, node ni, if 
active, sends token on edge righti. Active nodes then idle throughout the following n − 1 
pulses, while nodes that are not active simply relay token onward if they at all receive it. An 
active node ni that by pulse σ = n has not received token on lefti is a segment end, and at 
pulse σ = n sends the integer O on righti. Throughout the following n − 1 pulses (i.e., from 
pulse σ = n+1 through pulse σ = 2n − 1), active nodes forward the integer z + 1 upon 
receiving integer z, for some z ≥ 0, while the other nodes continue to function as relays. An 
active node ni that by pulse σ = 2n has received the same integer over lefti and righti during 
the same interval is a center node. This is the last iteration if ni did not receive any message 
during intervals n through 2n − 1, otherwise only center nodes remain active for the next 
iteration. A message orient is sent on, say, lefti by an active node ni after the last iteration. 
This message, if received on lefti by a node ni that is not active, causes lefti and righti to be 
interchanged. 



The reader should notice that the characteristics of the synchronous model are used 
profusely in this strategy to establish a local orientation. Indeed, both the determination of 
segment ends and of center nodes rely heavily on the assumed synchronism, as does the 
determination of when an iteration is the last one. 

In Algorithm S_Locally_Orient, k identifies the iteration and is then such that 1 ≤ k ≤ K, where 
K is the last iteration, therefore such that K ≤ �log3 n�. Pulses within the kth iteration are 
numbered s = 2n(k − 1) + σ, that is, from s = 2n(k − 1) through s = 2nk. After the last 
iteration, additional n − 1 pulses must elapse before termination. The only variable employed 
by ni is the Boolean variable activei, initially set to true, used to indicate whether ni is active. 
Because initially activei = true for all ni � N, in this algorithm N0 = N. Because K has to be 
determined as the algorithm progresses, it is assumed to be equal to infinity initially. 

Algorithm S_Locally_Orient:  
 

        Variables: 
            activei = true. 

 
 

Listing 2.14  
 

        Input: 

            s = 2n(k − 1), MSGi(s) = . 

        Action (if ni � N0, for k = 1): 
            if activei then 
                 Send token on righti. 

 
 

Listing 2.15  
 

        Input: 
 

            2n(k − 1) + 1 ≤ s ≤ 2nk − n  − 1, MSGi(s). 

        Action: 
            if not activei then 
                 begin 
                     if there exists token � MSGi(s) such that 
origini(token) = 

                     lefti then 
                           Send token on righti; 

 



                     if there exists token � MSGi(s) such that 
origini (token) = 

                     righti then 
                           Send token on lefti 

 

                 end. 
 

 

Listing 2.16  
 

        Input: 
           s = 2nk − n, MSGi(2n(k − 1) + 1),…, MSGi(2nk − n). 

        Action: 
           if activei then 

                if there does not exist token  
MSGi(r) such that 

                origini (token) = lefti then 
                     Send 0 on righti. 

 
 

Listing 2.17  
 

        Input: 
           2nk − n + 1 ≤ s ≤ 2nk − 1, MSGi(s).s 

        Action: 
           if activei then 
                begin 
                    if there exists z � MSGi(s) such that origini(z) 
= lefti 

                    then 
                        Send z + 1 on righti; 

                    if there exists z � MSGi(s) such that origini(z) 
= righti 

                    then 
                        Send z + 1 on lefti 

 

                end 
 



           else 
                begin 
                    if there exists z � MSGi(s) such that origini(z) 
= lefti 

                    then 
                        Send z on righti; 

                    if there exists z � MSGi(s) such that origini (z) 
= righti 

                    then 
                        Send z on lefti 

 

                end. 
 

 

Listing 2.18  
 

        Input: 
           s = 2nk, MSGi(2nk − n + 1),…, MSGi(2nk). 

        Action: 
           if activei then 

                if MSGi(r) =  for all r � {2nk − n,…,2nk − 1} then 
                    begin 
                        K � k; 

                         Send orient on lefti 

                    end 
 

                else 
 

                    if there do not exist r � {2nk − n,…, 2nk − 1} 
and 

                    z1, z2 � MSGi(r) with z1 = z2 such that 
origini(z1) = lefti 

                    and origini(z2) = righti then 
                        activei � false. 

 
 

Listing 2.19  
 

       Input: 



           2nK + 1 ≤ s ≤ 2nK + n − 1, MSGi(s) 

       Action: 
           if not activei then 
               begin 
                   if there exists orient � MSGi(s) such that 
                   origini(orient) = lefti then 
                        Interchange lefti and righti; 

                   Send orient on lefti 

               end. 
 

 

In Algorithm S_Locally_Orient, (2.14) implements the sending of token at the beginning of 
each iteration, while in (2.15) the relaying of token by nodes that are not active appears. In 
(2.16), segment ends are identified and initiate the propagation of integers, which are 
relayed as appropriate by (2.17). Center nodes are identified in (2.18), which, in the last 
iteration, also includes the propagation of orient, relayed onward by (2.19). In no action does 
a node send more than two messages, and then the number of messages per iteration is 
clearly O(n). It follows from our earlier determination of the maximum number of iterations 
that the message complexity of Algorithm S_Locally_Orient is O(n log n). 

 
2.3 The role of knowledge in distributed computations 
The notion of knowledge is a notion of many possible meanings, but even the simplest 
algorithms we have seen so far in this chapter indicate that much of what distributed 
computations do is, in some sense, to collectively manipulate the system's knowledge so 
that at the end of the computation what nodes "know" individually relates in some way to the 
computation's original goal. During the past decade, various interesting hints at how notions 
related to knowledge might be used in the design and analysis of distributed algorithms were 
envisaged. Although today the interest in such an approach has waned somewhat, a few 
interesting insights were obtained that can be expressed in a particularly simple fashion 
when viewed from the standpoint of knowledge in the system. 

Our goal in this section is to finalize the chapter by presenting some of these insights, which 
will be referred back to in forthcoming chapters for the sake of illustration within the context 
of those chapters. The ideal approach to our discussion in this section would be that of a 
logician, but naturally we refrain from doing that, especially because the necessary 
background to undertake such an approach intersects what is expected of a reader of this 
book very narrowly. Rather, we approach the subject quite informally, aiming essentially at 
conveying some of its intuitive underpinnings. 

If denotes a sentence (in the logical sense), then we denote the notion that a node ni 

knows by KI , where, loosely, Ki is an operator indicating knowledge by ni. Normally, 

only true sentences are assumed to be knowable, that is, in order for to be known by ni it 

is necessary that be true, giving rise to the axiom 



 

(If A and B are two formulas, in the usual logical sense, then A → B is equivalent to ¬A V B.) 
Every distributed algorithm embodies various steps whereby the knowledge status of the 

nodes evolves. For example, if ni sends a message containing a true sentence to nj � 

Neigi, then KI  holds as early as when the message is sent, but Kj  may happen to hold 

only from the time of receipt of the message onward, and then KjKi  also holds. 

Despite the simplicity of such a notion of knowledge by ni, it contains not too evident 
idiosyncrasies that include limits on what ni may know. This has been illustrated in the 
literature in the following anecdotic fashion. 

"In a class with daily meetings the teacher announces, by the end of a 
Friday class, that there will be an unexpected exam in the following week. 
The students reason over the possibilities during the weekend, and 
conclude that the exam will not be on Friday, otherwise it would not be 
unexpected, and inductively that it cannot be on any other day of the week 
either. As a result, they do not study for the exam and, surely enough, a 
totally unexpected exam is given on Monday." 

If we let ε denote "there will be an exam today," then the flaw in the students' reasoning is 
that, while it is possible for the sentence ε � ¬KIε to be true for a node (student) ni, the same 
cannot possibly hold for the sentence KI(ε � ¬KIε), so that there are limits to what is 
knowable to ni. 

In a distributed setting like the one we have been considering in this book, there is interest in 
generalizing the notion of individual knowledge embodied in the operator Ki to notions of 
group knowledge, say by all the members of N. Two simple possibilities of generalization in 
this sense are summarized by the operators SN and EN, intended respectively to convey the 
notions of knowledge by at least one node and by all nodes. In other words, 

 

and 

 

Another similar possibility of generalization is that of the notion of implicit knowledge by the 

group N. The meaning of implicit knowledge of by N, denoted IN , is that can be 

concluded from the individual knowledge that the members of N have. For example, if 

and → are both true sentences, and moreover both KI  and (→ ) hold for 

ni, nj � N, then is also true and IN  holds as well. 



Associated with this notion of implicit knowledge is a notion of conservation, which states 
that no communication can change the implicit knowledge of propositional nature that N has. 
This result, which we do not investigate in any further depth in this book, is to be regarded 
with care. In particular, the requirement that the conserved implicit knowledge be 
propositional is crucial, as otherwise the conservation need not hold. For example, if for a 

true sentence it holds that ¬KI  and Kj  for ni, nj � N such that (ni, nj) � E, then a 

message sent by nj to ni containing suffices for KI  to become implicit knowledge, 
although such was not the case prior to the receipt of the message by ni. However, the 

sentence Ki  is not propositional, and then no contradiction to the conservation principle is 
implied by this acquisition of new implicit knowledge. 

The next step in generalizing the notion of individual knowledge to broader notions of group 
knowledge is to consider the notion of common knowledge by N. This notion, denoted by 

CN  for a true sentence , is such that 

 

where and, for k > 1, This notion is very 
hard to grasp intuitively, but nonetheless it should be clear that 

 

holds for any set of integers {i1,…, iz} �{1,…,n,} with z ≥ 1. Another anecdote is usually very 
helpful in building up some intuition on the notion of common knowledge. 

"A group of boys are playing together and have been advised by their 
parents that they should not get dirty. However, it does happen that some of 
them, say k ≥ 1, get dirty, but only on their foreheads, so that no boy knows 
whether his own forehead is dirty though he can see the others'. One of the 
parents then shows up and states, 'At least one of you has a dirty forehead,' 
thereby expressing a fact already known to all the boys if k > 1. The parent 
then asks repeatedly, 'Can anyone prove that his own forehead is dirty?' If 
we assume that all the boys are unusually intellectually gifted, and moreover 
that they all reply simultaneously at each repetition of the parent's question, 
then every boy replies 'No' to the first k − 1 questions, and the boys with 
dirty foreheads reply 'Yes' to the kth question." 

What supports the boys' reasoning in replying to the parent's repeated questions is the 
following inductive argument. If k = 1, then the only boy with a dirty forehead replies "Yes" 
immediately upon the first question, because he knows that at least one boy has a dirty 
forehead, and seeing no one else in that condition he must be the one. If we inductively 
hypothesize that the boys reason correctly for 1 ≤ k ≤ k' with k' ≥ 1, then for k = k' + 1 we 
have the following. A boy with a dirty forehead sees k' other boys with dirty foreheads, while 
a boy with a clean forehead sees k' + 1 boys with dirty foreheads. By the induction 
hypothesis, a boy with a dirty forehead must reply "Yes" to the kth question, because if he 
did not have a dirty forehead the other k' boys with dirty foreheads that he sees would all 



have replied "Yes" upon hearing the previous question. Because they did not, his own 
forehead must be dirty. 

In the context of this anecdote, the issue of knowledge comes in as follows. If represents 
the parent's statement concerning the existence of boys with dirty foreheads and N is the set 

of boys, then, before the statement, holds but does not. What the 

parent's statement does is to establish CN , therefore which is the necessary 
state of knowledge for the boys' reasoning to be carried out. 

The various notions of knowledge we have encountered so far relate to each other 
hierarchically in such a way that 

 

holds for every k ≥ 1. While every information that is "built in" the nodes constitutes common 
knowledge, the acquisition of new common knowledge is far from trivial, unless some sort of 
"shared memory" can be assumed, as in the case of the anecdote we presented on the dirty-
forehead boys (the parent's statement can be regarded as having been "written" into such a 
shared memory). To see why acquiring new common knowledge may be important, we 
consider yet another anecdote. 

"Two divisions of an army are camped on the hills surrounding a valley, and 
in the valley is the enemy army. Both divisions would like to attack the 
enemy army simultaneously some time the next day, because each division 
individually is outnumbered by the enemies. Having agreed on no plan 
beforehand, the divisions' generals are forced to rely on forerunners to 
convey messages to each other. Forerunners must go through the enemy's 
camp with their messages, and then do it at night, although the risk of being 
caught still exists and in addition they may get lost. Given that normally one 
hour is enough for the trip, and that at this particular night the forerunners 
travel uneventfully through the enemy's camp and do not get lost, how long 
does it take for an agreement to be reached between the two generals?" 

Clearly, what the two generals seek in this anecdote is common knowledge of an 
agreement. The reader must quickly realize, though, that such a state of knowledge cannot 
be attained. Indeed, unless communication is totally reliable (as we have implicitly been 
assuming) and the model of distributed computation is the synchronous model, no new 
common knowledge can ever be attained. However, the literature contains examples of how 
to attain new common knowledge in the asynchronous model with reliable communication by 
restricting the definition of common knowledge to special global states (cf.Section 3.1). 

 
2.4 Exercises 
1. Show that, if the ring is locally oriented, then Algorithm A_Compute_f can be modified so 
that every node receives exactly n arguments of f even if n is even.  
2. Describe how to simplify Algorithm S_Locally_Orient if the determination of K is not 
required (that is, if the algorithm is to run for the maximum possible number of iterations).  
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3. Show how to modify Algorithm A_Compute_f so that it can be used to establish a local 
orientation on the ring (i.e., show how it should be changed to treat the B's instead of the 
b's).  
1. 

  
Show that, if the ring is locally oriented, then Algorithm A_Compute_f can be modified so 
that every node receives exactly n arguments of f even if n is even. 

2. 
  

Describe how to simplify Algorithm S_Locally_Orient if the determination of K is not 
required (that is, if the algorithm is to run for the maximum possible number of iterations). 

3. 
  

Show how to modify Algorithm A_Compute_f so that it can be used to establish a local 
orientation on the ring (i.e., show how it should be changed to treat the B's instead of the 
b's). 

 
  

 

2.5 Bibliographic notes 
Readers in need of references on concepts from graph theory, for use not only in this 
chapter but throughout the book, may choose from a variety of sources, including some of 
the classic texts, like Harary (1969), Berge (1976), Bondy and Murty (1976), and Wilson 
(1979). The asynchronous and synchronous models introduced in Section 2.1 are pretty 
standard in the field, and can also be found in Lamport and Lynch (1990), for example. 
Algorithm A_FIFO, used as example in that section, is from Barbosa and Porto (1995). 

The material on anonymous systems in Section 2.2 is based on Attiya and Snir (1985), 
which later appeared in revised form in Attiya, Snir, and Warmuth (1988). Further 
developments on the theme can be found in Attiya and Snir (1991), Bodlaender, Moran, and 
Warmuth (1994), Kranakis, Krizanc, and van den Berg (1994), and Lakshman and Wei 
(1994). 

Readers seeking additional information on the notions related to knowledge can look for the 
survey by Halpern (1986), as well as the guide to the logics involved by Halpern and Moses 
(1992). The material in Section 2.3 is drawn from a variety of publications, which the reader 
may seek in order to deepen the treatment of a particular topic. The application of 
knowledge-related notions to problems in the context of distributed computations dates back 
to the first version of Halpern and Moses (1990) and to Lehmann (1984). In Halpern and 
Moses (1990), the reader will also find the definitions of implicit and common knowledge, as 
well as the argument for the impossibility of attaining common knowledge in the 
asynchronous model or under unreliable communication. Fischer and Immerman (1986) 
describe situations in which common knowledge can be attained in the asynchronous model 
if communication is totally reliable and in addition one is restricted to considering only some 
special global states. The anecdote involving students and the unexpected exam is from 
Lehmann (1984). The conservation of implicit knowledge is from Fagin and Vardi (1986). 
Problems related to the agreement between generals of a same army can be found in 
Lamport, Shostak, and Pease (1982) and in Dwork and Moses (1990). Additional work on 
knowledge in distributed systems has appeared by Halpern and Fagin (1989), Fagin, 
Halpern, and Vardi (1992), Neiger and Toueg (1993), and van der Meyden (1994). 



 

Chapter 3: Models of Computation 
Overview 
In this chapter, we return to the topic of computation models for distributed algorithms. We 
start where we stopped at the end of Section 2.1, which was devoted essentially to 
introducing the asynchronous and synchronous models of distributed computation. In that 
section, we also introduced, along with examples throughout Chapter 2, Algorithms 
A_Template and S_Template, given respectively as templates to write asynchronous and 
synchronous algorithms. 

Our first aim in this chapter is to establish a more detailed model of the distributed 
computations that occur under the assumption of both the asynchronous and the 
synchronous model. We do this in Section 3.1, where we introduce an event-based 
formalism to describe distributed computations. Such a formalism will allow us to be much 
more precise than we have been so far when referring to global timing issues in the 
asynchronous case, and will in addition provide us with the necessary terminology to define 
the time-related complexity measures that we have so far avoided. 

This discussion of complexity measures appears in Section 3.2 where the emphasis is on 
time-related measures for asynchronous algorithms, although we also discuss such 
measures for synchronous algorithms and return to the issue of message complexity 
introduced in Section 2.1. 

We continue in Section 3.3 by returning to the template algorithms of Section 2.1 to provide 
details on how asynchronous algorithms can be executed under the assumptions of the 
synchronous model. In addition, we also indicate, but only superficially in this chapter, how 
synchronous algorithms can be transformed into equivalent asynchronous algorithms. 

Section 3.4 is dedicated to a deeper exploration of the synchronous model, which, as we 
have indicated previously,although unrealistic possesses some conceptual and practical 
features of great interest. Some of these are our subject in Section 3.4 as an example of a 
computation that is strictly more efficient in time-related terms in the synchronous model 
than in the asynchronous model, and another in which the initial assumption of full 
synchronism in the process of algorithm design eventually leads to greater overall efficiency 
with respect to existing solutions to the same problem. 

Sections 3.5 and 3.6 contain exercises and bibliographic notes, respectively. 

 
3.1 Events, orders, and global states 
So far in the book there have been several occasions in which we had to refer to global 
characteristics of the algorithms we studied and found ourselves at a loss concerning 
appropriate conceptual bases and terminology. This has been most pronounced in the case 
of asynchronous algorithms, and then we have resorted to expressions as "concurrent", 
"scenario", and "causally affect" to make up for the appropriate terminology and yet convey 
some of the intuition of what was actually meant. This happened, for example, during our 
discussion of task migration in Sections 1.6.2 and 2.1, in our introduction of the synchronous 
model in Section 2.1, and in the proof of Theorem 2.4. As we indicated in Sections 2.1 and 



2.3, such imprecisions can be corrected easily once the appropriate concept of a global state 
has been established. Such a concept lies at the core of our discussion in this section. 

The case of synchronous algorithms is clearly much simpler as far as the concepts 
underlying global temporal issues are concerned. In fact, in describing Algorithms 
S_Compute_AND and S_Locally_Orient, respectively in Sections 2.2.2 and 2.2.3, we 
managed without any difficulty to identify the number of pulses that had to elapse for 
termination of the algorithm at hand. This number, as we will see in Section 3.2.1, essentially 
gives the algorithm's time-related measure of complexity, which in the asynchronous case 
we have not even approached. 

Our discussion in this section revolves around the concept of an event, and is intended 
especially to the description of computations taking place in the asynchronous model (that is, 
executions of asynchronous algorithms). However, as we mentioned in Section 2.1, the 
conditions under which the synchronous model is defined can be regarded as a 
particularization of the conditions for the asynchronous model, and then all of our discussion 
is also applicable in its essence to the synchronous model as well. We shall return to this 
issue later to be more specific on how the characteristics of the synchronous model can be 
seen to be present in our event-based formalism. 

The concept of an event in our formalism is that of a fundamental unit of a distributed 
computation, which in turn is an execution of a distributed algorithm. A distributed 
computation is then viewed simply as a set of events, which we denote by Ξ. An event ξ is 
the 6-tuple 

 

where 
� ni is the node at which the event occurs; 
� t is the time, as given by ni's local clock, at which the event occurs; 

� is the message, if any, that triggered the event upon its reception by ni; 
� σ is the state of ni prior to the occurrence of the event; 
� σ' is the state of ni, after the occurrence of the event; 
� Φ is the set of messages, if any, sent by ni as a consequence of the occurrence of the 

event. 

This definition of an event is based on the premise that the behavior of each node during the 
distributed computation can be described as that of a state machine, which seems to be 
general enough. The computation Ξ then causes every node to have its state evolve as the 
events occur. We let Σi denote the sequence of states ni goes through as Ξ goes on. The 
first member of Σi is ni's initial state. The last member of Σi (which may not exist if Ξ is not 
finite) is ni's final state. 

This definition of an event is also general enough to encompass both the assumed reactive 
character of our distributed computations (cf. Section 1.4) and to allow the description of 
internal events, i.e., events that happen without any immediate external cause (understood 
as a message reception or the spontaneous initiation by the nodes in N0, which ultimately 
can also be regarded as originating externally). In order to be able to describe internal 
events and events associated with the spontaneous initiation by the nodes in N0, we have 

allowed the input message associated with an event to be absent sometimes. The atomic 
actions that we have associated with asynchronous algorithms (cf. Algorithm A_Template) 



can then be regarded as sequences of events, the first of which triggered by the reception of 
a message (or corresponding to the spontaneous initial activity of a node in N0), and the 
remaining ones being internal events. 

For synchronous algorithms, these definitions are essentially valid as well, but a few special 
characteristics should be spelled out. Specifically, because in the synchronous case it helps 
to assume that local computation within an interval of the global clock takes zero time (cf. 
Section 2.1,)and because nodes in the synchronous case are in reality driven by the global 
clock and not by the reception of messages, at each node exactly one event can be 
assumed to take place at each pulse, with t being a multiple of an interval's duration. Such 
an event does not have an input message associated with it, because by assumption every 
message is in the synchronous model delivered in strictly less time than the duration of an 
interval. In addition to these events, others corresponding solely to the reception of 
messages may also happen, but then with a different restriction on the value of t, namely 
that t be something else than a multiple of an interval's duration. Finally, internal events are 
now meaningless, because every event either has an input message associated with it, or 
occurs in response to a pulse, having in either case an external cause. The overall picture in 
the synchronous case is then the following. At the beginning of the first interval (i.e., at the 
first pulse), an event happens at each of the nodes in N0. Subsequently, at each new pulse 
and at each node an event happens corresponding to the computation by that node on the 
messages (if any) that it received during the preceding interval. Other events may happen 
between successive pulses, corresponding exclusively to the reception of messages for use 
at the succeeding pulse. The reader should notice that this description of a synchronous 
computation is in entire accordance with Algorithm S_Template, that is, the events for which 
t is a multiple of an interval's duration correspond to the actions in that algorithm. The other 
events do not correspond to any of the algorithm's actions, being responsible for establishing 
the sets MSGi(s) for ni ∈ N and s > 0. 

Events in Ξ are strongly interrelated, as messages that a node sends in connection with an 
event are received by that node's neighbors in connection with other events. While this 
relationship is already grasped by the definition of an event, it is useful to elaborate a little 
more on the issue. Let us then define a binary relation, denoted by ≺, on the set of events Ξ 
as follows. If ξ1 and ξ2 are events, then ξ1 ≺ξ2 if and only if one of the following two 
conditions holds. 

i. Both ξ1 and ξ2 occur at the same node, respectively at (local) times t1 and t2 such that 
t1 < t2 In addition, no other event occurs at the same node at a time t such that t1 < t < 
t2. 

ii. Eventsξ1 and ξ2 occur at neighbor nodes, and a message exists that is sent in 
connection with ξ1 and received in connection with ξ2. 

It follows from conditions (i) and (ii) that ≺ is an acyclic relation. Condition (i) expresses our 
intuitive understanding of the causality that exists among events that happen at the same 
node, while condition (ii) gives the basic cause-effect relationship that exists between 
neighbor nodes. 

One interesting way to view the relation ≺ defined by these two conditions is to consider the 
acyclic directed graph H = (Ξ,≺). The node set of H is the set of events Ξ,and its set of 
edges is given by the pairs of events in ≺. The graph H is a precedence graph, and can be 
pictorially represented by displaying the events associated with a same node along a 
horizontal line, in the order given by ≺. In this representation, horizontal edges correspond 
to pairs of events that fall into the category of condition(i),while all others are in the category 



of condition(ii).Equivalently, horizontal edges can be viewed as representing the states of 
nodes (only initial and final states are not represented), and edges between the horizontal 
lines of neighbor nodes represent messages sent between those nodes. Viewing the 
computation Ξ with the aid of this graph will greatly enhance our understanding of some 
important concepts to be discussed later in this section and in Section 3.2. 

The transitive closure of ≺, denoted by ≺+, is irreflexive and transitive, and therefore 
establishes a partial order on the set of events Ξ. Two events ξ1 and ξ2 unrelated by ≺+, i.e., 
such that 

 

and 

 

are said to be concurrent events. This denomination, as one readily understands, is meant to 
convey the notion that two such events are in no way causally related to each other. 

In addition to its use in defining this concept of concurrent events, the relation ≺+ can also be 
used to define other concepts of equally great intuitive appeal, as for example those of an 
event's past and future. For an event ξ, we let 

 

 
Figure 3.1: A precedence graph has Ξ for node set and the pairs in the partial order ≺ 
for edges. It is convenient to draw precedence graphs so that events happening at the 
same node in N are placed on a horizontal line and positioned on this line, from left to 
right, in increasing order of the local times at which they happen. In this figure, shown for 
n = 4, the "conically"-shaped regions delimited by dashed lines around event ξ 
happening at node n3 represent {ξ} ∪ Past(ξ) (the one on the left) and {ξ} ∪ Future (ξ) 
(the one on the right).  

and 
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These two sets can be easily seen to induce "conical" regions emanating from ξ in the 
precedence graph H and contain, respectively, the set of events that causally influence ξ and 
the set of events that are causally influenced by ξ (Figure 3.1). 

We now focus on a closer examination of the issues raised in the beginning of this section 
with respect to an appropriate conceptual basis and a terminology for the treatment of global 
timing aspects in a distributed computation. The key notion that we need is that of a 
consistent global state, or simply global state, or yet snapshot. This notion is based on the 
formalism we have developed so far in this section, and, among other interesting features, 
allows several global properties of distributed systems to be referred to properly in the 
asynchronous model. We will in this section provide two definitions of a global state. While 
these two definitions are equivalent to each other (cf. Exercise 1), each one has its particular 
appeal, and is more suitable to a particular situation. Our two definitions are based on the 
weaker concept of a system state, which is simply a collection of n local states, one for each 
node, and one edge state for each edge. If G is a directed graph, then the number of edge 
states is m, otherwise it is 2m (one edge state for each of the two directions of each of the m 
edges). 

The state of node ni in a system state is drawn from Σi, the sequence of states ni goes 
through as the distributed computation progresses, and is denoted by σi. Similarly, the state 
of an edge (ni → nj) is simply a set of messages, representing the messages that are in 
transit from ni to nj in that system state, i.e., messages that have been sent by ni on edge (ni 
→ nj) but not yet received by nj. We denote this set by Φij. The notion of a system state is 
very weak, in that it allows absurd global situations to be represented. For example, there is 
nothing in the definition of a system state that precludes the description of a situation in 

which a message has been sent by ni on edge (ni → nj), but nevertheless neither has 
arrived at nj nor is in transit on (ni → nj). 

Our first definition of a global state is based on the partial order ≺+ that exists on the set Ξ of 
events of the distributed computation, and requires the extension of ≺+ to yield a total order, 
i.e., a partial order that includes exactly one of (ξ1, ξ2) or (ξ2, ξ1) for all ξ1, ξ2 ∈ Ξ. This total 
order does not contradict ≺+, in the sense that it contains all pairs of events already in ≺+. It 
is then obtained from ≺+ by the inclusion of pairs of concurrent events, that is, events that do 
not relate to each other according to ≺+, in such a way that the resulting relation is indeed a 
partial order. A total order thus obtained is said to be consistent with ≺+. 

Given any total order < on Ξ, exactly |Ξ| − 1 pairs (ξ1, ξ2) ∈< can be identified such that 
every event ξ ≠ξ1, ξ2 is either such that ξ < ξ1or such thatξ2 < ξ Eventsξ1and ξ2 are in this 
case said to be consecutive in <. It is simple to see that, associated with everypair(ξ1,ξ2) of 
consecutive events in <, there is a system state, denoted by system_state(ξ1,Ξ2), with the 
following characteristics. 
� For each node ni, σi is the state resulting from the occurrence of the most recent event 

(i.e., with the greatest time of occurrence) at ni, say ξ, such that ξ1 ≮ ξ (this includes the 
possibility that ξ = ξ1). 

� For each edge (ni → nj),Φij is the set of messages sent in connection with an event ξ 
such that ξ1 ≮ ξ (including the possibility that ξ = ξ1) and received in connection with an 
event ξ' such that ξ' ≮ ξ2 (including the possibility that ξ' = ξ2). 



 
Figure 3.2: Part (a) of this figure shows a precedence graph, represented by solid lines, 
for n = 2. As ≺ is already transitive, we have ≺+=≺. Members of ≺+ are then 
represented by solid lines, while the dashed lines are used to represent the pairs of 

concurrent events, which, when added to ≺+, yield a total order consistent with ≺+. 
The same graph is redrawn in part (b) of the figure to emphasize the total order. In this 
case, system-state (ξ2, ξ3) is such that n1 is in the state at which it was left by the 
occurrence of ξ1, n2 is in the state at which it was left by the occurrence of ξ2, and a 
message sent in connection with ξ2 is in transit on the edge from n2 to n1 to be received 

in connection with ξ2. Because is consistent with ≺+, system_state (ξ2, ξ3) is a 
global state, by our first definition of global states.  

The first definition we consider for a global state is then the following. A system, state Ψ is a 
global state if and only if either in Ψ all nodes are in their initial states (and then all edges are 
empty), or in Ψ all nodes are in their final states (and then all edges are empty as well), or 

there exists a total order ≺ consistent with ≺+, in which a pair (ξ1, ξ2) of consecutive 
events exists such that Ψ = system_state (ξ1, ξ2) (Figure 3.2). 

Our second definition of a global state is somewhat simpler, and requires that we consider a 
partition of the set of events Ξ into two subsets Ξ1 and Ξ2. Associated with the pair (Ξ1, Ξ2) is 
the system state, denoted by system_state (Ξ1, Ξ2), in which σi is the state in which ni was 
left by the most recent event of Ξ1 occurring at ni, and Φij is the set of messages sent on (ni 
→ nj) in connection with events in Ξ1 and received in connection with events in Ξ2. 

The second definition is then the following. A system state Ψ is a global state if and only if Ψ 
= system_state(Ξ1, Ξ2) for some partition (Ξ1, Ξ2) of Ξ such that 

 



whenever ξ ∈ Ξ2. (Equivalently, we might have required the existence of a partition (Ξ1, Ξ2) 
such that 

 

whenever Ξ ∈ Ξ2.) For simplicity, often we refer to such a partition as the global state itself. 
Note that there is no need, in this definition, to mention explicitly the cases in which all nodes 
are either in their initial or final states, as we did in the case of the first definition. These two 

cases correspond, respectively, to Ξ1 = and Ξ2 = . 

As we mentioned earlier, these two definitions of a global state are equivalent to each other. 
The first definition, however, is more suitable to our discussion in Section 5.2.1, particularly 
within the context of proving Theorem 5.5. The second definition , on the other hand, 
provides us with a more intuitive understanding of what a global state is. Specifically, the 
partition (Ξ1, Ξ2) involved in this definition can be used in connection with the precedence 
graph H introduced earlier to yield the following interpretation. The partition (Ξ1, Ξ2) induces 
in H a cut (a set of edges) comprising edges that lead from events in Ξ1 to events in Ξ2 and 
edges from events in Ξ2 to events in Ξ1. This cut contains no edges from Ξ2 to Ξ1 if and only 
if system_state(Ξ1, Ξ2) is a global state, and then comprises the edges that represent the 
local states of all nodes (except those in their initial or final states) in that global state, and 
the edges that represent messages in transit in that global state (Figure 3.3). 

We also mentioned at the beginning of this section that our discussion would apply both 
under full asynchronism and under full synchronism. In fact, when defining an event we 
explicitly described how the definition specializes to the case of full synchronism. It should 
then be noted that the concept of a global state is indeed equally applicable in both the 
asynchronous and the synchronous models, although it is in the former case that its 
importance is more greatly felt. In the 



 
Figure 3.3: Parts(a) and (b) show the same precedence graph for n= 2. Each of the cuts 
shown establishes a different partition (Ξ1, Ξ2) of Ξ. The cut in part (a) has no edge 
leading from an event in Ξ2 to an event in Ξ1, and then system_state (Ξ1, Ξ2) is a global 
state, by our second definition. In this global state, n1 is in its initial state, n2 is in the 
state at which it was left by the occurrence of ξ2, and a message is in transit on the edge 
from n2 to n1, sent in connection with ξ2, and to be received in connection with ξ3. The 
cut in part (b), on the other hand, has an edge leading from ξ2 ∈ Ξ2 to ξ3 ∈ Ξ1, so 
system_state(Ξ1, Ξ2) cannot be a global state.  

synchronous case, many global states can be characterized in association with the value of 
the global clock, as for example in "the global state at the beginning of pulse s ≥0." 
However, there is nothing in the definition of a global state that precludes the existence in 
the synchronous case of global states in which nodes' local states include values of the 
global clock that differ from node to node. 

Having defined a global state, we may then extend the definitions of the past and the future 
of an event, given earlier in this section, to encompass similar notions with respect to global 
states. If Ψ is a global state, then we define its past and future respectively as 
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and 

 

where Ψ = system_state (Ξ1,Ξ2) (this definition demonstrates another situation in which our 
second definition of a global state is more convenient). Similarly, we say that a global state 
Ψ1 comes earlier in the computation Ξ than another global state Ψ2 if and only if Past(Ψ1 ⊂ 
Past(Ψ2) (or, alternatively, if Future(Ψ2) ⊂ Future(Ψ1)). This definition will be of central 
importance in our discussion of stable properties in Chapter 6. Another related definition, 
that of an earliest global state with certain characteristics in a computation, can be given 
likewise. We shall return to it in detail in Section 9.3.1. 

In finalizing this section, the reader should return to our discussion at the section's beginning 
to recognize the importance of the concepts we have introduced in establishing a rigorous 
and meaningful terminology. In particular, it should be clear that the partial order ≺+ and the 
notion of a global state suffice to do away with all the ambiguities in our previous use of 
expressions like "concurrent," "scenario," and "causally affect" when referring to global 
timing aspects in the asynchronous model. 

 

 
3.2 The complexity of distributed computations 
Analyzing the complexity of any computation is a means of expressing quantitatively how 
demanding that computation is on the resources that it requires to be carried out. Depending 
on the type of computation one is considering, such resources may include the number of 
processor cycles, the number of processors, the number of messages that are sent, and 
various other quantities that relate to the resources upon which the computation's demands 
are heaviest. Determining which resources are crucial in this sense is then the fundamental 
issue when defining the appropriate measures of complexity for a computation. For example, 
for sequential computations the chiefest resource is time, as given by the number of 
processor cycles that elapse during the computation, but often the number of memory cells 
employed is also important. 

Another example comes from considering parallel computations. Quite often the study of 
such computations is concerned with the feasibility of solving a certain problem on more 
than one processor so that the computation can be solved faster than on one single 
processor. In such cases, one of the fundamental resources continues to be the number of 
processor cycles, but now the number of processors is also important, because it is the 
interplay of these two quantities that establishes the overall efficiency of the resulting 
algorithm and also how that algorithm relates to its sequential counterpart. Models of parallel 
computation adopting measures of complexity related to these two types of resource include 
the PRAM (Parallel Random Access Machine), which is essentially a synchronous model of 
parallel computation on shared-memory cells, as well as other distributed-memory variants, 
also synchronous. 



Whereas the models of parallel computation we just mentioned are geared towards the so-
called data parallelism, the computations we treat in this book relate more closely to what is 
known as control parallelism, and then the approach to measure complexity needs to be 
substantially revised. Data parallelism is the parallelism of problem solving, that is, given a 
problem, the task is to solve it efficiently in parallel, which includes the design of an algorithm 
and the choice of a number of processors leading to the desired efficiency. Control 
parallelism, by contrast, is concerned with the computations that have to be carried out on a 
fixed number of processors, interconnected in a fixed manner, like our graph G. The 
computations of interest are not so much geared towards problem solving, but mainly 
towards controlling the sharing of resources, understood in a very broad sense, throughout 
the system. Very often this also includes the solution of problems very much in the data-
parallel sense, but now the problem is stated on G, which is fixed, so that the control-parallel 
aspects of the computation become far more relevant. 

The complexity of distributed algorithms is based on the assumption that communication and 
time are the resources whose usage should be measured. Given this choice of crucial 
resources, the measures of complexity are expressed in the usual worst-case, asymptotic 
fashion, as functions of n and m, respectively the number of nodes and edges in G. 
However, because G is in this book taken to represent a great variety of real-world systems 
(cf. Section 1.1) at some level of abstraction, some elaboration is required when establishing 
the appropriate complexity measures. 

A convenient starting point to establish the complexity measures of distributed algorithms is 
to first consider communication as the predominant resource under demand. This does not 
mean that time ceases to be a relevant issue, but rather that only the time directly related to 
communication should be taken into account. This approach takes care of most of our needs 
in the book, and is our subject in Section 3.2.1. InSection 3.2.2, we relax this assumption 
that communication takes precedence over time that is not related to communication, and 
then the time that a node spends computing locally becomes a third resource whose usage 
is to be measured. The resulting extended definitions of complexity will be of use especially 
in Section 9.3.3.. 

3.2.1 Communication and time complexities 
If communication is the dominating resource under demand, then the complexity of a 
distributed algorithm is expressed as two measures. The first measure is the already seen 
message complexity (cf. Section 2.1), which is given by the number of messages sent 
between neighbors during the computation in the worst case, that is, the maximum number 
of messages when variations in the structure of G are considered (when applicable), as well 
as all possible executions of the algorithm (each yielding a different set of events, in the 
terminology of Section 3.1). Alternatively, this measure can be substituted by the more 
accurate message-bit complexity, or simply bit complexity, which can be useful in conveying 
relevant differences among algorithms when the messages' lengths depend on n or m (as 
opposed to being O(1)). This is, for example, the case of Algorithm A_FIFO ofSection 2.1 
and of Algorithm S_Locally_Orient of Section 2.2.3.. In the former case, a message may 
contain a task's identification and a node's identification (it may also contain a migrating task, 
but we may assume for our present purposes that such a message does not actually contain 
the task's code, which would already be present at all nodes, but rather simply the task's 
identification), and then the algorithm's bit complexity is, by Theorem 2.3, O(mk(log|NT| + log 
n)). In the latter case, messages are sent containing integers no larger than n (cf. (2.16) and 
(2.17)), so that the algorithm's bit complexity is O(n log2 n). The bit complexity will be 
sometimes employed for our analyses in the book. 



The other measure that contributes to expressing the algorithm's complexity is its time 
complexity, which, in very loose terms, is given by the time spent in communication that 
elapses during the computation in the worst case (again a maximum over the possible 
structures of G and over all of the algorithm's executions). Any further elaboration on this 
definition requires that we consider the asynchronous model and the synchronous model 
separately. 

For the synchronous model, the assumption that the cost of communicationdominates all 
others should come as no surprise, because since the definition of this model in Section 2.1. 
we have assumed that local computation takes no time (or takes a constant time, which can 
be assumed to be zero). Although we made this assumption so that the synchronous model 
could be described without much further elaboration, in this section the assumption comes in 
handy as well, because it is in full accord with the assumed dominance of communication 
costs. 

The definition of the time complexity in the synchronous model is rather simple, and amounts 
essentially to counting the number of pulses that elapse during the computation. In essence, 
then, already inSections 2.2.2.and2.2.3. we would have been able to express the time 
complexities of Algorithms S_Compute_AND and S_Locally_Orient, respectively. In fact, in 
Section 2.2.2we saw that Algorithm S_Compute_AND requires O(n) pulses for completion, 
and that is then its time complexity. Similarly, in Section 2.2.3the number of iterations 
required by Algorithm S_Locally_Orient was seen to be given by O(log n), and because each 
iteration comprises O(n) pulses, the time complexity of that algorithm is O(n log n) 

Defining the time complexity for the synchronous model in this straightforward fashion may 
seem to the reader not to be in complete agreement with our stated purpose of measuring 
time solely as it relates to communication. After all, many pulses may elapse without any 
communication taking place (cf., for example, the synchronous algorithms presented in 
Sections 2.2.2and 2.2.3), but such pulses do nevertheless get counted when assessing the 
algorithm's time complexity. What should be considered to resolve this apparent conflict is 
that, as we have mentioned more than once already, in the synchronous model messages 
are as important as their absence. By including in the time complexity intervals during which 
messages are not sent, we are essentially accounting for the time needed to convey 
information through the absence of communication as well. 

In the asynchronous model, the assumption that the time complexity only takes into account 
the time to perform communication leads to the following methodology to compute an 
algorithm's time complexity. First assume, as in the synchronous model, that local 
computation takes no time, and also that the time to communicate one message to each 
node in a nonempty subset of a node's set of neighbors is O(1). 

The time complexity is then the number of messages in the longest causal chain of the form 
"receive a message and send a message as a consequence" occurring in all executions of 
the algorithm and over all applicasble variations in the structure of G. 

This definition can be made more formal, but before we do that let us consider two important 
related issues. First of all, it should be clear that the time complexity can never be larger 
than the message complexity, because every message taken into account to compute the 
former is also used in the computation of the latter. The usefulness of the time complexity in 
spite of this relationship with the message complexity is that it only considers messages that 
happen "sequentially" one after the other, that is, messages that are causally bound to one 
another. Essentially, then, the time complexity in the asynchronous case can be regarded as 



being obtained from the message complexity by trimming off all the messages that are 
"concurrent" to those in the longest receive-send causal chain. 

The second issue is that the assumption of O(1) message transmission times for the 
computation of the time complexity is only completely valid if every message has length O(1) 
as well. However, we do maintain the assumption to compute the time complexity even 
otherwise, because taking variable lengths into account would not contribute qualitatively to 
establishing what the lengthiest causal chain is. In addition, the effect of variable length is 
already captured by the algorithm's bit complexity, introduced earlier in this section, which 
should be used when needed. 

The way to define the time complexity of an asynchronous algorithm more formally is to 
resort to the precedence graph H introduced in Section 3.1. This graph summarizes the 
essential causal dependencies among events in the computation, and allows the definition of 
the time complexity to be given rather cleanly as follows. Let every edge in H be labeled 
either with a 1, if it corresponds to a message, or with a 0, otherwise. Clearly, this reflects 
our assumptions that messages take constant time to be sent between neighbors and that 
local computation takes no time. The time complexity for fixed G and H (i.e., for a fixed 
execution of the algorithm) is then the length of the longest directed path in H, with the labels 
of individual edges taken as their lengths. Taking the maximum over the applicable 
variations of G and over all the executions of the algorithm (all H's) yields the desired 
measure. 

The reader should now be in position to return to the asynchronous algorithms given 
previously in the book, and have their time complexities assessed to O(1), in the case of 
Algorithm A_FIFO, and to O(n), in the case of Algorithm A_Compute_f. 

3.2.2 Local and global measures 
Assuming that communication dominates the complexity of a distributed computation, and 
that in turn local computation takes no time, is reasonable for many of the systems 
discussed in Section 1.1, especially computer networks and networks of workstations. 
However, G is intended to model a greater variety of message-passing systems, and for 
some of these, including the multiprocessors also discussed in Section 1.1, such an 
assumption may be a bit too strong. 

In this section, we consider the impact of facing nonconstant local processing times, and 
expand our collection of complexity measures to encompass others that may reflect this 
extended view more appropriately. In the synchronous case, all that would be required would 
be to let the duration of an interval of the global clock be a function of n and m. This function 
would then yield a third complexity measure for the synchronous model, and everything else 
would remain essentially as is. It is interesting to note, however, that under this broader 
assumption on the duration of an interval the overall picture of a synchronous computation 
would change a little. Specifically, it would be possible to send messages at any point inside 
an interval, not only at the interval's beginning. Furthermore, in terms of the event-based 
formalism of Section 3.1,internal events would exist in the synchronous model as well. 

It is important to note, in the synchronous model, that at pulse s > 0 a node ni may need to 
examine the set of MSGi(s) of messages received during the previous interval, and the time 
to do this should continue to be assumed constant even when the time to do local 
processing is taken to be variable. What this implies, together with the assumption we have 
made so far that a node may send one message to all of its neighbors in parallel, is that 



none of the synchronous algorithms we have seen so far requires taking local processing 
times to be anything else than constant. Even Algorithm S_Locally_Orient, in which by (2.16) 
and (2.18) it would seem that the examination of O(n) sets of messages is required at a 
single pulse, can be easily written in more detail and then seen to require the examination of 
only one such set per pulse. 

In the context of this book, however, it is in the asynchronous case that nonconstant times 
for local computation will be most important, although not until Chapter 9. In the 
asynchronous model, then, we shall let the local time complexity refer to the time to perform 
local computation upon receiving a message. This is then the complexity of an atomic action 
in Algorithm A_Template. Whenever we use this complexity measure in the book, and if 
confusion may arise, we refer to the algorithm's time complexity as its global time 
complexity.  

Algorithm A_Compute_f is the only algorithm we have seen so far for which variable local 
processing times may need to be considered. What leads to this is that the computation of 

in (2.11) may require a time to be performed that is a function of 
n.Considering this algorithm carefully leads us to other situations in which it would be 
justifiable to assume nonconstant local processing times. As we mentioned earlier in Section 
3.2,often a distributed algorithm is designed to solve a problem that is posed on G. Typical 
examples of such problems are the ones in consider in Sections 4.2, and 4.3, and in Chapter 
7, in which we discuss graph algorithms. Clearly, in such cases a possibility would be to 
have all nodes transmit their local share of information on the structure of G to a previously 
designated node (a leader—cf. Section 5.1,), which would then solve the problem locally and 
then after that possibly spread the solution to the other nodes. This would be very much in 
the style of Algorithm A_Compute_f, although the assumed anonymity in the case of that 
algorithm disallows the existence of a leader altogether, as we discuss in section 5.1. In fact, 
in the presence of anonymity there is no other choice but to program all nodes to perform the 
same computation, as we discussed in Section 2.2. 

However, if the system is not anonymous, then the alternative of coalescing all the 
information regarding G into a leader for solution of the problem is a real possibility, and for 
this possibility it is important to consider the local time complexity of solving the entire 
problem in one single node. Moreover, concentrating all the relevant information in the 
leader may have O(nm) message complexity (considering that each message contains a 
constant number of node identifications) and O(n) time complexity, which, after added to the 
complexity of electing a leader, should also be compared with the corresponding measures 
elicited by the fully distributed alternative, in which all nodes participate in the solution of the 
problem by computing on its share of the problem's input (the structure of G). 

 
3.3 Full asynchronism and full synchronism 
Having introduced the complexity measures of relevance for distributed algorithms, in this 
section we return to the question, first raised in Section 2.1,of the equivalence between the 
asynchronous and synchronous models. What we do is first to indicate explicitly how 
Algorithm S_Template can be used to express an asynchronous algorithm (originally written 
over the template given by Algorithm A_Template). Then, conversely, we show how to 
employ Algorithm A_Template as a basis to transform a synchronous algorithm (originally 
written over the template Algorithm S_Template) into an asynchronous algorithm. 



The first part is simpler, because an asynchronous algorithm runs under all possible 
variations in the timing of the asynchronous model, in particular in the variation that 
corresponds to the synchronous model. The only concern we must have when translating 
Algorithm A_Template into Algorithm S_Template is that, in the former, atomic actions are in 
general triggered by the arrival of messages and executed when the corresponding Boolean 
conditions hold, while in the latter nodes are driven solely by the global clock and operate on 
the sets of messages received during the preceding intervals. Algorithm S_Template makes 
no provisions to condition the execution of an action upon the validity of a Boolean 
expression, which must then be treated inside the action itself. What this amounts to in the 
translation of an asynchronous algorithm into a synchronous one is that, upon the 
occurrence of pulse s=1, only those messages in MSGi(1) received by ni∈N on edges for 
which the corresponding Boolean conditions in the asynchronous algorithm hold can lead to 
the execution of the corresponding actions. The others must be held for reconsideration 
upon the occurrence of pulse s = 2. In general, then, at pulse s > 0 a node ni, may compute 
on messages from any of MSGi(1),…,MSGi(s), at which occasion those messages are 
deleted from the set to which they belong so that the remaining ones may be considered in 
further pulses. This strategy is reflected in Algorithm A-to-S_Template, given next. 

The message msgi that in Algorithm A_Template triggers ni's action is in Algorithm A-to-
S_Template viewed as a variable, initially equal to nil. 

Algorithm A-to-S_Template:  
 

     Variables: 
         msgi = nil; 
         Other variables used by ni, and their initial values, are 
listed here. 

 
 

Listing 3.1  
 

     Input: 

        s=0, MSGi(0) = . 

     Action if ni ∈ No: 
         Do some computation; 

         Send one message on each edge of a (possibly empty) subset 
of 

         Outi. 
 

 

Listing 3.2  
 

     Input: 
        s > 0, MSGi(1),…, MSGi(s) such that origini(msg) = ck ∈ Ini 



         with 1 ≤ k ≤ |Ini | for  MSGi(r). 

     Action: 
         while there exist msg, r ∈ {1,…, s}, and k ∈ {1,…,|Ini|} 
such 

         that msg ∈ MSGi(r) with origini (msg) = ck and Bk do 
              begin 
                  Let r' be the smallest such r and k' any such k; 

                  msgi := msg; 

                  Remove msg from MSGi(r'); 

                  Do some computation; 

                  Send one message on each edge of a (possibly 
empty) sub- 

                  set of Outi 

 

              end. 
 

 

In Algorithm A-to-S_Template, (3.1) is identical to (2.8) in Algorithm S_Template, while (3.2) 
reflects the need to evaluate the appropriate Boolean conditions before the action 
corresponding to (2.2) in Algorithm A_Template can be executed. What (3.2) does at pulse s 
> 0 is to select from MSGi(1),…, MSGI (s) one of the earliest messages (in the synchronous 
sense) for which the corresponding Boolean condition is true, and then to allow the 
corresponding action of the asynchronous algorithm to be executed. When edges are FIFO, 
then (3.2) has to be worked on a little so that the choice of r' and k' guarantees that msg is, 
of the messages to have arrived on ck' but not yet received, the one to have arrived first. The 
reason why this might not happen is that Bk' might be false for the first message and not for 
some other arriving on the same edge. If this happened for all edges, then ni should simply 
halt, thereby indicating an error in the design of the algorithm, just as Algorithm A_Template 
would. 

Clearly, this translation of an asynchronous algorithm to run in the synchronous model does 
not change the algorithm's message complexity. In addition, the reader should check 
carefully that the same holds for the time complexity, that is, the number of pulses that 
elapse before termination of the resulting synchronous algorithm is exactly the number of 
messages in the lengthiest causal chain during an execution of the asynchronous algorithm. 
In addition, even if local processing cannot be assumed to be instantaneous, the translation 
does not increase the amount of local computation that needs to be carried out, even though 
it would seem that the need to check so many sets of messages in (3.2) could require further 
local processing. Readily, these sets can be organized as |Ini| queues of messages at ni, 
that is, one per incoming edge. Then the work that has to be done at (3.2) is the same that in 
Algorithm S_Template ni has to do, and this is assumed to take constant time even if local 
processing cannot be so assumed. 



The other direction of transformation, namely to transform a synchronous algorithm into an 
asynchronous one, is not as immediate, and in this secion we only touch the issue 
superficially. We return to the subject in Section 5.3 for the complete details. Naturally, the 
problem in this case is that the resulting asynchronous algorithm must only allow the action 
of ni at pulse s > 0 to be executed when the set MSGi(s) is available, and this is not 
immediate in the asynchronous model. It seems apparent, then, that in the resulting 
asynchronous algorithms there has to be more communication among the nodes than in the 
synchronous algorithm, so that these sets of messages can be ensured to contain all the 
pertinent messages when they are used. This further increase in communication may then 
lead to a greater time complexity for the asynchronous algorithm when compared to the 
synchronous algorithm. 

A template for the translation of a synchronous algorithm into an asynchronous algorithm is 
given next as Algorithm S-to-A_Template. This algorithm employs an integer variable si ≥ 0 
for ni ∈ N. This variable, initially such that si = 0, is used to keep track of the pulses of the 
synchronous algorithm. A Boolean function DONEi(si) is used to indicate whether ni is ready 
to proceed to the execution of the action that the synchronous algorithm would execute at 
pulse si + 1 for si ≥ 0 (determining what this function should do is then essentially our 
subject in Section 5.3). Finally, the sets MSGi(s) for s ≥ 0 that Algorithm S_Template 
employs are also variables of Algorithm S-to-A_Template, initially empty sets. 

Algorithm S-to-A_Template:  
 

     Variables: 
         si=0; 

         MSGi(s) =  for all s ≥ 0; 
         Other variables used by ni, and their initial values, are 
listed here. 

 
 

Listing 3.3  
 

     Input: 
         msgi = nil 
     Action if ni ∈ No: 
         Do some computation: 

         Send one message on each edge of a (possibly empty) subset 
of 

         Outi 
 

 

Listing 3.4  
 

     Input: 



         msgi such that    origini (msgi) = ck ∈ Ini with 1 ≤ k ≤ 
|Ini|. 

     Action: 
         if DONEi(si) then 
              begin 
                  si := si + 1; 

                  Do some computation; 

                  Send one message on each edge of a (possibly 
empty) sub- 

                  set of Outi 

              end 
         else 
              Add msgi to MSGi(si + 1) if appropriate. 

 
 

In Algorithm S-to-A-Template, (3.3) is identical to (2.1) in Algorithm A-Template, while (3.4) 
indicates how the function DONEi(si) is to be used to ensure that si can be incremented and 
that the action that Algorithm S-Template would perform at pulse.si + 1 by (2.9) can be 
executed. When (3.4) is executed and DONEi(si) turns out to be false, then msgi, the 
message that triggered the action, is added to MSGi(si + 1) if appropriate (msgi may be a 
message unrelated to the synchronous algorithm, that is, one of the messages constituting 
the additional communication traffic that the transformation requires). 

As we remarked earlier, transforming a synchronous algorithm into an asynchronous one 
may lead to increases in both the message complexity and the time complexity with respect 
to the synchronous algorithm. On the other hand, as will become apparent from the material 
in Section 5.3, the complexity that results from assuming nonconstant local processing times 
remains unchanged. 

 
3.4 The role of synchronism in distributed computations 
So far in the book we have stressed more than once that the synchronous model is, in at 
least one important sense, more "powerful" than the asynchronous model. The justification 
behind this informal notion has been that, in the synchronous model, the absence of 
messages conveys information to nodes, while in the asynchronous model nothing like this 
happens. In fact, in Sections 2.2.2 and 2.2.3we have given two synchronous algorithms, 
respectively Algorithms S-Compute-AND and S-Locally-Orient, whose message complexities 
are strictly lower than that of Algorithm A-Compute-f, which is an asynchronous algorithm 
that may be used for the same purposes as those two synchronous algorithms. Of course, 
Algorithms S-Compute-AND and S-Locally-Orient do not have the same generality of 
Algorithm A-Compute-f, and then it might be argued that the improvement in message 
complexity is a consequence of their single-purpose nature, rather than the result of 
exploiting the characteristics of the synchronous model. However, it should be simple for the 
reader to verify that the same particularizations would not lead to any improvements in 
message complexity under the asynchronous model. 



The central question that we address in this section is whether the synchronous model can 
also yield improvements in the time complexity of some asynchronous algorithms. As we 
remarked in Section 3.3, designing an algorithm for the synchronous model and then 
transforming it into an asynchronous algorithm may lead to an increase in both the message 
and time complexities with respect to the synchronous algorithm. But this does not imply that 
an asynchronous algorithm designed "from scratch" (i.e., not as the result of a 
transformation from a synchronous algorithm) would not have better complexities than the 
synchronous algorithm. In order to address this issue, we discuss a problem for which every 
asynchronous algorithm must have a strictly greater time complexity than a very 
straightforward synchronous algorithm that solves the same problem, thereby answering our 
question affirmatively. 

The problem that we discuss is stated in very abstract terms, and is related to 
synchronization issues in distributed systems, although one will probably not easily find any 
practical situation to which it may be readily applicable. Stating the problem requires the 
introduction of the following new terminology. A port is a special edge in the graph G, and a 
port event is an event that involves the sending of a message on a port. A node at which a 
port event may happen (i.e., it may send messages on a port) is called a port node. A 
session is informally defined in terms of our terminology of Section 3.1as a set of events 
including at least one port event for every port and"delimited" by two global states. More 
formally, if Ξ is the set of events representing a distributed computation, then S ⊆ Ξ is a 
session if and only if S includes at least one port event for every port and in addition two 
global states (Ξ1, Ξ2) and (Ξ3, Ξ4) exist such that 

 

For integers μ and σ such that 1 ≤ μ ≤ m and σ ≥ 1, the problem that we consider is called 
the (μ, σ)-session problem, and asks that a graph G with μ ports and a distributed algorithm 
on G be found such that every execution of the algorithm can be partitioned into at least σ 
sessions. In addition, the set of events associated with every execution of the algorithm is 
required to be finite and every port node is required to obtain the information that the σ 
sessions have occurred. 

Solving the (μ, σ)-session problem is in general very simple. For the synchronous model, the 
problem is solved by choosing G to be any graph with no more than one port per node, and 
the synchronous algorithm to be such that every port node sends a message on its port at 
each of the pulses s = 0,…, σ −1. The time complexity of this synchronous algorithm is O 
(σ). 

In the asynchronous model, we can also solve the problem with the same time complexity, 
as follows. Choose G as in the synchronous case, except that all port nodes can send 
messages to one another as well. The asynchronous algorithm is such that every port node 
performs σ rounds of sending a message on its port and then sending a message to every 
other port node containing information that it has finished its participation in the current 
session. The next round is only performed after similar messages have been received from 
all other port nodes. The reader should verify that the time complexity of this algorithm is O 
(σ) if N0 contains all port nodes. 

The difficulty arises when in G we place a constant bound b on | Outi | (or | Inci |, in the 
undirected case), thereby limiting the number of messages that a node may send in a single 
action of Algorithm S-Template or Algorithm A-Template (G is in this case said to be b-



bounded). Clearly, this bound does not affect our proposed synchronous solution to the (μ, 
σ)-session problem, but the asynchronous solution is no longer feasible within O (σ) time, 
because the broadcast to all port nodes at the end of each round can no longer be achieved 
within O(1) time. We give in Theorem 3.1 a lower bound on the time required by any 
asynchronous solution to the problem. 

Theorem 3.1. 

For b ≥ 1, every asynchronous solution to the (μ, σ)-session problem in which G is b-
bounded must be such that the corresponding asynchronous algorithm has time complexity 
of at least (σ −1)�logb+1 μ� − 1. 

Proof: Let G be b-bounded, and consider an asynchronous solution to the (μ, σ)- session 
problem consisting of G and of an asynchronous algorithm. Let Ξ be the set of events 
corresponding to an execution of this algorithm, and label every event Ξ with an integer (ξ) 
obtained inductively as follows. If ξ happens at ni ∈ N when ni is in its initial state, then let 
(Ξ) = 0. If not, then let (ξ) = (ξ') + 1, where ξ' is the event having the greatest label 
among the events ξ' in connection with which at least one m`essage is sent and in addition ξ' 
≺+ ξ. Informally, this labeling of the events in Ξ corresponds to attaching to each event the 
number of messages on which it depends causally. Because Ξ is finite, every label is finite 
as well. Let t be the greatest label over Ξ. Clearly, the time complexity of the algorithm is at 
least 

t. Now let 

 

and partition Ξ into the K subsets of events Ξ1,…, ΞK, where, for k = 1,…, K, ξ ∈ Ξk is such 
that (k − 1) �logb+1 μ� ≤ (ξ) ≤ k�logb+1 μ� − 1. Clearly, then, all of 

 

for 1 ℓ l < K) are global states, because of the way the labels were assigned and of the 
fact that no two sets of Ξ 1,…, Ξ K have any event with the same value for  

The next step is to partition every Ξ k into the sets Γk and Θk such that all of 

 

for 1 < ℓ < K, and 



 

are global states, and furthermore the following two conditions hold for a sequence of ports 
e0,…,eK (this sequence may contain the same port more than once). 

i. Γk does not contain any port event involving ek−1. 
ii. Θk does not contain any port event involving ek. 

This partitioning can be done for all k = 1,…, K inductively as follows. Pick e0 to be any 
arbitrary port, and assume that ek−1 has been defined. If a port exists that is not involved in 
any port event in Ξk, then let ek be that port, Γk = Θ, and Θk = Ξk, thereby satisfying 
conditions (i) and (ii). If, on the other hand, every port is involved in at least one port event in 
Ξk, then let Ξ1 be the earliest port event involving ek−1 in Ξk, and consider the number of 
port events contained in the set 

 

This set includes Ξ1 and every other port event in Ξk that is in the future of Ξ1 (including, of 
course, every other port event involving ek−1 in ek−1 in Ξk). Because G is b-bounded, and 
considering the range of values for in Ξk, the number of port events that we seek is no 
larger than the sum of the elements in the geometric progression of rate b + 1 starting at 1 
and ending at 

 

that is, 

 

What this means is that at least one of the μ ports is not involved in any of the port events in 
Fk. Taking one of these ports to be ek, Γk = Ξk - Fk, and Θk = Fk clearly satisfies conditions (i) 
and (ii). It can be easily verified that, in both cases, the resulting Γk and Θk induce global 
states, as required (cf. Exercise 5). 

By conditions (i) and (ii), the sets Γ1, Θk−1 ∪ Γk for 1 < k ≤ K, and ΘK cannot contain a 
session, because a session must include at least one port event for every port. What this 
amounts to is that every session must have a nonempty intersection with both Γk and Θk for 
some k such that 1 ≤ k ≤ K, meaning that K is the maximum number of sessions in Ξ. 
Because Ξ contains at least σ sessions, and considering the definition of K, we have 
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and then t ≥ (σ −1) �logb+1 μ� − 1. 

Theorem 3.1 and our discussion earlier in this section indicate that the synchronous model 
possesses characteristics that allow synchronous algorithms to perform better than 
asynchronous algorithms with respect to the algorithms' message and time complexities. In 
practice, however, the main interest in the synchronous model stems from the possibility of 
eventually obtaining an asynchronous algorithm from an algorithm originally designed for the 
synchronous model. This is the subject of extensive discussion in Section 5.3, but in this 
section we wish to highlight the role that this approach has had historically in the 
development of distributed algorithms. 

We consider the problem of establishing a breadth-first numbering on the nodes of G when 
G is a directed graph. This problem asks that every node ni be assigned a nonnegative 
integer di equal to the shortest distance from a designated node n1 to ni in terms of numbers 
of edges. Initially, di = ∞ for all ni ∈ N, thereby taking care of those nodes to which no 
directed path exists from n1. This problem is closely related to the problem of determining 
the shortest distances between all pairs of nodes when G is undirected (we treat this 
problem in Section 4.3). 

Obtaining a synchronous algorithm to solve this problem is a trivial matter. At pulse s = 0, n1 
sets d1 to zero and sends a message on every edge in Out1. For s > 0, if a node ni receives 
at least one message during interval s – 1 and at pulse s it still holds that di = ∞, then it must 
be that the shortest directed path from n1 to ni contains s edges. What ni does in this case is 
to set di to s and then send a message on each edge in Outi. Readily, this algorithm requires 
no more than n – 1 pulses for completion and employs no more than m messages. Its time 
and message complexities are then, respectively, O(n) and O{m). 

Historically, this simple synchronous algorithm has accounted for the introduction of an 
asynchronous algorithm of time complexity O(n log n/ log k) and message complexity O(kn2) 
for arbitrary k such that 2 ≤ k < n, while the best asynchronous algorithm available at the 
time had time complexity O(n2−2ℓ) and message complexity O(n2+ ℓ) for arbitrary ℓ such that 
O ≤ ℓ ≤ 0.25. The reader should experiment with these complexities to verify that, given any 
l in the appropriate range, there exists a k, also in the appropriate range, such that the 
algorithm obtained from the synchronous algorithm is strictly better in at least one of the two 
complexity measures (and no worse in neither). 

 
3.5 Exercises 
1. Show that the two definitions of a global state given in Section 3.1are equivalent to each 
other.  
2. Obtain the time complexity of Algorithm A_FIFO when it is viewed as being executed over 
GP.  
3. Give the details of an algorithm to concentrate upon one single node all the information on 
the structure of G. The resulting algorithm should have the complexities mentioned in 
Section 3.2.2.  
4. Consider the (μ,σ)-session problem in the asynchronous case, and suppose that a node 
does its σ port events all before the broadcast. What is wrong with this approach?  
5. Consider an event ξ and the sets  
6. Consider the synchronous algorithm for breadth-first numbering described in Section 3.4. 
Express that algorithm in the format given by AlgorithmS-Template.  
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Show that the two definitions of a global state given in Section 3.1are equivalent to each 
other. 
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Obtain the time complexity of Algorithm A_FIFO when it is viewed as being executed over 
GP. 
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Give the details of an algorithm to concentrate upon one single node all the information on 
the structure of G. The resulting algorithm should have the complexities mentioned in 
Section 3.2.2. 

4. 
  

Consider the (μ,σ)-session problem in the asynchronous case, and suppose that a node 
does its σ port events all before the broadcast. What is wrong with this approach? 

5. 

  

Consider an event ξ and the sets  

 

and 

 

Show that both partitions (Ξ1,Ξ - Ξ1) and (Ξ - Ξ2,Ξ2) are global states. 
6. 

  
Consider the synchronous algorithm for breadth-first numbering described in Section 3.4. 
Express that algorithm in the format given by AlgorithmS-Template. 

 
  

 

3.6 Bibliographic notes 
The material in Section 3.1is based on Lamport (1978) and on Chandy and Lamport (1985), 
having also benefited from the clearer exposition of the concept of a global state to be found 
in Bracha and Toueg (1984). Additional insights into the concepts discussed in that section 
can be found in Yang and Marsland (1993), and in the papers in Zhonghua and Marsland 
(1994). 

Formalisms different from the one introduced in Section 3.1, often with accompanying proof 
systems, have been proposed by a number of authors. These include temporal logic (Pnueli, 
1981; Manna and Pnueli, 1992) and I/O automata combined with various proof techniques 
(Lynch and Tuttle, 1987; Chou and Gafni, 1988; Welch, Lamport, and Lynch, 1988; Lynch, 
Merritt, Weihl, and Fekete, 1994). Additional sources on related material are Malka and 
Rajsbaum (1992) and Moran and Warmuth (1993). 

Most of the complexity measures introduced in Section 3.2 are standard in the field, and can 
also be looked up in Lamport and Lynch (1990). The reader may also find it instructive to 
check different models and associated complexity measures in the field of parallel and 
distributed computation. Source publications include Gibbons and Rytter (1988), Akl (1989), 
Karp and Ramachandran (1990), Feldman and Shapiro (1992), JáJá (1992), and Leighton 
(1992). 

Section 3.3is related to the discussion in Awerbuch (1985a), while the material in Section 
3.4is based mostly on the work by Arjomandi, Fischer, and Lynch (1983). The comments at 
the end of the section on the breadth-first numbering of nodes derive from Awerbuch 
(1985b). 



 

Chapter 4: Basic Algorithms 
Overview 
Three basic problems are considered in this chapter, namely the problems of propagating 
information from a group of nodes to all nodes, of providing every node with information on 
which are the identifications of all the other nodes in G, and of computing the shortest 
distances (in terms of numbers of edges) between all pairs of nodes. Throughout this 
chapter, G is an undirected graph. 

The first problem is treated in Section 4.1, first in the context of propagating information from 
a group of nodes to all the nodes in G, and then in the context of propagating information 
from one single node to all others but with the additional requirement that the node originally 
possessing the information must upon completion of the algorithm have received news that 
all other nodes were reached by the propagation. Our discussion in Section 4.1 
encompasses both the case of one single instance of the algorithm being executed on G and 
of multiple concurrent instances initiated one after the other. 

Section 4.2 contains material on the detection of G's connectivity by all nodes in the form of 
providing each node with a list of all the other nodes in G. Although many algorithms can be 
devised with this end, the one we present builds elegantly on top of one of the algorithms 
discussed in the previous section, and is for this reason especially instructive. 

Computing all-pair shortest distances is our subject inSection 4.3. This is the first graph 
problem we treat in detail in the book (others can be found in Chapter 7). Our approach in 
Section 4.3 is that of not only giving a fundamental distributed algorithm, but also providing a 
nontrivial example to be used to illustrate the relationship between the asynchronous and 
synchronous models of distributed computation when we further return to that topic inSection 
5.3. 

Sections 4.4 and 4.5 contain, respectively, exercises and bibliographic notes. 



 
4.1 Information propagation 
The problem that we consider in this section is that of propagating a piece of information 
(generically denoted by inf) from the single node (or group of nodes) that originally 
possesses it to all of G's nodes. We divide our discussion into two parts. The first part is the 
presentation of algorithms to solve two important variations of the problem, and comes in 
Section 4.1.1.  

The second part is a discussion of how to handle multiple concurrent instances of these 
algorithms without examining the contents of the message being propagated. This is the 
subject ofSection 4.1.2. 

4.1.1 Basic algorithms 
The problem of propagating information through the nodes of G is the problem of 
broadcasting throughout G information originally held by only a subset of G's nodes. In this 
section, we consider two variations of this problem, known respectively as the Propagation 
of Information problem (or PI problem) and the Propagation of Information with Feedback 
problem (or PIF problem). In the PI problem, all that is asked is that all nodes in G receive 
inf, whereas in the PIF problem the requirement is that not only all nodes receive inf but also 
that the originating node be informed that all the other nodes possess inf. Let us discuss the 
PI problem first. 

The PI problem can be solved by a wide variety of approaches, each one with its own 
advantages. For example, if n1 is the node that originally possesses inf, then one possible 
approach is to proceed in two phases. In the first phase, -a spanning tree is found in G. In 
the second phase, the spanning tree is employed to perform the broadcast, as follows. Node 
n1 sends inf on all the edges of the spanning tree that are incident to it. Every other node, 
upon receiving inf, passes it on by sending it on every edge of the spanning tree that is 
incident to it and is not the edge on which inf arrived. Readily, if the spanning tree can be 
assumed to be available to begin with, then an asynchronous algorithm based on this 
strategy has message and time complexities both equal to O(n) 

This simple approach can be extended to the case in which inf is originally possessed by 
more than one node. In this case, instead of a spanning tree we need a spanning forest, 
each of whose trees including exactly one of the nodes having inforiginally. The broadcast 
procedure on each tree is then entirely the same as we described for the case of a single 
initiator. 

There are essentially three reasons why this simple and effective approach may be 
undesirable. The first reason is that the spanning tree (or spanning forest) may not be 
available to begin with and then has to be determined at the cost of additional message and 
time complexities. Of course, once the tree (or forest) has been determined, then it may in 
principle be used indefinitely for many further broadcasts from the same nodes, so that 
apparently at least the additional cost may be somehow amortized over many executions of 
the algorithm and then become negligible for most purposes. The second reason for 
investigating other approaches in spite of this possible amortization of the initial cost comes 
from considering possible applications of the algorithm. By forcing the broadcast to be 
carried out on the same edges all the time, we are in essence ignoring the effect the 
possible variations with time on the delays for message delivery and also ignoring the fact 



that relying on a single tree (or forest) may be unreliable. Although our models of 
computation make no provisions for either circumstance to actually be an issue, in practice it 
may certainly be the case. 

The third reason for us to consider a different approach (and really the most important one) 
is that this other approach, although extremely simple, illustrates interesting principles of 
distributed algorithm design, and in addition constitutes a sort of foundation for the rest of 
this chapter and for other sections to come as well(Section 5.2.1, for example). 

The solution we describe next to the PI problem does the broadcast by "flooding" the 
network, and for this reason has a higher message complexity than the one we gave based 
on a spanning forest. The very simple idea behind this approach is that all nodes possessing 
inf initially send it to all of their neighbors at the beginning (they all start concurrently). Every 
other node, upon receiving inf for the first time, sends it on to all of its neighbors, including 
the one from which it was received. As a result, a node receives inf from all of its neighbors. 
In this strategy, inf is propagated from the nodes that initially possess it as a "wave," and 
then reaches all nodes as fast as possible and regardless of most edge failures (that is, 
those that do not disconnect G). This figurative view of how the algorithm proceeds globally 
is quite helpful to one's understanding of various distributed algorithms, including many that 
we discuss in this book, most notably inChapter 5,6, and 9. 

This strategy is reflected in Algorithm A_PI, given next. In this algorithm, The set N0 
comprises the nodes that possess inf initially. A node ni, employs the the Boolean variable 
reachedi (equal to false, initially) to indicate whether ni has been reached by inf. Node ni, 
upon receiving inf from a neighbor, must check this variable before deciding whether inf 
should be passed on or not. 

Algorithm A_PI  
 

        Variables: 
            reachedi = false. 

 
 

Listing 4.1  
 

         Input: 
            msgi = nil. 
        

         Action if ni � N0 
            reachedi := true; 
            Send inf to all nj �Neigi 

 
 

Listing 4.2  
 

         Input: 



                

            msgi = inf. 

            

         Action: 
            if not reachedi then 
                 begin 
                     reachedi := true; 
                     Send inf to all nj � Neigi 

                 end. 
 

 

It should be instructive for the reader to briefly return to the interpretation of the functioning 
of this algorithm as a wave propagation to verify the following. It is impossible for a node ni, 
for which reachedi = true to tell whether a copy of inf it receives in (4.2) is a response to a 
message it sent in (4.1) or (4.2), or a copy that was already in transit to it when a message it 
sent out arrived at its destination. In the latter case, letting nj be the node from which this 
copy of inf originated, the edge (ni, nj) is one of the edges on which two waves meet, one 
from each of two members of N0 (possibly ni, nj, or both, depending on whether they belong 
to N0). 

Because in G there exists at least one path between every node and all the nodes in N0, it is 
a trivial matter to see that inf does indeed get broadcast to all nodes by Algorithm A_PI. In 
addition, by (4.1) and (4.2), it is evident that the message complexity of this algorithm is 
O(m) (exactly one message traverses each edge in each direction, totaling 2m messages) 
and that its time complexity is O(n) 

Let us now consider the PIF problem. Unlike the PI problem, the PIF problem is stated only 
for the case in which inf is initially possessed by a single node. Similarly to the PI problem, a 
solution based on a spanning tree can also be adopted, having essentially the same 
advantages and drawbacks as in the case of that problem. In such a solution, n1, the only 
node originally possessing inf, is viewed as the tree's root, while every other node 
possesses a special neighbor, called parenti at node ni on the tree path from ni to n1. The 
algorithm initiates with n1 sending inf on all tree edges incident to it. Every other node ni, 
upon receiving inf from a neighbor for the first time, sets parentito be that neighbor and, if not 
a leaf, forwards inf on all tree edges incident to it, except the one leading to parenti. If ni is a 
leaf, then it sends inf back to parenti immediately upon receiving it for the first time. Every 
other node, except n1, having received inf on every tree edge, sends inf to parenti. Upon 
receiving inf on all tree edges incident to it, n1 has the information that inf has reached all 
nodes. Clearly, this solution has both the message and time complexities equal to O(n) 

The solution by flooding to the PIF problem that we now describe in detail is an extension of 
the flooding solution we gave in Algorithm A_PI to the PI problem. Similarly to the spanning-
tree-based solution we just described, a variable parenti is employed at each node ni to 
indicate one of ni's neighbors. In contrast with that solution, however, this variable is no 
longer dependent upon a preestablished spanning tree, but rather is determined dynamically 
to be any of ni's neighbors as follows. When ni receives inf for the first time, parenti is set to 
point to the neighbor of ni from which it was received. The algorithm is started by n1, which 
sends inf to all of its neighbors. Every other node ni, upon receiving inf for the first time, sets 
parenti appropriately and forwards inf to all of its neighbors, except parenti. Upon receiving a 



copy of inf from each of its neighbors, ni may then send inf to parenti as well. Node n1 
obtains the information that all nodes possess inf upon receiving inf from all of its neighbors. 

This algorithm is given next as Algorithm A-PIF. The variable parenti is initialized to nil for all 
ni � N. Node ni also employs the variable counti, initially equal to zero, to register the number 
of copies of inf received, and the Boolean variable reachedi, initially set to false, to indicate 
whether ni, has been reached by inf. Note that counti = 0 if reachedi = false, but not 
conversely, because reached1 must become true right at the algorithm's onset, at which time 
count1 = 0. The set N0 now comprises one single element, namely the node that initially 
possesses inf, so No = {n1} 

Algorithm A_PIF:  
 

         Variables: 
             parenti = nil; 
             counti = 0; 

             reachedi = false. 
 

 

Listing 4.3  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             reachedi := true; 
             Send inf to all nj � Neigi. 

 
 

Listing 4.4  
 

         Input: 
             msgi = inf such that origini(msgi) = (ni, nj). 

     

         Action 
             counti := counti + 1; 

             if not reachedi then 
                 begin 
                     reachedi := true; 
                     parenti := nj; 

                     Send inf to every nk  Neigi such that nk ≠ 
parenti 

                 end; 



             if counti = |Neigii| then 
                  if parenti ≠ nil then 
                       Send inf to parenti. 

 
 

It follows easily from (4.3) and (4.4) that the collection of variables parenti for all ni � N 
establishes on G a spanning tree rooted at n1 (Figure 4.1). The leaves in this tree are nodes 
from which no other node receives inf for the first time. The construction of this tree can be 
viewed, just as in the case of Algorithm A-PI, as a wave of information that propagates 
outward from n1 to the farther reaches of G. Clearly, this construction involves 

 

messages and O(n) time. If it can be shown that every edge on the tree (there are n− 1 such 
edges) carries an additional copy of inf from node ni ≠ n1 to parenti by time O(n) as well, then 
the total number of messages involved in Algorithm 

 
Figure 4.1: During an execution of Algorithm A_PIF, the variables parent i for all nodes 
ni are set so that a spanning tree is created on G. This spanning tree is rooted at n1, and 
its leaves correspond to nodes from which no other node received inƒ for the first time. 
In this figure, a directed edge is drawn from ni to nj to indicate that parenti = nj.  

A_PIF is 2m = O(m), while its time complexity is O(n). Theorem 4.1 provides the necessary 
basis for this argument, with Ti � N containing the nodes in the subtree rooted at node ni. 

Theorem 4.1 

In Algorithm A_PIF, node ni ≠1 sends in ƒ to parenti within at most 2d time of having received 
inƒ for the first time, where d is the number of edges in the longest tree path between ni and 
a leaf in Ti. In addition, at the time this message is sent every node in Ti has received in ƒ. 

Proof: The proof proceeds by induction on the subtrees of Ti. The basis is given by Ti's 
leaves, and then the assertion clearly holds, because no nj � N is such that parenti is a leaf 
in Ti. Assuming the assertion for all the subtrees of Ti rooted at nodes nj such that parentj= ni 
leads directly to the theorem, because the induction hypothesis states that every such nj 
sends inƒ to ni within at most 2(d −1) time of having received inƒ for the first time. The 
theorem then follows by (4.3) and (4.4). 

In addition to helping establish the complexity of Algorithm A_PIF, Theorem 4.1 is also 
useful in polishing our view of the algorithm's functioning as a wave propagation. What 
happens then is that a wave is propagated forward from n1, and then another wave is 



propagated ("echoed") back to n1. This second wave is initiated concurrently at all the leaves 
of the spanning tree and collapses back towards n1. Notice that the two waves are not really 
completely separated from each other. In fact, it may happen that the second wave reaches 
a node before the first wave has reached that node on all possible fronts (i.e., on all possible 
edges incident to that node). 

Corollary 4.2. 

In Algorithm A_PIF, node n1 receives inƒ from all of its neighbors within time O(n) of having 
executed (4.3). In addition, at the time the last inƒ is received every node in N has received 
inƒ  

Proof: Immediate from Theorem 4.1 applied to all nodes ni such that parenti = n1 and from 
(4.4). 

Before ending this section, we wish to make one comment that relates the two algorithms we 
have studied to material we saw previously in Section 2.3. From the perspective of the 
material discussed in that section, Algorithms A_PI and A_PIF offer good examples of how 
the knowledge that the nodes have evolve as the algorithms are executed. In the case of 

Algorithm A_PI, before the algorithm is started it holds that Ki  for all ni � N0, with 

being any sentence that can be deduced from inƒ. When the algorithm is done, then Ki  
holds for all ni, � N. 

The situation is quite similar for Algorithm A-PIF, although more can be said. Initially, it holds 

that Ki , and after the first wave has reached all nodes it holds that Ki for all ni � N. In 
addition, by Corollary 4.2, when n1 has received inƒ from all of its neighbors it also holds that 

K1Ki  for all ni � N. 

4.1.2 Handling multiple concurrent instances 
Algorithms for propagating information throughout G like the ones we discussed in the 
previous section are of fundamental importance in various distributed computations. 
Together with the three general techniques discussed in Chapter 5 (leader election, 
distributed snapshots, and network synchronization), these algorithms can be regarded as 
constituting fundamental building blocks for the design of distributed algorithms in general. In 
fact, algorithms for propagating information, either through all of G's nodes (as in the 
previous section) or in a more restricted fashion, are themselves components used widely in 
the design of the other building blocks we just alluded to. Understandably, then, some of 
these algorithms have been incorporated in the design of communication processors as 
built-in instructions to be executed by the nodes of G when this graph represents a network 
of communication processors (cf.Section 1.2). 

It is in this context that the question of how to handle multiple concurrent instances of 
Algorithms A_PI and A_PIF arises. In the case of Algorithm A_PI, multiple concurrent 
instances occur when the nodes in N0 repeatedly broadcast a series of messages, say inƒ1, 
inƒ2,… A quick examination of the algorithm reveals that a possibility to handle such a series 

at a node ni, is to employ a Boolean variable in connection with inƒk, for k ≥ 1. 
Upon arrival of a message, its contents indicate which variable to use. However, if G's edges 



are FIFO, then another alternative can be considered that does not require an unbounded 
number of Boolean variables to be employed at each node, and furthermore does away with 
the need to inspect the contents of the messages (as befits a communication processor). 

This alternative is based on the simple observation that, under the FIFO assumption, every 
node receives the stream of messages, on every edge incident to it, in the order the 
messages were sent by the nodes in N0. The strategy is to employ |Neigi| counters at ni to 
indicate the number of messages already received on each of the edges in Inci. These 

counters, called for nj � Neigi, are initially equal to zero and get incremented by 1 
upon receipt of a message on the corresponding edge. In order to check whether such a 
message, when received from nl, � Neigi, is being received at ni for the first time, it suffices 
to check whether 

 

for all nj � Neigi such that j ≠ l. In the affirmative case, the message is indeed being received 
for the first time and should be passed on (cf. Exercise 2). 

A similar question arises in the context of Algorithm A_PIF when the stream of messages is 
sent by node n1. As in the case of Algorithm A_PI, providing each node ni with an 
unbounded number of sets of variables, and then allowing ni to inspect the contents of 
incoming messages to decide which set to use, is an approach to solve the problem. 
Naturally, though, one wonders whether the FIFO assumption on the edges of G can lead to 
a simplification similar to the one we obtained in the previous case. It should not be hard to 
realize, however, that the FIFO assumption does not necessarily in this case imply that the 
stream of messages is received at each node, on every edge incident to it, in the order it 
was sent by n1, and then our previous strategy does not carry over (cf. Exercise 3). 
Nevertheless, the weaker assertion that every node is reached by the stream of messages in 
the order it was sent does clearly hold under the assumption of FIFO edges, but this does 
not seem to readily provide a solution that is independent of the messages' contents. 

 
4.2 Graph connectivity 
The problem that we treat in this section is the problem of discovery, by each node in N, of 
the identifications of all the other nodes to which it is connected by a path in G. The 
relevance of this problem becomes apparent when we consider the myriad of practical 
situations in which portions of G may fail, possibly disconnecting the graph and thereby 
making unreachable from each other a pair of nodes that could previously communicate over 
a path of finite number of edges. The ability to discover the identifications of the nodes that 
still share a connected component of the system in an environment that is prone to such 
changes may be crucial in many cases. The algorithm that we present in this section is not 
really suited to the cases in which G changes dynamically. The treatment of such cases 
requires techniques that are altogether absent from this book, where we take G to be fixed 
and connected. The interested reader is referred to the literature for additional information. 
The algorithm that we present is not the most efficient one, either, but it is the one of our 
choice because it very elegantly employs techniques for the propagation of information seen 
in Section 4.1.1.  

The algorithm is called Algorithm A_Test _Connectivity, and its essence is the following. 
First of all, it may be started by any of the nodes in N, either spontaneously (if the node is in 



N0) or upon receipt of the first message (otherwise). In either case, what a node ni does to 
initiate its participation in the algorithm is to broadcast its identification, call it idi, in the 
manner of Algorithm A_PIF. As we will see, this very simple procedure, coupled with the 
assumption that the edges in G are FIFO, suffices to ensure that every node in N obtains the 
identifications of all the other nodes in G. 

The set of variables that node ni employs to participate in Algorithm A_Test_Connectivity is 
essentially an n-fold replication of the set of variables employed in Algorithm A_PIF, because 
basically what ni is doing is to participate in as many concurrent instances of Algorithm 
A_PIF as there are nodes in G (although not in the sense of Section 4.1.2, because now 

each instance is generated by a different node). So, for nj � N, (initialized to nil) 

indicates the node in Neigi from which the first idj has been received, (initially equal 

to zero) stores the number of times idj has been received, and the Boolean 
(equal to false, initially) is used to indicate whether idj has been received at least once. 
Another Boolean variable, initiatedi, initialized to false, is employed at ni to indicate whether 
ni � N0. (Use of this variable is a redundancy, but we keep it for notational simplicity; in fact, 

initiatedi = true if and only if there exists at least one nj � N such that = true) 

Algorithm A_Test_Connectivity:  
 

         Variables: 

              = nil for all nk � N; 

              = 0 for all nk � N; 

              = false for all nk � N; 
             initiatedi = false. 

 
 

Listing 4.5  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             initiatedi := true; 

              := true; 
             Send idi to all nj � Neigi. 

 
 

Listing 4.6  



 

         Input: 
             msgi = idk such that origini(msgi) = (ni, nj) for some nk 
� N. 

         Action: 
             if not initiatedi then 
                  begin 
                      initiatedi := true; 

                       := true; 
                      Send idi to all nl � Neigi 

                  end; 

              :=  + 1; 

             if not  then 
                  begin 

                       := true; 

                       := nj; 

                      Send idk to every nl � Neigi such that nl ≠ 

 
                  end; 

             if  = |Neigi| then 

                  if  ≠ nil then 

                       Send idk to  
 

 

In Algorithm A_Test_Connectivity, (4.5) and (4.6) should compared respectively with (4.3) 
and (4.4) of Algorithm A_PIF. What this comparison reveals is that (4.3) and (4.5) are 
essentially the same, whereas (4.6) is obtained from (4.4) by the addition of the appropriate 
commands for ni to initiate its participation in the computation if it is not in N0  

As we mentioned earlier, this algorithm is based on the assumption that G's edges are FIFO. 
To see that it works, it is helpful to resort to the pictorial interprepation as propagating waves 
that we employed in the previous section for the algorithms for information propagation. The 
wave that node ni propagates forward with its identification reaches every other node nj 
either when initiatedj = true or when initiatedj = false. By (4.5) and (4.6), and because of the 
FIFO property of the edges, in either case idi is only sent along the nodes on the path from nj 



to ni obtained by successively following the parent pointers after idj has been sent on the 
same path. Therefore, by the time ni receives idi from all of its neighbors it has already 
received idj at least once (cf. Exercise 4). Because this is valid for all nj � N, then ni must by 
this time know the identifications of all nodes in G  

Algorithm A_Test_Connectivity can be regarded as the superposition of n instances of 
Algorithm A_PIF, so its message complexity is n times the message complexity of that 
algorithm, that is, O(nm) (to be precise, each edge carries exactly n messages in each 
direction, so the total number of messages is 2nm). Because the lengths of messages 
depend upon n, it is in this case appropriate to compute the algorithm's bit complexity as 
well. If we assume that every node's identification can be expressed in [logn] bits, then the 
bit complexity of Algorithm A_Test_Connectivity is O(nm log n). The time complexity of the 
algorithm is essentially that of Algorithm A_PIF, plus the time for a node in N0 to trigger the 
initiation of another node as far from it as n − 1 edges; in summary, O(n) as well. 

 
4.3 Shortest distances 
The last basic problem considered in this chapter is the problem of determining the shortest 
distances in G between all pairs of nodes. Distances between two nodes are in this section 
taken to be measured in numbers of edges, so that the problem that we treat is closely 
related to the problem of breadth-first numbering that we considered briefly at the end 
ofSection 3.4. The problem is now much more general, though, because in that section we 
concentrated solely on computing the distances from a distinguished node n1 to the other 
nodes in N that could be reached from it (G was then a directed graph). In addition, in that 
section, n1 was not required to know at the end of the algorithm the numbers that had been 
assigned to the other nodes. 

Another requirement that we add to the algorithm to compute shortest distances is that at the 
end a node be informed not only of the distance from it to all other nodes, but also of which 
of its neighbors lies on the corresponding shortest path. Readily, the availability of this 
information at all nodes provides a means of routing messages from every node to every 
other node along shortest paths. When G has one node for every processor of some 
distributed-memory system and its edges reflect the interprocessor connections in that 
system, this information allows shortest-path routing to be done (cf.Section 1.3). 

We approach this problem by first giving a synchronous algorithm that solves it, and then 
indicating how the corresponding asynchronous algorithm can be obtained. The 
synchronous algorithm, called Algorithm S_Compute_Distances, proceeds as follows. At 
pulse s = 0, every node sends its identification to all of its neighbors. At pulse s = 1, every 
node possesses the identifications of all nodes that are no farther from it than one edge 
(itself and its neighbors). A node then builds a set with the identifications of all those nodes 
that are exactly one edge away from it and sends this set to its neighbors. At pulse s = 2, 
every node has received the identifications of all nodes located no farther than two edges 
from it (itself, its neighbors, and its neighbors' neighbors). Because a node knows precisely 
which nodes are zero or one edge away from it, determining the set of those nodes that are 
two edges away is a simple matter. What happens then is that, in general, at pulse s ≥ 0 a 
node sends to its neighbors a set containing the identifications of all those nodes that are 
exactly s edges away from it. For s = 0, this set comprises the node's own identification only. 
For s > 0, the set comprises every node identification received during interval s − 1, except 
those of nodes which are at most s − 1 edges away from itself. Clearly, no more than n 
pulses are required. The last pulse may be an earlier one, though, specifically pulse S if the 
set that the node generates at this pulse is empty. Clearly, all further sets the node 



generated would be empty as well, and then it may cease computing (although innocuous 
messages may still arrive from some of its neighbors). Naturally, the value of S may differ 
from node to node. For simplicity, however, in the algorithm that we give next we let all 
nodes compute through pulse s = n−1 (cf. Exercise 6). 

As inSection 4.2, we let idi denote ni's identification. Variables used by Algorithm 
S_Compute_Distances are the following. The shortest distance from ni, to nj � N is denoted 

by , initially equal to n (unless j = i, in which case the initial value is zero). The node in 

Neigi on the corresponding shortest path to nj ≠ ni is denoted by , initially equal to nil. 
The set of identifications to be sent out to neighbors at each step is denoted by seti; initially, 
it contains ni's identification only. In Algorithm S_Compute_Distances, N0 = N. 

Algorithm S_Compute_Distances:  
 

         Variables: 

              := 0 

              := n for all nk � N such that k ≤ i; 

              := n nil for all nk � N such that k ≤ i; 
             seti = {idi 

 
 

Listing 4.7  
 

-- 
 

 

Listing 4.8  
 

         Input: 
             0 < s ≤ n − 1, MSGi(s) such that origini(setj) = (ni,nj) 
for setj � 

             M SGi(s) 

         Action: 

             seti :=  

             for all setj � MSGi(s) do 
                  for all idk � setj do 

                       if  > s then 



                             begin 

                                  := s; 

                                  := nj; 

                                 seti := seti � {idk} 

                             end; 
                  Send seti to all nk � Neigi 

 
 

Even before the correctness of Algorithm S_Compute_Distances is established formally, 
evaluating its message and time complexities is a simple matter. If the algorithm functions 
correctly, then every node must receive the identification of every other node, and then by 
(4.7) and (4.8) every node's identification must traverse every edge in both directions. If we 
take a node's identification to be a message, then the number of messages employed by 
Algorithm S_Compute_Distances is 2nm, and its message complexity is then O(nm). As in 
the case of Algorithm A_Test_Connectivity, message lengths are in this case dependent on 
n. If, as in the case of that algorithm, we assume that node identifications can be expressed 
in �logn� bits, then the bit complexity of Algorithm S_Compute_Distances is O(nm log n). 
By the range of s in (4.8), the time complexity of this algorithm is O(n). What supports these 
results is Theorem 4.3. 

Theorem 4.3 
For s ≥ 0 in Algorithm S_Compute_Distances, at pulse s every node ni has received the 
identifications of exactly those nodes nj � N such that the shortest paths between ni and nj 

contain no more than s edges. Furthermore, for j ≠ i, and are, respectively, 
the number of edges and the neighbor of ni on one such path. 

Proof: The proof is by induction, and the basis, corresponding to pulse s = 0, is trivial. If we 
inductively assume the theorem's assertion for pulse s − 1, then for pulse s > 0 we have the 
following. By the induction hypothesis, ni has at pulse s −1 received the identifications of all 

nj � N that are at most s −1 edges away from it, and the corresponding and 
have been set correctly. In addition, by the induction hypothesis and by (4.7) and (4.8), 
during interval s −1 nj has received from each of its neighbors the identifications of all nj � N 
that are s −1 edges away from that neighbor. A node nj is s edges away from ni if and only if 
it is s −1 edges away from at least one node in Neigi, so at pulse s ni, has received the 
identifications of all nj � N that are no more than s edges away from it. The theorem follows 

easily from the observation that, by (4.8), the variables and for all nj � N that 
are s edges away from ni are set when ni first finds in MSGi(s) the identification of nj  

Obtaining an asynchronous algorithm from Algorithm S_Compute_Distances goes along the 
lines of Section 3.3, where Algorithm S-to-A_Template was given just for such purposes. We 
provide the result of such a transformation next, but only in Section 5.3.2, after we have 
discussed the general technique of synchronizers, will the reasons why the resulting 



asynchronous algorithm is correct be given. The asynchronous algorithm that we give to 
compute all the shortest distances in G is called Algorithm A_Compute_Distances, and 
requires that all edges in G be FIFO edges (cf. Exercise 7). It is widely used, despite having 
been displaced by more efficient algorithms of great theoretical interest. In addition to its 
popularity, good reasons for us to present it in detail are its simplicity and the possibility that 
it offers of illustrating the synchronization techniques ofSection 5.3.2  

In addition to the variables that in Algorithm S_Compute_Distances ni employs, in Algorithm 
A_Compute_Distances the following variables are also employed. For each nj � Neigi, a 

variable is employed to indicate which sets of node identifications ni has received 

from nj. Specifically, = d for some d such that 0 ≤ d < n if and only if ni has received 

from nj the identifications of those nodes which are d edges away from nj. Initially, = 
−1. Similarly, a variablestatei, is employed by ni, with the following meaning. Node ni has 
received the identifications of all nodes that are d edges away from it for some d such that 0 
≤ d < n if and only if statei = d. Initially, statei = 0. Finally, a Boolean variable initiatedi, initially 
set to false, is used to indicate whether ni � N0  

Algorithm A_Compute_Distance:  
 

         Variables: 

              = 0; 

              = n for all nk � N such that k ≠ i; 

              = nil for all nk � N such that k ≠ i; 
             seti = {idi}; 

              = −1 for all nj � Neigi; 

             statei = 0; 

             initiatedi = false 
 

 

Listing 4.9  
 

 

         Input: 
             msgi = nil 
         Action if ni � N0: 
             initiatedi := true; 
             Send seti to all nj � Neigi 

 



 

Listing 4.10  
 

         Input: 
             msgi = setj such that origini(msgi) = (ni, nj). 

         Action: 
             if not initiatedi then 
                  begin 
                      initiatedi := true; 
                      Send seti to all nk � Neigi 

                  end; 
             if statei < n −1 then 
                  begin 

                       :=  + 1; 

                      for all idk � setj do 

                           if  >  + 1 then 
                                begin 

                                       :=  + 1; 

                                       := nj 

                                end; 

                      if statei ≤  for all nj � Neigi then 
                           begin 
                               statei := statei + 1; 

                               seti := {idk | nk: � N and  = 
statei}; 

                               Send seti to all nk � Neigi 

                           end 
             end 

 
 

In Algorithm A_Compute_Distances, (4.9) and the portion of (4.10) that is executed only 
when initiatedi = false are precisely the same as (4.7) in Algorithm S_Compute_Distances. 
The remainder of (4.10) corresponds to the translation of (4.8) into the asynchronous model. 
Although we relegate most of the discussion on the correctness of Algorithm 



A_Compute_Distances to Section 5.3.2, in this section attention should be given to the fact 
that, if initiatedi = true, then (4.10) is only executed if statei, < n −1.The point to notice is that 
this is in accord with the intended semantics of statei, because if statei = n −1 then ni has 
already received the identifications of all nodes in N, and is then essentially done with its 
participation in the algorithm. 

Another important point to be discussed right away with respect to Algorithm 
A_Compute_Distances is that the FIFO property of edges, in this case, is essential for the 
semantics of the level variables to be maintained. In (4.10), the distance from ni to nk is 

updated to + 1 upon receipt of idk, in a set from a neighbor nj of ni only because that 

set is taken to contain the identifications of nodes whose distance to nj is . This 
cannot be taken for granted, though, unless (ni,nj) is a FIFO edge. 

The complexities of Algorithm A_Compute_Distances can also be obtained right away. By 
(4.9) and (4.10), what node ni does is to send its identification to all of its neighbors, then the 
identifications of all of its neighbors get sent, then the identifications of all nodes that are two 
edges away from it, and so on. Thus ni sends n messages to each of its neighbors, and the 
total number of messages employed is then 2nm, yielding a message complexity of O(nm) 
and a bit complexity of O(nmlog n) if node identifications can be represented in �log n� bits. 
The time complexity comes from considering that a node that is not in N0 starts executing 
(4.10) within at most n −1 time of the algorithm's initiation, and that the longest causal 
dependency involving messages corresponds to sending a node's identification as far as n 
−1 edges away. The resulting time complexity is then O(n) 

Our treatment inSection 5.3 will provide a general methodology for assessing an 
asynchronous algorithm's complexities from those of the synchronous algorithm from which 
it originated. As we mentioned in previous occasions, the natural expectation is that higher 
complexities arise in the asynchronous case, specifically to account for the additional 
number of messages and time consumed by the function DONEi appearing in (3.4). 
However, both the message and time complexities of Algorithm A_Compute_Distances are 
exactly the same as its synchronous originator's. The reason for this intuitively unexpected 
behavior will become clear in Section 5.3.2.  

 
4.4 Exercises 
1. Discuss what happens to Algorithm A_PI if a node refrains from sending inƒ to the 
neighbor from which it was received.  
2. Write the algorithm that handles multiple concurrent instances_of Algorithm A_PI as 
suggested in Section 4.1.2.  
3. Show, by means of an example, that FIFO edges do not suffice to guarantee that 
messages are received at all nodes in the order sent by node n1, in the context of multiple 
concurrent instances of Algorithm A_PIF.  
4. Show, by means of an example, that FIFO edges do not suffice to guarantee, in Algorithm 
A_Test_Connectivity, that a node receives all the copies of every other node's identification 
before receiving as many copies of its own identification as it expects.  
5. Compare Algorithm A_Test_Connectivity with the possibility of solving the problem by a 
leader (suppose such a leader already exists).  
6. Modify Algorithm S_Compute_Distances so that it terminates at a node when that node 
generates an empty list.  
7. Show that Algorithm A_Compute_Distances can do without the FIFO requirement and 
without the level variables, if lists are sent along with the distances to which they correspond.  
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Discuss what happens to Algorithm A_PI if a node refrains from sending inƒ to the neighbor 
from which it was received. 

2. 
  

Write the algorithm that handles multiple concurrent instances_of Algorithm A_PI as 
suggested in Section 4.1.2. 

3. 
  

Show, by means of an example, that FIFO edges do not suffice to guarantee that 
messages are received at all nodes in the order sent by node n1, in the context of multiple 
concurrent instances of Algorithm A_PIF. 

4. 
  

Show, by means of an example, that FIFO edges do not suffice to guarantee, in Algorithm 
A_Test_Connectivity, that a node receives all the copies of every other node's identification 
before receiving as many copies of its own identification as it expects. 

5. 
  

Compare Algorithm A_Test_Connectivity with the possibility of solving the problem by a 
leader (suppose such a leader already exists). 

6. 
  

Modify Algorithm S_Compute_Distances so that it terminates at a node when that node 
generates an empty list. 

7. 

  

Show that Algorithm A_Compute_Distances can do without the FIFO requirement and 
without the level variables, if lists are sent along with the distances to which they 
correspond. 
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Additional sources of reference for the problem of determining shortest distances are 
Awerbuch (1989), Ogier, Rutenburg, and Shacham (1993), Ramarao and Venkatesan 
(1993), and Haldar (1994). 



 

Chapter 5: Basic Techniques 
Overview 
This chapter expands considerably on the material of Chapter 4 by presenting three 
fundamental techniques that can be regarded as building blocks for distributed algorithms in 
general. These are the techniques of leader election, distributed snapshots, and network 
synchronization 

The problem of electing a leader in G is treated in Section 5.1, where we discuss various of 
the problem's characteristics and some of the successful approaches to solve it. Because 
this problem is intimately related with the problem of establishing a minimum spanning tree 
on G, treated in section 7.1 and Section 5.1 we introduce techniques that do not rely on 
spanning trees to elect a leader. In doing so, we first give an asynchronous algorithm for 
generic graphs, and then introduce two algorithms (one synchronous and one 
asynchronous) for the case in which G is a complete graph. 

In Section 5.2, we introduce techniques to record, in a distributed_fashion, a global state of 
an ongoing distributed computation. The ability to record global states is fundamental in 
several cases, and in the remainder of the book there will be several opportunities for us to 
employ this and related techniques, as for example insections 6.2 and6.3. InSection 5.2, we 
give a general technique to record global states distributedly and also discuss some 
centralized variations of interest in some special contexts, as for example in our discussion 
of some methods of distributed simulation in Chapter 10. 

Network synchronization is the subject ofsection 5.3, in which we return to material 
previously covered inSection 3.3 to fill in the details of how to translate a synchronous 
algorithm into an asynchronous one. Our approach in this section is to provide the principles 
underlying the transformation, then to present a few techniques exhibiting different 
communication and time complexities, and then to discuss simplifications that apply in 
important special cases. 

Sections 5.4and5.5contain exercises and bibliographic notes, respectively. 



 
5.1 Leader election 
A leader is a member of N that all other nodes acknowledge as being distinguished to 
perform some special task. The leader election problem is the problem of choosing a leader 
from a set of candidates, given that initially a node ni is only aware of its own identification, 
denoted as previously by idi. In the spirit of Section 2.2.1, it should be clear after some 
pondering that the leader election problem is meaningless in the context of anonymous 
systems. Moreover, even if the system is not anonymous, the leader election problem can 
only be solved for G if every node's identification is unique in G (cf. Exercise 1), in which 
case the set of all identifications can be assumed to be totally ordered by <. 

This assumption is fundamental in the approaches to leader election that take the leader to 
be the candidate with greatest identification. However, even if this is not the criterion, the 
ability to compare two candidates' identifications is essential to break ties that may occur 
with the criterion at hand. (In fact, this is really why unique identifications are needed in the 
first place. In their absence, any criterion to select a leader from the set of candidates might 
deadlock for the absence of a tie breaker.) Another assumption that we make on a node's 
identification is that it can be expressed in �log n� bits. Also, G is throughout this section 
assumed to be an undirected graph. 

The importance of electing a leader in a distributed environment stems essentially from the 
occurrence of situations in which some centralized coordination must take place in G, either 
because a technique to solve the particular problem at hand in a completely distributed 
fashion is not available, or because the centralized approach offers more attractive 
performance. Problems for which satisfactory techniques of a completely distributed nature 
are not available include the many recovery steps that have to be taken after G undergoes a 
failure (or a topological change, in broader terms). A leader is in this case needed to 
coordinate, for example, the reestablishment of allocation and routing functions (if G is 
organized to reflect a distributed-memory system). Although it has been our assumption 
throughout that G is fixed, all the algorithms that we discuss in this book are also applicable 
to the cases in which G varies if G is guaranteed to remain constant for "sufficiently long." 

Examples to illustrate the importance of electing a leader when the centralized approach to a 
particular problem proves more efficient than the distributed one come from the area of 
graph algorithms, treated in Chapter 7 (although in that chapter we concentrate solely on 
problems for which efficient distributed solutions do exist). As we remarked inSection 3.2.2, 
such situations are in essence characterized by higher complexities for the distributed 
approaches than for coalescing into the leader information on the structure of G. 

The leader election problem is very closely related to another problem that we treat insection 
7.1, namely the problem f establishing on G a minimum spanning tree (or, as we discuss in 
that section, the problem of determining any spanning tree on G, which can be reduced to 
the former). Once a spanning tree has been established on G, a leader can be elected as 
follows. Every node assumes the role of n1 in the PIF problem (cf.Section 4.1.1) and 
propagates a piece of information with feedback on the spanning tree. This piece of 
information is, if the node is a candidate, its identification. Otherwise, it is simply a token 
devoid of any special content. The way the n propagations interact with each other is such 
that a node, before forwarding the information being propagated by any other node, must 
first ensure that its own information is propagated. If edges are FIFO, then by the time a 
node receives its own information from all of its neighbors on the tree it has also received the 
information that all other nodes propagated, and can then select as a leader the candidate 



with greatest identification. This procedure has message complexity of O(n2) (bit complexity 
of O(n2logn)) and time complexity of O(n). 

Although more efficient approaches exist to elect a leader once a spanning tree has been 
established on G (cf.Sections 7.1.1), the approach we just described is interesting because it 
hints immediately at a simple (although not very efficient, either) algorithm to elect a leader 
on a generic graph with FIFO edges. This algorithm is simply Algorithm A_Test_Connectivity 
ofSection 4.2 with N0 being the set of candidates, slightly modified so that candidates 
broadcast their identifications, while the remaining nodes broadcast simply a token that 
serves the purpose of signaling to the node that already it has received every candidate's 
identification. Upon receiving on all incident edges the information it propagated, a node (be 
it a candidate or otherwise) is then ready to choose as a leader the candidate with greatest 
identification. As in Section 4.2, this algorithm's message complexity is O(nm) (O(nm log n) 
bit complexity), and its time complexity is O(n). 

When G is assumed to be some particular graph, these complexities must be revised 
accordingly. For example, if G is a ring, then the algorithm's message complexity becomes 
O(n2), whereas if it is a complete graph the message complexity is O(n3). The resulting 
message complexity for a complete graph is particularly alarming, and it is to the problem of 
electing a leader on such a graph that we turn our attention now, aiming specifically at 
providing an algorithm of significantly lower message complexity. 

We start with a synchronous algorithm, aiming at illustrating the technique more intuitively, 
and then provide an asynchronous algorithm. In both algorithms, N0 is the set of candidates. 

The synchronous algorithm that we give is inspired in the following straight-forward 
synchronous algorithm to elect a leader on a complete graph. At pulse s = 0, every 
candidate sends its identification to all other nodes. At pulse s = 1, every node has received 
every candidate's identification and can then decide on a leader. The message complexity of 
this algorithm is O(n2), and its time complexity is O(1). The synchronous algorithm that we 
derive from this has message complexity of O(n log n) and time complexity of O(log n), 
which have been proved optimal in the literature. 

In order to decrease the message complexity from O(n2) to O(n log n), a candidate does not 
send its identification to all of its neighbors at the same pulse, but rather first communicates 
with one of its neighbors, then with two other neighbors, then with four others, and so on. For 
k ≥ 1, the kth set of neighbors with which a candidate communicates has size 2k−1, and then 
exactly � log n� such sets have to exist to encompass all of the candidate's n − 1 neighbors 
(that is, k ≤ � log n�). When a candidate sends a neighbor a message, it is attempting to 
"capture" that neighbor, thereby becoming its "owner," so that the candidate that has 
captured all nodes at the end is the one to be chosen leader. A candidate succeeds in 
capturing a node if its identification is larger than those of the other candidates that are 
attempting to capture the same node at the same time, and larger than the identification of 
the node's current owner. A candidate only proceeds to attempting to capture the next 
subset of its neighbors if it succeeds in capturing all the neighbors it is currently attempting 
to capture. Otherwise, it ceases being a candidate. 

The resulting synchronous algorithm, called Algorithm S_Elect_Leader_C ("C" for 
Complete), proceeds as follows. At an even pulse s ≥ 0, a candidate ni sends a message 
capture(idi) to 2s/2 of those of its neighbors with which it still has not communicated. At an 
odd pulse s > 0, a node ni (candidate or otherwise) selects from those nodes that sent it a 
capture message at pulse s − 1 the one with greatest identification. That node is then to 
become ni's owner if its identification is greater than ni's current owner's. If ni's owner 



changes, then it sends an ack to its new owner. Only a candidate that receives as many 
ack's as it sent capture's remains being a candidate. 

The following are the variables employed by ni in Algorithm S_Elect_Leader_C. A Boolean 
variable candidatei, initially set to false, indicates whether ni is a candidate. For each 

neighbor nj of ni, a Boolean variable (equal to false, initially) is used to indicate, if ni 
is a candidate, whether it has already attempted to capture nj. Finally, owner_idi contains the 
identification of ni's owner. This variable's initial value is nil (we assume that nil < idj for all nj 
� N). 

Algorithm S_Elect_Leader_C:  
 

     Variables: 
         candidatei = false; 

          = false for all nj � Neigi; 
         owner_idi = nil. 

 
 

Definition (Gold [80]) [ (a) Let M be a computable scientist and let L] 

Listing 5.1  
 

     Input: 

         s = 0, MSGi(0) = . 

     Action if ni� N0: 
         candidatei := true; 
         owneri := idi; 

         Let nj be a node in Neigi; 

          := true; 
         Send capture(idi) to nj. 

 
 

Listing 5.2  
 

     Input; 
         s odd such that 0 < s ≤ 2�log n � −1, MSGi(s) such that  

         origini (capture (idj) = (ni, nj) for capture(idj) � MSGi(s). 

     Action: 
         Let nk � Neigi be such that idk ≥ idj for all capture(idj) � 

         MSGi(s); 



         if owner_idi < idk then 
              begin 
                 if candidatei then 
                      candidatei:= false; 
                  owner_idi := idk; 

                  Send ack to nk 

              end. 
 

 

Listing 5.3  
 

     Input: 
        s even such that 0 < s ≤ 2�log n�, MSGi(s). 

     Action: 
        if candidatei then 
             if | MSGi(s) | < min{2(s−2)/2, n −2(s−2)/2} then 
                   candidatei := false 
             else 
                  if s < 2 �log n � then 
                       begin 
                           Let S � Neigi be such that |S| = min{2s/2, 
n − 

                           2s/2} and  = false for all nj � S; 

                            := true for all nj � S; 
                           Send capture(idi) to all nj � S 

                       end. 
 

 

In Algorithm S_Elect_Leader_C, (5.1) and (5.3) correspond to opportunities that ni has to 
capture nodes if it is a candidate. The attempt to capture more nodes in (5.3) is conditioned 
upon having received as many ack's as needed for the last attempt. In other words, if s > 0 is 
even, then the number of ack's expected to be in MSGi (s) if ni is a candidate is min{2s−2)/2, 
n−2(s−2)/2} (this is the number of nodes ni attempted to capture at the previous even pulse). If 
MSGi(s) contains this number of ack's, then ni sends capture's to other 2s/2 nodes, unless the 
number of nodes which it still has not attempted to capture is less than this, in which case it 
must be n −1 −(2s/2 −1) (the expression in parentheses is the number of nodes it has 
captured so far). In (5.2), node ni, decides whether to change its owner or not, regardless of 
whether it is a candidate. The node that ni considers to be its owner after all 2�log n� + 1 
pulses have elapsed (that is, the node whose identification is in owner_idi at that time) is the 



elected leader from ni's standpoint. By (5.1) and (5.2), ni's owner is the node with greatest 
identification, and therefore from every node's standpoint the elected leader is the same. 

Algorithm S_Elect_Leader_C runs for 2�log n� + 1 pulses. Becauseē the number of groups 
of neighbors that a candidate tries to capture is at most �log n�, the last pulse in (5.3) is 
only used for a candidate to process the last ack's it has received, if any. The time 
complexity of Algorithm S_Elect_Leader_C is, by (5.3), O(log n). The following theorem 
indicates how to assess the algorithm's message complexity. 

Theorem 5.1. 
For 1 ≤ k ≤ �log n� −1, the maximum number of nodes to reach pulse s = 2k as candidates 
in Algorithm S_Elect_Leader_C is �n/2k−1�. 

Proof: At pulse s = 2k, by (5.3) a node must have captured 2k−1 nodes to be still a candidate 
(i.e., it must have received 2k−1 ack's). The assertion then follows from the fact that, by (5.2), 
any of the n nodes may only be captured by at most one candidate at any even pulse. 

By Theorem 5.1, at pulse s = 2�log n� −2 there may still be a number of candidates no 
greater than 

 

so that the additional even pulse s = 2�log n� is indeed needed for all but one of them to 
quit being a candidate. 

Corollary 5.2. 
Algorithm S_Elect_Leader_C employs at most 2n�log n� - n capture messages and at most 
n �log n�ack messages. 

Proof: The initial number of candidates is at most n, so by (5.1) at pulse s = 0 at most n 
capture's are sent. For 1 ≤ k ≤ �log n� −1, by (5.3) at pulse s = 2k a candidate sends at 
most 2k capture's. By Theorem 5.1, the number of candidates at this pulse is no larger than 
�n/2k−1�, and then the total number of capture's is at most 

 

By (5.2), a node sends at most one ack per odd pulse, so that the total number of ack's is no 
more than n�log n�, thence the corollary. 



It follows from Corollary 5.2 that the message complexity of Algorithm S_Elect_Leader_C is 
O(n log n). Also, because a capture message carries a node's identification, it follows that 
the algorithm's bit complexity is O(n log2 n). This synchronous algorithm has a better 
message complexity than the one we devised initially (which had O(n2) message 
complexity), but this comes at the cost of an increase in time complexity from O(1) to O(log 
n). 

What supports the improved message complexity is the technique of comparing a 
candidate's identification to those of its neighbors in increasingly large groups, so that the 
number of candidates is guaranteed to decrease steadily from an even pulse to another (cf. 
Theorem 5.1). When we consider the design of an asynchronous counterpart to Algorithm 
S_Elect_Leader_C, the use of such a technique has to undergo a few modifications, 
especially because a node cannot in the asynchronous model consider a group of candidate 
identifications simultaneously as it did in the synchronous model and reply positively to at 
most one of them. It appears, then, that in the asynchronous model a candidate must 
attempt to capture one node at a time. However, in order to still be able to benefit from the 
advantages of capturing nodes in groups of increasing sizes, in the asynchronous algorithm 
identifications are no longer used as a basis of comparison, but rather only to break ties. 
Comparisons are instead based on the "level" of each competing candidate, which is the 
number of groups of nodes a candidate has so far succeeded in capturing. This amounts to 
simulating the technique employed in the synchronous case, but at the expense of a greater 
time complexity. As we will see, the resulting algorithm, called Algorithm A_Elect_Leader_C, 
has time complexity O(n) but its message complexity remains as in the synchronous case, 
that is, O(n log n). 

In order to ensure the correctness of this approach, in the sense that no two candidates 
must ever be allowed to concurrently remain candidates based on having captured a same 
node, a candidate must only consider a node as having been captured when (and if) that 
node's current owner ceases being a candidate. The overall approach is then the following. 
A candidate attempts to capture nodes one at a time. Its level is at all times given by the 
number of groups it has succeeded in capturing, in the same sense as in Algorithm 
S_Elect_Leader_C, that is, groups of sizes 1, 2, 4, and so on. If for a candidate ni, we let 
leveli denote its level and ownsi, the number of nodes it has captured, then clearly 

 

In order to capture a node nj, ni sends it a message capture(leveli, idi). Upon receiving this 
message, nj checks whether 

 

(this comparison is done lexicographically, that is, first the levels are compared and only if 
they are the same are the identifications compared). If the comparison fails, then nj sends ni 
a nack message, and upon receiving it ni ceases being a candidate (if it still is). If, on the 
other hand, the comparison succeeds, then levelj is updated to leveli. In addition, if nj is a 
candidate, then it ceases being so and ni becomes its owner. Also, nj sends ni an ack, upon 
receipt of which ni proceeds with its node capturing. If nj is not a candidate, then ni is marked 
as nj's prospective owner. Before ni becomes nj's owner, however, ni has to ensure that nj's 
current owner ceases being a candidate. To this end, nj sends ni a message check(k) 
(assuming that owner_idj = idk), and upon receiving this message, ni, if it still is a candidate, 
sends a message eliminate(leveli, idi) to nk. At nk, the comparison 



 

is performed and results in one of the following two outcomes. If the comparison fails, then 
nk sends ni a nack, thereby causing ni not to be a candidate any longer (if it still is). If the 
comparison succeeds, thereby causing nk to cease being a candidate, or if nk was no longer 
a candidate upon receiving the eliminate message, then an eliminated message is sent by nk 
to ni, where it causes ni, if still a candidate, to try to capture nj once again by sending it 
another capture message. If this message, upon arriving at nj, finds that ni still is nj's 
prospective owner, then ni becomes nj's new owner and an ack is sent back to ni. Otherwise, 
a nack is sent. Upon receipt of one or the other message, ni resumes its captures or ceases 
being a candidate, respectively. Notice that, throughout this entire process, nk has not yet 
been captured by ni, but merely ceased being a candidate. 

The variables leveli and ownsi, both initially equal to zero, are used by ni, in Algorithm 
A_Elect_Leader_C in addition to those already used by Algorithm S_Elect_Leader_C. Node 
ni employs two other variables, both initialized to nil, to indicate ni's prospective owner and 
the node it is currently attempting to capture. These are, respectively, p_owner_idi and 
p_owned_idi. 

Algorithm A_Elect_Leader_C:  
 

     Variables: 
         candidatei = false; 

          = false for all nj � Neigi: 
         owner_idi = nil; 
         leveli = 0; 

         ownsi = 0; 

         p_owner_idi = nil; 
         p_owned_idi = nil. 

 
 

Listing 5.4  
 

     Input: 
         msgi = nil. 
     Action if ni � N0: 
         candidatei := true; 
         owneri := idi; 

         Let nj be a node in Neigi; 

          := true; 
         Send capture(leveli, idi) to nj. 

 



 

Listing 5.5  
 

     Input: 
         msgi = capture(levelj, idj) such that origini(msgi) = (ni 
nj). 

     Action: 
         if p_owner_idi = idj then 
              begin 
                  owner_idi := idj; 

                 Send ack to nj 

             end 
         else 
             if (leveli, owner_idi) < (levelj, idj) then 
                  begin 
                     leveli := levelj; 

                      if candidatei then 
                           begin 
                               candidatei := false; 
                               owner_idi := idj; 

                               Send ack to nj 

                           end 
                      else 
                           begin 
                               p_owner_idi := idj; 

                               Let nk � Neigi be such that owner_idi 
= idk; 

                               Send check(k) to nj 

                           end 
                  end 
         else 
                  Send nack to nj.  

 
 

Listing 5.6  
 

     Input: 
         msgi = nack. 



     Action: 
         if candidatei then 
              candidatei := false. 

 
 

Listing 5.7  
 

     Input: 
         msgi = check(j). 

     Action: 
         if candidatei then 
              Send eliminate (leveli, idi) to nj. 

 
 

Listing 5.8  
 

     Input: 
         msgi = eliminate (levelj, idj) such that origini(msgi) = (ni, 
nj). 

     Action: 
         if not candidatei then 
              Send eliminated to nj 

         else 
              if (leveli, idi) < (levelj, idj) then 
                   begin 
                       candidatei := false; 
                       Send eliminated to nj 

                   end 
              else 
                   Send nack to nj. 

 
 

Listing 5.9  
 

     Input: 
         msgi = eliminated. 

     Action: 
         if candidatei then 
              begin 



                  Let nj � Neigi be such that p_owned_idi = idj; 

                  Send capture (leveli, idi) to nj 

              end. 
 

 

Listing 5.10  
 

     Input: 
         msgi = ack. 

     Action: 
         ownsi := ownsi + 1; 

         leveli := �log(ownsi + 1)�; 

         Let S � Neigi be such that  = false for all nj � S; 

         if S ≠  then 
               begin 
                   Let nj be a node in S; 

                    := true; 
                   p-owned-idi := idj; 

                   Send capture (leveli, idi) to nj 

               end. 
 

 

In Algorithm A_Elect_Leader_C, (5.4) through (5.10) implement the guidelines we gave to 
employ the technique of Algorithm S_Elect_Leader_C in an asynchronous setting. It should 

be noted that a candidate ni becomes a leader when S = in (5.10). At this time, it must by 
(5.5) be the owner of all nodes and its level equal to �log n�. Moreover, by (5.4) through 
(5.9) a candidate may only be the owner of a node if that node's previous owner is no longer 
a candidate, which leads us to the following counterpart of Theorem 5.1. 

Theorem 5.3. 

For 1 ≤ k ≤ �log n�, the maximum number of candidates of level k in any global state in an 
execution of Algorithm A_Elect_Leader_C is �n/(2k − 1)�. 

Proof: By the definition of level, a candidate ni at level k must have captured at least 2k −1 of 
its neighbors, inasmuch as 

 



The theorem then follows from the fact that no two candidates can be owners of a same 
node in any global state. 

Corollary 5.4. 

Algorithm A_Elect_Leader_C involves at most 2n�log n� + n attempts at capturing a node 
by a candidate. 

Proof: Before reaching level 1, by (5.4) a candidate attempts to capture exactly one node. 
For 1 ≤ k ≤ �log n�, while at level k a candidate attempts to capture at most 2k nodes. By 
Theorem 5.3, the total number of node captures the algorithm involves is then 

 

Each node capture by a candidate involves at most six messages (one capture, one check, 
one eliminate, one eliminated, one more capture, and one ack). By Corollary 5.4, the 
message complexity of Algorithm A_Elect_Leader_C is then O(n log n), and because the 
lengthiest messages (capture and eliminate messages) are �log �log n�� + �log n� bits 
long, the algorithm's bit complexity is O(n log2 n). In order to check that the time complexity 
of Algorithm A_Elect_Leader_C is indeed O(n), it suffices to note that candidates capture 
nodes independently of one another, in the sense that no candidate depends on another 
candidate's messages to capture nodes (only to cease being a candidate), and that 
candidates attempt to capture nodes one at a time. 

5.2 Distributed snapshots 
The second fundamental technique that we discuss in this chapter is a technique for 
recording global states during the execution of an asynchronous algorithm. While the 
concept of a global state, as introduced in Section 3.1, is of fundamental importance by 
itself, the ability to record a global state over which some of the algorithm's global properties 
can be analyzed is no less attractive. In the context of this book, areas in which algorithms 
for global state recording are especially relevant include the treatment of stable properties 
(discussed in Chapter 6) and the handling of some issues related to timing during a 
distributed simulation (our subject in Chapter 10). 

The bulk of our discussion on global state recording is presented in Section 5.2.1, where we 
present a distributed algorithm to record a global state and leave the recorded information 
spread throughout the nodes of G. However, there are special cases, chiefly within the area 
of distributed simulation, for which the recording of global states with some specific 
properties is desirable. In these cases, it seems that the use of a leader to perform the global 
state recording in a centralized fashion is considerably more efficient. We discuss such a 
centralized approach in Section 5.2.2, aiming at their use in Chapter 10. 

Throughout all of Section 5.2, G is taken to be a directed graph, so that the states of edges 
can be referred to without explicit mention to a particular direction. The extension to the 
undirected case is immediate, as usual. 

5.2.1 An algorithm 



In the case of synchronous algorithms, the recording of a global state can be achieved rather 
simply. At each pulse s ≥ 0, the states of all nodes and the messages that were sent at pulse 
s −1 (if s > 0), which by assumption must already have arrived at their destinations, 
constitute a global state. Without further communication, such a global state can be stored in 
G distributedly, so that a node stores its own state and the state of all edges on which it 
receives messages. 

Clearly, though, nothing like this simple approach can be employed in the asynchronous 
case, owing to the total absence of global timing. However, with the aid of communication 
among the nodes in addition to that pertaining to the computation whose global state we 
wish to record, the task can also be performed for asynchronous algorithms. The algorithm 
that we discuss next is surprisingly simple given the apparent intricacy of the task, and yields 
a global state that can be found at the end of the algorithm stored in a distributed fashion 
throughout G, in much the same way as in the synchronous case we just discussed. 

Before we introduce the algorithm for global state recording, it should be noted that, 
conceptually, we are dealing with two distributed computations. One of them, which we can 
refer to as the substrate, is the computation whose global properties one wishes to study, 
and then the global state one is seeking to record is a global state of the substrate. It is then 
to the substrate that the set of events Ξ introduced in Section 3.1 refers. The other 
distributed computation is an execution of the algorithm for global state recording, which we 
henceforth call Algorithm A_Record_Global_State. Both computations run on G, so each 
node is responsible for executing its share of the substrate and of Algorithm 
A_Record_Global_State. The two computations are, however, totally independent of each 
other as far as causality relationships are concerned. Our only assumption about their 
interaction is that Algorithm A_Record_Global_State is capable of "peeking" at the 
substrate's variables and messages with the purpose of recording a global state. Note that a 
node participates in both computations in such a way that, when the substrate is being 
executed by a node, Algorithm A_Record_Global_State is suspended, and conversely. This 
is immaterial from the standpoint of either computation, though. Having been designed to 
operate in the asynchronous model, the suspension of one to execute the other only adds to 
the asynchronism already present. Recording a global state during an execution of the 
substrate is essentially a means of "freezing" that execution in a snapshot (thence this 
alternative denomination for a global state) to analyze the states of all nodes and edges 
without actually having to halt the substrate. 

This view of the computation at a node as actually comprising the node's participation in two 
different distributed algorithms is the view that we adopt in this section. What this amounts to 
when specifying the actions of Algorithm A_Record_Global_State is that there has to exist 
an action to handle the receipt of messages of the substrate, although in none of the 
algorithm's actions does one such message get sent. Alternatively, we might have viewed 
both computations as constituting the execution of a single algorithm, in which case the 
technique for recording global states would appear truly as a building block. When arguing 
formally about the recorded global state, however, we would have to be careful to 
discriminate events associated with the substrate from those associated with the additional 
communication employed by the recording algorithm, as it is to the former that the recorded 
global state relates. 

The following is an outline of how Algorithm A_Record_Global_State functions. A node is 
responsible for recording the substrate's local state and the states of all edges directed 
toward itself. If all nodes carry their recording tasks to their ends, then the resulting overall 
recording is a system state, as introduced in Section 3.1, because a local state has been 
recorded for each node and a set of messages for each edge. The algorithm progresses 



through the exchange between neighbor nodes of a special message called marker. A node 
ni � N0 initiates its participation in Algorithm A_Record_Global_State by recording the local 
state of the substrate,i in the terminology of Section 3.1, and then sending marker on all 
edges that are directed away from it, without however allowing the substrate to send any 
messages in the meantime (i.e., after the recording of the local state and before the sending 
of marker). In practice, this can be achieved by "disabling interrupts" so that the node will not 
switch to execute the other computation while this is undesired. All other nodes behave 
likewise upon receiving marker for the first time. Every message of the substrate received at 
ni from a neighbor nj after ni has received the first marker (and consequently recorded a local 
state) and before ni receives marker from nj is added to the set of messages representing 
Φji, which is the state of edge (nj → ni) (cf. Section 3.1 for the appropriate terminology). The 
state of the edge on which marker was first received is then recorded as the empty set, so 
the system state recorded by Algorithm A_Record_Global_State can be regarded as 
containing a forest of empty edges, each of whose trees spanning exactly one node in N0. 
The recording is completed at a node when marker has been received on all edges directed 
toward that node. 

It is instructive at this point to notice the very close resemblance of the algorithm we just 
outlined to Algorithm A_PI, introduced in Section 4.1.1 for the propagation of information on 
G. While that algorithm was given for an undirected G, Algorithm A_Record_Global_State 
can be easily recognized as a variation of Algorithm PI to propagate marker messages by 
flooding when G is a directed graph. Of course, the question of whether every node in G 
does ever receive a copy of marker in the directed case arises, because there may exist 
nodes to which no directed path from a node in N0 exists. One situation in which this can be 
guaranteed is, for example, the case of a strongly connected G, in which a directed path 
exists from every node to every other node. 

Even before describing and analyzing Algorithm A_Record_Global_State more thoroughly, 
we are then in position to assess its complexities. Because every edge carries at most one 
copy of marker, the algorithm's message complexity is clearly O(m). The algorithm's time 
complexity, on the other hand, depends only on how long it takes a marker to reach a node 
that is not in N0, and this is clearly O(n) time. 

In the description of Algorithm A_Record_Global_State we give next, sub_msg is used to 
generically denote a message of the substrate. A node ni maintains a variable to store the 
substrate's local state at ni, and for each neighbor nj � I_Neigi a variable to store the state of 

edge (nj → ni). These variables are, respectively, node_statei and , 

initialized respectively to nil and . In addition, a variable recordedi (initially equal to false) 
indicates whether the substrate's local state has already been recorded, and a variable 

for each nj � I_Neigi (initialized to false as well) indicates whether marker has 

been received from nj. Clearly, for ni � N0, recordedi = true if and only if = true 
for some nj � I_Neigi. 

Algorithm A_Record_Global_State:  
 

     Variables:: 
         node_statei =  nil; 



          =  for all nj � I_Neigi; 

         recordedi = false; 

          = false for all nj � I_Neigi. 
 

 

Listing 5.11  
 

     Input: 
         msgi = nil. 
     Action ifni � N0: 
         node_statei := σi; 

         recordedi := true; 
         Send marker to all nj � O_Neigi. 

 
 

Listing 5.12  
 

     Input: 
         msgi = marker such that origini(msgi) = (nj → ni). 

     Action: 

          := true; 
         if notrecordedi then 
              begin 
                  node_statei := σi; 

                  recordedi := true; 
                  Send marker to all nk � O_Neigi. 

              end. 
 

 

Listing 5.13  
 

     Input: 
         msgi = sub_msg such that origini(msgi) = (nj → ni). 

     Action: 
         if recordedi then 



              if not  then 

                   :=  � {msgi}. 
 

 

There are two important observations to be made concerning Algorithm 
A_Record_Global_State. The first observation is that the assumed atomicity of actions in 
Algorithm A_Template (cf. Section 2.1) suffices to prevent a node from executing the 
substrate computation, possibly with the sending of messages, between the recording of the 
local state and the sending of marker's in (5.11) and (5.12). The second observation 
concerns (5.13) and the sub_msg messages that trigger this action. Because such 
messages are in fact messages of_ the substrate, the actions that they trigger do not really 
belong in a presentation of Algorithm A_Record_Global_State based on Algorithm 
A_Template. In fact, we have made no provisions whatsoever to denote an algorithm's 
peeking at some other algorithm's messages, so that our notation in the description of 
Algorithm A_Record_Global_State is abusive. One of the problems caused by this abuse of 
notation is that Algorithm A_Record_Global_State does not seem to terminate as long as 
there are sub_msg's in transit on G's edges, while clearly the algorithm is to terminate as 
soon as every node ni has received as many marker's as there are edges in Ini (cf.Section 
6.2). As long as these issues are clearly understood, however, our slightly licentious use of 
the notation should not be troublesome. We keep the improper notation for simplicity (here 
and in other occasions, as in Section 9.3.3), although it appears that adapting Algorithm 
A_Template to properly contemplate such an interaction between two distributed algorithms 
is a simple matter (cf. Exercise 5). 

Theorem 5.5 states two sufficient conditions for the system state that Algorithm 
A_Record_Global_State records to be a global state. 

Theorem 5.5. 

If G is strongly connected and all of its edges are FIFO, then the system state that Algorithm 
A_Record_Global_State records is a global state.  

Proof: The fact that G is strongly connected implies that every node ni receives marker 
exactly once on every edge in Ini, by (5.11) and (5.12). 

Recalling that Ξ is the set of events related to the substrate only, let (Ξ1, Ξ2) be a partition of 
Ξ such that ξ � Ξ1 if and only if ξ occurred before the local state of the node at which it 
occurred was recorded. In addition, referring back to the notation introduced in Section 3.1, 

let be any total order of the events in Ξ consistent with � +, and consider two 

consecutive events ξ2 � Ξ2 and ξ1 � Ξ1 in . 

By the definition of Ξ1 and of Ξ2, it is clear that ξ2 did not happen at the same node as ξ1 and 
before the occurrence of ξ1. Now consider a scenario in which a sequence of events follow ξ2 
at the node at which it happened, and then a message is sent in connection with the last 
event in this sequence, which in turn eventually causes the sending of another message by 
its destination node, and then the eventual sending of another message by the destination 
node of this second message, and so on, and then the arrival of the last message causes a 



sequence of events to happen at its destination node culminating with the occurrence of ξ1. 
By (5.11) and (5.12), and by the definition of Ξ1 and Ξ2, the node at which ξ2 happened must 
have sent marker's before ξ2 happened. Likewise, the node at which ξ1 happened must not 
have received any marker before ξ1 happened. Clearly, these two requirements are 
inconsistent with the scenario we just described, as the edges are all FIFO, and the 
sequence of messages alluded to in the description of the scenario would then have to have 

been overrun by a marker. In summary, (ξ2, ξ1) ��+, so the total order can be altered by 
substituting (ξ1, ξ2) for (ξ2, ξ1) in it, and yet remain consistent with �+. 

Clearly, it takes no more than |Ξ1�Ξ2| such substitutions to obtain a total order in which at 
most one pair (ξ1,ξ2) of consecutive events exists such that ξ1 � Ξ1 and ξ2 � ξ2. The events 
in all other pairs of consecutive events are in this total order both in ξ1 or in ξ2. By (5.11) 
through (5.13), and by the definition of ξ1 and ξ2, this distinguished pair of consecutive 
events is such that system_state (ξ1, ξ2) is precisely the system state recorded by Algorithm 
A_Record-Global_State, which is then a global state, by our first definition of global states in 
Section 3.1. 

Before we finalize this section, there are a couple of important observations to be made 
regarding Algorithm A_Record_Global_State. The first observation is that, as we mentioned 
previously, the global state that the algorithm records is stored in a distributed fashion 
among G's nodes. Often the recorded global state can be used without having to be 
concentrated on a single node for analysis (cf. Section 6.3.2 for an example), but equally as 
frequently it must first be concentrated on a leader, which then works on the global state in a 
centralized manner. 

The second observation is that the global state that the algorithm records is in principle any 
global state, in the sense that no control is provided to make "choices" regarding desirable 
characteristics of the resulting global state. While this is fine for many applications (as for 
example the detection of the stable properties we treat in Chapter 6), for others it does 
matter which global state is used, and then a centralized approach may be advisable. We 
elaborate on this a little more in Section 5.2.2. 

We end the discussion in this section by returning to the issue of knowledge in distributed 
computations, treated in Section 2.3, in order to illustrate one of the concepts introduced in 

that section. Specifically, let be any sentence related to a global state that has been 
recorded by Algorithm A_Record_Global_State. Because of the distributed fashion in which 

this global state is stored after it is recorded, is clearly implicit knowledge that the 

members of N have, that is, IN . 

5.2.2 Some centralized alternatives 

In this section, we briefly comment on two centralized alternatives to the recording of global 
states, drawing mainly on motivations to be found in Chapter 10. As we mentioned in the 
previous section, these centralized alternatives are a solution when the global state that one 
seeks to record cannot be just any global state, but instead must be a global state with 
certain specific characteristics. 

The first case that we examine is that of a computation for which it is known that the system 
state in which every node ni is in the kth local state in the sequence σi (cf.Section 3.1) for 
some k ≥ 1 is a global state. This is the case, for example, of the algorithms we discuss in 



Section 10.2, where for k > 1 a function of the kth such global state has to be compared with 
the result of applying the same function to the k — 1st such global state, regardless of 
whatever messages may be in transit on the edges. It turns out that computing such a 
function of a global state is a trivial task if done by a single node, and because the edge 
states do not matter, the natural choice is for every node ni to report every new local state to 
a leader, which then performs the necessary function evaluation and global state 
comparison whenever a new global state is completed with information received from the 
other nodes. 

The second case is motivated by the needs of Sections 10.3.2 and 10.6, where in the global 
states to be recorded every edge state must be the empty set. Again, a centralized approach 
is preferable because it renders the task of checking for empty edges quite simple. The 
approach is then the following. Whenever a node ni is in a local state with which it may 
participate in a global state of interest (or simply periodically), it sends the leader this local 
state, together with the numbers of messages it has so far received on each edge in Ini and 
sent on each edge in Outi. Whenever the information the leader receives from all nodes is 
such that the number of messages sent on each edge is equal to the number of messages 
received on that edge, the corresponding system state is surely a global state, because 
every system state in which all edges are empty is a global state (cf. Exercise 7). 

5.3 Network synchronization 
This section is dedicated to the third major design technique to be discussed in this chapter, 
namely network synchronization. As we have anticipated in various occasions, especially in 
Sections 2.1 and3.3, a synchronous algorithm can be turned into an asynchronous algorithm 
at the expense of additional message and time complexities, so that the lack of a global time 
basis and of bounds on delays for message delivery can be dealt with, and the resulting 
algorithm can be guaranteed to function as in the synchronous model. 

As we remarked in Section 3.3 when presenting Algorithm S-to-A-Template, essentially the 
technique of network synchronization amounts to determining that a node ni that has been 
executing the action corresponding to pulse s ≥ 0 of the synchronous algorithm is ready to 
proceed to pulse s + 1 under the asynchronous model. In Algorithm S-to-A_Template, such 
a decision is embodied in a Boolean function DONEi(si), where si is a variable that indicates 
the interval ni is currently involved with. 

Our approach in this section is to take G to be an undirected graph, and then consider a 
generic synchronous algorithm, call it Algorithm S-Alg, written in accordance with Algorithm 
S_Template of Section 2.1. The asynchronous algorithm resulting from translating Algorithm 
S_Alg into the asynchronous model will be called Algorithm A_Alg(Sync), where Sync 
indicates the particular technique, or synchronizer, employed in the translation. In essence, 
Algorithm A_Alg(Sync) follows Algorithm S-to-A-Template. 

The essential property that we seek to preserve in translating Algorithm S-Alg into Algorithm 
A_Alg(Sync) is that no node ni proceeds to pulse s + 1 before all messages sent to it at 
pulse s have been delivered and incorporated into MSGi(s) (the reader should recall from 
Sections 2.1. and 3.3.that this is the set of messages sent to ni at pulse s). In order to ensure 
that this property holds for all nodes and at all pulses, we begin by requiring that all 
messages of Algorithm S_Alg be acknowledged. These messages are denoted by 
comp_msg, and the acknowledgements by ack. A node is said to be safe with respect to 
pulse s if and only if it has received an ack for every comp_msg it sent at pulse s. In order to 
guarantee that our essential property holds for ni at pulse s, it then suffices that ni receive 



information stating that every one of its neighbors is safe with respect to pulse s. The task of 
a synchronizer is then to convey this information to all nodes concerning all pulses of the 
synchronous computation. 

A synchronizer is then to be understood as an asynchronous algorithm that is repeated at 
every pulse of Algorithm S_Alg in order to convey to all nodes the safety information we 
have identified as fundamental. Now let Messages(Alg) and Time(Alg) denote, respectively, 
the message complexity and the time complexity of a distributed algorithm Alg (synchronous 
or asynchronous). Then Messages(Sync) and Time(Sync) stand for the message and time 
complexities, respectively, introduced by Synchronizer Sync per pulse of Algorithm S-Alg to 
yield Algorithm A_Alg(Sync). These two quantities constitute the synchronization overhead 
introduced by Synchronizer Sync. 

Regardless of how Synchronizer Sync operates, we can already draw some conclusions 
regarding the final complexities of Algorithm A_Alg(Sync). Let us, first of all, recognize that 
the use of the ack messages does not add to the message complexity of Algorithm S_Alg, 
as exactly one ack is sent per comp_msg. Considering in addition that Messages(Sync) is 
the message complexity introduced by Synchronizer Sync per pulse of the execution of 
Algorithm S_Alg, and that there are Time(S_Alg) such pulses, we then have 

 

where Messages0(Sync) is the message complexity, if any, that Synchronizer Sync incurs 
with initialization procedures. 

Similarly, as Time(Sync) is the time complexity introduced by Synchronizer Sync per each of 
the Time(S_Alg) pulses of Algorithm S_Alg, we have 

 

where Time0(Sync) refers to the time, if any, needed by Synchronizer Sync to be initialized. 

Depending on how Synchronizer Sync is designed, the resulting complexities 
Messages(A_Alg(Sync)) and Time(A_Alg(Sync)) can vary considerably. In Section 5.3.1., we 
discuss three types of general synchronizers, and in Section 5.3.2. consider some special 
variations of interest. 

5.3.1 General synchronizers 

The essential task of a synchronizer is to convey to every node and for every pulse the 
information that all of the node's neighbors are safe with respect to that pulse. This safety 
information indicates that the node's neighbors have received an ack for every comp_msg 
they sent at that pulse, and therefore the node may proceed to the next pulse. 

The first synchronizer we present is known as Synchronizer Alpha. The material that we 
present in Section 5.3.2 comprises variants of this synchronizer. In Synchronizer Alpha, the 
information that all of a node's neighbors are safe with respect to pulse s ≥ 0 is conveyed 
directly by each of those neighbors by means of a safe(s) message. A node may then 
proceed to pulse s + 1 when it has received a safe(s) from each of its neighbors. Clearly, we 
have 
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and 

 

as a safe message is sent between each pair of neighbors in each direction, and causes no 
effect that propagates farther than one edge away. We also have Messages0(Alpha) = 
Time0(Alpha) = 0. 

Algorithm A_Alg(Alpha) is described next. In this section, we do not assume that edges are 
FIFO, and for this reason comp_msg's and ack's sent in connection with pulse s ≥ 0 are sent 
as comp-msg(s) and ack(s) (cf. Exercise 8). In Algorithm A_Alg(Alpha), node ni maintains, in 
addition to the variables employed by Algorithm S-to-A_Template, the following others. A 
variable expectedi(s), initially equal to zero, records for all s ≥ 0 the number of ack(s)'s ni 
expects. This variable is assumed to be incremented accordingly whenever ni, sends 
comp_msg(s)'s, although this is part of the "Send one message…" that generically appears 
in all our templates and then the sending of the messages is not explicitly shown. Node ni, 

also maintains a variable (s) for each neighbor nj and all s ≥ 0, initially set to false 
and used to indicate whether a safe(s) has been received from nj. 

Despite the simplicity of Synchronizer Alpha, designing the initial actions of Algorithm 
A_Alg(Alpha) requires that we reason carefully along the following lines. A node in N0 
behaves initially just as it would in the synchronous model. A node in that is not in N0, 
however, although in Algorithm S-Alg it might remain idle for any number of pulses, in 
Algorithm A-Alg(Alpha) it must take actions corresponding to every pulse, because otherwise 
its neighbors would never receive the safe messages that it should send and then not 
progress in the computation. The way we approach this is by employing an additional 
message, called startup, which is sent by the nodes in N0 to all of their neighbors when they 
start computing. This message, upon reaching a node that is not in N0 for the first time, 
serves the purpose of "waking" that node up and then gets forwarded by it to all of its 
neighbors as well. Loosely, this startup message can be though of as a "safe(−1)" message 
that is propagated in the manner of Algorithm A-PI of Section 4.1.1, and is intended to 
convey to the nodes that are not in N0 the information that they should participate in pulse s 
= 0 too, as well as in all other pulses (although for s > 0 this can be taken for granted by the 
functioning of Synchronizer Alpha). All nodes, including those in N0, only proceed to 
executing pulse s = 0 of the synchronous computation upon receiving a startup from every 

neighbor. This is controlled by a variable , initially set to false, maintained by ni for 
every neighbor nj to indicate whether a startup has been received from nj. An additional 
variable, initiatedi, intially set to false as well, indicates whether ni � N0. 

Algorithm A_Alg(Alpha):  
 

       Variables 
           si = 0; 

           MSGi(s) =  for all s≥ 0; 

           initiatedi = false; 



            =  false for all nj � Neigi; 
           expectedi(s) = 0 for all s≥0; 

            (s) = false for all nj � Neigi and all s ≥ 0. 
 

 

Listing 5.14  
 

       Input: 
           msgi = nil. 
       Action if ni � N0: 
           initiatedi := true; 
           Send startup to all nj � Neigi. 

 
 

Listing 5.15  
 

       Input: 
           msgi = startup such that origini(msgi) = (ni, nj). 

       Action: 
           if not initiatedi then 
                begin 
                    initiatedi := true; 
                    Send startup to all nk � Neigi 

                end; 

           := true; 

          if  for all nj � Neigi then 
               begin 
                   Do some computation; 

                   Send one comp_msg(si) on each edge of a (possibly 
empty) 

                   subset of Inci; 

                   if expectedi(si) = 0 then 
                        Send safe(si) to all nk � Neigi 

               end. 
 

 



Listing 5.16  
 

       Input: 
           msgi = comp_msg(s) such that origini (msgi) = (ni, j). 

       Action: 
           MSGi(s + 1) := MSGi(s + 1) � {msgi}; 

           Send ack(s) to nj. 
 

 

Listing 5.17  
 

       Input: 
           msgi = ack(s). 

       Action: 
           expectedi(s) := expectedi(s) −1; 

           if expectedi (s) = 0 then 
                Send safe(s) to all nj � Neigi. 

 
 

Listing 5.18  
 

       Input: 
           msgi = safe(s) such that origini (msgi) = (ni,nj). 

       Action: 

            (s) := true 

           if  (si) for all nk � Neigi then 
                 begin 
                     si := si + 1; 

                     Do some computation; 

                     Send one comp_msg(si) on each edge of a 
(possibly empty) 

                     subset of Inci; 

                     if expectedi(si) = 0 then 
                          Send safe(si) to all nk � Neigi 

                 end. 
 

 



As we indicated earlier, Algorithm A_Alg (Alpha) can be viewed as a specialization of 
Algorithm S-to-A_Template when the synchronization technique is Synchronizer Alpha. 
Indeed, the reader may without any difficulty check that (5.14) and (5.15) essentially do the 
job of (3.3), although the former involve nodes that are not in N0 while the latter does not. 
Similarly, (5.16) through (5.18) offer a detailed view of (3.4) under the rules of Synchronizer 

Alpha. In particular DONEi(si) returns a true value in (3.4) if and only if (si) = true for 
all nj � Neigi in (5.18). 

Synchronizer Alpha is only one of the possibilities. For generic synchronous computations 
like Algorithm S_Alg, there are two other synchronizers of interest. The first one is called 
Synchronizer Beta, and requires for its operation a spanning tree already established on G, 
so the initial complexities Messages0(Beta) and Time0(Beta) are no longer equal to zero, but 
depend instead on the distributed algorithm used to generate the tree (cf.Section 7.1.2). 
These complexities must also account for the election of a leader, which, as we mentioned in 
.Section 5.1, may be carried out rather closely to the construction of the spanning tree (cf. 
Section 7.1.1, and Section 7.1.2 as well). 

The function of the leader in Synchronizer Beta is to gather from all other nodes the safety 
information needed to proceed to further pulses, and then broadcast this information to all of 
them. The specifics of this procedure are the following. When a node that is not the leader 
becomes safe with respect to a certain pulse and has received a safe message from all but 
one of its neighbors on the tree, it then sends a safe message to the single neighbor from 
which it did not receive a safe (the tree edge connecting to this neighbor leads towards the 
leader). The leader, upon receiving safe messages on all the tree edges that are incident to 
it, and being itself safe with respect to that pulse, broadcasts a message on the tree 
indicating that the computation of a new pulse may be undertaken. This message may be a 
safe message as well, and then the rule for a node to proceed to another pulse is to do it 
after having received a safe message on all tree edges incident to it. 

Once the leader has been elected and the spanning tree built, the asynchronous algorithm 
that results from applying Synchronizer Beta to Algorithm S_Alg, Algorithm A-Alg(Beta), is 
initiated as follows. The leader broadcasts on the tree that all nodes may begin the 
computation of pulse s = 0. 

Clearly, the messages that Synchronizer Beta introduces traverse only tree edges, so we 
have 

 

and 

 

For generic computations, Synchronizer Beta does better than Synchronizer Alpha in terms 
of message complexity, whereas the reverse holds in terms of time complexity. 

The other synchronizer of interest, called Synchronizer Gamma, arises from a combination 
of Synchronizers Alpha and Beta. In this combination, nodes are conceptually grouped into 
clusters. Inside clusters, Synchronizer Gamma operates as Synchronizer Alpha; among 
clusters, it operates as Synchronizer Beta. The size and disposition of clusters are regulated 



by a parameter k such that 2 ≤ k < n, and in such a way that Synchronizer Gamma's 
complexities are 

 

and 

 

As k varies, Synchronizer Gamma resembles more Synchronizer Alpha or Synchronizer 
Beta. Once again the costs of initialization Messages0(Gamma) = and Time0(Gamma) are 
nonzero and depend on the mechanisms utilized. Values that can be attained for these 
measures are Messages0(Gamma) = O(kn2) and Time0(Gamma) = O(n log n/log k). 

Something instructive for the reader to do, having become acquainted with the synchronizers 
we discussed in this section, is to return to the various synchronous algorithms we have 
already seen in the book and assess their complexities when each of the three 
synchronizers is employed. Some of the conclusions to be drawn from this assessment are 
the following. First, no synchronizer can beat the complexities of Algorithm A-Compute-f 
when applied to either Algorithm S-Compute-AND or Algorithm S-Locally-Orient. Secondly, 
Synchronizer Alpha (the only one whose application to a synchronous leader election 
algorithm is meaningful), when applied to Algorithm S-Elect-Leader-C, does not yield 
improvements over the complexity of Algorithm A-Elect-Leader-C. 

What these two conclusions indicate is that synchronizers do not necessarily lead to better 
complexities when compared with asynchronous algorithms that were designed without 
recourse to synchronization techniques. However, as we remarked at the end of Section 3.4 
in the context of establishing a breadth-first numbering on the nodes of a directed graph, 
historically there have been occasions in which such improvements were obtained. 
Incidentally, it may also be an instructive exercise for the reader to verify that the 
complexities claimed in that occasion for the asynchronous solution obtained from the 
synchronous one are consistent with the message and time complexities of Synchronizer 
Gamma as discussed in this section. (Although in this section G is taken to be undirected, no 
conflict exists when addressing the computation for breadth-first numbering discussed in 
Section 3.4. The graph is in that case a directed graph, and it is on such a graph that the 
synchronous algorithm operates. On the other hand, the synchronizer, and consequently the 
resulting asynchronous algorithm, operate on the corresponding undirected graph, 
essentially by being allowed to send synchronization-related messages against the direction 
of the edges when needed—cf. Exercise 10.) 

In Chapter 7, when we discuss algorithms to find maximum flows in networks, synchronizers 
will come to the fore once again in the book. 

5.3.2 Important special cases 

Of the synchronous algorithms we have seen so far in the book, another that deserves our 
attention in the light of a synchronizer is Algorithm S-Compute-Distances, introduced in 
Section 4.3 for the computation of the shortest distances among all pairs of nodes in G. As 
we claimed in that section, this algorithm yields Algorithm A-Compute-Distances, also 
introduced in Section 4.3, through the utilization of a synchronizer. Interestingly, and contrary 



to the intuition we built during our study in the previous section, both algorithms have the 
same message and time complexities. The reason for this is that the synchronizer employed 
to transform the synchronous algorithm into the asynchronous one is a particular case of 
Synchronizer Alpha, as we discuss next. 

Let us first, however, examine the following scenario in the context of Synchronizer Alpha. 
Suppose, for the sake of example, that node ni has two neighbors, nj and nk. Suppose further 
that nj has only one neighbor (ni) and that nk has many neighbors. Consider the situation in 
which ni has just become safe with respect to pulse s ≥ 0 and then sends safe(s) to nj and nk. 
Node ni can only proceed to pulse s + 1 after receiving similar messages from its two 
neighbors. Suppose that such a message has been received from nj but not from nk (which 
depends on many more neighbors other than ni to become safe with respect to pulse s). It is 
possible at this moment that a safe(s + 1) too is received from nj before the safe(s) from nk 
arrives, at which time ni will have received two safe messages from nj without the respective 
counterparts from nk, and will therefore be unable to proceed to pulse s + 1 immediately. It is 
simple to see, nevertheless, that nj will at this time be unable to proceed to pulse s + 2, as it 
now depends on a safe(s +1) from ni. If we compute the number of safe messages ni has 
received since the beginning of the computation from its two neighbors, we will see that the 
numbers corresponding to nj and nk differ by no more than two. The particular topological 
situation we described was meant to help the understanding of this issue, but the maximum 
difference we just stated is true in general. 

This relative "boundedness," when coupled with the assumption that all edges are FIFO, 
allows various simplifications to be carried out on Algorithm A-Alg(Alpha). For one thing, no 
message or variable needs to depend explicitly on s any longer, so that the "per-pulse bit 
complexity" of Synchronizer Alpha, which we have not introduced formally but clearly might 
be unbounded, becomes constant. In addition, under the FIFO assumption ack's are no 
longer needed, and ni may send safe messages to all of its neighbors immediately upon 
completion of its computation for the corresponding pulse. Such safe messages will certainly 
be delivered after the comp-msg's sent during that computation, indicating that every such 
message sent by ni during the current pulse has already arrived. 

We now present a version of Algorithm A-Alg (Alpha) in which edges are assumed to be 
FIFO, and, in addition, the following important assumption is made. At each pulse s ≥ 0, 
node ni sends exactly one comp-msg to each of its neighbors. These two assumptions allow 
startup, ack, and safe messages to be done away with altogether, and so render the 

variables , expectedi, and useless for all neighbors nj of ni. Also, the sets 
MSGi(s) for s ≥ 0 are no longer needed; instead, one single set MSGi for use at all pulses 
suffices, as we see next. 

The behavior of ni is now considerably simpler, and goes as follows. It starts upon receiving 
the first comp-msg (unless it belongs to N0), and proceeds to the next pulse upon receiving 
exactly one comp-msg from each of its neighbors. However, it is still possible to receive two 
consecutive comp-msg's from one neighbor without having received any comp_msg from 
another neighbor. This issue is essentially the same we discussed above concerning the 
reception of multiple safe messages from a same neighbor, and some control mechanism 
has to be adopted. What we need is, for each neighbor, a queue with one single position in 
which comp_msg's received from that neighbor are kept until they can be incorporated into 
MSGi. (From our previous discussion, it would seem that two-position queues are needed. 
However, we can think of MSGi as containing the queue heads for all of ni's queues.) We 

then let denote this queue at ni for neighbor nj. The new version we present is 



called Algorithm A_Schedule_AS ("AS" for Alpha Synchronization), in allusion to its use in 
Section 10.2. 

Algorithm A_Schedule_AS:  
 

       Variables: 
           si = 0; 

           MSGi =  

           initiatedi = false; 

            = nil for all nj � Neigi. 
 

 

Listing 5.19  
 

       Input: 
           msgi = nil. 
       Action if ni � N0: 
           initiatedi := true; 
           Do some computation; 

           Send exactly one comp_msg on each edge of Inci. 
 

 

Listing 5.20  
 

       Input: 
           msgi = comp_msg such that origini(msgi) = (ni, nj). 

       Action: 
           if not initiatedi then 
               begin 
                   initiatedi := true; 
                   Do some computation; 

                   Send exactly one comp_msg on each edge of Inci 

               end; 
           if there exists msg � MSGi such that origini(msg) = nj 
then 

                := msgi 

           else 
               MSGi := MSGi � {msgi}; 



           if |MSGi| = |Neigi| then 
               begin 
                   si := si + 1; 

                   Do some computation; 

                   Send exactly one comp_msg on each edge of Inci; 

                   MSGi := ; 

                   for all nk � Neigi do 

                        MSGi := MSGi � { }; 

                    := nil for all nk � Neigi 
               end. 

 
 

In Algorithm A_Schedule_AS, (5.19) and (5.20) reflect the considerable simplification that 
the assumptions of this section entail with respect to Algorithm A_Alg(Alpha). In addition to 
the elimination of many messages and variables with respect to that algorithm, it should also 
be noted that, unless ni employs the value of si for its computation at any pulse, this variable 
too may be eliminated. 

When comparing this algorithm with the general template given by Algorithm S-to-
A_Template, one verifies that DONEi(si)returns true in (3.4) if_ and only if | MSGi|= |Neigi| in 
(5.20), although the dependency on si is no longer explicit, as MSGiis a single set for use at 
all pulses. 

We are now in position to return to the problem of computing shortest distances where we 
left it in Section 4.3. Clearly, Algorithm S_Compute_Distances complies with the assumption 
of this section that every node sends exactly one message to every one of its neighbors at 
all pulses. This, combined with the assumption of FIFO edges, allows a corresponding 
synchronous algorithm to be obtained along the lines of Algorithm A_Schedule_AS. Indeed, 
it should take little effort to realize that Algorithm A_Compute_Distances is merely an 
instance of Algorithm A_Schedule_AS (cf. Exercise 11). Because the latter, when viewed as 
a synchronous algorithm that underwent synchronization, does not contain any 
synchronization overhead, the complexities of Algorithm A_Compute_Distances are indeed 
the same as those of Algorithm S_Compute_Distances. 

5.4 Exercises 
1. Show that a leader can only be elected if in G all nodes have distinct identifications.  
2. Discuss what happens to Algorithm S_Elect_Leader_C if the base is no longer 2, but 
rather c such that 2 ≤ c < n −1.  
3. Consider the O(n2)-message, O(1)-time synchronous algorithm that we discussed in 
Section 5.1 for leader election on a complete graph, and discuss how it can be adapted to 
the asynchronous case. Show that the message complexity remains the same, but the time 
complexity becomes O(n). Compare the resulting algorithm with Algorithm 
A_Elect_Leader_C.  
4. Derive a leader-election algorithm from multiple executions of Algorithm A_PI.  



5. Discuss alternatives to Algorithm A_Template that allow the treatment of messages 
belonging to another computation as well. Show how this affects the way Algorithm 
A_Record_Global_State is expressed.  
6. Consider a computation in which nodes halt independently of one another, and consider 
the system state in which all nodes are halted. Is this system state a global state? If it is, is it 
completely known to the nodes?  
7. Show that every system state in which all edges are empty is a global state.  
8. Discuss what may happen if the pulse number is omitted from the messages comp_msg 
and ack in Algorithm A_Alg(Alpha) when edges are not FIFO.  
9. In the context of Section 1.5, find the r(c)'s for Algorithm A_Schedule_AS.  
10. Discuss the fundamental alterations synchronizers must undergo when G is a directed 
graph.  
11. Discuss in detail the reasons why Algorithm A_Compute_Distances is an instance of 
Algorithm A_Schedule_AS.  
12. Explain how to modify Algorithm A_Compute_Distances so that useless work is avoided 
after all distances have been determined (instead of keeping running up to the maximum 
possible distance of n −1).  
1.    Show that a leader can only be elected if in G all nodes have distinct identifications. 
2.  

  
Discuss what happens to Algorithm S_Elect_Leader_C if the base is no longer 2, but 
rather c such that 2 ≤ c < n −1. 

3.  

  

Consider the O(n2)-message, O(1)-time synchronous algorithm that we discussed in 
Section 5.1 for leader election on a complete graph, and discuss how it can be adapted to 
the asynchronous case. Show that the message complexity remains the same, but the 
time complexity becomes O(n). Compare the resulting algorithm with Algorithm 
A_Elect_Leader_C. 

4.    Derive a leader-election algorithm from multiple executions of Algorithm A_PI. 
5.  

  
Discuss alternatives to Algorithm A_Template that allow the treatment of messages 
belonging to another computation as well. Show how this affects the way Algorithm 
A_Record_Global_State is expressed. 

6.  
  

Consider a computation in which nodes halt independently of one another, and consider 
the system state in which all nodes are halted. Is this system state a global state? If it is, 
is it completely known to the nodes? 

7.    Show that every system state in which all edges are empty is a global state. 
8.  

  
Discuss what may happen if the pulse number is omitted from the messages comp_msg 
and ack in Algorithm A_Alg(Alpha) when edges are not FIFO. 

9.    In the context of Section 1.5, find the r(c)'s for Algorithm A_Schedule_AS. 
10. 

  
Discuss the fundamental alterations synchronizers must undergo when G is a directed 
graph. 

11. 
  

Discuss in detail the reasons why Algorithm A_Compute_Distances is an instance of 
Algorithm A_Schedule_AS. 

12. 
  

Explain how to modify Algorithm A_Compute_Distances so that useless work is avoided 
after all distances have been determined (instead of keeping running up to the maximum 
possible distance of n −1). 

5.5 Bibliographic notes 
The impossibility of electing leaders in the absence of distinct identifications for all nodes is 
discussed in Angluin (1980). Our treatment in Section 5.1 is based on Afek and Gafni 
(1991). Many other authors have investigated the problem of electing a leader under various 
restrictions on G, including synchronous rings (Overmars and Santoro, 1989; Bodlaender 
and Tel, 1990) and cases in which G is directed (Afek and Gafni, 1994). Awerbuch (1987) 



has addressed the problem for generic graphs, and appears to have given the first time-
optimal algorithm to solve it—cf. Section 7.4. Additional work on leader election includes the 
contributions by Peleg (1990), Singh (1992), Tsaan Huang (1993), and Singh and Kurose 
(1994). 

Most of Section 5.2 is based on the seminal work by Chandy and Lamport (1985). Other 
authors have recently addressed the problem of global state recording in different contexts, 
as for example Acharya and Badrinath (1992), Alagar and Venkatesan (1994), and Saleh, 
Ural, and Agarwal (1994). Applications of algorithms for global state recording other than 
those presented in other chapters can be found in Chaves Filho and Barbosa (1992) and in 
Choy and Singh (1993), in both cases for scheduling purposes. 

A great portion of Section 5.3 is based on the work in which synchronizers were first 
introduced (Awerbuch, 1985a). Further developments on the theme can be looked up in 
Awerbuch and Peleg (1990), Shabtay and Segall (1992), Garofalakis, Spirakis, Tampakas, 
and Rajsbaum (1994), and Rajsbaum and Sidi (1994). 

Distributed snapshots and synchronizers are often regarded as essential building blocks for 
the design of distributed algorithms in general. The reader interested in such a view of the 
design of distributed algorithms may refer to Gafni (1986), and to additional publications in 
which techniques with potential to occupy similar positions as building blocks have been 
introduced (Afek, Awerbuch, and Gafni, 1987; Afek and Ricklin, 1993). 



 

Part 2: Advances and Applications 
Stable Properties  
Graph Algorithms  
Resource Sharing  
Program Debugging  
Simulation  

This second part of the book comprises five additional chapters, each dedicated to a class of 
problems for which distributed algorithms have been devised. These algorithms constitute 
advances on the basic algorithms and techniques introduced in the chapters of Part 1, and 
are in most cases geared toward particular classes of applications. 

Chapter 6 contains a study of stable properties from the standpoints of self-stabilization and 
of stability detection. The investigation of self-stabilizing computations may be ultimately 
applicable to the recovery from faults, while the detection of stability finds much more 
immediate applicability, for example in the areas of termination and deadlock detection, both 
discussed in the chapter. 

Chapter 7 expands on material seen previously in Part 1 (Chapters 4 and 5) with the study of 
two graph problems. The first graph problem is that of finding a minimum spanning tree on a 
graph, and relates directly to the leader election problem, studied in Chapter 5. The second 
graph problem is that of finding a maximum flow in a graph with a few special features. This 
problem, like those seen in Chapter 4, are related to problems in the operation of distributed-
memory systems. 

Chapter 8 is dedicated to the study of distributed algorithms to ensure mutual exclusion in 
the access to shared resources, while guaranteeing deadlock- and starvation-freedom as 
well. This problem is studied from two broad perspectives, which in essence can be reduced 
to the sharing of one single resource or of multiple resources concomitantly. One of the 
algorithms studied in this chapter provides the basis for part of the discussion in Chapter 10. 

Techniques for the deterministic re-execution of distributed algorithms in an asynchronous 
setting, and for detecting breakpoints during executions of such algorithms, are studied in 
Chapter 9. Both problems constitute essential parts of the process of program debugging, 
and present difficulties far beyond those encountered in a sequential setting. For the 
detection of breakpoints, we restrict our attention to a few classes of breakpoints only. 

Chapter 10 contains material on the distributed simulation of physical systems, which are 
models of natural systems occurring in various scientific fields. We present approaches for 
two broad classes of systems, called the time-stepped and event-driven approaches. Within 
the latter, we expand on the so-called conservative and optimistic methods. The chapter also 
contains a brief discussion of methods for systems that do not exactly fall into either of the 
two classes, as well as a short digression on how the various approaches may be unified. 



 

Chapter 6: Stable Properties 
Overview 
A stable property is a global property of G that holds for all global states in the future of a 
global state for which it holds. This chapter is devoted to the study of stable properties from 
two essentially distinct perspectives. The first perspective is that of ensuring that a stable 
property is achieved regardless of the initial global state, and the second perspective is that 
of detecting that a stable property holds for some global state. 

We address stable properties as a desired goal from any initial global state in Section 6.1, 
where we relate such a type of behavior to the issue of fault-tolerance. Although fault-
tolerance is outside the intended scope of this book, our approach in Section 6.1 blends 
quite well with material to be studied in Chapter 8, and in addition provides us with the 
opportunity to discuss a class of distributed algorithms exhibiting nontrivial stable behavior 
for any initial global state. 

The second perspective from which we study stable properties is the perspective of stability 
detection, more specifically the detection of the termination of distributed computations and 
the detection of deadlocks. This second perspective contrasts with the first one not only 
because of widely differing objectives (achieving stability, in the former case, as opposed to 
detecting it, in the latter), but also because termination and deadlocks are far from the sort of 
stable properties one is seeking to achieve in the former case. 

Termination detection is treated in Section 6.2, where we discuss techniques for detecting 
the termination of distributed computations in general and of distributed computations that 
that are of the diffusing type. These, as we will see, are characterized by the fact that N0 is a 
singleton. 

In Section 6.3, we discuss the detection of deadlocks in a distributed computation. Because 
deadlocks can occur in a variety of situations, and under assumptions that differ widely from 
one case to another, in Section 6.3 we concentrate on a distributed computation that 
controls the providing of services by the nodes to one another. Such a computation, as we 
describe it in that section, is deadlock-prone. The algorithm that we provide to detect the 
occurrence of deadlocks is very elegantly contrived, and moreover allows techniques that we 
have seen previously in the book, chiefly in Chapter 4, to be exercised. 

Exercises and bibliographic notes appear, respectively, in Sections 6.4 and 6.5. 

Before we proceed to the remaining three major sections of this chapter, it may be 
instructive to once again return to the issue of implicit knowledge introduced in Section 2.3 

for another example. Quite simply, if is a sentence related to some stable property in 

some global state, then is implicit knowledge that N has in that global state and in all 

global states in its future, that is, IN . So, for example, an algorithm that has terminated or 
deadlocked is such that N has implicit knowledge of either condition. In these cases, what 
the detection procedures studied in Sections 6.2 and 6.3 do is to turn such implicit 
knowledge into knowledge by one or more individual nodes. 



 
6.1 Self-stabilization 
If a distributed algorithm over G can be guaranteed to lead G to a global state where a 
particular stable property holds regardless of the global state at which the computation starts 
out, then the system comprising G and this distributed algorithm is said to be a self-
stabilizing system. Every self-stabilizing system is fault-tolerant in the following sense. If the 
local states of nodes are allowed to change infrequently as the result of a failure, then by 
definition the system recovers from that failure by reaching a global state at which the 
desired stable property is once again valid. Just how infrequent such failures have to be for 
self-stabilization to be still guaranteed is of course an issue, but for our purposes it suffices 
to recognize that failures have to be infrequent enough for the system to reach stability again 
once it has been disturbed. 

Self-stabilizing systems do not need to be initialized, because by definition the stable 
property that the distributed algorithm seeks to achieve is certain to be reached from any 
initial global state. Also, because of the fault-tolerance connotation that inevitably 
accompanies the subject, once started at some initial global state, the distributed 
computation is supposed to be infinite, in the sense of never terminating. For this reason, not 
every stable property is meaningful in the context of self-stabilization, as one is interested in 
computations that do useful work despite the initial state and occasionally corrupted local 
states. Stable properties such as global termination and deadlocks are then naturally ruled 
out. 

In order to close in on the subject more objectively, we consider the following example. 
Suppose that the nodes in G need to utilize certain resources for their computations, but 
such resources cannot be utilized concurrently by any two nodes. In the context of self-
stabilization, the task is to devise a distributed algorithm that, starting at any global state and 
given the possibility that local states may be occasionally corrupted, guarantees that the 
system eventually reaches a global state in which (and in whose future) no two nodes 
access the shared resources concurrently. (The reader may wish to check Section 8.1 for a 
more thorough treatment of this problem, although in that section self-stabilization is not an 
issue.) The stable property at hand is then that no two nodes access shared resources 
concurrently, so long as this can be guaranteed to remain true once it becomes true. 

Henceforth in this section, G is an undirected ring with FIFO edges. Referring back to the 
terminology of Section 2.2, the edges incident to node ni are called lefti and righti, and the 
ring is assumed to be locally oriented (employing these edge denominations is only for 
notational convenience, though, because in this section the issue of anonymity is 
unimportant). Associated with a node ni is a variable vi. The right of a node to access the 
shared resources depends on the value of its variable and on the values of the variables of 
its neighbors. The task of a self-stabilizing computation on G is then to assign values to all 
nodes' variables so that no two nodes have such a right concurrently from a certain global 
state onward, regardless of the initial global state (i.e., the initial assignment of values to the 
variables). 

Although a justification of this fact falls outside the scope we have intended for this book, for 
a ring of arbitrary size no self-stabilizing solution exists employing the exact same algorithm 
for all nodes. For this reason, in the solution that we present next the behavior of n1 is 
distinct from that of the other nodes. Our solution is given as Algorithm A-Self-Stabilize, and 
is essentially the following. Every node ni initiates by sending the value of vi on righti. Upon 



receiving a value v on edge lefti, ni checks whether vi ≠ v. In the affirmative case, ni 
accesses the shared resources, and after using them sets vi to v and sends vi's new value 
on righti. An exception to this behavior is the case of n1, which accesses the shared 
resources if v1 = v and then sets v1 to v + 1 before sending the new value on right1. 

At node ni, a Boolean variable initiatedi, initially set to false, is used to indicate whether ni ∈ 
N0. The simple behavior we just described is all there is to the algorithm, except for the 
possibility of faults that may corrupt a node's local state (i.e., the value of its variable). Before 
explaining how the algorithm is augmented to handle such faults, a few assumptions on their 
nature are in order. First we assume that actions do indeed take no time to be performed (cf. 
Section 3.2.2), and consequently the occasional faults that may corrupt a node's local state 
can only occur in the intervals between successive actions at that node. Faults occurring 
prior to the first action at a node are immaterial (because the algorithm is intended to be 
insensitive to initial conditions), and then it is reasonable to assume that faults can only 
occur at ni if initiatedi = true (as in previous occasions when dealing with asynchronous 
algorithms, initiatedi is set to true immediately upon arrival of the first message if ni ∉ N0). 
Finally, another assumption is that ni is capable of detecting the occurrence of a fault that 
may have corrupted its local state. This detection is modeled as the arrival of a fault 
message (of purposefully undetermined origin). 

The handling by ni of a fault that may have corrupted its local state goes as follows. In 
response to the fault message, ni sets initiatedi to true (since by assumption it must have 
been true prior to the occurrence of the fault) and then reproduces the flow of messages 
involving ni during initiation. That is, it sends the value of vi (which may or may not be the 
same as before the occurrence of the fault) on righti and a query message on lefti, the latter 
meant to prompt its corresponding neighbor to send the value of its variable to ni. 

Algorithm A _Self_Stabilize:  
 

          Variables: 
              initiatedi = false; 
              vi 

 
 

Listing 6.1  
 

          Input: 
              msgi = nil. 
          Action if ni ∈ N0: 
              initiatedi := true; 
              Send vi on righti. 

 
 

Listing 6.2  
 

          Input: 



              msgi = fault. 

          Action: 
              initiatedi := true; 
              Send vi on righti; 

              Send query on lefti. 
 

 

Listing 6.3  
 

          Input: 
              msgi = query. 

          Action: 
              Send vi on righti 

 
 

Listing 6.4  
 

          Input: 
              msgi = v. 

          Action if ni =n1: 
              if vi = v then 
                    begin 
                        Access shared resources; 

                        vi := vi + 1; 

                        Send vi on righti 

                    end. 
 

 

Listing 6.5  
 

          Input: 
              msgi = v. 

          Action if ni ∈ {n2,…,nn): 

              if vi ≠ v then 
                    begin 
                        Access shared resources; 

                        vi := v; 

                        Send vi on righti 



                    end. 
 

 

The first fact to notice with respect to Algorithm A_Self_Stabilize is that we have not 
assigned any initial value to vi for vi ∈ N, precisely because of the intended insensitivity to 
the initial global state. Secondly, it should be noticed that (6.1) and the pair consisting of 
(6.2) and (6.3) are meant to be executed upon initiation, triggered respectively by the 
spontaneous initiation by ni, if it is in N0 and by the detection by ni of a the occurrence of a 
fault that may have corrupted the value of vi. As we remarked previously, (6.2) and (6.3) are 
supported by our assumptions on the nature of such faults, in the sense that the response to 
a fault may be thought of as a re-initiation of the algorithm as far as ni is concerned. 

The necessary asymmetry that we alluded to earlier is reflected in Algorithm 
A_Self_Stabilize in (6.4) and (6.5), representing respectively the action that n1 and ni ∈ 
{n2,…,nn} take upon receipt of a variable's value on the ring. It follows easily from these two 
actions that, if initially all variables have the same value, then by (6.4) v1 is incremented and 
by (6.5) its new value is propagated on the FIFO edges around the ring until all variables 
have this same value. Then v1 is incremented again, and so on. If, on the other hand, at 
least two variables have distinct values in any global state, then either the value of v1 or that 
of v1 + 1 (if v1 = vn in that global state) is propagated on the ring as well, until vn becomes 
equal to v1, and then the process continues repeatedly. So, although in the latter case the 
shared resources may be concurrently accessed by more than one node during a transient 
phase of some global states, a global state in which (6.4) and (6.5) cannot be executed 
concurrently by any two nodes is certain to occur, the same property holding for all global 
states in its future. 

The solution by Algorithm A_Self_Stabilize can be turned into a solution by finite-state nodes 
by doing additions modulo V in (6.4), so that variables are confined to the range {0,…, V − 
1}. Any V strictly larger than n will do, so that the range of values for a variable contains at 
least the set {0,…, n} (cf. Exercise 1). 



 
6.2 Termination detection 
The issue of algorithm termination appeared in this book as early as in Chapter 1, where, in 
Section 1.4, Algorithm Task_t runs until "global termination is known to t." As we discussed 
in that section, what is meant by this is that task t must execute its disjunction of guarded 
commands until it is signaled, by means of messages that it receives, that no further 
messages will ever reach it and it may therefore cease executing the guarded commands 
and terminate its computation. The notation used in Algorithm Task_t was later modified to 
emphasize the reactive character of the algorithm, so that in the resulting template 
algorithms (Algorithms A_Template and S_Template) only the atomic actions corresponding 
to a task's response to the receipt of messages appear. Such messages, of course, should 
include those intended to convey to t the information that it may terminate. 

Tasks have since been called nodes, and in none of the algorithms we have seen so far (or 
will see in chapters still ahead in the book) have we included actions to handle the treatment 
of the termination-related messages we have from Chapter 1 learned to be important. There 
are essentially two reasons why we have delayed such a treatment until this far into the 
book. The first reason is that global termination, as we will shortly see, is clearly an instance 
of stable properties, so that placing its treatment elsewhere in the book might seem a little 
unnatural. Secondly, and more importantly, the techniques we investigate in this section 
build naturally on top of what we saw in Chapters 4 and 5, often explicitly, but also 
sometimes simply in terms of the maturity of reasoning one must have acquired by studying 
those chapters. 

Of course, for some of the algorithms we have seen, the issue of termination is a trivial one. 
For example, all the synchronous algorithms we have investigated terminate when a certain 
number of pulses have gone by. Similarly, in the case of all the asynchronous algorithms we 
have seen so far, a node should have no problem detecting that messages need no longer 
be expected, mostly because those algorithms are all very well structured and have very 
great regularity. For example, it is clear that Algorithm A_PI terminates at a node when that 
node has received inf from all of its neighbors, at which time it can be certain that no further 
message related to that algorithm will ever reach it again. Similar lines of reasoning apply to 
all the other asynchronous algorithms we have seen (cf. Exercise 2), as well as to many of 
the algorithms yet to be seen in the book. For asynchronous algorithms lacking the regularity 
that allows such simple termination analyses, however, the issue of detecting global 
termination with the purpose of relieving the various nodes from having to be on the lookout 
for new messages needs to be addressed from a general perspective. Asynchronous 
algorithms like these appear, for example, in Section 7.2.3. 

The remainder of Section 6.2 is dedicated exclusively to asynchronous algorithms, although 
for various synchronous computations (e.g., those in Section 7.2.2) the detection of 
termination is not as straightforward as it has been with some of the other synchronous 
algorithms we have seen so far. However, the central issue in treating the termination of 
such algorithms is that, if they do indeed terminate, then it is essentially possible to detect 
that by counting pulses. Clearly, such a statement has no clear counterpart in the 
asynchronous case, thence our emphasis henceforth. 

What we do in the next two sections is essentially to provide the atomic actions to make up 
for the treatment of global termination in asynchronous algorithms that do not exhibit enough 
regularity for its termination to be treated without messages related explicitly to termination. 
These actions complement those of the asynchronous algorithms proper so that the resulting 



asynchronous algorithms behave as intended and in addition are also capable of terminating 
properly. It should be clear to the reader that the techniques we describe henceforth are also 
applicable to asynchronous algorithms exhibiting high regularity, although of course in such 
cases they are totally superfluous and the resulting algorithm can in all likelihood be 
simplified back to the one whose regularity is enough to indicate termination. Section 6.2.1 is 
dedicated to the case of general computations, in the sense that N0 may be any subset of N. 
Section 6.2.2, on the other hand, is specific to the case in which N0 is a singleton. Before 
entering specifics in either section, however, we must formalize a little further our concept of 
global termination. 

An asynchronous algorithm is said to have terminated globally or reached global termination 
at a certain global state if every node is idle and all edges are empty in that global state. A 
node is idle when it is not executing any of the actions that specify its participation in the 
algorithm. Obviously, then, global termination is indeed a stable property, owing essentially 
to the reactive character of all the asynchronous computations we treat in this book. What a 
node needs to detect in order to be able to terminate its computation at a given local state is 
that, in every possible global state in which it participates with that local state, the edges on 
which it receives messages are all empty. Such a detection may be achieved in a variety of 
ways. In the case of Algorithm A_PI, for example, as soon as inf has been received from all 
of a node's neighbors, that node enters a local state with which it can only participate in 
global states that have empty edges leading to itself, and then it may terminate. When this 
conclusion cannot be reached in such a straightforward manner, additional computation 
needs to take place globally over G until a global state in which the algorithm has terminated 
globally is detected by a leader. The leader is then responsible for spreading this information 
over G, and every node, upon receiving it, does finally terminate. Without any loss in 
generality, we assume that such a leader is node n1. 

In both Sections 6.2.1 and 6.2.2, we present the termination detection algorithms as 
expansions of Algorithm A_Template. The resulting algorithms should be regarded as further 
elaborations over Algorithm A_Template to make the termination-related actions explicit. 
Messages that are not related to the detection of termination are referred to as comp_msg's. 

6.2.1 General computations 
The distributed computation of interest in this section is initiated by any subset N0 of N and 
progresses through the exchange of messages generically referred to as comp-msg's. We 
take G to be a strongly connected directed graph, so that the case of an undirected G can 
also be handled in a straightforward manner. Our approach to termination detection in this 
section is based strongly on Algorithm A_Record_Global_State, and then we assume that 
G's edges are FIFO. 

The approach we take goes essentially as follows. Before going idle, a node that "suspects" 
it may have terminated initiates the recording of a global state. This suspicion is of course 
highly dependent upon the particular computation at hand, so we let it be indicated by a 
Boolean variable suspectsi at ni ∈ N. This variable is set to either false or true after, in 
accordance with Algorithm A_Template, ni has computed and possibly sent out some 
messages, either spontaneously if ni N0 or upon the receipt of a comp_msg (the initial value 
assigned to the variable is then unimportant). A global state in which suspectsi = true for all 
ni ∈ N does not imply global termination in that global state (because there may be 
messages in transit), but we assume that global termination does imply that suspectsi = true 
for all ni ∈ N. 



This recording of a global state proceeds entirely along the lines of Algorithm 
A_Record_Global_State, that is, through the exchange of marker messages, and may as in 
that case be initiated concurrently by more than one node if for such nodes the suspects 
variables become true concurrently. When the recording of a global state is completed at ni, 
it then sends what it recorded to n1 (the assumed leader), which, upon receiving similar 
information from every node, checks whether the global state that was recorded indicates 
global termination. If it does, then a terminate message is broadcast by n1 to all of G's 
nodes, which then terminate. 

Clearly, this procedure may be wasteful because a node ni that receives a marker when 
suspectsi = false should not propagate the marker's onward because the resulting global 
state cannot possibly indicate global termination. Aborting a global state recording is not 
something we have considered before, and there are a few implications to be considered. In 
our present context, the two problems that result from prematurely aborting a global state 
recording are the need to terminate the aborted recording properly and the possibility that n1 
receives incomplete global states which must somehow be dealt with. We tackle both 
problems simultaneously, as follows. Every marker is sent with a tag, and every node keeps 
record of the greatest tag it has seen so far in a marker. If the tag a node attaches to a 
marker it sends out when initiating a new global state recording is strictly greater than any 
tag it has ever seen, then the rule for participating in global state recordings is very simple. A 
node only participates in a new global state recording if the tag accompanying the 
corresponding marker is strictly larger than every tag it has known of and in addition its 
suspects variable is true. Any marker received in different circumstances is ignored. The 
reader should note that this provides the necessary control for terminating aborted global 
state recordings, and also allows n1 to discard useless information it has recorded if the 
information that it receives from nodes on a recorded global state is itself accompanied by 
the tag that was attached to the marker's during the recording of that global state. 

This strategy is adopted by Algorithm A_Detect_Termination, given next. In addition to the 
Boolean variable suspectsi, node ni needs some of the variables employed by Algorithm 

A_Record_Global_State as well. These are , initialized to , for each 

node nj ∈ I_Neigi, and the Booleans recordedi, and , all initialized to false. The 
maximum tag ni has seen in a marker is denoted by max-tagi. Finally, another Boolean 
variable, terminatedi, initially equal to false, is used by ni to indicate whether a terminate 
message has been received from n1 (terminated1 is used to indicate that global termination 
has been detected). This variable, in Algorithm Task_t, can be used to exit the repeat…until 
loop. 

In Algorithm A_Detect_Termination, marker messages are sent as marker(t) messages, 
where t is a positive tag. The initial value of max_tagi is then zero. 

Algorithm A_Detect_Termination:  
 

      Variables: 
          suspectsi; 

           =  for all nj ∈ I_Neigi; 

          recordedi = false; 



           = false for all nj ∈ I_Neigi; 
          max_tagi = 0; 

          terminatedi = false; 
          Other variables used by ni, and their initial values, are 
listed here. 

 
 

Listing 6.6  
 

      Input: 
          msgi = nil. 
      Action if ni ∈ N0: 
          Do some computation; 

          Send one comp_msg on each edge of a (possibly empty) 
subset of 

          Outi; 

          if suspectsi then 
               begin 
                   max_tagi:= max_tagi + 1; 

                   recordedi:= true; 
                   Send marker(max-tagi) to all nj ∈ O_Neigi 

               end. 
 

 

Listing 6.7  
 

      Input: 
          msgi = comp_msg such that origini(msgi) = (nj → ni). 
      Action: 
          Do some computation; 

          Send one comp_msg on each edge of a (possibly empty) 
subset of 

          Outi; 

          if recordedi then 

              if not  then 

                   :=  ∪ {msgi}; 



          if suspectsi then 
              begin 

                   :=  for all nk ∈ I_Neigi; 

                   := false for all nk ∈ I_Neigi; 
                  max_tagi := max_tagi + 1; 

                  recordedi := true; 
                  Send marker(max_tagi) to all nj ∈ O_Neigi 

              end. 
 

 

Listing 6.8  
 

      Input: 
          msgi = marker(t) such that origini(msgi) = (nj → ni). 
      Action: 
          if t = max_tagi then 

                 := true; 
          if t > max_tagi then 
                begin 
                    max_tagi := t; 

                     :=  for all nk ∈ I_Neigi; 

                    recordedi := false; 

                     := false; for all nk ∈ I_Neigi; 
                    if suspectsi then 
                         begin 

                              := true; 

                              := true; 
                             Send marker(max_tagi) to all nk ∈ 
O_Neigi 

                         end 
                end; 

          if  for all nk ∈ I_Neigi then 



                Send  for all nk ∈ I_Neigi, along with 
max_tagi, to 

                n1. 
 

 

Listing 6.9  
 

      Input: 
          msgi = terminate. 

      Action if ni ≠ n1: 
          terminatedi := true. 

 
 

This algorithm is, in essence, a blend of Algorithm A_Template on comp_msg's and 
Algorithm A_Record_Global_State. Specifically, (6.6) is (2.1) enlarged by (5.11) to initiate a 
global state recording if suspectsi = true. Similarly, (6.7) is (2.2) enlarged by (5.11) and 
(5.13), respectively to initiate a global state recording if suspectsi = true and to record the 
messages that comprise an edge's state in the global state being recorded. Finally, (6.8) is 
(5.12), conveniently adapted to abort ongoing global state recordings upon receipt of a 
marker carrying a tag strictly greater than the greatest one the node has seen. 

Let us consider the functioning of AlgorithmA_Detect_Termination more carefully. Node ni 
performs computation, possibly with the sending of somecomp_msg's, either spontaneously, 
if it is a member of N0, or upon receiving a comp_msg. In the former case, ni may also start a 
global state recording with marker's carrying a tag increased by one with respect to the 
greatest tag it has seen (cf. (6.6)). In the latter case, ni may record the comp_msg as part of 
the state of the edge on which it was received, or it may, as in the other case, start the 
recording of a global state, after re-initializing its variables related to the recording of global 
states, or it may do both, in which case the recording of comp_msg will have been in vain 
(cf. (6.7)). Notice that these two possibilities account for all the opportunities ni has to start a 
global state recording, and in both cases such a start is done with properly initialized 
variables. Because ni maintains only one set of variables for global state recording, it may 
only participate in the recording of one global state at a time, so that upon initiating its 
participation in a new recording it must quit its participation in whatever recording it may 
have been participating so far. This is the reason for variable re-initialization in (6.7) if 
suspectsi becomes true. 

The other occasion in which ni may have to forsake its current participation in a global state 
recording is upon receiving a marker(t) such that t > max_tagi. When this happens, ni re-
initializes its variables related to global state recording and, if suspectsi = true, joins in the 
new global state recording, as in (6.8). If t < max_tagi, then the marker(t) is ignored (it clearly 
belongs to a long-forsaken global state recording), whereas if t = max_tagi, then it may 
correspond to a recording in which ni is currently engaged. The receipt of a marker in (6.8) 
may also imply that ni has finished its participation in the current global state recording, and 
then what it recorded is sent to the leader for analysis (it only sends the edge states, though, 
because by (6.6) through (6.8) ni does not participate in the recording of a global state if its 
local state is anything other than suspectsi = true). This information is sent to the leader 



along with the tag with which it was recorded, and the leader, upon having received 
information with the same tag from all nodes, decides whether global termination has been 
reached, in which case a terminate message is broadcast to all nodes. We have omitted 
from the algorithm the actions for n1 to perform its role as a leader, and we have also omitted 
any specific mention to how the broadcast of the terminate order is performed. Filling in 
these blanks should pose no difficulty, though, especially after our discussion of information 
propagation in Section 4.1 (cf. Exercise 3). The response of ni ≠ n1 to the terminate 
message is in (6.9). 

The correctness of Algorithm A_Detect_Termination is based on Theorem 5.5 on the 
correctness of Algorithm A_Record_Global_State if G is strongly connected with FIFO 
edges, and on the following observation. Suppose a global state in which global termination 
holds does exist. As we assumed earlier in this section, at this global state it must hold that 
suspectsi = true for all ni ∈ N, so we may consider the greatest value of max_tagi over all of 
N when the corresponding suspectsi's became true for the last time. The nodes at which this 
greatest value occurred must by (6.6) and (6.7) have initiated a global state recording 
concurrently, and by (6.8) this global state recording must have been propagated by all 
nodes. Consequently, at least one global state recording is carried out to completion, 
including the recording of a global state in which global termination holds. 

Before leaving this section, a couple of observations are worth making. The first observation 
concerns obvious possible simplifications to Algorithm A_Detect_Termination, especially in 
what concerns the reports that are sent to n1. We elaborate no further on the issue, but 
encourage the reader to further investigate it (cf. Exercise 4). The second observation 
relates to the treatment of computations for which global termination does not hold at any 
global state. Computations like these appear in Section 10.2, and because they ordinarily do 
not terminate by themselves, what we seek is to force their termination by detecting 
termination-related properties that appear in some global states with special characteristics. 
As we discussed briefly in Section 5.2.2, in this case a leader can be employed to search for 
the special global states, and upon finding one of them for which the desired termination-
related properties do hold the leader then directs all other nodes to terminate. In Chapter 10, 
we address these issues with more detail. 

6.2.2 Diffusing computations 
In this section, we concentrate on detecting the termination of asynchronous algorithms for 
which N0 has one single member, assumed to be n1, the leader. G is in this section taken to 
be an undirected graph. The approach we described in the previous section is of course 
applicable to this case as well (and, for that matter, so is the approach of this section 
applicable to cases in which N0 is not a singleton—cf. Exercise 5), although in that case n1 
would no longer be required to be a member of N0. 

Distributed computations for whichN0 is a singleton are referred to as diffusing computations, 
because in such computations the causality that the flow of messages induces is "diffused" 
from one single node. Of course this same intuition is also present in the cases of larger sets 
of initiators, but the denomination as a diffusing computation is not generally used in those 
cases because it would seem unnatural to say that the computation is diffused from the 
members of N0 when such a set can be arbitrarily large, possibly equal to N. 

The algorithm we saw in Section 4.1.1 to propagate information with feedback from n1 is an 
example of diffusing computations, and, as we will shortly see, it is an example of particular 
interest in the context of detecting the termination of diffusing computations in general. In 



Algorithm A_PIF, the role played by n1 can be thought of as being not only that of the original 
propagator of inf, but also that of the detector of when the propagation has terminated 
throughout all of G. Although, as we remarked earlier in Section 6.2, in that algorithm every 
node can decide upon its termination rather easily (without the need for intervention from n1), 
the general idea of having a wave of information collapse back to n1 upon global termination 
is quite useful for computations whose termination cannot be detected so simply. 

One of the main motivations to look for a different solution in the case of diffusing 
computations, rather than just employ the general technique of the previous section, is the 
potentially very high complexity of the methodology realized by Algorithm 
A_Detect_Termination. Although, due to its generality, we did not attempt any analysis when 
presenting that algorithm, clearly its complexity depends on the number of global state 
recordings it performs, so that the overall complexities may be too high. The specialized 
solution we study in this section, on the other hand, allows global termination to be detected 
without affecting the complexities of the computation proper. 

The following is an outline of Algorithm A_Detect_Termination_D ("D" for Diffusing) . Every 
comp_msg is acknowledged with an ack message. Node ni maintains a counter expectedi, 
initially equal to zero, to indicate the number of ack messages it expects from its neighbors 
(we assume that expectedi is automatically increased whenever a comp_msg is sent by ni). 
As in the case of Algorithm A_PIF, ni also maintains a variable parenti, initialized to nil, to 
indicate the origin of a comp_msg received in a special situation to be described shortly. The 
behavior of ni is then the following. Whenever ni receives a comp_msg and expectedi > 0, an 
ack is immediately sent in response. If, on the other hand, a comp_msg is received and 
expectedi = 0, then the ack is withheld and sent only when expectedi becomes equal to zero 
again (if it at all changes with the computation ni does in response to the arriving comp_msg, 
otherwise the ack is sent immediately after that computation). The variable parenti is in this 
case set to point to the node that sent the comp_msg until the ack can be sent. We say that 
ni has reached a state of tentative termination, or that ni has tentatively terminated when 
expectedi becomes zero and the pending ack, if any, is sent to parenti. This condition may, 
however, change many times during the computation, for expectedi may again acquire a 
positive value as a consequence of the reception of a comp_msg. Global termination is 
detected when n1 has tentatively terminated, which in the case of n1may happen only once. 

The resulting algorithm is Algorithm A_Detect_Termination_D, presented next. As in the 
previous section, a terminate message is employed by n1 to broadcast the detection of 
global termination. A Boolean variable terminatedi, initially set to false, is employed by ni to 
signal that ni may exit the repeat … until loop in Algorithm Task_t. This variable is set to 
true by ni upon detection of global termination, if ni = n1, or upon receipt of the terminate 
message, otherwise. 

Algorithm A_Detect_Termination_D:  
 

          Variables: 
              expectedi = 0; 

              parenti = nil; 
              terminatedi = false. 

 
 

Listing 6.10  



 

          Input: 
              msgi = nil. 
          Action if ni ∈ N0: 
              Do some computation; 

              Send one comp-msg on each edge of a (possibly empty) 
subset of 

              Inci. 
 

 

Listing 6.11  
 

          Input: 
              msgi = comp_msg such that origini (msgi) = (ni, nj). 

          Action: 
              if expectedi > 0 then 
                   begin 
                       Send ack to nj; 

                       Do some computation; 

                       Send one comp_msg on each edge of a (possibly 
empty) 

                       subset of Inci 

                   end 
              else 
                   begin 
                       Do some computation; 

                       Send one comp_msg on each edge of a (possibly 
empty) 

                       subset of Inci; 

                       if expectedi > 0 then 
                            parenti := nj 

                       else 
                            Send ack to nj 

                   end. 
 

 

Listing 6.12  
 

          Input: 



              msgi = ack. 

          Action: 
              expectedi := expectedi - 1; 

              if expectedi = 0 then 
                   if parenti ≠ nil then 
                        Send ack to parenti. 

 
 

Listing 6.13  
 

          Input: 
              msgi = terminate. 

          Action if ni ∉ N0: 
              terminatedi := true. 

 
 

In Algorithm A_Detect_Termination_D, (6.10) and (6.11) are, in essence, (2.1) and (2.2), 
respectively, in Algorithm A_Template on comp_msg's, while (6.12) and (6.13) deal with the 
reception of ack and terminate messages, respectively (the latter for ni ≠ n1). Together, 
(6.11) and (6.12) can be seen to be closely related to (4.4) in Algorithm A_PIF in that all of 
them are involved with withholding acknowledgements from a parent neighbor until it is 
appropriate for that acknowledgement to be sent. This similarity with those two algorithms 
allows Algorithm A_Detect_Termination_D to be interpreted as a general template for 
asynchronous diffusing computations in which n1, the computation's sole initiator, detects 
global termination upon being reached by a collapsing wave of acknowledgements. This 
view of a computation as a propagating wave is the same that we employed in various 
occasions in Chapter 4, and in the present context allows the following pictorial 
interpretation. In Algorithm A_Detect_Termination_D, a wave is initiated by n1 in (6.10) and 
throughout G it propagates back and forth with respect to n1. It propagates away from n1 with 
comp_msg's and backwards in the direction of n1 with ack's. When the wave hits ni in its 
forward propagation, it may bounce back immediately (if expectedi > 0 at the beginning of 
(6.11) or expectedi = 0 at the end of (6.11)) or it may continue further on from that node 
(otherwise). Node ni may in this case be n1 itself, in which case the wave is sure to bounce 
back at once. The wave that propagates backwards in the direction of n1 does so by means 
of ack messages, and continues to propagate at each node ni that it encounters so long as 
expectedi becomes zero with its arrival. What differentiates the wave propagations in this 
case from those of Algorithm A_PIF is that a node that has already seen the ack wave go by 
may be hit by a forward-moving wave again (that is, by a comp_msg), so that overall the 
picture is that of a wave that may oscillate back and forth several times, and in different 
patterns on the various portions of G, before it finally collapses back onto n1. 

Before proceeding with a more formal analysis of this behavior, we mention that, as in the 
case of Algorithm A_Detect_Termination_D of the previous section, we have not in Algorithm 
A_Detect_Termination_D been complete to the point of specifying the termination of n1 and 
the propagation of the terminate broadcast. The reader should work on providing the missing 
details (cf. Exercise 6). 



The correctness of Algorithm A_Detect_Termination_D is established by the following 
theorem. 

Theorem 6.1. 

Every global state in which n1 has tentatively terminated in Algorithm 
A_Detect_Termination_D is a global state in which global termination holds. 

Proof If n1 has tentatively terminated, then by (6.11) and (6.12) every node must have sent a 
finite number of comp_msg's. As these comp_msg's and the corresponding ack's were 
received, the value of expectedi for node ni, initially equal to zero, became positive and zero 
again, possibly several times. Whenever a transition occurred in the value of expectedi from 
zero to a positive value, parenti was set to point to the node that sent the corresponding 
comp_msg. Consider the system states in which every node ni is either in a state of positive 
expectedi following the last transition from zero of its value, if it ever sent a comp_msg 
during the diffusing computation, or in any state, otherwise. Clearly, at least one of these 
system states is a global state, as for example the one in which every node that ever sent 
comp_msg's is in its state that immediately precedes the reception of the last ack (Figure 
6.1). In this global state, only ack's flow on the edges, none of which sent as a consequence 
of the reception of a last ack. Let us consider one of these global states. 

In this global state, the variables parenti for ni ≠ n1 induce a tree that spans all nodes in G 
corresponding to nodes that sent at least one comp_msg during the diffusing computation. 
(This tree is in fact dynamically changing with the progress of the algorithm, as parenti may 
point to several of ni's neighbors along the way; it is always a tree, nevertheless.) This tree is 
rooted at n1, and its leaves correspond to those nodes from which no other node ni received 
the comp_msg that triggered the last transition from zero to a positive value of expectedi. As 
in the proof of Theorem 4.1, we proceed by induction on the subtrees of this tree. Along the 
induction, the assertion to be shown is that every global state in which the subtree's root has 
tentatively terminated is a global state in which every other node in the subtree has also 
tentatively terminated. 

The basis of the induction is given by the subtrees rooted at the leaves, and then the 
assertion clearly holds, as no leaf ni is such that ni = parentj for some 



 
Figure 6.1: Edges in the precedence graph fragment shown in part (a) are drawn as 
either solid lines or dashed lines. Solid lines represent comp_msg's, dashed lines 
represent ack's, and the remaining edges of the precedence graph are omitted. In this 
case, system_state>(Ξ1, Ξ2) is clearly a global state, and is such that every node that 
ever sent a comp_msg during the diffusing computation (i.e., n1 and n3) is in the state 
that immediately precedes the reception of the last ack. In part (b), the spanning tree 
formed by the variables parenti for each node ni in this global state is shown with 
directed edges that point from ni to nj to indicate that parenti = nj. In this case, the tree 
has n1 for root and its single leaf is n3.  

node nj. As the induction hypothesis, assume the assertion for all the subtrees rooted at 
nodes nj such that parentj is n1. Then n1 receives expected1 ack's, at which time it has 
tentatively terminated, and by the induction hypothesis so have all other nodes. 

Let us now return briefly to the question, raised earlier in this section, of the algorithm's 
complexities. Because exactly one ack is sent for each comp_msg, the message complexity 
of Algorithm A_Detect_Termination_D is exactly the message complexity that Algorithm 
A_Template would have to realize the same computation without having to detect global 
termination. The same holds with respect to the algorithms' time complexities, because the 
time that Algorithm A_Detect_Termination_D spends in addition to that already spent by the 
corresponding instance of Algorithm A_Template is used solely for the final collapsing of the 
ack wave onto n1. This additional time, clearly, does not exceed that of Algorithm 
A_Template, as this wave that propagates backwards comes from as far as the 
corresponding forward-propagating wave got. 
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6.3 Deadlock detection 
Deadlocks are a very close acquaintance of anyone who has been involved with any of the 
many facets of concurrency at any depth. In this book, our concern for deadlock situations 
has already appeared explicitly in a couple of places, as in Sections 1.3 and 1.5, and less 
conspicuously it has also appeared in some other situations, as for example in our 
discussion on the importance of distinct identifications for nodes in the context of leader 
election (cf. Section 5.1). Also, in chapters to come our concern for deadlocks will be often 
explicit, as in Chapters 8 and 10. 

Informally, a group of nodes is in deadlock when every node in the group is suspended for a 
condition that can only be realized by nodes that belong to the group as well. Clearly, then, 
deadlocks are indeed stable properties. The classical approaches to the treatment of 
deadlocks range from its prevention (as for example in Sections 1.3 and 1.5) to its detection 
after it has occurred. The prevention of deadlocks is based on making sure, by design, that 
at least one of the conditions necessary for the occurrence of deadlocks can never hold. 
One of these conditions is the so-called wait cycle, which in our context consists of a subset 
of N whose members are cyclically waiting for one another. Forbidding the occurrence of 
such cycles constitutes the strategy we described in Section 1.5 to prevent deadlocks 
related to message buffering (cf. Theorem 1.1). 

The detection of deadlocks, on the other hand, is based on the rationale that it may be 
simpler, or less restrictive in a variety of senses, not to impose conditions leading to the 
prevention of deadlocks, but rather to let them occur occasionally and then proceed to 
detecting them when the suspicion exists that they may have indeed occurred. Because 
deadlocks are stable properties, an approach to detecting their occurrence is to record a 
global state of the system and then work on this global state to check for the presence of any 
deadlock. If a deadlock is found in the global state that was recorded, then because of its 
stability it must have persisted as the system continued to evolve following the recording of 
the global state. If, on the other hand, no deadlock was found, then naturally the only 
possible conclusion is that no deadlock existed in any global state in the past of the recorded 
global state, although it may have occurred in global states in its future. 

This section is dedicated to the study of deadlock detection in the case of a very specific 
distributed computation. Aside from the deadlock issue per se, the benefits of this study are 
manifold. In particular, the approach we describe to deadlock detection yields a distributed 
algorithm to perform the detection that works on a recorded global state in a completely 
distributed fashion. This is in contrast with our previous use of recorded global states in this 
chapter, for example in Section 6.2.1, where the analysis of the recorded global state to 
detect the desired stable property was performed in a centralized fashion by a leader. By 
contrast, our approach in this section performs the detection without moving any of the 
recorded information from the node where it was recorded. Another benefit is that the 
algorithm we describe constitutes another elegant example of the wave techniques we have 
seen so far in the book, notably in Chapters 4,5 and in this very chapter. 

We proceed in the following two sections as follows. In Section 6.3.1, the asynchronous 
computation that may deadlock is introduced. In Section 6.3.2, an algorithm is given to look 
for deadlocks in a recorded global state of that computation. In both sections, G is taken to 
be an undirected graph with FIFO edges. 

6.3.1 The computation 



Every node in G is the provider of a service to some of the other nodes. An edge (ni, nj) 
exists in G if and only if at least one of ni and nj may request the service provided by the 
other node. Node ni has a Boolean variable availablei, initially set to true, to indicate whether 
it is available to provide a service it is requested or not. Because ni may only respond to one 
request at a time, every request that it receives when availablei = false must wait to be 
serviced when availablei becomes true. 

A node requests a service to one of its neighbors by sending it a message request. When 
the request is finally honored, a message done is used to indicate that. In the computations 
that we consider, nodes are allowed to request the same service to more than one neighbor 
at a time. In addition, if ni wishes to request a service to xi of its neighbors, then it is also 
allowed to do the request to yi ⊇ xi neighbors. Upon receiving xi done messages, it then 
sends a quit message to the yi − xi nodes from which it did not receive a done. Clearly, 0 < xi 
⊆yi ⊆ | Inci | for all ni ∈ N. For simplicity, we assume that xi and yi are constants for each ni ∈ 
N. 

What accounts for the possibility of deadlocks in this computation is that a node, while 
servicing the request of one of its neighbors, may itself issue requests for services that it 
needs some of its neighbors to perform in order to finish its own task. The possibility of 
deadlocks is then obvious, given that no node accepts a new request if it has a pending 
request itself. A node that receives a quit on a service for which it sent request's sends out 
quit's itself. 

This computation is given more formally next, in the form of Algorithm A_Provide_Service. In 
this algorithm, a variable requesteri, initially equal to nil, is used by ni to point to the node to 
which it is currently providing service. This variable is maintained in such a way that, for ni ∈ 
N0, availablei = true if requesteri = nil (but not conversely, so no redundancy really exists 
between the two variables). In addition, a set pendingi ⊊ Neigi is used by ni to keep track of 
the neighbors to which it sent request messages without however having received a done. 
This variable is such that yi - xi ⊆ | ⊆ yi. 

Algorithm A_Provide_Service:  
 

          Variables: 
              availablei = true; 
              requesteri = nil; 
              pendingi. 

 
 

Listing 6.14  
 

          Input: 
              msgi = nil. 
          Action if ni ∈ N0: 
              Let Yi ⊊ Neigi be such that yi|Yi|; 
              Send request to all nj∈ Yi; 



              pendingi :=Yi. 
 

 

Listing 6.15  
 

          Input: 
              msgi = request such that origini(msgi) = (ni,nj). 

          Action when availablei: 
              if service from other nodes is needed then 
                   begin 
                       Let Yi ⊆ Neigi be such that yi = |Yi|; 
                       Send request to all nk ∈ Yi; 

                       pendingi := Yi; 

                       requesteri := nj; 

                       availablei := false 
                   end 
              else 
                   begin 
                       Perform requested service; 

                       Send done to nj 

                   end. 
 

 

Listing 6.16  
 

          Input: 
              msgi = done such that origini(msgi) = (ni,nj). 

          Action: 
              pendingi := pendingi - {nj}; 

              if |pendingi| = yi - xi then 
                   begin 
                       Send quit to all nk ∈ pendingi; 

                       if requesteri ≠ nil then 
                            begin 
                                Perform requested service; 

                                Send done to requesteri 

                            end; 
                       availablei := true 



                   end. 
 

 

Listing 6.17  
 

          Input: 
              msgi = quit. 

          Action: 

              if pendingi ≠  then 
                   Send quit to all nj ∈ pendingi; 

              availablei := true. 
 

 

The reader should have no difficulties to check that (6.14) through (6.17) do indeed realize 
the computation we outlined earlier on G. Even so, it may be instructive to check the use of 
availablei as a condition for (6.15) to be carried out (cf. Algorithm A_Template). 

6.3.2 An algorithm 

The possibility of deadlocks in Algorithm A_Provide_Service is very clearly visible in (6.14) 
and (6.15), because request messages may be sent in such a way that a wait cycle is 
formed in G. One simple example is the situation in which some of the nodes in N0 send 
request's to one another in a cyclic fashion. Another example is the case in which a node 
triggers a chain of request's that ends up in itself. 

When a node ni has waited "too long" (or longer than would be "typical") for the xi done 
messages that it expects to be received, it may start a deadlockdetection procedure to verify 
whether it is involved in a deadlock. The procedure that we describe in this section is, in 
much the same way as Algorithm A_PIF, designed to be started by one node only (so N0 
must be a singleton). We assume, without any loss in generality, that such a node is n1, but 
it should be clear that in general all the messages related to this detection must bear an 
indication of which node initiated the process so that multiple concurrent detections started 
by different nodes do not interfere with one another. 

What n1 does to detect the occurrence of a deadlock is to start the recording of a global 
state, and then to start a detection procedure on the global state that was recorded. The 
global state is stored in the same distributed fashion as it was recorded, and the detection 
procedure is itself an asynchronous algorithm in which various nodes participate. However, 
the deadlock detection does not operate on the entirety of G. Instead, this procedure runs on 
some portions of G given in accordance with what is known as a wait graph. The node set of 
the wait graph is a subset of N, and its edges are directed versions of some of the edges in 
E. In order for a node ni to be in the wait graph, at least one of the edges incident to it in G 
must also be in the wait graph. 

The conditions for edges of G to be edges of the wait graph vary dynamically as the 
computation given by Algorithm A_Provide_Service evolves. In a particular global state of 



that computation, an edge (ni,nj) is an edge of the wait graph if and only if, in that global 
state, all of the following three conditions hold. 
� ni has sent nj a request. 
� nj has not sent ni, a done. 
� ni has not sent nj a quit. 

These three conditions include messages that have been received as well as messages in 
transit. In particular, in that global state there may be a request in transit from ni to nj but no 
done in transit from nj to ni and no quit in transit from ni to nj, so that what the conditions 
imply is that ni has requested a service to nj and is in that global state waiting for the service 
to be performed. In the wait graph, such an edge is directed from ni to nj to indicate precisely 
that wait. At ni, and in the context of a particular global state, out_waiti is the subset of Neigi 
such that nj ∈ out_waiti if and only if an edge directed from ni to nj exists in the wait graph in 
that global state. The set in_waiti is defined likewise to include those nodes nj such that an 
edge directed from nj to ni exists. 

It is on the portions of G that intersect the wait graph that the deadlock detection should run, 
as it is on those portions that the waiting is taking place. This should pose no problem, 
because the detection runs on a recorded global state and in that global state the wait graph 
is well defined, as we just discussed. However, the recording of the global state cannot quite 
run on the wait graph as well, because no such graph has yet been determined (determining 
it is, in fact, the very purpose of the global state recording). On the other hand, it seems 
clearly a waste to perform the global state recording all over G, because a great portion of it 
may not have the slightest chance of participating in the wait graph once the global state is 
recorded. However, the only other appropriate structure related to G that the global state 
recording might utilize is that given by the sets pendingi for ni ∈ N if they are nonempty (cf. 
Section 6.3.1), but they are not enough to describe the desired graph that would be 
"between" G and the wait graph to be eventually obtained (cf. Exercise 7). 

So what n1 does is to initiate a global state recording over G as in Algorithm 
A_Record_Global_State, and then to initiate a deadlock detection procedure on the wait 
graph, which we describe next as Algorithm A_Detect_Deadlock. Because all edges are 
FIFO, n1 might in principle initiate the deadlock detection immediately after initiating the 
global state recording. If this were done,-then Algorithm A_Detect_Deadlock would need a 
little extra control to ensure that a node would only participate in the latter computation after 
being through with its participation in the former. In order to avoid this unnecessary 
complication, we assume that n1 is somehow notified of the global termination of the global 
state recording. The reader should consider with care the design of an asynchronous 
algorithm to record global states and signal its initiator (assumed unique) upon the 
recording's global termination (cf. Exercise 8). 

For each node ni, the local state to be recorded comprises the variables availablei, 
requesteri, and pendingi. The edge states to be recorded may in turn contain request, done, 
and quit messages. Once the recording is completed at ni (i.e., ni's local state has been 
recorded and so have the states of all edges leading toward ni), the sets in_waiti and 
out_waiti that describe the wait graph at ni can be determined as follows. The set in_waiti 
must include the node requesteri (if availablei = false and ni is not in the N0 of Algorithm 
A_Provide_Service) and every neighbor nj such that the recorded state of the edge (ni,nj) in 
the direction from nj to ni contains a request but does not contain a quit. Similarly, the set 
out_waiti must include every neighbor nj that is in pendingi and such that neither the 
recorded state of (ni,nj) in the direction from nj to ni has a done nor the recorded state of 
(ni,nj) in the opposite direction has a quit. It is a simple matter to check that these sets are 



consistent over all edges, that is, nj ∈ out_waiti if and only if ni ∈ in_waitj, and conversely, for 
all edges (ni,nj). 

The following is a general outline of Algorithm A_Detect_Deadlock. First a wave of notify 
messages is propagated by n1 along the edges leading to nodes in the out_wait sets. 
Because an in_wait set may contain more than one node, this wave may reach a node more 
than once and should only be sent forward upon receipt of the first notify. A node having an 
empty out_wait set does not propagate the notify's onward, but rather starts the propagation 
of another wave, this time with grant messages and on edges leading to nodes in the in_wait 
sets. Such waves simulate the concession of the services upon which nodes wait. A node 
that receives as many grant's as it needs (this is given by its x constant) propagates the 
wave onward on its own in_wait set, as in the simulation such a node has already been 
granted services from as many neighbors as it needs. This wave is propagated as far back 
as nodes with empty in_wait sets, from which it collapses back with grant_done messages. 
A node with an empty in_wait set sends a grant_done message immediately upon receiving 
a grant. Other nodes withhold the grant_done that corresponds to the xth grant, but do 
respond with immediate grant_done's upon receiving all other grant's. At node ni, the node 
from which the grant_done is withheld is pointed to by out_parenti. The grant_done to 
out_parenti is sent when ni has received as many grant_done's as there are nodes in 
in_waiti. What remains now is to collapse back onto n1 the wave that it propagated with notify 
messages. This is accomplished with notify_done messages as follows. Node ni, upon 
receiving the first notify, points to its sender with a variable in_arenti. Every other notify is 
replied to immediately with a notify_done message. Whenever the nodesthat initiated the 
grant waves have received as many grant_done's as there are nodes in their in_wait sets, 
they send a notify_done to their in_parent neighbors.Other nodes do the same upon 
receiving as many notify_done's as there are nodes in their out_wait sets. When n1 receives 
all the notify_done's that are due, it then checks the number of grant's it received along the 
process. Node n1 is in deadlock if and only if this number is less than x1. 

In this algorithm, nodes behave as if they could grant service concomitantly for all the 
requests they receive. This is of course untrue by assumption, so that what nodes do during 
the simulation is to optimistically assume that they can grant service for all of their pending 
requests, whereas in fact they can only be sure to be able to honor one such request. The 
consequence of this optimism is that, if n1 concludes that it is not deadlocked, what this 
conclusion means is that there exists at each of the nodes in the wait graph an order 
according to which service should be granted by that node so that n1 will not deadlock. Of 
course that order may happen not to be followed and then n1 may deadlock in future global 
states. 

In Algorithm A_Detect_Deadlock, node ni maintains the following additional variables. The 
Boolean variable notifiedi, initialized to false, is employed to indicate whether ni has received 
at least one notify. Another variable is a counter, grantedi (initialized to zero), to keep track of 
the number of grant's ni receives during the simulation. Two other counters, in_donesi and 
out_donesi, both initially equal to zero, indicate respectively the number of grant_done and 
notify_done messages received. The variables in_parenti and out_parenti are both initialized 
to nil. Node n1 detects that it is deadlocked if and only if granted1 < x1 at the end. 

Algorithm A_Detect_Deadlock:  
 

         Variables: 
             in_parenti = nil; 
             out_parenti = nil; 



             notifiedi = false; 
             grantedi = 0; 

             in_donesi = 0; 

             out_donesi = 0. 
 

 

Listing 6.18  
 

         Input: 
             msgi = nil. 
         Action if ni ∈ N0: 
             notifiedi := true; 
             Send notify to all nj ∈ out_waiti. 

 
 

Listing 6.19  
 

         Input: 
             msgi = notify such that origini(msgi) = (ni, nj). 

         Action: 
             if notifiedi then 
                  Send notify_done to nj 

             else 
                  begin 
                      notifiedi := true; 
                      in_parenti := nj; 

                      if |out_waiti| = 0 then 
                           Send grant to all nk ∈ in_waiti 

                      else 
                           Send notify to all nk ∈ out_waiti 

                  end. 
 

 

Listing 6.20  
 

         Input: 
             msgi = grant such that origini(msgi) = (ni, nj). 

         Action: 



             grantedi := grantedi + 1; 

             if |in_waiti| = 0 then 
                  Send grant_done to nj 

             else 
                  if grantedi ≠ xi then 
                       Send grant_done to nj 

                  else 
                       begin 
                           out_parenti := nj; 

                           Send grant to all nk ∈ in_waiti 

                       end. 
 

 

Listing 6.21  
 

         Input: 
             msgi = grant_done. 

         Action: 
             in_donesi := in_donesi + 1; 

             if in_donesi = |in_wait,| then 
                  if out_parenti ≠ nil then 
                       Send grant_done to out_parenti 

                  else 
                       Send notify_done to in_parenti 

 
 

Listing 6.22  
 

         Input: 
             msgi = notify_done. 

         Action: 
             out_donesi := |out_donesi + 1; 

             if out_donesi = |out_waiti| then 
                  if in_parenti ≠ nil then 
                       Send notify_done to in_parenti. 

 
 



Like several other asynchronous algorithms we have seen so far in the book (e.g., 
Algorithms A_PIF and A_Detect_Termination_D), this algorithm for deadlock detection by n1 
relies essentially on feedback information to achieve its purposes. Like those other 
algorithms, it maintains tree structures on the graph so that the feedbacks are sent only 
when appropriate. 

In the case of Algorithm A_Detect_Deadlock, the pointers in_parent establish a tree that 
spans all the nodes that can be reached from n1 in the wait graph. This tree is rooted at n1 
and its leaves are nodes for which the out_wait sets are empty. Its creation and eventual 
collapse are achieved by the pair (6.18) and (6.19), and by (6.22), respectively. In the same 
vein, for each of these nodes with empty out_wait sets, the pointers out_parent establish a 
tree that spans some of the nodes in the wait graph from which that node can be reached. 
Considered as a set of trees, they constitute a forest rooted at the nodes with empty 
out_wait sets spanning all the nodes in the wait graph from which at least one of the roots 
can be reached. The leaves of this forest are nodes whose grant messages sent during the 
simulation either never were the x th such message to reach their destinations or reached 
nodes with empty in_wait sets. This forest is created and collapses back onto its roots by 
means of (6.20) and (6.21), respectively. 

It comes naturally from this discussion that the message, complexity of Algorithm 
A_Detect_Deadlock is O(m) while its time complexity is O(n). 

6.4 Exercises 
1. Show that Algorithm A_Self_Stabilize is still correct if the variables are restricted to 0,…, V 
− 1 for V > n.  
2. For each of the asynchronous algorithms seen so far in the book (except for the 
templates), indicate the condition of global termination that allows the loop in Algorithm 
Task_t to be exited.  
3. Give the details of node n1's participation in Algorithm A_Detect_Termination, as well as 
of the participation of all other nodes in the propagation of the terminate message.  
4. Indicate how in Algorithm A_Detect_Termination the sending of reports to node n1 can be 
simplified.  
5. Discuss how to apply the technique of Section 6.2.2 to the cases in which N0 does not 
contain one single element.  
6. Repeat Exercise 3 for Algorithm A_Detect_Termination_D.  
7. Show, in the context of Section 6.3, that the sets pending do not suffice to describe a 
graph that is necessarily between a wait graph and G.  
8. Design an algorithm for global state recording, which, if initiated by one single node, is 
capable of informing that node of the global termination of the recording.  
1. 

  
Show that Algorithm A_Self_Stabilize is still correct if the variables are restricted to 0,…, V 
− 1 for V > n. 

2. 
  

For each of the asynchronous algorithms seen so far in the book (except for the templates), 
indicate the condition of global termination that allows the loop in Algorithm Task_t to be 
exited.  

3. 
  

Give the details of node n1's participation in Algorithm A_Detect_Termination, as well as of 
the participation of all other nodes in the propagation of the terminate message. 

4. 
  

Indicate how in Algorithm A_Detect_Termination the sending of reports to node n1 can be 
simplified. 

5. 
  

Discuss how to apply the technique of Section 6.2.2 to the cases in which N0 does not 
contain one single element. 

6.   Repeat Exercise 3 for Algorithm A_Detect_Termination_D. 



7. 
  

Show, in the context of Section 6.3, that the sets pending do not suffice to describe a graph 
that is necessarily "between" a wait graph and G. 

8. 
  

Design an algorithm for global state recording, which, if initiated by one single node, is 
capable of informing that node of the global termination of the recording. 

6.5 Bibliographic notes 
The notion of self-stabilization was introduced by Dijkstra (1974), along with three algorithms 
on rings for which only considerably later proofs were provided (Dijkstra, 1986). Algorithm 
A_Self_Stabilize of Section 6.1 is based on one of the algorithms of Dijkstra (1974). For a 
survey of the investigations that this paper has spawned, the reader is referred to Schneider 
(1993). These investigations are quite broad in scope, ranging from a technique to prove 
self-stabilizing properties (Kessels, 1988) to applications to problems such as finding a 
minimum spanning tree (Chen, Yu, and Huang, 1991; Aggarwal and Kutten, 1993), 
computing on rings as in the original formulation by Dijkstra (1974) (Burns and Pachl, 1989; 
Flatebo and Datta, 1994), depth-first traversal (Huang and Chen, 1993; Collin and Dolev, 
1994), leader election (Dolev and Israeli, 1992), coloring planar graphs (Ghosh and Karaata, 
1993), finding maximal matchings (Hsu and Huang, 1992; Tel, 1994a), breadth-first 
numbering (Huang and Chen, 1992), establishing a local orientation on a ring (Israeli and 
Jalfon, 1991; 1993), and computing shortest distances (Tsai and Huang, 1994). 

The literature on self-stabilization has become quite overwhelming. In addition to the 
aforementioned works, the reader may also wish to check further developments by a number 
of authors, including Gouda, Howell, and Rosier (1990), Afek and Kutten (1991), Awerbuch 
and Varghese (1991), Dolev, Israeli, and Moran (1991), Ghosh (1991), Flatebo and Datta 
(1992b; 1992c), Hoover and Poole (1992), 

Lin and Simon (1992), Sur and Srimani (1992), Dolev (1993), Ghosh (1993), Katz and Perry 
(1993), Lentfert and Swierstra (1993), Sur and Srimani (1993), Huang, Wuu, and Tsai 
(1994), and Itkis and Levin (1994). 

Section 6.2 is based on Huang (1989) for general computations and on Dijkstra and 
Scholten (1980) for diffusing computations. For an alternative account on the material in 
Dijkstra and Scholten (1980), the reader is referred to Bertsekas and Tsitsiklis (1989). 
Additional publications on termination detection include those by Chandrasekaran and 
Venkatesan (1990), Kavianpour and Bagherzadeh (1990), Ronn and Saikkonen (1990), 
Sheth and Dhamdhere (1991), Kumar (1992), Brzezinski, Hélary, and Raynal (1993), and 
Hélary and Raynal (1994). 

Our treatment of deadlock detection in Section 6.3 follows Bracha and Toueg (1984). 
Sources of additional material are Singhal (1989b), Flatebo and Datta (1992a; 1992b), and 
Kshemkalyani and Singhal (1994). 



 

Chapter 7: Graph Algorithms 
Overview 
The problems that we consider in this chapter are graph problems posed on G, similarly to 
what we did in Sections 4.2 and 4.3, in which we addressed the problems of graph 
connectivity and shortest distances, respectively. As in those sections, the aim here is to 
provide distributed algorithms in which all of G's nodes participate in the solution based only 
on the partial knowledge of G's structure that they have locally. However, our discussion in 
Section 3.2.2 should be recalled with special care throughout this chapter. Specifically, one 
alternative to the fully distributed approach we just mentioned is to elect a leader and have 
that leader obtain information on the entire structure of G. Having done this, the leader is 
then in position to solve the graph problem locally. As we remarked in that section, it takes 
O(nm) messages and O(n) time to concentrate all the relevant information in the leader, so 
that these two measures should be compared to the complexities of the fully distributed 
solution. But one must never lose sight of the possible impact of the resulting local time 
complexity (cf. Section 3.2.) and of the implications of the nonconstant memory demand at 
the leader, in addition to the complexities associated with electing the leader in the first plae. 

We consider two graph problems in this chapter. The first problem is that of determining a 
minimum spanning tree on G. In addition to the role played by spanning trees in some of the 
problems we have studied so far, particularly in Sections 4.1 and 5.3, establishing a 
minimum spanning tree on G is, as we remarked in Section 5.1, closely related to electing a 
leader in G, and then the relevance of the former problem is enlarged by its relation to all the 
situations in which having a leader is important. When a minimum spanning tree is sought 
with the purpose of electing a leader, then of course the alternative that we mentioned earlier 
of employing a leader to solve graph problems becomes meaningless. We deal with the 
minimum spanning tree problem in Section 7.1  

The other graph problem that we consider in this chapter is that of finding a maximum flow in 
a directed graph related to G with certain characteristics. We address this problem in Section 
7.2, where we present three asynchronous algorithms to solve it. What is interesting in our 
discussion in that section is that two of the algorithms that we discuss are originally 
conceived as synchronous algorithms. By employing the synchronization techniques we 
studied in Section 5.3, we may obtain a variety of corresponding asynchronous algorithms. 
Some of them are such that the resulting complexities of all the three asynchronous 
algorithms we consider are the same. 

Sections 7.3 and 7.4 contain, respectively, exercises and bibliographic notes. 



 
7.1 Minimum spanning trees 
G is in this section an undirected graph with FIFO edges. Our discussion is presented in 
three sections. Section 7.1.1 presents a statement of the problem, and Section 7.1.2 
contains an asynchronous algorithm to solve it. Improvements leading to a reduced time 
complexity are given inSection 7.1.3. 

7.1.1 The problem 
As in Section 5.1, nodes in N are assumed to have distinct identifications (idi for node nj) 
totally ordered by <. Associated with every edge (ni, nj) � E is a finite weight wij, known to 
both ni and nj. The weight of a spanning tree is the sum of the weights of the n − 1 edges 
that constitute the tree. The minimum spanning tree problem asks that a spanning tree of 
minimum weight, called a minimum spanning tree, be found on G. Another related problem, 
that of finding any spanning tree on G, is clearly reducible to the problem of finding a 
minimum spanning tree, so that our discussion in this section applies to that problem as well. 
Although the problem of finding a spanning tree on G (any one) is conceptually what we 
have needed in other occasions in this book (as in Sections 4.1 and 5.3), the more general 
problem has greater appeal for at least two reasons. The first reason is that edge weights 
can in some situations be used to model delays (or other related quantities) for message 
transmission over the edges, in which case a minimum spanning tree represents a tree of 
globally minimum transmission delay. 

The other reason why considering the more general problem of determining a minimum 
spanning tree is more appealing is related to the use of such a tree as a first step in the 
election of a leader. A distributed algorithm to find a minimum spanning tree on G can be 
built such that, at the end, every node has an indication of which edges incident to it are on 
the tree and which of these leads to the core of the tree, which is a single edge in the tree 
possessing properties that we describe later. Because only one core edge exists, the two 
nodes to which it is incident are natural candidates to be the leader. Clearly, under the usual 
assumption of totally ordered distinct identifications for all nodes, one of the two can be 
elected leader and the result broadcast over the tree with O(n) message and time 
complexities. The core edge is only identified at the end of the algorithm, and may in 
principle be any edge, so the procedure we just described for leader election is only 
applicable to cases in which all of G's nodes are candidates originally (cf. Section 5.1 for the 
appropriate terminology). If such is not the case, however, then the tree can still be 
employed as a basis to choose among the existing candidates according to the procedure 
we discussed in Section 5.1. 

For simplicity, in this section we assume that all edge weights are distinct and totally ordered 
by <. If the particular connotation associated with edge weights poses difficulties with 
respect to this assumption, then the assumed existence of distinct identifications for all 
nodes can be used to break ties. Specifically, in such cases the weight of edge (ni, nj) can be 
taken to be the pair 

 

and then all edge weights are totally ordered by < in the lexicographic sense. Note that such 
a weight for edge (ni, nj) can be computed easily by both ni and nj by simply sending their 



identifications to each other. All over G, this can be regarded as a first step in the 
computation of the minimum spanning tree. This first step requires O(m) messages and O(1) 
time, which, as we will see, does not add to the overall complexities of determining the 
minimum spanning tree. 

A fragment of a minimum spanning tree is any subtree of the minimum spanning tree. An 
edge is said to be an outgoing edge of a fragment if one of the two nodes to which it is 
incident is in the fragment while the other is not. The distributed algorithms we study in this 
section to build a minimum spanning tree on G are based on the following two properties (cf. 
Exercise 1). 

i. If a fragment of a minimum spanning tree is enlarged by the addition of the fragment's 
minimum-weight outgoing edge, then the resulting subtree is also a fragment of the 
minimum spanning tree. 

ii. If all edge weights are distinct, then G has a unique minimum spanning tree. 

Properties (i) and (ii) hint at the following basis for an algorithm to find a minimum spanning 
tree on G. Nodes in N0 constitute single-node fragments initially. By property (i), these 
fragments can be enlarged independently of one another by simply absorbing nodes that are 
connected to the fragments by minimum-weight outgoing edges. Property (ii) ensures that 
the union of two fragments that grow to the point of sharing a node is also a fragment. 

7.1.2 An algorithm 
The algorithm we describe in this section employs properties (i) and (ii) along with the 
following rules for the creation of new fragments. The first rule is that every node in N is 
initially a single-node fragment. This is achieved by having the nodes in N0 broadcast a 
startup message by flooding over G (similarly to the case of Algorithm A_Alg(Alpha) of 
Section 5.3.) with a message complexity of O(m) and a time complexity of O(n). Upon 
receiving a startup from every neighbor, a node initiates the algorithm as a single-node 
fragment. The second rule is that every fragment with at least two nodes has a special edge, 
called the core of the fragment, whose weight is taken to be the identification of the 
fragment. When the fragment is large enough to encompass all nodes (and then by 
properties (i) and (ii) it is the minimum spanning tree), its core is the tree's core, alluded to in 
the previous section. 

The third overall rule regulates the process whereby fragments are combined to yield larger 
fragments. This combination is based on the level of each fragment, which is a nonnegative 
integer determined as follows. The level of a single-node fragment is zero. Now consider a 
fragment at level ℓ ≥ 0, and let ℓ' be the level of the fragment to which the fragment of level ℓ 
is connected by its minimum-weight outgoing edge. If ℓ = ℓ' and the minimum-weight 
outgoing edges of both fragments are the same edge, then the two fragments are combined 
into a new fragment, whose level is set to ℓ + 1 and whose core is the edge joining the 
former level-ℓ fragments. 

If ℓ ≠ ℓ' or the two fragments' minimum-weight outgoing edges are not the same edge, then 
there are additional five cases to be considered. In two of the cases, ℓ ≠ ℓ' and the two 
minimum-weight outgoing edges are the same. In these cases, the lower-level fragment is 
absorbed by the higher-level fragment and the resulting fragment inherits the higher level. In 
the remaining three cases, the two minimum-weight outgoing edges are not the same, and 
either ℓ < ℓ', or ℓ = ℓ', or ℓ > ℓ'. In the case of ℓ < ℓ', the absorption of the level-ℓ fragment by the 
level-ℓ' fragment takes place just as we described earlier. If ℓ ≥ ℓ', then the level-ℓ fragment 



simply waits until the level of the other fragment has increased from ℓ' enough for the 
combination to take place via one of the other possibilities. 

Before we proceed, we should pause to investigate whether the waiting of fragments upon 
one another may ever lead to a deadlock. Specifically, the only situation one might be 
concerned about is that of a wait cycle comprising fragments, all of the same level, and such 
that the minimum-weight outgoing edge of every fragment leads to the next fragment in the 
cycle. By property (i), however, no such cycle may exist, as all the minimum-weight outgoing 
edges would have to be in the minimum spanning tree, which is impossible because they 
form a cycle. 

Another property that may be investigated without any further details on how the algorithm 
functions is given by the following lemma. 

Lemma 7.1. 

The level of a fragment never exceeds �log n�. 

Proof: For ℓ > 0, a fragment of level ℓ is only formed when two level-(ℓ − 1) fragments are 
such that their minimum-weight outgoing edges lead from one fragment to the other. An 
immediate inductive argument shows that a level-ℓ fragment must then contain at least 2ℓ 
nodes (this holds for ℓ = 0 as well), so n ≥ 2ℓ, thence the lemma. 

Let us now provide the details of an algorithm to find a minimum spanning tree on G based 
on the overall strategy we just outlined. The algorithm is called Algorithm A_Find_MST 
("MST" for Minimum Spanning Tree), and essentially proceeds repeatedly as follows, until 
the minimum spanning tree is found. First the minimum-weight outgoing edge of all 
fragments must be determined, then fragments must be combined with one another, and 
then (if the combination yielded a new, higher-level fragment) new fragment cores must be 
determined. During an execution of Algorithm A_Find_MST, node ni maintains a variable 
statei, which may be one of find or found. Initially, statei = found, and along the-execution 
statei switches back and forth between the two possibilities, indicating whether ni is involved 
in the process of determining its fragment's minimum-weight outgoing edge (statei = find) or 

not (statei = found). For each edge (ni, nj) � E, ni also maintains a variable , which 
can be one of on_tree, off_tree, or basic, to indicate respectively whether the edge has 
been found by ni to be an edge of the minimum spanning tree, not to be an edge of the 
minimum spanning tree, or still neither. Initially, this variable is set to basic for all nj � Neigi  

When a minimum-weight outgoing edge has been found for a fragment of level ℓ, a message 
connect (ℓ) is sent over that edge. If such an edge is (ni, nj) and ni belongs to the level-ℓ 
fragment, than such a message is sent by ni. There are two possibilities for the response 
that ni gets from nj, whose fragment we take to be at level ℓ'. It may receive another 
connect(ℓ), meaning that ℓ = ℓ' and (ni, nj) is both fragments' minimum-weight outgoing edge, 
or it may happen that ℓ < ℓ'. In the former case, the two fragments are joined into a level-(ℓ + 
1) fragment whose core is (ni, nj) and whose identification is the weight wij.Nodes ni and nj 
are referred to as the "coordinators" of the new fragment, and their first task is to broadcast 
over the fragment the new level and new identification, as well as to direct all nodes in the 
fragment to begin a new search for a minimum-weight outgoing edge. The message that this 
broadcast carries is an initiate(ℓ + 1, wij, find), where the find is the instruction for every 
node in the fragment to participate in looking for the fragment's minimum-weight outgoing 
edge. 



In the latter case, i.e., ℓ < ℓ', nj's fragment absorbs ni's fragment. In order to do this, nj sends 
ni either a message initiate (ℓ', w, find) or a message initiate(ℓ', w, found), where w is the 
identification of the fragment to which nj belongs. This message is then broadcast by ni over 
its own fragment to inform every node of their new fragment's level and identification. In 
addition, it prompts nodes to behave differently depending on whether a find or a found is in 
the message. If it is a find, then the nodes join in the search for the minimum-weight 
outgoing edge of the fragment they now belong to. If it is a found, then the nodes simply 
acquire information on their new fragment's level and identification. What remains to be 
explained on this interaction between ni and nj is the choice that nj makes between attaching 
a find or a found to the initiate message that it sends. Node nj attaches a find if statej = 
find; it attaches a found if statej = found. Sending a found in the initiate message is only 
correct if it can be argued that the weight of nj's fragment's minimum-weight outgoing edge is 
strictly less than wij, so that no edge outgoing from ni's fragment could possibly be a 
candidate (because (ni, nj) is that fragment's minimum-weight outgoing edge). We provide 
this argument in what follows. The remaining cases cause ni to wait for the level of nj's 
fragment to increase from ℓ'. 

So far we have seen that the coordinators of a newly formed fragment broadcast initiate 
messages with a find parameter over the edges of the new fragment. This broadcast is 
meant to inform all the nodes in the fragment that the fragment has a new level and a new 
identification. It also carries a find parameter that directs the nodes to engage in seeking the 
minimum-weight outgoing edge of the new fragment. A node ni that is reached by an initiate 
message with a find parameter sets statei to find and participates in locating the fragment's 
minimum-weight outgoing edge. When ni's participation in this process is finished, then statei 
is reset to found. If, on the other hand, the initiate message carries a found parameter, then 
its effect upon ni is simply the fragment level and identification update. The broadcast of an 
initiate message may go beyond the boundaries of the fragment if a node ni that it has 
reached receives a connect message from another fragment whose level is strictly less than 
the level being carried by the initiate message. The broadcast is then propagated through 
that fragment as well, representing its absorption by the higher-level fragment. The initiate 
messages that ni propagates into the lower-level fragment carry either a find or a found 
parameter, depending on whether statei = find or statei = found. Let us now discuss in detail 
the process whereby the minimum-weight outgoing edge of a fragment is found. If the 
fragment has level zero, and therefore comprises one single node, than that node simply 
inspects the edges that are incident to it and sends a connect(0) message over the edge 
having minimum weight. In addition, if that node is ni, then statei is set to found. If the 
fragment's level is strictly positive, then it must rely on the initiate message broadcast by its 
coordinators to have all the nodes participate in the process. 

After receiving an initiate(ℓ, w, find) and setting statei to find, node ni considers all edges (ni, 

nj) for which = basic in increasing order of weights. On each edge that it considers, 
ni sends a test(ℓ, w) and waits to receive either a reject message or an accept message. If ℓ' 
is the level of the fragment to which nj belongs and w' that fragment's identification (or at 
least nj's view of that level and that identification, which may already have changed), then 

the reject is sent by nj, after it sets to off_tree, if w = w' (in this case, ni and nj are in 
the same fragment and the edge between them cannot possibly be on the minimum 
spanning tree). If w ≠ w' and ℓ' ≥ ℓ, then nj sends ni an accept. If w ≠ w' and ℓ' < ℓ, then nj is 
not in position to send any response immediately and waits to do so until its level has 
increased to be at least equal to ℓ (at which time it must also re-evaluate the relation 
between w and w', as the latter may have changed along with ℓ'). 



An accept received from nj makes ni stop the search. A reject that it receives from nj causes 

it to set to off_tree. When ni receives an accept from a neighbor nj, the edge (ni, nj) 
becomes its "candidate" for minimum-weight outgoing edge of the fragment. In order to 
compare the various candidates in the fragment, nodes proceed as follows. When a leaf of 

the fragment (i.e., ni such that = on_tree for exactly one neighbor nj) has found its 
own candidate, say of weight w, or when it has exhausted all the possibilities without 
receiving any accept, it then sends a report (w) message on the fragment in the direction of 
the coordinators (w = ∞ if ni does not have a candidate). Every other node does the same 
after taking w to be the minimum among its own candidate's weight and the weights that it 
receives in report messages over all fragment edges that lead away from the coordinators. 
Upon sending a report message, a node ni sets statei to found. If it receives a connect 
message from a lower-level fragment, it may then safely respond with an initiate message 
carrying a found parameter, because an accept must not have been received on that edge 
(accept's only come from fragments that are not at a lower level), and then that edge could 
not possibly have been the node's candidate for minimum-weight outgoing edge of the 
fragment. 

When the report messages finally reach the coordinators, they exchange report messages 
themselves (over the fragment's core) and then determine the weight of the fragment's 
minimum-weight outgoing edge. If this weight is infinity, then the fragment has no outgoing 
edge and is therefore the minimum spanning tree that was being sought. 

If every node keeps track of the edge corresponding to the weight it sent along with its report 
message, then the path through the fragment from the core to the fragment's minimum-
weight outgoing edge can be traced easily. At node ni, we let best_edgei denote either ni's 
candidate edge, if this edge's weight is what ni sends along with its report, or the edge on 
which it received the weight that it sends. Another special edge that ni keeps track of is the 
edge on the fragment leading to the core. This edge is denoted by to_corei, and it is on this 
edge that ni sends its report message. After the coordinators have decided upon the 
fragment's minimum-weight outgoing edge, one of them sends a change_core message 
along the path given by the best_edge's. Upon reaching ni, this message has the effect of 
changing to_corei to be equal to best_edgei. When the change_core message reaches the 
node ni to which the fragment's minimum-weight outgoing edge is incident, all to_core's in 
the fragment lead to this node, which is then in position to send its connect message over 

that edge. If such an edge is (ni, nj), then ni sets to on_tree as it sends the 
message. 

As in various occasions so far in the book, interpreting Algorithm A_Find_MST as 
propagating waves over G can be very helpful in building some intuitive understanding on 
how it works. What happens in this case is that a fragment's core propagates a wave of 
initiate messages over on_tree edges. This wave collapses back with report messages onto 
the core, and then a new fragment is formed after the change_core and connect messages 
have played their roles. The initiate waves may occasionally "leak" from the fragment when 
neighboring fragments are absorbed. 

We now turn to the presentation of the algorithm's actions. In addition to the variables that 
we have already introduced during our preceding discussion, Algorithm A_Find_MST also 
employs the following variables at node ni. The Boolean initiatedi, initially equal to false, is 

used to indicate whether ni � N0. For all nj � Neigi, the Boolean , equal to false initially, 



indicates whether a startup has been received from nj. At ni, the level and identification of the 
fragment to which it belongs are denoted respectively by leveli (set to zero initially) and fragi. 
The weight of best_edgei is stored in best_weighti. The counter expectedi, initialized to zero, 
is used by ni to indicate the number of messages it must receive before being in position to 
send its report message. An additional group of variables is used to control the wait of 
higher-level fragments upon lower-level ones. For all nj � Neigi, these are the Booleans 

and , both initialized to false, and also and 

. The two Booleans are used, respectively, to indicate that a connect or a test 
has been received from a higher-level fragment and cannot therefore be replied to at once. 

When = true, then and store respectively the 
level and the identification that the test message carried. 

Algorithm A_Find_MST:  
 

          Variables: 
              initiatedi =false; 

               = false for all nj � Neigi; 
              statei =found; 

               = basic for all nj � Neigi; 
              leveli = 0; 

              fragi; 

              best_edgei; 

              best_weighti; 

              to_corei; 

              expectedi = 0; 

               = false for all nj � Neigi; 

               = false for all nj � Neigi; 

               for all nj � Neigi; 

               for all nj � Neigi. 
 

 

Listing 7.1  
 

          Input: 



              msgi =nil. 
          Action if ni � N0: 
              initiatedi :=true; 
              Send startup to all nj � Neigi. 

 
 

Listing 7.2  
 

          Input: 
              msgi = startup such that origini(msgi) = (ni, nj) 

          Action: 
              if not initiatedi then 
                  begin 
                      initiatedi := true; 
                      Send startup to all nk � Neigi 

                  end; 

               := true; 

              if  for all nj � Neigi then 
                 begin 
                     Let (ni, nk) be such that wik ≤ wil for all nl � 
Neigi; 

                      := on_tree; 
                     Send connect(leveli) to nj 

                  end. 
 

 

Listing 7.3  
 

          Input: 
              msgi = connect (ℓ) such that origini(msgi) = (ni, nj). 

          Action: 
              if ℓ < leveli then 
                  begin 

                       := on_tree; 
                      Send initiate(leveli,. fragi, statei) to nj; 

                      if statei = find then 



                           expectedi := expectedi + 1 

                  end 
              else 

                  if  = basic then 

                        := true 
                  else 
                       Send initiate (leveli + 1, wij, find) to nj. 

 
 

Listing 7.4  
 

          Input: 
              msgi = initiate (ℓ, w, st) such that origini (msgi) = 
(ni, nj). 

          Action: 
              leveli := ℓ; 

              fragi := w; 

              for all nk � Neigi such that  do 

                  if  ≤ leveli then 

                       if  ≠ fragi then 
                            Send accept to nk 

                       else 
                            begin 

                                if  = basic then 

                                      := off_tree; 
                                Send reject to nk 

                            end; 
              statei := st; 

              to_corei := (ni, nj); 

              best_weighti := ∞; 

              for all nk � Neigi − {nj} such that  = on_tree 
do 
                  begin 



                      Send initiate(leveli, fragi, statei) to nk; 

                      if statei = find then 
                           expectedi := expectedi + 1 

                  end; 
              if statei = find then 

                  if nk � Neigi exists such that  = basic then 
                       begin 

                           Let B � Neigi be such that  = basic 
for all 

                           nk � B; 

                           Let nk � B be such that wik ≤ wil for all 
nl � B; 

                           Send test (leveli, fragi) to nk 

                       end 
                  else 
                       if expectedi = 0 then 
                            begin 
                                statei := found; 
                                Send report (best_weighti) on 
to_corei 

                            end. 
 

 

Listing 7.5  
 

          Input: 
              msgi = test (ℓ,w) such that origini(msgi) = (ni, nj). 

          Action: 
              if ℓ > leveli then 
                  begin 

                       := true; 

                       := ℓ; 

                       := w 

                  end 
              else 



                  if w ≠ fragi then 
                      Send accept to nj 

                  else 
                      begin 

                          if  = basic then 

                                 = off_tree; 
                          Send reject to nj 

                      end. 
 

 

Listing 7.6  
 

          Input: 
              msgi = accept such that origini(msgi) = (ni, nj). 

          Action: 
              if wij < best_weighti then 
                   begin 
                       best_weighti := wij; 

                       best_edgei := (ni, nj) 

                   end; 
              if expectedi = 0 then 
                   begin 
                       statei := found; 
                       Send report (best_weighti) on to_corei 

                   end. 
 

 

Listing 7.7  
 

          Input: 
              msgi = reject such that origini(msgi) = (ni, nj). 

          Action: 

              if  = basic then 

                     := off_tree; 



              if nk � Neigi exists such that  = basic then 
                   begin 

                       Let B � Neigi be such that  = basic for 
all nk � B; 

                       Let nk � B be such that wik ≤ wil for all nl � 
B; 

                       Send test(leveli, fragi) to nk 

                   end 
              else 
                   if expectedi = 0 then 
                        begin 
                            statei := found; 
                            Send report (best_weighti) on to_corei 

                        end. 
 

 

Listing 7.8  
 

          Input: 
              msgi = report(w) such that origini(msgi) = (ni, nj). 

          Action when (ni, nj) ≠ to_corei or statei = found: 
              if (ni, nj) ≠ to_corei then 
                   begin 
                       expectedi := expectedi − 1; 

                       if w < best_weighti then 
                            begin 
                                best_weighti := w; 

                                best_edgei := (ni, nj) 

                            end; 
                       if expectedi = 0 then 
                            begin 
                                statei := found; 
                                Send report(best_weighti) on to_corei 

                            end 
                   end 
              else 
                   if w > best_weighti then 



                        begin 
                            Let nk � Neigi be such that (ni, nk) = 
best_edgei; 

                            if  = on_tree then 
                                 Send change_core on best_edgei 

                            else 
                                 begin 
                                     Send connect(leveli) on 
best_edgei; 

                                     if  then 
                                          Send initiate(leveli + 1, 
wik, find) on 
                                          best_edgei; 

                                      := on_tree 
                                 end 
                        end. 

 
 

Listing 7.9  
 

          Input: 
              msgi = change_core such that origini (msgi) = (ni, nj). 

          Action: 
              Let nk � Neigi be such that (ni, nk) = best_edgei; 

              if  = on_tree then 
                   Send change_core on best_edgei 

              else 
                   begin 
                       Send connect(leveli) on best_edgei; 

                       if  then 
                            Send initiate(leveli + 1, wik, find) on 
best_edgei; 

                        := on_tree 
                   end. 

 



 

Actions (7.1) through (7.9) implement the overall strategy we described in detail earlier to 
find a minimum spanning tree on G. These actions, the reader must have noticed, account 
for far more complex a behavior than that of any of the algorithms we have seen (or will see) 
in other chapters. Although a complete proof of correctness cannot be offered within the 
scope of this book, we now pause momentarily to offer some more detailed comments on 
each of the actions, so that the reader may have additional guidance in studying them. 

Actions (7.1) and (7.2) are the standard initial actions so that all nodes can begin 
participating in the algorithm after the initial flood of startup messages. A node's initial 
participation consists of sending a connect(0) message over the minimum-weight edge that 
is incident to it. 

Upon receiving a connect(ℓ) message from nj in (7.3), ni either immediately absorbs the 
originating fragment (if ℓ < leveli), or it recognizes that this connect is the response to a 
connect that it sent previously on the same edge, and therefore the two fragments must be 

merged into another of higher level (if ℓ ≥ leveli and ≠ basic). If ℓ ≥ leveli and 

= basic, then this must be a connect from a higher-level fragment and must not be 
replied to immediately. 

The receipt of an initiate message by ni in (7.4) first causes the node to update its fragment 
level and identification and then to reply to any of its neighbors that may have sent a test 
message in the past with a level higher than its own. It then forwards the initiate message on 
all the other on_tree edges that are incident to it and, if statei, = find, begins the search for 
its minimum-weight outgoing edge by means of test messages, if basic edges exist that are 
incident to it (otherwise, it may be in position to send its report). 

When node ni, receives a test(ℓ,w) message from nj in (7.5) and ℓ > leveli, then it cannot reply 
immediately and saves both ℓ and w for later consideration when its own level increases in 
(7.4). If ℓ ≤ leveli, then either an accept gets sent to nj (if w ≠ fragi) or a reject gets sent 
(otherwise). 

The receipt of an accept by ni, in (7.6) may cause best_edgei to be updated (along with 
best_weighti), and may in addition signal to ni that it may send its report message. If a reject 
is received in (7.7) and there are additional basic edges incident to ni, then the node 
continues its probing with test messages; if no such edges are left, then ni checks whether 
its report may be sent. 

Upon receiving a report(w) message in (7.8), there are two possibilities for ni. The first 
possibility is that the message is received on edge to_corei, in which case ni must be a 
coordinator of the fragment and has to decide on which side of the core the fragment's 
minimum-weight outgoing edge lies. If that edge is to be found on its own side (i.e., if w > 
best_weighti), then either it sends a change_core or a connect on best_edgei), the former if 
best_edgei is an on_tree edge, the latter otherwise (and then the fragment's minimum-
weight outgoing edge is incident to ni, thence the connect that it sends). The second 
possibility is that of (ni, nj) ≠ to_corei, in which case ni checks whether it is time for its own 
report to be sent. 

It is important to notice, in (7.8), that the action is only executed upon receipt of the report on 
(ni, nj) when (ni, nj) ≠ to_corei or statei = found. This ensures that a report arriving on the 



core ((ni, nj) = to_corei) is only acted upon when ni has already identified the least weight on 
its side of the fragment (statei = found) and may therefore decide on the fragment's 
minimum-weight outgoing edge. (Associating Boolean conditions to actions can also be an 
approach to delaying the receipt of a message that cannot be replied to immediately, as in 
(7.3) and (7.5); however, this can only be done in the presence of edges that are not FIFO— 
cf. Exercise 2.) 

Action (7.9) corresponds to the receipt by ni, of a change_core message, which is either 
forwarded on best_edgei, or causes a connect to be sent on that edge, depending on 
whether the fragment's minimum-weight outgoing edge is incident to ni just as in the case of 
(7.8). When sending a connect in either (7.8) or (7.9), ni may also have to send an initiate 
after it, if in (7.3) a connect was received that could not be replied to immediately. 

The algorithm's termination is detected by each coordinator ni upon receiving a report(w) 
message on the core when statei = found such that w = best_weighti = ∞ After the minimum 
spanning tree has been found on G, at every node the on_tree edges indicate which of the 
edges incident to it are on the tree, while the to_core edge indicates which of the on_tree 
edges leads to the tree's core. 

Next we present Algorithm A_Find_MST's complexities. 

Theorem 7.2. 

Algorithm A-Find_MST has a message complexity of O(m+n log n) and a time complexity of 
O(n log n). In addition, the algorithm's bit complexity is O((m + n log n) (log W + log log n)), 
where W ≥ |wij| for all (ni,nj) � E. 

Proof: Let ℓ and w denote respectively a generic fragment level and edge weight. A node 
can never send more than one reject message on the same edge in the same direction. In 
addition, to each such message there corresponds a test(ℓ, w) message, therefore 
accounting for O(m) messages and, by Lemma 7.1, O(m(log W+ log log n)) bits. At each 
level, a node can receive at most one initiate (ℓ,w,st) and one accept, and it can send no 
more than one test(ℓ,w) resulting in an accept, one report (w), and one change_core or 
connect(ℓ), where st is one of find or found and requires a constant number of bits to be 
expressed. By Lemma 7.1, we have another O(nlogn) messages and O(nlogn(logW + log 
logn)) bits, which, added to what we already have, yields the algorithm's message and bit 
complexities. 

The algorithm's time complexity follows directly from Lemma 7.1 and from the observation 
that, for each level, the propagation of messages within a fragment takes no more than O(n) 
time. 

It should be noted that the initial complexities for determining edge weights (if not distinct 
originally, in which case node identifications must be used) and for exchanging the startup 
messages do not add to the complexities we have determined. 

We finalize the section by returning to some issues raised earlier in the book. The first issue 
is that of electing a leader once the minimum spanning tree has been found. As we observed 
earlier in Section 7.1.1, the final coordinators (nodes to which the tree's core is incident) may 
elect a leader in O(n) time and with O(n) messages. The resulting complexities for the leader 
election (including those of finding the minimum spanning tree) are then the same as those 
given by Theorem 7.2. When compared with the O(nm)-message, O(n) time procedure for 



leader election described in Section 5.1, the new approach has a better message 
complexity, but its time complexity turns out to be somewhat worse. 

The second issue is that of the complexities to initialize Synchronizer Beta in Section 5.3.1. 
The reader should recognize quickly that Theorem 7.2, together with the observation we just 
made on the election of a leader on the tree, provides the values of Messages0 and Time0 
for Synchronizer Beta. 

7.1.3 Further improvements 
Although it can be argued that the O(m + nlog n) message complexity is the best one can 
hope for when finding a minimum spanning tree on G, reducing the time complexity from the 
O(nlogn) of Algorithm A_Find_MST has been the subject of investigations, aiming at bringing 
it down to O(n). We do not in this section aim at conveying the details of how this improved 
time complexity can be achieved, but rather point at some of the inessential sources of time 
complexity in Algorithm A_Find_MST and at some possible improvements. 

In order to identify the reason for the excessive time complexity of Algorithm A_Find_MST, 
we must look at the proof of Lemma 7.1, where we argue that, for ℓ ≥ 0, a level-ℓ fragment 
has at least 2ℓ nodes. Although for ℓ = 0 this number is exactly 2ℓ (level-0 fragments comprise 
exactly one node), for ℓ > 0 a level-ℓ fragment may include a lot more than the minimum 2ℓ 
nodes. Because the algorithm is such that higher-level fragments wait for lower-level 
fragments to have their levels increased before they can be merged, a level−(ℓ + 1) fragment 
that happens to be waiting for such an oversized level-ℓ fragment may have to wait for as 
long as O(n) time before the merge (this is what is argued in the proof of Theorem 7.2 as far 
as the time complexity is concerned). 

So the attempts at improving the algorithm's time complexity concentrate on relating a 
fragment's size to its level more tightly. One such attempt is, for example, to force level-ℓ 
fragments (which have at least 2ℓ nodes each) to have strictly less than 2ℓ+1 nodes. With a 
few modifications to Algorithm A_Find_MST, this strategy can be shown to be able to reduce 
the number of fragments by an O(logn) factor within O(n) time. As a consequence, the 
reduction from the initial n fragments to the final single fragment representing the minimum 
spanning tree can be achieved in as many O(n)-time portions as it takes at a rate of O(logn) 
per portion. Employing the usual notation log* k to denote the number of times log has to be 
applied to reduce k > 1 to a number no greater than one, we see that the number of O (n)-
time portions that we need is log* n. The time complexity of the resulting algorithm is then 
O(nlog* n), and its message complexity can be shown to remain the same as that of 
Algorithm A_Find_MST. 

 
7.2 Maximum flows in networks 
In all of Section 7.2, G is an undirected graph with two distinguished nodes, called a source 
(which we assume to be n1) and a sink (which we assume to be nn). Gis an undirected 
graph, in conformity with our practice in this book that only in such graphs may 
communication between neighbors flow in both directions. However, the denominations of n1 
and nn respectively as source and sink are only meaningful when we consider a directed 
variation of G, denoted by Gd, which is the graph on which the problem that we deal with is 
posed. The reason for employing the two graphs is that we want to be able to state the 
problem properly and yet, during the execution of the algorithms that we shall investigate, be 
able to have messages sent between neighbors in both directions. 



The directed graph Gd is obtained from G by associating a direction with each of G's edges. 
These directions are such that n1 must not have any edge directed toward itself (thence its 
denomination as a source) and nn must not have any edge directed away from itself (thence 
its denomination as a sink). In addition, n1 must be the only source in Gd and nn the only 
sink, which implies that all the other nodes must in Gd lie on a directed path from n1 to nn. As 
a side remark, the reader should notice that, in Section 6.3.2, we were faced with the same 
notational issue of being able to refer to G as an undirected graph and at the same time to 
another directed graph defined as a function of G. A similar situation will occur once again in 
the book, specifically in Sections 8.3 and 8.4. 

The problem that we study in the next three sections is the problem of computing a 
maximum flow in Gd, which in this context is referred to as a "network," although we refrain 
from employing this denomination any further in the book, lest there may be confusion with 
the more pervasive meanings we employ for the term. This problem captures the essence of 
various problems appearing in the field of computer networks, and that is what justifies our 
interest in fully distributed approaches to solve it. The study of flows in Gd, both aiming at 
computing a maximum flow in this graph as well as other quantities, constitutes a research 
area with issues of its own and a considerable body of knowledge. In particular, arguing for 
the correctness of many of the pertinent algorithms (and consequently for their complexities) 
requires a level of detail that does not befit a text on distributed algorithms. Our approach in 
this section to presenting the algorithms is then far less rigorous than in previous occasions 
in the book, and this extends to our treatment of the algorithms' complexities. The 
specialized literature is abundant, though, and the interested reader may deepen the 
treatment by resorting to it. 

We continue our discussion in three further sections. The statement of the problem, as well 
as a preview of how the algorithms to be studied relate to one another, is given in Section 
7.2.1. Sections 7.2.2 and 7.2.3 then follow with the presentation of two synchronous 
algorithms and one asynchronous algorithm, respectively. 

7.2.1 The problem 
Let Ed be the set of directed edges in Gd (that is, Gd = (N, Ed)). The capacity of Gd is a 
function c: N × N→ R such that, for all ni, nj � N, c(ni, nj) ≥ 0. In addition, c(ni, nj) = 0 if (ni → 
nj) � Ed.A flow in Gd is a function f: N × N → R satisfying the following three properties. 

i. f(ni, nj) ≤ c(ni, nj) for all ni, nj � N. 
ii. f(ni, nj) = -f(nj, ni) for all ni, nj � N. 
iii. Σnj� N f (ni, j) = 0 for all ni � N − {n1, nn}. 

For all ni, nj � N such that (ni, nj) � E, the definition of Gd's capacity is such that c(ni, nj) = 
c(nj, ni) = 0. By property (i), f(nI, nj) ≤ 0; and f (nj, ni,) ≤ 0; by property (ii), it must then be that 
f(ni, nj) = f(nj, ni) = 0. Under the weaker condition that (ni, → nj) � Ed, we still have c(ni, nj), = 
0 by definition, and then by property (i) f(ni, nj) ≤ 0, while by property (ii) f(nj, ni,) ≥ 0. So the 
definitions of capacity and of flow imply that nonzero flow may only exist from node ni, to 
node nj if (ni, nj) � E.Furthermore, this flow is necessarily nonnegative if (ni→ nj) � Ed,, or 
nonpositive if (nj → ni) � Ed. 

These observations, together with property (iii), imply that if node ni, is not the source n1 or 
the sink nn, then the flow that "comes into it" must be equal to the flow that "goes out from it," 
that is, 



 

so that 

 

If ni = n1, then property (iii) does not hold, because 

 

and 

 

Analogously, if ni = nn, then 

 

and 

 

The value of a flow f, denoted by F, is given by the summation in either of the two previous 
inequalities, that is, 

 

(cf. Exercise 3). The maximum-flow problem asks for a flow f of maximum value. 

For ni, nj � N, the residual capacity of the ordered pair (ni, nj,) given a flow f is 

 



being therefore equal to zero if (ni, nj) � E. Readily, cf(ni, nj) ≥ 0 if (ni → nj) � Ed. whereas c 
f(ni, nj) = f(nj → ni) � Ed. The residual network of G given f is the directed graph Gf = (N,Ef) 
and is such that (ni, → nj) � Ed if and only if (ni, nj) � E and cf(ni nj) > 0. Clearly, if (ni → nj) � 
Ed, then both (ni nj) and (ni nj) may be members of Ef, so long as f(ni, nj) < c(ni nj) and f(njni) ≥ 
0 (these are, respectively, the conditions for each of the memberships in Ef). A directed path 
from n1 to nn in Gf is called an augmenting path. The intuitive support for this denomination is 
that, along such a path, the residual capacity of (ni, → nj) � Ef can be decreased by either 
increasing f(ni, nj,) if (ni → nj) � Ed or decreasing f(nj, ni) if (nj → ni) � Ed. 

When f does not satisfy property (iii), but rather the weaker property that 

 

for all ni � N −{n1, nn} then it is called a preflow instead of a flow. In this case, there exists an 
excess flow coming into ni, denoted by ef(ni) and given by 

 

The next two sections are devoted to the presentation of three distributed algorithms for the 
maximum-flow problem. Two of these algorithms are synchronous and appear in Section 
7.2.2. The other algorithm is asynchronous, and is presented in Section 7.2.3. The first of the 
synchronous algorithms is based on the concepts of residual networks and augmenting 
paths, and is called Algorithm S_Find_Max_Flow. The other synchronous algorithm and the 
asynchronous algorithm are both based on the concept of preflows. These two algorithms 
are considerably simpler than Algorithm S_Find_Max_Flow, and for this reason are not 
presented with all the details as that one is. 

Algorithm S_Find_Max_Flow and the preflow-based synchronous algorithm can both be 
shown to have the same message and time complexities, being respectively of O(n3) and 
O(n2). The asynchronous algorithms that result from applying Synchronizer Gamma to 
Algorithm S_Find_Max_Flow and to the other synchronous algorithm, following our 
discussion in Section 5.3.1, both have message complexity and time complexity, for 2 ≤ k < 
n, respectively of O(kn3) and O(n2 log n/log k). If Synchronizer Alpha is used instead, then 
the resulting asynchronous algorithms have message complexity of O(n2m) and time 
complexity of O(n2). Interestingly, these are the complexities that the preflow-based 
asynchronous algorithm has been shown to have as well. 

7.2.2 Two synchronous algorithms 
The essence of Algorithm S_Find_Max_Flow is the following. It proceeds in iterations, and at 
each iteration a "layered" residual network (to be explained shortly) is built. A maximal flow is 
then found on this network and then added to the cumulative flow that is maintained 
throughout the iterations. A flow in the layered residual network is said to be maximal when it 
is equal to the residual capacity of at least one edge on every n1-to-nn path. When a layered 
residual network with at least one augmenting path can no longer be found, the flow is 
maximum and the algorithm terminates. 



The layered residual network is built at each iteration as follows. Let f be the cumulative flow 
obtained at the end of the previous iteration (the initial flow, for the first iteration). The source 
n1 is included in the first layer and a process similar to the breadth-first numbering discussed 
in Section 3.4 is started to determine the subsequent layers. For l > 1, the lth layer contains 
every node ni that is not in any of the previous l − 1 layers and such that there exists a node 
nj in the l − 1st layer such that cf(ni, nj) > 0. The synchronous algorithm to build the layered 
residual network is then very simple. For l > 1 and σ ≥ 0 to indicate the pulses within each 
iteration, the lth layer is determined at pulse σ = l − 2 as follows. Those nodes ni belonging to 
the l − 1st layer send a message to their neighbors nj such that cf(ni, nj) > 0. In the next pulse 
(i.e., σ = l − 1), nj replies positively or not at all to ni, depending on whether it had already 
been included in a layer at any of the previous pulses. 

Once the layered residual network has been constructed based on a flow f, a maximal flow 
on it is determined by a process that is started at n1 by assigning to each (n1 → ni) � Ef a 
flow equal to cf(ni, nj), thereby providing ni with a positive excess flow. This process 
continues on to the succeeding layers, and along the way the excess flow at the nodes is 
either pushed to the next layer or returned to the previous one (and then possibly re-routed 
through other edges). Termination occurs when no node can take any additional flow. The 
synchronous algorithm to find a maximal flow on the layered residual network works by 
sending flow between neighbors in the form of messages. Whenever flow is received at nj 
from ni on edge (ni, nj) such that (ni → nj) → Ef, the amount of flow received is pushed onto a 
stack along with a pointer to its sender, ni. At each pulse, a node nj may receive flow from nj 
on edge (ni, nj) such that (ni → nj) � Ef or such that (nj → ni) � Ef (this is returned flow). At 
the beginning of the next pulse, all the flow nj received is either sent to the succeeding layer, 
if at all possible, or returned to the previous one, in this case by popping the amount of flow 
to be returned and its destination off the stack. In case no more flow can be sent to the next 
layer, nj informs its neighbors in the preceding layer that it is "blocked," so no further 
attempts will be made to send flow to it in the remainder of the iteration. 

Algorithm S_Find_Max_Flow proceeds in iterations k = 1, …, K, where K is initially viewed 
as being equal to infinity and is set to its correct value upon detection by the nodes that the 
current iteration is the last one. Incidentally, the detection of termination in this case is, like 
for the other synchronous algorithms we have seen, essentially a matter of counting pulses 
as they elapse. However, as we mentioned in Section 6.2, in this case such a strategy is 
supported by the nontrivial arguments (which we do not reproduce here) that lead to the 
algorithm's time complexity. 

For 1 ≤ k < K, the kth iteration comprises two phases, each no more than 2n pulses long. 
The first phase of an iteration is used to find the layered residual network, while the second 
phase is used to find a maximal flow on that network, so for the Kth iteration only the first 
phase is needed. The value of K, however, can only be known after a first phase in which nn 
could not be reached during the construction of the layered residual network has occurred. 

Intuitively, Algorithm S_Find_Max_Flow proceeds through the propagation of synchronous 
waves emanating from n1. During the first phase of an iteration, such a wave expands from 
n1 to construct the layered residual network, with feedback information sent to n1 when the 
network is constructed. During the second phase, the wave that n1 initiates pushes flow 
onward on the layered residual network, with occasional "ripples" of returned flow in the 
opposite direction that may in turn be sent onward again. 

The following are the messages employed in Algorithm S_Find_Max_Flow. A message layer 
is employed to build the layered residual network. It is propagated, starting at n1, on edges 
that have positive residual capacity (except the edge, if any, on which it was received) when 



received for the first time in an iteration. Every layer messages, if belonging to the first group 
of such messages to be received in the current iteration, is replied to with an ack. This 
propagation of layer messages, as well as ack's, accounts for at most the first n pulses of an 
iteration. Additional n pulses (at most) are employed for a success message to be sent by nn 
toward n1 if it is reached by the layer messages. If within 2n pulses of the beginning of an 
iteration n1 does not receive a success, then it may conclude that the layer messages did not 
reach nn and therefore may set K to the number of the current iteration to terminate the 
algorithm. The second phase employs flow(x) and block messages, respectively to ship an 
amount x of flow and to signal that the sender of the message should not be sent any more 
flow during the iteration. 

Node ni employs the following variables. A stacki, initialized to nil, is employed for ni to store 
the flow shipments it receives, and their origins, for later return if the need arises. The 
excess flow at ni is stored in the variable excessi, initially equal to zero. A Boolean reachedi, 
initially equal to false, indicates whether during the current iteration ni has already been 
reached by a layer message. As in previous occasions, the node from which ni receives 
layer for the first time is pointed to by parenti, initially set to nil (if a layer is received from 
more than one neighbor at the same pulse, then the choice of which neighbor parenti is to 
point to is arbitrary). For all nj � Neigi, the following variables are used. The Booleans 

and , initially set to false, are used 
respectively to indicate, for each iteration, whether nj is in the previous layer or in the next 

layer of the layered residual network with respect to ni. The variables and 

give, respectively, the value of the current flow and current residual capacity of 
the ordered pair (ni, nj). They are both initialized to zero, unless (ni → nj) � Ed, in which case 

is initialized to c(ni, nj). The Booleans and , both 
initially equal to false, indicate respectively whether more flow can be sent to nj during the 
current iteration and whether flow has been returned to nj during the current iteration. Finally, 
node ni employs an auxiliary variable yi. 

The initial values we have given for the variables are employed either at the beginning of the 
algorithm, and they appear when the variables are first listed, or at the beginning of each 
iteration. Variables whose initial values are used only once at the beginning of the algorithm 
are the variables related to flows and capacities (these are the excess, flow, and residue 
variables). Variables that need to be initialized at the beginning of every iteration are all the 
others, which are related either to the construction of the layered residual networks (these 
are the reached, parent, in_previous_layer, and in_next_layer variables) or to the control of 
flow return (these are the stack, blocked, and returned variables). As a final observation on 
the variables employed by the algorithm, it should be noted that some of them are not used 
at all by some nodes, but do nonetheless appear listed for the sole sake of simplicity. 

The reception of layer messages at ni at a certain pulse in which reachedi = false causes 
parenti to point to one of the neighbors that sent the layer's. Each such neighbor nj is sent an 

ack and in addition is set to true. Reception by ni of an ack from 

nj causes ni to set to true. Whenever a flow message is sent by nj to nj 

or received by ni from nj, the variables excessi, , and are updated 



accordingly. When ni cannot rid itself of its excess flow by sending it forward on the layered 
residual network, it returns that flow on a "last-in, first-out" basis (supported by stacki) to the 
nodes that sent it. Nodes in the previous layer that do not get returned flow are sent a block 
message. Both returned flows and block messages signal the receiver that no more flow 
should during the current iteration be sent to ni. 

In Algorithm S_Find_Max_Flow. N0 = {n1} and 1 ≤ k < K. Again for the sake of simplicity 
(though at the expense of a longer algorithm), we have chosen to provide separate actions 
for n1, ni � N − {n1. nn} and nn. 

Algorithm S_Find_Max_Flow.  
 

          Variables: 
              reachedi, 

              parenti; 

               for all nj � Neigi, 

               for all  � nj Neigi; 

              stacki; 

              excessi = 0; 

               = 0 for all nj � Neigi; 

               = c(ni, nj) for all (ni → ni) � Ed; 

               = 0 for all (nj → ni) � Ed; 

               for all nj � Neigi; 

               for all nj � Neigi; 

              yi. 
 

 

Listing 7.10  
 

          Input: 

              s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =  

          Action if ni = n1 (if ni � N0, for k = 1): 

               := false for all nj� Neigi; 



               := false for all nj � Neigi; 
              K := k; 

              Send layer to all nj � Neigi such that  > 0. 
 

 

Listing 7.11  
 

          Input: 

              s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =  

          Action if ni ≠ ni ≠ nn: 
              reachedi := true; 
              parenti := nil; 

               := false for all nj � Neigi; 

               := false for all nj � Neigi; 
              stacki := nil; 

               := false for all nj � Neigi; 

               := false for all nj � Neigi; 
              K := k. 

 
 

Listing 7.12  
 

          Input: 

              s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =  

          Action if ni = nn: 
              reachedi = true; 
              parenti := nil; 
              K := k. 

 
 

Listing 7.13  
 

          Input: 



              4n(k − 1) + 1 ≤ s ≤ 4nk − 2n − 1 or 4n(K − 1) + 1 ≤ s 
≤ 4nK − 2n − 1, MSGi(s) such that origini(msg) = (ni, nj) for msg � 

              MSGi(s). 

          Action if ni = n1: 
              for all ack � MSGi(s) do 

                    := true; 
              if there exists success � MSGi(s) then 
                   K := ∞. 

 
 

Listing 7.14  
 

          Input: 
              4n(k − 1) + 1 ≤ s ≤ 4nk−2n− 1 or 4n(K − 1) + 1 ≤ s ≤ 
4nK − 

              2n− 1, MSGi(s) such that origini(msg) = (ni, nj) for 
msg � 

              MSGi(s). 

          Action if ni ≠ n1 and ni ≠ nn: 
              if not reachedi then 
                   if there exists layer � MSGi(s) then 
                        begin 
                            reachedi := true; 
                            for all layer � MSGi(s) do 
                                begin 
                                    if parenti = nil then 
                                         parenti : = nj; 

                                     := true; 
                                    Send ack to nj 

                                end; 
                            Send layer to all nk � Neigi such that nk 
≠ nj and 

                             > 0 

                        end; 
              for all ack � MSGi(s) do 

                    := true; 



              for success � MSGi(s) do 
                   begin 
                        K :=∞ 

                        Send success to parenti 

                   end. 
 

 

Listing 7.15  
 

          Input: 
              4n(k − 1) + 1 ≤ s ≤ 4nk − 2n− 1 or 4n(k − 1) + 1 ≤ s ≤ 
4nK − 

              2n −1, MSGi(s) such that origini(msg) = (ni, nj) for 
msg � 

              MSGi(s). 

          Action if ni = nn: 
              if not reachedi then 
                  begin 
                      if there exists layer � MSGi(s) then 
                           begin 
                               reachedi := true; 
                               for all layer � MSGi(s) do 
                                   begin 
                                       if parenti = nil then 
                                            parenti := nj; 

                                       Send ack to nj 

                                   end 
                           end 
                  end 
              else 
                  if K = k then 
                       begin 
                           K := ∞; 

                           Send success to parenti 

                       end. 
 

 

Listing 7.16  
 



          Input: 

              s = 4nk − 2n, MSGi(0) =  

          Action if ni = n1: 

              for all nj � Neigi such that  do 
                   begin 

                       yi := ; 

                        :=  + yi; 

                        := 0; 

                       Send flow(yi) to nj 

                   end. 
 

 

Listing 7.17  
 

          Input: 
              4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that 
origini(msg) = 

              (ni ,nj) for msg � MSGi(s). 

          Action if ni = n1: 
              for all flow(x) � MSGi(s) do 
                   begin 

                        :=  − x; 

                        :=  + x 

                   end. 
 

 

Listing 7.18  
 

          Input: 
              4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that 
origini(msg) = 

              (ni,nj) for msg � MSGi(s). 

          Action if ni ≠ n1 and ni ≠ nn: 



              for all flow(x) � MSGi(s) do 
                  begin excessi := excessi + x; 

                      , :=  − x; 

                       :=  + x; 

                      if  then 
                           Push (nj, x) onto stacki; 

                      if  then 

                            := true 
                  end; 
              for all block � MSGi(s) do 

                   := true; 
              while (there exists nk � Neigi such that 

 and not 

              ) and excessi > 0 do 

                  begin yi := min{excessi, }; 

                      excessi := excessi - yi; 

                       : =  + yi; 

                       :=  - yi; 

                      Send flow(yi) to nk 

                  end; 
              while excessi > 0 do 
                  begin Pop (nk, x) off stacki; 
                      yi := min{excessi,x}; 

                      excessi := excessi - yi; 

                       :=  + yii; 

                       :=  - yi; 

                       := true; 



                      Send flow(yi) to nk 

                  end; 

              if there exists nk � Neigi such that  then 

                  for all nk � Neigi such that  
and not 

                   do 

                       begin  := true; 
                           Send block to nk 

                       end. 
 

 

Listing 7.19  
 

          Input: 
              4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that origini 
(msg) = 

              (ni, nj) for msg � MSGi(s). 

          Action if ni = nn: 
              for all flow(x) � MSGi(s) do 
                  begin 

                       :=  - x; 

                       :=  + x 

                  end. 
 

 

In Algorithm S_Find_Max_Flow, (7.10) through (7.19) realize the K-iteration, two-phase-per-
iteration method that we described. Actions (7.10) through (7.15) handle the first phases of 
the K iterations, while actions (7.16) through (7.19) handle the second phases of the K − 1 
first iterations. Actions (7.10) through (7.12) last for exactly one pulse per iteration each, and 
are intended respectively for n1, ni � N − {n1, nn}, and nn to initialize their variables for the 
new iteration and for n1 to send out the initial layer messages. Actions (7.13) through (7.15) 
are executed for 2n − 1 pulses each in every iteration, and specify the participation of the 
nodes in the remainder of the first phase. What these actions contain are the responses, 
respectively by n1, ni � N − {n1, nn}, and nn, to the receipt of layer, ack, and success 
messages. Note, however, that n1 never receives a layer and nn never receives an ack or 
success. It is through (7.15) that a success message first gets sent in each iteration. 



In (7.16), which is executed for exactly one pulse in each iteration, n1 sends out the initial 
flow messages of the iteration. The handling of such messages, and of block messages, is 
achieved through (7.17) through (7.19) for nodes n1, ni � N − {n1, nn}, and nn, respectively (nn 
never receives any block message, though). Each of these actions lasts for 2n − 1 pulses, 
and is tuned to the peculiarities of the corresponding node or nodes. Specifically, (7.17) and 
(7.19), for execution respectively by n1 and nn, do not include the sending of any messages 
at all. Also, in (7.17) n1 does not act upon the receipt of block messages. Note that no action 
is explicitly given for nodes ni ≠ n1 at pulse s = 4nk− 2n, as this is the first pulse in the second 
phase of iteration k and is as such meant for n1 only. 

When a new iteration is initiated in (7.10) through (7.12) and the pertinent variables get 
initialized, nodes also set K to the number k of the current iteration, in preparation for the 
possibility that this may be the last one. When nn sends a success message in (7.15), or 
upon receipt of such a message by n1 orni � N −{n1, nn} respectively in (7.13) and (7.14), K 
is reset to infinity, thereby indicating that the current iteration will include a second phase, 
and then is not the last one. When the algorithm terminates, the flow variables contain a 
maximum flow in Gd. 

The other synchronous algorithm that we study in this section is considerably simpler than 
Algorithm S_Find_Max_Flow. For this reason, we only describe it superficially, and leave to 
the reader the task of expressing it more formally in the style of notation we have been 
employing (cf. Exercise 4). This algorithm works with the notion of preflows, and continually 
tries to push excess flow along the edges of the residual network that the nodes estimate to 
be on the shortest paths to n1 or nn. The algorithm starts with a preflow f such that f(n1, nj) = 
c(n1, nj) for all (n1 → nj) � Ed and f(ni, nj) = 0 for all (ni → nj) � Ed. with ni ≠ n1. 

Every node ni maintains an estimate di of its shortest distance to either n1 or nn in the 
residual network. Any initial values for these estimates will do, as long as d1 = n, dn = 0, and 
di ≤ dj + 1 for all (ni → nj) � Ed. In the first pulse of the algorithm, these estimates are 

exchanged between neighbors; at node ni, the estimate of neighbor nj is stored in . At all 
times during the execution of the algorithm, these estimates are such that either di is a lower 
bound on the distance from is a lower bound on the distance from ni, to nn, if di < n, or di − n 
is a lower bound on the distance from ni to n1 if di ≥ n. 

At each pulse of the algorithm, the active nodes attempt to get rid of their excess flows by 
pushing flow in the direction of n1 or nn. Letting f be the preflow at the end of the previous 
pulse (the initial preflow, in the first pulse), a node ni is said to be active if ni � N − {n1, nn} 
and ef(ni) > 0. An active node ni, at the current pulse, first sends an amount of flow equal to 

 

to a neighbor njsuch that di = dj
i + 1 and cf(ni, ni) > 0, and updates f (as well as ef(ni) and 

cf(ni, nj)) accordingly. This is repeated until either ef(ni) = 0 or cf(ni, nj) = 0 for all nj such that 

di = + 1. If after this ef(ni) > 0, then di is updated to the minimum, over all neighbors nj of ni 

such that cf(ni, nj) > 0, of + 1, and this value, if different from the previous one, is sent to 
ni's The next pulse is initiated by adding to ef(ni) all the flow received during the pulse. The 
algorithm terminates when no nodes are any longer active, although a termination criterion 
that, as in previous occasions, only considers the number of pulses elapsed is also possible. 



7.2.3 An asynchronous algorithm 
In this section, we discuss briefly the asynchronous version of the preflow-based 
synchronous algorithm that we introduced in the previous section. As with its synchronous 
counterpart, we leave all the details for the reader to pursue as an exercise (cf. Exercise 5). 

The essential difficulty in the asynchronous case is that the condition that di = + 1, 
necessary for ni to send flow to nj (cf. Section 7.2.2 on the preflowbased synchronous 
algorithm), cannot be trivially ensured, as the values of dj and of dj

i may differ substantially. 
The solution adopted when proposing the corresponding asynchronous algorithm has been 
that every flow sent from ni to nj must carry the value of di, and be explicitly accepted or 
rejected by nj before additional flow may be sent. 

When nj receives flow from ni and verifies that in fact di = dj + 1, then the flow is accepted 
and this is reported back to ni. If, on the other hand, di ≠ dj + 1, then the flow is rejected and 
this is reported back to ni along with the value of dj. Upon receiving this rejection message, ni 

updates ef (ni), cf (ni, nj), , and possibly di. Whenever di changes, its new value is reported 
to all of ni's neighbors. 

 
7.3 Exercises 
1. Prove properties (i) and (ii) of Section 7.1.1 on minimum spanning trees.  
2. Discuss how to modify Algorithm A_Find_MST for the case in which edges are not FIFO. 
In particular, show that the situations in which a connect or test message cannot be replied 
to immediately can be handled with the aid of conditions for actions to be executed, instead 
of auxiliary variables.  
3. In the context of Section 7.2.1, show that the definitions of the value of f as the total flow 
going out from n1 or coming into nn are indeed equivalent to each other.  
4. Express the second synchronous algorithm of Section 7.2.2 according to Algorithm 
S_Template.  
5. Express the asynchronous algorithm of Section 7.2.3 according to Algorithm A_Template.  
1.   Prove properties (i) and (ii) of Section 7.1.1 on minimum spanning trees. 
2. 

  

Discuss how to modify Algorithm A_Find_MST for the case in which edges are not FIFO. In 
particular, show that the situations in which a connect or test message cannot be replied to 
immediately can be handled with the aid of conditions for actions to be executed, instead of 
auxiliary variables. 

3. 
  

In the context of Section 7.2.1, show that the definitions of the value of f as the total flow 
"going out from" n1 or "coming into" nn are indeed equivalent to each other. 

4. 
  

Express the second synchronous algorithm of Section 7.2.2 according to Algorithm 
S_Template. 

5. 
  

Express the asynchronous algorithm of Section 7.2.3 according to Algorithm A_Template. 
 
 

7.4 Bibliographic notes 
Our treatment in Section 7.1 of the problem of finding a minimum spanning tree follows the 
original paper of Gallager, Humblet, and Spira (1983) closely, except for the material in 
Section 7.1.3, which is based on Gafni (1985) and Chin and Ting (1990). For an algorithm 



with time complexity even lower than the one mentioned in Section 7.1.3, the reader is 
referred to Awerbuch (1987). Another publication of interest is Janssen and Zwiers (1992). 

For material on maximum flows in networks to complement our treatment in Section 7.2.1, 
the reader can count on books dedicated exclusively to the subject (Ford and Fulkerson, 
1962; Ahuja, Magnanti, and Orlin, 1993), chapters in more general books (Lawler, 1976; 
Even, 1979; Papadimitriou and Steiglitz, 1982; Cormen, Leiserson, and Rivest, 1990), and 
surveys (Ahuja, Magnanti, and Orlin, 1989; Goldberg, Tardos, and Tarjan, 1990). 

Algorithm S_Find_Max_Flow of Section 7.2.2 is from Awerbuch (1985b), and the concepts of 
augmenting paths and of layered residual networks that it employs are originally from Ford 
and Fulkerson (1962) and Dinic (1970), respectively. The algorithm in Awerbuch (1985b) is 
an adaptation of the algorithm given by Shiloach and Vishkin (1982) for a shared-memory 
model (Karp and Ramachandran, 1990). The other synchronous algorithm of Section 7.2.2 
and the asynchronous algorithm of Section 7.2.3 can be found in detail in Goldberg and 
Tarjan (1988). The concept of preflows on which they are based is originally from Karzanov 
(1974). 

Parallel implementations of the algorithms of Goldberg and Tarjan (1988) have been 
discussed by Anderson and Setubal (1992) and by Portella and Barbosa (1992). In the latter 
publication, the authors describe an experimental evaluation of all the three algorithms 
discussed in Section 7.2. This evaluation employs random graphs (Bolloba´s, 1985) in the 
style suggested in DIMACS (1990). 



 

Chapter 8: Resource Sharing 
Overview 
When the nodes in G share resources with one another that must not be accessed by more 
than one node at the same time, distributed algorithms must be devised to ensure the 
mutual exclusion in the access to those resources, that is, ensure that nodes exclude one 
another in time to access the shared resources. This problem is not entirely new to us, 
having been treated in Section 6.1 in the context of self-stabilization on a ring, and in Section 
6.3 in the context of detecting deadlocks in a distributed computation in which nodes provide 
service to one another, but never to more than one node at a time. 

In this chapter, G is an undirected graph, and our treatment spans two main problems. The 
first problem is to ensure mutual exclusion when all the nodes share one single resource, or 
a group of resources that always have to be accessed as a single one. In this case, G may 
be as dense as a complete graph, reflecting the need, in some algorithms, for a node to 
communicate with all others to secure exclusive resource access. Mentions in the literature 
to the "mutual exclusion problem" normally refer to this first problem, which we address in 
Section 8.1. 

The second problem that we treat in this chapter is that of ensuring mutual exclusion when 
each node may require access to a different set of resources. When a node accesses the 
same set of resources whenever it accesses any resource, the problem is a generalized 
form of the paradigmatic dining philosophers problem. When the set of resources that a 
node accesses may vary from one time to the next, then the problem has become known as 
the drinking philosophers problem. We dedicate Sections 8.3 and 8.4 respectively to each of 
these problems, after a common introduction in Section 8.2. 

Two important notions that pervade all of our resource sharing studies in this chapter are 
those of a deadlock, which already we are acquainted with, and of starvation. Acceptable 
algorithms for resource sharing must ensure that neither conditions are ever present, unless 
it can be argued, in the particular situation at hand, that resorting to deadlock detection is 
preferable, as we discussed in Section 6.3. In the context of ensuring mutual exclusion in the 
access to shared resources by the group N of nodes, deadlock exists when none of the 
nodes ever succeeds in obtaining access to the resources. If there always exists at least one 
node that does succeed, but at least one other node does not succeed indefinitely, then the 
situation is one of starvation. 

Exercises and bibliographic notes are given, respectively, in Sections 8.5 and 8.6. 

 
8.1 Algorithms for mutual exclusion 
In this section, as in other occasions in the book, we assume that nodes have distinct 
identifications totally ordered by <. For node ni such an identification is idi. Nodes share a 
resource, or a group of resources, that must be accessed with the guarantee of mutual 
exclusion. If it is a group of resources that the nodes share, then we assume that all the 
resources in the group are always accessed together, as if they constituted one single 



resource, so that for all purposes it is legitimate to assume that the nodes share one single 
resource. 

For the first algorithm that we study, G is a complete graph, because the algorithm is based 
on the strategy that a node, in order to access the shared resource, must obtain permission 
to do so from all the other n − 1 nodes. This first algorithm is called A_Mutually_Exclude_C 
(the suffix "C" here indicates, as in Section 5.1, that a complete graph is involved), and is 
based on the following simple approach. In order to request permission to access the shared 
resource,- node ni sends a request(seq, idi) message to all the other nodes in G. The 
parameters that this message carries are, respectively, a "sequence number" (akin to the tag 
attached to marker's in Algorithm A_Detect_Termination of Section 6.2.1) and ni's 
identification. The sequence number is an integer, and is obtained by adding one to the 
largest such number ni has received or sent in a request message (or to zero, if no request 
has ever been received or sent by it). Node ni proceeds to access the resource upon 
receiving one reply message from each of the other nodes. 

Upon receiving a request (seq, idj), node ni replies immediately to nj with a reply message if 
it is not waiting for reply's itself. If it is waiting for reply's then it is also competing for 
exclusive access to the shared resource, and the parameters that it sent out with its request 
messages, namely a sequence number seq' and idi, must be compared to those received 
with the message from nj to determine which node takes priority. Lower sequence numbers 
indicate earlier request messages (in the sense of the partial order �+ of Section 3.1), so 
that nj takes priority (i.e., is sent a reply by ni) if 

 

where the comparison is done lexicographically. Otherwise, ni delays the sending of a reply 
to nj until after it has accessed the shared resource. 

In Algorithm A_Mutually_Exclude_C, the following are the variables employed by node ni. 
Two integers, seqi and highest_seqi (the latter initialized to zero), are used respectively to 
indicate the sequence number ni sent with the last group of request messages it sent (if any) 
and the highest sequence number to have been sent or received by ni in a request message. 
Another integer, expectedi (set to zero initially), indicates the number of reply messages ni 
must receive before accessing the shared resource. For all nj � Neigi, a Boolean 

(initially set to false) is used to indicate whether ni has postponed the 
sending of a reply to nj. 

Algorithm A_Mutually_Exclude_C:  
 

          Variables: 
              seqi; 

              highest_seqi = 0; 

              expectedi = 0; 

               = false for all nj � Neigi. 
 

 



Listing 8.1  
 

          Input: 
              msgi = nil. 
          Action when expectedi = 0 and access to the shared 
resource is 
          needed: 
              seqi := highest_seqi + 1; 

              highest_seqi := seqi; 

              expectedi := n − 1; 

              Send request(seqi, idi) to all nj � Neigi. 
 

 

Listing 8.2  
 

          Input: 
              msgi = request(seq, id) such that origini(msgi) = (ni, 
nj). 

          Action: 
              highest_seqi := max{highest_seqi, seq}; 

              if expectedi = 0 or (seq, id) < (seqi, idi) then 
                   Send reply to nj 

              else 

                    := true. 
 

 

Listing 8.3  
 

          Input: 
              msgi = reply. 

          Action: 
              expectedi := expectedi − 1; 

              if expectedi = 0 then 
                   begin 
                       Access shared resource; 

                       for all nj � Neigi such that  do 
                           begin 



                                := false; 
                               Send reply to nj 

                           end 
                   end. 

 
 

In Algorithm A_Mutually_Exclude_C, actions (8.1) through (8.3) indicate ni's participation 
respectively as a spontaneous initiator, upon receipt of a request, and upon receipt of a 
reply. Action (8.1), in particular, is executed whenever there is need for ni to access the 
shared resource and in addition expectedi = 0 (indicating that ni is not already engaged in 
seeking access to that resource). As in Algorithm A_FIFO of Section 2.1, a node may initiate 
its participation in the algorithm spontaneously more than once, in that case by deciding to 
migrate a task to run elsewhere, in this case by deciding that access to the shared resource 
is needed. What this amounts to is that N0 must be regarded as a maximal set of nodes that 
send out request's concurrently. Each such set initiates a new execution of the algorithm, 
and executions operate on variables that persist, in the sense of not being re-initialized, from 
one execution to another. 

Theorem 8.1 establishes important properties of this algorithm. 

Theorem 8.1. 
Algorithm A_Mutually_Exclude_C ensures mutual exclusion in the access to the shared 
resource, and is in addition deadlock-and starvation-free. 

Proof: Two nodes can only access the shared resource concurrently if they receive the n − 
1st reply message concurrently. This follows from (8.3) and, in particular, indicates that each 
of the two nodes must have received a reply from the other as well. But by (8.2) and (8.3), 
and because node identifications are all distinct from one another, this can only have 
happened if at least one of the two was not requesting access to the resource, which is in 
contradiction with the possibility that they access the resource concurrently. 

By (8.2), node ni only refrains from sending nj a reply if expectedi > 0 and (seq, id) � (seqi, 
idi), where seq and id are the parameters of nj's request message. In this case, nj is forced to 
wait for ni's reply. Because node identifications are totally ordered by <, a wait cycle cannot 
be formed among the nodes, and then no deadlock can ever occur (cf. Section 6.3). 

Now consider the number of resource accesses that may take place after node ni has sent 
request's and before it has received reply's (because mutual exclusion is ensured, resource 
accesses are totally ordered, so that the "before" and "after" are meaningful with respect to 
this order). By (8.1) and (8.2), the sequence number a node sends along with a request 
message is strictly greater than those it has received in request's itself, so that by (8.2) every 
node sending out request's after receiving ni's request will only access the shared resource 
after ni has done so. The number of resource accesses we are considering is then finite, and 
as a consequence no starvation ever occurs. 

Let us now examine the complexities of Algorithm A_Mutually_Exclude_C. Clearly, each 
access to the shared resource involves n − 1 request messages and n − 1 reply's. The 
algorithm's message complexity per access to the shared resource is then O(n). The time 



complexity per access to the shared resource refers to the chain of messages that may 
occur starting with a request sent by a node and the last reply that it receives. The longest 
such chain occurs when a global state exists in which n − 1 nodes in a row have withheld 
reply's from the next node in the sequence (by Theorem 8.1, the number of nodes involved 
in this wait cannot be greater than n − 1, because otherwise there would be deadlock). If ni 
and nj are, respectively, the first and last nodes in this wait chain (that is, ni is the only node 
not to have been withheld a reply from), and if the request from nj arrives at ni before ni 
accesses the shared resource, then the reply's that ni sends out when it finally does access 
the resource start a causal chain of reply's through the other nodes to nj. The time 
complexity of the algorithm per access to the shared resource is then O(n) as well. 

The algorithm's bit complexity is in principle unbounded, because, although a node's 
identification can be as usual assumed to be expressible in ┌log n┐ bits, the other 
parameter that request messages carry, the sequence number, does not in the algorithm 
have any bound. However, it can be argued relatively easily that no two sequence numbers 
that a node has to compare in (8.2) are ever farther apart from each other than n − 1, and 
then it is possible to implement them as O(log n)-bit numbers (cf. Exercise 1). The 
algorithm's bit complexity is then O(n log n). 

Unlike Algorithm A_Mutually_Exclude_C, the next algorithm that we consider in this section 
does not require every node to receive explicit permission from every other node before 
accessing the shared resource. What makes this possible is the following interesting 
observation. For ni � N, let Si � N denote the set of nodes from which ni must receive 
explicit permission before accessing the shared resource (in the previous algorithm, Si = N − 
{ni} for all ni � N). In order for Si not to have to include every node in N − {ni} and yet mutual 
exclusion to be ensured in the access to the shared resource when the nodes in Si grant 

permission for ni to proceed, for every two nodes ni and nj we must have Si ∩ Sj ≠ . If the 
S sets can be built such that this property holds, then every pair of conflicting requests to 
access the shared resource will reach at least one node, which will then be able to arbitrate 
between the two requests and ensure mutual exclusion. 

Once the sets S1,…, Sn have been determined, the following is how a node ni proceeds in 
order to access the shared resource. For simplicity when describing the algorithm, we 
assume that ni � Si, so that the number of request's that ni sends is |Si|. First ni sends a 
request message to every node in Si, and then waits to receive one granted message 
corresponding to each of the request messages it sent. It may then access the shared 
resource, and after doing so sends a release message to each of the nodes in Si. A node 
that has sent a granted and receives another request before receiving the corresponding 
release's must somehow postpone its permission corresponding to the new request. 

Although the granted messages may be thought of as corresponding to the reply messages 
of the previous algorithm, the need to explicitly indicate that the resource is no longer in use 
through the release messages reflects some of the important differences between the two 
approaches. The essential reason why release messages are now needed is that a request 
does not reach every node, and thence the double meaning that a reply message had of 
both granting permission and signaling the end of an access to the shared resource can no 
longer be exploited with the granted messages. In fact, another consequence of the 
selective broadcast of request's in addition to the need of explicit release's is that deadlocks 
can no longer be taken as prevented even if the request's carry the same information that 
they did in the previous case. Because different nodes obtain their permissions from different 
sets of nodes, it is rather simple to imagine situations in which wait cycles appear. 



The following is then the overall strategy to handle conflicts and the waits that result from 
them, and yet ensure that deadlocks are not possible. A request message is, as in the 
previous algorithm, sent by ni as request(seqi, idi), where seqi is strictly greater than every 
other sequence number ni has ever sent or received in such a message. Node ni maintains a 
Boolean variable, called lockedi and initialrized to false, to indicate whether it has sent a 
granted message to some node without having received any other message from that node. 
When ni receives a request(seq,id) and lockedi = false, a granted is immediately sent to its 
originator. If lockedi = true, then ni marks the origin of the request message for later 
consideration. Upon delaying the response to a node in this way, ni must ensure that no 
deadlock will arise, and to this end proceeds as follows. If the newly received request takes 
precedence (in the sense of a lexicographically smaller pair (seq, id)) over the request to 
which ni has replied with a granted as well as all the others that ni has not yet replied to, then 
a probe message is sent to the same node to which the granted was sent. Otherwise, a 
delayed message is sent in response to the new request, which is then kept waiting. A node 
that receives a probe responds to it right away with a relinquish if it has already received a 
delayed, or when it does receive a delayed. if it still has not. Node ni does not send another 
probe until a relinquish or a release has arrived for the one it has sent. A node only sends a 
relinquish in response to a probe if a granted was not received from each of the nodes that 
sent it a delayed. 

Algorithm A_Mutually_Exclude, presented next, is based on this approach. In contrast with 
the previous approach, G is no longer a complete graph, but rather has its set of edges 
given in accordance with the sets S1,…, Sn in such a way that (ni,nj) � E if and only if nj � Si 
or ni � Sj. Also, we assume that all edges are FIFO, and then a granted never overruns a 
delayed or a probe a granted. 

In addition to the variables seqi, highest_seqi, and expectedi, used here as in the previous 
algorithm, and the already introduced variable lockedi, Algorithm A_Mutually_Exclude 
employs the following additional variables. A request in response to which a granted has 
been sent has its origin and seq and id parameters recorded by ni in the variables 
granted_nodei, granted_seqi, and granted_idi, respectively. Node ni maintains a queue, 
called queuei and initialized to nil, to store these same attributes for all request's that cannot 
be immediately replied to. This queue is maintained in lexicographically increasing order of 

(seq, id).Finally, the Booleans has_probedi, and and for 
all nj � Si, all initialized to false, are employed to indicate respectively whether ni has sent a 
probe for which a relinquish or a release was not received in response, whether ni has 
received a probe from nj, and whether a delayed was received from nj without a succeeding 
granted. 

Algorithm A_Mutually_Exclude:  
 

          Variables: 
              seqi; 

              highest_seqi = 0; 

              expectedi = 0; 

              lockedi = false; 
              granted_nodei; 

              granted_seqi; 



              granted_idi; 

              queuei = nil; 
              has_probedi = false; 

               = false for all nj � Si; 

               = false for all nj � Si. 
 

 

Listing 8.4  
 

          Input: 
              msgi = nil. 
          Action when expectedi = 0 and access to the shared 
resource is 
          needed: 
              seqi := highest_seqi + 1; 

              highest_seqi := seqi; 

              expectedi := |Si|; 

              Send request(seqi, idi) to all nj � Si. 
 

 

Listing 8.5  
 

          Input: 
              msgi = request(seq,id) such that origini (msgi) = (ni, 
nj). 

          Action: 
              highest_seqi := max{highest_seqi, seq}; 

              if not lockedi then 
                   begin 
                       lockedi := true; 
                       granted_nodei := nj; 

                       granted_seqi := seq; 

                       granted_idi := id; 

                       Send granted to nj 

                   end 
              else 
                   begin 



                       Add (nj, seq, id) to queuei; 

                       if (seq, id) < (granted_seqi, granted_idi) and 
(nj, seq, id) is 

                       first in queuei then 
                             begin 
                                 if not has_probedi, then 
                                      begin 
                                          has_probedi := true; 
                                          Send probe to 
granted_nodei 

                                      end 
                             end 
                       else 
                             Send delayed to nj 

                   end. 
 

 

Listing 8.6  
 

          Input: 
              msgi = granted such that origini(msgi) = (ni,nj). 

          Action: 
              expectedi := expectedi − 1; 

              if  then 

                    := false; 
              if expectedi = 0 then 
                   begin 
                       Access shared resource; 

                       for all nk � Si such that  do 

                             := false; 
                       Send release to all nk � Si 

                   end. 
 

 

Listing 8.7  



 

          Input: 
              msgi = release. 

          Action: 
              if has_probedi then 
                   has_probedi := false; 
              if queuei = nil then 
                   lockedi := false 
              else 
                   begin 
                       Let (granted_nodei, granted_seqi, granted_idi 
be first in) 

                       queuei; 

                       Remove (granted_nodei, granted_seqi, 
granted_idi) from 

                       queuei; 

                       Send granted to granted_nodei 

                   end. 
 

 

Listing 8.8  
 

          Input: 
              msg i = probe such that origini(msgi) = (ni,nj). 

          Action: 

              if there exists nk � Si such that  then 
                   begin 
                       expectedi := expectedi + 1; 

                       Send relinquish to nj 

                   end 
              else 

                    := true. 
 

 

Listing 8.9  
 

          Input: 



              msgi = delayed such that origini(msgi) = (ni,nj). 

          Action: 

               := true; 

              for all nk � Si such that > do 
                  begin 
                      expectedi := expectedi + 1; 

                      Send relinquish to nk 

                  end. 
 

 

Listing 8.10  
 

          Input: 
              msgi = relinquish. 

          Action: 
              has_probedi := false; 
              Add (granted_nodei, granted_seqi, granted_idi) to 
queuei; 

              Let (granted_nodei, granted_seqi, granted_idi) be first 
in queuei; 

              Remove (granted_nodei, granted_seqi, granted_idi) from 
queuei; 

              Send granted to granted_nodei. 
 

 

Actions (8.4) through (8.10) realize the algorithm we described informally earlier. In this 
algorithm, the set N0 is to be interpreted as in the case of Algorithm A_Mutually_Exclude_C. 
Some of the algorithm's properties are established by the following theorem. 

Theorem 8.2. 
Algorithm A_Mutually_Exclude ensures mutual exclusion in the access to the shared 
resource, and is in addition deadlock- and starvation-free. 

Proof: By (8.4) and (8.6), any two nodes ni and nj can only access the shared resource 
concurrently if they receive, respectively, the |Si|th and |Sj|th granted messages concurrently. 
However, by definition Si and Sj have at least one node in common, say nk, which by (8.5), 
(8.7), and (8.10) only sends granted messages when lockedk = false upon receipt of a 
request or when a release or a relinquish is received. In addition, lockedk is only false 
initially or upon receipt by nk of a release, so that either nk receives a release or a relinquish 



from ni before sending a granted to nj, or conversely. In either case, a contradiction exists 
with the possibility of concurrent access to the shared resource by ni and nj. 

Because different nodes send request's to different subsets of N, a wait cycle (cf. Section 
6.3) may indeed be formed, but only momentarily though, because (8.5) ensures that a 
request(seq, id) arriving at ni prompts the sending by ni of a probe if (seq, id) is 
lexicographically minimum among (granted_seqi, granted_idi) and all the pairs in queuei. All 
node identifications are totally ordered by <, and for this reason at least one probe must 
succeed in breaking the wait cycle through the sending of a relinquish by (8.8) or (8.9). 
Deadlocks are then not possible. 

Ensuring mutual exclusion has the effect that all accesses to the shared resource are totally 
ordered. With respect to this total order, it is then legitimate to consider the number of 
accesses that may take place after an access by node ni and before the next access by the 
same node. Considering that in all nodes queues are kept in increasing lexicographic order 
of sequence numbers and node identifications, and that nodes issue request's with strictly 
increasing sequence numbers, the number of accesses we are considering is then clearly 
finite, and therefore starvation never occurs. 

Analyzing Algorithm A_Mutually_Exclude for its complexity measures requires that we 
consider the sets S1,…,Sn more closely, because, by the algorithm's actions, the message 
complexity per access to the shared resource by node ni is intimately dependent upon the 
number of nodes in Si. Before proceeding any further with this discussion, though, we make 
two additional assumptions concerning these sets. The first assumption is that |S1 | = � = 
|Sn|, and the second assumption is that every node is contained in the same number of sets. 
The first assumption seeks to guarantee that every node requests an equal number of 
permissions in order to access the shared resource, while the second assumption aims at 
distributing evenly the "responsibility" for granting permission to access the shared resource. 
Combined, the two assumptions are to be regarded as an attempt at "fairness," however this 
may be defined. 

If we let K denote the size of each of the n sets and D the number of sets of which each 
node is a member, then we have 

 

which yields D = K. 

One of the possibilities for the sets S1,…,Sn is of course Si = N for all ni � N. It is a trivial 
matter, in this case, to simplify Algorithm A_Mutually_Exclude until Algorithm 
A_Mutually_Exclude_C is obtained, as G is clearly a complete graph. Our interest, however, 
is in obtaining the smallest sets whose pairwise intersections are nonempty, because this is 
what will improve the algorithm's message complexity from that of Algorithm 
A_Mutually_Exclude_C. 

Now consider the set Si, for some node ni. This set has K members, each of which belonging 
to other D − 1 sets, so the number of distinct sets involving the members of Si is at most K(D 
− 1) + 1. Because we need n such sets (S1 through Sn), and considering that D = K and that 
the largest number of sets leads to the smallest sets, we then have 



 

which immediately yields K ≥ If n is the square of some integer, then we adopt 

 

Otherwise, a little imbalance cannot be avoided as some sets must necessarily have more 
nodes than the others, although no more than the square root of the least perfect square 

greater than n. It should be clear that this square root is still (   

Under the two assumptions that led to the determination of the lower bound for K, the 

message complexity of Algorithm A_Mutually_Exclude can be seen to be of per 

access to the shared resource. This is so because, in the worst case, there will be 
request messages, each one causing a probe message, this one being replied to by a 
relinquish message, in turn generating a granted message and eventually a release 
message. Notice that the argument we employed earlier on the possibility of bounding 
sequence numbers in the case of Algorithm A_Mutually_Exclude_C is no longer applicable, 
so that the bit complexity is in this case unbounded (cf. Exercise 2). 

As in the case of the previous algorithm, the time complexity of Algorithm 
A_Mutually_Exclude per access to the shared resource refers to the chain of messages that 
may occur starting with a request sent by a node and the release's that it sends. One 
possibility for this chain occurs in the following situation. Node nj sends ni a request, which is 
queued and only replied to with a granted after ni has sent a granted and received a release 
for each of the requests ahead of nj's in queuei. Because of our assumption that ni is in the S 
sets of exactly D other nodes, this scenario would account for an O(D) delay. However, such 
a chain is not the longest that may occur, as we see next. Suppose that ni and nk are two 
nodes in Sj, and in addition that a wait chain exists starting at nk and ending at ni. In this wait 
chain, nk is waiting for a release from the next node in the chain, which is waiting for a 
granted from the next node, which in turn is waiting for a release, and so on, all the way to 
the node that precedes ni in the chain, which is waiting for a granted from ni. By Theorem 
8.2, the algorithm is deadlock-free, so that this chain cannot involve more than n − 1 nodes. 
If the granted that ni sends to the node that is waiting on it on the chain is sent after ni 
receives the request from nj, we see that a chain of messages of length O(n) exists between 
a request sent by nj and its sending of release's. This is then the algorithm's time complexity, 
therefore the same as in the previous case. 

As one last remark in this section, we encourage the reader to pursue the exercise of 
modifying Algorithm A_Mutually_Exclude for the case in which node ni is allowed to belong 
to Si (cf. Exercise 3). 

 
8.2 Sharing multiple resources 
Henceforth in this chapter, we no longer assume that only one single resource (or a group of 
resources that have to be accessed as a single entity) is shared by the nodes, but instead 



consider the more general case in which nodes may require access to resources in groups 
of varied composition. One immediate consequence of this relaxed view is that it is now 
possible for more than one node to be accessing shared resources concurrently, so long as 
no resource belongs to the group of resources accessed by any node. 

Let R be a set of resources, and let R = |R|. The members of R are the resources ρ1,…,ρR , 
and for 1 ≤ r ≤ ρR with each resource ρr � R a set of nodes Sr � N is associated. Nodes in 
Sr are the only ones that may have access to resource ρr. In the algorithms that we 
investigate in Sections 8.3 and 8.4, nodes coordinate the shared access to resources by 
communicating with the other nodes that may have access to those resources, and then the 
definitions we just introduced are instrumental in establishing the structure of G for those 
algorithms. 

The graph G to be used in Sections 8.3 and 8.4 has its edge set defined as follows. For ni, nj 
� N such that ni ≠ nj, (ni, nj) � E if and only if there exists ρr � R such that ni � Sr and nj � Sr. 
In other words, nodes ni and nj are neighbors if and only if there exists a resource that both 
may access. In G, every resource in R is then represented by a clique (i.e., a completely 
connected subgraph) involving the nodes that may have access to that particular resource 
(but not conversely, though, as there may be cliques in G that do not correspond to any 
resource). For ρr � R, such a clique spans the nodes in Sr. As a side remark, the reader may 

note that a more natural representation would in this case be the hypergraph = (N,{S1, 
…, SR}), having the same set of nodes as G and one hyperedge for each of the sets S1 
through SR. However, the use of such a representation would be unnatural in our context of 
message-passing computations, which in the point-to-point case calls for a graph 
representation (cf. Section 1.1). 

In Sections 8.3 and 8.4, we study algorithms to coordinate the sharing of resources in two 
different cases. The first case is treated in Section 8.3, and corresponds to the situation in 
which nodes always access the resources they may access as a group including all such 
resources (if all nodes may access all resources, then this is equivalent to the case of 
Section 8.1). The second case is treated in Section 8.4, and corresponds to the situation in 
which nodes access the resources that they may access in groups of any admissible size. 
Both cases are similar, in that a node only has to communicate with its neighbors when 
seeking mutual exclusion. There are also differences, however, the most important one 
being that, in the latter case, neighbors may access resources concurrently if they request 
disjoint sets of resources. 

 
8.3 The dining philosophers problem 
The resource-sharing problem that we treat in this section is a generalization of the following 
paradigmatic problem, called the dining philosophers problem. Five philosophers sit at a 
round table, and five forks are placed on the table so that there is one fork between the 
plates of every two adjacent philosophers. A philosopher requires both forks that are 
adjacent to him in order to eat, and then it is impossible for neighbor philosophers to eat 
concurrently. The life of a philosopher is a cycle of thinking and eating for alternating finite 
periods of time. A solution to the problem consists of an algorithm that ensures mutual 
exclusion (a fork may only be used by one philosopher at a time), prevents deadlocks (at 
least one hungry philosopher must be eating), and prevents starvation (every philosopher 
must get to eat within a finite time of becoming hungry; incidentally, it is from the context of 
this problem that the term "starvation" in resource sharing comes). 



In terms of our modeling of the previous section, in the dining philosophers problem N is the 
set of philosophers with n = 5, R is the set of forks with R = 5, and every one of S1 through 
S5 includes two philosophers that sit next to each other at the table (conversely, each 
philosopher is a member of exactly two such sets, specifically those that correspond to the 
forks that are adjacent to him). The graph G is then a five-node ring in which an edge 
corresponds to a fork. 

In the generalized form of this problem, G is any connected undirected graph with one 
philosopher per node and one fork per edge. In order to eat, a philosopher must acquire all 
the forks that are adjacent to him. It is very important for the reader to note that the dining 
philosophers problem in this generalized form is entirely equivalent to the resource sharing 
problem, described in the previous section, in which a node always accesses the same set 
of resources. Although there is in principle no correspondence between the forks that are 
adjacent to a philosopher and those resources, a fork can be used to represent all the 
resources that two neighboring nodes share. Acquiring every adjacent fork is then equivalent 
to securing mutual exclusion in the access to all the resources a node needs. It is then to 
this generalized form of the dining philosophers problem that we dedicate the remainder of 
Section 8.3. Our discussion proceeds in two parts. In the first part, presented in Section 
8.3.1, we give an algorithm to solve this generalized formulation of the problem. The second 
part, in Section 8.3.2, is dedicated to the extreme situation in which the thinking period of 
philosophers is negligibly small. Under this situation of perennial hunger, interesting issues 
appear related to the concurrency that can be achieved in the sharing of forks by the 
philosophers. 

8.3.1 An algorithm 
The solution to the generalized dining philosophers problem that we discuss in this section is 
given as Algorithm A_Dine. In this algorithm, node ni employs a Boolean variable, called 
hungryi and initialized to false, to indicate the need to access the resources that it shares 
with its neighbors. Whenever this variable becomes true, ni employs request messages to 
ask its neighbors to send it the forks it still does not have. Upon acquiring the forks 
corresponding to all the edges incident to it, ni accesses the shared resources and, perhaps 
contrary to our intuitive expectation, it does not send the forks to the corresponding 
neighbors, but rather keeps them to be sent when they are requested. However, if forks are 
indiscriminately distributed among the nodes at the beginning, deadlocks may, as it takes 
little effort to realize, occur. In addition, in the absence of some sort of priority among the 
nodes, the simple sending of forks upon receiving request's may easily lead to starvation. 

The priority scheme that we adopt employs what we call a "turn" object per edge of G, much 
like forks. In addition, the turn associated with an edge can only be possessed by one of the 
nodes to which the edge is incident at a time, much like forks as well. What distinguishes 
turns from forks is that a node does not need to acquire turns for all the edges incident to it 
in order to access the shared resources, and also that turns get sent over the edges to a 
node's neighbors as soon as the node is through with accessing the shared resources. The 
essential goal of an edge's turn is to indicate which of its end nodes has the priority to hold 
that edge's fork when there is conflict. However, in the absence of conflict, that fork may be 
held by either node, even against the current location of the turn. Sending a turn over to the 
corresponding neighbor is a guarantee that the priority to hold that edge's fork alternates 
between the two nodes. In Algorithm A_Dine, a fork message is used to send a fork, while a 
turn message is used to send a turn. For all nj � Neigi, node ni maintains two Boolean 
variables to indicate whether ni holds the fork and the turn that it shares with nj. These are, 



respectively, and , and should be initialized so that 
consistency is maintained over the edge (ni, nj) (that is, exactly one of ni and nj must hold the 
fork and exactly one of them, not necessarily the same, must hold the turn). We do not 
provide these initial values when presenting the algorithm, but return to the issue later with a 
more detailed discussion. 

When nj sends ni a requestand this message finds hungryi = true and = 
true upon arrival, ni does not send the corresponding fork over to nj, but rather postpones 
the sending of this fork to after it has accessed the shared resource. If, on the other hand, 

the request message finds hungryi = true and = false upon arrival, then 
the fork is sent at once to nj, but nj must know that the fork is to be returned when it has 
completed its access to the shared resource. In order not to have to send two messages in 
each case (a turn and a fork in the former case, a fork and a request in the latter), every fork 
message is sent with a parameter, either as fork(nil). if all that needs to be achieved is the 
sending of a fork, or as fork(turn), to indicate that a turn is also being sent, or yet as 
fork(request), when a request for the fork is implied. For all nj � Neigi, node ni employs the 

additional Boolean variable , initially set to false, to remind it to send nj a 
fork when it finishes accessing the shared resources. 

We assume that G's edges are FIFO, so that a request never overruns a fork or a turn, 

thereby ensuring that the arrival of a request at ni from nj only occurs when = 
true. 

Algorithm A_Dine:  
 

          Variables: 
              hungryi = false; 

               for all nj� Neigi; 

               for all nj�Neigi; 

               = false for all nj�Neigi. 
 

 

Listing 8.11  
 

          Input: 
              msgi = nil. 
          Action when not hungryi and access to shared resources is 
          needed: 



              hungryi: = true; 

              Send request to all nj� Neigi such that  = 
false. 

 
 

Listing 8.12  
 

          Input: 
              msgi = request such that origini(msgi) = (ni,nj). 

          Action: 

              if not hungryi or not  then 
                   begin 

                       := false; 
                       if not hungryi then 
                            Send fork(nil) to nj 
                       else 
                            Send fork(request) to nj 

                   end 
              else 

                    := true. 
 

 

Listing 8.13  
 

          Input: 
              msgi = fork(t) such that origini(msgi) = (ni,nj). 

          Action: 

               := true; 
              if t = turn then 

                    := true; 
              if t = request then 

                    := true; 



              if  for all nk� Neigi then 
                   begin 
                       Access shared resources; 

                       hungryi := false; 
                       for all nk � Neigi do 

                           if  then 
                                begin 

                                     := false; 

                                    if  then 
                                         begin 

                                              := false; 

                                              := 
false; 
                                             Send fork(turn) to nk 

                                         end 
                                    else 
                                         Send turn to nk 

                                end 
                   end. 

 
 

Listing 8.14  
 

          Input: 
              msgi= turn such that origini(msgi) = (ni, nj). 

          Action: 

               := true. 
 

 

In Algorithm A_Dine, as in previous occasions in this chapter, the set N0 comprises nodes 
for which the need to access the shared resources arises concurrently. Multiple executions 
of the algorithm coexist, and no variables are re-initialized for executions other than the very 
first. In this algorithm, actions (8.11) through (8.14) realize, respectively, the sending of 



request's for forks when the need arises for a node to access the shared resources, and the 
handling of request, fork, and turn messages. 

In order to discuss the algorithm's main properties, we must at last be more specific about 
the initial values to be assigned to the holds_fork and holds_turn variables. Whereas any 
consistent assignment of values to the holds_fork variables will do, the algorithm's properties 
are quite sensitive to the values that are assigned to the holds_turn variables, and simple 
consistency across edges will not do in general. 

Before continuing with this discussion on initial values, let us pause and introduce the 
concept of an orientation of the undirected graph G. As in Sections 6.3 and 7.2, such an 
orientation is a means of regarding G as a directed graph, without however sacrificing the 
ability for messages to traverse G's edges in both directions. In the present case, as in 
Section 6.3, G's orientation will change dynamically, thereby increasing the importance of 
assigning directions to edges in a manner that is not too inflexible as assuming that G is 
directed in the first place. An orientation of G is a function 

 

such that, for (ni,nj) � E, ω((ni, nj)) is either ni or nj, indicating respectively that, according to 
ω, (ni, nj) is directed from nj to ni or from ni to nj. An orientation is said to be acyclic if it does 
not induce any directed cycle in G. 

The following is then how the assignment of turns to neighbors is performed, and 
consequently the consistent assignment of values to the holds_turn variables. Say that the 
edge (ni, nj) is directed from ni to nj if the turn that corresponds to it is given to nj. The initial 
assignment that we adopt is then such that the resulting orientation is acyclic. The essential 
importance of such an initial acyclic orientation is that, as the orientation changes by the 
sending of turns when a node is done with accessing the shared resources in (8.13), that 
node becomes a source in the new orientation, that is, a node with all incident edges 
directed away from it. The resulting orientation is then acyclic as well, because the only 
changes in an orientation correspond to nodes that become sources, and then directed 
cycles that might have been formed would have to go through those nodes, which is 
impossible. 

We now turn to a more formal statement of the algorithm's properties. 

Theorem 8.3. 

Algorithm A_Dine ensures mutual exclusion in the access to the shared resources, and is in 
addition deadlock- and starvation-free. 

Proof: By (8.13), a node only accesses the shared resources if it holds the forks 
corresponding to all the edges incident to it. By (8.12) and (8.13), only one of every two 
neighbors may hold the fork that they share in any global state, and then no two neighbors 
can access the shared resources concurrently. Because by construction of G nodes that are 
not neighbors never share any resources, mutual exclusion is guaranteed. 

G's orientation is always acyclic, and then G always has at least one sink. Sinks are nodes 
that hold the turns corresponding to all the edges incident to them, and then by (8.11) and 
(8.12) must acquire all the forks that they do not hold within a finite time of having responded 
to the need to access the shared resources. No deadlock is then possible. 



A node that is not a sink but does execute (8.11) in order to access the shared resources is 
also guaranteed to acquire all the necessary forks within a finite time, and then no starvation 
ever occurs either. What supports this conclusion is that either such a node acquires all the 
forks because its neighbors that hold turns do not need to access the shared resources (by 
(8.12) and (8.13)), or because it eventually acquires all the turns (by (8.13) and (8.14)) and 
then the forks as a consequence of the acyclicity of G's orientations. 

The number of messages that need to be exchanged per access to the shared resources 
can be computed as follows. First a node may send as many request messages as it has 
neighbors, that is |Neigi| in the case of node ni. The worst that can happen is that ni does not 
hold any turns and the request's that it sends find nodes that do not need to access the 
shared resources and then send ni forks. Because ni does not hold any turns, it may happen 
that these forks may have to be returned as fork(request) messages if ni receives at least 
one request from its neighbors before receiving the last fork. By (8.13), ni will then eventually 
receive all these forks back, then access the shared resources, and then send turns out. If 
we let 

 

then clearly the algorithm's message complexity per access to the shared resources is O(Δ). 
Message lengths are constant, and then the algorithm's bit complexity is also of O(Δ). 

The time complexity of Algorithm A_Dine per access to the shared resources is related to 
the longest chain of messages beginning with the sending of request's by a node and ending 
with the reception by that node of the last fork message that it expects. Such a chain 
happens for a node that is a source in the current acyclic orientation when all nodes require 
access to shared resources. In this case, the directed distance from that node to the sinks 
may be as large as n−1, and then the time complexity that we seek is O(n). One situation in 
which this worst case may happen is that of a ring with a single sink. 

All of Algorithm A_Dine's properties rely strongly on the assumption of an initial acyclic 
orientation for G. Determining this initial acyclic orientation constitutes an interesting problem 
by itself, and appears to require randomized techniques to be solved unless nodes can be 
assumed to have distinct identifications totally ordered by <, as in Section 8.1 and other 
occasions in the book. If such is the case, then the initial acyclic orientation that we need can 
be determined with O(m) messages and O(1) time as follows. Every node sends its 
identification to its neighbors. For each edge (ni, nj), the turn stays initially with ni if idi < idj; it 
stays with nj if idj < idi. When compared with the algorithms of Section 8.1, the approach of 
assigning priorities based on a dynamically evolving acyclic orientation of G can be regarded 
as trading the nonconstant message length in those cases by an initial overhead to establish 
the initial acyclic orientation. 

8.3.2 Operation under heavy loads 
A heavy-load situation is characterized by the fact that nodes require access to shared 
resources continually. Clearly, under such circumstances Algorithm A_Dine may be 
simplified to a great extent. Specifically, a node may send forks to all of its neighbors 
immediately upon finishing accessing the shared resources. As a consequence, request and 
turn messages are no longer needed, provided it is the placement of forks, instead of turns, 

that gives G's orientation. The only variables that are needed at ni are then 



for all nj � Neigi. The simplified algorithm is presented next as Algorithm A_Dine_H ("H" for 
Heavy), with N0 being the set of nodes that are sinks (i.e., hold all forks corresponding to 
incident edges) initially. 

Algorithm A_Dine_H:  
 

          Variables: 

               for all nj � Neigi. 
 

 

Listing 8.15  
 

          Input: 
              msgi = nil. 
 

          Action if ni � N0: 
              Access shared resources; 

               : = false for all nj � Neigi; 
              Send fork to all nj � Neigi. 

 
 

Listing 8.16  
 

          Input: 
              msgi = fork such that origini(msgi) = (ni, nj). 

          Action: 

               := true; 

              if  for all nk � Neigi then 
                   begin 
                       Access shared resources; 

                        := false for all nk � Neigi; 
                       Send fork to all nk � Neigi. 

                   end. 
 

 



Actions (8.15) and (8.16) are both related to (8.13) of Algorithm A_Dine. It should then come 
with no difficulty that Theorem 8.3 is equally applicable to Algorithm A_Dine_H as well. In the 
remainder of this section, we turn to the synchronous model of computation for a more 
detailed analysis of Algorithm A_Dine_H. Our choice of a synchronous model for this 
analysis is motivated by the simplicity that ensues from that model, although corresponding 
results for the asynchronous model also exist and can be found in the literature. 

The synchronous counterpart of Algorithm A_Dine_H starts off with an initial acyclic 
orientation at pulse s = 0 and generates a sequence of acyclic orientations for pulses s > 0. 
For s ≥ 0, at pulse s all sinks concurrently access shared resources and then send forks to 
neighbors. The evolution of acyclic orientations in synchronous time is such that a new 
acyclic orientation is generated by reversing the orientation of all edges incident to sinks, 
which then become sources in the new orientation. This mechanism is referred to as the 
edge-reversal mechanism, having applications beyond the context of resource sharing. For 
example, together with Algorithm A_Schedule_AS of Section 5.3.2, an algorithm based on 
the edge-reversal mechanism is of key importance as a technique for time-stepped 
simulation (cf. Section 10.2). Both in this section and in Section 10.2, the edge-reversal 
mechanism is employed to schedule nodes for operation so that neighbors do not operate 
concurrently. In this section, the "operation" is to access resources that nodes share with 
neighbors, while in Section 10.2 the term has a different meaning. Because of its role as a 
scheduler, it is also common to find the edge-reversal mechanism referred to as scheduling 
by edge reversal. 

Let ω1, ω2,…denote the sequence of acyclic orientations created by the edge-reversal 
mechanism, and Sinks1, Sinks2,…denote the corresponding sets of sinks. For k ≥ 1, ωk is the 
orientation at pulse s = k−1. For ni � N and k ≥ 1, let mi(k) be the number of times ni appears 
in Sinks1,…,Sinksk. 

Theorem 8.4. 

Consider two nodes ni and nj, and let r ≥ 1 be the number of edges on a shortest undirected 
path between them in G. Then | mi(k)−mj(k) | ≤ r for all k ≥ 1. 

Proof: We use induction on the number of edges on a shortest undirected path between ni 
and nj. The case of one edge constitutes the basis of the induction, and then the assertion of 
the theorem holds trivially, as in this case ni and nj are neighbors in G, and must therefore 
appear in alternating sets in Sinks1, Sinks2, …. As the induction hypothesis, assume the 
assertion of the theorem holds whenever a shortest undirected path between ni and nj has a 
number of edges no greater than r−1. When ni and nj are separated by a shortest undirected 
path with r edges, consider any node nℓ (other than ni and nj) on this path and let d be the 
number of edges between ni and nℓ on the path. By the induction hypothesis, 

 

and 

 

yielding 



 

thence the theorem. 

Theorem 8.4 is in fact more than a mere starvation-freedom statement, as not only does it 
imply that all nodes become sinks within a bounded number of pulses, but it also establishes 
a bound on the relative frequency with which nodes become sinks. This theorem is then a 
stronger version of Theorem 8.3 as far as starvation is concerned. 

The number of distinct acyclic orientations of G is of course finite, so the sequence ω1, ω2, 
… must at some pulse embark in a periodic repetition of orientations, which we call a period 
of orientations, or simply a period (Figure 8.1). Orientations in a period are said to be 
periodic orientations. The next corollary establishes an important property of periods. 

Corollary 8.5. 

The number of times that a node becomes a sink in a period is the same for all nodes. 

 
Figure 8.1A period of five orientations results from the edge-reversal mechanism started 
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at the orientation shown in the upper left corner of the figure, which is outside the period. 
In this period, every node becomes a sink twice.  

Proof: Suppose, to the contrary, that two nodes ni and nj exist that become sinks different 
numbers of times in a period. Suppose, in addition, that a shortest undirected path between 
ni and nj in G has r edges. Letting p be the number of orientations in the period and k = (r + 
1)p yields 

 

which contradicts Theorem 8.4. 

Clearly, the period is unequivocally determined given ω1. We let m(ω1) denote the number of 
times that nodes become sinks in this period, and p(ω1) denote the number of orientations in 
the same period. 

One issue of great interest is the "amount of concurrency" that scheduling by edge reversal 
is capable to yield from an initial acyclic orientation ω1 The importance of this issue comes 
from the very nature of the resource-sharing computations we have been considering in all 
of Section 8.3, and from the intuitive realization that the choice of ω1 greatly influences the 
number of nodes that become sinks concurrently. 

The measure that we adopt for the concurrency attainable from ω1, denoted by Conc(ω1), is 
the average, over a large number of pulses and over n, of the number of times each node 
becomes a sink in those pulses. More formally, 

 

Clearly, we get more concurrency as more nodes become sinks earlier. 

Theorem 8.6. 

Conc(ω1) = m(ω1)p(ω1). 

Proof: For some ℓ ≥ 1, let ωl be the first periodic orientation in ω1, ω2, … For k≥ ℓ,, the first k 
orientations of ω1, ω2,… include �(k − ℓ + 1)/p(ω1)� repetitions of the period, so 

 

and 

 



where ℓ − 1 ≤ ℓ + p(ω1) − 2 and u ≤ u≤ nu. The theorem then follows easily in the limit as k → 
∞. 

It follows immediately from Theorem 8.6 that 

 

This is so because it takes at most n pulses for a node to become a sink (the longest 
directed distance to a sink is n − 1), so 

 

and because the most frequently that a node can become a sink is in every other pulse, so 

 

If G is a tree, then it can be argued relatively simply that Conc(ω1) = 1/2, regardless of the 
initial orientation ω 1. If G is not a tree, then, interestingly, Conc(ω1) can also be expressed in 
purely graph-theoretic terms, without recourse to the dynamics of the edge-reversal 
mechanism. For such, let k denote an undirected cycle in G (with | k | nodes). Let also n + 
(k,ω1) and n − (k, ω1) denote the number of edges in k oriented by ω 1 clockwise and 
counter-clockwise, respectively. Define 

 

and let K denote the set of all of G's undirected cycles. 

Theorem 8.7. 

I If G is not a tree, then Conc(ω1) = mink�K ρ(k, ω1). 

Proof: The proof is quite involved, and escapes the intended scope of this book. The 
interested reader is referred to the pertaining literature. 

There are in the literature additional results concerning scheduling by edge reversal that we 
do not explicitly reproduce here. Some are positive, as the one that states that this 
mechanism is optimal (provides most concurrency) among all schemes that prevent 
neighbors from operating concurrently and require neighbors to operate alternately. Other 
results are negative, as for example the computational intractability (NP-hardness) of finding 
the initial acyclic orientation ω 1 that optimizes Conc(ω 1). 

 
8.4 The drinking philosophers problem 



If nodes may access different subsets of resources whenever they require access to shared 
resources, then the possibility that neighbors in G access shared resources concurrently 
exists, provided the sets of resources they access have an empty intersection. In such 
cases, the technique of employing one single fork per edge to secure exclusive access to 
the resources that two neighbors share is no longer sufficient. Instead, associated with every 
edge there has to be one object for each resource that the corresponding neighbors share. 
Such objects are bottles from which the philosophers drink, and the problem of ensuring 
mutual exclusion, deadlock-freedom, and starvation-freedom in the drinking of the 
philosophers is referred to as the drinking philosophers problem. 

At node ni the set of bottles shared over edge (ni, nj) is denoted by (which, clearly, is the 

same as ). For all nj � Neigi, and for bk � Bi
j, node ni employs the Boolean variable 

, initially set to false, to indicate whether bk � is needed. The need 
to access shared resources is indicated at ni by the Boolean variable thirstyi, initialized to 
false. In order to access the shared resources that it requires, ni must acquire all the bottles 

corresponding to those resources, i.e., bk � Bi
j such that = true for all nj 

� Neigi. 

Except for this need to acquire multiple objects corresponding to a same edge, the solution 
that we describe for the drinking philosophers problem is quite similar to that of the dining 
philosophers problem. In particular, the same priority scheme based on the turn objects that 
we employed in Algorithm A-Dine is also used in the new solution. In contrast with the 
multiplicity of bottles for each edge, the turns continue to exist in the number of one per 
edge, as in the dining philosophers case. What this amounts to is that turns are sent out on 
all edges when a node finishes accessing a group of shared resources, even in those edges 
whose bottles were not needed. 

This solution to the drinking philosophers problem is given next as Algorithm A-Drink. 
Additional variables employed by node ni are, for all nj � Neigi, the Boolean 

(employed as in the dining philosophers case), and for all bk � the 

Booleans and (this one initially set to false), 
employed respectively to indicate whether ni holds bk and whether ni has postponed the 
sending of bk to nj until it is through with accessing the shared resources. As in the dining 
philosophers case, the holds-turn and holds-bottle variables must be initialized to 
consistency across edges. In addition, the holds-turn variables must be initialized as to 
induce an acyclic orientation on G Auxiliary set variables Xi and Yi, both initially empty, are 
used by ni. 

The messages employed by Algorithm A-Drink are completely analogous to those of 
Algorithm A-Dine, but with some slight modifications. A message request(X) is sent by nito nj 

to request a set of bottles X � . A set X of bottles is sent via the message bottle(X), 
which similarly to the fork message of the dining philosophers case may carry an additional 
nil, turn, or request(Y) parameter. Finally, a turn message is used to send a turn over an 
edge. 



Algorithm A-Drink:  
 

          Variables: 
              thirstyi = false; 

               for all nj � Neigi and all bk � ; 

               for all ni � Neigi; 

               = false for all nj � Neigi and all bk � 

; 

               = false for all nj � Neigi and all bk 

� ; 

              Xi=  

              Yi= . 
 

 

Listing 8.17  
 

          Input: 
              msgi = nil. 
          Action when not thirstyi and access to shared resources is 
          needed: 
              thirstyi := true; 

               := true for all nj � Neigi and all bk 

�  such that 

              access to the resource for which bk stands is needed; 

              for all nj � Neigi such that there exists bk �  with 

               = true and  = false do 
                  begin 

                      Let Xi be the subset of  such that bk � Xi 
if and only if 



                       = true and  = 
false; 
                      Send request (Xi) to nj; 

                      Xi :=  

                  end. 
 

 

Listing 8.18  
 

          Input: 
              msgi = request(X) such that origini(msgi) = (ni, nj). 

          Action: 
              for all bk � X do 

                  if not thirstyi or not  or not 

 then 
                      begin 

                          := false; 
                          Xi := Xi�{bk}; 

                          if thirstyi and  then 
                                Yi:= Yi �{bk} 

                      end 
                  else 

                      := true; 

              if Xi ≠  then 
                  begin 

                      if Yi =  then 
                           Send bottle (Xi, nil) to nj 
                      else 
                           begin 
                               Send bottle (Xi, request (Yi)) to ni; 

                               Yi :=  



                           end; 

                      Xi:=  

                  end. 
 

 

Listing 8.19  
 

          Input: 
              msgi = bottle (X, t) such that origini (msgi) = (ni, 
nj). 

          Action: 

               := true for all bk � X; 
              if t = turn then 

                    := true; 
              if t = request(Y) then 

                   := true for all bk � Y; 

              if  for all nk � Neigi and all bℓ �  
then 
                   begin 
                       Access shared resources; 

                       thirstyi := false; 
                       for all nk � Neigi do 

                           if  then 
                                begin 

                                     := false; 

                                    for all bℓ �  do 

                                        if  then 
                                            begin 

                                                 := 
false; 



                                                 := 
false; 
                                                Xi := Xi � {bℓ} 

                                            end; 

                                    if Xi ≠  then 
                                        begin 
                                            Send bottle (Xi, turn) 
to nk; 

                                            Xi :=  

                                        end 
                                    else 
                                        Send turn to nk 

                                end 
                   end. 

 
 

Listing 8.20  
 

          Input: 
              msgi = turn such that origini (msgi) = (ni, nj). 

          Action: 

               := true. 
 

 

Actions (8.17) through (8.20) are entirely analogous to actions (8.11) through (8.14), 
respectively, of Algorithm A-Dine. Because the same priority scheme is used in both 
algorithms, Theorem 8.3 is, in essence, applicable to Algorithm A-Drink as well. With the 
exception of the bit complexity, the two algorithms also share the same complexity 
measures. The bit complexity of Algorithm A-Drink is different because request and bottle 
messages carry references to a set of bottles (possibly two sets of bottles, in the case of 
bottle messages) with a nonconstant number of bottles. Because two neighbors share as 
many bottles as they share resources, and because they share at most R resources (cf. 
Section 8.2), the algorithm's bit complexity is O(ΔRlogR), provided every resource can be 
identified with �logR� bits. 

 
8.5 Exercises 
1. In Algorithm A_Mutually-Exclude-C, show that the sequence numbers can be 
implemented with O(log n) bits.  



2. Show, for Algorithm A-Mutually-Exclude, that it may be necessary to compare two 
sequence numbers differing from each other by an arbitrarily large amount.  
3. Modify Algorithm A-Mutually-Exclude for the case in which node ni may belong to Si.  
4. In the context of Section 1.5, find the r(c)'s for Algorithm A-Dine-H.  
1. 

  
In Algorithm A_Mutually-Exclude-C, show that the sequence numbers can be implemented 
with O(log n) bits. 

2. 
  

Show, for Algorithm A-Mutually-Exclude, that it may be necessary to compare two 
sequence numbers differing from each other by an arbitrarily large amount. 

3.   Modify Algorithm A-Mutually-Exclude for the case in which node ni may belong to Si. 
4.   In the context of Section 1.5, find the r(c)'s for Algorithm A-Dine-H. 
 
  

 

8.6 Bibliographic notes 
In order to sort through the plethora of approaches and algorithms for mutual exclusion, the 
reader can resort to the book by Raynal (1986), or the more current taxonomic studies by 
Raynal (1991) and Singhal (1993). Our treatment in Section 8.1 is derived from Ricart and 
Agrawala (1981) and from Maekawa (1985), where Algorithms A-Mutually-Exclude-C and A-
Mutually-Exclude first appeared, respectively. Further developments on these algorithms, as 
well as new approaches, can be found in numerous sources, including Carvalho and 
Roucairol (1983), Agrawal and Abbadi (1989), Raymond (1989), Singhal (1989a), Ramarao 
and Brahmadathan (1990), Neilsen and Mizuno (1991), Singhal (1991), Bouabdallah and 
Konig (1992), Satyanarayanan and Muthukrishnan (1992), Woo and Newman-Wolfe (1992), 
Chang and Yuan (1994), Chen and Tang (1994), Helary, Mostefaoui, and Raynal (1994), 
and Madhuram and Kumar (1994). 

The formulation of Section 8.2 can be found in Barbosa (1986) and in Barbosa and Gafni 
(1987; 1989b). 

The dining philosophers problem appeared originally in Dijkstra (1968), and received 
attention in a distributed setting, either as posed originally or as variations thereof, in Chang 
(1980), Lynch (1980), Lynch (1981), and Rabin and Lehmann (1981). Algorithm A-Dine of 
Section 8.3.1 is based on Chandy and Misra (1984), but the idea of transforming sinks into 
sources to maintain the acyclicity of a graph's orientation appeared previously (Gafni and 
Bertsekas, 1981) in the context of routing in computer networks. The analysis that appears 
in Section 8.3.2 for the heavy-load case is from Barbosa (1986) and Barbosa and Gafni 
(1987; 1989b), where the omitted proof of Theorem 8.7 also appears, as well as other 
results related to optimality and intractability (in the sense of NP-hardness, as in Karp (1972) 
and Garey and Johnson (1979)). Most of the concurrency notions involved with scheduling 
by edge reversal are closely related to the concept of a multicoloring of a graph's nodes. 
Such a concept can be looked up in Stahl (1976), for example. Other sources of information 
on scheduling by edge reversal are Bertsekas and Tsitsiklis (1989), Malka, Moran, and Zaks 
(1993), Calabrese and Françca (1994), and Françca (1994). The latter addresses the 
randomized determination of G's initial acyclic orientation. 

Section 8.4 is based on Chandy and Misra (1984). 



 

Chapter 9: Program Debugging 
Overview 
Debugging is the part of the program development process whereby conceptual and 
programming errors are detected and corrected. The debugging of a sequential program is 
achieved mainly through the use of rather simple techniques that involve the ability to re-
execute a program and to halt its execution at certain points of interest (the so-called 
breakpoints). Asynchronous algorithms like the ones we have been treating in this book lack 
both the determinism that makes the re-execution of sequential programs simple, and the 
unique total order of events that facilitates the detection of states where a halt is desired. 
Clearly, then, the debugging of programs based on such algorithms is altogether a different 
matter. 

Notwithstanding this difference in levels of difficulty, approaches to the debugging of 
programs based on asynchronous algorithms have concentrated on the same two major 
techniques on which the debugging of sequential programs is based, namely deterministic 
re-execution and breakpoint detection. It is then to these two major topics that we dedicate 
this chapter, beginning in Section 9.1 with some preliminary concepts, and then progressing 
through Sections 9.2 and 9.3, respectively on techniques for program re-execution and 
breakpoint detection. Throughout the chapter, G is an undirected graph. 

The detection of breakpoints can be an especially intricate endeavor, depending on the 
characteristics of the breakpoint one is seeking to detect. For this reason, in Section 9.3 we 
limit ourselves to very special classes of breakpoints, chiefly those that are either 
unconditional or depend on predicates that can be expressed as logical disjunctions or 
conjunctions of local predicates. In this context, we provide techniques that fall into two 
classes, specifically those that are based on a reexecution (in the style of Section 9.2), and 
those that are not so. 

Sections 9.4 and 9.5 contain, respectively, exercises and bibliographic notes. 

 
9.1 Preliminaries 
The debugging of a sequential program is a cyclic process supported by two basic 
techniques, those of program re-execution and of breakpoint detection. We assume 
henceforth that the programs that we treat in this chapter, sequential and distributed alike, 
never act on probabilistic decisions, and then a sequential program is guaranteed to go 
through the same sequence of states whenever it is re-executed from the same initial 
conditions. In the asynchronous distributed case, however, there are sources of 
nondeterminism other than those related to probabilistic decisions, specifically those related 
to the model's unsynchronized local clocks and unpredictable delays for message delivery 
among neighbors. As a consequence, the simple re-execution from the same initial 
conditions is not enough to ensure that all nodes will repeat the same behavior as in the 
previous execution. 

This issue of nondeterminacy is also what distinguishes the sequential and asynchronous 
distributed cases when it comes to the detection of breakpoints during an execution. In the 



sequential case, all operations on variables are totally ordered, and then checking for the 
occurrence of particular states where predefined predicates hold poses no conceptual 
difficulties. In the asynchronous distributed case, on the other hand, no such unique total 
order exists, and the detection of global states with the characteristics required by a 
predefined predicate becomes a much harder problem. 

The key to approaching the two problems is the treatment of timing issues under the 
asynchronous model that we pursued in Section 3.1. Specifically, in order to reproduce an 
execution of an asynchronous algorithm, it suffices to ensure that the re-execution follows 
the exact same partial order of events that was generated by the original execution. 
Detecting breakpoints correctly is also very much dependent upon the concepts introduced 
in that section, because, as we already mentioned, what is required is the detection of global 
states at which the required predicates hold. However, what is needed is not just an 
algorithm like Algorithm A_Record_Global_State of Section 5.2.1, which offers no control as 
to which global state it records, but rather algorithms that are guaranteed not to miss a 
global state with the desired characteristics if one exists. 

Before we proceed to the remaining sections of the chapter, let us pause briefly for a few 
terminological comments. Although in these first two sections we have attempted to comply 
with the standard practice of reserving the terms "algorithm" and "program" for different 
entities (a program is normally a realization of an algorithm, involving a particular 
programming language and often assumptions on the system's architecture), henceforth we 
shall drop the distinction and refer to the debugging of an algorithm as encompassing the 
debugging of programs as well (even though what is normally true is the converse). We do 
this to simplify the terminology only, and no further presumptions are implied. 

 
9.2 Techniques for program re-execution 
As we remarked in the previous section, the aim when attempting to re-execute an 
asynchronous algorithm is to re-generate the same set of events, and hence the same 
partial order among them, as in the original execution. What is needed to achieve this goal is 
twofold. First of all, the set N0 of spontaneous initiators must be the same as in the original 
execution. Secondly, from the perspective of individual nodes, messages must be received 
in the same order as in the original execution. Note that this involves more than the order of 
message reception on a particular edge, as in reality what is required is the preservation of 
the order of message reception across all edges incident to a node. If edges are FIFO, then 
it suffices that a node, during the re-execution, consider the edges to receive messages in 
the same order as they happened to be considered in the original execution. Put differently, 
if node ni has as neighbors nodes nj1,…,njk for k = |Neigi|, and in the original execution the 
first message was received at ni from na � {nj1,…,njk}, the second message from nb � 
{nj1,…njk}, and so on, then during the re-execution the same order must be respected. The 
solution that we describe next is given for this case of FIFO edges, although an extension to 
the case in which edges are not FIFO can also be devised (cf. Exercise 1). 

Preserving this order of appearance of a node's neighbors (equivalently, of a node's incident 
edges) in the sequence of messages the node receives during the re-execution of an 
algorithm can be achieved through the following two-phase process. During the original 
execution, every node records a sequence of pointers to neighbors; this recording is the 
process's first phase. The second phase occurs during the re-execution, in which the 
sequences recorded during the first phase are employed to force nodes to receive 
messages from neighbors in the order implied by the recorded sequence. The combined 
sequences recorded by all nodes during the first phase constitute a trace of the original 



execution. This trace, along with the composition of the N0 set associated with the original 
execution, clearly suffice for the algorithm to be deterministically re-executed. 

Before we proceed to describe more precisely the mechanism whereby the trace is 
employed during the re-execution, it must be mentioned that the recording of the trace may 
cause the original execution to be different from what it would be if no recording were being 
done. This is the so-called probe effect of the tracerecording process, and is of little 
consequence from a purely theoretical point of view, because under the assumptions of the 
asynchronous model any execution is as good as any other. However, in a practical setting 
where certain executions would be favored by certain prevailing timing conditions, the probe 
effect can be misleading, in the sense of causing the trace of an "atypical" execution to be 
recorded. In such circumstances, probe effects are important and the recording of traces 
(i.e., the "probe") should be designed to keep them to a minimum. 

During the trace recording, node ni employs the Boolean variable initiatori, initialized to false, 
to indicate whether ni turns out to be a member of N0. In addition, a queue of pointers to 
neighbors is employed by ni to record the origins of all the messages it receives during the 
execution. This queue is called queuei and is initialized to nil. At all times, first_in_queuei is 
assumed to be the first element in queuei, being equal to nil if queuei = nil. During the re-
execution phase, the Boolean initiatori is used to make up an N0 set that is equal to the one 
of the original execution. Similarly, queuei is employed to control the reception of messages 
by node ni. This is achieved by conditioning actions on the reception of a message msgi to 
be executed only when 

 

provided queuei is updated by the removal of its first element whenever a message is 
received. The mechanism whereby this takes place is through the use of the Boolean 
conditions allowed in our general template, Algorithm A_Template of Section 2.1. 

Next we present two asynchronous algorithms, one for each of the phases involved in the 
deterministic re-execution of asynchronous algorithms. These algorithms are called 
Algorithm A_Record_Trace and Algorithm A_Replay, respectively for the first phase and the 
second phase. These two algorithms are derived directly from Algorithm A_Template, and 
are therefore intended for generic asynchronous computations that fit that template. 

Algorithm A_Record_Trace:  
 

         Variables: 
             Initiatori = false; 
             queuei = nil; 
             first_in_queuei = nil; 
             Other variables used by ni, and their intial values, 
are listed here. 

 
 

Listing 9.1  
 

         Input: 



             msgi = nil. 
         Action ifni �N0: 
             initiatori:= true; 
             Do some computation; 

             Send one message on each edge of a (possibly empty) 
subset ofInci. 

 
 

Listing 9.2  
 

         Input: 
             msgi such that origini (msgi) = (ni,nj). 

         Action: 
             Append nj to queuei; 

             Do some computation; 

             Send one message on each edge of a (possibly empty) 
subset ofInci. 

 
 

In Algorithm A_Record_Trace, the variable initiatori is set to true in (9.1) to signal to the re-
execution phase what the members of N0 must be. Similarly, the portion of the trace that 
corresponds to message receptions at ni, is recorded in queuei in (9.2). In Algorithm 
A_Replay, presented next, the members of N0 are exactly those nodes ni for which initiatori = 
true at the end of the execution of Algorithm A_Record_Trace. In this sense, N0 is no longer 
a set of spontaneous initiators, but rather the set of nodes that are forced to initiate the 
computation so the original execution of the algorithm can be faithfully reproduced. 

Algorithm A_Replay:  
 

         Variables: 
             queuei; 

             first_in_queuei; 

             Other variables used by ni, and their initial values, 
are listed here. 

 
 

Listing 9.3  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             Do some computation; 



             Send one message on each edge of a (possibly empty) 
subset of Inci. 

 
 

Listing 9.4  
 

         Input: 
             msgi such that origini(msgi) = (ni, nj). 

         Action when nj = first_in_queuei: 
             Remove first_in_queuei from queuei; 

             Do some computation; 

             Send one message on each edge of a (possibly empty) 
subset of Inci. 

 
 

Action (9.3) is executed by the nodes that initiate the re-execution according to the trace 
recorded by Algorithm A_Record_Trace. Action (9.4), which is only executed by ni on a 
message arriving on edge (ni, nj) when nj = first_in_queuei, ensures that message receptions 
are acted upon by ni in the same order as they were in the execution of Algorithm 
A_Record_Trace. 

As a final remark in this section, note that the message, time, and bit complexities of both 
Algorithm A_Record_Trace and Algorithm A_Replay are the same. This is only expected, in 
view of the correctness of Algorithm A_Replay in reproducing the execution of Algorithm 
A_Record_Trace, if we consider that neither the recording process nor the deterministic re-
execution employ any messages in addition to those already present in the original 
computation. 

 
9.3 Breakpoint detection 
This section is devoted to the second major problem we discuss in this chapter in connection 
with the debugging of asynchronous algorithms, namely that of detecting breakpoints. Our 
discussion proceeds in Sections 9.3.1 through 9.3.3 as follows. Section 9.3.1 contains 
fundamental definitions and concepts, especially those related to the types of breakpoints to 
be treated in the sequel. The remaining two sections are devoted each to a different aspect 
of the problem. Section 9.3.2 contains a trace-based approach, and Section 9.3.3 an 
approach that does not depend on a trace of a previous execution. 

The bulk of Section 9.3 is contained in Section 9.3.3, where we introduce a collection of 
distributed algorithms for the detection of some types of breakpoints. Although Section 9.3.2 
also contains interesting insights into the problem, it is on Section 9.3.3 that the reader 
should concentrate. 

9.3.1 Fundamentals 



A breakpoint in the execution of an asynchronous algorithm is a global state at which one 
wishes the computation to halt so that nodes' variables can be examined. All the breakpoints 
we study in the forthcoming sections refer to local states of the nodes only, so that for our 
purposes in this chapter messages in transit on edges are an unimportant part of a global 
state. Whenever the need arises for a global state to be represented, we shall then do so by 
considering nodes' local states only. For node ni, we let lti ≥ 0 be ni's local time. For simplicity 
when describing our algorithms, we assume that lti is in fact an event counter at ni, that is, lti 
= 0 initially and is increased by one either upon the spontaneous sending of messages by ni 
if ni � N0 or upon the reception of a message by ni. Clearly, a node ni's local state is 
unequivocally determined given lti. 

Because messages in transit play no role in the global states of our interest, and considering 
the relationship we just described between a node's local state and local time, a node's view 
of a global state can be represented by an n-component array of local times. In such an 
array, and for 1≤ i ≤ n, the ith component contains some value of lti. If we revisit our initial 
study of global states in Section 3.1, then clearly an n-component array of natural 
numbers is a global state if and only if no ni � N exists that ever receives a message earlier 
than (or at) [i]that was sent by some nj � Neigi later than [j]. The definition of an 
earliest global state with respect to some property that we alluded to in Section 3.1 can in 
this simplified view of a global state be given as follows. A global state is the earliest 

global state for which a certain property holds if and only if no other global state ' for 

which the property also holds is such that [i] ≤ [i] for all ni � N. Depending on the 
particular property one is considering, it is conceivable, as we will see later in Section 9.3.3, 
that more than one earliest global state exists. In this case, all the earliest global states are 
incomparable to one another, in the sense that the past of none of them is in the past of 
another (or, equivalently, if we resort to the terminology of Section 3.1, none of them comes 
earlier than any other). 

There is a great variety of problems that may be considered when studying breakpoints of 
asynchronous algorithms, so right at this introductory section it must remain very clear which 
the problems that we consider are. The first important distinction is related to the so-called 
"weak" and "strong" senses in which breakpoints can be treated. The weak sense refers to 
breakpoints as global states of one single execution of the algorithm, while the strong sense 
is about breakpoints in all possible executions of the algorithm. Although attempts are 
described in the literature that focus on strong-sense problems, it is to be intuitively expected 
that such attempts invariably result in computationally intractable problems for general 
computations, given the prohibitively large number of possible executions of an 
asynchronous algorithm. It is then to problems in the weak sense that we dedicate our study. 
One important consequence of restricting ourselves to such problems is that, if a particular 
execution of an asynchronous algorithm fails to contain a global state with certain desired 
properties, one cannot infer that no execution exists in which such a global state would 
appear. 

Although in many situations the ultimate goal of considering breakpoints in asynchronous 
algorithms is to halt the execution at the corresponding global state, with one single 
exception it is not to this halting problem that we dedicate most of our efforts in the 
forthcoming sections within Section 9.3, but rather to the problem of only detecting the 
occurrence of the breakpoints. The exception is the material that we present in Section 
9.3.2, where the halting problem is considered. In all other situations, that is, those 
discussed in Section 9.3.3, if halting is desired after the detection, then special techniques of 



the so-called "checkpointing and rollback recovery" type must be employed so that the 
execution can be "returned" to the global state where the breakpoint was detected. We 
pursue the issue no further in this book, but in Section 10.4 the reader can find closely 
related techniques, only in a totally different context. 

A breakpoint can be unconditional or conditional. An unconditional breakpoint is specified by 
providing a local unconditional breakpoint for each ni � N, denoted by lubi. The local 
unconditional breakpoint of ni is either a nonnegative integer specifying the value of lti with 
which ni is to participate in the breakpoint, or such that lubi = ∞ if ni does not participate in 
the breakpoint. This flexibility of allowing nodes not to participate in breakpoints is 
fundamental from a practical perspective, because it allows global properties of interest to be 
monitored on subsets of nodes instead of on N as a whole. The goal of detecting an 
unconditional breakpoint is to find a global state such that [i] for all ni � N such that 
lubi < ∞. If no such global state exists, then the detection algorithm must be able to report 
this as an error. 

A conditional breakpoint is specified by providing for each ni � N a local predicate, that is, a 
Boolean function that depends on ni's variables. The local predicate of ni is denoted by lpi, 
and can be a constant (either true or false) if ni does not participate in the breakpoint. The 
conditional breakpoints that we consider are either disjunctive or conjunctive. A disjunctive 
breakpoint is a global state at which the disjunctive predicate given by the logical disjunction 
of all participating nodes' local predicates is true. In other words, a global state is a 
disjunctive breakpoint if and only if at least one of the participating nodes has a true local 
predicate in that global state. A conjunctive breakpoint is defined likewise, being a global 
state at which the conjunctive predicate given by the logical conjunction of all participating 
nodes' local predicates is true. Put differently, a global state is a conjunctive breakpoint if 
and only if all participating nodes have a true local predicate in that global state. 

The goal of detecting a disjunctive breakpoint is that of finding a global state such that lpi 
= true at local time [i] for at least one node ni that participates in the breakpoint. In the 
same vein, the goal of detecting a conjunctive breakpoint is to find a global state such 
that lpi = true at time for all nodes ni that participate in the breakpoint. If node ni does not 
participate in a breakpoint, then it suffices to set lpi to false in the disjunctive case, or to true 
in the conjunctive case, for the goal of the corresponding detections to be re-stated more 
simply as follows. Detecting a disjunctive breakpoint is to find a global state such that lpi 
= true at time for at least one ni � N; in the conjunctive case, it is to find a global state 

such that lpi = true at time [ifor all ni � N. 

The following is how Sections 9.3.2 and 9.3.3 are organized. In Section 9.3.2, a trace-based 
algorithm is presented to halt an execution at the earliest conjunctive breakpoint. Section 
9.3.3, which is where most of our study is concentrated, contains distributed algorithms for 
the detection of earliest disjunctive breakpoints, earliest unconditional breakpoints, and 
earliest conjunctive breakpoints. In the case of unconditional breakpoints, requiring the 
earliest such breakpoint to be detected is only meaningful if there is at least one node that 
does not participate in the breakpoint. As we have seen earlier in this section, nodes like this 
have the lub variables set to infinity, and may then be required to appear in the detected 
breakpoint with as early a local state as possible. 

Most of the algorithms that we study employ messages other than the messages of the 
computation proper, and for this reason a distinction must be made between such messages 



and those additional messages that the algorithms employ. Messages of the computation 
proper are then referred to as comp_msg's. 

9.3.2 A trace-based technique 
In this section, we discuss a trace-based technique to halt the execution of an asynchronous 
algorithm at the earliest conjunctive breakpoint that occurs. It is trace-based because, as in 
Section 9.2, it is based on two phases, the first one being the recording of a trace and the 
second one a re-execution with special attention to the detection of the earliest conjunctive 
breakpoint. The trace recording is achieved precisely as in Algorithm A_Record_Trace of 
Section 9.2, where the variables queuei and first_in_queuei, respectively a queue of node 
references and a pointer to its first element, are employed by node ni to record the 
neighborhood-wide order according to which it receives comp_msg's. The difference in this 
case is that not only a deterministic re-execution is sought, but a re-execution that does not 
progress beyond the earliest conjunctive breakpoint. As in Section 9.2, G's edges are 
assumed to be FIFO. Also, for the sake of simplicity when writing the algorithm, we assume 
that a node's local predicate can only become true after the node has computed and sent 
messages out (unless the node does not participate in the breakpoint, in which case its local 
predicate is perpetually true). 

The approach that we adopt has the following essential ingredients. During the re-execution 
phase, node ni may be active or inactive. It is active initially and becomes inactive when lpi 
becomes true. A node only receives comp_msg's (and therefore only computes and sends 
comp_msg's out) if it is active, so that becoming inactive when its local predicate becomes 
true is a means of cooperating for the execution to halt at the earliest conjunctive 
breakpoint. The problem with such a naïve way of cooperating is that, by becoming inactive 
and therefore not sending any comp_msg's out, a node may be precluding other nodes from 
reaching local states in which their local predicates can become true as well, which is an 
absolute must if the execution is to halt at a conjunctive breakpoint. 

One way to go around this difficulty is the following. For nj � Neigi, node ni maintains two 

counters, and , both initially set to zero, to indicate 
respectively the number of comp_msg's received from nj and the number of comp_msg's 
sent to nj. Whenever ni is finished with computing and sending comp_msg's out, either 
initially or in response to the reception of a comp_msg, and has remained active, it sends a 

request(  + 1) message to nj such that nj = first_in_queuei. This message 
is intended to activate nj if it is inactive, so that it can send ni the comp_msg that it needs to 
proceed according to the trace. When the request message reaches nj with an x parameter, 

then it must be that x − 1 ≤ (if ni is requesting the xth comp_msg, then it must 
have received exactly x − 1 comp_msg's prior to sending the request and nj must have sent 

at least as many comp_msg's prior to receiving the request). If x − 1 = , then 
nj does indeed owe ni a comp_msg. If it is not active, it then becomes active and sends a 
request itself, and only becomes inactive when its local predicate becomes true after having 
sent that comp_msg to ni. Because request's may accumulate before a node's computation 

is such that the corresponding comp_msg's get sent, node ni employs the variable , 



initially equal to zero, to indicate the number of comp_msg's that need to be sent to nj� Neigi 
before it may become inactive. 

The problem that still persists with this approach is that, because edges are FIFO (as they 
must be for correct re-execution) and a node only receives comp_msg's when it is active and 
the origin of the comp_msg coincides with the node's first_in_queue variable, it may happen 
that a request never reaches its destination. The final fix is then to allow a node to receive all 
comp_msg's that reach it, and then to queue them up internally (along with their origins) on 
edge-specific queues if the node happens to be inactive or the comp_msg that arrived is not 
the one that was expected for re-execution. Upon receipt of a request from nj, an inactive 
node ni works on the messages in those queues until the re-execution can no longer 

progress or = 0 and lpi = true. If > 0 or lpi = false when ni exits this loop, 
then ni becomes active and sends out a request. The reader should reflect on the reasons 
why this procedure ensures that the re-execution halts (i.e., all nodes become inactive) at 
the earliest conjunctive breakpoint (cf. Exercise 2). 

Algorithm A_Replay_&_Halt_CB ("CB" for Conjunctive Breakpoint), given next, realizes the 
procedure we just described. In addition to the variables we already introduced, node ni also 
employs the Boolean activei, initialized to not lpi to indicate whether it is active. Also, for 
each nj � Neigi, the queue where comp_msg's from nj may have to be queued is 

, initially set to nil, whose first element is assumed to be the pair 

( , ), initially 
equal to (nil, nil), at all times. In this algorithm, as in Algorithm A_Replay, the set N0 is given 
as determined by Algorithm A_Record_Trace. 

Algorithm A_Replay_&_Halt_CB:  
 

         Variables: 
             queuei; 

             first_in_queuei; 

              = 0 for all nj �Neigi; 

              = 0 for all nj � Neigi: 

              = 0 for all nj � Neigi: 

             activei = not lpi; 
             msg_queuei = nil for all nj � Neigi; 
             first_origin_in_msg_queue = nil for all nj � Neigi; 
             first_msg_in_msg_queuei = nil for all nj � Neigi; 
             Other variables used by ni, and their initial values, 
are listed here. 

 
 



Listing 9.5  
 

         Input: 
             msgi = nil. 
         Action if ni � No: 
             Do some computation; 

             Send one comp_msg on each edge of a (possibly empty) 
subset of 

             Inci and update the 's accordingly; 

             if lpi then 
                   activei := false. 

 
 

Listing 9.6  
 

         Input: 
             msgi = comp_msg such that origini (msgi) = (ni, nj. 

         Action: 
             if activei and nj = first_in_queuei then 
                   begin 

                        :=  + 1; 

                       Remove first_in_queuei from queuei; 

                       Do some computation; 

                       Send one comp_msg on each edge of a (possibly 
empty) 

                       subset of Inci and update the 's 

and the 's 

                       accordingly; 

                       if  = 0 for all nk � Neigi then 
                            if lpi then 
                                 activei := false; 
                       if activei then 
                            begin 
                                Let nk = first_in_queuei; 



                                Send request (  + 1) 
to nk 

                            end 
                  end 
              else 

                  Append (nj, msgi) to . 
 

 

Listing 9.7  
 

         Input: 
             msgi = request(x) such that origini(msgi) = (ni, nj). 

         Action: 

             if not activei and x − 1 =  then 
                  begin 

                       :=  + 1; 

                      while (  > 0 or not lpi) and there 
exists nk � Neigi 

                      such that first_in_queuei 

=  do 
                          begin 

                               :=  + 
1;  

                              Remove first_in_queuei from queuei; 

                              Remove the pair 

                          ( , 

) 

                              from ; 

                              Do some computation;  

                              Send one comp_msg on each edge of a 
(possibly 



                              empty) subset of Inci and update the 

's 

                              and the 's accordingly 

                          end; 

                      if  > 0 or not lpi then 
                          begin 
                              activei := true; 
                              Let nk = first_in_queuei 

                              Send request(  + 1) to 
nk 

                          end 
                  end. 

 
 

There is some correspondence between the actions in this algorithm and those in Algorithm 
A_Replay for simple re-execution, but they differ greatly, too. Specifically, actions (9.3) and 
(9.5) are related to each other, although (9.5) also undertakes the incrementing of 

when a comp_msg is sent to neighbor nj and checks lpi to see if ni must 
become inactive. Likewise, actions (9.4) and (9.6) are also related to each other. The 
differences are in the internal queueing of comp_msg's and in that (9.6) increments 

to account for the receipt of the triggering msgi on (ni, nj), increments 

(decrements , if positive) upon sending a comp_msg to neighbor nk, 
and in addition checks lpi to possibly set activei to false (if activei remains true, then (9.6) 
includes the sending of a request as well). Action (9.7) deals with the reception of a request 
from nj. This request, if indeed corresponding to a comp_msg that was not sent, and if ni is 

inactive, causes to be incremented and ni to compute on its internal queues of 

messages. If remains positive or lpi = false after this, then ni becomes active and 
sends a request. 

As in the case of Algorithm A_Replay, the message and time complexities of Algorithm 
A_Replay_&_Halt_CB are the same as those of Algorithm A_Record_Trace. This is so 
because the additional request messages only increase the total number of messages 
exchanged and the longest causal chain of messages by a constant factor. However, the 
new algorithm's bit complexity may be higher, because request messages carry integers that 
depend on how many comp_msg's were received by the sending node during the trace-
recording phase. 



We finalize the section with a couple of observations leading to issues that the reader may 
find worth pursuing further. The first observation is that devising a procedure similar to 
Algorithm A_Replay_&_Halt_CB to halt at the earliest disjunctive breakpoint during a re-
execution is a very different matter. The reader is encouraged to pursue a proof that no such 
procedure exists, be it trace-based or otherwise (cf. Exercise 3). 

As the second observation, notice that Algorithm A_Replay_&_Halt_CB does not entirely 
conform to the standards set by Algorithm A_Template, in the sense that in both (9.6) and 
(9.7) a request may follow a comp_msg to the same node, whereas Algorithm A_Template 
only allows one message to be sent to a node per action. An instructive exercise is to rewrite 
Algorithm A_Replay_&_Halt_CB so that this constraint is respected (cf. Exercise 4). 

9.3.3 A trace-independent approach 
In this section we introduce three asynchronous algorithms for the detection of breakpoints. 
One of the algorithms detects earliest disjunctive breakpoints, another detects earliest 
unconditional breakpoints, and the last one detects earliest conjunctive breakpoints whose 
corresponding conjunctive predicates are stable (in the sense of Chapter 6). As we 
remarked earlier in Section 9.3.1, not always is the requirement that an unconditional 
breakpoint be the earliest such breakpoint meaningful—in fact, it only makes sense when at 
least one node does not participate in the unconditional breakpoint. If such is not the case, 
then what the algorithm that we discuss achieves is the detection of the requested 
unconditional breakpoint. Another pertinent observation regarding the algorithms of this 
section is the assumed stability of the conjunctive predicate used to detect the conjunctive 
breakpoints. This assumption simplifies matters tremendously, and it is in the wake of this 
simplicity that we adopt it. However, there do exist techniques to detect conjunctive 
breakpoints in the bsence of stability (as inSection 9.3.2), and at least a couple of recent 
algorithms that do not employ traces can be found in the literature. 

In contrast with the detection procedure discussed in the previous section, which was based 
on a trace of a previous execution, the overall approach in this section does not depend on 
any trace, but rather attempts to detect the required breakpoint as the computation 
progresses. As in the case of the global state recording discussed in Section 5.2.1, what we 
must handle is then the interaction of two computations on G. One of the computations is the 
computation proper, the one that progresses by the exchange of the already introduced 
comp_msg messages. The other computation is the computation for breakpoint detection, 
which, as in Section 5.2.1, must be endowed with certain privileges with respect to the 
former computation, because it must be able to inspect nodes' states in that computation as 
well as the flow of comp_msg's. In the case of Algorithm A_Record_Global_State, we were 
able to get away without being more specific about the way the two computations interacted, 
but in the present case we must face the need to provide some of the details, especially 
because the computation for breakpoint detection will have to be able to attach additional 
fields, in the form of parameters, to the comp_msg's that flow among nodes. 

Let us then fill in some of the details on how the two computations interact. We begin by 
assuming that the message complexity of the computation proper is O(c(n, m)), or more 
succinctly O(c). Likewise, we assume that every node's local clock can only represent local 
times up to a value T (i.e., lti ≤ T for all ni � N), which can be arbitrarily large but needs 
nevertheless be such that we can refer to it when assessing our algorithms' complexities. 

The following is how we henceforth assume the computation proper and the detection 
algorithms to interact. At ni � N, the actions of both computations exclude one another in 



time, as usual. For clarity, we view node ni as comprising two processes that can send 
messages to each other. One of the processes is referred to as pi, while the other is referred 
to as qi. For all ni � N, process qi, is responsible for the detection algorithm, while process pi 
is responsible for the computation proper. Process qi may send messages to every other 
process qj such that nj � Neigi and to pi, while process pi may only send messages to qi. In 
this way, qi, is capable of intercepting every comp_msg that pi sends or receives, for the 
purpose of detecting breakpoints. In doing so, qi may add fields to, or strip fields off, the 
comp_msg's that it intercepts. Of course, every comp_msg sent by pi must somehow contain 
an indication of which pj it is destined to, so that qi can forward it appropriately to qj. Process 
qi responds to messages it receives either on edges (ni, nj) � E or "internally" from pi. When 
specifying the algorithms for breakpoint detection, we provide actions for process qi only, 
and then mentions to the set N0 never appear, as clearly actions performed by nodes in this 
set are actions of the computation proper. 

Perhaps the most important assumption on how processes pi and qi interact is that the 
atomicity of pi's actions may be violated, in the following sense. Process qi is activated (and 
then pi is suspended, while lti remains constant) when lti becomes equal to lubi (in the case 
of unconditional breakpoints) or when the local predicate lpi becomes true (in the case of 
conditional breakpoints), or yet upon the sending by pi of a comp_msg or the arrival of a 
message from qj such that nj � Neigi. What this amounts to is that qi has some sort of 
"preemptive priority" over pi. 

When evaluating our algorithms' complexities, this dual character of a node's behavior may 
at first seem confusing, so that it is advisable to spell out the criteria to be used right away. 
All the complexity measures to be given in this section are measures related to the 
breakpoint detection computation only, and then may involve messages sent especially for 
detection purposes as well as comp_msg's to which additional fields were attached 
(although in the latter case only the message and bit complexities are affected, not the 
global time complexity, which is already accounted for by the computation proper). Such 
measures are then aimed at capturing the "overhead" of breakpoint detection only. 

Our algorithms for breakpoint detection are based on the following general approach. For 1 ≤ 
i ≤ n, process qi maintains an array gsi of length n representing its view of the global state to 
be detected. This array is initialized with zeroes (representing the earliest global state of the 
computation) and is updated when information is received concerning the other nodes' local 
unconditional breakpoints or local predicates. Such information is conveyed from node to 
node either by means of special broadcast messages or as additional fields attached to the 
comp_msg's that constitute the communication traffic of the computation proper. This 
information, when sent by qi, comprises the array gsi. and may, depending on the type of 
breakpoint to be detected, comprise additional data as well. In each of the cases we 
consider, this information is exchanged among nodes in such a way as to allow at least one 
node, say nk � N, to detect locally that the breakpoint has occurred at the global state 
recorded in the current gsk maintained by qk, which is in all cases the earliest global state at 
which the breakpoint can be said to have occurred. 

Let us now examine Algorithm A_Detect_DB ("DB" for Disjunctive Breakpoint) for the 
detection of disjunctive breakpoints. Such a breakpoint is a global state at which for at least 
one of the participating nodes the local predicate holds. Clearly, the earliest global state at 
which a disjunctive predicate holds does not 



 
Figure 9.1In this figure, the solid segment in a process's horizontal line indicates the 
time interval during which the corresponding local predicate is true. The two cuts shown 
clearly correspond to global states, in fact earliest global states in which the disjunctive 
predicate holds.  

have to be unique (Figure 9.1), as we mentioned in Section 9.3.1, so it is conceivable that 
more than one node detects the occurrence of the breakpoint, however at different global 
states. 

Because of the inherent ease with which disjunctive predicates can be detected in a 
distributed fashion, Algorithm A_Detect_DB is quite straightforward. It does not employ any 
broadcast messages, and attaches the array gsi(lti), in addition to a "status bit" (to be 
discussed shortly), to the comp_msg's sent by process qi on behalf of pi. This array is 
identical to gsi in all components except the ith, which is given by lti. Our earlier assumptions 
imply that the value of lti is in this case the local time at pi when it sent the message that qi 
intercepted, and then corresponds to pi's local state immediately succeeding the sending of 
the message. The comp_msg's sent by qi are then sent as comp_msg ("status bit", gsi(lti)). 
Likewise, when qi receives a message comp_msg ("status bit", gs) from qj such that nj � 
Neigi, it is comp_msg that gets forwarded to pi. 

Attaching the modified gsi to comp_msg's is a procedure with important properties in the 
context of this section, not only for the algorithm we are beginning to present, but also for 
other algorithms presented in the sequel. We then pause briefly to introduce the following 
two supporting lemmas. 

Lemma 9.1. 

For all ni � N, if gsi is a global state such that gsi[i] < lti and no message is received at pi at 
time t such that gsi[i] < t ≤lti, then gsi(lti) is also a global state. 

Proof: dIf gsi(lti) is not a global state, then there must exist nk, nℓ � N such that a comp_msg 
was sent by pk strictly later than gsi(lti)[k] and received at pℓ earlier than (or at) gsi(lti)[ℓ]. By 
the definition of gsi(lti), and by hypothesis, it follows that the message must have been sent 
later than gsi[k] and arrived at pℓ earlier than (or at) gsi[ℓ], and then gsi must not be a global 
state, which is a contradiction. 

Lemma 9.2. 

If and are global states, then the component-wise maximum of the two is also a 
global state. 



Proof: Let be the component-wise maximum of and , and suppose that it is not 
a global state. Then there must exist nk, nℓ � N such that a message was sent by pk strictly 

later than [k]and received at pℓ earlier than (or at) [ℓ]. Because 

and then must not be a global state if Likewise, 

if then must not be a global state. Either case yields a contradiction. 

The essence of Algorithm A_Detect_DB is the following for ni � N. Variable lpi is initialized 
with false at process pi, and is assumed never to become true if ni does not participate in 
the breakpoint. Whenever qi detects that lpi has become true, it sets gsi[i] to lti and declares 
the disjunctive breakpoint detected at the global state gsi. Because every comp_msg it 
received from qj such that nj � Neigi prior to lti carried a copy of qj's view of the global state 
with jth component updated to the time the message was sent, gsi must indeed be a global 
state by Lemmas 9.1 and 9.2. In order to ensure that it is also an earliest global state with 
respect to the disjunctive predicate, the simple procedure we just described must only be 
allowed to be performed if no other node has already detected a global state that renders the 
one qi would detect not an earliest one. This is where the "status bit" comes in. This bit will 
indicate, upon arriving along with a comp_msg, whether any other such global state has 
already been detected. 

Algorithm A_Detect_DB is presented next. Two additional variables employed by the 
algorithm are the Booleans foundi and found_elsewherei, both initially set to false, which 
indicate respectively whether qi has detected the disjunctive breakpoint and whether such a 
breakpoint has already been detected elsewhere so that the one detected by qi would 
necessarily not be an earliest one. 

Algorithm A_Detect_DB:  
 

         Variables: 
             gsi[k] = 0 for all nk � N; 

             foundi = false; 
             found_elsewherei = false. 

 
 

Listing 9.8  
 

         Input: 
             msgi = nil. 
         Action when lpi becomes true: 
            if not (foundi or found_elsewherei) then 
                begin 
                    gsi[i] :=lti; 

                    foundi := true 
                end. 



 
 

Listing 9.9  
 

         Input: 
             msgi = comp_msg from pi to pj. 

         Action: 
             Send comp_msg(foundi or found_elsewherei, gsi(lti)) to 
qj. 

 
 

Listing 9.10  
 

         Input: 
             msgi = comp_msg(b, gs). 

         Action: 
             found_elsewherei := b or found_elsewherei; 
             if not (foundi or found_elsewherei) then 
                  for k := 1 to n do 
                      if gsi[k] < gs[k] then 
                           gsi[k] := gs[k]; 

             Send comp_msg to pi. 
 

 

The next theorem establishes the correctness of Algorithm A_Detect_DB. This theorem, like 
the others to follow in this section, state the equivalence of several conditions. The proof 
strategy in all theorems is then to show that the first condition implies the second, which 
implies the third, and so on, and finally that the last condition implies the first. 

Theorem 9.3. 

There exist i � N and ≥ 0 such that the following three conditions are equivalent to one 
another for Algorithm A_Detect_DB.  
� (i) There exists a global state such that lpk = true at time [k]for at least one nk � 

N.  
� (ii) foundi becomes true at time lti = t. 
� (iii) At time lti = t, gsi is the earliest global state at which lpk = true for at least one nk � 

N. 

Proof:  

(i) → (ii): 



At least one of the nodes nk for which lpk ever becomes true must by actions (9.9) and (9.10) 
have reached this state for the first time when found_elsewherek = false. The assertion then 
follows immediately by action (9.8), with ni being this particular node and t being the local 
time at which lpi becomes true for the first time. 

(ii) → (iii): 

By hypothesis and by action (9.8), found_elsewherei can only have become true after time t. 
By Lemmas 9.1 and 9.2, the gsi produced by action (9.8), the gsi(lti) used in action (9.9), and 
the gsi yielded by action (9.10) must all be global states. As a consequence of this, by action 
(9.8) gsi is at time t a global state at which lpi = true. If gsi were not an earliest global state at 
which lpk = true for at least one nk � N, then either found_elsewherei would by actions (9.9) 
and (9.10) have become true prior to t, and then foundi would be false at t, which is a 
contradiction, or lpk would for some nk � N be true right from the start, which is ruled out by 
our assumption on the initial values of these variables. 

(iii) → (i): 

This is immediate. 

Each of the O(c) comp_msg's carries an n-component array, each of whose components is 
an integer no larger than T, so the bit complexity of Algorithm A_Detect_DB is O(cn logT). 
Because only comp_msg's are employed, the algorithm's message and global time 
complexity are of O(1). Each message reception requires O(n) comparisons, which is then 
the algorithm's local time complexity. 

Detecting the other types of breakpoints we consider in this section is a considerably more 
intricate task in comparison with the detection of disjunctive breakpoints. These other cases 
comprise unconditional breakpoints and conjunctive breakpoints on stable conjunctive 
predicates, all of which require some sort of additional "global" information to be monitored. 
It is the propagation of this global information that makes use of the broadcast messages we 
introduced earlier. 

In general, in addition to gsi process qi also maintains another array of Booleans with its local 
view of the global condition to be monitored and detected. 

When disseminated by qi, this array is always accompanied by gsi as well, so that whenever 
qi, detects locally that the global condition has occurred (by examination of its array), it also 
associates the contents of gsi with the global state at which the condition occurred. 

Messages of the broadcast type are sent by qi whenever ni is one of the nodes participating 
in the global condition to be detected and either its local unconditional breakpoint is reached 
(in the case of unconditional breakpoint detection) or its local predicate becomes true (in the 
case of the detection of conjunctive breakpoints). The broadcast we employ follows closely 
Algorithm A_PI of Section 4.1.1, but during the propagation of information an arriving gs from 
some process qj is used by qi to update gsi. In addition, gs and the other array 
accompanying it are used to update the local view at qi of the global condition being 
monitored. 

What further differentiates the broadcast that we employ in this section from Algorithm A_PI 
is that we adopt a "forward-when-true" rule for the propagation of information. This rule 
states that a process participates in the broadcast (i.e., forwards the information it receives) 
only when its local condition (local unconditional breakpoint reached or local predicate 



become true) holds. Clearly, if no comp_msg's were ever sent, then this broadcast would 
suffice for the detection of the desired type of breakpoint. In such a case, whichever process 
produced an array with true values for all the participating processes would declare the 
breakpoint detected at the global state given by the global-state array obtained along with it. 

Algorithm A_Broadcast_When_True does this detection in the absence of comp_msg's, so 
long as the global condition under monitoring is stable. In this algorithm, process pi 
maintains a Boolean variable lci to indicate whether the local condition with which ni 
participates (if at all) in the global condition to be detected is true. It is initialized with false if 
ni does indeed participate in the global condition, or with true otherwise. Stability then 
means that no nk � N exists such that lck is reset to false once it becomes true. The array 
associated with qi's view of the global condition is denoted by gci. For 1 ≤k ≤ n, gci[k] is 
initialized with the same value assigned initially to lck. Only broadcast messages are 
employed in this algorithm (as the computation proper does not employ any), and are sent 
as broadcast(gci, gsi) when qi is the sender. As in the case of Algorithm A_Detect_DB 
discussed earlier, a Boolean variable foundi, set to false initially, is employed to indicate 
whether qi has detected the occurrence of the global condition. In addition, another Boolean 
variable, changedi, is used by qi to ensure that a broadcast message is never sent to a node 
if not different than the last message sent to that node. 

Algorithm A_Broadcast_When_True:  
 

         Variables: 
             gsi[k] = 0 for all nk � N; 

             gci[k] for all nk � N; 

             foundi = false; 
             changedi. 

 
 

Listing 9.11  
 

         Input: 
             msgi = nil. 
         Action when lci becomes true: 
             gci[i] := lci; 

             gsi[i] := lti; 

             if gci [1] � … � gci[n] then 
                  foundi := true 
             else 
                  Send broadcast (gci, gsi) to all qj such that nj � 
Neigi. 

 
 

Listing 9.12  
 



         Input: 
             msgi = (gc, gs). 

         Action:  
             if not foundi then 
                 begin 
                     changedi := false; 
                     for k := 1 to n do 
                         if gsi[k] < gs[k] then 
                              begin 
                                  gsi[k] := gs[k]; 

                                  gci[k] := gc[k]; 

                                  changedi := true 
                              end; 
                     if lci and changedi then 
                           if gci[1] � … � gci[n] then 
                                 foundi := true 
                           else 
                                 Send broadcast (gci, gsi) to all qj 
such that nj � 

                                 Neigi 

                 end. 
 

 

Properties of Algorithm A_Broadcast_When_True are given in the following theorem. 

Theorem 9.4. 

There exist ni � N and t ≥ 0 such that the following three conditions are equivalent to one 
another for Algorithm A_Broadcast_When_True. 
� (i) There exists a global state such that lck = true at time [k] for all nk � N. 
� (ii) foundi becomes true at time lti = t. 
� (iii) At time lti = t, gsi is the earliest global state at which lck = true for all nk � N. 

Proof:  

(i) � (ii): 

If exactly one node participates in the global condition, then by action (9.11) foundi becomes 
true, with ni � N being this node and t the time at which lci becomes true. No messages are 
ever sent in this case. If at least two nodes participate, then at least one of them, say nk � N, 
is such that qk does by action (9.11) send a broadcast message to nk's neighbors when lck 
becomes true, which by action (9.12) pass the updated information on, so long as the 
update introduced changes and their local conditions hold as well. Because this broadcast 
carries lck, it must introduce changes when reaching every node for the first time and is 



therefore propagated. This happens to the local condition of every participating node, and 
then at least one process, say qi, upon having been reached by their broadcasts, and having 
lci = true, sets foundi = true. The value of t here is either the time at which the last broadcast 
to reach qi does reach it by action (9.12) or the time at which lci becomes true by action 
(9.11). 

(ii) � (iii): 

By Lemmas 9.1 and 9.2, the gsi produced in actions (9.11) and (9.12) are global states. 
Consequently, and by actions (9.11) and (9.12) as well, at time t gsi is a global state at which 
lck = true for all nk � N. That gsi is the earliest such global state is immediate, because of the 
absence of comp_msg's, which implies that gsi[k] is either zero or the time at which lck 
becomes true. 

(iii) � (i): 

This is immediate. 

Let us now assess Algorithm A_Broadcast_When_True's complexities. The worst case is 
that in which all nodes start the algorithm concurrently, and furthermore the broadcast 
started by a node traverses all edges. The algorithm's message complexity is then O(nm). 
Because two n-component arrays are sent along with each message, one comprising single-
bit components, the other integers bounded by T, the bit complexity becomes O(n2m log T). 
No causal chain of messages comprises more than O(n) messages, because this is what it 
takes for a broadcast to reach all nodes, so this is the algorithm's global time complexity. 
The local time complexity is like that of Algorithm A_Detect_DB, therefore of O(n). 

Algorithms A_Detect_DB and A_Broadcast_ When_True detect breakpoints in two extreme 
situations, respectively when the breakpoint is a disjunctive breakpoint and when the 
breakpoint is a conjunctive breakpoint but the computation proper does not ever send any 
message (it is simple to note that the case of unconditional breakpoints in the absence of 
comp_msg's is in fact a case of conjunctive breakpoints). In the former case only are 
comp_msg's employed, whereas in the latter case only broadcast messages are needed. 
Other situations between these two extremes are examined in the sequel, and then the 
messages received by process qi are either like comp_msg(gc, gs) or like broadcast(gc, gs). 

Now we introduce A_Detect_UB ("UB" for Unconditional Breakpoint), a distributed algorithm 
to detect the occurrence in a distributed computation of an unconditional breakpoint. As we 
discussed previously, this unconditional breakpoint is specified, for each node actually 
participating in the breakpoint, as a local time denoted by lubi for ni � N. For nodes ni that do 
not participate in the breakpoint, we have chosen to adopt lubi = ∞, so that lti. can never 
equal lubi. 

Algorithm A_Detect_UB must operate somewhere between the two extreme situations 
assumed by Algorithms A_Detect_DB and A_Broadcast_When_True, and then can be 
regarded as a mixture of those. Put differently, the detection of unconditional breakpoints 
does require the detection of a global condition (which is ruled out by Algorithm 
A_Detect_DB) and must be applicable to the case when messages of the computation 
proper exist (which are disallowed by Algorithm A_Broadcast_ When_ True). 

The variables employed by Algorithm A_Detect_UB are essentially the ones introduced 
earlier for the other two algorithms, except that for process pi the Boolean variable lci is now 
replaced with the occurrence of the equality lti = lubi, and furthermore the array ubi, used to 



indicate qi's view of the occurrence of the local unconditional breakpoints at all nodes, is now 
used in lieu of the array gci. For nk � N, ubi[k] may be either true,false, or undefined. It is 
true or false if nk participates in the unconditional breakpoint and is viewed at nias having 
already reached its local unconditional breakpoint or not, respectively, and is undefined if nk 
is not one of the nodes participating in the unconditional breakpoint. Initially, ubi[k] is set to 
false for every participating nk and to undefined if nk does not participate. 

Algorithm A_Detect_UB proceeds as follows. Whenever qi detects that lti = lubi, it updates 
ubi[i] and gsi[i] accordingly and starts a broadcast to disseminate the updated ubi and gsi. 
This broadcast proceeds like the one in Algorithm A_Broadcast_When_True, i.e., it is never 
forwarded by a node whose local unconditional breakpoint has not yet been reached (unless 
the node does not participate in the unconditional breakpoint), and in addition no duplicate 
information is ever forwarded by any node. Every comp_msg is sent with ubi and gsi(lti) 
attached to them, in the way of Algorithm A_Detect_DB, so that the global state that is 
eventually detected is indeed a global state. This detection, if achieved by qi, corresponds to 
the verification that ubi[k] ≠ false for all nk � N, that is, every node has either reached its 
local unconditional breakpoint or is not participating in the unconditional breakpoint. 

One of the difficulties in designing Algorithm A_Detect_UB is that it must be able to detect 
situations in which the requested set of local unconditional breakpoints does not constitute a 
global state (Figure 9.2). In such situations, an error must be reported and the computation 
proper must be allowed to progress normally. The detection of such a situation can be 
achieved along the following lines. Suppose qi receives a comp_msg(ub, gs) from some 
process qj. If ub[j] = true and ubi[i] = false at this moment, then clearly an error has occurred 
in the determination of the unconditional breakpoint, as pi will never reach its local 
unconditional breakpoint in such a way that is consistent with the local unconditional 
breakpoint of pj from the point of view of a global state. 

The possibility of having nodes for which no local unconditional breakpoint is specified 
complicates the treatment of these erroneous conditions a little bit. If a causal chain of 
comp_msg's beginning at qℓ such that ubℓ[ℓ] = true and going through a number of processes 
qk for which ubk[k] = undefined eventually leads to qi such that ubi [i] = false, then an error 
must be detected just as in the case discussed earlier. The way we approach this is by 
artificially setting ubk[k] to true for all the qk's. A Boolean variablein_errori, initially set to 
false, is employed by qi to indicate whether an erroneous condition has been detected. 

Nodes that do not participate in the unconditional breakpoint also complicate the detection of 
earliest global states. If such nodes did not exist, or if we did not require the earliest global 
state to be detected when they did exist, then what we have outlined so far would suffice for 
Algorithm A_Detect_UB to work as needed. 

 
Figure 9.2The tiny solid segment in a process's horizontal line indicates the local time to 



which the corresponding local unconditional breakpoint has been set. Clearly, the 
settings in this figure are erroneous, as the cut (shown as a dashed line) that goes 
through them does not correspond to a global state.  

However, the existence of causal chains of comp_msg's similar to the one we just described 
but beginning at qℓ such that ubℓ[l] = undefined may lead to distinct earliest global states, 
depending on whether it leads to qi, such that ubi[i] = false or ubi[i] = true (Figure 9.3). Only 
in the former case should qi take into account what it receives attached to the comp_msg in 
updating gsi, but the senders of the preceding messages in the causal chain have no way of 
knowing this beforehand. The strategy we adopt to tackle this is the following. In addition to 
maintaining gsi as a local view of the global state to be detected, qi also maintains an 
alternative view, denoted by alt_gsi, which is initialized like gsi but only updated or attached 
to outgoing comp_msg's (the latter in place of gsi) if ubi[i] = undefined. Arriving comp_msg's 
at qi affect gsi, if ubi[i] = false or alt_gsi if ubi[i] = undefined. So for qi such that ubi[i] = 
undefined, gsi[k] ≤ alt_gsi[k] for all nk � N, and therefore gsi, may constitute an earlier global 
state than alt_gsi. 

 
Figure 9.3: Following the same conventions as in Figure 9.2, here a situation is depicted 
in which only one node participates in the unconditional breakpoint (node ni). Depending 
on how the corresponding local unconditional breakpoint is placed with respect to the 
reception of the message by pi, the other processes appear in the resulting earliest 
global state differently, as shown in parts (a) and (b).  

Algorithm A_Detect_UB:  

 

         Variables: 
             gsi[k] = 0 for all nk � N; 

             ubi[k] for all nk � N; 
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             foundi = false; 
             changedi; 

             in_errori = false; 
             alt_gsi[k] = 0 for all nk � N. 

 
 

Listing 9.13  
 

         Input: 
             msgi = nil. 
         Action when detecting that lti = lubi: 
             if not in_errori then 
                 begin 
                     ubi[i] := true; 
                     gsi[i] :=lti; 

                     if ubi[k] ≠ false for all k = 1,…,n then 
                          foundi := true 
                     else 
                          Send broadcast (ubi, gsi) to all qj such 
that nj, � Neigi 

                 end. 
 

 

Listing 9.14  
 

         Input: 
             msgi = broadcast(ub, gs). 

         Action: 
             if not (in_errori or foundi) then 
                 begin 
                     changedi := false; 
                     for k := 1 to n do 
                         if gsi[k] < gs[k] then 
                              begin 
                                  gsi[k] := gs[k]; 

                                  ubi[k] := ub[k]; 

                                  changedi := true 
                              end; 
                     if ubi[i] = undefined then 



                         for k := 1 to n do 
                              if alt_gsi[k] < gs[k] then 
                                  alt_gsi[k] := gs[k]; 

                     if lubi ≠ false and changedi then 
                         if ubi[k] ≠ false for all k = 1,…, n then 
                              foundi := true 
                         else 
                              Send broadcast(ubi,gsi) to all qj such 
that nj � 

                              Neigi 

                 end. 
 

 

Listing 9.15  
 

         Input: 
             msgi = comp_msg from pi to pj. 

         Action: 
             if ubi[i] = undefined then 
                  Send comp_msg(ubi, alt_gsi(lti)) to qj 

             else 
                  Send comp_msg(ubi, gsi(lti)) to qj. 

 
 

Listing 9.16  
 

         Input:             msgi = comp_msg(ub, gs) such that 
origini(msgi) = (ni, nj). 

         Action:  
             if not (in_errori or foundi) then 
                 begin 
                    if ub[j] = true and ubi[i] = false then 
                         in_errori := true; 
                    if ub[j] = true and ubi[i] = undefined then 
                         ubi[i] := true; 
                    if ub[j] = undefined and ubi[i] = false then 
                         for k := 1 to n do 
                             if gsi[k] < gs[k] then 
                                  begin 



                                     gsi[k] := gs[k]; 

                                     ubi[k] := ub[k] 

                                  end; 
                    if ub[j] = undefined and ubi[i] = undefined then 
                         for k := 1 to n do 
                             if alt_gsi[k] < gs[k] then 
                                  alt_gsi[k] := gs[k] 

                 end; 
             Send comp_msg to pi. 

 
 

Next we give properties of Algorithm A_Detect_UB related to its correctness. 

Theorem 9.5. 

There exist ni � N and t ≥ 0 such that the following four conditions are equivalent to one 
another for Algorithm A_Detect_UB. 
� (i) There exists a global state such that [k] = lubk for every nk � N such that lubk 

< ∞. 
� (ii) in_errork never becomes true for any nk � N. 
� (iii) foundi becomes true at time lti = t. 
� (iv) At time lti = t, gsi is the earliest global state at which gsi[k] =lubk for every nk � N 

such that lubk < ∞. 

Proof:  

(i) � (ii): 

Suppose that there does exist nk � N such that in_errork becomes true. By action (9.16), this 
must happen upon receipt, when ubk[k] = false, of a comp_msg contained in a causal chain 
of comp_msg's started at, say, process qℓ, sent when ubℓ[ℓ] = true. No array such that 

[k] = lubk and [ℓ]= lubℓ can then be a global state, and because both lubk < ∞ and lubℓ 
< ∞, we have a contradiction. 

(ii) � (iii): 

If in_errork never becomes true for any nk � N, then actions (9.13) and (9.14) are, so far as 
broadcast messages are concerned, identical to actions (9.11) and (9.12), respectively, of 
Algorithm A_Broadcast_When_True. This part of the proof is then analogous to the (i) � (ii) 
part in the proof of Theorem 9.4. 

(iii) � (iv): 

By Lemmas 9.1 and 9.2, the gsi produced by action (9.13), the gsi(lti) and alt_gsi(lti) used in 
action (9.15), and the gsi, and alt_gsi produced by actions (9.14) and (9.16) are all global 
states. This implies, by actions (9.13) and (9.14) and at time t, that gsi is a global state at 
which ubi[k] ≠ false for all nk � N, or, equivalently, a global state such that gsi[k] = lubk for 



every nk � N such that lubk < ∞. In order to show that gsi is the earliest global state with 
these characteristics, consider any other n-component array of local times, call it such 

that [k]= gsi[k] for all nk � N such that lubk < ∞, and [k]< gsi[k] for at least one 
nk � N such that lubk = ∞. For this particular nk, in order for gsi[k] to have been assigned the 
value greater than [k], a causal chain of comp_msg's must have existed from qk (leaving 
at time gsi[k]) to some qℓ � N, where by action (9.16) it must have arrived at qℓ when ubℓ[ℓ] = 
false (otherwise gsℓ would not have been updated, and so neither would gsi through the 
broadcast). In addition, because in_errorℓ must have remained false, every process involved 
in this chain (except for qℓ but including qk) must have had an undefined in its local record of 
its local unconditional breakpoint (for qk, ubk[k] = undefined). But because ubℓ[ℓ] was found 
to be false, cannot possibly be a global state such that k = lubk for all nk � N such 
that lubk < ∞. 

(iv) � (i): 

This is immediate. 

The message complexity of Algorithm A_Detect_UB is the same as that of Algorithm 
A_Broadcast_When_True, that is, O(nm). The algorithm's bit complexity is the sum of those 
of Algorithm A_Detect_DB and Algorithm A_Broadcast_When_True, therefore equal to O((c 
+ nm)n log T). The global and local time complexities of Algorithm A_Detect_UB are the 
same as Algorithm A_Broadcast_When_True's, that is, O(n). 

We now finally come to Algorithm A_Detect_CB_Stable for the detection of conjunctive 
breakpoints on stable conjunctive predicates. Such predicates are specified for each 
participating node ni � N as the local predicate lpi endowed with the property that it remains 
true once it becomes true. Unconditional breakpoints are also breakpoints on stable 
conjunctive predicates, but much more rigid than the ones we consider now, as in that case 
the detected global state is required to match the local unconditional breakpoints specified 
for the participating nodes exactly. In contrast, the ones we are now beginning to consider 
only ask that the local predicates of the participating nodes be true in the detected global 
state, although in some nodes they may have become true earlier than the local times given 
by the global state. Not surprisingly, then, the algorithm that we introduce next can be 
regarded as a slight simplification of Algorithm A_Detect_UB, as error conditions no longer 
need to be addressed. 

Algorithm A_Detect_CB_Stable is in many senses related to Algorithm A_Detect_UB, and as 
such can also be viewed as a conceptual mixture of the principles employed in Algorithms 
A_Detect_DB and A_Broadcast_When_True. With respect to the latter, the local condition 
for ni � N, lci, is now expressed by the very local predicate lpi we have been considering 
throughout, and qi's view of the global condition, gci, is now the array cpi. For all nk � N, 
cpi[k] is initialized like lpk, that is, to false if nk is participating in the breakpoint, and to true 
otherwise. All the other variables employed by Algorithm A_Detect_CB_Stable have the 
same meaning they had when used in previous contexts. 

The simplification of Algorithm A_Detect_UB to yield A_Detect_CB_Stable does not go any 
further than the elimination of error detection, as an alternative local view at qi of the global 
state to be detected, alt_gsi, is still needed to aid in the detection of the earliest global state 
of interest. Similarly to the case of unconditional breakpoints, a causal chain of 
comp_msg'sbeginning at qℓ such thatcpℓ[ℓ] = true, going through a number of qk's, each with 
cpk[k] = true as well, and finally reaching qi with cpi[i] = false requires qi to take into account 



what it receives attached to the comp_msg in updating gsi. On the other hand, if no such qi is 
ever reached, then the detected global state has a chance to be an earlier one (Figure 9.4). 
Maintaining alt_gsi has the function of allowing this earlier global state to be saved in gsi, to 
be used in case no causal chain of the sort we just described ever occurs. The array alt_gsi 
is initialized like gsi and is attached to comp_msg's with its ith 

 
Figure 9.4: The conventions employed in this figure are the same as those of Figure 
9.1, and the situation depicted is quite akin to that of Figure 9.3. Specifically, the earliest 
global state at which the conjunctive predicate holds depends on when ni's local 
predicate becomes true with respect to the reception of the message by pi, as shown in 
parts (a) and (b).  

component modified to lti. A comp_msg arriving at qi affects alt_gsi and may eventually affect 
gsi, which happens if cpi[i] = false upon arrival of the comp_msg, by simply updating gsi to 
alt_gsi when lpi becomes true. Only in this situation, or upon the receipt of broadcast 
messages, does gsi get updated, but then so does alt_gsi, so gsi[k] ≤ alt_gsi[k] for every nk � 
N. 

Algorithm A_Detect_CB_Stable:  
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         Variables: 
             gsi[k] = 0 for all nk � N; 

             cpi[k] for all nk � N; 

             foundi = false; 
             changedi; 

             alt_gsi[k] = 0 for all nk � N. 
 

 

Listing 9.17  
 

         Input: 
             msgi = nil. 
         Action when lpi becomes true: 
             cpi[i] := lpi; 

             alt_gsi[i] := lti; 

             for k := 1 to n do 
                 gsi[k] := alt_gsi[k]; 

             if cpi[1] � … � cpi[n] then 
                 foundi := true 
             else 
                 Send broadcast(cpi, gsi) to all qj such that nj � 
Neigi. 

 
 

Listing 9.18  
 

         Input: 
             msgi = broadcast(cp, gs). 

         Action: 
             if not foundi then 
                  begin 
                      changedi := false; 
                      for k := 1 to n do 
                          if gsi[k] < gs[k] then 
                               begin 
                                   gsi[k] := gs[k]; 

                                   cpi[k] := cp[k]; 

                                   changedi := true 
                               end; 



                      for k := 1 to n do 
                          if alt_gsi[k] < gs[k] then 
                                alt_gsi[k] := gs[k]; 

                      if cpi[i] and changedi then 
                          if cpi[1] � … � cpi[n] then 
                                foundi := true 
                          else 
                                Send broadcast(cpi, gsi) to all qj 
such that nj � 

                                Neigi 

                  end 
 

 

Listing 9.19  
 

         Input: 
             msgi = comp_msg from pi to pj. 

         Action: 
             Send comp_msg(cpi, alt_gsi(lti)) to qj. 

 
 

Listing 9.20  
 

         Input: 
             msgi = comp_msg(cp,gs). 

         Action: 
             if not foundi then 
                  for k := 1 to n do 
                      if alt_gsi[k] < gs[k] then 
                           begin 
                               cpi[k] := cp[k]; 

                               alt_gsi[k] := gs[k] 

                           end; 
             Send comp_msg to pi. 

 
 

Correctness properties of Algorithm A_Detect_CB_Stable are established in the following 
theorem. 



Theorem 9.6. 

There exist ni � N and t ≤ 0 such that the following three conditions are equivalent to one 
another for Algorithm A_Detect_CB_Stable. 
� (i) There exists a global state such that lpk = true at time [k] for all nk � N. 
� (ii) foundi becomes true at time lti = t. 
� (iii) At time lti = t, gsi is the earliest global state at which lpk = true for all nk � N. 

Proof:  

(i) � (ii): 

Actions (9.17) and (9.18) are, from the standpoint of broadcast messages alone, identical to 
actions (9.11) and (9.12), respectively, of Algorithm A_Broadcast_When_True. This part of 
the proof then goes along the same lines as the (i) � (ii) part in the proof of Theorem 9.4, so 
long as no comp_msg overruns any broadcast message on any edge. When this happens, 
however, the propagation of the broadcast message may by action (9.18) be interrupted 
after traversing the edge, specifically upon arriving, say at process qk, and by action (9.18) 
finding cpk[k] = true without causing changes to gsk or to cpk. This is so because the gsj 
carried by the broadcast message is no greater than gsk in any component, which in turn 
was updated by action (9.17) when lpk became true with the alt_gsk produced by action 
(9.20) upon receipt of the comp_msg. The broadcast that by action (9.17) qk then initiates 
when lpk becomes true allows the proof to proceed like that of the (i) � (ii) part in the proof of 
Theorem 9.4 as well. 

(ii) � (iii): 

By Lemmas 9.1 and 9.2, the gsi and alt_gsi produced by actions (9.17) and (9.18), the 
alt_gsi(lti) used in action (9.19), and the alt_gsi produced by action (9.20) must all be global 
states. A consequence of this is that, by actions (9.17) and (9.18), gsi is at time t a global 
state at which cpi[k] = true for all nk � N. To show that gsi is the earliest such global state 
requires that we consider any other n-component array of local times, call it , such that 
lpk = true at time for all nk � N and such that [k]< gsi[k] for at least one nk � N. For 
this particular nk, gsi[k] can only have been assigned the value greater than if a causal 
chain of comp_msg's existed from qk (leaving at time gsi[k]) to some qℓ � N, which by action 
(9.17) must have arrived at qℓ when cpℓ[ℓ] = false (otherwise gsℓ would not have been 
updated, and so neither would gsi by means of the broadcast). But because cpℓ[ℓ] was found 
to be false, cannot possibly be a global state such that lpk = true at time for all nk � 
N. 

(iii) � (i): 

This is immediate. 

All the complexities of Algorithm A_Detect_CB_Stable are the same as the corresponding 
complexities of Algorithm A_Detect_UB. 

In finalizing this section, we suggest that the reader investigate simplifications to the 
algorithms of this section (except Algorithm A_Broadcast_When_True) if they are not 
required to detect earliest global states, but instead any global state in which the desired 
properties hold (cf. Exercise 5). 



 
9.4 Exercises 
1. Devise a solution for the problem discussed in Section 9.2 if the edges are not FIFO.  
2. Prove that Algorithm A_Replay_&_Halt_CP halts at the earliest conjunctive breakpoint.  
3. Prove that there does not exist an algorithm for halting at an earliest disjunctive 
breakpoint, unless it is acceptable to progress further than that global state and then return 
by means of a rollback.  
4. Rewrite Algorithm A_Replay_&_Halt_CP so that no node sends more than one message 
to the same neighbor per action.  
5. Show how to simplify the algorithms of Section 9.3.3 (except Algorithm 
A_Broadcast_When_True) given that earliest global states do not have to be detected.  
1.   Devise a solution for the problem discussed in Section 9.2 if the edges are not FIFO. 
2.   Prove that Algorithm A_Replay_&_Halt_CP halts at the earliest conjunctive breakpoint. 
3. 

  
Prove that there does not exist an algorithm for halting at an earliest disjunctive breakpoint, 
unless it is acceptable to progress further than that global state and then return by means 
of a rollback.  

4. 
  

Rewrite Algorithm A_Replay_&_Halt_CP so that no node sends more than one message to 
the same neighbor per action. 

5. 
  

Show how to simplify the algorithms of Section 9.3.3 (except Algorithm 
A_Broadcast_When_True) given that earliest global states do not have to be detected. 

 
  

 

9.5 Bibliographic notes 
If the reader wishes to check for generalities on the debugging of asynchronous algorithms 
other than those discussed in Section 9.1, some references are the survey by McDowell and 
Helmbold (1989), and the publications by Garcia-Molina, Germano, and Kohler (1984), 
Joyce, Lomow, Slind, and Unger (1987), Haban and Weigel (1988), Miller and Choi (1988b), 
Hélary (1989), Choi, Miller, and Netzer (1991), Becher and McDowell (1992), Yang and 
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Fromentin and Raynal (1994). 

The material in Section 9.2 is inspired in the work by LeBlanc and MellorCrummey (1987). 
Additional sources on the same problem include Netzer and Xu (1993). 

The sources for reference within the topic of breakpoint detection and related issues are 
quite abundant. The material discussed in Section 9.3.1, for example, can be enlarged by 
checking Cooper and Marzullo (1991) for a strong-sense approach, while the sources for 
additional insights into the use of arrays of local times as global states are Mattern (1989) 
and Fidge (1991). Publications of interest on checkpointing and rollback recovery include 
Kim, You, and Abouelnaga (1986), Koo and Toueg (1987), Bhargava and Lian (1988), 
Goldberg, Gopal, Lowry, and Strom (1991), Ramanathan and Shin (1993), and Xu and 
Netzer (1993). 

The source of the material discussed in Section 9.3.2 is Manabe and Imase (1992), where 
the concern for detecting earliest global states seems to have first appeared. Section 9.3.3 is 
closely based on Drummond and Barbosa (1994), where an algorithm to detect earliest 
conjunctive breakpoints on predicates that do not need to be stable is also presented. 
References for material closely related to that of Section 9.3.3 are Miller and Choi (1988a) 
and Garg and Waldecker (1994). Other publications on the detection of breakpoints include 



the one by Spezialetti (1991), which is based on an earlier formulation that appears to be 
prone to missing many possible global states (Spezialetti and Kearns, 1989). 



 

Chapter 10: Simulation 
Overview 
In this chapter, a physical system is to be understood as a collection of physical entities, 
called physical processes, whose states we wish to determine for all times in a certain 
range, beginning at certain initial conditions. Physical processes interact with one another, 
and it is as a result of this interaction that their states change. Our interest is in the study of 
distributed algorithms for the determination by simulation of all physical processes' states in 
the appropriate time range. We divide our presentation according to the nature of the state 
changes a physical process may undergo, after detailing the physical-system model and 
related notions in Section 10.1.  

If the state of a physical process may change as a consequence of the processes' continual 
interaction with one another (often at all time units), then the essential drive of the simulation 
is time itself, and the simulation is referred to as being time-stepped. Algorithms for this type 
of simulation are presented inSection 10.2 for two general classes of physical systems. If, on 
the other hand, only at some special instants do the physical processes interact by means of 
the so-called events that may cause the state of a physical process to change, then it is the 
events that drive the simulation, which is then said to be event-driven. 

Algorithms for the event-driven simulation of physical systems are discussed in Section 10.3 
and Section 10.4 from two different perspectives on how to guarantee that the causality that 
exists among such events is preserved. These sections present, respectively, typical 
approaches of the so-called conservative and optimistic types. 

Section 10.5 and Section 10.6 contain brief descriptions of extensions on some of the 
material discussed in the earlier sections. In the case of Section 10.5, the extension is on 
methods for simulating systems whose timing nature is not so well defined as those treated 
earlier, and therefore require simulation methods that provide a hybrid approach between 
the time-stepped and the event-driven. In Section 10.6, we digress on a general framework 
encompassing all sorts of physical systems and simulation strategies discussed along the 
chapter. 

Exercises and bibliographic notes appear, respectively, inSections 10.7 and 10.8. 

The complexities of all the algorithms to be discussed in this chapter are highly dependent 
upon the particular physical system being simulated. For this reason, and unlike our practice 
so far in the book, in this chapter we do not touch the issue of algorithm complexity at all. 

As in earlier occasions (cf. Section 9.3.2), it does occasionally happen during this chapter 
that a node sends more than one message to the same node in the same action. While this 
is not in full conformity with Algorithm A_Template, fixing it if necessary should be a simple 
matter. 

 
10.1 Physical and logical processes 



The physical system is represented by either the undirected graph or the 

directed graph where is the set of physical processes. is an 

undirected graph if and only if, for all νi νj� such that νi≠ νj and νi affects the state 
evolution of νj , it is also the case that νj affects the state evolution of νi. In this case, (νiνj) is 
an edge in �. Otherwise, the representation as a directed graph is chosen, and (νi → νj) � 

if and only if νi affects the state evolution of νj. 

The state of a physical process νi at time t ≥ 0 is in this chapter denoted by xi(t). The goal of 
a simulation by computer of the physical system is to determine xi(t) for all νi � N and all time 
t such that 0 ≤ t ≤ T. The value of T may be known a priori or it may have to be determined 
as the simulation progresses (for example, in cases in which the system is to be simulated 
until some sort of convergence is detected). 

Physical systems are models of natural systems of interest in various scientific disciplines, 
so the particular natural system at hand, or the simplifications made when constructing the 
model, ultimately dictates the nature of the time t that governs the evolution of the physical 
system. Often t is continuous time (as in all cases in which differential equations are 
employed to build the model), but equally as often (for example, in the case of cellular 
automata and some other automaton networks) it is discrete. In either case, however, the 
simulation by computer of the physical system must be restricted to determining the states of 
physical processes at discrete instants (determined by the achievable precision within the 
particular computer system in use), and then it is legitimate to assume, for all purposes in 
this chapter, that t is a nonnegative integer between 0 and T (also assumed to be an 
integer). 

The simulation of the physical system is achieved by a logical system, which contains a 

logical process for each of 's physical processes. Logical processes attempt to mimic the 
interaction that occurs among physical processes in the physical system, and for all times in 
the appropriate range output the states of the corresponding physical processes. The 
approach of a logical process to the simulation of the corresponding physical process 
depends largely on how physical processes interact. In this respect, a subdivision into two 
broad classes is normally employed. 

If physical processes interact continually in such a way that the instants at which the state of 
a physical process may change can be determined beforehand, then the main drive of the 
logical system is time itself, and the simulation that the logical system carries out is called 
time-stepped. If, on the other hand, state changes in the physical processes are restricted to 
special instants in which they interact, and such instants can only be known as the 
simulation progresses, then the simulation is referred to as being event-driven. in allusion to 
the denomination as an event commonly employed to designate the interactions among 
physical processes. As the reader will have the opportunity to verify later in this section, such 
events do bear resemblance to the events employed in Section 3.1 to model distributed 
computations, but they are not the same at all. 

The essence of a time-stepped simulation is quite simple. Basically, at each of the 
foreseeable instants at which a physical process νi's local state may change, the 
corresponding logical process does the update based on the current state of νi and on the 
states of the other physical processes that exert influence on the state of νi (these are either 



all the processes connected to νi in , if is undirected, or physical processes νj such 
that (νj → νi) � , otherwise). Timestepped simulations are treated in Section 10.2.  

The essentials of an event-driven simulation are also simple, but are best described if we 
resort to a sequential version of it first. A sequential event-driven simulation employs a 
queue of events. In this queue, events are kept in nondecreasing order of the time at which 
they must happen. The task of a sequential simulator is to iterate on this queue until the 
queue is empty or no event in it is scheduled to happen at a time no greater than T. At each 
iteration, the simulator removes the first event from the queue, updates the state of the 
corresponding physical process, and possibly inserts in the queue new events to happen 
farther in time at some of the other physical processes. Initially, the queue contains the only 
events that happen spontaneously, which we assume to happen at time zero. The key 
ingredient in guaranteeing the correct simulation of the physical system is that events are 
processed in nondecreasing order of time. 

In the distributed case, one possibility is for each logical process to maintain a similar queue 
for the events that are scheduled to happen at the physical process to which it corresponds. 
Initially, only a logical process at whose physical process an event happens spontaneously 

at time zero has a nonempty queue. The set of such physical processes is 0 � . This 
queue is maintained in increasing order of time (the reason for increasing in place of 
nondecreasing is that no two events are allowed to happen at the same physical process at 
the same time—we return to this issue shortly). The task of a logical process is, similarly to 
the sequential simulator, to remove the first event from the queue, then to update the state of 
its physical process, and then possibly to send new events to be inserted in the queues of 
other logical processes. The problem is, of course, that this simple iterative treatment of a 
logical process's event queue does not suffice to ensure that, globally, events are processed 
in nondecreasing order of time. In particular, it is easily conceivable that a logical process 
receives, for inclusion in its queue, an event scheduled for a time that has already passed in 
the local simulation. 

Classically, the approaches to solving this problem are twofold. Either one makes every 
effort to ensure that events are indeed globally processed in nondecreasing order of time, or 
one lets the simulation progress without this constraint and then makes provisions for 
correcting possible errors when they occur. These two approaches are called, respectively, 
conservative (discussed inSection 10.3) and optimistic (our subject inSection 10.4), for 
reasons that come to mind at once. 

Before we leave this section, let us discuss in a little more detail the way logical processes 
interact with one another in both the time-stepped and the event-driven cases. We let n = 

| |, and for 1 ≤ i ≤ n let node ni be the logical process responsible for simulating the 
behavior of the physical process νi. G is then a graph whose edge set (undirected or 

directed) has to contain edges at least in one-to-one correspondence to those of , but G 

can also be assumed to be a complete undirected graph if the structure of is not known. 

Some of the methods that we discuss require G and to be isomorphic, and as a 

consequence are only applicable to cases in which the structure of is known. Other 
methods do not pose such a requirement, and then it is best to go for generality and assume 



that the structure of is not known, in which case G is taken to be a complete undirected 
graph. 

In a time-stepped simulation by G, the messages that nodes exchange are simply the initial 
or updated states of the corresponding physical processes. In event-driven simulations, a 
message sent by node ni to node nj stands for an event that the physical process νi causes 
to happen at the physical processνj. Such a message is denoted simply by event(t), where t 
is the time at which the event is to happen in the physical process νj. Depending on the 
particular application at hand, this message will of course have to contain more information 
for nj to be able to simulate the event that it stands for in νj. However, in a general framework 
like ours such details are of little importance, and so we keep the notation conveniently 
minimal. 

Unless we explicitly state otherwise, the distributed simulation that the logical system (that is, 
G) carries out resorts, for termination, to techniques of the sort we discussed inSection 6.2. 
This is termination in the usual sense, that is, the sense in which all nodes are idle and all 
edges are empty. 

It is very important for the reader to note that the t in the event(t) message has nothing to do 
whatsoever with the local time at node nj, in the sense introduced in Section 3.1. This t, 
sometimes also referred to as virtual time,is the time at the physical process νj at which the 
event is to happen during the simulation by nj, and is as such part of the model of the natural 
system that the physical system represents. In spite of such a fundamental difference 
between the two notions of time, the times at which events are to happen at the various 
physical processes are also related to each other by restrictive properties, in a way similar to 
the relation � on the set of events in a distributed computation. 

One fundamental property says that, if an event is generated at time t by physical processνi 
to happen at time t' at physical process νj,then t < t'. This property expresses the 
unavoidable delay that accompanies the transmission of information between the two 
physical processes at any finite speed. Another fundamental property, also originating from 
inherent limitations of physical processes, is that, if t and t' are times at which two events 
happen at a certain physical process, then either t < t' or t' < t. In the remainder of the 
chapter, we refer to these two properties as causality properties.  

The task of an event-driven simulator, be it sequential or otherwise, is to ensure that, from 
the perspective of every single physical process, no event is processed unless all events 
that precede it in that physical process have themselves already been processed. As we 
remarked earlier, a sequential simulator can guarantee this trivially. A distributed simulator, 
by contrast, has a whole suite of techniques to choose from with that goal. So an intuitively 
appealing interpretation for the differences in the concepts ofSection 3.1 to those of this 
chapter is that, while the relation � emerges from the occurrence of events in that case, in 
the present case the aforementioned causality properties have to be forced upon the logical 
system. 

In all further sections in this chapter, we let be a variable of node ni to contain the time at 
physical process νi. This variable is a nonnegative integer, being initialized to zero. Also, ni 
employs a variable statei, initialized to xi(0), to contain the state of physical process νi. 
Unless otherwise noted, we assume that, when updating statei, node ni also outputs (to the 
"user") the pair ( , statei). 

 



10.2 Time-stepped simulation 
Our treatment of time-stepped simulation in this section unfolds along two main lines, each 
motivated by a particular class of physical systems. Physical systems in the first class are 
said to be fully concurrent, while physical systems in the second class are referred to as 

being partially concurrent. We assume that is an undirected graph, that its structure is 

known, and that G and are isomorphic graphs. 

In a fully concurrent physical system, xi(0) is provided for every physical process νi, and for t 
> 0 xi (t) is a function of xi(t−1) and of x j(t−1) for every physical process νj such that (νiνj) � 
�. In a partially concurrent physical system, xi(0) is also provided for every physical process 
νi, but the so-called "neighborhood constraints" restrict the values of t at which the state of a 
physical process may be updated. Specifically, two physical processesνi and νj can have 
their states up-dated for the same t if and only if (νi,νj) � �, that is, xi and xj do not depend 
on each other to be updated. The set of physical processes that can have states updated for 

the same t must then constitute an independent set in . Because of these neighborhood 
constraints, partially concurrent physical systems also come with the requirement that every 
node is to be updated infinitely often, which, in our present context, means the following. If t1 
and t2 are nonnegative integers such that t2 − t1 ≥ n − 1, then every physical process νi must 
be such that xi is updated for at least one time t such that t1 ≤ t ≤ t2. 

Examples of fully concurrent physical systems are cellular automata,various neural 
networks, and other systems whose behavior is described by differential equations. 
Notorious partially concurrentphysical systems include binary Hopfield neural networks, 
Markov random fields in general (including Boltzmann machines), and Bayesian networks. 
Based on what happens in the cases of these examples, the time-stepped simulations that 
we consider in this section terminate when they converge according to some application-
dependent criterion. The value of T is then unknown beforehand, and then termination in the 
sense of idle nodes and empty edges in the logical system never really occurs. This is the 
situation we referred to inSection 6.2 in which it is convenient to employ a leader-based 
approach to termination detection. Specifically, every node, upon updating the state of its 
physical process, sends a report to the leader with the new state. The leader, in possession 
of such reports, is capable of putting together global states (cf. (Section 5.2.2), and on these 
global states detecting whatever convergence is required for termination. Upon detection, 
the leader instructs the other nodes to terminate, possibly after some additional exchange of 
messages for gracefulness at the termination. We pursue this termination issue no more in 
this section, but do nonetheless advise the reader to consider the problem as an exercise 
(cf. Exercise 1). 

Interestingly, already along the book we have seen solutions to the time-stepped simulation 
of both types of physical system. Specifically, the simulation of fully concurrent physical 
systems requires a synchronous algorithm that employs pulse s = 0 for initial states to be 
exchanged among neighbors and for s > 0 updates the states of all physical processes for 
time t = s. Because every state of every physical process has to be sent to all of the 
corresponding logical process's neighbors, such a simulation is a synchronous algorithm 
with the property that, at every pulse, exactly one message is sent to every neighbor. Couple 
this property with the assumption of FIFO edges in G, and we see that Algorithm 
A_Schedule _AS of Section 5.3.2can be employed directly for the time-stepped simulation of 
fully concurrent physical systems (the case of nonFIFO edges is left for the reader's 
appreciation—cf. Exercise 2). 



Before being more specific about the algorithm we have seen that can also be applied to the 
time-stepped simulation of partially concurrent physical systems, we provide Algorithm 
A_Simulate_FC ("FC" for Fully Concurrent) for the time-stepped simulation of fully 
concurrent physical systems based on Algorithm A_Schedule_AS. The two algorithms are 
entirely analogous to each other, so essentially we are simply re-writing the previous 

algorithm to employ appropriate notation. The variables si, MSGi, and for nj � 
Neigi, employed in Algorithm A_Schedule_AS, are now replaced respectively with 

(already introduced), a set of variables for nj � Neigi, and For nj � 

Neigi, and both initialized to nil, contain if different from nil the last 

two states received from nj (  is the least recent, therefore to be used first). 

Algorithm A_Simulate_FC  
 

         Variables: 
              = 0; 

             statei = xi(0); 

              = nil for all nj � Neigi; 

              = nil for all nj � Neigi; 
             initiatedi = false. 

 
 

Listing 10.1  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             initiatedi := true; 
             Send statei to all nj � Neigi. 

 
 

Listing 10.2  
 

         Input: 
             msgi = x such that origini(msgi) = (ni,nj). 

         Action: 
             if not initiatedi then 



                 begin 
                     initiatedi := true; 
                     Send statei to all nk � Neigi 

                 end; 

             if  ≠ nil then 

                  := x 

             else 

                  :=x; 

             if  ≠ nil for all nk � Neigi then 
                 begin 
                      :=  + 1; 

                     Update statei; 

                     Send statei to all nk � Neigi; 

                     for all nk � Neigi do 
                         begin 

                              :=  

                              := nil 
                         end 
                 end. 

 
 

Actions (10.1) and (10.2) originate, respectively, from actions (5.19) and (5.20). In this 
algorithm, the set N0 is the set of nodes that initiate the simulation concurrently. 

Let us now return to our earlier remark that an algorithm has been seen earlier in this book 
for the time-stepped simulation of partially concurrent physical systems as well. By definition 
of a partially concurrent physical system, we see that its time-stepped simulation by the 
corresponding logical system has to obey the constraints that no two neighbors ever update 
the states of their physical processes concurrently, and that every node update the state of 
its physical process infinitely often (in the sense explained earlier). Well, aside from the initial 
exchange of states, this is exactly the type of computation that is carried out by Algorithm 
A_Dine_H ofSection 8.3.2. 

That algorithm, as we recall, implements scheduling by edge reversal, and is an 
asynchronous algorithm that functions as follows. Assume that G is initially oriented by an 
acyclic orientation (cf. Section 8.3.1). Sinks in this orientation must not be neighbors of one 
another, and may then update the states of their physical processes concurrently. Upon 



doing such an update, a node sends the new state to all of its neighbors, thereby implicitly 
reversing the orientation of all edges incident to it and becoming a source. As we remarked 
inSection 8.3.1, the resulting acyclic orientations are thus guaranteed to be always acyclic, 
so sinks always exist and the simulation can always progress. In addition. Theorem 8.4 
guarantees the form of infinitely often updates we are seeking. 

The simulation algorithm based on Algorithm A_Dine_H is given next as Algorithm 
A_Simulate_PC ("PC" for Partially Concurrent). Unlike the fully concurrent case, now the 
transformation is a bit more subtle, because initial states need to be spread selectively, that 
is, node (ni needs the initial state of neighbor nj's physical process only if ni is "downstream" 
from nj with respect to the initial orientation (i.e., the initial orientation of edge (ni, nj) is from 
nj to ni). If such is not the case, then the state of that process to be used when ni computes 
for the first time will be the one received from nj upon reversal of the edge (ni, nj), so no initial 
state is really needed. We encourage the reader to write Algorithm A_Schedule_PC in this 
fashion (cf. Exercise 3), but for simplicity we provide a version in which all nodes send initial 
states to every neighbor, though at times uselessly. 

The additional variables employed by node ni in Algorithm A_Simulate_PC are, for all nj � 

Neigi, (initialized to nil) and the Boolean The variable 

(which is equivalent to in Algorithm A_Dine_H) indicates the 
current orientation of edge (ni, nj), and has to be initialized in accordance with the initial 
acyclic orientation (to true if the edge is directed from nj to ni, to false otherwise). The 

variable if different from nil and if = true, contains the state of nj's 
physical process to be used by ni when it next updates the state of its own physical process. 

Algorithm A_Simulate_PC:  
 

         Variables: 
              = 0; 

             statei = xi(0); 

              = nil for all nj � Neigi; 

              for all nj � Neigi. 
 

 

Listing 10.3  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             Send statei to all nj � Neigi. 

 
 



Listing 10.4  
 

         Input: 
             msgi = x such that origini(msgi) = (ni,nj). 

         Action: 

             if  = nil for all nk � Neigi then 
                  Send statei to all nk � Neigi; 

             if  ≠ nil then 

                   := true; 

             := x; 

             if ( ≠ nil and ) for all nk � Neigi 
then 
                  begin 
                      Update ; 

                      Update statei; 

                       := false for all nk � Neigi; 
                      Send statei to all nk � Neigi 

                  end. 
 

 

In Algorithm A_Simulate_PC, actions (10.3) and (10.4) relate closely to actions (8.15) and 
(8.16) of Algorithm A_Dine_H. The differences are accounted for by the need for initial states 
to be exchanged. Specifically, the set N0 of spontaneous initiators no longer corresponds to 
the initial set of sinks, but rather to the set of nodes that initiate the propagation of initial 
states spontaneously. In addition, upon receiving a state x from node nj, node ni must decide 

whether this is the first message it receives (that is, whether = nil for all nk � Neigi), 
in which case it must send its physical process's initial state out. Node ni must also be able 
to distinguish states that it receives from nj that should be interpreted as edge reversals 

(when ≠ nil) from those that are initial values and do not imply edge reversal (when 

= nil). Finally, testing whether ni has become a sink requires not only that 

be checked for all nk � Neigi, but as well (because if ni is an initial 
sink, it may only update statei after receiving initial states from all of its neighbors). 



As a final observation, we note that the way to update in (10.4) was left purposefully 
vague. It should be clear that simply adding one as in (10.2) does not suffice, because it is 
necessary to account for all the time units in which statei was not updated because ni was 
not a sink. We leave it to the reader to remove this vagueness (cf. Exercise 4). 

 
10.3 Conservative event-driven simulation 
In this section, we elaborate on conservative approaches to distributed event-driven 
simulation. As we remarked in Section 10.1, conservative methods seek to guarantee that 
events are processed in increasing order of time at all nodes, so that, globally, events are 
processed in nondecreasing order of time. 

Our treatment of conservative methods is presented in the two sections that follow. The 

method that we present in Section 10.3.1 requires isomorphism between G and , and in 
addition that the edges of G be FIFO. Such a method is then only applicable to cases in 

which the structure of is known. In Section 10.3.2, by contrast, a conservative method is 
discussed that does not require such an isomorphism, and consequently is applicable to 

cases in which the structure of is not known. In these cases, G is taken to be a complete 
undirected graph, but the method still requires FIFO edges in G.  

In addition to the causality properties that we discussed in Section 10.1, in the case of 
conservative methods another property is needed on the physical system. If a sequence of 
k≥ 1 events is generated at times t1 < t2 < … < tk by a physical process νi to happen 

respectively at times at physical process νj, then we require that 

as well. This is a monotonicity property. Note that, although 
conservative methods seek to faithfully mimic the functioning of a sequential simulator, in the 
sequential case monotonicity is not an issue (i.e., it does not need to happen) so long as the 
causality properties hold. Requiring monotonicity in the conservative distributed case may be 

thought of as requiring that 's edges, like those of G, be FIFO. 

10.3.1 A first algorithm 

For greater generality, in this section we take (and consequently G) to be a directed 

graph. In addition, if is not strongly connected, then we assume that all of it sources are 

in . 

The monotonicity property of the physical system and the assumption that G's edges are 
FIFO guarantee that, if a node processes event(t) messages that it receives in increasing 
order of t, then the sequence of event(t) messages that it sends to another node ni is 
received in increasing order of t as well. In order to guarantee that ni too processes the 
event(t) messages that it receives in increasing order of t, by the causality properties all ni 
has to do is to merge the incoming streams of event(t) messages so that the resulting single 
stream is sorted in increasing order of t. It then suffices for ni to process event messages as 
they are queued in this resulting stream. 



The approach that suggests itself for the participation of node ni in the simulation is then the 
following. For each nj � I_Neigi, node ni does not really maintain a queue of incoming 

messages, but rather a variable , initialized to zero, to contain the t 
parameter in the next event(t) message to be processed in the stream from nj (if no such 

next message has been received, then is either the t in the last event(t) 
message received from nj or the initial zero). All ni has to do is then to select for processing 
the event message from nk � I_Neig i such that 

 

for all nj � I_Neigi such that nj ≠ nk. After processing this event message, ni waits to receive 
another event message from nk so that a new minimum can be found. 

The problem with this initial approach is of course that such a message may never be 
received, and then the simulation may deadlock. In fact, this same problem exists from the 
very beginning of the simulation, because no node ni may process any event message 
before receiving one message from each neighbor in I_Neigi. As in general situations in 
which deadlocks may happen, here too we have a choice as to either prevent its occurrence 
or detect it after it occurs (cf.Section 6.3). We chose the prevention strategy, but approaches 
based on deadlock detection have also been proposed. 

The deadlock-prevention fix that we add to the simulation strategy we just described is 
based on additional null(t) messages that the nodes exchange. Such messages are sent by 
ni to every neighbor in O_Neigi to which it does not send an event upon computing the 
aforementioned minimum and simulating the behavior of νi up to that minimum. If the 
message that corresponds to this minimum time is itself a null message, then a null is sent to 
all of ni's neighbors in O_Neigi. Although null messages may account for an excessive 
increase in the algorithm's message complexity, they can also be used to advance the 
simulation more rapidly if so the physical system's peculiarities permit, and to enable nodes 
to terminate their computations locally. 

Before proceeding to the presentation of the algorithm, let us be more specific about these 
alternative uses for a null message. When an event(t) or a null(t) is processed by node ni, a 
null(t + 1) message is sent to every node nj � O_Neigi to which an event message is not 
sent. This null(t + 1) message has the purpose of informing nj that it will never be sent by ni 
any event(t') message such that t' ≤ t + 1. 

If the physical process being simulated is such that ni can predict that no event(t') message 
will ever be sent to nj such that t' ≤ t+ for t+ > t + 1, then a null(t+) message is sent instead. 
This message may be quite beneficial to the processing at nj, in the sense that it may allow 
nj to make more progress before it has to wait for additional messages from ni. The 
difference t+ − t − 1 is known as ni's lookahead at time t with respect to node nj. In the 

algorithm to be presented, and for all nj � O_Neigi, ni maintains a variable , 
which we assume is properly initialized and maintained based on the physical system's 
characteristics. 

Similarly, when the event(t) message that ni must send is such that t > T, then a null(T) is 
sent instead, thereby signaling the destination node that ni is never going to send it another 



message. This is also what nodes that correspond to sources in must do after 
participating in the algorithm for time zero. 

The classical example of a physical system exhibiting the possibility of lookahead 
determination is that of a network of queues (although it is easy to argue that in general 
simulating such a system by a distributed algorithm is not a good idea-reliable results for 
such a physical system require multiple simulations on random initial conditions, and then it 
is best to employ multiple sequential simulations). In such a system, each physical process 
is a queue with a server that provides service to each customer in the queue according to a 
certain distribution of service times. If for a queue it holds that no service time is ever less 
than, say, z time units, then the lookahead of the corresponding logical process is at all 
times equal to z with respect to all of its neighbors to which it may send event messages. 

In order to contain the number of null messages when they are also used for lookahead and 
termination purposes, node ni keeps track, for all nj � O_Neig i, of the value of t in the last 

null(t) message sent to nj. Variable , initially set to zero, is employed for this 
purpose. 

The algorithm that realizes this conservative simulation strategy is Algorithm A_Simulate_C 
("C" for Conservative), presented next. In addition to the already introduced variables, it also 

employs the following. For nj � I_Neigi, the Boolean initialized to true, 
indicates whether ni must receive a message from nj before continuing. Also, the Boolean 

indicates, if = false, whether the message 

corresponding to was a null message. Finally, the auxiliary set Xi and 
variable ti are also employed. 

Algorithm A_Simulate_C:  
 

         Variables: 
              =0; 

             statei = xi(0); 

              = 0 for all nj � I_Neigi; 

              for all nj � O_Neigi; 

              = 0 for all nj � O_Neigi; 

              = true for all nj � I_Neigi; 

             for all nj � I_Neigi; 



             Xi; 

             ti. 
 

 

Listing 10.5  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             Let Xi � O_Neigi be the set of nodes to which event's 
are to be 

             sent; 

             for nj � Xi do 
                 begin 
                     Let ti >  be the time of the event to be 
sent to nj; 

                     if ti ≤ T then 
                           Send event(ti) to nj; 

                     if ti > T or I_Neigi =  then 
                           Send null(T) to nj 

                 end; 
             for nj � Xi do 
                 begin 

                      := min{  + 1 + ,T}; 

                     Send ) to nj 

                 end. 
 

 

Listing 10.6  
 

         Input: 
             msgi = event(t) such that origini(msgi) = (nj → ni). 

         Action when : 

              := false; 



              := false; 

              := t; 

             if not  for all nk � I_Neigi then 
                 begin 

                     Let nk � I_Neigi be such that  ≤ 

 for 

                     all nl � I_Neigi; 

                     :=  

                     if  then Xi :=  

                     else 
                          begin 
                              Update statei; 

                              Let Xi � O_Neigi be the set of nodes to 
which 

                              event's are to be sent 

                          end; 
                     for nl � Xi do 
                          begin 
                              Let ti >  be the time of the event 
to be sent to 

                              nl; 

                              if ti ≤ T then 
                                   Send event(ti) to nl 

                              else 
                                   Send null(T) to nl 

                          end; 
                     for nl � Xi do 
                          begin 

                              if  < min{  + 1 + 

, T} then 
                                   begin 



                                         

                                                 := min{  + 1 + 

, T}; 

                                        Send  to 
nl 

                                   end 
                          end; 

                      := true 
                 end. 

 
 

Listing 10.7  
 

         Input: 
             msgi = null(t) such that origini(msgi) = (nj → ni). 

         Action when  

              := false; 

              := true; 

              := t; 

             if not  for all nk � I_Neigi then 
                 begin 

                     Let nk � I_Neigi be such that  ≤ 

 for 

                     all nl � I_Neigi; 

                      :=  

                     if  then Xi:=  

                     else 



                          begin 
                              Update statei; 

                              Let Xi � O_Neigi be the set of nodes to 
which 

                              event's are to be sent 

                          end; 
                     for nl � Xi do 
                          begin 
                              Let ti >  be the time of the event 
to be sent to 

                              nl; 

                              if ti ≤ T then 
                                    Send event(ti) to nl 

                              else 
                                    Send null(T) to nl 

                          end; 
                     for nl � Xi do 
                          begin 

                              if  < min{  + 1 + 

, T} then 
                                   begin 

                                        

                                                := min{  + 1 + 

, T}; 

                                       Send  to nl 

                                   end 
                          end; 

                      := true 
                 end. 

 
 



In Algorithm A_Simulate_C, the set N0 is the set of all nodes that initiate the simulation 

spontaneously. These nodes include those whose physical processes are in 0, but are 

not restricted to them (if ni � N0 but νi � 0, then in (10.5) only null messages are sent). 

Action (10.5) in the algorithm is executed by the nodes in N0, while actions (10.6) and (10.7) 
are executed upon receipt by ni of an event message or a null message, respectively. 
Actions (10.6) and (10.7) are identical to each other, except for the setting of variable 

, nj, being the message's origin. It is important to note that, in the 
algorithm, the causality and monotonicity properties are only implicitly ensured, depending 
essentially of the portions of the simulation that relate to the nature of the physical system 
under consideration. Another important observation is that, although in (10.6) and (10.7) the 
determination of nk would be unique in the absence of null messages (by the causality 
properties), when such messages are employed it may happen that the minimum 

occurs for more than one node in I_Neigi. However, at most one such node 
participates in the minimum with an event message instead of a null message, and it is to 
such a neighbor that nk must be preferably set if it exists (the reader should try to be 
convinced that, if this is the case, then the null messages for which the minimum time also 
holds will not generate the sending of any messages when they are processed). 

We now turn to establishing the algorithm's correctness. 

Theorem 10.1. 

Algorithm A_Simulate_C correctly simulates the physical system for all t � {0,…, T}. 

Proof: Every node corresponding to a physical process in N0 is in the set N0 of spontaneous 
initiators. In addition, by (10.5) through (10.7) a node never sends any event(t) or null(t) 
message for which t > T. Because the causality and monotonicity properties are guaranteed 
to hold and all of G's edges are FIFO, what we need to show is that the simulation always 
progresses so long as there exists at least one node ni for which < T.  

Suppose, to the contrary, that a deadlock happens. It must then be, following our discussion 
inSection 6.3,that a wait cycle exists in G. In this cycle, every node ni is precluded from 
picking an event or null message to process because there exists nj � I_Neigi such that 

= true. Because N0 is nonempty, at least one such wait cycle has to 
exist including at least one node ni such that either ni � N0 or > 0. The message that this 
ni needs from the corresponding nj in order to continue must carry a parameter t such that t > 

when it is sent (by the causality properties), which means that there exists nk in the cycle 
waiting for a message from ni with parameter t such that t > . But either by (10.5) (if ni � 
N0) or by (10.6) and (10.7) (if > 0), such a message must have been sent, respectively 
spontaneously or when ni last updated It is then impossible for any such wait cycle to 
exist, thence any deadlock as well. 

10.3.2 Conditional events 



The need for the structure of to be known and the potentially excessive traffic of null 
messages in Algorithm A_Simulate_C have led to the search for other conservative 
methods. As we mentioned earlier, some of the other methods that have been proposed are 
based on the use of deadlock detection, instead of prevention, although in them the need to 

know the structure of still persists. In this section, we do not assume that the structure of 

is known, and then take G to be a complete undirected graph. G's edges are still 
assumed to be FIFO edges. 

The approach that we discuss in this section is based on the following observation. In a 
sequential simulation, every event in the single queue of events is a conditional event, in the 
sense that it must only be scheduled to happen when it reaches the head of the queue, at 
which time it becomes a definite event. In Algorithm A_Simulate_C, definite events were 
determined by restraining the input of messages to a node. In other words, only upon having 
received exactly one message from each neighbor did a node choose from those messages 
one to be processed. If the chosen message was an event message, then event messages 
corresponding to definite events were output. 

The method to turn conditional events into definite events is in this section different. The 
messages exchanged among nodes are still event and null messages, but the latter no 
longer have a deadlock-prevention connotation, but rather are only used to convey 
lookahead and termination information. Node ni no longer restrains the receipt of messages, 
but rather assumes that every incoming event message corresponds to a definite event and 
because every edge is FIFO they may therefore be acted upon immediately. In order for this 
assumption to be valid globally, ni makes sure that only event messages that correspond to 
definite events are output. To this end, ni computes on every event or null message it 
receives, and as a result produces as many event and null messages as it can. The null 
messages it produces, having solely a lookahead- or termination related meaning, are 
immediately output when they are generated. Messages of the event type, however, are 
stored in a set eventsi until the events to which they correspond can become definite, at 
which time the messages are sent out. At all times, a variable nexti indicates the least time t 
associated with the event(t)'s in eventsi.  

Determining which of the event messages are to be sent out as definite events (and when 
this is to happen) is the crux of the approach, and is achieved as follows. For all nk � N, 

node ni maintains a collection of variables to contain local views of nextk . For each 

such nk, node ni also maintains the variables and to indicate the 
number of messages (of either type) it ever sent to nk or received from nk, respectively. 

Similarly, for all ordered pairs of nodes (nk ,nl), a collection of variables and 

is also maintained to indicate ni's views of the number of messages sent by 
nk to nl and received by nk from nl, respectively. 

In order to describe the computation that takes place on these variables, we need to resort 
to the terminology of Section 5.2.1,where we described an algorithm for global state 
recording on a substrate computation. In the present case, we regard as a substrate 
computation the computation that the nodes perform that is related to the simulation proper. 
That is, ni's participation in the substrate is to compute on event and null messages it 
receives, thereby updating all the variables involved, including the variables eventsi , nexti, 



the 's, and the 's. On top of this substrate computation, a global state 
recording is performed periodically. The goal of these recordings is to seek global states in 
which all edges are empty, and then Algorithm A_Record_Global_State of Section 
5.2.1offers no help. Instead, we recall our observation in Section 5.2.2on the possibility of 
recording such global states by a leader, except that no leader will in this case be employed, 
but rather the recording will be done by all nodes acting as "leaders." 

The following is then how the substrate and the global state recording interact. The local 

state to be recorded at node ni comprises the variables nexti, the 's, and the 

's. These variables must be recorded (respectively in available 's, 

's, and 's) from time to time, specifically a finite time after one of 
them changes. In addition, a finite time after the recording they must be broadcast to all 
other nodes. Node ni, now in its role as the aforementioned "leader," collects such 

broadcasts in available 's, 's, and 's, and looks for system 

states in which = for all ordered pairs (nk, nl). In these system 
states, all edges are empty, so they must constitute global states, as we observed in Section 

5.2.2.If such a global state is detected at which ≤ for all nk � N, then ni is 

sure never to add another event(t) such that t ≤ to eventsi. Consequently, every 

event(t) � eventsi such that t = is seen to correspond to a definite event, and may be 
sent to its destination, while statesi and nexti are updated accordingly. 

We do not provide any further details on this algorithm, but rather leave providing such 
details for the reader to undertake as an exercise (cf. Exercise 5). 

As a final remark, we note that, in addition to the overall scheme for turning conditional 
events into definite events we just described, node ni may at any time detect, based on 
specifics of the application at hand, that certain conditional events are in fact definite and 
may be sent out without waiting for any global information. This is valid for sequential 
simulations as well (an event that is not at the head of the queue may, depending on the 
application, be processed), although it makes little sense in that case. 

 
10.4 Optimistic event-driven simulation 
Optimistic methods of distributed simulation are based on the premise that it may be more 
efficient to let causality errors occur and then fix them than to rely on lookaheads and other 
application-specific properties in the search for efficiency. Physical systems for which this 
premise has proven valid include systems of colliding particles and evolving populations. In 
this section, then, there is no place for such things as lookaheads and null messages. 

Similarly, the structure of is not assumed to be known, so that G, whose edges no longer 
have to be FIFO, is taken to be a complete undirected graph. 



The mechanism that we describe in this section for optimistic distributed simulation is known 
as the time warp mechanism, perhaps in allusion to the possibility that, at node ni, may 
move back and forth as the need arises for errors to be corrected. The essence of this 
mechanism is the following. Whenever ni receives an event(t) message such that t > it 
sets to t, computes on the message it received, and possibly sends out event(t)'s for 
some t > . Because no precautions are taken to ensure that such events are definite (in 
the terminology of Section 10.3.2),it may well happen that a event(t) reaches ni with t ≤ , 
thereby indicating that whatever state updates were done or event messages were sent in 
the interval {t, …, } were erroneous and must therefore be corrected. This arriving 
event(t) message is often referred to as a "straggler." 

The approach of the time warp mechanism to correcting such errors when they are detected 
is to return the simulation globally to a correct global state, and then to proceed from there. 
In order to be able to perform such "rollbacks," every node must store some of its past 
history, so that earlier states can be restored when necessary. At node ni, this history has 
two queue components, called state_queuei and output_queuei. An element of state_queuei 
is the pair (t,x), indicating the state x of the physical process νi at time t. This queue is 
initialized to nil, and receives a new pair whenever statei is updated. An element of 
output_queuei is the triple (t,t', nk), indicating that ni sent nk an event(t') message when 
was equal to t. This queue is initialized to nil, and receives a new triple whenever ni sends 
an event message. Both queues are kept in increasing order of t (nondecreasing for 
output_queue i, for there may be multiple event's sent for fixed ). 

When a straggler arrives with a t parameter, is set to t and statei is set to x in the (t',x) 
pair in state_queuei. Here t' is the greatest integer less than t for which a pair exists in 
state_queuei. This queue is then shortened to contain pairs with time components no greater 
than t'. Before resuming normal processing, however, ni has to annul the effect of every 
event it sent when = t or later. This is achieved by sending an anti-event(t') message to 
the nk in every triple (t+,t',n k) in output_queue i such that t+ ≥ t, and then shortening the 
queue by the removal of those triples. It only remains for us to discuss how to handle the 
reception of such anti-event's. 

Because G's edges are not assumed to be FIFO, an anti_event(t) arriving at node ni may be 
following the event(t) to which it corresponds or it may be ahead of the event(t). In the former 
case, the anti_event is also a straggler upon arrival, and should be trated as we discussed 
previously. In the latter case, ni needs a mechanism to remember the arrival of the anti-
event(t), so that, when the event(t) arrives, it is not acted upon. In order to implement this 
mechanism, node ni maintains yet another queue, called input_queuei and initialized to nil, 
where the pair (t,nk) corresponding to an anti-event(t) from nk that does not arrive as a 
straggler is stored in increasing order of t. An arriving event(t) from node nk that finds the pair 
(t,nk) in input_ queuei is rendered ineffective, while the queue is shortened by the removal of 
that pair. (Note that, by the causality properties, only the t's would have to be stored in 
input_queue i; however, anti-message's occur in erroneous situations, thence the additional 
precaution of storing the messages' origins as well.) 

This strategy is realized by Algorithm A_Simulate_TW ("TW" for Time Warp), given next. In 
addition to the variables already described, the algorithm also employs the auxiliary variable 
ti. Contrasting with our initial approach in Section 10.1, no queue of event messages to be 



processed is really needed. Instead, node ni in Algorithm A_Simulate_TW acts upon such 
messages as they are received. 

Algorithm A_Simulate_TW:  
 

         Variables: 
             =0; 

             statei = xi(0); 

             state_queuei = nil; 
             output_queuei = nil; 
             input_queuei = nil; 
             ti. 

 
 

Listing 10.8  
 

         Input: 
             msgi = nil. 
         Action if ni � N0: 
             Append ( , statei) to state_queuei; 

             for nj � Neigi do 
                 if there exists event to be sent to nj then 
                      begin 
                          Let ti >  be the time of the event to 
be sent to nj; 

                          if ti ≤ T then 
                                Send event(ti) to nj 

                      end. 
 

 

Listing 10.9  
 

         Input: 
             msgi = event(t) such that origini(msgi) = (ni, nj). 

         Action: 
             if there exists (t, nj) in input_queuei then 
                  Remove (t, nj) from input_queuei 

             else 
                  begin 



                       if t ≤  then 
                            begin 
                                Let t' be the greatest integer such 
that t' < t and 

                                there exists (t', x) in 
state_queuei; 

                                statei := x; 

                                Remove all (t+, x') such that t+ ≥ t 
from 

                                state_queuei; 

                                for all (t+, t', nk) in output_queuei 
such that t+ ≥ 

                                t do 
                                      begin 
                                          Remove (t+, t', nk) from 
output_queuei; 

                                          Send anti-event(t') to nk 

                                      end 
                            end; 
                        := t; 

                       Update statei; 

                       Append ( , statei) to state_queuei; 

                       for nk � Neigi do 
                           if there exists event to be sent to nk 
then 
                                begin 
                                   Let ti >  be the time of the 
event to be 

                                   sent to nk; 

                                   if ti ≤ T then 
                                        begin 
                                            Append ( , ti, nk) to 
output_queuei; 

                                            Send event(ti) to nk 

                                        end 
                                end 
                  end. 

 
 



Listing 10.10  
 

         Input: 
             msgi = anti-event(t) such that origini(msgi) = (ni, nj). 

         Action: 
             if t ≤  then 
                 begin 
                     Let t' be the greatest integer such that t' < t 
and there 

                     exists (t', x) in state_queuei; 

                     statei � x; 

                     Remove all (t+, x') such that t+ ≥ t from 
state_queuei; 

                     for all (t+, t', nk) in output_queuei such that 
t+ ≥ t do 
                          begin 
                             Remove (t+, t', nk) from output_queuei; 

                             Send anti-event(t') to nk 

                          end; 
                       := t 

                 end 
             else 
                 Add (t, nj) to input_queuei. 

 
 

The set N0 in Algorithm A_Simulate_TW comprises the nodes whose physical processes are 

in 0. Action (10.8) corresponds to the processing on events at physical processes in 0, 
while actions (10.9) and (10.10) correspond, respectively, to the receipt at ni, of an event(t) 
message and an anti-event(t) message. Both actions include n i's participation in a rollback if 
the message is a straggler. In the case of an event message, this participation in the rollback 
is followed by the processing of the event. If the message is not a straggler, then the 
corresponding event is processed in (10.9) or a new element is added to input-queuei . in 
(10.10). 

The reader will have noticed that the sending of event's in (10.8) and in (10.9) differ from 
each other in that (10.8) does not include any additions to output_queue i. As a result, 
output_queuei does not contain any pair (0, t', nk). What this amounts to is that provisions 
are not made for a possible rollback of the simulation in which n i must return to =0. 

The reason why such provisions are indeed unnecessary, and in fact why numerous other 
properties of Algorithm A_Simulate_TW and variations thereof hold, relies on the following 
definition. At any global state, consider the minimum of the following quantities: for all ni 



� N, and for every message in transit sent by node ni the value of at the moment the 
message was sent. This minimum is called the global virtual time at that global state, known 
mainly by the acronym GVT (for Global Virtual Time). 

Theorem 10.2. 

In Algorithm A_Simulate_TW, is never set to a value t ≤ GVT.  

Proof: The value of is only changed to t upon receipt of an event (t) in (10.9) or an anti-
event(t) in (10.10). By the physical system's causality properties, any such message, when 
sent by nk � N, must have been sent when < t. The theorem then follows from the 
observation that GVT ≤ (and consequently GVT < t) at any global state in which the said 
message is in transit. 

At the initial global state of the simulation, GVT = 0. The reason why output_queuei does not 
contain any elements with a zero time component for any node ni is then immediate from 
Theorem 10.2. This theorem, in addition, implies the following. 

Corollary 10.3. 
Algorithm A_Simulate_TW correctly simulates the physical system for all t �{0,…,T}. 

Proof: This is an immediate consequence of the fact that every node whose physical 

process is in 0 is in N0, the fact that in (10.8) and in (10.9) event(t)'s are never sent with t 
> T, and the physical system's causality properties, if only we consider that, by Theorem 
10.2, progress in the simulation is always guaranteed. 

In addition to being instrumental in establishing the correctness of Algorithm 
A_Simulate_TW, the GVT concept is also useful in other situations, including memory 
management at the various nodes. Specifically, the only pairs that need to be maintained in 
state_queuei at any node ni are those with time component t' ≥ t, where t is the greatest 
integer such that t ≤ GVT for which a pair exists in state_queue i. Similarly, output_queue i 
need not contain any (t, t', nk) for t ≤ GVT. These are immediate consequences of Theorem 
10.2. 

When employed for such memory management purposes, the value of GVT needs from time 
to time to be accessible locally to the nodes. Regardless of which technique is employed for 
this to happen (either a global state recording algorithm in the fashion of Section 5.2.1 or 
some of the other techniques present in the literature requiring fewer messages), event and 
anti-event messages can no longer be sent as we have introduced them, but instead must 

include another time parameter to store the value of the variables at the time they are 
sent. So these messages must then be sent by ni as event( , t) and anti-event ( , t), 
respectively. 

Let us make one final observation before leaving this section. As we remarked in Section 
10.1,the updating by node ni of statei is implicitly taken as also implying that the pair ( , 
statei) is output. It should be clear to the reader that guaranteeing this in Algorithm 
A_Simulate_TW requires a little more elaboration. Specifically, such a pair can only be 



output if ≤ GVT, thereby providing another justification for the need to acquire estimates 
of GVT locally from time to time. 

 
10.5 Hybrid timing and defeasible time-stepping 
There are physical systems in which the states of the physical processes change in a way 
that does not entirely fall into any of the two categories we introduced in Section 10.1. For 
such systems, the methods we have seen so far in the book are inadequate, and other 
alternatives have to be devised. In this section, we briefly describe an example of such 
physical systems and outline a simulation strategy that can be regarded as a hybrid between 
some of the approaches we have studied. The physical system we describe arises from 
problems in nuclear physics, and it appears that some phenomena associated with the 
dynamics of stellar cores can be modeled likewise. 

The physical system consists of p interacting particles in three-dimensional space. At time t 
≥ 0, the particles' positions are z1(t),…,zp(t) and their momenta are p 1(t),…,pp(t). All particles 
have mass m, and their behavior can be modeled by integral-differential equations whose 
solution cannot be obtained analytically or even numerically within reasonable bounds on the 
required computational resources. The approach to solving them is then to employ a 
heuristic that assumes simpler modeling equations and uses randomness to guarantee 
accuracy. We describe such a heuristic next. 

For 1 ≤ k ≤ p, the behavior of the kth particle is assumed to follow the equations 

 

where U is a potential and ρ(z k(t)) is the average particle density in the vicinity of point zk(t) 
at time t. The average here is the average over a large number, call it N, of random initial 
conditions, so what is required is the solution of Np pairs of differential equations like the 
ones we showed. These equations are very tightly coupled with one another, so what we 
have is not the typical situation in which N independent solutions are required, in which case 
distributed methods can hardly be recommended within the context of obtaining each of the 
individual solutions. Instead, our problem is to solve for the positions and momenta of Np 
interacting particles, based on equations that require knowledge, at all times, of the average 
particle density, over N, near the particles' positions. 

Because analytical methods to solve this system of equations are not known either, the 
sequential approach is to employ simulation. For a conveniently chosen Δt, the simulation 
starts at initial positions and momenta for all Np particles and computes these quantities for 
the discrete times Δt, 2Δt,…,T. It is, in this sense, a time-stepped simulation. If t is any of 
these discrete times, then the solutions at t are computed from the solutions at t − Δt and 
from the average densities corresponding to the interval [t − Δt, t). The problem, naturally, is 
the computation of such densities, because they depend on how the particles interact with 
one another during that interval. What is done in the sequential method is to perform an 



event-driven simulation for each of the intervals, with provisions for events not to be 
generated for occurrence at times t' such that t' ≥ t.  

This hybrid sequential method has an obvious distributed counterpart, which is the following. 
The time-stepped portion can be achieved by a synchronous algorithm. By means of any of 
the synchronizers seen in Section 5.3, this synchronous algorithm can be turned into an 
asynchronous one. The processing for each pulse is an event-driven simulation that must 
terminate before nodes are allowed to progress to further pulses. This event-driven 
simulation can employ any of the approaches we discussed in Sections 10.3 and 10.4, for 
example. 

An alternative that is not so tightly synchronized is to employ essentially the same guidelines 
we just described, with the slight modification that an optimistic method be used within each 
pulse, and that pulses, like events in the optimistic simulation, be defeasible, in the sense of 
being prone to annulment by way of rollbacks. Let us be a little more specific on a method, 
called defeasible timestepping, that proceeds along these lines. 

We present the method's essentials for the case of the physical system introduced at the 
beginning of this section. A physical process is a region in the portion of three-dimensional 

space to which the particles are confined, so the overall structure of is quite well known. 
Within each time interval, the events that characterize the interaction among the physical 

processes are the arrival of particles from neighboring regions in space, so is an 

undirected graph. Defeasible time-stepping operates on a graph G that is isomorphic to 
for this particular problem. 

In order to carry out the event-driven simulation corresponding to each time interval, a logical 
process requires the particle densities at points within its own physical process and at points 
in adjacent physical processes that are in the vicinity of the boundary between the two. What 
this implies is that logical processes must, at the end of each time interval, send information 
on the appropriate densities to all of their neighbors in G. Clearly, then, the synchronization 
method that is best suited is the particularization of Synchronizer Alpha that we saw in 
Section 5.3.2(i.e., Algorithm A_Schedule_AS), provided edges are FIFO, as we do assume 
for the sake of simplicity. So the time-stepped portion of the simulation is in principle 
performed in much the same lines as those of Section 10.2. 

A logical process starts participating in the event-driven simulation that corresponds to a 
time interval as soon as it receives the necessary densities from all of its neighbors 
corresponding to the previous time interval. This event-driven simulation is performed 
optimistically, say by means of techniques similar to the one introduced inSection 10.4. 
When a logical process judges that it may have finished participating in the simulation for the 
current time interval, it sends densities out to its neighbors. If it then receives a straggler to 
be processed in that same time interval (or in an earlier one), it must correct the effects of 
the premature signal for its neighbors to proceed to the next time interval. Overall, events 
and messages carrying densities are processed optimistically, and may then have to be 
revised upon the occurrence of errors. The techniques employed to this end are pretty 
similar to those of Section 10.4. We provide no further details here, but encourage the 
reader to seek additional information in the pertinent literature. 

 
10.6 A general framework 



In this section, we provide a brief description of a framework that may help visualize how all 
the different approaches to the simulation of physical systems relate to one another. The 
overall goal of such a unified understanding has some obvious aesthetic connotations, but 
more importantly is to provide an intuitive basis for the development of new methods for 
physical systems with new characteristics. 

In this unifying framework, the physical system is viewed as a two-dimensional grid, with one 
dimension (say the "horizontal") used to represent the physical processes and the other (the 
"vertical") used to represent time. Each point in this grid corresponds to a physical process 
and a time instant. The goal of a simulation method is to fill out the grid by assigning to each 
point the state of the corresponding physical process at the corresponding time. 

In broad terms, a logical process may correspond to any set of points in the grid. The task of 
the logical process is to fill out the points in that set. Our approach throughout this chapter 
has been to restrict such sets to being vertical stripes, but there is in principle no reason why 
logical processes may not have different shapes. 

Sequential simulation methods can be viewed as employing one single logical process 
corresponding to the entire grid. The distributed methods we have studied all restrict each 
vertical stripe to correspond to exactly one physical process. Sequential methods normally 
fill out the grid in increasing order of time, and essentially this is what their distributed time-
stepped and conservative event-driven counterparts do as well. Optimistic event-driven 
methods also have the overall goal of doing that, but they do it in a rather unsynchronized 
manner, and occasionally points that have been filled out may have to be erased for later 
reconsideration. 

Although all the methods we have studied adopt such a vertical-stripe approach to filling out 
the grid, the use of other subdivisions in the distributed case accounts for interesting 
possibilities. For example, any arrangement other than the one based on vertical stripes 
requires more than one logical process to simulate the same physical process, however for 
different time intervals. Whether physical systems exist for which such an arrangement of 
logical processes is capable of performing efficiently remains largely to be seen. 

 
10.7 Exercises 
1. Provide the termination details for the two cases discussed in Section 10.2. Assume, in 
both cases, that an additional node, n0, exists whose function is to detect termination. 
Provide a solution for each of the following two cases. First, all nodes update the states of 
their physical processes the same number of times. Second, nodes perform updates until 
some global convergence criterion is met.  
2. Provide an algorithm for the time-stepped simulation of fully concurrent systems when 
edges are not FIFO.  
3. Provide a version of Algorithm A_Schedule_PC in which the initial propagation of states is 
selective, depending on the initial orientation.  
4. Complete action (10.4) by specifying how to update  
5. Write the algorithm described inSection 10.3.2.  
6. Discuss an alternative to the use of anti-event's if G's edges are FIFO.  
1. 
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10.8 Bibliographic notes 
There are many sources of reference to complement the introductory material presented in 
Section 10.1. A general introduction to the role played by highperformance computation in 
the analysis of physical systems is given by Fox and Otto (1986). Readers wanting to 
concentrate on the simulation of physical systems based on continuous-time may need to 
acquire a deeper understanding of the mathematics involved (Wylie, 1975; Luenberger, 
1979), while those whose interest lies mainly on the study of discrete-time physical systems 
may wish to check some of the paradigmatic problems in the area, as the firing squad 
problem (Jiang, 1989) and the chip firing problem (Spencer, 1986). Overviews of various 
aspects of distributed event-driven simulation can be found in many places, including Misra 
(1986), Fujimoto (1990a), Fujimoto (1993), and Nicol and Fujimoto (1994). A discussion on 
the relation between distributed simulation and the notions of knowledge of Section 2.3 has 
been given by Loucks and Preiss (1990). Alonso, Frutos, and Palacio (1994) provide a 
comparative study of conservative and optimistic methods, while Lin (1993) discusses the 
termination of event-driven simulations. Pohlmann (1991) discusses an approach that 
departs from our taxonomy. 

Section 10.2 is entirely based on Barbosa and Lima (1990) and on Barbosa (1991; 1993), 
where the time-stepped simulation of numerous physical systems is considered. These 
include cellular automata (von Neumann, 1966; Wolfram, 1986), analog Hopfield neural 
networks (Hopfield, 1984), neural networks to solve linear systems and linear programming 
problems (de Carvalho and Barbosa, 1992), binary Hopfield neural networks (Hopfield, 
1982), systems under simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983; Gafni and 
Barbosa, 1986; Barbosa and Gafni, 1989a; Barbosa and Boeres, 1990), Markov random 
fields (Geman and Geman, 1984), Boltzmann machines (Hinton, Sejnowski, and Ackley, 
1984), and Bayesian networks (Pearl, 1988; Eizirik, Barbosa, and Mendes, 1993). 

The pioneering work on conservative methods for distributed simulation (and hence for 
distributed simulation in general) was done independently by Bryant (1977) and by Chandy 
and Misra (1979). It is on the work of Chandy and Misra (1979) that Section 10.3.1 is based. 
Section Section 10.3.2.is based on the later work by Chandy and Sherman (1989b). In the 
context of conservative methods, various authors have addressed the question of reducing 
the number of null messages, as for example De Vries (1990) and Preiss, Loucks, 
MacIntyre, and Field (1990). Similarly, the effects of the absence of lookaheads (Lin, 
Lazowska, and Baer, 1990) and of their presence (Preiss and Loucks, 1990) have also been 
studied. Other studies on conservative methods have been conducted by Chandy and Misra 
(1981)—where a deadlock-detection strategy is employed in place of prevention, Mehl 
(1990), Yu, Ghosh, and DeBenedictis (1990), Lin, Lazowska, and Hwang (1992), Nicol 
(1992), Ayani and Rajaei (1994), Blanchard, Lake, and Turner (1994), Teo and Tay (1994), 
and Wood and Turner (1994). 



Fujimoto (1990b) presents a survey of optimistic methods for distributed simulation, and 
Preiss, MacIntyre, and Loucks (1992) elaborate on the relation between "optimism" and 
memory availability in optimistic methods. Section 10.4 on the time warp mechanism is 
based on Jefferson (1985). For studies on the management of memory during optimistic 
simulations, the reader is referred to Lin (1994), for a treatment related to optimistic methods 
in general, and to Lin and Preiss (1991) and Das and Fujimoto (1994), for a treatment within 
the context of the time warp mechanism. Methods for the periodic computation of GVT have 
been proposed by many authors, including, more recently, Mattern (1993), Srinivasan and 
Reynolds (1993), and D'Souza, Fan, and Wilsey (1994). Strategies for limiting a method's 
optimism have also been investigated, and can be looked up, for example, in the works by 
Sokol, Briscoe, and Wieland (1988), Sokol, Stucky, and Hwang (1989), Sokol and Stucky 
(1990), and Sokol, Weissman, and Mutchler (1991). Additional relevant publications on 
optimistic methods include Prakash and Subramanian (1992) and Nicol (1993). 

Section 10.5 is based on Wedemann, Barbosa, and Donangelo (1995). Details on the 
physical system described in that section can be found in Aichelin and Bertsch (1985), 
Bertsch and Gupta (1988), and Bauer, Bertsch, and Schulz (1992). 

Material related to our discussion in Section 10.6 is available from Chandy and Sherman 
(1989a), Bagrodia, Chandy, and Liao (1991), and Jha and Bagrodia (1994). 
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List of Figures
 
Chapter 1: Message-Passing 
Systems 

Figure 1.1: A graph GT is shown in part (a). 
In the graphs of parts (b) through (d), 
circular nodes are the nodes of GT, while 
square nodes represent buffers assigned to 
the corresponding channel in GT. If r(c) = 1 
for all c ∈ {c1, c2, c3, c4}, then parts (b) 
through (d) represent three distinct buffer 
assignments, all of which deadlock-free. 
Part (b) shows the strategy of setting b(c) 
=r(c) for all c ∈{c1, c2,c3, c4}. Parts (c) and 
(d) represent, respectively, the results of the 
space-optimal and the concurrency-optimal 
strategies.  

Figure 1.2: When task u migrates from 
processor p to processor p′ and v from q to 
q′, a flush(u, v, p′) message and a flush-
request(u, v) message are sent 
concurrently, respectively by p to q and by q 
to p. The flush message gets forwarded by q 
to q′, and eventually causes q′ to send p′ a 
flushed(u, v, q′) message.  

Chapter 2: Intrinsic Constraints 

Figure 2.1: This is the 2 v (2�T/3� + 1)-
node ring used in the proof of Theorem 2.4, 
here shown for v = 3 and T = 3. Each of the 
three portions in the upper half comprising 
three contiguous nodes each is assigned f's 
arguments according to af. Similar portions 
in the lower half of the ring follow 
assignment at.  

Figure 2.2: The 2v-node ring used in the 
proof of Theorem 2.6 is depicted here for v = 
5. Shown is also the mapping 

, 
emphasizing the symmetry among the 
nodes in the ring's upper half and the 
corresponding nodes in the lower half.  

Chapter 3: Models of 
Computation 

Figure 3.1: A precedence graph has Ξ for 
node set and the pairs in the partial order ≺ 
for edges. It is convenient to draw 

precedence graphs so that events 
happening at the same node in N are placed 
on a horizontal line and positioned on this 
line, from left to right, in increasing order of 
the local times at which they happen. In this 
figure, shown for n = 4, the "conically"-
shaped regions delimited by dashed lines 
around event ξ happening at node n3 
represent {ξ} ∪ Past(ξ) (the one on the left) 
and {ξ} ∪ Future (ξ) (the one on the right).  

Figure 3.2: Part (a) of this figure shows a 
precedence graph, represented by solid 
lines, for n = 2. As ≺ is already transitive, we 
have ≺+=≺. Members of ≺+ are then 
represented by solid lines, while the dashed 
lines are used to represent the pairs of 
concurrent events, which, when added to 

≺+, yield a total order consistent with 
≺+. The same graph is redrawn in part (b) of 
the figure to emphasize the total order. In 
this case, system-state (ξ2, ξ3) is such that n1 
is in the state at which it was left by the 
occurrence of ξ1, n2 is in the state at which it 
was left by the occurrence of ξ2, and a 
message sent in connection with ξ2 is in 
transit on the edge from n2 to n1 to be 
received in connection with ξ2. Because 

is consistent with ≺+, system_state 
(ξ2, ξ3) is a global state, by our first definition 
of global states.  

Figure 3.3: Parts(a) and (b) show the same 
precedence graph for n= 2. Each of the cuts 
shown establishes a different partition (Ξ1, 
Ξ2) of Ξ. The cut in part (a) has no edge 
leading from an event in Ξ2 to an event in Ξ1, 
and then system_state (Ξ1, Ξ2) is a global 
state, by our second definition. In this global 
state, n1 is in its initial state, n2 is in the state 
at which it was left by the occurrence of ξ2, 
and a message is in transit on the edge from 
n2 to n1, sent in connection with ξ2, and to be 
received in connection with ξ3. The cut in 
part (b), on the other hand, has an edge 
leading from ξ2 ∈ Ξ2 to ξ3 ∈ Ξ1, so 
system_state(Ξ1, Ξ2) cannot be a global 
state.  

Chapter 4: Basic Algorithms 

Figure 4.1: During an execution of Algorithm 
A_PIF, the variables parent i for all nodes ni 
are set so that a spanning tree is created on 
G. This spanning tree is rooted at n1, and its 
leaves correspond to nodes from which no 



other node received inƒ for the first time. In 
this figure, a directed edge is drawn from ni 
to nj to indicate that parenti = nj.  

Chapter 6: Stable Properties 

Figure 6.1: Edges in the precedence graph 
fragment shown in part (a) are drawn as 
either solid lines or dashed lines. Solid lines 
represent comp_msg's, dashed lines 
represent ack's, and the remaining edges of 
the precedence graph are omitted. In this 
case, system_state>(Ξ1, Ξ2) is clearly a 
global state, and is such that every node 
that ever sent a comp_msg during the 
diffusing computation (i.e., n1 and n3) is in 
the state that immediately precedes the 
reception of the last ack. In part (b), the 
spanning tree formed by the variables 
parenti for each node ni in this global state is 
shown with directed edges that point from ni 
to nj to indicate that parenti = nj. In this case, 
the tree has n1 for root and its single leaf is 
n3.  

Chapter 8: Resource Sharing 

Figure 8.1: A period of five orientations 
results from the edge-reversal mechanism 
started at the orientation shown in the upper 
left corner of the figure, which is outside the 
period. In this period, every node becomes a 
sink twice.  

Chapter 9: Program Debugging 

Figure 9.1: In this figure, the solid segment 
in a process's horizontal line indicates the 
time interval during which the corresponding 
local predicate is true. The two cuts shown 
clearly correspond to global states, in fact 
earliest global states in which the disjunctive 
predicate holds.  

Figure 9.2: The tiny solid segment in a 
process's horizontal line indicates the local 
time to which the corresponding local 
unconditional breakpoint has been set. 
Clearly, the settings in this figure are 
erroneous, as the cut (shown as a dashed 
line) that goes through them does not 
correspond to a global state.  

Figure 9.3: Following the same conventions 
as in Figure 9.2, here a situation is depicted 
in which only one node participates in the 
unconditional breakpoint (node ni). 
Depending on how the corresponding local 
unconditional breakpoint is placed with 
respect to the reception of the message by 
pi, the other processes appear in the 
resulting earliest global state differently, as 
shown in parts (a) and (b).  

Figure 9.4: The conventions employed in 
this figure are the same as those of Figure 
9.1, and the situation depicted is quite akin 
to that of Figure 9.3. Specifically, the earliest 
global state at which the conjunctive 
predicate holds depends on when ni's local 
predicate becomes true with respect to the 
reception of the message by pi, as shown in 
parts (a) and (b). 
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