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Introduction

This book originates from the desire to perpetuate expertise in the field of
performance evaluation, particularly for telecommunication systems and
networks. It is obviously impossible to translate into a single work all the
facets of an activity which encompasses many systems and a great variety of
domains such as standardization, modelling, measurement, fields trials,
observations etc. However, it rapidly becomes evident that performance study
through its different aspects is the expression of a real and unique discipline:
performance engineering. So it is worth writing a book whose contents is, as
much as possible, the synthesis of both the theoretical and the technical
knowledge which are the basis for good practice in this field.

In this respect this work aims to be both a tool for education in performance
engineering, and a guide to implementing performance activity, both in the
research laboratory and in industrial environment.

Research and industrial work are both demanding. The performance engineer
will have to juggle with equations, as well as with equipment in the lab or in
the field. His/her permanent search for efficiency, the necessity to use
tractable approximations, and his/her natural trend to perform experimental
measurements will not prevent him/her from mastering complex mathematical
models. As a matter of fact, it is the complete mastering of the analytical tools
together with their application to the whole set of system development phases
(from design to operation), which will lead to maximum efficiency, by making
possible the synthesis between theory and practice as required by market and
industrial constraints.

Therefore, in this book, we will deal equally with elementary calculations,
such as processor occupancy, the number of messages etc. as well as with
more complex computations such as multiplexer dimensioning in the case of
internet traffic. In the same way, we will use elementary probability
calculations or classical Markov models, as well as complex methods such as
Pollaczek's method for queueing systems evaluation. Lastly, again with
concern for efficiency, we always shall keep in mind the actual conditions of
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application and particularly the order of magnitudes of the parameter values,
which will allow great simplification of the models.

A tool for education and a companion hand book for performance engineering
activity, this work is dedicated to the student who wishes to learn about
communicating systems and networks, probability and queueing theory, as
well as to the engineer and the researcher who desires to enlarge his/her
competence domains to other fields, such as reliability, statistics, quality of
service standardization, and methodology.

Several approached to this work are possible. Each chapter, relatively
independent from the others, deals with a subject in a way as progressive as
possible.

Chapters however are organized according to a logic whose motivation is
again the desire to teach the basics of the job of performance engineering. The
logic is as follows.

The first chapter presents the main characteristics and functions of major
telecommunication networks. These are indeed the subject of our performance
studies, whose objective is to evaluate their capacity to handle the traffic they
are offered. In this respect, we then shall present in the same chapter the basic
concepts of what is called teletraffic.

In the second chapter, we develop the generic aspects of quality of service
(QoS), through an overview of the main performance parameters such as
specified in the international standardisation organisms.

So, with these two chapters we have set the scene: the subject that we are
studying (the telecommunication systems and networks), and the reason why
we are interested in it (traffic handling and QoS). Now we have to deal with
the means needed for our studies, firstly with the basic theoretical tools.

The third chapter presents the theory of probability and introduces analytical
tools such as transform functions, which allow us to solve most of the
probabilistic problems that we will face.

The fourth chapter presents the main probability laws which will be of
continuous use in the rest of the book, in various domains such as statistic,
reliability, queueing, etc.
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The fifth chapter, as for probability theory, presents the theory of statistics.
Indeed we often shall be concerned with estimation and its associated notion
of risk.

The fundamental tools being thus acquired, we then look at their application to
the different domains of performance. We now introduce performance
evaluation techniques:

The sixth chapter presents reliability theory, and more generally what is called
dependability. Here we look at the means to evaluate system performance in
terms of availability, service continuity, maintenance load etc..

The seventh chapter presents queueing theory. Here, of course, the purpose is
the evaluation of systems and network performance in terms of information
transfer delays, response times, set-up times, etc.

The eighth chapter introduces simulation techniques, which, of course, are an
essential complement to analytical studies and models.

The ninth chapter deals with concrete applications of these techniques,
resulting into a set of typical models for telecommunication systems.

Finally, all these tools, techniques, and models being acquired, we will now be
able to deal with the methodological aspects. Methodology is the means to
organize efficiently any industrial activity, and is an essential condition to
ensure its success, particularly in very competitive environments. In this
respect the last chapter proposes a methodology for performance activity, that
may apply to projects in industry as well as in the research laboratory.

The reader desirous of completing his/her knowledge in any domain will find,
at the end of the book, a selection of references.

We would like to thank particularly Bernard Depouilly and Jean-Claude
Pennanec'h, and all the careful readers: Daniel Lardy, Daniel Le Corguille,
Claude Le Palud, Christophe Perraudeau, Thierry Sabourin.

This book has received strong support from Alcatel, INT (Institut national des
telecommunications), and the "Collection technique et scientiflque des
telecommunications". We thank them warmly.

Georges Fiche and Gerard Hebuterne
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Telecommunication Networks and 
Traffic 

The subject of this book, performance evaluation, may be considered as a field 
of the vast discipline known as teletraffic, whose purpose is to determine rules 
which optimise the use of the network equipment that handles the traffic 
requested by users. The book is not therefore strictly concerned with traffic 
management techniques or equipment optimisation techniques. But, by 
presenting the techniques used to evaluate performances, we aim to establish 
the bases for the evaluation of the capacities of traffic handling equipments 
and for network dimensioning. 

The basic function of a telecommunications network is to connect users to 
other users via their terminals, and to connect users to servers, or terminals to 
other terminals. The network sets up a connection between two or more 
terminals by making use of their source and destination addresses. 

Behind this very general connection concept are a number of very different 
realities, bearing in mind the great variety of telecommunications networks, as 
we will see later. In a “circuit” type network, the term used is connection, a 
direct relationship established at a physical level. In an “IP” network, the term 
used is usually session, as there is normally no physical connection (even 
though the TCP operates in connected mode at the session level). Finally, the 
terminals connected will not only be fixed subscribers, but also mobile 
subscribers or servers. 

But the fundamental functions remain the same. And throughout this book we 
will consider only the generic aspects of the world of telecommunications. 
Whatever the networks, we will be dealing with very general call and 
communication concepts. In doing so we will consider the concepts of arrival 
rate, duration, and resources engaged, whether in terms of circuits, memory or 
bit rate. 
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In this chapter we will introduce the main concepts relating to networks and
traffic, which we will subsequently consider in more detail and manipulate.

Initially we will present the general characteristics of telecommunications
networks, their structures and their functions. Despite ongoing technological
changes, we will identify certain constant features. The performance
evaluation techniques presented in this book are applied to these constant
features, such as access, the transport network, and the control network.

Secondly, we will introduce the basic concepts of traffic, i.e. relating to the
volume of data processed and transported in a telecommunications network.
Evaluating the performance of an equipment or a set of equipments is only
meaningful if the evaluation is related to a given type and level of demand.
These essential concepts are the foundation of teletraffic theory.

1.1. Network concepts

A network can be described and analysed at several levels: architecture,
technologies and services. We will see that the convergence of networks and
the integration of services mean that these distinctions are becoming less and
less clear cut. To describe this, we will look in turn at the main structures of
networks from the topology viewpoint, and then set out the two main types of
switching technology (circuit and packet), drawing distinctions between a
certain number of networks from a functional viewpoint (telephone, data),
before finally presenting their convergence in the "next" generation networks,
the NGN.

1.1.1. Network architectures

A network, whatever its type, consists essentially of nodes, which route and
switch data and control the network, and links that interconnect the nodes and
transport the data. The arrangement of the nodes, and their physical and
logical organisation form the network architecture. A distinction must be
drawn between physical architecture (the locations of nodes and links, and
how the cable connections are made) and logical architecture, which describes
the routing of the data and the routing rules. The same physical infrastructure
can be shared between different networks (the telephone network, a data
network, etc.), with different logical architectures. Although architectures may
vary considerably, certain basic structures and components can be identified.
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1.1.1.1. Network components 

As networks evolve, there is an increasing tendency to distinguish between the 
three main parts of a network: the core network, the access network, and the 
customer premises equipment. 

The core network: Also known as the “backbone”, the core network is the 
infrastructure that enables the interconnection of all users. Shared between all 
the subscribers, it offers the possibility of high-speed data transfer over long 
distances. 

The access network (AN): This part of the network enables the connection of 
the user to the core network. Access networks are shared by a limited number 
of subscribers. 

The customer premises equipment (CPE): This is the equipment that the user 
has on hislher premises (telephone, computer, local network, etc.). 

From the user’s viewpoint there are two main components of a network: 
network services and network management. 

These are the two main functions that generate traffic in the physical elements 
of networks. 

Services 

The primary function of the network is of course to support services such as 
the telephone service, videoconferencing, and the transfer of images, e-mails 
and data files ... The variety of services is very considerable, and their 
requirements at transport level (bandwidth, real-time constraints) are very 
different. Several switching technologies (notably circuit switching and packet 
switching) have been developed to help meet these requirements. 

Management 

The second function associated with the network is the management function. 
A network is constantly changing. New subscribers always need to be 
connected, new equipment needs to be installed, and new services need to be 
introduced. It is also of course essential to ensure that the network is 
functioning correctly by means of maintenance operations and traffic and 
quality of service observation operations. Network extensions, upgrades and 
observations are usually carried out by an operator. They too are organised 
around equipment and functions that constitute a management and operation 
network. 
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1.1.1.2. Network structures

The star network

The network elements are interconnected through a central element or central
node. This type of architecture is suitable for networks that connect a limited
number of users. The star network topology is found in private networks
(PABX, see later) and in the case of terminals connected to a central computer
(business network). The reliability of this type of network is wholly dependent
on that of the central node, and the failure of this node means that all the
terminals are disabled. On the other hand, routing is simple, as are extensions
of the number of terminals. Communication requires appropriate protocols
such as CSMA (see later), to manage access conflicts between terminals. An
example of a performance study will be given later in the book.

Figure 1.1. Star network structure

Meshed network

In a totally meshed network, each node is connected to the others by the same
number of point-to-point links as there are relations to be established between
nodes. A large number of links is needed for this type of topology - the
number of relations grows proportionately to the square of the total number of
nodes n (there are exactly n(n — 1)/ 2 links). The great advantage of this type

of network is its reliability: there is always the possibility of reaching another
node, even in the event of a link breakdown, by going through an intermediate
node. For sizing however, the traffic flow between nodes needs to be
determined with considerable precision. This often leads to substantial
oversizing.
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In practice, networks are partially meshed, and the opening of a direct link
depends both on optimisation and reliability criteria. Here again, precise
knowledge of flows will enable optimum sizing.

Figure 1.2 shows an ATM or IP network of fully meshed provider edge nodes.
Each edge node collects user access gateway (AGW) traffic, or concentrates
and receives network VoIP (voice over IP) traffic, via an IP gateway (VoIP
GW).

We could equally well have represented a network of computers or of IP
routers.

This type of architecture is well suited for networks of limited size that must
provide a very high quality of service (ease of routing, ''tunnelling"
possibility).

Figure 1.2. Fully meshed network

Ring network

In this network each of the n nodes is interconnected only to its two
neighbours. The number of links is thus reduced to n. The network therefore
forms a ring. To ensure the reliability of this type of network, the links may be
duplicated individually, or the ring itself may be duplicated. Furthermore, the
routing protocols can isolate a faulty node, and the network then becomes
"self-healing".

This type of architecture is the basic structure for university data networks,
metropolitan local networks and of course computer networks, using the well-
known token ring technology (whose performances we will study). It is also
used as the backbone of "regional hubs" of operator networks.
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Figure 1.3. Ring network

Tree network

In a certain number of cases, node interdependences lead to the organisation of
nodes into tree networks, in which each node has a responsibility (for routing,
management, etc.) to the nodes linked to it. This architecture is used in this
form (tree structure providing a multicast type service) or more often as a sub-
network organisation structure.

Hierarchical structure

A network of this type is in fact composed of several subnetworks of different
hierarchical levels. At the top level is the backbone used for the
interconnection of the various lower-level networks (e.g. in telephony; the
international network, consisting of international transit exchanges). At the
next level are the national networks (e.g. with their main and secondary transit
exchanges) and then come the access networks (connection centres or local
exchanges, and subscriber connecting units).

Fixed and mobile telephone networks are typical examples of this structure.
The subnetworks interconnected in this way (regional networks, urban
networks) have a partial meshing structure. The tendency is to use full
meshing at the upper levels of the hierarchy. The number of hierarchical levels
depends on the size of the network (typically 3 in Europe and 4 in the USA).

Gateway structure

In a network of this type, which also consists of subnetworks, the concept of
hierarchy is less important and that of cohabitation assumes greater
importance. The subnetworks communicate with neighbouring subnetworks
through gateways. The information circulates step by step. In both of these



Telecommunication Networks and Traffic 7

networks, transport reliability is ensured by the multiplicity of routes (access
to several toll exchanges, access to several routers).

The internet network is a typical example of the gateway structure.

The two structures are shown in Figure 1.4.

Figure 1.4. Tree net-works

1.1.2. Communication technologies: circuit and packet

Obviously a network handles a great diversity of types of traffic sent by
various sources. A wide range of methods has thus also been proposed to
ensure an optimum communication service as appropriate for the various
profiles. Amongst these methods two main switching techniques predominate:
circuit switching and packet switching, of which a number of variants have
been developed.

1.1.2.1. Circuit switching

The simplest solution to establish communication between point A and point B
is to connect them by an electrical link. This is how the first telephony systems
operated. The switches are essentially automatic devices with n inputs and n
outputs, capable of linking one input to one output on request. A connection
will be presented as a series of links that are reserved and of relations that are
established in the switches between the links. The link must be established
before any exchange can take place.
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Figure 1.5. Communication phases for circuit switching

The essential characteristic of circuit mode is the reservation of a path and of
resources, from end-to-end, for the whole duration of the call.

In point of fact, the connection of a real electrical circuit is only the simplest
way of making the link. In most cases, a link with a high capacity will be
shared between more modest flows. So for example PCM technology shares a
2 Mbit/s link between 32 circuits at 64 kbit/s (1.5 Mbit/s and 24 channels at 64
or 56 kbit/s in the USA).

Figure 1.5 shows the connection procedure. The phases of establishment
through the network (shown schematically above by intermediate nodes B and
C) are clearly indicated.

1.1.2.2. Packet switching

The information sent out by a computer equipment is intrinsically bursty,
which is clearly visible for example in the case of an internet session. Both the
terminal and the workstation produce, at their own rate (expressed in bit/s)
blocks of information that are separated by silences that may last for several
seconds. Accordingly, it would be uneconomical to establish a communication
that would immobilise resources (transmission lines, switch paths). The
solution used to enable efficient exploitation of the network's resources is the
setting up of packet switching. In this way several communications can share
the same resources.
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In circuit switching, the communication is offered a bit rate d which is
constant throughout the duration of the connection. Let us assume that the
exchange takes place with a burstiness a (defined as the ratio of the
instantaneous bit rate to the average rate). The allocated constant rate d is such
that it enables the communication to transmit the bursts at peak rate without
loss. It follows therefore that the effective rate of utilisation of the link is 1/a.
Bearing in mind that if a reaches 10 or more, which is frequently the case in
data transmission, the cost-effectiveness of the service becomes problematic.

In packet switching, the information is split up by the originating equipment
into blocks of moderate size (see Figure 1.6), termed packets, which are
autonomous (i.e. capable of moving on the network thanks to a header that
contains the destination address). The source sends its packets at its own rate,
and the network multiplexes the packets from various origins in the same
resources, to optimise their use (this is known as statistical multiplexing).

This splitting up enables a better use of the transmission resource than circuit
switching, in which the transmission resources are allocated without sharing.
On the other hand, the multiplexing of different connections on the same
resources causes delays (and perhaps losses) which do not happen with circuit
switching. This operation calls for careful sizing, and the setting up of
congestion control mechanisms.

Figure 1.6. A session in a packet-oriented network
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Finally it must be noted that in packet switching a distinction is drawn
between two modes of operation (which are not to be confused with switching
mode): connection-oriented mode and connectionless mode. In connection-
oriented mode, a path is established (the virtual circuit). There is a prior
exchange of initial signalling packets to reserve resources and establish the
path. In connectionless mode, the routing decisions are taken on the basis of
the header of each packet, at each node (for routing and forwarding, see
below).

Connection-oriented mode has given rise to three main operating modes: X25
(which corrects errors, guarantees packet sequencing and includes flow
control), frame relay (no control at packet level), and ATM. Asynchronous
transfer mode (ATM) switching is a packet technique in which the information
unit is a packet of fixed length (53 bytes), the cell, with important control
functions. The connection-oriented mode of ATM, associated with the fixed
unit that is the cell, is used at maximum to offer guarantees on the available
bandwidth, the maximum error rate, delays, etc., its disadvantage being the
degree of complexity to which it gives rise.

The connectionless mode has been popularised mainly by IP (internet
protocol). IP packets are of variable size: for example 20 (or 40) header bytes
and a payload (useful information) of between 0 and 65,535 bytes. Basically
an IP network does not guarantee quality of service, but instead works in "best
e f f o r t " mode. IP tries in fact to transmit all the packets but without preventing
desequencing, duplication, delays or loss. The necessity of reliable transport
thus leads to the use of two connection modes for the same communication, at
different levels. So with TCP (transmission control protocol) on IP, we have a
connection mode at application level, on a mode that is connectionless at
packet level. Conversely, with IP on ATM, we have a connectionless mode on
a connection-oriented mode. We will look in detail a little later at the main
communication protocols on IP, used by a major packet network such as the
internet.

1.1.3. Main networks

After presenting architectures and then network technologies, we present here
in more detail some main networks corresponding to services which are
initially distinct (such as fixed telephony, mobile telephony, data, etc.), and
then converge into a single network. We will describe their equipments and
their functions - functions at the source of the traffic loading the previously
identified equipments. For this purpose we will consider some examples of



Telecommunication Networks and Traffic 11

networks such as: the fixed telephone network, GSM and UMTS mobile
networks, the IP network, the NGN network, and private networks.

1.1.3.1. Conventional fixed telephone network

The role of the telephone network is to connect two fixed subscriber stations.

The subscriber equipment is the telephone set(s). The subscribers have a fixed
connection to access (connecting) units (concentrators, subscriber centres).
The communication is established from the numbering (number requested) and
maintained throughout the conversation. The possible bit rate is 64 kbit/s (56
kbit/s) or nx64 kbit/s for ISDN (integrated services digital network}, but
evolving on access up to Mbit/s with ADSL (asymmetrical digital subscriber
line) access. This latest evolution is indisputably, as we will see later, a
fundamental opening up of the conventional network towards new generation
networks. ADSL enables, simply by adapting existing subscriber lines,
downlink bit rates (network to user) in the order of 2 Mbit/s, and uplink bit
rates in the order of 600 kbit/s.

The 3 basic functions of the network are:
- the interconnection of subscribers: supplying the signals from the terminals
(voice, data) with a permanent dedicated transport medium throughout the
duration of the call;
- signalling: the exchange of information (messages or frequency signals)
enabling the set-up and then the release of the call and its medium (based on
the dialled number);
- operation: i.e. the exchange of information and commands (messages)
enabling the management of the network (traffic measurements,
commissioning...).

These three functions give rise to three networks which are essentially
physically separate: the transport network with its transmission links (PCM,
STM, etc.) and its switching matrices, the control and signalling network with
its exchanges and its signalling network (e.g. no. 7 signalling), and finally the
operation network with its operation centres.

Figure 1.7 shows the main components of a public fixed network, the PSTN
(public switched telephone network).
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Figure 1.7. The fixed telephone network

We find in succession the subscriber connecting units (concentrators), the
subscriber centres (local exchanges), and then the toll exchanges, to which are
added the operation centres. To this are added the equipment of the intelligent
network (IN), such as the SCP (service control point) and the SMP (service
management point). The PSTN has now become a very powerful network
(except for its bandwidth limitation), particularly thanks to the IN. The
intelligent network constitutes a powerful environment capable of supplying
tailored services, such as credit card calls, portability, free phone service, etc.
It is the SCP which controls the supply of the service in real time, in
cooperation with the switching exchanges. In this context, the switches
become equipment with advanced functions, and are now known as SSPs
(service switching points).

1.1.3.2. N° 7 signalling network

In discussing the PSTN network, and (as we will see later) the evolution of
networks, reference must be made to signalling network no. 7. Signalling
network no. 7 (SS7) is used to carry control information between the different
elements of the network, such as the telephone switches, the databases and the
servers. It is therefore an essential element in introducing new services on to
the network.

The signalling network functions in accordance with a principle similar to that
of packet switching: there is an exchange of "signalling frames" with flow
control, between signalling terminations (signalling points, or SP) located in
switches, servers, etc., and via relay points (signalling transfer points, or
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STP). The transmission medium is the signalling channel, which explains why
this is known as common channel signalling (CCS). A signalling channel is
usually a 64 kbit/s channel reserved solely for transporting signalling between
two signalling points (SP or STP). One or more signalling channels are
reserved depending on the volume of messages to be exchanged, a volume
which of course depends on the size of the switches. They then form a
signalling link set.

All the signalling channels and signalling points (SP and STP) form a
dedicated network which is completely separate from the voice transmission
network (in logical terms at link level, for it makes use of the same physical
resources). It is finally important to note that with this network the exchange
of signalling is independent of the actual set-up of a switching circuit. This
independence makes the network well suited for evolution to the new
generation of networks such as the NGN (next generation network), which we
will present later.

In general, an SS7 network has the schematic structure as in Figure 1.8.

For reasons of reliability, each signalling point is connected to two signalling
transfer points, and the signalling transfer points are intermeshed.

There may be direct links between SP (or STP in the same region). There may
be links between several levels of STP (regional level, national level, etc.). A
distinction is drawn between three modes of functioning linking the signalling
channel with the voice circuits that it serves:

- Associated mode: the signalling channel follows the same path as the circuits
whose signalling it carries. (In this case it goes from SP to SP);

- Non-associated mode: the signalling channel follows a different path. (It
then uses several STP); the latter is itself divided into dissociated mode and
quasi-associated mode. In dissociated mode, the messages can use a large
number of STP and can follow different paths. In quasi-associated mode
however, the routing is predetermined with a maximum of two STP.

1.1.3.3. Mobile networks

The GSM network (global system for mobile communication)

This is the basic mobile telephone network. The functions are the same as
before, but this time the subscribers to be connected are "mobile". In addition
to mobility, it offers services such as short messages, prepaid cards,
information services and voice mailbox, etc.
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Figure 1.8. SS7 signalling network

Access network

At any given moment, a subscriber belongs to a "cell", a zone covered by an
aerial capable of offering a certain number of radio channels to the users of the
cell (the equivalent of the subscriber concentrator). The subscriber equipment
is the mobile station (the "mobile" or MS). The mobile subscribers are
connected to the network via a radio link with the pilot station of the cell in
which they are located, the BTS (base transceiver station). A control station,
the BSC (base station controller) supervises several BTS.

The core network

The BTS are connected to a mobile switching centre (MSC) which is the
equivalent of the subscriber centres and toll exchanges. The main difference
between an MSC and a fixed network switch is that the MSC takes into
account the impact of subscriber mobility (location, change of radio coverage
zone, etc.). The MSC carries out the functions of control and connection of the
subscribers located in its geographical zone. It also acts as a gateway between
the fixed network and the mobile network, or between mobile networks, for
incoming calls for which the location of the called party is not known. An
MSC which receives a call from another network, and which routes this call
towards the MSC where the called subscriber is in fact located, is called the
gateway MSC (GMSC). To do this it consults the location database, the HLR
that we describe below. In this way a fixed subscriber of the PSTN, or a
mobile subscriber from another distant mobile network, can communicate with
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another mobile subscriber of the PLMN (public land mobile network),
whatever his/her instantaneous location may be.

Subscribers may move from one cell to another, even during a call (this is then
referred to as a hand over), for the radio system continuously tracks their
location. Subscribers have a home location: the HLR (home location register)
is the system that holds information relating to its home subscribers (identity,
number, subscription options, services, etc.). In addition to this static data in
the HLR are added dynamic data, such as the last known location of the
subscriber, which enable routing to the MSC where the subscriber is in fact
located. Finally, it is the VLR (visitor location register) which updates the
data relating to subscribers "visiting" its zone, and which notifies the HLR.
The VLR is usually included in the MSC.

BTS = Base Transreceiver Station
BSC = Base Station Controller
VLR = Visitor Location Register

MSC = Mobile switching Center
GMSC = Gateway MSC
HLR = Home Location Register

Figure 1.9. Mobile network

The GPRS and UMTS networks (universal mobile telecommunication system)

In the basic mobile network, GSM, the bit rate is 13 kbit/s for the radio part
between the station and the BSC, and 64 kbit/s (56 kbit/s) after transcoding
between the BSC and the rest of the network. Mobile networks such as GPRS
(general packet radio system) and UMTS are evolutions which offer higher bit
rates (144 kbit/s, 384 kbit/s and 2 Mbit/s), and can be used for communication
in packet mode.

The GPRS network should be seen essentially as an evolution of the existing
GSM network. It basically adds to GSM the possibility of sending data in
packet mode. The bit rate can reach 144 kbit/s. The voice service uses the
GSM network, while the data services are forwarded to the packet network
(e.g. the Internet) via the GPRS network. Two new functional entities are
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involved: the SGSN (serving GPRS support node) which transmits data
between the mobile terminals and the mobile network, and the GGSN
(gateway GSN) which interfaces the mobile network with the data network.

In the UMTS network, the whole network evolves. A distinction is drawn
between the radio part, RNS (radio network subsystem) and the core network
part, CN (core network).

The RNSs form the access network. They include as before radio resources,
but with higher bit rates in this case, and the RNC. The access network
(UTRAN, i.e. UMTS terrestrial radio access network, for the general public
network) consists of radio resources as before (but with a higher bit rate, the
BTS becomes Node B), and of the RNC (radio network controller) which
controls all the B Nodes of the UTRAN.

The core network is quite similar to that of the GPRS, but a distinction is now
drawn between two domains: the circuit switched domain (CS) and the packet
switched domain (PS). the MSC and GMSC are again in the CS. In the PS
their equivalents are the serving GPRS support node (SGSN) and the GGSN
(gateway GSN). Finally the common elements are also present, such as the
HLR and the authentication centre.

A UMTS mobile is capable of communicating simultaneously via both
domains.

Figure 1.10 shows the network and its functional components.

Figure 1.10. UMTS network
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1.1.3.4. The internet network 

This is a packet switched network. As explained earlier, there is no setting up 
of a channel strictly reserved for a call. This was initially justified by the fact 
that, when computers exchange information such as files, on the one hand the 
actual information exchange is brief (and lasts only a short time compared 
with the whole session), and on the other hand the type of data exchanged is 
conducive to division into packets, with few real time constraints. This enables 
a high degree of multiplexing, i.e. the mixing of packets of several calls on the 
same medium, with a bit rate at least equal to the sum of the call bit rates. 

The IP network (internet protocol) is the interconnection of several 
subnetworks or autonomous systems (AS). 

A subnetwork interconnects terminals, servers and computers. In most cases 
this is a LAN (see later). A subnetwork is interconnected with the other 
subnetworks via a port router. Each equipment has an address, which identifies 
it in the subnetwork (the subnetwork is defined by a specific prefix). Unlike a 
telephone-type network, the addresses have no hierarchical structure (so that 
an address does not necessarily enable the identification of the terminal). The 
routers have a partial view of the overall network and exchange information 
with neighbouring routers whose addresses they know. (Clearly the tables 
would become gigantic if each router had to know the whole of the network.) 
The updating of the address tables is moreover one of the problems that these 
networks must handle. 

A router has two main functions: the routing of the packets and forwarding. 

The routing ofpackets 

The router has a routing table which contains a more or less detailed 
knowledge of the network topology. It is from this table that it calculates the 
route to be followed by a packet for a particular destination. IP routing itself is 
an enormous subject. As already indicated in the section on network 
architecture, the IP network ensures reliability of communication thanks to its 
many interconnections. However, this involves on the one hand dynamic 
routing capacities, to bypass failures and congestion, and on the other hand the 
need to control and optimise the available bandwidth, and route lengths. Today 
the internet transports all sorts of information: files, messages, pictures, voice, 
video, etc. Its evolution in terms of size and in terms of diversity of services, 
thus tends to strengthen the need for hierarchy in routing, and the concept of 
differentiation of the service between packet flows (Intserv and Diffsew type 
priorities for instance). 
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In this work we will consider an example of the problem of multiplexing
traffic of different types using packet switch technology.

Packet forwarding

On the basis of the packet header, the router transfers the packet from one of
its input ports to the appropriate output port (in accordance with the result of
route calculation). Inside the routers problems of congestion and waiting, etc.,
may also arise. We will also look at these issues.

Communication protocols

A major IP packet network such as the Internet is based on three main
protocols: TCP (transmission control protocol), UDP (user datagram
protocol) and RTP (real time transport protocol, associated with RTCP: RTP
control protocol).

The role of TCP is to supply a reliable data supply service to the application
programmes, by drawing on the connectionless, unreliable packet supply
service provided by IP. This is an end-to-end protocol. TCP is a connection-
oriented service which begins by establishing a virtual (bi-directional)
connection between two applications. The data are then transmitted on this
connection. The sequencing is guaranteed and there is no loss. TCP resends
the packets if an error occurs and adjusts the bit rate if congestion occurs, but
this does not guarantee delays and makes it incompatible with real time data
transport.

UDP is the transport protocol used by RTP to process real time flows (voice,
video). UDP is a protocol without error correction, without bit rate reduction,
but also with no guarantee that the packets are delivered into sequence. RTP
enables the adding to the packets concerned of time markers and sequence
numbers. RTCP, via periodic transmissions, offers possibilities of controlling
RTP flows. RTP and RTCP are application level protocols.

Finally, as IP has evolved towards the simultaneous transport of all services,
both real time and non-real time, and with a quality of service guarantee, new
functions have been added: the introduction of the concept of priority amongst
packets (Intserv, Diffserv), and the possibility of creating through the networks
tunnels (predefined paths, tunnelling function) by making use of evolved
protocols such as MPLS (multiprotocol label switching).
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Connections to internet

We have just explained that the internet network is in fact the interconnection
of several "subnetworks". We will look in detail now at the various modes of
connection and interconnection.

The terminal is connected via an access network, which for a residential
subscriber will for example be the telephone network. In this case the user
terminal will be equipped with a modem to access via the telephone network
the point of presence (POP) of an internet access provider or internet service
provider, which will then use another modem to connect to the internet core
network. As the bit rate of the conventional telephone network is very limited
(56 kbit/s, 64 kbit/s, 128 kbit/s), the user may also access the internet network
via cable or an ADSL (asymmetrical digital subscriber line) link. In this case
the bit rate is several Mbit/s and connection to the Internet network is direct
and permanent, through wired access networks or DSLAM (digital subscriber
line access multiplexers).

At subnetwork level, as some of the subnetworks are interconnected and thus
open to the external world, the problem arises of protecting the internal
information of intranets (private subnetworks) against leaks or external
attacks.

POP = Point of Presence
DSLAM = Digital Subscriber line Access Mux
PSTN = Public Switched Telephone Network

ISP = Internet Service Provider
LAP = Internet Access Provider
GK = Gate Keeper

Figure 1.11. The internet network
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This is the role of the fire wall and gate keeper functions at the gateway
between an intranet and the internet. The fire wall will restrict the authorised
types of connections depending on various criteria, for example by authorising
a file transfer protocol transaction (FTP) only in the Intranet to Internet
direction. In the same way, a proxy server can test the nature of a request
before authorising connection. Figure 1.11 illustrates the various
configurations.

1.1.3.5. The next generation network (NGN)

The next generation network represents the evolution of telephone networks
and data networks towards a single network with a packet switch technology
core network, carrying the data corresponding to the range of services offered
to users (voice, video, files, messages, etc.). The separation of the control and
transport planes is a key element of this architecture.

MGW = Media gateway
MGC/Softswitch = Media Gateway Controller/ Softswitch

Figure 1.12. The basic structure of the NGN

The NGN introduces the flexibility that enables operators to adapt their
activity and their network to changes in technologies and changes in the
market. Operators with two types of network, telephone and data, can
ultimately merge them and operate a single multi-service network. The NGN
has a layered structure (terminal, access, transport, adaptation, control,
application) with open interfaces enabling the combination of the various
elements. The fact that the network medium part and the control part are
separate means that they can evolve separately. The transport layer can be
modified without impacting on the control and application layers. The packet
transport may be either IP or ATM.
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The NGN architecture is based on two main entities: the media gateway
(MGW) and the media gateway controller (MGC), also known as the
Softswitch (of which the MGC then becomes a function).

Figure 1.12 provides an example of an architecture containing the two
components.

The telephone subscriber terminal is connected to the access switch (access
layer). The media gateway (adaptation layer) carries out the conversion at
transport level between the coded information at 64 kbit/s and IP or ATM
packets. The signalling, like the data, are exchanged via the packet network.
The media gateway controller acts as the call server, and controls the MGW to
set up the calls.

The setting up of the call between two subscriber terminal equipments is
performed via the IP (or ATM) network under the control of the origin and
destination media gateway controllers. Schematically, IP (or ATM) addresses
are exchanged between the gateways, and there is then a request to set up a
circuit call at the extremities on the telephone networks, followed by the
exchange of the information via the telephone and the IP network. (We will
look in detail at an example of NGN call set-up in the chapter on
Methodology.) This is where use is made of signalling no. 7, conveyed after
conversion on the IP network by a transport layer of the same level as TCP
and UDP: SCTP (stream control transmission protocol) has been defined by
the SIGTRAN group at IETF (see Chapter 2 on Quality of Service and
standardisation groups).

The control protocol used by the MGC to drive the media gateways is either
MGCP or MEGACO/H248. MGCP is a U.S. protocol, and MEGACO is the
IETF H248 protocol of ITU-T (see Chapter 2).

If two MGCs are to dialogue with each other, for example to retrieve the IP (or
ATM) addresses of a media gateway controlled by another MGC, they
exchange signalling by means of the following protocols: SIP (IETF), i.e.
session initiation protocol, or BICC (ITU-T), i.e. bearer independent call
control.

The evaluation of the call set-up time in this type of network will be
considered in detail as an example later in this book (see Chapter 10).
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More generally, the NGN is intended to serve all types of telephone accesses,
such as analogue telephones, ISDN telephones, IP telephones, PCs, private
networks and ADSL lines.

These equipments are then either directly linked to the transport layer, or
interfaced by means of a media gateway that carries out several functions.

Figure 1.13. The NGN and its access interfaces

Conventional subscriber switches and transit switches meanwhile are
interfaced by a trunk gateway (TGW). The connection function may also
evolve to become the access gateway function (AGW) which directly
interfaces the local loop, or in the same way a private switch. DSLAM (DSL
access multiplexers) which group together ADSL lines carrying data, are also
interfaced by an AGW. This demonstrates the considerable advantage of the
ADSL line, which provides access to high bit rates for data networks. An
analogic subscriber can also be directly connected to a residential gateway
(RGW). An IP telephone on the other hand is connected directly to the IP
transport layer (in which case the MGC supports H323 or SIP signalling), and
it can access multimedia services offered by an application server such as
MMAS (multimedia application server), etc.
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Finally, the NGN network is also intended to interface both with fixed access
and mobile access. As in the case of fixed telephones, the GSM circuit
switches are then replaced by NGN access solutions.

Figure 1.13 shows some of the possibilities mentioned above.

To conclude this introduction to NGN, we should stress the fact that in this
case, the core network (IP, ATM or IP/ATM) will support an extremely wide
range of services. This raises the problem of managing packet traffic of very
different types, and in particular that of the simultaneous transport of traffic
types with strong real-time constraints (such as voice) and traffic types with
very loose constraints (such as data files). This type of problem will also be
considered in the rest of this book.

1.1.3.6. Private networks

The large networks we have just presented tend to be public networks. But
private organisations, such as large companies and universities, organise the
communication between their employees and their computer equipment by
means of private networks.

PABX (Private branch exchange)

Private telephone networks such as PABX are quite similar to public networks.
They are simply reduced to a minimum level of equipment for a small number
of subscribers (ranging from a few dozen to a few thousand), but also offer
facilities specific to companies such as an internal directory, conferencing,
transfers, automatic callback, voice mail, call presentation and call filtering.
Increasingly, these services are now also available on the public network.

LAN (Local area network)

Private computer networks, such as LAN, are intended to interconnect
computer equipment, and now offer many facilities thanks to IP technology
(intranet), such as file transfer and e-mail, but also voice and video image
communication, real-time sharing of files and presentations, so making
possible the holding of net meetings, etc.

LAN structures are of various types, the most common being the bus, star or
ring structure. Interconnection of computers is carried out using standard
mechanisms such as CSMA or token ring.
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CSMA-CD (carrier sense multiple access with collision detection)

This is the mechanism used in ethernet networks. In this case each terminal
wishing to transmit "listens" until no other terminal is active. Because of
propagation times and minimum recognition times, collisions may occur, thus
limiting effective bandwidth relative to the physical bit rate of the bus.

Figure 1.14. LAN ethernet

t

Figure 1.15. LAN token ring

The token ring

The token ring mechanism consists of circulating on the ring one (or more)
tokens giving the right to transmit. The terminal that wishes to transmit takes
hold of a "free" token as it passes, and associates it to its message after
marking it as "busy". The terminal releases the token when it returns, and puts
it back into circulation on the ring. It should be noted that it is the circulation
of the token that results in the ring configuration of the network: the physical
structure may be either a star or a bus.

The hub or switch

This is an evolution of the bus and ring structure which makes it easier to
modify the number of terminals connected. The hub is a simple system of
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centralised connection, and the switch acts as a switching matrix. In physical
terms the structure becomes a star structure, but in logical terms the
communication continues to be of the bus or ring type.

Figure 1.16. Ethernet/token LAN with a hub (or a switch)

Having presented the essential characteristics of telecommunication networks,
we can now consider what will be the fundamental object of our study: traffic
flow, and the associated performance, on the networks. With this aim in mind,
we will begin by introducing the basic concepts of traffic and quality of
service.

1.2. Traffic concepts

1.2.1. Erlang concept

The traffic of a telecommunications network is the volume of information
transported or processed by the network. The information may consist of data
relating to information exchanges between users (voice, images, e-mail, files,
etc.), but also of data relating to exchanges of information between network
"control machines" (signalling data on a circuit network, routing information
on an IP network, and operating data, etc).

Clearly, the more frequent and the longer the exchanges between users and
machines, the more resources are needed for traffic flow. For example, if a
network receives over a given period permanent demand of 1 call per second,
with each call lasting for 3 seconds, the network will continuously have N=3
calls coexisting. After a transient state, corresponding to the time needed to
reach the expected load level, each end of call (corresponding to the outgoing
process) will be replaced by a new start of call (corresponding to the incoming
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process), thus maintaining the level of load of the network during the period
considered. The phenomenon is described in Figure 1.17.

Figure 1.17. Simultaneous calls and the notion of traffic

To simplify, we have represented regular incoming flows and constant call
times, but the phenomenon of course remains the same with arrivals and
service times which vary around average values.

The average number of calls simultaneously in progress N is termed traffic
intensity. The measurement unit is the erlang, denoted E, from the name of the
distinguished Danish engineer A.K. Erlang (1878-1929) who established the
first fundamental laws of traffic theory.

This concept is of course fundamental, as it defines the basis for sizing the
network. So if a resource (a radio circuit, digital circuit, virtual circuit, bit
rate, etc.) is associated with each of the N calls, a network with a capacity of
at least N resources will be required to carry this traffic. The precise number
of resources to be provided will depend on the law of arrivals and the service
law. And this is exactly what enables the calculation of the famous Erlang
formula in the case of Poissonian arrivals, i.e. arrivals conforming to a Poisson
law. More generally, in order to be able to extend this concept to all types of
telecommunications services, and all types of resources used, the following
definition has been adopted: a set of identical resources is said to carry at a
given instant a traffic of N erlangs when N of its units are busy. This
definition covers both the concept of circuits and that of bit/s.

Formally, traffic in erlangs is denoted A, and if the number of busy resources
is designated as n(t), this gives the following for a period of observation T:



Telecommunication Networks and Traffic 27 

In more concrete terms, if one assumes a sufficient number of resources to 
carry all the requests presented, and if we call 2, the mean number, constant, of 
requests per time unit and t ,  the average occupation time of the resource by 
each request. This gives: 

A.K. Erlang demonstrated the following fundamental result, called the Erlang 
loss formula, which gives the probability of rejection (B) of another request, 
because of a lack of resources, for a traffic A offered to N resources: 

The traffic carried is: 

This formula also expresses the capacity of t,.e system considered to handle 
the traffic offered to it. As the reality of a network is far more complex than 
this basic model, we will also have to deal with phenomena such as waiting, 
jitter, etc. But it will always be a matter of evaluating the resources necessary 
to handle traffic offered in acceptable conditions (loss, delay, etc.). 

1.2.2. Traffic offered, traffic handled 

This leads us to consider a fundamental distinction which is at the base of our 
performance study activity: the concept of traffic offered and the concept of 
traffic handled (carried). The purpose of a network and of any 
telecommunications system is to handle if possible all the offered traffic as 
efficiently as possible (very low response time and transmission time, for 
example). In point of fact, it will not always be possible to accept all requests. 
In some conditions of abnormally high loads (in the event of a disaster for 
example) the systems must reject all requests, if only for self-protection. We 
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will deal with this situation of overload. But also, leaving aside these extreme 
situations, it is clear that by the random nature of traffic ofleered (the level of 
demand varies randomly) and in order to optimise resources, there will also be 
a non-zero probability of a lack of resources and thus of demand rejection. The 
traffic handled will therefore generally be different from the traffic offered. 
The rules governing the relationship between these two values form the 
subject of quality of service standards. 

1.2.3. Quality of service 

The criteria used to determine rejection rates, or allowable response times, 
which are generally specified in international standards, are the bases of the 
concept of quality of service (QoS). Fundamentally, quality of service is 
related to the perception the user has of the network’s response to hislher 
request. And it is important never to lose sight of this fundamental fact, for it 
is this which guides economic efficiency, and not performance for 
performance sake. However, achieving this objective is inevitably a complex 
matter, because of the diversity of requests, the diversity of the equipments 
involved, and the complexity of the networks used. Quality of service as seen 
by the user will in fact be the result of a coherent set of ‘‘performances” of all 
the network elements, performances which are also defined in international 
standards. 

We have devoted a chapter to this issue (see Chapter 2), which is of course the 
motivation on which our efforts are focussed: evaluating the performances of 
equipments and determining the necessary and sufficient resources to ensure 
that the specified quality of service is finally achieved. 

1.2.4. Loadprojiles, load A and load B 

During a particular day demand may disappear at certain times and then 
reappear, with different load levels. This occurs in telephony for example with 
morning traffic, the low intensity hours at midday and then afternoon and 
evening traffic. This is also the case on data networks (internet traffic of 
professional users during the daytime, and of residential users in the evening). 
The concepts here are peak hours and low intensity hours, which periods may 
not necessarily be the same for different networks and even for different parts 
of the same network (different time zones, different types of service 
supported). We will then speak for a network or part of a network of the load 
(or traffic) profile. Figure 1.18 sets out a typical profile example based on 
observations on telephone exchanges. 
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Traffic profile
Erlang and CA/S (Call attempts/second)

Hours of the day

Figure 1.18. Telephone traffic profile during a day

The peak hours can be seen to be 0930-1130 hours, 1430-1800 hours and
1830-2100 hours, and of course for this type of traffic and the network
considered, the off-peak hours at night and from 1230-1330. During these
periods, variations in call time are also observed. Call times tend to increase in
the evening: there are just as many erlangs even though the number of calls
per time unit, CA/s (call attempt per second), is the lower. This is linked partly
to the type of call made at this time of day (residential calls) and partly to the
charging policy on the network observed, which favours this type of call in the
evening. The latter parameter is a key element which the service supplier and
network operator will use as the basis for making the most efficient use of
their resources.

In addition to these variations depending on the time of day, substantial
variations are also observed during the year, particularly at the time of
important events such as national holidays, religious holidays, etc.

Clearly the network must be capable of responding adequately to the demands
placed on it. It is for this reason that a distinction is drawn between "load A"
and "load B". This distinction will be made more explicit in the chapter
dedicated to quality of service. We will merely note at this point that load A
corresponds to the most frequent situations, and that the quality of service
perceived by the user must be as high as possible. For example if we refer
back to our figure, and if this profile corresponds to a "normal" day for our
network, load A will correspond to the traffic at peak hours. A detailed
definition of a peak hour is given in ITU recommendations. Even if the nature
of the traffic changes with the new packet type services, the concept remains
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valid (though periods may be different). Load B on the other hand corresponds
to rare but foreseeable situations in which quality of service may be less good
while remaining acceptable for the user. Clearly these recommendations
reflect the inevitable need to optimise resources.

1.2.5. Stationarity

In the two previous situations, we have automatically assumed a certain
"stability" in the traffic during the periods considered. It is assumed, in order
to size and evaluate the quality of service, that there is a certain stability in the
characteristics of the demand arrival processes over given periods of time.
This property is known in mathematical terms as "stationarity".

In mathematical terms, a process is said to be stationary in the "strict sense" if
its time distribution function is independent of any translation in time. It will
in many cases be sufficient to consider stationarity in the "wide sense": in this
case it is sufficient that the first two moments of the variable are independent
of all translations in time. In this case one can state an important property: the
expectation of a variable X(t) is a value m, independent of the time, and is
written:

Thus the measurements over time of the mean traffic intensity during a
stationary period, as represented in the traffic profile Figure 1.18 above, do
indeed indicate the traffic flow during the day. During the day traffic levels
change relatively slowly on the time scale of the length of a call (a few
minutes for example in telephony), and present the necessary stationarity
characteristics over periods of around one hour. The periods and time scales to
be considered depend heavily on the services used, e.g. for internet type traffic
in which the call length tends to be several dozen minutes.

1.2.6. The concept of busy hour call attempts (BHCA)

As already indicated, the traffic to be handled by a telecommunications
network cannot be specified solely in terms of traffic intensity in erlangs. This
does indeed well describe the phenomenon of occupation of the elements in
charge of transporting user information. But allowance must also be made for
the level of loading that this demand generates on the network control devices:
call set-up requests or session set-up requests, signalling network loading, etc.
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This load is expressed in terms of number of requests per time unit. In
telephony the unit is the number of busy hour call attempts (BHCA). A call

attempt (CA) is an attempt to set up a call which may be successful or not
(conversation or incomplete dialling, called party busy, no response, etc.), its
mean duration is calculated accordingly. This concept can easily be extended

to include any other type of service request, in which case it becomes busy
hour events.

In accordance with the definitions already given concerning the Erlang

concept, there is a basic relationship between these two parameters, i.e. traffic

intensity in erlangs and BHCA load. The formula is:

where τ is the mean duration of the request in seconds.

For example it is therefore said that a system must be able to handle a traffic

of 10,000 erlangs and 360,000 BHCA (i.e. 100 CA/S, call attempt per second),
for call attempts with an average duration of 100 seconds.

This terminology of busy hour calls attempts can of course be replaced by
equivalent terms for different types of service, but the concept remains valid.

It is important to bear in mind that the concepts are related to the "user" who
sends or receives "calls". Similarly at user level it is probably the case that
stationarity will continue to be observable over time periods that are easily

humanly perceptible (which will not necessarily be true at the level of

messages, packets, etc.). In this respect, it is impossible to overemphasise the
importance in all traffic and performance studies of never forgetting the
"user", who is the original source of the traffic and should also be the main
focus of the studies.

In practice knowledge of three parameters is necessary: erlangs, BHCA, and
call duration. On the one hand, there is not always a simple relationship

between the specified load levels. For example, for B-loading the specification
is usually a greater increase in BHCA than in erlangs (there are more attempts,

but they are less successful), resulting in a shorter time per attempt.
Furthermore, the sizing of the various network resources is mainly based on
one or other of the parameters, depending on the resource in question. It is
therefore clearer to express the capacity of the resource in the unit which best
characterises it.
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1.2.7. The user plane and the control plane

We have shown above that the resources of a network are sensitive to different
traffic parameters, particularly if the resources are in fact control elements, or
information transport elements that are in the process of being communicated.
It is in this context that the concepts of user plane and control plane need to
be introduced. The user plane consists of resources carrying "useful"
information at user level (voice, image, data, files, etc.). The control plane will
consist of resources in charge of setting up calls, signalling exchanges,
observations, network management and network operation.

Clearly, the user plane will be primarily concerned with load in erlangs
(erlangs of calls, of kbit/s, etc.) and the associated resources will be mainly at
the transport level. In the same way, the control plane will be mainly
concerned with BHCA demand (calls, transactions, etc.) and the associated
resources will mainly be handling processors and signalling links. But as
indicated earlier in the presentation of the networks, it is just as clear that
there are many interactions between these different levels. For example, the
packet network will be concerned at the level of its links by the flow of user
packet traffic and by the transport of signalling packets (e.g. NGN network).
In the same way, the control processors of a voice network are concerned not
only with the setting up of calls but also by the number of erlangs of
conversation to be charged. Any effort to size and assess performance will
therefore require first the characterisation of the traffics in the different
planes, in terms of erlangs and request rates, and then precise characterisation
of the resources associated with handling the different types of traffic.

1.2.8. Characterisation of traffic

The resources necessary for satisfactory traffic flow can only be determined if
the characteristics of the traffic are defined, on the one hand in terms of
services, (call types, bit rate characteristics) and, on the other hand, in terms of
use (penetration of subscribers) and of flow distribution over the different
branches of the network. This leads into the concepts of service
characterisation, and then into those of traffic mix and traffic matrix. These
three concepts, which are very general but essential, apply just as well to data
traffic as to voice traffic, video traffic, etc., and also at the level of a network
node or that of any larger subsystem forming part of the network.
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1.2.8.1. Characterisation of services

The great variety of services now offered by networks necessarily calls for a
great variety of resource needs. This is particularly true in that, as we saw
earlier in the presentation of switching technologies, it is necessary to
constantly strive to make optimum use of resources in view of the real needs
of each service. In traditional circuit networks, the characterisation of a
service such as telephony consists of a call arrival law (usually Poisson), a call
duration (exponential law with a mean value in the order of a few minutes) and
a constant bit rate (e.g. 64 kbit/s). This means that it is easy to evaluate the
resources used: in this case, as many 64 kbit/s channels as are indicated by
applying the Erlang formula. The same voice service in a packet network will
make it necessary to distinguish between coding with or without silence
suppression, and thus between packet flows (of fixed length) at variable bit
rate (and thus with an inter-arrival time that is to be defined) or at constant bit
rate. If furthermore we consider e-mail type services, or more generally web-
associated services, we will not only find flows of variable bit rates but also
packets and flows of packets with highly variable lengths, with laws (packet
length, flow arrival times) to be defined. Finally, in a multimedia environment,
the subscriber during the same call initialises several sessions with different
characteristics, depending on the nature of the information desired (images,
voice, files, etc.), one very simple example being that of the netmeeting
(conversation with images of the participants, whiteboard and sharing of
powerpoint type presentations between several sites).

Thus, in addition to the call concept, we need to introduce the concepts of
sessions, flows and packets, with the characteristics of the associated traffic
laws. This characterisation is classically represented by the diagram in Figure
1.19, in which appear various levels: call, session, flow and packet.

Figure 1.19. The flows of a given service observed at different levels
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1.2.8.2. Traffic mix

The telecommunications networks we are studying, as shown earlier, support
not only very varied services but also very different user categories with
different user profiles. We therefore draw a distinction between professional
users, residential users, and small and large business users. Depending on
whether the advanced technology equipment level of the local network is high
or low, in the geographical zone considered, and on the degree of interest
shown by users in these technologies, users will make more or less use of the
various services. The concepts are then those of penetration rate and the
service utilisation rate.

It is on the basis of these characteristics that a traffic mix will be defined. For
each user category will be determined the penetration rate and the service
utilisation rate of each type of service (telephone calls on fixed or mobile
network, VoIP session, video, web, on the packet network, etc.). Then, based
on the penetration rate and utilisation rate of each of these services, for each
user category, and the proportion of users in each category, it is possible to
determine the traffic mix of an average user. For example, an average user
may have a traffic of 0.1 E in mobile telephony, 0.1 E in telephony on IP, and
0.2 E of web, etc., with an associated number of call attempts and sessions.
Another essential task will be to characterise each service, or group of
services, in terms of network resource utilisation: circuits, constant or variable
bandwidth, for bothway relations or not. This will lead to the characterisation
of the "variability" of flows of certain services in terms of peak flow, average
flow, variance, etc., and by means of more subtle approaches involving
distinctions between levels (sessions, packets, etc.), to deal with problems of
very high variability such as "self-similarity". We will discuss in this book
how to deal with these typical aspects, particularly for IP packet networks.

These mixes are representative of the situation at a given moment and at a
given place. These are references which always need to be updated in view of
changes to the networks and based on observation. Clearly the mixes may
differ markedly between countries with more or less developed
telecommunication networks or between countries which are more or less
industrialised for example. We will give precise examples in subsequent
chapters.

1.2.8.3. Traffic matrix

As we explained above, a telecommunications network is a structured set of
nodes and links enabling the transport of information between users. Its
efficient management from the viewpoint of traffic flow therefore requires, in
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addition to a knowledge of traffic mixes, a knowledge of the distribution of
traffic flows between the various directions, and a knowledge of traffic
affinities between the various origins and destinations. The role of the traffic
matrix is thus to define flow distribution at the level of the nodes and at the
global network level.

1.2.8.4. "Node" level matrix

A switching node on the network basically receives traffic and transmits
traffic. Depending on its position in the network, at the frontier or at the heart
of the network, its role will tend to be an access function or a transit function.
An access node will for example provide access to the rest of the network for a
set of users: calls to the network and calls from the network. It will also be
able to connect subscribers locally. Because of these functions we attach to it
the concepts of originating traffic, terminating traffic, and local traffic. On the
other hand, in the core network, the transit node will switch traffic between
inputs and outputs without any real concept of originating, terminating or local
traffic. In this case the concepts considered are thus those of incoming traffic
and outgoing traffic,,,o  more generally the concept of transit traffic.

In this respect it is important to note that these concepts of incoming and
outgoing traffic are clearly attached to the concept of call set-up request,
depending on whether the request goes towards, or comes from the network,
and not on the direction of information transmission during set-up or during
the call. As already indicated, it is the characterisation of the service at bit rate
level that will determine the direction of transfer of the information being
communicated (e.g. for a unidirectional or bidirectional relation). This point is
all the more important in that IP type services often involve bit rates that are
very different between the "uplink" direction (from subscriber to network) and
the "downlink" direction (network to subscriber). This characteristic is taken
into account by the ADSL line, as indicated earlier.

Clearly the resources utilised for the set-up of a call, and the traffic flow
during the call, are not the same in the case of a local call, an incoming call or
an outgoing call (the analyses, the routing and the interfaces for example are
all different). Any evaluation of the resources necessary for the handling of
these types of traffic will therefore require a detailed description in the form of
a matrix. Furthermore, and particularly at the level of a user connection node,
there are important relationships between the various flows and also between
the flow in erlangs and the flow in calls. The vocabulary must be precise in
order to avoid any confusion for example between subscriber traffic and



36 Communicating Networks: Traffic and Performance

switched trafficc. T illustrate this point, the overall representation and
vocabulary of Figure 1.20 are usually adopted.

TUD : originating user traffic (departure) TD : outgoing traffic (departure) TO : outgoing traffic

TUA : terminating user traffic (arrival) TA : terminating traffic (arrival) TI : incoming traffic

TL : local traffic

TT : transit traffic

Figure 1.20. Traffic matrix of a node

The corresponding traffic intensities are usually expressed in erlangs. We
obtain the following expressions:

User (subscriber) traffic:

which characterises the total activity of subscribers in erlangs.

Network traffic:

Traffic switched by the node:

which is the load to be handled by the node:

Subscriber traffic switched:

TD + TA + TL = TUD + TUA - TL, which characterises the number of
subscriber calls to be handled. Internal traffic (i.e. local traffic) gives rise to
only one call between two subscribers. Care must therefore be taken, in the
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event of a large proportion of local traffic, to evaluate correctly the number of
calls generated by subscribers. In other words, for the same subscriber traffic
value in erlangs, the number of calls to be processed at node level will be
lower the greater the proportion of local traffic.

Network switched traffic:

TD + TA + TT = 77 + TO - TT, which correspond to the same characteristics
as at subscriber level. Note in particular that a pure toll exchange has to handle
only half the total of the incoming traffic and outgoing traffic.

The following expressions are also generally used:

TL = / x Ts, where / is the percentage of switched traffic giving rise to local
(internal) traffic.

TT = t x Ts, t is the percentage of switched traffic giving rise to transit traffic.

From the above expressions the following can also be obtained:

A basic relationship which is expressed only on the basis of a constant
connection capacity (total number of subscriber access connection links and of
network connection links), a switching node will handle more subscribers the
less network traffic and the more local traffic there is, and vice versa.

This is why node capacity is often expressed as switched traffic capacity rather
than as subscriber and network traffic.

Separation of control plane and transport plane

The relations we have just set out must be seen as applying independently of
the physical reality or otherwise of the transport connections in the node
considered. Whereas traditionally in the telephone network the concepts of
calls, processing load, and erlangs on network links are directly associated,
this is not the case for next generation networks (NGN). An MGC can control
several media gateways (e.g. several trunk gateways), and will thus handle the
control traffic (in calls/second) corresponding to the load in erlangs on links
which are not connected to it. This clearly demonstrates the impact of the
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separation of the control and transport planes, an essential characteristic of the
NGN. In practice, this means that the construction of the control flow matrix
provided earlier, and the establishment of the traffic mixes, must be carried
out on the basis of the study of a broader configuration corresponding to a
network subsystem. In this case we must consider a network matrix, as in the
case of the global study of a network.

1.2.8.5. Network level matrix

In a network, the nodes are connected by links that must be sized according to
the traffic they must handle. It is therefore necessary to define a traffic matrix,
which indicates the volume of traffic exchanged between each pair of nodes.
Generally speaking, the matrix is not necessarily symmetrical (readers will
recall the distinction drawn earlier, establishing symmetry in terms of traffic
offered and not in terms of occupation of circuits or bit rates).

The traffic matrix, once obtained, will enable the determination of the
resources to be allocated to each link, and perhaps also the study of the
principles of flow routing (if a flow from A to B is too low, it may be best not
to open an A-B link, but instead to carry out the transit of the corresponding
flow to another node C: this modifies the matrix which is used for sizing, by
causing the disappearance of the A-B flow).

In point of fact, the traffic matrix corresponds to the flows to be handled
between each pair of nodes, whether there is a link between them or not.

Furthermore, as we saw earlier, a matrix of this sort in a network such as the
NGN may also form the basis for the construction of the control flow matrix at
node level.

The construction of a network matrix consists of transposing the organisation
of the flows of an actual node network (A, B, C etc.), as seen above, into a
mathematically coherent matrix with the form shown in Table 1.1.

Each element Xij of the matrix gives the value of the traffic flows (in

calls/second or in erlangs, packets, etc.) circulating from node i to node j. The
sums, by rows and by columns, represent the outgoing traffic (0) of node i, or
the incoming traffic (I) of node j. Overall coherence (T) must of course be
ensured at the level of the whole network.
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Table 1.1. Traffic flows matrix
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The valuation of the elements in the traffic matrix is usually quite a difficult
operation. In the case of an operational network, on which all measurements
are possible, it could be constructed on an experimental basis, after elaborate
measurement campaigns (it is necessary, at the output from each node, to
discriminate between requests and classify them according to the final
directions they are requesting). In the case of a network that does not yet exist,
or is being transformed, the situation is even more complex. On the other
hand, it is often possible to obtain an overall evaluation of the total traffic
transmitted by a network node, for example, by estimating the global activity
of the users connected to it.

It is then a matter of distributing these traffics over the various possible
directions. Various methods have been used. The gravity flow models
postulate an affinity between the nodes that depend on their respective
distances. This is a model that may be justified in the case of a long-distance
network (an international network, for example), but which would be
unrealistic in the case of an urban network. In that case it is then possible to
define on an a priori basis affinity coefficients, and distribute the flows on a
pro rata basis.

The simplest approach will of course consist of implementing the Kruithof
method, which distributes flows between nodes in such a way that the global
traffic constraints are complied with on each of the incoming and outgoing
traffics of each switch. This method will be presented in Chapter 9, "Models",
in connection with forecasting the growth of a network, but the method may be
applied for example by beginning from an arbitrary initial matrix.
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2 

Quality of Service and Performance 

This chapter presents the fundamental notions of quality of service (QoS), and 
the attached performance parameters, for telecommunication networks and 
equipment. These notions sustain all the activity in performance evaluation of 
telecommunications systems. Actually, the network provider intends to offer, 
through a set of equipments, communication services with a quality level 
corresponding to the expectations of the customers. These objectives are 
expressed by means of quality of service parameters, and translated into 
performance parameters of the network elements, more generally defined by 
international standards, or specified in invitations to tender issued by network 
providers to manufacturers. 

The ability, for equipment, systems and networks architectures to conform to 
these parameters and their evaluation, are the concern of this book and of the 
tools that are presented in the following chapters. The presentation of the 
concepts and of the related parameters is based upon the standards in use, 
briefly summarized in this chapter. However, the notions we intend to develop 
are of a generic nature, formulated in different ways in different standards but 
without any fundamental change because they are not strictly linked to the 
technology of the day, so that we need only make references to typical 
definitions from a significant set of standards. 

2.1. Standardization organisms and norms 

Across the whole sector of telecommunications, standards have a prominent 
position. The term “standard” stresses perfectly the need of these universal 
agreements, as their goal is to provide “standard” interfaces allowing 
heterogeneous components, provided by different manufacturers, to 
interconnect and communicate properly. The term ‘norm’ is sometimes used, 
referring to the commonly agreed level of quality that the network should 
provide. 
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In the sector of telecommunications, several international organisations aim at
publishing such interworking rules:

- ITU (International Telecommunication Union, UIT in French, and referred
to as CCITT — Comite consultatif international des telecommunications prior
to 1993). This international organisation covers all domains of
communications (networks, services, image, etc.). It publishes its work as
recommendations.

- ETSI (European Telecommunications Standards Institute). This European
organisation works in close relation with ITU, intending to specialise its
recommendations to the European environment.

- IETF (Internet Engineering Task Force), a typical organisation of the IP
world, accepting any contribution aimed at helping the development of the
internet. Some of the IETF recommendations, termed as Requests for
Comments (RFC), are de facto standards today (IP, TCP, SIP, etc.).

One could enumerate other bodies, for instance the International Standards
Organization (ISO), which groups national standards bodies and has a field of
activity much wider than the "telecommunications" sector. Various forums are
active too, their goal being mostly to act as "lobbies" favouring the
development of a specific technology, and which may possibly come to issue
standards completing the official ones, as it was the case of the ATM-Forum or
the Frame Relay Forum, and others. National organisations may contribute
also (AFNOR in France, Tl in USA, etc.). The bibliography gives the
addresses of the major organisations.

2.2. Quality of Service (QoS)

The ITU Recommendation E.800 gives a definition of quality of service as
"the collective effect of service performance which determines the degree of
satisfaction of a user of the service". This is a rather general definition, which
however conveys perfectly that, first the quality of service is significant for
the "user" (whatever the user is, human being or service of higher level), and
second that it depends upon numerous factors related to the performance of the
network components, as we present hereafter. In what follows, the dedicated
term QoS is in constant use referring to quality of service.

It is clear that a service can be used only if it is provided, and that, together
with this provision, a description of the quality offered must be associated.
From the provider's viewpoint, network performance is a concept by which
network characteristics can be defined, measured and controlled in order to
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achieve a satisfactory level of service quality. It is up to the service provider
to combine adequately different network performance parameters in such a
way that the economic requirements of the provider as well as the satisfaction
of the user are both fulfilled.

The user's degree of satisfaction with the service provided depends on the
perception of the service performance in the different following domains.

Logistic support quality (service support performance). This refers to the
ability of an organisation to provide the service in agreed delays, to ensure a
correct management, e.g. in terms of billing, or assistance to the user. This is
of obvious need for internet access for the management of service
(subscribing, cancelling, installing a new version..), but also for mobile
services, concerning the variety of pricing modes and of billing, and also for
portability.

Service ability to be easily used (service operability performance). This
concerns the provision of "easy-to-use" services, avoiding customer mistakes,
assisting "navigation" through all the offered capabilities. Mobile terminals,
with their numerous menus, are a typical example of the interest of convivial
interfaces, and so are the internet sites, offering a large variety of services.

Security (service security performance)..Here the point is the protection of the
users and of the network against malevolent or fraudulent access to the
services. The simplest illustration is the confidentiality of the data carried, but
the protection provided by passwords for accessing computer accounts or
mobile terminals are concerned too. Protecting the network against
catastrophes, earthquakes or any other destruction is another fundamental
aspect of security. It is actually measured essentially in the following domain.

Ability to obtain the service (serveability performance). This accounts for the
ability of the service to be effectively available upon request. This means first
the ability to reach the service, and once obtained to use it as long as
requested. Air travel should give an explicit example, although far from our
field, of the situation. First, a flight ticket must be purchased, and the flight
must be on time. Then the journey must be without any incident, and terminate
at the destination point. The parallel with telecommunication services is
immediate; consider e.g. a mobile or fixed telephone call. First, the network
must be available, then the called party must be accessible, and lastly, in case
of answer, the communication must not be interrupted (think especially of
handovers). Similarly, for web services, the internet service provider must be
reached, then the access to the server must be provided, and the file transfer,
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or video communication must take place without loss of information or
noticeable quality degradation. The terms of accessibility nd retainability off
the service are generally used to cover these aspects, and we now address them
via the network performance parameters.

2.3. Network performance

Network performance is measured in terms of parameters, significant for
network and service providers. They serve for system design, for system
dimensioning and network provisioning, maintenance, etc., in order to satisfy
both the customer and the provider.

The average customer is unaware of the way a specific service is provided, or
of the design issues of telecommunication systems. However, we have stressed
his/her interest in parameters giving account of his/her perception of the
quality of service. These customer-oriented parameters cannot be used directly
to settle network specifications. A network-oriented quality must thus be
defined and expressed, both qualitatively and quantitatively, in order to
communicate to the equipment and network provider information about:

- systems performance,

- network planning, equipment provisioning,

- operation and maintenance.

To this effect, several network performance parameters have been proposed, in
relation to the user perception.

The approach has consisted, quite logically, in first defining overall
parameters, also termed end-to-end performance parameters, then to define
parameters at each network segment, called intermediate parameters.

2.3.1. End-to-end and intermediate performance parameters

The principle is as follows. The overall parameters take account of the
perception the user has of the network performance, independently of its
structure or technology, while the intermediate parameters ensure that the
individual performance of each network element contributes to reach the
global performance target. The following reference diagrams summarise this
approach.
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2.3.1.1. Reference network configuration

Figure 2.1 pictures a typical network configuration, providing communication
between two users.

Figure 2.1. Reference network configuration

The number of nodes is arbitrary, depending on the relative position of the
users and on the size of the network(s) to be crossed. The nature of the nodes
is also arbitrary: gateways (GW), switching centre, routers, etc.

The overall performance parameters, such as connection set-up delays,
information transfer delays, are defined from user to user. Moreover, similar
parameters are specified for each element, bounding their contribution to the
end-to-end performance: one speaks of the budget apportioned to each section
of the network. The following pictures clarify this concept.

2.3.1.2. Communication set-up reference diagram

The first diagram presents the principle of the exchange of information
(horizontally) from an initial request up to the confirmation that the action is
successful. The vertical dimension represents the processing delays needed to
set up the demand. The nature and the quantity of information to be exchanged
depend evidently of the technologies and protocols in use (circuit, packet).
The exchange may be complex, as for instance for communications between
mobile users involving intelligent networks. However, the principle that leads
to definition of the performance parameters remains the same.

2.3.1.3. Communication, transfer phase reference diagram

Once the communication has been set-up, the two parties may exchange
"useful" information - referred to as information of user level: voice samples,
data, images, files, etc.
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Communication
set-up request

Figure 2.2. Set-up phase

Figure 2.3. Communication phase

2.3.1.4. Disengagement reference diagram

The last phase is the communication release, also called disengagement. It
proceeds similarly to the set-up phase (Figure 2.4).

These diagrams show clearly that the end-to-end performance requirements
will depend partly on the network configuration, as a function of the number
of nodes involved. This is why one defines performances of local, long-
distance or international communications. These performances must however
remain compatible with the perception the user has of the service. For
instance, delays must not exceed certain bounds. On the other hand, it is
possible to define performances for each network segment, independently of
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the overall configuration. Therefore, performance parameters are defined at
the level of the nodes, the links, signalling points, etc.

Figure 2.4. Disengagement phase

2.3.2. Access, disengagement, and transfer phases

From the above diagrams, two other notions emerge: the notion of
communication set-up (and release), and the notion of communication
established with its exchange of information. More generally, one refers to
these as the access phase (with its complement the disengagement), and as the
transfer phase. Two major sets of performance parameters are defined,
according to these two notions.

Two important reasons explain why these two families are distinguished,
namely the service aspect and the support aspect.

The service aspects have been already discussed in the introduction. The point
is to access the network, and the called party or the service provider within
reasonable delays. This corresponds, for a connection-oriented service, to the
connection set-up delay, but it could be, also, the delay to access a gateway or
the edge provider, etc. Then, once the connection established, the quality of
the information transferred between the two or more users must be at a level
allowing its correct usage (semantic, temporal and spatial integrity).

Furthermore, the physical or logical support for each of these phases can be
different. This is naturally the case, when the control network and the
transport network are distinct. Actually, we have already presented in the first
chapter the configuration of the telephone networks, with its clear separation
between the signalling system SS7 for the set-up and release of the calls (using
signalling points), and the voice transport network making use of PCM links
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and 64 kbit/s switches. The distinction is even emphasized with the concept of
NGN ((nex generation network).

Other aspects, related with such notions as the quite different durations of the
phases, and the different nature of the information processed, speak in favour
of the distinction. For instance, the call set-up delay or the opening session
duration is much lower than the call or the session itself. Similarly, the nature
of the information transported during each phase is totally different (control
messages and user information): this is clearly at the basis of the distinction
already mentioned at traffic level, and it is in relation to that one talks of the
traffic in the control plane and of traffic in the user plane (that is the
"useful information" carried at user level)

Even if one has to be careful when interpreting these concepts, for a specific
kind of network and of technology, they appear to be generic notions of
essential use.

2.3.3. Parameter values

In order to characterise the targeted performance level, specific values are
recommended for the parameters. Obviously, a single parameter cannot
characterise a level by itself, e.g. a response time or a transfer delay. This
would be far too simplistic, since the quantities manipulated in the domain of
traffic are by essence random variables. Moreover, for services with strict
delay constraints, it is important to guarantee both maximum and normal
values. Now, giving a complete specification of the delay distribution would
be complex and unrealistic. And lastly, as explained below, the traffic
conditions vary, depending on the period of the year, of the day or even of the
hour.

This leads one to specify, generally, four values: two load levels (said normal
load and high load) and for each of the load conditions a mean value and a
quantile of the performance parameter. Therefore, we ask of performance
studies to provide not only averages, but also distributions, or at least their
moments. Such a context explains the importance of the methods to estimate
the moments of functions of random variables, of the sums of variables, and of
the related approximate methods. Note simply at that point that the
performance level is characterised by a mean value and a quantile, often for
95% (that means that, for instance, a delay must remain below a threshold 95
cases over 100). This will be specified for the different load levels we
introduce now.
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2.4. Traffic load conditions

Any telecommunication network is by nature submitted to variable
solicitations - i.e. variable traffic conditions, as already evoked in the previous
chapter. Not only does the traffic level fluctuate within the day, but also it
varies during the year, or during specific events. However, one distinguishes
three major conditions for the traffic environment:
— normal day conditions which correspond to the usual daily traffic conditions
of the network,
- high load conditions which correspond to less frequent higher busy
operating network conditions (special days such as year end or Mother's Day
for instance may be considered),
- and finally exceptional conditions which correspond to load conditions far
beyond the normal provisioning, and associated with totally unpredictable
events (a catastrophe for instance).

In order to take account of these various configurations and to associate
specific performance requirements, the notions of normal load (or load A),
and high load (or load B) and overload (or exceptional) have been introduced.
Note that these principles hold whatever the type of traffic, from signalling
traffic to user traffic, and whatever the network technology. The load levels
could even differ at a given instant for the various types of traffic. In addition,
the conditions can differ from one country to another, or in different parts of a
network. Only traffic observations allow one to define the load levels for the
different network components.

Lastly, the traffic characteristics are in continuous evolution, as the number of
users and their activity vary, and because of the evolution of the services and
deployed technologies (for instance, mobile versus fixed customer, circuit-
oriented versus IP technology, etc.). Therefore, operators have to re-evaluate
constantly the volume and the nature of the traffic offered. As we have
described in Chapter 1, these volumes are measured during periods where the
traffic may be considered stationary (see Chapter 7).

That means that for the given period, it is possible to characterise the actual
arrival process by a stationary model, with a given mean, variance, etc., and
for instance as a Poisson process. Note that this model appears as being well
suited to all kinds of traffics. Indeed, it renders clearly the natural behaviour
of the users, who express their needs (call requests, internet sessions, etc.)
randomly, and independently of each others; but also, as detailed in the section
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devoted to IP traffic characterisation, it induces important properties for traffic
characterisation at flow and packet levels

2.4.1. Normal load, load A

This load level, called normal load traffic intensity,,corresponds to the most
frequent busy operating conditions of the network for which normal user
service expectation should be met. In the recommendations it devotes to the
network operation (see Rec.E.500), ITU-T recommends definition of the
reference load traffic intensity over a monthly period, in order to get a
statistically meaningful set of measurements (see Chapter 5) and to take
account of seasonal variations. The daily traffic intensity is first determined by
measures over consecutive time intervals called read out periods (the hour for
instance). Then a set of days is chosen out of the month and ordered from the
lowest to highest daily peak traffic intensity measurements. Particular days
such as Christmas Day, etc. are excluded. The fourth highest value will be
chosen as the normal load traffic intensity for the month being considered.
Then, from these monthly values a yearly representative value (YRV) will be
determined, defined as either the highest observed intensity or the second
highest (if the traffic intensity tends to be fairly homogeneous from month to
month). This will be the reference normal load for dimensioning. In fact, the
point is not the exact value but rather reflects the spirit of the
recommendation, which aims at differentiating normal and unusual situations.
This is, basically, a question of optimising the installed equipments, as one
does not intend to dimension for the worst-case situation. So, for instance,
operators may commit to be able to carry "only" the normal load level in
degraded situations (partial or temporary failure of equipment).

Such an approach is re-used in most ITU recommendations (see e.g. Rec.
Q.543) and in the requirements issued by the operators concerning the
equipments, when defining the notion of load A. The notion is defined as:
"Reference load A is intended to represent the normal upper mean level of
activity which network operators would wish to provide for on user lines and
network equipment, while load B is intended to represent an increased level
beyond normal planned activity level." This clearly describes relative
situations, one being more severe than the other. We are thus now lead to
define more precisely the notions of "high" load, and load B.
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2.4.2. High load, load B

High load conditions identifies not very frequently encountered operating
conditions for which user service expectation would not necessarily be met,
but for which the level of performance achieved should be high enough to
avoid significant user dissatisfaction (spread of congestion etc). ITU, in
Rec.E.500, recommends selection among the observations over a monthly
period as above, the day having the second highest daily peak traffic intensity
measurement. This traffic intensity is then defined as the high load traffic
intensity for the month being considered. Then, again as for normal load, from
these monthly values, a yearly representative value (YRV) will be determined,
defined as either the highest observed intensity or the second highest (if the
traffic intensity tends to be fairly homogeneous from month to month).

As already said, Rec.Q.543, only specifies load B as a traffic increase over
reference load A. The orders of magnitude are the most important to remember
here: the reference load B is around 1.2 times load A, measured in volume of
incoming calls, and 1.4 times for outgoing calls, that is around 1.3 on the
average. Expressed in erlangs, reference load B is around 1.25 times reference
load A.

These values have to be taken as orders of magnitude only, as the deployment
of new services could alter them significantly. However, they clearly reveal
the need to distinguish the different flows, originating and outgoing. In periods
of heavy load, a significant proportion of the call attempts fails and does not
result in effective user traffic (in terms of erlangs) in the network. More
generally, the performance analysis must take account of the different types
and conditions of traffic in the various domains (signalling, control, transport,
etc.). Practically, one is lead to determine the most stringent conditions for
each of the domain.

In this respect, the orders of magnitude given in Rec. Q.543 for load A and B
are worth considering. Call rejection probability, around 10-3 for load A, goes
to 1CT-2 for load B; set-up delay at the access around 600 ms for load A
increases to around 800 ms for load B.

These figures must only be taken as orders of magnitude; however, they are
likely to apply whatever the service or the technology in use, since they
correspond to fundamental user perception. We come back to these points, at
the end of the present chapter, by summarizing the main figures one can find
in the recommendations in force. For the time being, notice that the values for
load level B are not loose compared with load A. The reader is invited to
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verify (after reading the chapter about queues) that for the basic M/M/1 system

the ratio on delays corresponds to a ratio on loads under the form

Thus, for a ratio of 1.5 and pA = 0,7 , it becomes pB =0,8 that is only 1.15

times the load level A, although the recommendation mentions a ratio around
1.25.

This example makes it obvious that the performance targets for load B delays
are, logically, the most constraining, for designing and dimensioning
communications systems. This conclusion is rather general; however each
situation demands a verification of all traffic conditions, as the systems
scarcely conform with such simple models as the M/M/1.

At last, it is necessary to recall that "high load" is a notion to envisage
carefully, at the network level, since the high load periods do not coincide in
all parts of the network. This is why some of the standardisation organisms
have specified overall performance objectives for normal load only. On the
other hand, the two load levels are generally accounted at local level, see
section 2.5.4.

2.4.3. Overload

This section addresses situations that can be said to be uncommon or
exceptional. They are basically characterized by a level of the offered traffic
greatly larger than the available network resources (also called engineered
capacity). However, one can distinguish two kinds of such situations, namely
the ones which can be forecast (such as feasts, religious or social events, TV
games, etc.), and the very unpredictable events, related to accidents, natural
catastrophes, etc.

The first kind of situation could be anticipated, to some extent, by relying on
experience and past observations. But it would result in costly investments due
to the unavoidable overdimensioning, and the network provider prefers simply
using protective actions, accepting carrying the traffic with a lowered quality
of service. One must emphasize here the effect of call repetitions (reattempts):
the user having a demand rejected, retries several times, resulting in a
dramatic growth of the call requests. A slight overdimensioning could have
probably helped in avoiding this cumulative effect. In such circumstances, it is
thus important to have the best possible estimation for the level of "fresh"
demands (excluding reattempts). We will come back to this flooding effect
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typical of overload situations, and to models able of capturing the influence of
retrials.

In the case of totally unpredictable events, such as catastrophes, no
overdimensioning would be enough to get rid of the overload. The volume of
traffic is unpredictable, and so is the portion of the network concerned by the
phenomenon (as opposed for instance to congestion related to a TV game).
Here again impatient behaviour and retrials amplify considerably the observed
traffic on the network's directions and destinations.

These uncommon situations raise the question of performance, both for the
network and for its components. Firstly, what is the problem if call requests in
excess fail? The problem is that in case of congestion, all calls are subject to
being rejected. Imagine the simple situation of calls rejected because of
congestion in the destination node. For instance, some catastrophe provokes an
abnormally high traffic in this node. All intermediate resources have been
seized uselessly (circuits, processing capacity in switches or routers, signalling
network), preventing other traffic flows to be processed normally. The
situation can even be worse, in a IP network without any admission control, as
all other sessions in progress are perturbed at the packet level.

Similarly, and this is a fundamental issue, imagine a processor (devoted to call
establishment, or packet forwarding, etc.) which spends most of its time
processing tasks for calls which fail further in the network, or which must be
abandoned. At last, the processor becomes unavailable to process correctly any
request (think of a physician, who would continue to auscultate while keeping
answering calls to decline new patients). Here too, rules are needed to regulate
the accepted traffic. This is what overload control or regulation mechanisms
have to ensure.

The solution seems easy at a first glance: above a given threshold simply
reject new demands. In fact, this is actually the basic principle, provided one
can perform such denial, or rejection, at a minimum cost, and with the
additional complexity related to the obligation of processing in priority certain
types of calls, such as emergency numbers (police, fire brigades, etc.)

All these requirements have been specified, first in the international
recommendations, then also, and more precisely in the operator-specific rules.
We will present, later on, the content of the ITU recommendations. Let us
survey here the set of common requirements that one can find.

In case of abnormal congestion, the goals are:
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- Definitely prevent a total crash of the system or network. This seems
obvious, but in these uncommon situations, defence mechanisms are intensely
solicited, so that residual faults, normally harmless, can have dramatic effects.
We develop in Chapter 10 some considerations about the test of such
mechanisms.

- Maintain a system or network throughput not too far from the engineered
capacity. Target values and principles are explained in the recommendations,
as will be developed later on. These targets are attained mainly by rejecting
calls in excess, provided the overload is rapidly detected. However, it must be
balanced with the following goal:

- Give preference to the processing of certain categories of calls such as
terminating calls (they have already used network resources and so must
preferably succeed), urgent calls (fire brigade, police, etc.), priority lines, etc.
The problem is that recognizing that a call pertains (or not) to one of these
categories needs some preliminary processing, so to in most cases reject the
demand. Obviously, an indication of priority (attached to the calling line, to
the packet, etc.) is quickly analysed. But analysing the called number needs
more resource. Even a very low "cost" of the analysis may lead to a total
inefficiency, especially due to the avalanche phenomenon, which currently
provokes 1000% overloads! These questions will be further developed when
dealing with models, but notice at that point that even if priority calls can be
detected, there may occur a persistent overload level such that all demands
must be rejected blindly - as this is a vital question for the equipment or the
network.

Figure 2.5. Traffic carried in overload situation

Figure 2.5 summarizes the possible behaviour of the system or the network,
and complements the kind of picture one may find in ITU-T recommendations.
It displays the variation of the carried traffic versus the offered load, taking
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account of the various rejection levels of the regulation mechanisms. The 
model is further addressed in Chapter 9. 

2.5. Parameters and standards 

The set of performance parameters evoked above is presented in several 
recommendations issued by the standardisation bodies already cited, such as 
ITU (International Telecommunication Union), ETSI (European 
Telecommunication Institute), or T1 (Telecommunication standardization 
organism for the USA), and IETF (Internet Engineering Task Force). 

We give hereafter a survey of the main parameters and standards related to 
network performance. We do not pretend to give an exhaustive treatment, 
restricting to the most important parameters and standards those with which 
every system or network designer has to work. The world of standardisation is 
complex and ever changing. However, despite the variety of the organisations 
and the complexity of their structures, a certain convergence on the principles 
can be observed, even as technologies are changing. Therefore, the definitions 
and the references to the recommendations we quote remain inputs from which 
the reader will find easily the more recent contribution on the specific subject 
of interest. 

In this spirit, most of the reference quoted hereafter concern ITU-T, as this 
organisation remains for the telecommunications sector the major 
“harmonization” forum, where the main concepts have been satisfactorily 
addressed, alleviating the difficult task of the reader, at least for a first contact 
with the world of standardization. 

The general presentation of the performance parameters is in particular the 
scope of the ITU-T recommendations 1.350 and E.430. Concerning IP, Rec. 
1.380 (or Y.1540) also defines a certain number of parameters, particularly for 
transfer. 

In these recommendations one can find a general matrix presentation, 
expressing the correspondence between on the one hand those aspects related 
with the accessibility and retainability of the service, from the user standpoint, 
and on the other hand the network behaviour, in terms of traffic performance 
and dependability. 
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Table 2.1. Performance parameters

Access

Transfer

Disengagement

Trafficability

Speed/delay Accuracy/
integrity

Dependability

Availability/
reliability

Two main classes of performance parameters can be distinguished, the ones
related to the "trafficability", i.e. the traffic performance, and those related to
the dependability of the network and of its equipment.

2.5.1. Trafficability

2.5.1.1. Access and disengagement

During the access phase, speed and delay are the significant figures. Indeed,
this phase corresponds, for the classical telephone service, to sending dial
tones, receiving the number called, setting up the connection, ringing the
called party, etc. For the new generations, it corresponds to session opening,
and all those activities by which terminals are put in relation. Similarly, for the
release (or disengagement) phase, the speed with which the resources are
released is specified.

These operations have to be performed within reasonable delays so that the
subscriber keeps a satisfactory perception of the service. The speed with which
these operations are performed depends mainly on the capacity for exchanging
messages between network elements, and on the duration of the processing
these messages require in the control elements of the network. For either
circuit or packet-switched modes, this concerns the performance of the
network control plane, as described in ITU-T Rec. E.711, 712 and 713, as
opposed to the user plane, devoted to transporting information between users.

The whole specification requires a rather large number of parameters,
specified in many recommendations, standards, etc., of which only the most
important part is enumerated here, as we are mainly concerned with "generic"
aspects of the problem.
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2.5.1.1.1. Overall (end-to-end) parameters

First we defined overall parameters and objectives related to the upper level of
the network, from user to user. This is the purpose of standards such as for
instance ITU recommendations 1.352, or E.431, E.721 (fixed networks) and
E.771 (mobile network) for circuit, and 1.354, X.I35, X.I36 for packets, but
also new recommendations for IP such as Y.1540 (or 1.380), and Y.1541.
These performance parameters are termed end-to-end pperformanc
parameters, as they characterize delays to be respected between user interfaces
or network ends. Particularly, they are these parameters that are the most
perceived by users. The following parameters are concerned:

Set-up delay. Call set-up delay is defined as the length of time that starts with
the call or session set up attempt indication and ends with the return of the
communication established indication. The reference events used in measuring
set-up delay are occurrences of significant messages (initial address message,
IAM, and answer message, ANM, for instance) or packets (call request
packet, CR, and call connected packet, CC). Values are given in ITU
recommendations 1.352,1.354, E.721, E.771.

Clearing (disconnect) delay. Call clearing delay is defined as the time interval
that starts with the clearing terminal demand and ends with the reception of
the release indication by the other terminal. The reference events to be used
for the measure are significant messages or packets as for the set-up phase
(disconnect and release messages, clear request packet, clear indication
packet). Values are given in ITU recommendations such as I. 352, 1.354,
E.771).

Blocking probability. End-to-end blocking probability is the probability that
any call attempt will be "blocked", i.e. refused by the call acceptance
mechanisms because of a lack of resource, or "abandoned" because of
excessive set-up delays (leading for instance to abandonment by the user or
rejection by the system) or loss of messages etc. Values are given in ITU
recommendations E.721, E.771, Q543.

2.5.1.1.2. Intermediate parameters

Then are defined performance parameters at a lower level in the network,
closer to the equipment: network portions, nodes, links, etc. The compliance of
each element with the objectives specified for these parameters makes possible
the compliance with the overall objectives specified for the preceding
parameters.
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In order to understand the logic of these parameters, the best approach is to
follow how a call progresses throughout the network. This is illustrated in the
previous diagrams in Figures 2.2 to 2.4.

Beginning from the left (calling user), the successful progression of the call is
guaranteed by the following parameters:

Access call set-up delay. Access call set-up delay is defined as the interval
from the instant that the information required for outgoing direction selection
is available for processing in the access node, until the instant the set up
demand has been passed to the subsequent node of the network. For instance
for telephony, the significant information will be the subscriber dialling, a set-
up message, or a SS7 signalling message such as the IAM (initial address
message). Values are recommended in standards such as recommendations
Q.543, E.721 from ITU.

Access call release delay. Call release delay at the access node is the time
interval from the instant the release demand is received from the user terminal
that terminated the call until the release message is returned to the same
terminal, indicating that the terminal can initiate or receive a new call. The
reference events to be used for the measure are messages or packets such as
the disconnect or release message, clear request packet, clear confirmation...
Values are recommended in standards such as recommendations Q.543, E.721,
and I 354 from ITU.

Set-up message transfer time. Set-up message transfer time in an intermediate
network element is the period starting when the set up message is received by
the node, and ending when the message enters the outgoing signalling link for
the first time. This is the case of a transit switch receiving the initial address
message (IAM). The processing time for this message is much greater than
when transferring any simple subsequent message, and one talks about
processing intensive message. Values for this parameter are specified in
recommendations devoted to signalling, such as ITU Rec. Q.766.

Message transfer time. It is the same delay as above but for simple messages
without significant processing (such as subsequent n°7 messages), a simple
routing function is needed. Values are recommended in Recommendation
Q.766, and Rec Q.706 for n° 7 signalling transfer points.

Similar considerations apply to packet networks. The parameter is then the
following:
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Packet transfer delay. It is the same concept as above but for any packet, such
as for instance a call request packet in the case of a virtual connection, or for
subsequent packets. Packet transfer delay is the period needed to transfer
successfully a packet across a network portion. Values are given in standards
such as Recommendation X.135 (packet switched networks), and
Recommendation Y. 1541 (IP networks).

Incoming call indication sending delay. Incoming call indication sending delay
is defined as the interval from the instant at which the called party
identification is received at the terminating node, until the instant at which the
call indication is passed to the called terminal. For instance, for telephony this
corresponds to the time from the instant the called number is received, until
the ringing signal is sent to the user terminal (fixed or mobile), by the
terminating exchange. Values are given in standards such as recommendation
Q.543 from ITU.

Answer transfer delay. Answer transfer delay at a node is defined as the
interval from the instant the answer indication is received to the instant that
the answer indication is passed toward the next network element. The answer
signal corresponds to the indication that a communication path has been
successfully established and that the user information transfer phase can start.
A typical example is the ANS (answer) message for a transit exchange. In
some way it is symmetrical to the IAM message, however with a shorter
processing time, it is then classified as a simple message (as opposed to a
processing intensive one). Values are given in recommendations Q.543 and
Q.766 from ITU.

Signalling transfer delay. Signalling transfer delay is the time taken for a node
to transfer a message from one signalling system to another (e.g. between user
signalling and network signalling, or between two different networks). The
interval is measured from the instant that the message is received from a
signalling system, until the moment the corresponding message is passed to
another signalling system. Values are given in Recommendation Q.543 and
Q726 from ITU.

Transmission time. Transmission time includes delay due to equipment
processing as well as propagation delay on the physical support (terrestrial or
submarine by means of coaxial cable or optical fiber, or by air by means of
radio relay or satellite). The transmission time is clearly a function of the
distance and the speed of the signal in the transmission facility (especially for
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the propagation part). Values per unit of distance (generally the kilometre) and
per type of support are given in recommendation G.I 14 from ITU.

Signalling message loss ratio. Signalling message loss ratio is the proportion
of signalling messages that are lost at a node due to internal reasons, such as
excessive delays, errors, failures etc. Values are given for n°7 signalling
system in recommendation Q.706 from ITU.

Packet loss ratio. It is the same concept as just above, for packet. Values are
given for IP packets in ITU recommendation Y.I541.

Set-up demand blocking probability at a node. It is the same parameter as for
the overall performance, but for a node. Set up demand blocking probability is
the proportion of demands that are blocked due to the acceptance control
mechanisms because of the lack of resources, or abandoned because of
excessive delays, loss of messages etc. Values are given in standards such as
recommendation Q.543 from ITU.

Authentication delay, routing information acquisition delay. These parameters
are specific to mobile telephony. Authentication delay is the time needed to
achieve the authentication operation (processing time plus occasionally,
depending on the system design, the access to a database). Routing
information acquisition delay is the time needed for interrogating the HLR
(database lookup), plus in case of roaming (see Chapter 1), a second data base
access for interrogating the VLR. Values are given in recommendation E.771
from ITU.

2.5.1.2. Communication, user information transfer

Performance during this phase concerns the highest level of information
exchanged between the users (voice samples, files, video images, etc.).
Recommendations provide requirements in order to guarantee transmission
quality mainly with respect to semantic and temporal integrity, i.e. concerning
transmission delay, jitter, loss of information etc.

2.5.1.2.1. End-to-end parameters

As for the access and release phases these parameters aim to define a
satisfactory overall level of perception by the user..

During the user's information transfer phase two main performance aspects are
concerned, from the traffic handling viewpoint. These are, first, the end-to-end
transfer delay, especially in relation to the user interactivity capacity and
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second, the quality of the transfer in terms of interruption probability, in
relation with the integrity of the communication, and its retainability
objectives, as we will see in the next section about dependability.

End-to-end transmission delay. End-to-end transmission delay is defined as
the total transmission delay for information and includes delay due to
equipment processing (switching or routing, etc.), as well as coding and
packeting delay, and propagation delay. This delay should be kept under a
given value in order to maintain a normal use of the information, especially
from an interactivity point of view. For instance, for voice services an increase
of the transmission delay beyond a certain value would cause unacceptable
conditions for a conversation between subscribers (just think to the difficulty
that one may sometimes experience in the case of a long distance international
communication). It is with regard to this issue, and more particularly in the
context of VoIP (voice over IP), that specific models have been developed in
order to quantify the user perception as a function of the delay, such as the E
model from recommendation G.I07 with its associated measure, the MOS
(mean opinion score). Values for the delay parameters are given in
recommendations G.114 and G. 131 from ITU.

Interruption transfer probability. Interruption transfer probability is defined as
the probability of occurrence of short periods of time (less than a few second
for instance), during which the transmission quality (power, noise level, bit
error ratio, packet loss ratio etc.) decreases below certain thresholds (see
below intermediate parameters). As long as these periods are short enough and
rare, the user will perceive them as an acceptable service degradation (this is
the reason why they are called interruptions). To the opposite when they are
beyond a certain duration or a certain frequency, they will lead to what is
called a premature release of the communication, as we will see below in the
dependability section. Values for integrity are given for instance in
recommendation E.855 from ITU, and in recommendation E.850 for premature
release.

Handover failure probability. It is clearly a specific parameter for a mobile.
One of the most important requirements of cellular systems is the ability to
hand over communications in progress as the mobile user moves between
cells. The handover failure probability is the probability that a handover fails
because of a lack of resources in the target cell or in the network, or for any
other reason such as excessive delays, insufficient signal strength etc. Values
to be respected are given in ITU recommendation E.771.
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2.5.1.2.2. Intermediate parameters

As for the access and disengagement phases, we now specify intermediate
performance parameters, whose role is to help towards the construction of a
network able to comply with the overall requirements, as just described above.
Transfer phase and access or disengagement phases may have common or
similar parameters. However, the value may be different depending on the
phase considered (e.g. loss of information for voice during transfer phase is
less important than for signalling during set-up phase).

Packet transfer delay. As already defined for the access phase, packet transfer
delay is the period of time needed to successfully transfer a packet across a
network portion. Values are given in standards such as recommendation X.I35
(packet switched networks), and recommendation Y.I541 (IP networks).
Values are also given for cells in the case of ATM technology, in
recommendation 1.356 from ITU.

Voice sample transfer delay (round trip delay). This parameter is defined in
recommendation Q.551 for the important case of circuit switched telephony.
Voice transfer delay, said also group transfer delay or round trip delay, is the
delay to transfer a voice sample (or group of bits) through an exchange and for
different network configurations (with concentrators or not).

Packet transfer delay variation. Packet transfer delay variation is defined as
an upper bound, in practice a quantile, of the transfer delay distribution of the
unit of information through the network or a network portion. This parameter
is of first importance with the new technologies carrying real time services.
The so-called sensitive packets of a same communication suffer from different
delays, resulting in a jitter, which must be maintained within reasonable limits
in order to fulfil the synchronisation constraints attached to these real-time
services. For instance, voice transmitted using the G.711 standard requires one
sample speech every 125 &#956;s, imposing quite stringent constraints on the
transfer delay through a packet network. Even if output buffers are able at
compensating delay variations, they still must be limited, as this contributes to
increase the end-to-end delay. Values are given in recommendations Y.I541
and 1.356 from ITU.

Information loss probability. The probability of loss of information during the
transfer phase is defined as the ratio of the number of transfer units, that are
lost or above a given degraded threshold, to the total number of units to be
transferred during the communication. The purpose is to guarantee the
semantic integrity of the information during the transfer phase. Indeed
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transmission errors may occur (electrical perturbations or degradations...) as
well a packets loss due to queue overflow, failures, misrouting etc. Concerning
transmission errors, values are given in ITU recommendation G.821 and G.826
for parameters such as for instance severely errored seconds (SES), rate and
duration (number of consecutive SES). Concerning packet or cell loss, one
will refer again to recommendations Y.I541 and 1.356.

2.5.2. Dependability parameters

For the access phase, the dependability performance parameters concern the
probability that the user is able to access the network, i.e. that the equipments
are available. In the communication phase, these parameters take account of
the ability to make use of the service as long as needed, all equipments
remaining continuously available during this duration.

The notions of reliability and availability will be presented, in a mathematical
approach, in Chapter 6. At that point, the reader must understand that
reliability represents the probability that an equipment or a set of equipments
perform the required function during a given time interval T, and availability
represents, for the same equipments, the probability to be in a state to perform
the required function at any instant of time during a given time interval.

2.5.2.1. Access

2.5.2.1.1. Overall parameters

Network access probability (network accessibility). Network accessibility is
the probability that a user of a service after a request receives a positive
answer from the network, within specified delay, blocking tolerances,
operating conditions such as defined above. This notion covers both traffic,
reliability and availability aspects. The probability of success of a set-up
demand is the global result of all these factors. Threshold are thus defined for
delays (generally very long, greater than 10 seconds), blocking etc., beyond
which the network is considered as unavailable. Accessibility probability
measures and values are specified, either in terms of mean accessibility (see
Rec. E.845) or in terms of distribution, called short term accessibility (see
Rec. E.846). This latter concept as presented in Rec. E.846, is a little bit more
complex than the average value, and allows one to specify a probability
depending on the degree of unavailability. Indeed, a network may present
more or less important perturbations in terms of number of isolated users, or
duration. The more severe the perturbation the more its probability should be
low (for instance very short unavailability periods are more easily accepted).
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In most of the cases, in practice, one will distinguish only two situations:
either the unavailability period is short (a few to ten seconds) and this period
will not be counted in the measure, or it is longer and then it will be counted
for the evaluation of the mean value (unavailability and accessibility).

End-to-end path availability. A path is said available if the whole set of
network elements that are necessary for the success of a communication
between two users is available. The path availability is defined as the
proportion of time that the path is in an available state, i.e. all its elements are
in an up state, over a given period (one year for instance). Values for this
parameter are given in recommendations such as ITU Rec.G.827, G.827.1.
Availability requirements for IP services may also be found in
recommendation 1.380 (or Y.I540) from ITU, which also specifies the
following parameter:

Mean time between path outages. The mean time between path outages is the
average duration of any continuous interval during which the path is available.
Consequently, this parameter indirectly specifies the maximum admissible
interruption frequency (i.e. the minimum reliability), but also a maximum
level of maintenance activity. These latter performance aspects in complement
to the availability allow one to characterize what is called the dependability
performance.

2.5.2.1.2. Intermediate parameters

Just as for the traffic performance, these are parameters related to a segment of
the network, to nodes, etc., having the purpose of building by steps a network
fulfilling the overall performance requirements.

Access node availability. This is the same concept as for the path. Availability
of the access node is expressed as the ratio of the accumulated time during
which the node (or part of it) is capable of proper operation to a given time
period of statistically significant duration. Taking account of the orders of
magnitude (availability close to 100%), one rather specifies its complement,
called unavailability. Moreover, different targets are specified for the
unavailability of a single customer and for that of a group of customers. ITU-T
Rec. Q.541 proposes typical values. This type of parameter, both with those
concerning set-up delays, is among the most important ones, for the system
design. It conditions the reliability of these equipments in direct relation to the
customers, in very large numbers, and possibly imposes a certain amount of
redundancy, which by comparison would not be needed in the core network,
where multiple routes provide the necessary protection.
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Path segment availability. The corresponding objectives are apportionments,
or budget, of the overall objectives as already defined, to portions of the
network (national, international...). Values to be considered are given in
recommendations G.827, G.827.1 and 1.380 from ITU.

Mean time between failures for a segment or a node. As for the whole
network, the number of failures must be limited, as well as the maintenance
effort. As these constraints are mostly operator-dependent, they are not
specified in the international standards. However, they are expressed in
tenders issued to equipment providers. Examples will be discussed in Chapter
10.

Logistic delays. Logistic delays correspond to travel times and repair times in
case of failures. Here too, such constraints are operator specific, and the
international standards do not provide any instruction with regard to them.
However, we show, in Chapters 6 and 10, the fundamental importance of these
parameters in fulfilling availability targets. Clearly, these constraints have
quite a different impact, according to the repair delays the operator tolerates,
from a few hours to a full weekend.

2.5.2.2. Transfer and disengagement

The two phases are here associated, as once the communication is established
the only dependability-related constraint is that the communication is
successful up to the instant chosen by the user to close it.

The parameters that are defined here are of the domain of reliability, as
described previously, and deal with what is called the retainability (or service
continuity).

2.5.2.2.1. Overall performance

Premature release probability. Premature release probability is defined as the
probability that an established communication will be prematurely released
consequently to a network or network element malfunction, that is to say for a
reason other than intentionally by any of the users involved in the
communication. Values are given in recommendations such as ITU Rec.E.850.

2.5.2.2.2. Intermediate parameters

Premature release probability. This is the same concept as above but applied
to network segments or equipment. Values to be allocated to national and
international segments are specified in recommendation E.580. Concerning the
access node one may refer to ITU Rec.Q.543.
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2.5.3. Performance during overload

These parameters are neither explicitly mentioned in the 3x3 matrix of 1.350,
nor in the E series recommendations. Indeed, they concern neither equipment
unavailability nor normal load or high load performances, but rather the traffic
processing capacity when the network or some of its equipment are submitted
to severe overloads, e.g. in case of catastrophes or TV games, etc.

The performance level required in these situations calls for special attention,
and they are described hereafter, based upon the chapter devoted to this point
in Rec. Q.543. The recommendation deals actually with equipment, but the
principles remain valid at the network global level; examples of applications
are discussed in Chapter 9.

Processing capacity during overload. The processing capacity of a network (or
network element) during overload is defined as the traffic that can successfully
process a network, or a network element (switching exchange, softswitch-call
server, router, server, gateway...) when the traffic offered exceeds its
engineered capacity, i.e. its available (installed) processing capacity. The
fundamental requirement is first to react sufficiently quickly to overload and
second to continue to process an amount of traffic not too much below the
engineered capacity, even during very high levels and very long periods of
overload. The region of correct behaviour during overload is specified by
means of two values as follows: the throughput at an overload of Y% above
the engineered capacity load should be at least X% of the throughput at
engineered capacity. Typical values for X and Y are respectively 50% and
90%. (for instance, a network element with installed capacity is 100 call/s,
when offered call attempts rate is 150 per second should handle at least 90
call/s). Beyond these values it is simply required that the throughput should be
'acceptable'. The expected behaviour is depicted by a curve as in Figure 2.6.

Figure 2.6. Throughput performance during overload
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In order to achieve this objective, the following principles are recommended:

- implement efficient overload detection mechanisms;

- implement priority mechanisms for the call acceptance and the call rejection
during overload. For instance preference will be given to terminating calls (or,
more generally speaking, incoming demands) compared to originating calls (in
order to ensure the success of demands which have already been accepted in
the network and have consumed resources). Priority will also be given to the
acceptance of priority class lines (hospitals, ministries), and calls to priority
destinations (fire brigade, police etc);

- implement at the processing level priorities between tasks in order to give
preference to calls or sessions already accepted, before accepting new ones;

- guarantee an operation (supervisory, measurements) as normal as possible,
and particularly maintain the charging functions.

Obviously, all these requirements have a strong impact on the performance
analysis of equipment and networks, as all these mechanisms must be
integrated in the performance study.

Performance during overload. Clearly, in most of the cases the overall grade
of service perceived by the user will seriously deteriorate during severe
overload conditions, particularly because a large number of demands in excess
will be rejected by the protection mechanisms. However, accepted demands
should receive an acceptable grade of service, but not necessarily the same as
under normal condition. For instance, delays should be not too far from those
specified under high load or load B conditions in order to guarantee a minimal
throughput.

2.5.4. Synthesis tables

The following tables synthesise the previous considerations, by giving the
main performance parameters, and the typical associated values. These values
are only indications, although they provide typical orders of magnitude, which
ought to be observed, whatever the network and technology, as they derive
directly from the perception users may have of delays and information loss.
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2.5.4.1. Trafficability

Parameter

Set-up delay for a national
call(E.721)
Set up delay at the access for
an outgoing call Q.543)
Incoming call indication
sending delay (Q.543)
Clearing delay for a national
call (1.352)
Release delay at the access
Q.543)
Blocking probability:
- national call
- international call
(E.721 )
Blocking probability at the
access:
- originating call
- terminating call
(Q.543)
Transfer delay at a node for
an new call demand
signalling message (Q.766)
Transfer delay at a node for a
voice sample (Q.551)
End-to-end transfer delay for
an IP packet:
- real time
-file
(Y.1541)
Transfer delay variation for
an IP packet (10-3 quantile):
-real time (Y.I 541)

End-to-end IP packet loss
probability (Y.1541)

Handover failure probability
(E.771)

Normal load
Mean

5000ms

600ms

650 ms

1250ms

250 ms

3%
5%

0.5%
0.5%

180 ms

0.9 ms

100ms
1000ms

50 ms

10-3

0.5%

95%
8000 ms

800 ms

900 ms

1750 ms

300 ms

Not
applicable

Not
applicable

360 ms

1.5 ms

Not
specified

Not
specified

Not
applicable

Not
specified

High load
Mean

7500 ms

800 ms

1000 ms

Not
specified
400 ms

4,5%
7.5%

3%
3%

450 ms

Not
specified

Not
specified

Not
specified

Not
specified

Not
specified

95%
12 000 ms

1200 ms

1600 ms

Not
specified
700 ms

Not
applicable

Not
applicable

900 ms

Not
specified

Not
specified

Not
specified

Not
applicable

Not
specified
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2.5.4.2. Dependability parameters

Mean network unavailability
(E.846)
Unavailability at the access nod for:
- a user
- a large group of users
(Q541 and network providers)
Premature release probability for an international
communication (E850):
- typical configuration
- worst case
Premature release probability at a node
(0543)
Maintenance load at an access node
(network providers)
Logistic delays (network providers):
- immediate
- postponed
- without urgency

610-2

30 mn/year
3 mn/year

410-4

1.6 10-3

210-5

< 1 5 failure per year
and per 10 000 users

3.5 hours
12 hours
72 hours
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3 

Probability 

In this chapter we introduce the fundamental concepts of probability theory. 
Indeed, performance analysis is mainly concerned with phenomena which are 
basically unpredictable: examples are the occurrence of equipment 
breakdowns, the arrivals of connection requests and their durations. These 
random phenomena may be well described however, on a statistical basis, by 
using the tools and methods of probability theory. 

We present the notions and properties of random variables, and the major 
theorems founding the theory. We develop also the properties of the 
transforms of distribution functions, which appear as essential tools in solving 
complex probabilistic problems. 

3.1. Definition and properties of events 

3.1.1. The concept of event 

Probability theory is mainly built on the concept of random event. The 
particular outcome of this experiment cannot be predicted, although the set of 
all possible outcomes is known: any particular outcome will be called a 
“random event”. 

The concept of random event is quite natural. Consider the classical example 
consisting in tossing a die: the outcome is one of the six faces coming up, 
numbered 1, 2 ,  6. “I toss the die and 3 comes up” is an event. Each such 
occurrence is an elementary event. Six different outcomes are possible 
corresponding to any one of the six faces of the die coming up. Nothing is 
known about the next outcome, except that it belongs to a certain set, which 
one is usually able to describe. The set of all the possible outcomes (here, the 
six possible faces coming up) is the event space, or the sample space, and is 
usually denoted as Q. 
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The formalism of set theory is useful in describing events and their properties.
Indeed, the properties of events may be stated in terms of the classical
operations of the set theory. This last provides methods to analyze
combinations of events in order to predict properties of more complex ones.
The terminology and correspondence are summarized below in Table 3.1.

Table 3.1. Events and sets

Event

Sure event

Impossible event

Elementary event

Compound event

Complementary event

A or B

,A and B

A and B mutually
exclusive

A equivalent to B

Any subset of the sample space

&#937;.re eveent is the occuurrence of  anyone of th he    
elements of &#937;

0 the impossible event is the occurrence of an
event which is not an element of &#937;, thus belonging
to the empty set 0. 0 does not contain any
elementary event w

w) e &#937;, ft) belongs to &#937;

A, is a subset of Q. One denotes that the
elementary event CD belongs to set A by ft) e A

A , is the complement of A (the event A does not
occur)

A u B , union of A and B. The union of sets A and
B contains all the elements which belong at least
to one of the two sets.

A n B , intersection of A and B. The intersection of
sets A and B contains all the elements which
belong both to A and B

A n B = 0 . There is not any event common to A
and B

A-B, that can be read A equals B

All these definitions are in fact quite natural. Consider again the experiment
about tossing a die, "3 comes up" is an elementary event, while "I draw an
even number" is a compound event. Similarly, "I draw an odd number" is the
opposite event to the previous one, and "7 comes up" is an impossible event,
etc. The experiment could be extended, for instance when tossing two dice: the
outcome "the sum of the two faces coming up is 6" is a compound event, etc.

From these basic definitions, we are now in a position to introduce the
following definitions and properties, themselves quite intuitive.
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3.1.2. Complementary events

Let A stand for an event (i.e. a subset of the sample space &#937). A denotes the
complementary event (it contains all the elementary events which are not in
A). The following relations hold and have an immediate and intuitive
understanding.

Basic properties

A = &#937;. — A (the symbol "-" denotes the difference, sometimes called the
reduction of &#937; by A).

A n 0 = 0 , A being a subset of &#937;, there is no element of A in the empty
set.

AnA = Ø, A and its complement have no common element.

And also:

A = A , the complement of the complement of A is A itself.

3.1.3. Properties of operations on events

3.1.3.1. Commutativity

Union and intersection are commutative. The proof is straightforward starting
from the definitions:

3.1.3.2. Associativity

Union and intersection are associative. Let A, B and C be subsets of &#937;:
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3.1.3.3. Distributivity

Union is distributive over intersection, and intersection is distributive over
union. The proof is straightforward starting from commutativity and
associativity properties.

3.1.3.4. Difference

The difference between A and B is composed of all the elements in A that do
not belong to B:

A-B = A n B..

If B is included into A, then A-B is said to be the complement of B with
respect to A.

3.1.3.5. De Morgan rules

Consider the first rule: the proof is straightforward using the distributivity and
commutativity properties:

thus

The second rule is directly derived from the first one:

Note: These rules are easily verified by building the corresponding so called
Venn diagram. We will use below this type of diagram to illustrate some
properties of probabilities (see e.g. Figure 3.1).
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These rules offer a systematic way to deal with complex logic relations. They
happen to constitute the basic design techniques for logic circuits such as the
ones encountered in automatism and computer systems. In the following, the
event algebra will be a preferred tool for the analysis of link systems (see
Chapters 6 and 9). This is naturally the foundation of probability theory, as
explained hereafter.

3.2. Probability

3.2.1. Definition

We are given a phenomenon that is observed through the occurrence of events
denoted A, B, etc. The concept of probability will be defined on the set &#937; of
all the possible events. The probability of an event A, denoted by P(A), is a
positive number verifying the following conditions:

2. P(&#937;) = 1 , the probability of the "sure event" is unity;

3. P(Ø) = 0 , the probability of the "impossible event" is zero;

4. If A and B are two exclusive events (i.e., A n B = 0), then

The mathematical concept of probability of an event corresponds to the
relative frequency of the event during a sequence of experimental trials. One
considers that this relative frequency goes to a limit, which is the probability
of the event, as the number of trials increases to infinity.

Let n be the number of times the event A occurs during an experiment of N
trials, then:

3.2.2. Basic theorems and results

3.2.2.1. Addition theorem

Given two events A and B from the set &#937;,
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The above theorem results directly from properties of operations on event as
we have just seen. Indeed:

The sets A and (B — (A n B}) are mutually exclusive, thus:

This result can be intuitively understood if one thinks on the way to count the
events in the different subsets: in summing the number of elements in A and in
B, the elements of A n B are counted twice.

In applied probability the following symbolism is generally adopted:

so that the basic expression is often written as:

It is easy to extend the result to the general case of n events:

This is the so-called Poincare's theorem.

And, if the events are mutually exclusive:

3.2.2.2. Conditional probability

The notion of conditional probability is of central importance. It formalizes
the idea according to which the knowledge about an event is modified by any
information one can acquire about the system. To give an elementary example:
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consider throwing two dice. "I bet the faces coming up sum to 12". What is the
probability I am right? If I know nothing about the trial, the event is given
probability 1/36 (36 possible outcomes and only one favourable: both dice
coming up with 6). Now, assume I am told the first trial gives 3. For sure I
lose. If on the other hand the first throw gives 6, the probability of a win is 1/6
(I only need that the second throw comes up with 6, in order to win).

This illustrates the notion. It is commonly denoted as P(B / A) , which is read

"probability of B given (or knowing) A". Its expression is defined as:

The following Venn diagram serves as verifying this property, in an example
where the knowledge about the realization of the event B is dependent on the
realization of A. In this example, A contains na = 5 elementary events, B
contains nb = 4 elementary events, of which 3 are common with A (nab = 3).
The total number of outcomes is N= 10:

Figure 3.1. Venn diagram illustrating the notion of conditional probability

Such a situation corresponds, e.g. to the probability of finding, among 10
persons taken at random, boys (event A, probability around 0.5) taller than
some value (event B of probability 0.4 in the example). This should illustrate
the property according to which boys are likely to be taller than girls.
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3.2.2.3. Multiplication theorem

Given two events A and B from the sample space &#937;:

This is merely the preceding result under its product form.

Similarly we have:

Generalization to n events

Indeed:

and thus, also:

Independent events

Two events are said to be independent if:

Knowing that B has happened brings no special knowledge about A: the
occurrence of B (resp. A) does not affect the probability of the occurrence of A
(resp. B). Then:

Coming back to our previous example, assume we are interested in the colour
of the eyes. One can admit that this colour is independent of gender. Assume a
proportion of 40% of blue eyes among girls as well as boys. When 10 persons
are taken at random, one should observe (on average) na = 5 (5 boys), nb = 4
(4 blue eyed persons), and nab = 2.
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Figure 3.2. Independent events

Then P(A) = 5/10, P(B/A) = 2/5, P(AB} = 2/10, equal to P(A)P(B) = (5/10)
(4/10) = 2/10 (compare with the previous case, Figure 3.1).

More generally, events Aj are said to be mutually independent if, for any

combination Ai, Aj.

3.2.2.4. The a posteriori probability theorem

Let an event A be associated with one of the Bi , mutually exclusive. Bi is said

to be a cause for A. Assume one knows the set of conditional probabilities,
P(A / Bi). The conditional probability of Bi knowing A, expresses the

probability that B. is the cause of A. This probability is said "probability a

posteriori" of the event Bi .

First, the relation:

simply states that if the event occurs it is necessarily associated to a cause
which is one of the Bt (which are mutually exclusive: only one of them may

occur). Moreover, introducing conditional probabilities:
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the relation may be written under the form known as the theorem of total
probability:

Using once again conditional probabilities,

one may state the following result, known as Bayes 'formula (or theorem of
probability a posteriori):

The following example will illustrate this result. Three urns U1, U2, C3,
contain red and black balls. There are 2 black balls and 1 red in U\, 5 black
and 1 red in U2, 1 black and 5 red in U3. A black ball has just been drawn,
what is the probability it comes from U3? If B stands for the event "a black
ball is selected", then:

One assumes all urns are equally likely to be chosen:

Also,

and thus:

3.3. Random variable

3.3.1. Definition

A random variable is a function which associates a real number x with the
realization of a random event. More formally, a random variable X is an
application X of &#937; into R, the set of the real numbers. For instance, the height
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of the first person to enter in my office is a random variable, and so is the
duration of the next telephone call that I will receive.

3.3.2. Probability functions of a random variable

3.3.2.1. Notations

As before, let denote as ft) an event from &#937;. We write for short X = x for the

event {(w:we&#937;, and X (w) = x}.

Similarly, we write X < x for the event {w: we&#937;, and X(w) < x}.

3.3.2.2. Distribution function or cumulated probability

The distribution function of the random variable X is the function:

This function is non-decreasing, and such that F(&#8734;) = 1.

Now, F(y) = P[X < y], then, if x < y, F(x) < F(y).

And also:

3.3.2.3. Probability density function

Given a random variable X, with distribution function F, one may wonder
about the probability that X takes some value. This leads to the following
distinction: two types of random variable must be distinguished, the discrete
random variable and the continuous random variable.

The random variable X is said to be discrete if:

& # 9 3 1 ; p ( x ) wwitht= 1, with p(x) = P [X = x\, its probability mass functn, ee
xeT

set of all the possible values x for X. T is either finite or denumerable
(countably infinite), i.e. T consists of a finite or countable set of real numbers
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Now, for a continuous random variable, the probability of observing a given
value is null, as the variable X can take all the possible values x between two
given values a and b. The set T of the possible values x for X is then said non
denumerable. So, the only statement making sense is "the value is between x
and y". This leads to introducing the notion of density.

The probability density function f(x) of a random variable X is such that

Particularly we have:

and for two given values a and b , i f a<b:

Notice in particular that for a continuous variable P[X = x] = 0 .

Thus:

and also:

3.3.3. Moments of a random variable

The moments of a random variable give a simple and synthetic
characterization of its behaviour. As a consequence they also make easier
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studying combinations of several independent variables, as it will be
illustrated below.

3.3.3.1. Moments about the origin

The nth order moment of a random variable about the origin is, for a discrete
variable:

and for a continuous variable:

 

3.3.3.2. Central moments

The nth central moment of a random variable is, for a discrete variable:

with mi the ith moment about the origin.

And for a continuous variable:

In practice central moments will be generally computed about the mean, such
as defined below.

3.3.3.3. Mean and variance

In the application of probability theory the two first moments of a random
variable, namely its mean and variance, are of particular importance.

3.3.3.3.1. Mean (expectation) of a random variable

The mean (or expected value) of a random variable is the first order moment
about the origin, and is conventionally denoted m.
For a discrete variable:
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For a continuous variable:

The mean is also denoted as:

Intuitively, one can easily understand the physical meaning of the expectation:
it is the weighted value of the set of all possible outcomes. In a way this value
summarizes the result of a great number of experiments.

3.3.3.3.2. Variance of a random variable

The variance of a random variable is the second order moment about the

mean, and is conventionally denoted V or (o-2 . For a discrete variable:

For a continuous variable:

(7 is called the standard deviation.

This quantity is also of evident interest, as it takes account of the variation of
the realizations around the mean - i.e. the dispersion. As its value increases,
larger deviations from the mean are likely to occur.

3.3.3.3.3. Properties of the variance

Applying the definition of the variance, we have:

Developing the squared term:
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and thus, (the expectation of a sum is the sum of expectations):

and finally:

In other words one has the important relationship: the variance is equal to the
mean of the squares minus the square of the mean. This result will be of
frequent use throughout this book. Particularly note here that from (3-29) we
derive a\X I N) =

3.3.3.4. Examples of application

First, let us compute the mean of a variable obeying a Poisson distribution,
which will be further detailed in Chapter 4.

Let X be a random variable whose possible values are 0, 1, 2... k, with
probability pk:

This is the Poisson distribution.

For the mean, we have:

that is:= A.=y..

For the variance:
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Now, we have:

,

and also:

Observing that:

one gets:

Thus, finally:

This result is worth remembering: in the case of a random variable obeying a
Poisson distribution with parameter A, its mean and its variance are equal, and
equal to A.

3.3.4. Pairs of random variables

We now consider the case of two random variables such as defined before.
Actually we now introduce the properties of a function of several random
variables: the results obtained for two variables will be easily extended to the
general case of many variables. In particular, of prime importance for the
following are the results about the sum of random variables.
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3.3.4.1. Definition

A pair of random variables is the set of two random variables, each having its
own domain of variation and probability distribution.

As an example, consider tossing two coins (numbered 1 and 2). The result is a
couple of variables, each having values "Heads" or "Tails". Denoting as HI, 7",
and H2, T2 the possible realizations of the individual trials, the experiment
results in four different outcomes H1H2, H1T2, T1H2, T1T2, each one being
equally likely so that the probability of each outcome is %.

3.3.4.2. Joint probability

3.3.4.2.1. Joint distribution

Let X and Y two random variables defined on . The joint distribution
function of the pair X, 7 is the function:

also denoted as Fx,y .

As in the case of the single random variable one can develop:

We have:

We write first:

Then in a same way:

and then:
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Hence:

and finally:

3.3.4.2.2. Joint density function

The joint density function of two variables X and 7 is the function:

Hence:

Consequently:

3.3.4.2.3. Fundamental property of the joint density

Indeed, from the above result for the joint distribution:
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3.3.4.3. Marginal probability of a pair of random variables

3.3.4.3.1. Marginal distribution function

The distribution of each variable of a pair of variables is called marginal. The
marginal distributions of X and Y are respectively the functions:

and:

3.3.4.3.2. Marginal density function

From the above, it follows for X and Y respectively:

3.3.4.4. Conditional probability of a pair of random variables

3.3.4.4.1. Conditional distribution function

The conditional distribution function of X with respect to 7 is the function:

and according to the theorem of conditional probability:
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Thus:

3.3.4.4.2. Conditional density function

From the above, it follows directly for X and Y respectively:

3.3.4.5. Functions of a pair of random variables

One considers here not only the relation between two random variables but a
function of these variables. This is a common situation when dealing with
random phenomena.

3.3.4.5.1. Definition

Let X and Y be two random variables, and let U,V two functions of this pair:

Let us denote as G and H the inverse functions:

X = G(U, V} , and Y = H(U, V) .

We have:

or, in other words:
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Thus:

with J, the "Jacobian" of U and V:

i.e. the determinant of the partial derivatives of U and V with respect to x and

y-

3.3.4.5.2. Example of application

In order to make this notion more concrete, consider the simple configuration
of two equipments "in series" (see Chapter 6). Their characteristics
(processing time, or failure rate for instance) are two random variables X and
Y. We are interested in the probability density function of the variable "sum"
(the total processing time for instance) U = X + Y.

Taking here simply V = X, we have:

Hence:

a result which is intuitively obvious in such a simple case.

Now consider U, its density is the marginal density of the pair (u, v):
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and then:

But we have also that y = u — x , and thus:

The density of the sum is the convolution product of the densities of x and
and is usually symbolized as

In the following, we will see that many problems involving several random
variables make use of convolution products. In many cases it will be possible
to derive directly the solution from the definition. This is further developed in
the next section. Then, we will present other resolution methods, based on
powerful tools such as Laplace transforms, generating functions or
characteristic functions.

Of prime importance is the case of the sum of independent random variables.

3.3.4.6. Sum of independent random variables

Imagine a complex system, for which a global performance parameter is
studied (e.g., some processing delay). The analysis proceeds often by
decomposing the system in subsystems which are sequentially invoked during
the processing. Thus, if the process is a sequence of n elementary tasks in the
various subsystems, the total delay is the sum of the n elementary delays. This
exemplifies the importance of studying the properties of the sum of random
variables. We set up here the main results concerning these sums.

3.3.4.6.1. Probability density of the sum of independent random variables

Let X and Y be two independent random variables, and Z = X + Y their sum.
We have:

and thus:
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Since Xand Y are independent variables, one can write:

and thus:

Once again, the convolution product appears, as in the previous example.

In the case of discrete variables, we have immediately:

3.3.4.6.2. An example of application

Let X and Y be two variables, each one obeying a Poisson distribution with

parameters λ1 and λ2 respectively. Recall the expression for the Poisson law

(see section 3.3.3.4 and Chapter 4):

Then the density of their sum Z- X+Y is given by:
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And using the expansion, (a + b ) k  - i ,we have the remarkable  remarkablee 

result:

The sum of two Poisson independent random variables is itself a Poisson

variable. This is a basic property for all traffic and performance studies: for
instance we conclude that a system which is offered several independent

Poisson flows (calls, messages) will be globally offered a Poisson flow.

3.3.4.7. Moments of the sum of independent random variables

3.3.4.7.1. Mean

The mean of the sum of independent variables X, Y... is equal to the sum of

their means:

Let us give the proof for two variables:

The extension of this result to the sum of any number of variables is obvious.

Furthermore notice that it follows from the proof that the result holds whether
the variables are independent or not.
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3.3.4.7.2. Variance

The variance of the sum of two independent random variables is equal to the
sum of their variances:

Let us give the proof for two variables.

By the definition of the variance, we have:

Hence for the sum of two variables:

And, as just proven above:

Thus:

The last term of this equation is called the covariance of X and Y, denoted as
Cov[X ,Y] :

Thus one has the important following result:
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Notice the generality of the result, as up to now we did not make use of any
independence assumptions.

Consider now the case of independent variables. Developing the expression of
the covariance and observing that:

we have:

More generally:

and, if the two variables are independent:

The mean of the product of two independent random variables is equal to the
product of their means. As for the sum the extension of the result to any
number of variables is obvious.

And thus, for independent variables:

And now, for the variance one has the important result:

The variance of the sum of two independent random variables is equal to the
sum of their variances. Once again, the extension of the result to any number
of variables is straightforward.

3.3.4.8. Practical interest

The previous results have obvious and important applications, and especially
here for performance studies. When trying to derive the probability
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distribution of a phenomenon corresponding to the sum of individual

variables, they allow derivation of exact characteristics of the resulting
distributions, by summing up individual moments. The practical interest will
appear also in statistics, and especially in sampling theory.

3.4. Convolution

We now study in detail the properties of this fundamental operation.

3.4.1. Definition

Let f(x)Let f(t)and g(t), be two functions: their convolution product (c
brevity), is the function:

The interpretation is obvious. Imagine that f ( t ) and g(t) represent the

probability density functions of the processing delay of two elements in
sequence, the probability of a total delay equal to τ is the product of the
probability that the first delay is t and the second one τ-t, whatever the value
for t (theorem of the total probability).

The convolution corresponds to the probability density of the sum of random
variables.

Evidently, the concept of convolution product can be used for discrete

variables. An important application is the study of common resources, such as

a buffer (in any queueing system). Here, the problem is to estimate the
probability of having N records, in the case where two servers work to empty
the queue (two outgoing links in a router, sharing a common memory).
Knowing the probability distributions p1 and p2 to have n1 = n packets waiting
for the first server and n2 = N-n waiting for the second one:

More generally, the convolution product of several functions is denoted using
the following symbol:
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3.4.2. Properties of the convolution operation

3.4.2.1. The convolution is commutative

Indeed, changing the variable:

θ = τ - t , thus t = τ - θ , and dt = -dθ yields:

Let us now compute the convolution of two functions of constant use in
performance studies: the exponential and the normal distributions.

3.4.2.2. Convolution of exponential distributions

Given:

one has:

3.4.2.3. Convolution of normal distributions

We will define precisely this important function in the next chapter. We now
just take its simplest expression called the standard normal distribution:

Then the convolution of two normal distributions is:
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Developing the expression:

yields:

Now, putting:

we obtain:

But:

We have thus the remarkable result:

The convolution of two normal distributions is itself normal. This is a basis for
many approximations, since the normal approximation is often a reasonable
assumption, provided the variables are not too far from their mean, and in this
case the sum is simply the normal distribution with parameters the sum of
individual parameters. This will be developed in the next sections.

Moreover, the central limit theorem is another fundamental property when
summing a large number of random variables, which states that the limit goes
to a normal distribution, independently of the individual distributions. This
result is presented in Chapter 5.



100 Communicating Networks: Traffic and Performance

3.5. Laplace transform

We now introduce the notion of transforms, which provide an efficient
manipulation of random variables. They provide essential tools in various
problems, such as the resolution of systems of differential equations (state
equations) in reliability or in queueing theory, or the utilization of stochastic
relations for the resolution of complex queueing systems (see Chapters 6 and
7). Also they enable one to calculate easily the successive moments of a
distribution or the derivation of the distributions of sums on random variables.

Note also that each of these transforms conserves all the information of the
original function. That means that there is a one-to-one correspondence
between a function and its transform.

As for the other types of transforms presented hereafter (characteristic
functions, generating functions), the main appeal of the Laplace transform is
that it decomposes the original function into a sum (or integral) of elementary
exponential functions easy to manipulate. It allows the derivation of some of
the results previously obtained in a simpler way (particularly concerning the
sum of variables).

3.5.1. Definition

The Laplace transform of a function f(t) is the function:

In most applications, the functions are such that:

Then, keeping in mind that the lower limit actually corresponds to 0, the
transform is written as:
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3.5.2. Properties

3.5.2.1. Fundamental property

A fundamental property of the Laplace transform concerns the convolution,
just as introduced above. Its formulation is: the Laplace transform of the
convolution of functions is just the product of each transform. So for two
functions f(f) and g(t)) we have:

Indeed:

and thus:

The generalization of this result is straightforward.

Furthermore, using the results of the previous section, it can be reformulated
by stating that the Laplace transform of the distribution of a sum of variable is
the product of the individual transforms. This is a basic property that the
Laplace transform shares with the other transforms (characteristic and
generating functions), as it will be seen below.

3.5.2.2. Differentiation property

From the definition of transform, we have immediately:

and:
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(However keeping in mind that we have f ( t ) = 0 if t < 0.)

3.5.2.3. Integration property

and for the nth order integration:

(with f(t) = 0 if t< 0).

3.5.2.4. Some common transforms

Here are several results concerning the transforms of most commonly used
distributions. This amounts to building pairs of functions {original function,

transform}, so that finding the original from the transform can be most of time
done by inspecting the table of pairs.

3.5.2.4.1. Unit step function

By definition:

This function expresses the fact that a probability distribution exists only for

positive epochs. For instance the functionedenoted as e-atu(t) is ann

exponential function taking values only from t = 0.

Using directly the definition (3.57), one gets
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3.5.2.4.2. Dirac delta function (unit impulse)

By definition:

This function provides a way to deal with discontinuities of distributions. For
instance, it allows representation of a discrete variable as a continuous
function. Another important use is for representing discontinuities at the
origin. For instance, some equipment, whose reliability is governed by the
exponential distribution during its operational life, might have a probability of
being up (or down) at the instant to be put into service. This possibility is
represented by the Dirac delta function.

Applying the definition of the transform, we have:

Thus:

and in a same way:

From the above, we deduce the important property:

and thus:

The convolution of a function with a Dirac delta function shifted on the time
axis also shifts the function.

The Dirac function is also denoted:
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and:

And we have:

The unit step function is the integral of the Dirac delta function.

More generally, for the nth integrals and nth integrals and derivatives of two fu
the following relationships:

3.5.2.4.3. Exponential function

Notice that when taking the limiting case a = 0, one finds again the result
obtained for the unit step function

3.5.2.4.4. Application

Let us apply this result to one of our preceding examples, the convolution of
two exponential functions:

From the above we have:
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Now, by inspection (using the results above, see exponential transform), we
come back to the original (untransformed) function, and we obtain:

The result is of course the same as in the previous section.

Let us now consider the remarkable case of the sum of n exponential variables
identically distributed, which happens to be a basic configuration in
performance studies, as it will be illustrated throughout this book.

whose original is:

Clearly, for n = 1 the solution is:

Let us verify that for n = 2 the solution is:

We have:
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And after a simple integration by parts ( f udv , with u = t and dv = e - (s+a)tdt ),

Proceeding step by step in a same way, one can verify that the general solution

is

We will see in Chapter 4 that this is a very useful function, called the Erlang-n
distribution.

3.6. Characteristic function, generating function, z transform

These functions, just like Laplace transforms, provide basic tools for statistics
and queueing theory. They have close mutual relationships, each one having
however a preferred domain of usage, as we will see in this section.

3.6.1. Characteristic function

The characteristic function provides another expression for the Laplace
transform. This is an essential tool of queueing theory for complex systems, as
will be presented, and especially in Chapter 7.

3.6.1.1. Definition

The characteristic function of a random variable X, whose distribution function
is F(x), is the function:

One can see that it is the Fourier transform of F(x).

Furthermore we have:
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This gives an immediate way to obtain the characteristic function from the
Laplace transform, and vice versa. This function has been introduced by
Laplace, for absolutely continuous functions. Its use has been mainly
developed through the work of Paul Levy. The function is written as:

ø(z) = f ezxdF(x) , z being a complex variable.

In the case of a discrete variable we have:

which is also written, for brevity:

Once again, one can remark that the transform defines entirely the original
probability distribution. We present below its main properties and several
major results related with the use of the residue theorem, leading to simple
applications.

We will illustrate in Chapter 7 the help it can bring for solving complex
problems in queueing theory, for instance by means of Pollaczek's method and
for obtaining limit distributions.

3.6.1.2. Properties

The characteristic function always exists on the imaginary axis, and is such

that ø(0) = 1 , |ø(u)| < 1 , and such that ø(u) is continuous, defined and

positive.

3.6.1.3. Inversion formula

At points where F(x) is continuous one has:

provided that this integral converges. One can recognize a Cauchy integral in
the complex plane, where the contour of integration is a vertical line parallel
to the imaginary axis at distance x — δ(δ > 0) , and traversed from below to
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above. This result is obtained by using the Heaviside function, as explained
now.

3.6.1.3.1. The notion of event indicator and the Heaviside function

The Heaviside function is defined by:

H(x) = 1, for x > 0 ; H(x) = 1/2, for x = 0 ; H(x) = 0, for x < 0,

and for x 0 it is represented by the Dirichlet integral:

which is as before a Cauchy integral, taken in the complex plane, and where

the contour of integration (closed to ) is a vertical line parallel to the
imaginary axis, at distance x = δ, and traversed from - to + . In the

following, for convenience, we will denote this integral I , its contour being

located just on the right and close to the imaginary axis.

This function allows definition of the probability of an event:

Indeed, given the event x > 0, let us call the indicator of the event a function

equal to 1 for x > 0, and equal to 0 otherwise, i.e. the function H(x). Then we

have the fundamental following relationship: the probability of the event is the

expectation of its indicator, F(x) = E{H(x)}.

Indicator of an event and distribution function

Let X be a random variable such as already defined. One has:

According to the definition its characteristic function is:

Consider the event (x-X). The indicator of the event (x-X)>0 is

H(x-X), and thus:
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And finally, provided F(x) is continuous at point x:

This is just the inversion formula presented above.

3.6.1.3.2. Use of the inverse function

Now we present how to compute the integral in the inversion formula. First
remember that if f(z) is an holomorphic function of the complex variable z,

(see Appendix 1) in the domain D bounded by a closed contour C, and if f(z) is

continuous in D+C, then for any point z0 of D one has:

the path being traversed in the positive direction (counterclockwise).

Then one may verify that f(z) can be expanded according to the powers of (z-
z0) inside the circle centred on z0, and that the series converges so long as z

remains inside C.

Consequently one can apply the residue theorem to obtain the solution, which

is: 1/2πi fc+ f(z)dz = ΣRi where Ri is the residue at the singularity zi (see

below).

The usefulness of the characteristic function is made clear as in most cases it

is simpler to express functions of random variables through their characteristic
functions (e.g., in the case of sums of variables), and then to come back to the
distribution. However, integrating the inversion formula may happen to be

uneasy, or even impossible, and one has sometimes to rely on approximations.
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Most often, the original distribution function is directly obtained by a simple
inspection, as it has been illustrated for the Laplace transform.

Nevertheless, the inversion formula is of great help in several cases, especially
to derive asymptotic results (as illustrated just below), and also to derive
fundamental results by applying the Pollaczek approach (see Chapter 7).

The use of the residue theorem is essential in these calculations, and its main
aspects are presented here.

3.6.1.4. Asymptotic law

One looks for an asymptotic expression of the distribution F(x) for large
values of x. This kind of expression is useful as it provides approximate results
for many queueing problems. We begin with the inversion formula on which
we apply the residue theorem.

The residue theorem

Let us recall the residue theorem: let z1 be a pole or an isolated singular point
(see Appendix 1) for the function f(z), (f(z) is holomorphic in a circle whose
centre is z1 except in z1), the residue of f(z) at this point is the coefficient R1 of

1/z-z1 in the Laurent expansion around z\ Let C be a simple curve, closed, and

traversed in the positive direction. If within C, f(z) does not have any other
singularity than z1, then:

Indeed, one may replace C by any other similar curve, for instance a circle of
centre z\, and one will then verify that this expression is the coefficient of
l/(z-z1) in the Laurent expansion of f(z) (see Appendix 1).

And, in a more general way (for several singularities), the residue theorem is:



Probability 111

Computing residues

Generally, in order to obtain the residue of f(z) at the pole zi, we expand f(z)

in its Laurent series around zi , and the residue is the coefficient of the term

l/(z-z i). The Taylor series may be used too (see Appendix 1): zi being a pole

of order n, the residue in that point is the coefficient of (z-z i )
n - 1 in the

Taylor development of ψ(z) = [(z - zi)
n f(z)], i.e.:

Especially for a simple pole (pole of order 1), if 

and

Example

Consider the function f(z) =1/(z+1)(z-1)2. It has a simple pole, z\ = -1, and

a multiple one of order 2, z2 = 1. In order to expand around z2, we take z = 1 +
h, (h infinitively small). Then the Laurent expansion is:

The residue, coefficient of 1/h (i.e. of l/(z-l)), is thus R2 =-1/4 . Similarly, at
4

the simple pole we take z = -1 + h and we get R1=1/4 (the exercise is left to
4

the reader).

We may also apply directly the general formula. For instance:
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Similarly:

We obtain of course the same results.

Asymptotic formula

Now we are in a position to establish the asymptotic result we are looking for.
Let us assume that the first singular point of our integral is a simple pole z\
(necessarily real, see P. Levy theorem). Applying the residue theorem to the
inversion formula at the poles z = 0 and z1 yields:

with δ1 < z1, and R1 residue of Φ(-z) at z\. The last integral decays to zero
when x grows to infinity, and then for very large value of x we have:

which may also be written, taking this time Φ(z) and its residue at pole z1:

We will develop several simple applications of this fundamental result in
Chapter 7. The solution is clearly exact when the singular point is a unique

pole.

3.6.1.4.1. Moments

Expanding in power series ezx in the definition, one has:
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and:

Thus taking the nth order derivative:

mn is the nth order moment about the origin, such as defined before. So, the

moments are easily derived from the characteristic function.

3.6.1.4.2. Example of application

Let X be a random variable and f(x) = λe-λx , with f(x) = 0 if x < 0 . Its

characteristic function is:

Thus:

and:
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3.6.1.4.3. Sum and difference of independent random variables

Consider the variable Y= X1 + X2, with X1 and X2 two independent random
variables. We denote respectively as ø(z), ø1(z), ø2(z), their characteristic
functions. According to the definition:

thus:

Using the properties of the means of independent variables:

We find again the basic relationship, already demonstrated above for Laplace
transforms:

ø(z) = ø1(z)ø2(z)

Similarly, for the difference Y = X1- X2, one has:

ø(z) = ø1(z)ø2(-z)

These results may be easily generalized to any number of independent
variables.

3.6.1.5. Some usual transforms

Just as for Laplace transforms, several basic transforms are of constant help in
applications. The correspondence with Laplace transforms is immediate, given
the relation mentioned in the introduction: ø(is) = F*(s). Chapter 4 contains

a more comprehensive set of the characteristic functions of usual distributions
(Poisson, binomial, etc.).

3.6.1.5.1. Sure function (or almost sure)

A constant service time provides a typical example.
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ø(z) = eaz.

3.6.1.5.2. Exponential function

This function is of constant use in queueing problems to describe inter-arrival
delays or service durations:

ø(Z )= A /a-z .

3.6.1.5.3. Geometric distribution

p n =pq n (n = 0,1,2..), with q = l - p ,

3.6.2. Generating functions

3.6.2.1. Definition

For discrete random variables, the characteristic function is written as:

Assume now that X takes only positive integer values. It may then be
convenient to introduce the generating function of the pk:

where z is a complex variable. It is also referred to as the z transform. It is

defined for z < 1 , since F(l) = Σkpk = 1 .
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We have also:

ø(z) = F(ez).

The characteristic function derives from the generating function through a
simple change of variable.

3.6.2.2. Moments

From the definition, one may directly derive the important relationships
concerning moments. Indeed we have:

and so:

Thus:

Similarly:

then:

and finally:

σ2 =X2 -(x)2 =F"(l) + F'(1)-(F'(1))2 

3.6.2.3. Some usual transforms

Here are the simplest and most common pairs of discrete distributions and
their generating functions.
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3.6.2.3.1. (Discrete) unit step function

μk = 1, for k = 0,1,2...

And then:

Thus:

3.6.2.3.2. Geometric function

fk = Aak, for k = 0, 1, 2, ...

(The reader will easily link this result with formula (3-82).)

3.6.2.4. Convolution

At last, just as for the Laplace transform, it can be shown that:

f k x g k = F ( z ) G ( z ) .

The transform of the convolution of functions is equal to the product of their

transforms.

Example of application: a multirate network

We illustrate the use of generating functions by applying them to a
fundamental issue in multimedia networks, namely mixing services of
different bit rates.
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Assume the number of simultaneous connections of a given service (of a given
bit rate) obeys a Poisson distribution. The problem is to estimate the total
bitrate generated by all services. The Poisson law is:

And its generating function is:

If each connection requires a bitrate equal to d, it amounts to say that it
consumes d units of resources of the transmission link, e.g. d megabits/s of the
total capacity D (assumed here infinitely large).

When k sessions are simultaneously in progress the volume of resources they
require is kd. Thus,

Now,

so:

This corresponds to a single service. Assume now that several services with
bitrates d1, d2, ... are offered, the sources being independent and Poissonnian.
It becomes immediately:
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and

with:

This gives the characteristic of the distribution resulting from the
superposition. This is no longer a Poisson distribution, as one recognizes by
comparing it with the previous expressions. However, by introducing the
parameter

one gets:

and thus:

This expression can be compared with equation (3-90) for a single service, if
the terms in z-1 of power higher than 2 (i.e.ψ(z-l)) are neglected. The

system with 2 services with different bitrates is thus approximately equivalent

to a single Poisson source with parameter and

bitrate δ = λ1d1 + λ2d2/λ1d1 + λ2d2 . This is easily generalized to an arbitrary number of

services.

The reader should remark that, in the case where the bitrates are the same d =
d1= d2..., one gets again a Poisson law with parameter λ = λ1+ λ2...
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An intuitive interpretation

In order to have a deeper understanding of this result, the same problem can be
addressed by means of the moments. For a single service, the definition gives
directly the value of the first moments:

and thus:

m = λd and

As the variables are independent, the distribution of the superposition of two
services has its first 2 moments given by:

In order to approximate this distribution by a unique Poisson law with
parameters λ and σ, one must have:

and thus:

This is again the same expression. Approximating the exact result given by the
generating function amounts to approximating to a Poisson distribution, by
adjusting the two first moments. This allows one to represent the complex
behaviour of a multirate system by a much simpler Poisson process with a
unique bitrate S. In the sequel, several applications to the traffic engineering
of IP networks will illustrate the interest of such results.



4 

Probability Laws 

Random phenomena are clearly of various kinds, and their probabilistic 
description makes use of numerous probability laws. In this chapter, we 
present the most important, and most commonly used of these laws, giving 
their main characteristics (distribution function, transforms, moments) and 
commenting the “circumstances” under which they are likely to appear. 

The specialist is to apply these laws in various situations. For instance, an 
experimental distribution of a character has been obtained in a measurement 
campaign, and the goal is to build a theoretical model able to represent the 
result. This amounts to adjusting a mathematical model using the 
measurements. Another case is in the choice a priori of the model of a process 
in an ongoing project (typically for a simulation experiment). Here, the choice 
of law is made by invoking intuitive or mathematical arguments sustaining a 
specific law. Needless to say, such a choice relies mainly on the specialist’s 
experience. Lastly, the need occurs to analyze the behaviour of a phenomenon 
of given probability distribution (e.g. obtained through one of the previous 
steps). The analysis is based upon the properties of the law (moments, 
transforms) and makes it possible to draw various figures of interest (e.g. loss 
probabilities, average delays, etc.). 

Depending on circumstances, observations are represented using discrete laws 
(number of events arriving in an observation window, number of failures, etc.) 
or continuous ones (e.g. service duration). Denoting the random variable as X, 
the law is thus either discrete, defined by a distribution function: 

or continuous, defined by the distribution or the probability density function 
(PDF): 
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4.1. The (discrete) uniform distribution

The uniform law is the simplest one can imagine. Let X be a discrete random
variable (the outcomes are represented as 0, 1, 2, etc., without loss of
generality), such that each outcome has the same probability of occurrence
(this is a frequent modelling assumption). Tossing an unloaded die is the most
obvious illustration, each face having on the long term the same frequency, the
probabilistic model simply assigns a probability 1/6 to each outcome.

A discrete random variable taking values between a and b has
b — a + 1 possible values. It obeys the uniform distribution, denoted as U(a,b),

if its probability law is:

Its mean value is easily derived:

Mean: m =

A calculation of the same kind, making use of the formula giving the sum of

.
squares ( Σk2 = n(n+1)(2n+1)/6 allows one to derive the variance, through

tedious manipulations.

Variance: Var = (b

The continuous version of this law will be addressed later on in a later section.
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4.2. The binomial law

The binomial law is encountered in numerous applications of probability
theory. Let us consider the operation of quality control of a production line.
Assume that each item has probability p to be defective. The circumstances
making the item faulty or not are such that the status of an item does not
depend on the status of the previously produced ones. Any element extracted
at random is faulty with probability p. Now, assume that a batch of N items is
controlled. How many of them are faulty? More precisely, as the experiment is
of random nature, what is the probability of observing 0, 1, 2... faulty item
among the N ones?

This is one of the classical problems addressed by combinatorial analysis.
Each trial corresponding to the event "k faulty elements" consists in
extracting, in any order, k faulty items and N - k good ones. Several drawings
lead to this result. For instance, denoting as "0" faulty elements and as "1"
good ones, the sequences 110011, 111100, 001111, etc. yield the same event
"2 faulty among 6". Each of these sequences has probability pk(l — p)N-k (k

and only k defaults have been observed). Moreover, as the order in which
faulty elements are observed is irrelevant, the probability of the event is
simply the sum of the probability of individual sequences (which are clearly
exclusive). Classical counting consists of putting k "balls" inside N "urns", so
that each urn contains at most one ball. There are N ways to choose the first
urn where a ball is put, N - 1 ways to choose the second one, etc. so that there
are N(N-l)(N-2)...(N-k + 1) = N!/(N-k)! possible ways. In this

operation, however, the same sequence has been counted k! times (as the k
balls are not distinguishable, this is the number of permutations of A: objects).

Finally, there were N!/(k!(N-k)! = (N k) ways of observing the event, and the

probability of the event is:

P(k) = P(k among N) = 

This is the so-called binomial distribution, since P(k) is the term of rank k in

the development of [p + (1 — p)]N . Transforms are the easiest way to obtain its

moments, and we derive them using its characteristic function (see Chapter 3).
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The characteristic function is obtained by the following argument: for a single
drawing, the characteristic function is ø(z) = E(ezx) = q + pez, since the result

is x = \ with probability p, and 0 otherwise. Thus, for N independent
drawings, since the characteristic function of the sum of independent variables
is the product of the individual functions:

from which the final result is:

Variance: Var

Figure 4.1 displays the typical shape for the probability density function of the
binomial distribution.

Figure 4.1. Probability density function of the binomial distribution

The binomial distribution is of repeated use each time a trial involves
superposing independent elementary trials. In the field of traffic, the Engset
problem introduces it as a limiting distribution (see Chapter 7) of the number
of busy lines in subscriber concentrators.

The binomial distribution enjoys the following property, concerning the sum
of several variables:
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THEOREM.- If two discrete random variables X and Y have binomial
distributions with parameters respectively (N, p) and (M, p), the variable X + Y
has a binomial distribution with parameters (N+M, p).

The proof is straightforward, by noting that the characteristic function of the
sum is the product of the individual functions.

4.3. The multinomial distribution

This is the generalisation of the binomial law. Assume that m types can be
distinguished in the population (m kinds of faults, to take the previous

example), so that the population has a proportion pk of elements of type k

(with naturally Σpk=1). The question is: what is the probability of

observing, when extracting N items, n1 of the type 1, etc., nm of type m, with
n1 + n2 + ... + nm = N . The result is:

This result has numerous applications. Imagine for instance observing a
network element (e.g. a concentrator) to which various sources are connected.
What is the distribution of the traffic the sources generate? Individual traffic
intensity, expressed in erlangs, is distributed between 0 and 1. One usually
defines categories, according to the type of subscriber (professional,
residential, in urban area, etc.), corresponding to traffic intensities. With two
categories, the binomial distribution gives the answer. For several categories
(typically: less than 0.03, between 0.03 and 0.05, ..., higher than 0.12), the
distribution of the number of customers among the categories is given by the
multinomial law. Finally, knowing the distribution of the different customers
among the categories allows dimensioning the subscriber concentrator, using
the multinomial distribution. More generally, this result holds whenever a
population, composed with different sub-populations, is observed.

4.4. The geometric distribution

A discrete variable obeys a geometric distribution if its distribution is given
by:

p k=(1-p)p k, 0 < p < l , k = 0,1,...
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Consider for instance a data layer protocol which detects and corrects
transmission errors (such as the celebrated X.25). Assume that each packet has

a probability p of being erroneously received. Thus a retransmission is needed
with probability p. An error is corrected if the following retransmission is
successful: probability 1 — p. In the general case, the packet may be

successively erroneous during the k first attempts, the k + 1th being correct.

This event has probability:

P(k retransmissions) = (1 - p)pk

The moments of the distribution can be estimated directly:

The same kind of calculation gives the variance. Actually, this offers another
opportunity to stress the efficiency of the transforms approach. We illustrate
here the use of generating functions.

For the geometric law, the generating function is given by:

from which the results come immediately:

Mean value: 

Variance : 

As a comparison, here is the same calculation using the characteristic function:

from which the derivatives taken at z = 0 (see Chapter 3) give:
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and

(The reader is encouraged to proceed through the calculation.)

The law is sometimes presented in a slightly different form. In the above
example, one could have been concerned by the distribution of the total
number of transmissions. This time:

P(k transmissions) = (1 - p )p k - 1

4.5. The hypergeometric distribution

Consider once again the configuration leading to the binomial distribution:
random extraction from a population having a given proportion of a certain
character. This time, assume the population is of finite size H, of which a
proportion p is distinguished (faulty elements, in the previous example): there
are M — Hp such elements. The experiment consists here in drawing N items
without replacement (i.e. the items already drawn are not replaced in the
population, which is also called an "exhaustive" drawing). At each trial, the
size of the remaining population decreases and the proportion evolves. The
binomial distribution holds only if the proportion remains constant. The
hypergeometric distribution is to be used in this case.

The probability of drawing k elements of type T while extracting N of them in
a population of size H containing M elements of type T (proportion
p = M/H) is:

for max(0, N + M-H)<k< min(M, N)

This is the ratio of the number of ways to realise the event (choosing k among
M, and the N-k others of the other type) to the total number of possible
drawings. The moments are:

M
Mean value:
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Variance:

The comparison with the binomial distribution of same parameter p shows that
the average values are identical, while for variances:

As the population size keeps growing ( H ), the ratio goes to 1: for a

population of large size, extracting N elements brings no significant change to
the composition of the remaining elements. In other words, the hypergeometric
distribution goes to the binomial law as the population size increases

indefinitely.

4.6. The Poisson law

A discrete random variable taking unbounded positive values obeys a Poisson
law with parameter A if its distribution is given by:

The dimensionless parameter A characterises the law. This distribution is

encountered in various circumstances. Especially, if a flow arrives according
to a Poisson process (see Chapter 7), then the number of arrivals observed in a
window of width T is distributed according to the Poisson law with parameter
A = λT . This gives to this law a fundamental role in teletraffic studies,

especially for describing arrival of calls, sessions, etc., in communications
systems. The conditions explaining the occurrence of such a law are detailed

in Chapter 7.

The characteristic function, from which the moments are derived, is written:

Mean value:



Variance:

The central moments of higher order are:
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Figure 4.2a. The histogram of the Poisson distribution (λ = 5)

Figures 4.2a and 4.2b illustrate the general shape of the law. As this is a

discrete distribution, the histogram resembles Figure 4.2a. In Figure 4.2b a

smoothed variant shows the effect of changing the parameter. Variables

obeying a Poisson distribution enjoy the following property, allowing

combining them easily.

THEOREM.- Let X and Y be two Poisson variables with parameters respectively

λ and (µ.. Then, X + Y obeys a Poisson distribution with parameter λ + µ.

The proof is immediate, using the transform approach explained in Chapter 3,

the transform of the sum being the product of transforms (Laplace,

characteristic function, etc.). This property is of the higher importance, as one

has often to treat the case of a mix of Poisson streams.
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Figure 4.2b. Smoothed shape of the Poisson distribution for different
parameter values

4.6.1. Relationship with the binomial law

When the size of the population grows indefinitely, the Poisson law provides a
useful approximation. Consider a binomial law, with average A and with
growing population size N (so that p = A/N goes to 0).

Developing the binomial coefficient and rearranging the terms, one gets:

We make N going to infinity, keeping A constant (thus p going to 0). Then:
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And so:

As the sample size increases, the average remaining constant, the limiting
distribution conforms to the Poisson law. This is an appealing result, as the
Poisson approximation is much easier to tabulate. Practically, the
approximation holds as soon as N > 40 and p < 0.1.

Actually, the Poisson distribution may serve as a limit for several other laws,
such as Erlang distribution, as will be seen later on. This explains its use in a
lot of domains, such as statistics, reliability (e.g. for estimating spare parts),
and also naturally traffic studies. We will present in Chapter 7 an interesting
interpretation of a system with N customers and R servers, which allows
explicating the natural relation between Poisson, binomial and Engset laws.

4.7. The continuous uniform distribution

This is the simplest kind of continuous distribution, which corresponds to the
limiting case of the discrete one. A random variable is uniformly distributed
between a and b if the probability of finding it in any interval of length / is
l/(b-a). As the law is absolutely continuous, the probability density exists:

and the distribution is:
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Figure 4.3. The uniform distribution

Such a distribution has a great variety of usages. This may represent a service
duration, for instance if the service epoch occurs periodically, with a constant
interval T, the customers arriving randomly (packeting of speech samples).
This is also the law which will serve as a basis for generating random
variables with arbitrary distributions in simulation (see Chapter 8), and more
generally in all Monte-Carlo methods.

The characteristic function of the uniform distribution is:

from which the moments are obtained (e.g. by developing the exponential
functions):

Mean value:

4.8. The normal (Gaussian) distribution

The normal (or Gaussian) distribution is probably the most celebrated among
the laws that the engineers and scientists manipulate. Its popularity rests to a
large extend on work which has been devoted to measures and the theory of
error measurements. Its justification relies on the central limit theorem,
presented in Chapter 5, and which states that the normal distribution is the
limiting distribution of the sum of a large number of independent and
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identically distributed variables. For instance, the causes of measurement
errors are numerous and independent, and they add so that the measured value
is normally distributed around the "true" value.

In the field of performance studies, its applications are numerous, for
reliability, queueing, or simulation, where it allows estimation of the
"precision" of the measurements as well as approximating probability

distribution. Actually, the analysis of most physical phenomena involves the
addition of a large number of independent variables - number of waiting
customers, number of machines down, etc. - making it possible to invoke the
central limit theorem.

A random variable is said to be normally distributed with mean m and

standard-deviation σ, and usually denoted as N(m, σ2 ) if its probability

distribution is given by:

The coefficient before the integral guarantees the "normalisation", so that
P(X < ) = 1 as needed. The term σ, the standard-deviation, is responsible of

the flattening of the density around the mean (see Figure 4.4). The expression

σr =σ/m is referred to as the relative dispersion, or coefficient of variation
m

(also denoted as c).

Figure 4.4. Probability density function of the normal law
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4.8.1. The sum of normal random variables

With reference to the properties of the sum of independent variables, stated in
Chapter 3, the following result allows easy manipulation of the sum of normal
variables.

THEOREM.- Let X = N(m1, σl) and Y = N(m2,σ2) be two independent

random variables. The sum X + Y is distributed according to

This clearly generalises to the sum of an arbitrary number of variables. Of
special interest is the case of n variables identically distributed: the coefficient

of variation of the sum is . As n grows, the relative dispersion

vanishes so that the sum goes to a variable almost constant.

The curves in Figure 4.4 show how the dispersion varies as the standard
deviation increases. Figure 4.5 illustrates the symmetrical shape of the
distribution function.

Figure 4.5. Distribution of the normal law (standard-deviation = 1)

In fact, the normal distribution is scarcely used this way. If X is normally

distributed according to N(m,σ2), then clearly X — m has a mean = 0, and

the same variance as X. Moreover, (X — m ) / σ is a variable with variance

equal to 1. This is the standard or reduced normal distribution (Laplace law).
This form is "universal", in that it does not depend on any parameter, which
allows tabulation of it. It is usually written as:
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and the characteristic function:

A direct numerical evaluation of Φ(x) happens to be difficult, except when

using specific mathematical libraries, and its estimation is most often based

upon numerical tables. The following approximation is quite efficient:

a = -0.1201676

with b = 0.4361836

c = 0.9372980

—5This expression deviates from the exact value by a relative error of about 10-5 .

4.8.2. Statistical tables

All reference textbooks in statistics provide comprehensive tables for the

standardized normal distribution. An example of such tables is given in

Appendix 2.

The table gives the bounds of the interval [— a, a], such as, 'the value of a

normal random variable has the given probability P to be outside the interval'.

This can be written as P = P(|X|>a). In other words, the value is within the

interval with probability 1 - P. For instance, 1% of the values are likely to be

outside the range [-2.576, 2.576] and about half of them are outside [-0.674,

0.674]. As the law is symmetrical, the probabilities for each side of the bounds

are the same:

Such tables are built only for the standard distribution. Values for an arbitrary

law may be derived, if needed. For instance, let X have a normal distribution
with m = 10, σ = 15 . What is the probability of observing X > 30? The idea is

to come back to the reduced variable:
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The value we are looking for is the probability that the reduced variable is
larger than 2. The table says that the probability is around 0.045/2= 0.023 (aass

4.8.3. The normal law as limiting distribution

The normal law happens to be the limiting distribution of numerous
distributions, either continuous or discrete, when one of their parameter
increases. For discrete distributions already encountered:

-Binomial law: Z = B(n,p), then (Z-np)/ np(1-p) goes to N(0,l) as

n —> ; practically, one admits generally that the approximation holds as soon
as p > 0,5 and np > 5, or p < 0,5 and n(1-p) > 5;

- Poisson law: Z = P(λ), then (Z — λ ) / λ A converges towards N(0,l) as

A —> . The condition A > 10 ensures the validity of the approximation.

Other continuous distributions, introduced in the next paragraphs, also have
the normal law as limiting distribution.

4.9. The Chi-2 distribution

We are given a set of independent and identically distributed variables

Xl,X2,...,Xn,,following the reduced normal distribution...

The variable X2 =X l

2 +X22
2 +...+ X22

n is distributed to as a Chi-2 with n

degrees of freedom (written XN2

n). This distribution enjoys the following

property: the sum of two Chi-2 variables with respectively n and m degrees of
freedom is a Chi-2 with n+m degrees of freedom. This variable is often used
in statistics, especially for hypothesis testing or estimating confidence
intervals (see Chapter 5). Especially, it is useful for the estimation of
operational failure rates of the components, when monitoring reliability of
equipments in operation. The density function has the form:
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Mean value: m = n,

Variance: Var = 2n.

Figure 4.6. Probability density function of the Chi-2 law

4.9.1. Limiting behaviour

Since a Chi-2 variable is the sum of independent variables, it clearly should go
to a normal distribution as the number of degrees of freedom increases. A
more precise result can be stated:

THEOREM.- Let Xn be a variable distributed according to a Chi-2 with n

degrees of freedom. As n increases:

4.10. The Student distribution

We are given a set of n + 1 independent random variables,((x,x1,x2,...,xn),X,,Xl,, X2,,...,xn),,,,

each normally distributed with mean m = 0 and the same variance. Let:
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The variable t is distributed according to the Student law with n degrees of 
freedom. This distribution appears in the theory of estimation, especially for 
samples of limited size. 

The density function is given by: 

For n > 2 ,  the moments exist and are given by: 

Mean value: m = 0 ,

n 
Variance: var = - 

n - 2

The variance does not depend on the common variance of the X i .  As the 
number of degrees of freedom increases, the Student distribution approaches 
the reduced normal distribution (intuitively Y goes to a constant equal to 
unity ) . 

4.11. The lognormal distribution 

A variable is lognormally distributed if its logarithm has a normal distribution. 
If Y is N ( m , 0 2 )  -distributed, then X = ey is lognormally distributed with 
density function: 

The moments of the two distributions X and Y are related: 
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One usually proceeds the inverse way: the parameters of X are known and one
looks for the (m,&) needed, e.g. to generate a sample in a simulation

experiment. The correspondence is simply:

The reason why the lognormal distribution is encountered is described as the
principle of multiplicative accumulation. The normal distribution appears
naturally when a phenomenon results in the sum of independent perturbations.
Assume now the amplitude of the phenomenon is caused by the product of
independent causes. Taking the logarithm transforms the products into sums,
on which the arguments of the central limit theorem apply. The lognormal

distribution is thus invoked in the analysis of a large number of economic
phenomena related to income or consumption, or in life sciences.

4.12. The exponential and related distributions

4.12.1. The exponential distribution

The exponential distribution has a quite particular position in the queueing and
reliability domains. The corresponding chapters will explain the reason for its
endless use. The distribution depends on a single parameter, traditionally
denoted as μ, in the teletraffic field, and the density function is given by:

The distribution function is:

Remember its characteristic function (see Chapter 3):
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for which the moments are easily obtained:

The curve k = 1 in Figure 4.7 shows the shape of its density function (as this is
a special case of the Erlang-k distribution, see below).

4.12.2. The Erlang-k distribution

A variable which is the sum of k independent variables having the same
exponential distribution is said to have an Erlang-k distribution. It can serve
for approximating an unknown distribution, having a coefficient of variation

lower than 1. This helps in building a model of service durations, having
dispersion between the constant and exponential distributions.

For the simplest case let us take k = 2. Let X denote the variable sum of the

two variables X{, X2,. having probability distributions Bl and B2 . Th

distribution B of X is the convolution of Bl and B2 (see Chapter 3):

As X}, X2 are exponentially distributed, it becomes:

More generally, one has shown in Chapter 3 that cascading k exponential
variables having the same parameter μ leads to the distribution:

This distribution is known as the Erlang-k distribution. As it is the sum of
independent variables, the mean and variance are simply the sums of the mean
and variance of each component:
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Coefficient of variation: 1/ k .

Using the Laplace transform makes it easy to retrieve these results. As the
distribution is the convolution of k exponential distributions of independent
variables, its transform is directly obtained:

From the distribution, the moments are obtained by taking derivatives for s =
1. Moreover, coming back to the original function provides the probability
density:

Note that the coefficient of variation c = 1l k is always less than 1, except

for k = 1, which corresponds to the exponential function. This explains the use
of this distribution as a means to represent a phenomenon having a low
dispersion. It can even be used with a large value for k, keeping k l u

constant, providing then an approximate representation of constant duration
under the form of a markovian system, thus keeping the memoryless property,
the appeal of which will be made obvious in Chapter 7 devoted to Markov
processes (it can be verified that the limit of equation 4.55 as k grows is
indeed the constant distribution).

The Laplace transform provides an elegant way to prove this limit. Let
a = k / u kept constant as k increases:
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which is actually the transform of the constant duration with parameter a.

Figure 4.7. Probability density function of the Erlang-k distribution for
various k

For practical purposes, one can introduce the new parameter X = μx/ k , such

that the new variable has a mean value equal to 1. One thus gets the reduced
law, just as was done for the normal distribution:

having the characteristic function:

and moments:

Figure 4.7 exhibits the shape of this distribution, for different values of k.

Taking for k a real number instead of a positive integer generalizes to the
Gamma distribution. This is presented hereafter. Note also that for statisticians
Erlang-k distribution is a X2 distribution with k degrees of freedom.
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4.12.3. The hyperexponential distribution

When it comes to represent service distributions having a coefficient of
variation larger than 1, the hyperexponential distribution is introduced, as it
will be discussed in Chapter 7. The basic configuration depends on 3

parameters, usually denoted as a,μ1, μ2. The distribution is:

The Laplace transform is readily obtained, as the sum of the transforms of the
2 exponential functions:

From the transform, mean and variance are:

Coefficient of variation: c =

In the general case, the distribution is a combination of n exponential
functions:

the moments of the distribution are:
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Coefficient of variation: c —

The Cauchy inequality states that ( Σai bi )2 Σ ai

2. Σ bi

2 . Applying it to the

above expression, taking at = αi, bi = αi /μi shows that the coefficient of

variation is always larger than 1. This makes this law a representative of
distribution more dispersed than the exponential one.

4.12.4. Generalising: the Cox distribution

The Cox distribution provides a generalisation of the Erlang and
hyperexponential families. The following picture (Figure 4.8) visualises this
law: a network of exponential servers, the "service" being composed of a
random travel through the network.

Figure 4.8. A network of exponential servers generating the Cox distribution

One can show that this formulation provides the most universal combination of
exponential distributions, and that it can represent exactly any distribution for
which the Laplace transform can be written as the ratio of two polynomials. As
a consequence, any probability distribution can be approximated by such a
law, the accuracy depending on the number of terms. The Laplace transform is
easily written:

4.12.5. The Gamma distribution

A variable having a Gamma distribution γ(α,β) has a probability density

given by:
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in which r is the Gamma function: r(a) = ~ ~ x " - ' e - ' d r  (for integer values of 

n, T(n)  = (n -l)!). The reduced form with p = 1 can be used: it is obtained by 
scaling the distribution: if X is distributed according to y(a,p), then 
Y = XI p is distributed according to y(a, 1) - usually denoted as ?(a) . 

Mean: m = ap .

Variance: Var = ap' 

Reciprocally, given the moments, the parameters are obtained as 
p = Var I m , a = m2 I Var , 

For a = 1, it reduces to the exponential distribution. More generally, y(k, p)  
with integer k is the Erlang-k distribution. For k integer and p = 2,  this is a 
Chi-2 with 2k degrees of freedom. 

If two variables X and Y, are Gamma distributed with the same parameter p - 
respectively y(a, p )  and y(a  ', p)  -, then Z = X + Y is Gamma distributed 
as y (a+a ' ,P ) .  

The Gamma distribution allows one to represent various distributions, for 
which the analytical expression is unknown or too complex to be numerically 
manipulated. It provides an extension of the Erlang family to configurations 
with non integer parameters, giving arbitrary variances (larger or smaller than 
the mean). 

Taking n as an integer, one verifies that the expression reduces to the Erlang-k 
already presented, making the obvious change of variable k+ n x + 8 = kxh. 
It is under this form that the Gamma distribution is often calculated. 

This is the reduced form. One has: 
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4.13. The Weibull distribution

A variable obeys the Weibull distribution if its probability density function is
given by:

Figure 4.9. Probability density of the Weibull distribution

It is of common use in reliability studies, where the reliability function R(t) is
defined: this is the probability that the system is working correctly at time t.
R(t) is the complement of the distribution (see Chapter 6):
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It represents distributions with reliability parameters being a function of time.

For example: the reliability increases in the beginning of the life, β < 1 (failure
rate decreasing as the time increases), constant failure rate during the
operational period, taking β = 1, γ = 0 (the exponential distribution), and the
failure rate increasing at the end of the lifetime, with ft > 1 (see Chapter 6). It

can be of help in traffic studies too, for describing complex arrival processes,
such as interarrival duration between successive IP flows.

The moments of the Weibull distribution are:

4.14. The logistic distribution

The logistic distribution appears when modelling the evolution of a character

of a population, and more specifically here when deploying new services.

Indeed, this is the classical model for the introduction of any consumer goods.
To have a precise example, let us consider a communication service (e.g.
cellular phone). Let x be the equipment ratio, i.e. the density of the equipment
at time t (ratio of the number of equipped customers to the total population).
Let s stand for the saturation density (it can be 100%, or even more if the

households are the reference population: e.g. 2 telephones in a single family)

The derivative dx/dt accounts for the growth rate. Assume the demand can be

immediately satisfied: the equipment ratio is equal to the demand. Assume
now that the demand is proportional to the number of customers already
equipped. Assume also that it is proportional to the size of the unequipped
population. The first assumption is related to the service usefulness, as more
and more customers can be reached; the second assumption amounts to
defining an individual need of the service, the demand being thus proportional

to the size. The same kind of assumptions is made in epidemiological studies
(x being here the density of contaminated subjects)

Under these assumptions, and with k being a coefficient assumed constant, the
phenomenon is governed by the following equation:
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The solution is readily obtained:

In this equation, A stands for the integration constant. The second form,
equivalent to the first one, introduces t0, time of median equipment (epoch

where x = s/2).

Figure 4.10. The logistic curve

A change in the coordinates is most often use, taking Log(x/s-x) instead of x.

This is the logit transformation, which reduces the typical logistic curve of
Figure 4.10 to a straight line. This provides a framework of description, rather
than a model of explanation. In practice, several observations allow one to
estimate the best values for the parameters. The validity of this model depends
actually on the (questionable) validity of all the assumptions (for instance, k is
taken as constant, which is probably erroneous for society phenomena). Figure
4.10 displays the shape of the curve, for s = 1, k = 0,05, t0 = 100.

4.15. The Pareto distribution

The Pareto distribution is given by the following law:
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Taking the derivative gives the density function:

If the curve is drawn on a logarithmic scale the parameters are readily
identified:

log(F(x)) = a log(b) - a log(x),

so the curve appears as a straight line with slope - a.

The Pareto distribution has been initially used in statistics. Recent studies
about internet traffic has lead to applying it to traffic description. It has been
shown that some of the characteristics of these flows are fairly well modelled
using this law. This is especially the case for the length of the files exchanged
on the network, and the self-similarity one observes on internet traffic could
originate in this remark. Self similarity accounts for the observation that the
statistical properties of the observation are conserved through changes of
scale. The term fractal traffic is also in use.

Figure 4.11 displays the shape of the complementary distribution function,
plotted on a logarithmic scale (the unit length on the abscissa is proportional
to x). The curve "b = 2350, a= 1.04" corresponds to the adjustment with a
series of observations of file sizes observed on the internet (reported in
[CRO 97]).



150 Communicating Networks: Traffic and Performance

Figure 4.11. The Pareto distribution

4.16. A summary of the main results

Mean values are denoted as m and variances as Var. μ3, μ4 are the central

moments of order 3 and 4. The generating function B(z) and the characteristic
function φ(z) are given. Most of these laws are tabulated: the reader is

referred to Appendix 2.

4.16.1. Discrete distributions

Uniform (discrete) distribution U(a,b)
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Binomial distribution B(p, N)

Geometric distribution

Hypergeometric distribution

Poisson distribution
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4.16.2. Continuous distributions

The density and the distribution are given when the expressions are simple

enough to be of some help.

Uniform distribution U[a,b)

Normal (Gauss) distribution N(m,σ)

(mean and variance are the parameters of the law), μ3 = 0, μ4 = 3σ

Chi-2 distribution with n degrees of freedom



Student distribution

Log-normal distribution

Exponential distribution

Erlang-k distribution
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Hyperexponential distribution

Gamma distribution

Weibull distribution

Pareto distribution



5 

Statistics 

In formulating any statement about a “system”, the engineer needs to acquire 
as precise as possible knowledge about it and about the environment in which 
it is to work. Such knowledge cannot result from pure reasoning only, and has 
to rely on observation and measurement. In the domain of performance 
evaluation, service times, as well as traffic offered, are examples of such input 
data. For reliability studies, equipment lifetime, system availability, etc. are 
measured. In a real network or during lab experiments, response delays or load 
levels can be observed. Similar measurements can be made in the preliminary 
design step, during simulation studies. 

It results from this that a certain amount of data is to be collected on the 
system. The methods of descriptive statistics help in choosing the parameters 
of interest and in presenting in a synthetic way the set of results - in short, 
how to visualise them. 

Now, exhaustive measurements are clearly impossible to carry out. The 
methods of mathematical statistics aim at providing tools to analyze data in 
order to extract all the possible information from them. For instance, 
estimation theory helps in estimating the confidence level to be associated 
with the prediction of a parameter of interest. At last, hypothesis testing helps 
in making decisions about the population under study, such as comparing two 
different samples or deciding the conformance of the measurements with a 
given theoretical distribution function. 

Statistics are concerned with a set of elements, called the population. On each 
of the elements a character is observed, which varies from one element to 
another. Typical examples here are the duration of a communication, the 
length of a message, the number of busy elements in a pool of resources, the 
time between two failures of the equipment, etc. The implicit idea sustaining 
the statistical approach is that there exists a kind of regularity behind the 
apparent randomness of the observations, and that the population is 
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characterized by a (unknown) well-defined value of the parameter, and that the
observations are distributed around this value according to some probability
law.

5.1. Descriptive statistics

Interpreting the huge amount of raw data collected during a campaign of
measurements always happens to be difficult, and the first step towards their
understanding is in visualizing them properly: how to summarize the
information, how to stress the relations between them, etc. The methods of the
descriptive statistics are of invaluable help in this task, the importance of
which must not be underestimated. The detail of the analysis the specialist
may conduct is only convincing for his/her peers. For the others, synthetic and
convincing illustrations (charts, tables or other) must be a preferred
communication media: a picture paints a thousand words.

5.1.1. Data representation

Numerous data have been gathered, and the point is to display them, so as to
give a synthetic view, allowing one to visualise the whole results "in a
glance", at least in a qualitative way. Numerous techniques have been
conceived, which are easily available through modern specific software tools.

The most popular tool is the histogram. To begin with, assume that a discrete
character is observed (to help in the presentation, it takes integer values 0, 1,
2, etc.). Let nk be the frequency of value k, i.e. the number of times it is

observed. Figure 5.1 shows the histogram.

Figure 5.1. Histogram, showing results of observations for a discrete variable
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The outcome has been "0" for 1 element, while 5 elements exhibit the value
"6", and an average around "8" can be guessed. Abnormal measurements may
be discovered in this way (here, perhaps "16", but the sample size is far too
small for such a firm statement).

The case of continuous variables calls for a more careful analysis. The
previous approach is no longer valid, as the outcomes are real numbers,
scattered throughout the axis, with no two identical values. The method is to
group the observations in classes and to draw cumulated frequencies. I

intervals are defined: [xi,xi+1[, i = 1,...,I. They are usually referred to as

bins. Class i bin gathers all observations within interval i, and contains
ni observations: ni =#Elts(x, such that xi x < xi+1). With N for the size of the

whole population, the relative frequency for class i is the ratio fi = ni / N. The

curve of cumulated frequencies displays the whole set of measurements:

The curve is made up of a series of horizontal segments (Figure 5.2):

Figure 5.2. The empirical distribution of a continuous variable

The histogram is another representation, just as for discrete value
observations, provided that the "area rule" is observed. For each interval i, a
rectangle is constructed with a base length equal to its range xi+1 - xi and an

area proportional to the number of observations within the interval. This
guarantees the validity of the interpretation given to the graph:
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Class i is represented on the histogram by a rectangle with area (instead of
height) proportional to ni. For bins of equal width, the distinction makes no

sense. In the general case, the rule is motivated by the following arguments:
- It allows interpretation of the ordinate as an "empirical density".
- It allows an unbiased comparison between frequencies of the different
classes to be made.
- It makes the histogram insensitive to class modifications (especially, the
shape remains the same if several bins are grouped).

Other representations

Numerous other description tools have been imagined, the goal of which is to
provide a synthetic, intuitive, access to the set of data. Various software
packages make them easy to use. The reader is referred to the bibliography.

5.1.2. Statistical parameters

The direct visualization of the data is a first and important step. At that point,
the need arises for a quantitative characterization for the parameter of interest.
Here again, the assumption is that statistical laws, often difficult to identify,
govern the phenomena under study. To begin with, one makes use of global
parameters that introduce no specific assumption about the underlying
probabilistic models.

5.1.2.1. Fractiles

Fractiles are read directly on the cumulated frequency curve. Let F be the
cumulated frequency of variable X: F (x) is the ratio of measured values equal

to or less than x. The α-fractile (also referred to as quantile or percentile) is
the number u such that F (u) α, F (u + ε) > α.

This notion may help eliminate extreme values, most often abnormal. In the
common situation where the measured character has no upper bound, the range
of interest can be chosen as the interval between the 0.001-fractile and 0.999-
fractile. In economics use is made of quartiles (values for a = 25, 50 or 75%).
The 0.5-fractile is called median. It divides the whole population into two
subsets of the same size.
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Figure 5.3. Fractiles of a distribution function

5.1.2.2. The sample mean

Among the global numeric indicators that are derived from the raw data, the

mean value (or average) is certainly the most popular. The term empirical

mean is sometimes used to emphasize the fact that this quantity is estimated,

as opposed to the theoretical mean value of a probabilistic distribution. It is

most commonly denoted as x :

N being the sample size.

5.1.2.3. The sample variance

In order to represent the dispersion (intuitively the distance from the average

behaviour given by the sample mean), the sample variance V is introduced;d:

The standard deviation (7 is the square root of the variance.

5.1.2.4. The moments

The kth-moment of the distribution (moment of order k) is usually denoted as

μk. Most often, the moments are taken about the mean:
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(the first moment is μ1 = x).

5.1.2.5. The mode

The mode is the most frequently observed value. It is given by the maximum
of the histogram. Distributions with a single mode are referred to as being
unimodal.

Mode, median and mean values must be carefully distinguished. The mode is
visible on the histogram; the median separates the population in two subsets of
equal size, and the mean in two subsets of equal "weight". Unimodal
distributions fit in one of the two categories:

• Mode < median < mean (the distribution is spread to the right);
• Mean < median < mode (the distribution is spread to the left).

Figure 5.4. Mean, mode, median of a density function

5.1.2.6. Other characterisations

The mean and variance do not capture all features of the distribution. Other

indicators have been proposed, which take account of certain classes of shapes
of the distribution functions. These indicators are derived from the moments.
Here too these indicators are to be seen as "empirical" (i.e. defined from the
sample). In order to simplify the notations, the "-" are omitted in what
follows.
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These coefficients (respectively, Fisher and Pearson coefficient) reflect the
skewness of the distribution. They take account of the symmetry the function
may exhibit; they vanish when the curve is symmetric.

These coefficients allow comparison of the peakedness of the distribution (the

"kurtosis") with the normal distribution, which is such that μ3= 0, μ4 = 3σ4

(see Chapter 4), and so γ1 = γ2 = 0 .

5.2. Correlation and regression

When a phenomenon implies more than one random variable, the possible
relationships between them are an important issue. Observing a sample of
people, one can expect a kind of "fuzzy" relation between their size and
weight. In a similar way, the socio-economic category of a family, as given by
its annual income, is related to its telephone or internet usage (and more
precisely with the level of usage, i.e. the traffic).

The same observation is made in reliability studies. For instance when
characterizing some production process one is interested in the possible
relation between the rejection ratio and some condition of the production (e.g.
the date, or identity of the production line). A first approach is to illustrate the
possible relation by displaying the set of all pairs (x, y) of observed data.

The "Jipp curve" (see Figure 5.5) is a classical example of such a correlation.
It shows the relation between the revenue per inhabitant and the level of
equipment for fixed telephony. There is no strict mathematical link, but only a
quite typical trend. Interpreting this trend is beyond the scope of the statistical
tools. There may be a direct causal relationship (phenomenon X provokes Y) or
a more complex scheme (X and Y being two consequences of a third, hidden,
cause).
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Income / inhabitant (US$)

Number of telephone
lines for 100
inhabitants

Figure 5.5. Relation between income and equipment level for the telephone
service, for various countries

5.2.1. Correlation coefficient

The relationship between two random variables is numerically represented by
the correlation coefficient. This is a number, between -1 and 1, defined as:

The reader may compare this with the covariance (equation 3-53): the above
quantity is nothing more than the "empirical" version (normalised). When the
coefficient is equal to 0, the variables are said to be independent.
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5.2.2. The regression curve

When two variables X and 7 are correlated, their mutual influence may be
visualized through a causal relation Y = f(X), although however that
correlation does not imply any direct causal relation. This operation is called a
regression. In the general case the relation could be quite complex, in the
following the analysis is restricted to a linear model Y = aX + b . Note that
one can always restrict to a linear model by the appropriate transformation of
the variables. It is also possible to define more elaborated models (e.g.
quadratic relations).

The least squares method

Let us assume a linear model. The coefficients have to be estimated from the
set of measurements providing N couples (xi , y i ) . As the linear model does

not capture the whole phenomenon, since other factors are neglected, the
linear relation is approximate and the "error" is represented by an additional
variable e:

(we are really looking for estimators of the parameters; as we will see later,
they are often symbolized using "^"). The method consists in allocating values
to parameters so as to minimize the distance between the model and the values
actually observed. The distance is written:

The optimal coefficients are such that they cancel partial derivatives:

This yields the solution we are looking for:
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(Sx, Sy stand for the empirical standard deviations of the variables). The slope

of the line is directly related with the regression coefficient. The variance of
the ei 's gives a measure of the residual error of the model:

The coefficient N - 2 ensures that the estimator is unbiased (this concept will
be clarified later on).

NOTE- USING SPECIFIC SCALES. The Jipp curve is drawn with a logarithmic
scale for the ordinate axis. In the general case of a non linear relation between
two quantities, the graphical representation of the cloud of measures can be
made using a specific scale, thanks to which a linear trend reappears.

This is especially the case with the celebrated "gausso-arithmetic" scale,
where the scale is such that any normal distribution appears as a straight line.
For an empirical distribution, this gives a simple visual method to estimate the
accuracy of a normal approximation and to give a rough idea of the moments:
the mean is the abscissa corresponding to 50%, the standard deviation is half
the distance between 16 and 84%, or the reverse of the slope. The graph (see
Figure 5.6) is referred to as the Normal Plot.

5.3. Sampling and estimation techniques

Visualizing data, apart from giving them a synthetic characterization through
global parameters, covers by no means the needs of the analyst. Especially, the
main issue is to predict general properties of the whole population from data
coming from samples of limited size, for economical or technical reasons (and
most often because the population is of infinite size). The question is thus:
how to estimate the value of the (true) parameters of the population from the
incomplete series of measurements, i.e. the sample. A basic assumption is
needed here, which allows use of the probability theory and its tools: each
element being tested has to be chosen independently of the previous ones
(called a random drawing). Most often the assumption is impossible to assert.
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Drawing random variables is actually an important aspect of our activity, for

reliability studies, traffic measurements or simulation. We address this point in

more detail in Chapter 8.

Figure 5.6. Normal plot showing that the empirical measures are roughly

normally distributed

Two basic results of mathematical statistics help in understanding the classical

techniques related with sampling.

a) Sample mean, and variance: Consider a sample of size N, drawn from

population of infinite size, or from a finite size population with replacements

(then the draw is said non exhaustive) where the character of interest has
average m and variance σ2. The sample mean m given by Equation 5-2 is a

random variable, with average m, and with variance σ2 (m) equal to σ2 / N.

Symbolically,



166 Communicating Networks: Traffic and Performance

This last result is easy to verify: let the sample contain N elements Xi . The

classical results concerning the sum of independent random variables (see
Chapter 3) provide:

In the same way:

b) Central limit theorem.

The previous result concerns the two first moments but not the probability
distribution of the sample mean. The next result concerns the distribution of
the sample mean.

The central limit theorem is of major importance when using statistical
methods, as it introduces and motivates the endless references to the normal
distribution. Also, it justifies most of the approximations presented hereafter.
Its proof goes beyond the scope of the present book.
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THEOREM.- Consider a set of N variables X 1 , X 2 , . . . X N , independent and

distributed according to a given, arbitrary distribution with average μ and

finite variance σ2. Then, the variable:

goes, as N increases, to a limiting distribution which is normal, with average μ

and with variance σ2 / N.

This is a major improvement, as compared with the previous result: drawing a
sample of size N, from a population with a character distributed according to
an arbitrary distribution with mean m and standard-deviation a, the sample

mean goes to a normal law with mean m and standard-deviation σ / N , as the

sample size increases.

Practically, the approximation is good when N is greater than 30 in most
configurations. However the independence assumption is mandatory.

These two important results are the basis on which the remainder of this
section is built. Two major techniques allow extracting information from the

sample: estimation and hypothesis testing. Estimating the value of a parameter,
based upon the assumption of an underlying probabilistic model, may not be
enough to support a decision such as "accept/reject". One can also need to
justify the initial assumptions. The tools of hypothesis testing give answers to
these issues.

At last, observations or tests (e.g. during simulations) are of limited duration,
the question thus arises of taking account of the last time interval, or of the
last test. This leads to distinguish between truncated tests, for which the
duration is chosen independently of the number of events observed, and
curtailed tests, in which the total number of events is fixed in advance, the
duration then having no limitation.

5.4. Estimation

The problem can be stated as follows:

Given a population, with a given character distributed according to a
probability distribution function depending on some parameter p, estimate the
numerical value of the parameter from the observations made on a sample of
limited size.
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There are two classes of techniques related to estimation: point estimation and
interval estimation. In point estimation the goal is to give the "best possible"
estimate of the parameter, assuming the form of the probability distribution is
known.

Since the sample is of limited size, the estimation is likely to be accompanied
by some error. This introduces the notion of confidence in the result and the
result will be stated under the form of a confidence interval inside of which is
the true value, with a given probability: this is interval estimation, the answer
of which is stated:

With a confidence level 1-α (i.e. a risk of error a), the parameter p lies in the
interval [p m i n , pmax ].

Clearly, the narrower the confidence interval, the higher the risk of error. This
is the fundamental dilemma of every sampling and estimation activity.

5.4.1. Point estimation

Assume the character is distributed according to some probability distribution
function, the form of which is known, except for a certain parameter p, which
one intends to estimate from the data.

Let the sample of size n be denoted (x 1,x 2,.-.,x n) .The estimator is usually

denoted as " p ", to stress the fact that it is actually a random variable, and to

distinguish it from the true value. The properties desirable for the estimator
are:

• As the sample size increases, the estimated value ought to get closer to the

true value: Limn (p n) = p (where pn stands for the estimate built on a

sample of size n): the estimator is said to be convergent (or consistent).

• The estimator ought to be unbiased, that is: for all n, E(p) = p (strictly

speaking, one should put the same requirement on higher moments).

An estimator which is convergent and unbiased is said to be absolutely

correct.

Several methods have been proposed to derive a point estimator. In the
following we concentrate on the method of maximum likelihood. Let f(x1,
x2,...xn,) - or f(xi) for short - denote the probability density of the sample
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statistics (i.e. the probability to draw x1, x2,...xn, in any order). The maximum
likelihood estimator is the one which gives the higher value for f ( x 1 , x2,...xn,),
i.e. such that

It can be shown that such an estimator is convergent. However, the method
does not guarantee it is unbiased. The estimation will be said to be correct but
not absolutely correct. In order to make it absolutely correct the estimator will
be adjusted, as is shown hereafter.

The two following results are of main importance for estimation:

Average

The sample mean is an absolutely correct estimator for the average (mean):

It is easy to verify that, whatever the value for n, E(m) = m : the estimator is

unbiased.

Variance

The quantity s2 is an absolutely correct estimator for the variance:

s2 is known as the "empirical variance". Actually, the term (n - l) instead of n
takes account of the bias which would be observed with the sample variance:

It is thus a biased estimator. In order to correct the bias, statisticians introduce
the substitution:
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Let us verify this result:

Developing and taking the mean of the right hand side expression, one gets,

using the results (5-9) and (5-10) about the mean and the variance of a sample:

and at last:

Note that these results do not depend on any assumption about the distribution

probability of the parameter under study.

Now, one can show that, for the case of normal variables, these estimators are
actually the best possible.

Estimating the mean and variance of a normal distribution

a) The problem is to estimate the mean value m of a normal distribution with
parameters (m, σ), where σ is known. The method of the maximum likelihood
is used to derive the best estimator:

From this expression, one derives:

And for the maximum likelihood:
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One can verify that E(m) = m whatever n. The estimator is unbiased and

convergent thus absolutely correct.

b) Similarly, when m is known, the best estimator for the variance is:

c) In the general case, however, both m and σ are unknown.

The mean is estimated as above, but the estimator of the variance

σ2 =1/n nΣi=n(x, -m)2 is biased, although convergent. Instead, one makes use of

the parameter already introduced S2 

Same results hold for the exponential distribution as considered in the
following example.

Example: estimating the average lifetime of an equipment

As an example of application, we show how to apply these results to estimate
the average lifetime of equipment, the mortality having an exponential
distribution (see Chapter 6). The same reasoning holds for other observations.

Consider a trial on a sample of n elements. The average lifetime 9 is estimated
by:

where ti is the lifetime of item i, and T is the total duration of the test. For
practical purposes, the duration of the trial, as well as the number of failures,
is to be limited. This refers to the notions of truncated tests and curtailed tests.

For truncated tests, the test duration is limited to tmax. If, upon the n elements

under test, n-k are still operating at time tmax, then:
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where T is the cumulated duration of the test.

If no failure at all has been detected (so that θ = 0), it is mandatory to

estimate a confidence interval. The number of elements to test is estimated
using the simple formula:

As an example, estimating a failure rate around λ = 1/θ = 10-6/h, by observing
30 failures during 8760 hours (one year) requires 3450 elements to be tested.
This clearly stresses the difficulty of characterising elements having high
reliability - or, otherwise stated, in considering the case of rare events.

For curtailed tests, the test is stopped upon failure number k. Then:

where T is the cumulated duration of the test at failure k.

NOTE. The maximum likelihood is by no means the only approach when
looking for estimators. For instance, the least squares method provides
interesting estimators. In fact, in most cases these methods lead to the same
estimator. The section about correlation has already shown an example
illustrating the principles of the least squares approach.

5.4.2. Estimating confidence intervals

The maximum likelihood method provides a "good" way to estimate an
unknown parameter, when the underlying probability distribution is known.
However, if the same trial is repeated, or lengthened, it will give a different
result. As already mentioned, the estimator is a random variable, as opposed
to the parameter to be estimated, assumed to have a constant value. This leads
one to question the "precision" of the prediction. Not only has a value be
given for the parameter p, but a range within which its actual value is likely to
be found. As above, the estimator of p is denoted as p.
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Let H be the probability distribution of the estimator. Let us choose two real
numbers α1 and α2 (α = α1+a2 ). These numbers stand for the risk in the

prediction. More precisely, they provide upper and lower bounds for the
estimation, i.e. a confidence interval I such that:

The approach consists, from the distribution H (or the density h associated), in

finding two quantities u 1 ,u 2 , such that P(p < u 1 )=α l and P(p > u2) = α2 (see

Figure 5.7). Any choice for the risk is possible (for instance α1 =α2 = α / 2 , or

α1 = 0, etc.).

Figure 5.7. Risks associated with the bounds of the confidence interval

The exact shape of the curve depends on the unknown value p, and so do

Figure 5.8. Limits of the confidence interval
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The curves H I ,  H ,  delimit an area in the plane denoted as D(a)  (it depends 
clearly on the risk, written simply a for short). Let us choose an arbitrary 
point and the ordinate axis p i .  The ordinate cuts the curves at the abscissas 

p i  and p ,  , given by the inverse functions p 2  = Hi'(p:),  p1  = HL1(p:). 
These functions are most often impossible to derive explicitly, but can be 
obtained numerically. 

Now, let us consider the three following relations: 

All these relations describe the same set D. The elements have thus the same 
probability: 

The estimation proceeds by executing the trial, giving a series of 
measurements (x1,x2, ..., x,,) , from which the estimate i is derived, and also 
the bounds ( pl  , p2  ), through the set of curves obtained above. 

The examples below will help in the understanding of the principle of the 
method and will illustrate it on typical cases. 

Example: estimating the mean of a normal distribution 

A random variable is distributed according to a normal distribution, with a 
known variance. The point estimator for the mean is, as explained in a 
previous section, 

Moreover, the estimator is normally distributed, with mean m and variance 
CJ / n (remember that the sum of normal variables has a normal distribution). 
So, the parameter " u ", such that 

1" 
is distributed according to the normalized normal distribution. Thus, given the 
risks a, and a2: 



and finally: 
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For example, with a risk symmetrically distributed: al = a2 = 0.025, one gets 

u1 = -u2 = 1.96, i.e. an interval around f 2 o l L .  

Note that in the case where the variable is not normally distributed, the method 
can still be used, as the central limit theorem ensures that the estimator 
behaves approximately as a normal variable, with mean m and variance 

2 0 In. In the general case, however, o is unknown, and has to be estimated 
too. 

Example: The Chi-2 distribution in reliability 

We revisit the problem of estimating the lifetime of items having a lifetime 
exponentially distributed. We assume that the number of failures within an 
interval obeys the Poisson distribution. This corresponds to a truncated test, in 
which a failed item is immediately replaced. 

Let 8 be the average lifetime, let n be the number of items under test, and t,,, 
the test duration. With the Poisson distribution, the probability of having more 
than r failures during the interval 0 is: 

P(i  I I - ; @ )   x- (k)' e-k , with k = T18, and T = n t max, the cumulated testAT

duration. (the notation r is motivated by the usage for the Chi-2 distribution, 
that we are to obtain). 

i=o i !  

Now, the following relation holds: 

And thus, with t = u/2: 
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Referring to Chapter 3, one recognizes the Chi-2 distribution:

Let u = X2 and V = 2r + 2 , one gets:

This is the probability that a X2 with 2(r+l) degrees of freedom is larger than

2k.

Finally,

This yields the upper and lower bounds at the levels α1 and α2:

Especially, for a symmetrical risk α1 = α2 = α/2:

Table 5.1 summarizes the main results for this important kind of tests
(including the case of curtailed tests).

An example of application to realistic situations will be developed in Chapter
9. Tables of the Chi-2 distribution are also given in Appendix 2.

Estimation of a proportion

Suppose one intends to estimate the proportion p of faulty elements in a given
population of infinite size. The experiment proceeds by choosing a sample of
size N, the successive drawings being independent of each other, and by
counting the number k of faulty items. In accordance with the intuition, the
calculation confirms that the maximum likelihood estimator for p is the ratio
p = k/N.
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Table 5.1. Truncated and curtailed test: confidence intervals with the Chi-2
distribution

Cumulated
time T

Point
estimator

Lower limit
at confidence
level (1-a)

Confidence
interval at
confidence
level (1-a)

Truncated test at t,

N equipments, r failures

With
replacement

Without
replacement

Curtailed test at tr,
r failures, N equipments

With
replacement

Without
replacement

Under the independence assumption, the number of faulty items is distributed
according to a Bernoulli distribution (for a population of finite size, the
distribution would be hypergeometric). The probability distribution is written:

P(k faulty among N) =[

The probability of observing less than k faulty elements is:

Once the risk α1 is chosen, the curve H1 is obtained by "inverting" the

relation (which is possible through exact numerical calculation, or using an
approximate method, see below).

In most cases, the experiment is such that the normal approximation holds: this
is the case, if p>5, and Np>5 (or p<0.5, and N(l-p)>5). The

binomial distribution is replaced by the normal law with mean m = Np and

variance Np(l — p) , for which the mean is to be estimated. If the risk is taken

symmetrically, it amounts to calculate u(α) and the confidence interval is:
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If the conditions for using the normal approximation are not fulfilled, the
Poisson distribution is used instead: it has been shown that the binomial
distribution goes to the Poisson distribution with parameter Np , as soon as

N 40, and p < 0.1 (see Chapter 4).

How to build the curves H1 and H2

The solution can only be derived numerically. In the case where the normal
approximation holds, the confidence interval is given by relation (5-24). The
limits H1 and H2 are the points such that:

that is the solutions of the quadratic equation:

Figure 5.9 displays the confidence interval versus the observed value, for a
confidence level 95%.

Limits of the
Confidence

Figure 5.9. Limits of the confidence interval for estimating a proportion
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Estimating the parameter of a Poisson distribution

Here, the problem is to estimate the parameter λ of the Poisson distribution,
given by:

The typical example can be in the observation of faulty elements, in the
configuration of low rejection ratios, so that the Poisson distribution is a good
approximation. Also, this is the distribution corresponding to the observation
of the number of arrivals within a window of length T for a Poisson traffic
with rate a: here, λ = aT.

The experiment consists in repeating the counting (observing m windows of

size T, e.g., providing the values k1,k2,...km). The maximum likelihood

estimator is given by:

The function H~ can be derived numerically, or by using tables.

5.5. Hypothesis testing

The goal of hypothesis testing is to help in deciding if an hypothesis made on
a population can be retained, based upon the available observations.
Depending on the nature of the hypothesis, and especially if it can be
formulated under a qualitative form, the parametric or non-parametric
methods are used. For instance, testing that an arrival process obeys the
Poisson assumption or that the service durations are exponentially distributed
is a non-parametric test. On the other hand, testing that they conform to the
Poisson distribution with parameter m and standard deviation σ, is a
parametric test.

5.5.1. Example: testing the value of the mean of a normal distribution

This simple example provides a good introduction to the method. We have a
population with a parameter X normally distributed with parameters m and a.

The standard deviation σ is known, and the test is related with m. For instance,
the hypothesis is "m larger than 10".
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One draws a sample of size N, from which the sample mean X is estimated.
Remembering that the sample mean is normally distributed, with mean m and

standard deviation σ/ N , we can write, see (5.24):

and

Assume for instance α=0.01 , i.e. xα —2.32 . Assume the sample has size N

— 100, and the standard deviation is σ = 5. The above result gives:

10-l.16 = 8.84}= 0.01.

Imagine first that the experiment results in the value X = 12. This value

seems coherent with the hypothesis. Now, imagine that the result is X = 7.5 .

The probability of observing such a value is low, if the hypothesis is true: this
leads to rejection of the hypothesis. However, even with m > 10 this value has

a positive probability to be observed, meaning that the rejection is
accompanied with a risk.

The general scheme of the test is as follows:

Let X be the variable under test. One is given a first hypothesis H0, e.g.

X = X0 , or X < X0 , etc. As the experiment is of statistical nature, the

possibility of an error cannot be eliminated. A first risk a is thus introduced,
the "error of type I". This is the probability to reject H0 although it is exact.

But there is a risk of accepting the hypothesis while it is false. This introduces
the "error of type II", ß. More precisely, we introduce a second hypothesis H1,
and the test is H0 versus H1. The error of type II is the possibility to reject H1

although it is true. The following table summarizes the procedure.

Table 5.2. The procedure of the hypothesis test

"Truth"
Decision

Accept H0

Reject HO
and accept H1

HO true

Correct decision

Type I error

H1 true

Type II error

Correct decision
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The "power function " of the test

The principle is as follows: given a population in which a character is subject
to the test. The population is conforming if the proportion of values greater
than some limit is lower than some probability Pmax. Typical situations are a
response time lower than Tmax for 95% of the calls. The power function gives
the probability to accept the test, given the sample of size N, for a population
having a given parameter p. Figure 5.10 displays the general shape of the
power curve.

In the case of an exhaustive sampling, the test would yield a result with
certainty:

- probability of acceptance = 1 if p> Pmin ;

- probability of acceptance = 0 if p< Pmin

This is symbolized by the theoretical curve. Now, the experiment introduces
both a risk of erroneous acceptance ß, and a risk of erroneous rejection a. This
corresponds to the effective power function.

Figure 5.10. The power function of the test

To summarise: a customer encounters a risk (said of type II) of making a
wrong decision in accepting the product under test, although its actual ratio p
of bad elements is higher than the threshold P2 that has been agreed. Similarly,
the provider encounters a risk (of type I) that the product is rejected, although
the actual ratio is lower than the limit P1. Statisticians sometimes refer to these
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risks respectively as the buyer risk and the provider risk. In
telecommunications, it would typically describe the relations between a
network operator and an equipment manufacturer.

5.5.2. Chi-2 (Chi square) test: uniformity of a random generator

A discrete-event simulation makes use of random numbers, uniformly
distributed in the interval (0, 1) provided by a pseudo-random generator, see
Chapter 8 for more details.

The problem arises of testing the quality of the generator, and more especially
its uniformity. The Chi-2 test brings an answer to this problem. The interval
(0, 1) is divided in n sub-intervals of equal length (e.g., n=10, each interval
having a length 0.1). N numbers are drawn and are positioned in the intervals
(only for a histogram). If the generator conforms to the uniformity hypothesis,
the probability that a number falls within any interval is simply l / n , so that an
average of N/n elements are expected in each bin. The hypothesis is "the
generator is uniform".

If this is true, the number of drawings in each bin conforms to the Bernoulli
distribution:

The mean is Np, the variance Np(l — p). Under the usual assumptions, the
normal distribution is used as a convenient approximation. Let kj be the

number of drawings in the interval j, then:

— is distributed according to the standard normal

distribution. Thus the variable:
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is distributed as a Chi-2 with n-l degrees of freedom. A risk α is adopted (for
instance 5%), the test is re-stated as Z < uα . For instance, with a = 5 % and

n = 10, the Chi-2 with 9 degrees of freedom gives 16.92 as the limit: the
hypothesis is accepted as long as Z is below 16.92.

5.5.3. Test of the correlation

The problem here is to test whether two variables are correlated or not. The
sampling allows estimation of the empirical correlation coefficient given by
equation (5-5). Assume a trial gives a value for p near 0. How to accept the

independence property?

The test is "no correlation", which translates to "p = 0". If the hypothesis is

true, it can be shown that as the sample size increases, p goes to a normal

distribution with mean 0 and variance l / n : this is nothing more than the

central limit theorem - and this illustrates once again its importance in
statistics.

The hypothesis is accepted, with a risk a , if:

(xα is naturally the quantile corresponding to a ).
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Reliability 

This chapter presents the major elements of reliability theory, and more 
generally what is called dependability. 

Dependability encompasses all these aspects of reliability, availability, 
maintainability, which play a major role in communication systems and 
networks. Indeed ensuring the continuity of service is one of their first 
missions, especially in case of emergency (e.g. calling the fire brigade), and in 
any disaster situation. To reach such a goal, operators must deploy secured 
architectures. As this increases the cost of the system, it is worth evaluating 
their efficiency. Reliability theory is the set of techniques to apply in order to 
perform this evaluation. This chapter presents these techniques, giving 
numerous illustrating examples. 

6.1. Definition of reliability 

According to the standardization and particularly to the IEC (International 
Electrotechnical Commission), reliability is “the probability that a system will 
perform its intended function for a specified time interval under stated 
conditions”. This will correspond to the “success” of the mission. On the 
opposite, the mission fails once the system breaks down. We will compute the 
probability of success at time t, or probability offworking for a given timee
interval t. 

In the telecommunication domain, and particularly for terrestrial equipments 
that are generally repairable, another important feature is the long-term 
proportion of time the service is available; one then refers to this concept as 
availability. The availability function is defined as the probability that the 
system is working (into service) at any instant of time t ,  whatever could be the 
preceding states (failures and repairs may have occurred). 

6
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A system is thus characterized both by its reliability (probability of
uninterrupted activity up to t) and by its availability (probability of being
active at time t). As the availability is usually high, the probability being very
close to one, 0.99 and more, unavailability is used preferably. This is the

complement to 1, usually expressed under the form 10-xx..

6.2. Failure rate and bathtub curve

The instantaneous failure rate λ(t) is defined as follows: λ(t)dt is the

probability that a system, working correctly at time t fails within the time

interval [t, t + dt]dt}.

During the lifetime of a repairable system, or of a population of identical
equipments, the observation leads to distinguish three periods, according to the
behaviour of the failure rate:

The first period corresponds to the early life period (also called infant
mortality period, or burn in period). It is characterized by the decrease of the
failure rate as time increases. This corresponds to the period during which
remaining (hardware or software) defaults, which have not been detected while
debugging the system, are corrected after its deployment.

The second period, or middle life period, corresponds to what is also called the
useful life period and is characterized by an approximately constant failure
rate. During this phase, the longest of the lifetime, failures occur - either
hardware or software - which are referred to as "catalectic" or "random" i.e.
unpredictable. Actually, it is not possible, nor needed, and not even profitable

to identify and correct residual defaults as the failure rate becomes negligible.

The third period corresponds to the so-called old age period, also called wear
out period, during which the failure rate increases with time. This corresponds
to irreversible degradation of the system, either due to a material degradation
of its components, or due to a lack of maintenance in the case of repairable
systems. For terrestrial telecommunication systems this period is generally not
considered because of the replacement of old equipments by new ones, while it
can be of importance for satellite systems.

The curve of Figure 6.1 illustrates these three modes of behaviour. It is
conventionally called the "bathtub curve" because of its shape.
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1 = early life period, 2 = useful life period, 3 = wearout period

Figure 6.1. Bathtub curve (mortality curve)

In the following, the focus is mainly on the useful life period. Moreover, since
repairable systems are our main concern, the concept of MTBF (mean time

between failures) will be of prime importance. This is the inverse of the
constant failure rate A of the system during the useful life period.

Prior to begin modelling the major reliability structures, it is worth defining
the main functions used in reliability studies.

6.3. Reliability functions

R(t) is the reliability function and represents the probability of survival at

time t.

One frequently characterizes the reliability by

M is the MTTF (mean time to failure), or MTBF (mean time between failures)
for a repairable system where it represents the average time between failures.
M is often denoted by θ.

F(t) is the failure distribution function, F(t) = 1 — R(t) .

is the instantaneous failure rate (also called hazard function). It

corresponds to the probability that a system breakdown occurs between times t
and t + dt provided that the system was on service at time t. Hence we have:
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and thus:

and also:

In the useful life period λ(t) = λ is constant, hence:

In what follows, our interest is mainly concentrated on that period.

Note however that more complex functions can be used, in order to describe
the reliability of the equipment during its whole lifetime. Especially the
Weibull distribution is often used (see Chapter 4). Indeed, let us express the
reliability distribution under the form of a Weibull law:

Identifying this expression with the general definition (6-3), one has:

and thus:

then:



Reliability 189

Denotingλ

Clearly these expressions show that:

- the failure rate is decreasing with time for β < 1 ,

-the failure rate is constant for β = 1, and one finds again the exponential
distribution if moreover γ = 0,

- the failure rate is increasing with time for β > 1 .

6.4. Systems reliability

6.4.1. Reliability of non repairable systems

In the following any element of a system (component, card, rack...) will be
referred to as Ei. Any element will be itself decomposable in other elements.

We will assume that an element may be in only two states: it is up, ie. it works

(E), or it is down (E). We will also call these states good or bad respectively.

E and E are two mutually exclusive events:

The reliability R is defined as the probability of being up, or probability of
success (the time index is omitted, for short):

Conforming to the usage, we will denote Q its complement, i.e. the probability
of being down or probability of failure: Q = 1 — R.

6.4.1.1. Reliability of the series configuration

A system is said to be a series system if it fails as soon as any of its elements
fails. It is symbolised by a reliability diagram represented in Figure 6.2.
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Figure 6.2. Series configuration

Let E denote the event "breakdown of the system" (or total failure) and Ei

the event "failure of element i", we have:

Event algebra, and especially De Morgan rule, allows one to write:

and thus:

Going from the events to their probabilities, and considering the events as
independent,

and thus for reliability:

Which may be merely formulated by the following rule: the reliability of a
series configuration is the product of the reliabilities of its components.

In the case where all the components have a failure rate exponentially
distributed with parameter λi, one gets:

The MTBF of the system is:

M =fR(t)dt, and thus:
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6.4.1..2. Reliability of the parallel configuration

A system is said to be parallel if the system fails only if all its elements fail.
The reliability diagram is represented in Figure 6.3.

Figure 6.3. Parallel configuration

Then we have:

Hence:

or, since Q denotes the probability of failure:

In words, we have the following simple rule: the probability of failure of a
parallel system is the product of the probabilities of failure of its components.

Remember that we denote Q = 1 - R. Then we may write:

The system is working as long as at least one of its elements is working. (Note
that this kind of manipulation, consisting in operating either on an event or on
its complement is of great help in modelling such systems, and, more
generally, each time the event of interest is a combination of elementary
events: see the analysis of switching networks in Chapter 9).



192 Communicating Networks: Traffic and Performance

In the case where all elements have a failure law exponentially distributed
with parameter λi, then:

In the simple case of two elements in parallel, we have the obvious result:

The MTBF of the system is:

M = fR(t)dt, and then:
o

 

6.4.1.3. Reliability of the series -parallel configuration

This configuration corresponds to a set of groups of elements in parallel, each
one formed of elements in series: k branches of p elements for instance.

The reliability diagram is represented in Figure 6.4.

Figure 6.4. Series -parallel configuration

Proceeding as above yields immediately:
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The reliability of one branch is:

The probability of failure of the whole system with k branches is:

and its reliability is R = 1— Q, an thus:

6.4.1.4. Reliability of the parallel-series configuration

The reliability diagram is represented in Figure 6.5.

Figure 6.5. Parallel-series configuration

The reliability of one set of k elements in parallel is:

and the reliability of p sets in series is:
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6.4.1.5. Complex configurations

The method is briefly developed through an example, illustrated in Figure 6.6.
The generalisation is straightforward.

Figure 6.6. "Meshed" configuration

The more direct approach distinguishes two cases, according to the state of
E5 : E5 is good, or E5 is bad.

If E5 has failed, the system is up, provided that at least one of the two
branches (E1 E3) or (E2, E4) is working, i.e. the complement of the event "the
two branches are down", the rule on elements in series giving the
corresponding probability.

The probability of being up, corresponding to this case is:

If on the other hand E5 works, the system is up, provided that in each couple
(E1, E2) and (E3, E4) at least one element is working, the probability of which
is 1 minus the probability that both elements are down.

That is:

The reliability of the system is the sum of probability of these two mutually
exclusive events:
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6.4.1.6. Non repairable redundant configurations

The goal of such organisations is to ensure a higher reliability by inserting
additional components in parallel. These structures are deployed especially in
the case where it is impossible to replace failed components.

Simple redundancy

A breakdown of the system occurs either if all the elements in parallel are
down (this is called total simple redundancy), or if a given proportion of them
has failed (partial simple redundancy)...For instance, a telecommunicationn
system (a switching or transmission equipment, a router...), is built with many
processing elements sharing the load. This leads to consider different degraded
states as a function of the number of failed elements. Notice however that
terrestrial systems will generally be repairable, so that for them one is mainly
concerned with availability, as we will see below.

The total simple redundancy case corresponds directly to the parallel
configuration: the system is down if all its components are down.

and thus with n identical elements:

Hence the MTBF of the system is:

For the simple case of two elements in parallel, we have:

For the partial simple redundancy, it corresponds to the case where a part of
the components is up. This is a special case of majority redundancy, which we
examine here.
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Partial redundancy and majority voting

In that case, the system is in service as long as at least r out of n elements are
in service.

The system is said a majority redundancy system, or a majority voting system,
if furthermore there exists a decision element in series (for the reliability
standpoint) making possible to detect whether at least r out of n elements are
working, or not. Rather than sharing the load, the system replicates the same
vital function (e.g. power supplies or clocks). The decision element simply
makes the comparison and issues a signal corresponding to the "majority
opinion". Here too the mission will be said successful as long as, at least, r
elements out of the n elements in parallel are good, provided however that the
voter does not fail.

The corresponding reliability diagram is represented in Figure 6.7.

Figure 6.7. Majority voting

First let us consider the system without the majority voter (V). Its reliability
function may be easily written using the binomial law:

with

Thus, with an exponential failure probability distribution:
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Now let us consider the system with its majority voter. From the reliability
standpoint, the voter, with failure rate λv,.is an element in series. Thus thee
reliability of the whole system is:

In the simple but common case of a three elements majority system with r = 2
( at least two elements must work), we have:

6.4.2. Reliability and availability of repairable systems

These systems are such that as soon as one of their components fails, the
system itself or an external repairperson corrects the defaut after a certain
amount of time. The equipment is then said to be returned to service. Here the
notion of interest is the (mean) availability, i.e. the stationary probability of
finding the system in service. The simplest example is a set of n components
in total simple redundancy, on which a technician intervenes to re-establish the
state with n components in service. The system alternates between "in service"
and "degradated" states. The long-term proportion of the time during which
the system is operational, i.e. with n components active, is the availability.

Availability is conventionally denoted A. Its complement, termed the
unavailability and denoted U, is also frequently used, as we will see below.

The period during which less than n elements are active is called the
degradated regime duration. Clearly, this duration is shorter as repairs are less
frequent and faster.

6.4.2.1. State equations

The process of going from state to state is nothing else that a birth and death

process, and is given a thorough attention in Chapter 7. The present analysis
introduces this notion, further developed later on.

Let denote as i = 1, 2, ..., n the different system states, corresponding to i
active elements, and let P(i, t) the probability that the system is in state i at
time t. Whatever the specific structure of the system, a general basic set of
equations describes the evolution of the state equations:
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This equation translates the fact that P(i, t + dt), probability of finding the

system in state i at time (t +dt), is the sum of:

a) the probability to be in state (i+1) at time t, P(i + l, t), and a failure has

occurred, moving the system to state i in the interval dt, i.e. d(i + 1,t)dt ;

b) increased by the probability of being in state i at time t, P(i,t), and no

event has occurred during dt: no failure [l — d(i, t)dt] and no repair

c) and by the probability of being in state (i-1) at time t, P(i — 1 , t ) , and that a

component has been repaired (rate r(i — 1, t)dt) moving to state i during the

interval dt.

This holds, as the events are clearly mutually exclusive and neglecting
simultaneous event (probability proportional to dt2, see Chapter 7).

The equation is transformed as follows:

Now, letting dt 0 and assuming the derivative exists, one gets:

This result is quickly obtained, using the method of Markov graphs, also
called state transition diagrams, as will be further developed in Chapter 7 (see
Figure 6.8).

Figure 6.8. Markov graph or state transition diagram
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As the states are mutually exclusive, one must have

Σ P(i, t) = 1, and thus Σ P'(i,t) = 0.(6-24)

These equations must be completed by the initial conditions, i.e. the system
state at t = 0. Generally, it is admitted that all elements are good at the origin,

so that P(n, 0) = 1 if the system is composed with n elements and P(i, 0) = 0
for i 0.

Lastly, one considers generally that both the failure and repair processes are

stationary: the probabilities d(i,t) and r(i,t) do not depend on t. The system
should thus reach a state of statistical equilibrium as the time increases,
characterised by the condition:

P'(i,t) = 0 for every state i.

The set of these equations is a system of differential equations, which allows
studying reliability for various structures of the redundant repairable systems

class.

6.4.2.2. Reliability of redundant repairable systems

We consider the same configurations as above, for non-repairable systems, and
apply the method for exponentially distributed failure time and repair duration.

As will be explained in Chapter 10, this is in good accordance with actual

observation.

Simple redudancy with two elements

The system consists of two elements in parallel: if one fails, the second keeps
working and the system survives.

First, let us compute the availability of the system, i.e. the stationary
probability to be in one of the states: one or two elements into service.

For repairable systems, this is a major QoS criterion, as it reflects the degree
of availability from the user viewpoint (examples concern the availability of

telecommunication service for emergency calls).

As above, the state i is the one with i elements into service. Each element has
a failure rate λ, so when i elements operate, the probability of a failure of one
of them is:
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The repair process is such that failed elements are restored with a constant
repair rate (one repair and one at the same time):

Figure 6.9. Simple redundancy with two elements

From the state transition diagram of Figure 6.9, we derive directly the set of
differential equations:

At statistical equilibrium, probabilities P(i,t) become independent of time, so
that P'(i,t) = 0 and thus:

which yields:

adding the condition:
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we obtain:

The state associated to P0 corresponds to the breakdown of the system. Hence,
the availability A of the system, from a service viewpoint, is given by:

Thus:

In practise, the level of quality is such that the availability is close to the unity
(see below). The characterisation is done preferably by the system
unavailability, denoted as U, expressed under the form 10-x.

Evidently, U = 1 - A = P0.

Given the relative magnitude of A (between 10-4/h and 10-6/h, i.e. MTBF of
several years), and of μ (0.1 or 0.2 per hour, i.e. repair times of a few hours),
one can simplify the above expressions. It comes:

Often the procedures of repairments are such that the system, when down, will
directly switch to the full availability state. The state transition diagram is then

represented in Figure 6.10:

Figure 6.10. Redundancy with return to total service
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From the graph, we may directly write the following equations:

which, combined with:

yields:

thus:

and finally:

Referring once again to the orders of magnitude, as here again the
unavailability is approximately:

From a practical viewpoint, the two models are equivalent.
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k out of n elements redundancy

We consider here the system "k out of n" already discussed, assuming now
repairable elements. The system is considered as working correctly as long as
k (at least) elements are operational.

We take account of the previous remarks about the practical equivalence
between the repair procedures, and we only address the case with simple
repair. The state transition diagram is represented in Figure 6.11.

Figure 6.11. k out of n elements redundancy

From the graph, we then easily derive the following relationships between the
state probabilities:

and more generally:

which may also be written:

and thus, for a k out of n redundant system:
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Taking account here again of the current orders of magnitude:

Many real redundant systems consist of n elements, with only one of them for
spare. For instance, it will be the case of several processors sharing the load,
or even performing different tasks (different functions) but with a standby one,
able to replace any other that failed.

For this type of system we then have k = n- 1. Thus:

NOTE - This kind of system is often called n + 1 -redundant. The expression for
U becomes:

U (n + 1)n — - , this is just a question of notation.

Sequential systems

Sequential systems are such that a single element is working while the other
ones are waiting and ready to replace it in case of failure. This organisation is
called standby redundancy. The failure rate for all the states is:

and the transition diagram is given in Figure 6.12, for the case of two
elements.
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Figure 6.12. Sequential redundancy

We easily derive the following relationships:

and thus:

Thus for the unavailability:

That is, given the orders of magnitude:

That redundant organisation lowers unavailability, as can be expected since
the standby unit is activated only if needed. However, its weakness is that all
tasks in progress (call set-up, packet forwarding, etc.) are lost upon a failure of
the active unit, as the spare unit does not process them in parallel.
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Furthermore, the general case of n elements with one spare element
(redundancy said of type n + 1), gives for the unavailability:

which is to compare with the previous one for the simple redundancy, i.e.

λ2

U (n + 1)n—-. The difference is not significant, as soon as n is large
μ2

enough.

That kind of organisation generally does not apply for the hardware part of

telecommunication equipment, as all elements, including standby ones, are

permanently powered on and thus subject to failures. On the other hand, this
model is quite well suited to software, as in the case of passive redundancy
(see below), where the software modules are executed only when the element

carrying them becomes active.

6.4.2.3. Imperfect structures

The term stands for systems having imperfections at the level of the defence

mechanisms. In most cases, the defence mechanisms are rather simple.

Moreover, the usual orders of magnitude, as we have already remarked, justify

the application of simple and tractable models. However, one must always

keep on mind certain critical aspects of real systems, and especially the
imperfect nature of the defence mechanisms. Therefore, we have to deal with
structures, simple in their principles, but really imperfect in their reality. This

leads to complexify the models, since we need to take account of these
imperfections, for reliability modelling.

This gives the opportunity to summarise the major structures of redundant

systems. Aside the type of the structure: simple or partial redundancy,

majority voting, one has to distinguish between passive (or stand-by)
redundancy and the active (or static) redundancy.

Passive redundancy..Elements in standby are activated only in case of failure.
This type of redundancy is referred to as dynamic, as it implies real time

switching operation from standby to active state.

Active redundancy. All the components, the ones in use as well as the ones for
redundancy, are simultaneously active. There is no explicit switching

operation when a failure occurs, and one talks about static redundancy.
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All these modes of redundancy are widely in use in communication systems in
order to ensure high service availability. The whole set of hardware and
software resources implied constitute the defence mechanisms. They include
all the decision processes associated with fault detection, isolation of the
faulty element and traffic redirection to the working elements. Unfortunately,
all these mechanisms are most of the time imperfect.

The following example, typical of real systems, serves to address these aspects
of reliability.

Redundant structure with silent failure

In this system, the spare component is in passive redundancy and the detection
mechanism is imperfect. Failure rates of both the active component and the
spare one are identical (the common situation, in telecommunication systems,
however the analysis is easily generalized).

We assume that every fault on the active element is detected (a reasonable
assumption, as the default appears rapidly at the application level). On the
other hand, we will denote as c the coverage coefficient, which measures the
efficiency of the detection mechanism on the passive element: this is the
percentage of failures actually detected, for instance by periodic tests, routines
etc..

Lastly, one assumes negligible the probability of two successive failures on
the passive element, such as the first undetected and the second detected. The
state transition diagram is given in Figure 6.13.

Figure 6.13. Redundancy with silent failure

State "1" corresponds to the failure of the active element, or a detected failure
of the passive one. State "1b" follows an undetected failure of the passive
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element so that the system passes from state "1b" to state "0" upon the failure
of the active element.

We then derive the following system of equations:

and thus with A = 1—Po,

For c = 1, we obtain of course the same results as for the system without any
silent failure:

It is interesting to try better understanding the contribution of the coverage
coefficient c. For this, let us take the expression of the unavailability:

Then, observing that in practice (as we will see in Chapter 9), we have 



Reliability 209

2λ2 
Thus: when c 1,U 2λ/μ2 and fo

μ2 

Clearly, the effect of the coverage factor on unavailability is considerable (it
goes from a linear dependency to a quadratic one).

6.4.3. Using Laplace transform

Up to now, our concern has been the availability of repairable systems. Let us
now estimate the reliability of these systems. Here one looks for the time-
dependant probability to be in the different states, given that the system stops
operating as soon as it reaches the state of total failure - state 0, where there is
no possible repair. As previously, the system behaviour is modelled by a
system of differential equations, but instead of statistical equilibrium state
probabilities, we are now interested in the time-dependent state probabilities.

An example helps showing how the Laplace transform can help in solving the
problem (see Chapter 3). We take again the configuration with two elements in

simple redundancy. Figure 6.14 gives the state transition diagram.

Figure 6.14. Simple redundancy (reliability)

The corresponding equations are:

As in Chapter 3, let us denote as F*(s) the Laplace transform of f ( t ) .
Remember that:
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This relationship is symbolised by:

We have also:

and in particular for the exponential function:

and for the unit step function:

Now let us apply the Laplace transform to the above set of differential
equations, and let Pi* denote the transform of P(i, t) for simplicity.

We first determine the initial conditions. Assuming (logically) that all the
elements are good at time t = 0, we have for the initial states: P2(0) = 1,

Then the application of the Laplace transform combined with the above result
yields the following set of linear equations:
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This gives:

Or, if a1 and a2 are the roots of the denominator:

, with

Then, observing that:

and that one can decompose

we obtain:

This result allows coming back directly to the original (untransformed)
function:

This result is combined with:

yielding:
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Thus finally the reliability function is:

and the MTBF:

This last result could of course be easily obtained directly from the graph as
seen in the preceding sections, but not the expression of R(t) as a function of t.

This example shows clearly the power of the method, but also that its
application to complex systems is rapidly tedious. We explain in the next
section how to analyse numerically certain aspects of complex systems by
means of matrix methods. However, whatever the approach, approximations
are most often mandatory in order to derive explicit results, and especially
when retrieving the original function. This emphasises the importance of being
able to detect states with negligible probability, even for availability at
statistical equilibrium.

6.4.4. Matrix utilization

In order to estimate the reliability - or the unavailability - we have proceeded,
up to now, by directly solving the system of differential equations derived
from the state transition diagram. Another approach is to represent the system
under its matrix form and then to solve, either analytically or numerically, the
matrix equation through appropriate software solver tools.

For instance, let us reconsider the case of two elements in simple redundancy,
as already studied in the section on reliability. We had the following graph and
equations:
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Writing these equations into the matrix form, the system reduces to a single
matrix equation, as follows:

Equation which may also be directly derived from the graph, since the matrix
coefficients, aij(iij (i = row and j = column), are merely the transition rates from
state i to state j.

Let us now consider the duration T of the first period of time (cycle) leading
the system to the down state. The integration of the matrix equation from 0 to
T yields:

and also:

T
f Pi(t)dt = Ti, average time spent in state i.
0

Then, one has the very general following matrix relationship:
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where [A] denotes the transition rates matrix.

Now, taking account of the initial conditions, we obtain for our example:

whose resolution, through the corresponding system of equations, gives:

The average time up to the down state, i.e. the MTBF, is merely the sum of T2

and T\, thus:

This is the same result as already obtained in equation (6-38). The main
advantage of this approach is that it gives the possibility of solving
numerically the matrix system (exact solution by matrix inversion, or
approximate methods, such as Euler or Runge-Kutta methods). This is
especially attracting for complex systems having a large number of states and
thus of equations. We present now that kind of resolution.

6.4.4.1. Exact resolution by inversion

Before illustrating by an example, we recall briefly the method and
particularly how to inverse matrices.

Let us call / the set of initial states, and T the unknown average durations in
the different states. From the above general matrix equation (6-39) we have:

and then:
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provided that the inverse matrix exists, which is fortunately the normal case
for practical applications. Furthermore, in our problems, matrices are also
generally square matrices and thus regular (every matrix that may be inversed
is regular).

There are essentially two methodes for matrix inversion: the direct
determinant method and the triangulation, or Gauss elimination. Although it
needs more calculation, let us recall the simple determinant method, as it
allows refreshing all the basic notions concerning matrices:

a) permute rows and columns,

b) replace each element by its cofactor,

c) divide by the determinant.

The method of course applies as well to availability as to reliability
calculation, and we now describe an example of application in the case of
statistical equilibrium.

First, let us remind how to obtain the determinant of a matrix. The determinant
associated to a matrix A of elements aij (i = row and j — column) is defined by

(expanding for instance with respect to the first row):

where A1 j is the "sub matrix" of A, and det(A1 j) the cofactor of a1 jj,,obtaineded

when the first row and the jth column are deleted. For instance for the basic
case of a four terms matrix, we have:

ine terms matrix we have:ine terms matrix we have::

Now, let us reconsider the case of a redundant repairable system composed of
two elements, as in section 6.4.2.2.

We have:
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and of course the conservation condition:

This set of equations may be written:

In the steady state, or statistical equilibrium, the state probabilities are
independent of time and derivatives are equal to zero, then we have:

Furthermore, one can easily verify that only two out of the three initial
equations are independent. Thus, deleting for instance the last row (note that
this is the sum of the two preceding rows), the system reduces to:
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which determinant is:

Now we permute (transpose) the matrix:

Then, replacing each term by its cofactor, we obtain the cofactor matrix:

And finally, dividing by the determinant:

We obtain:
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These are naturally the results already obtained. As already mentioned, these
calculations are attractive only as they can be automated, allowing numerical
resolutions of complex systems.

One can find numerous mathematical software packages performing such
calculations. They rather make use of methods demanding less run time, as the
Gauss elimination.

6.4.4.2. Approximate solutions

These methods are especially suited to evaluate such quantities as reliability at
a given time t (as we have seen with Laplace transforms). Indeed, they operate
directly on the differential system and look for the solution iteratively. The
two major methods are the Euler and Runge-Kutta methods, both being based
upon the same principle. Runge-Kutta method is clearly the most precise, at
the price of more calculation. Here too, numerous software packages
implement these methods.

We recall here the basic principle through the presentation of the Euler's
method. We are given the equation y'= f(x,y) , with the initial conditions X0,,

y0. One searches a solution in the interval [x0,x]. The interval is decomposed

in elementary sub-intervals [xn_1, xn], and for each interval boundary, one

writes yn= y n - 1 + f ( x n _ 1 , y n _ l ) (x n -x n _ 1 ) , beginning from the initial point

y1 = y0 + f ( x o , y0)(x1 -xo) , and going step by step up to the target point x.

This amounts to approximate the curve f by its tangent at the xi's (actually

one writes y'1 = (y1- y0) / ( x 1 — x 0 ) ) . This is Euler's method. The precision

depends on the increment, and the error cumulates on each step from 0 to the
target x. Runge Kutta method proceeds the same way, step by step, except that
at each point it uses a Taylor development, generally at the order 4 (note that
Euler's method makes no more than to use a Taylor series of order 1, see
Appendix 1). This increases the precision, at the price of processing time. For
a Runge Kutta of order 4, one has the following formulas:
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6.5. Software reliability

Software reliability raises several specific issues, and we detail some of them
in this section. We must first stress the importance of this point, as software
complexity keeps increasing with the development of the services and
becomes a major factor in system dependability.

The analysis of software reliability proceeds a similar way as was presented
for hardware, and especially several behaviours may be distinguished:
reliability growth and constant failure rate. The phenomenon is complex but
however two main period may be indentified. During the developing and
debugging period, the reliability is growing as errors are detected and
corrected. Then during the operational (or useful life period), a failure rate
almost constant is observed. More exactly, successive periods of increase and
decrease then stability are observed, which correspond for telecommunication
products to the introduction of new releases, which introduce new services and
improve the performance of older ones, but which bring new early-life
defaults. In fact, despite the continuous effort of correction during the test and
operational phases, a certain number of defaults are likely to remain,
associated with quite specific operating conditions. That is the reason why the
focus will be put on redundancy, which as we will see, allows tolerating most
of these defaults, and the effort will be concentrated in eliminating these faults
provoking the total breakdown of the system.

At last, one does not observe any wear out period, at least for terrestrial
equipments, as these products are generally replaced before reaching this
phase.

6.5.1. Reliability growth model, early-life period

We are concerned here with the increase of reliability related with the
progressive correction of the residual defaults in the system. Note that we
address this issue in the context of software reliability, but this is a global
characteristic for both hardware and software components of communication
systems, where new releases are permanently issued, and similar
considerations may apply as well to hardware as to software.

Numerous models for reliability increase have been proposed: Jelinski-
Moranda, Shooman, Musa, Littlewood-Verral, etc. Musa's model seems the
best suited to the cases we have in mind.
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Let N0 be the number of errors (defaults) remaining at t = 0, and n(τ) the

number of errors corrected at date t = τ, then we have:

where K is a proportionality constant which relates error exposure frequency

to code linear execution frequency (no error can occur as long as no code is
executed, as already explained).

Assuming that no new errors are spawned in the error correction process, the

error correction rate will be equal to the error exposure rate. Then one has:

which combined with the relationship above yields:

and the MTTF (mean time to failure), average time up to the next fault
occurrence (following the default exposure), is:

or introducing

Obviously, the MTTF increases with time, up to the useful lifetime period
where it is approximately constant, with however a certain amount of
variability (related, as explained, to the introduction of new releases).

This expression allows estimating practically the duration of the early-life

period and the failure risks during this period.

For instance, the MTTF is multiplied by 3 after a time τ of the order of N0T0

(i.e. N0 times the initial MTTF when the equipment is brought into service)
and by 10 for a period 2.3 times longer, in accordance with the exponential
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distribution. Practise shows that often a new system reaches its operational
(useful life) period when its initial MTTF has been mutiplied by 3. If one
denotes as 9 the MTBF (now equal to the MTTF) of the equipment during its
useful-life period, the early-life duration is then τ = (N0/3)0. This emphasizes
the impact the residual errors have in the system reliability.

6.5.2. Useful-life period model

Here the goal is to measure the impact of failures due to residual software
errors on the system availability. During the useful-life period, the software
failure rate is assumed as being constant: the system is assumed stable, the last
version has been delivered and the early-life defaults have been corrected.

The effect of the failures related with software takes an increasing importance.
However, most of the residual defaults lead to failures quite easy to recover,
thanks to the defence mechanisms such as "hot restarts". To illustrate this, let
us analyse on a simple example the relative influence of the three categories of
failures: software defaults said recoverable simply by restarting the failed
machine, severe defaults, giving rise to a full system reinitialization using
remote elements, and lastly hardware failures asking for human intervention.

Consider a system composed of two elements in passive redundancy. The
master component can break down, due to hardware of software failure. The
passive element cannot breakdown, except due to hardware cause, as it
executes no code (or hardly no: for instance a test routine).

For software failures, one distinguishes the ones recoverable through an
automatic system restart, from the other ones, said "severe", asking for human
intervention.

The two components being in operation, upon a recoverable software fault on
the active element, the system switches the control to the standby one, which
becomes active. Then, quasi instantaneously, the system comes back to normal
operation (two elements in order of service), the faulty one being rapidly and
automatically reloaded (by copy from the other for instance). This transition is
absolutely negligible from an unavailability point of view.

If after a switching on the standby element due to a non recoverable or an
hardware fault (ie. with only one element into service ) a recoverable software
default is detected, the system (out of service) is re-initialised by

automatically reloading from a remote site. The duration of this operation is
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non-negligible but still moderate as compared to human intervention in case of
equipment replacement.

Let us denote:

λh, the hardware failure rate,

λss the "severe" software failure rate, i.e. which cannot be repaired by an
automatic restart of the station (this is equivalent to an hardware failure).

λsr the "recoverable" software failure rate: failures recoverable through
automatic restarts of the station. This operation is almost instantaneous if a
copy from the other element is possible; otherwise, the re-initialisation lasts a
few minutes.

μh the hardware repair rate, corresponding to an intervention duration of a few
hours,

μr the reinitialization rate, corresponding to a reinitialization duration of a few
minutes.

Let us take:

The state diagram is represented in Figure 6.15.

Figure 6.15. Redundancy with software failures

The set of equations is:



Reliability 223

From the above we derive:

Expressions that show clearly the importance of the "recoverable" software

failures (terms in the order of λ3/μR.).

Indeed the availability of the system is:

which may also be written:

One can first verify that, suppressing the possibility of software faults (λ3 = 0,

and λ2 = 2λ1), one finds again the basic system.
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Then using the unavailability eases visualising the impact of the software
failure rate:

When severe software failures are the majority and the recoverable software

failures are negligible (λ3 = 0), one has:

the system behaving just as if the hardware failure rate is worsened.

When severe software failures are negligible, which is the case if the defence

mechanisms operate correctly:

and so:

The impact of re-initialisations is relatively moderate, as μr is much lower than

μh.. For instance, with a reinitialisation duration 10 times shorter than the

human intervention, and software failure rates twice as large as hardware

failure rates, the unavailability is increased by 20% only. This clearly shows

the importance of implementing efficient defence mechanisms.

6.6. Spare parts calculation

This section is devoted to evaluating the quantity of spare parts to be provided
for maintainance, in order to guarantee a given stock out probability
(shortage). This is another important component of quality of service, as it
contributes to quantify maintenance costs, for the operator. Remark also that
shortage of the stock can severely impact service availability, especially if the
restocking delays turn out to be non negligible (a point which must absolutely
be checked).
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6.6.1. Definitions

Call N the total number of equipments in the district to be secured by the spare
parts store. Only the case of identical components is considered. Let PS denote
the stock out probability (probability of shortage of the stock), A the failure
rate of the component and μ the restocking rate (this rate corresponds to the
time needed by the repair centre, local or central, to replace the missing

equipments into the spare parts store, also called turn around time).

Two major strategies can be described. The first one consists in periodically
restocking the store with a period T (generally large, e.g. one year). This
corresponds to machines far from production or repair centres (for instance in
a foreign country). The second strategy works by continuously restocking for
each item in the stock. In that case one introduces the restocking rate μ. This
fits to situations where the district has a repair centre in its vicinity, or it can
be a first-level store, making use itself of a centralised stock of second level.

6.6.2. Periodical restocking

The stock being of size S, the stock out probability (or shortage) is the
probability of having more than S failures during the period T. We assume the
replacement delay on site much shorter than the restocking delay. In this case,
as long as no shortage is observed, the failure rate on the district is equal to
Nλ, and it gives the decrease rate of the stock size.

Thus the Poisson law with parameter NλT, gives the answer:

One evaluate then the (integer) value for S allowing reaching the targeted
value for Ps.

6.6.3. Continuous restocking

The system is composed of the equipments on site and those in the stock. Its
behaviour is described by the transition diagram in Figure 6.16. It is a birth-
death process with constant failure rate as long as there exists a spare part in
the stock, and a decreasing failure rate as soon as the S spare parts of the stock
have been used.
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Figure 6.16. Continuous restocking

From the graph we obtain:

Then doing:
α = N for k S , and

we have the general expression:

with of course:

The stock out probability is then defined as the long-term proportion of
requests for replacements that are not immediately satisfied due to a shortage
of spare parts in the stock:

with a and Pk as defined above.
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The size S of the stock will be defined as the lower value of S that yields a

stock out probability Ps less than the specified one.

If N is large enough compared to S the failure rate is approximately constant

a = Nλ, and the system may be modeled by a Poisson law with parameter

An application of these formulae will be considered in Chapter 10.
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7 

Queueing Theory 

In this chapter, we set out the main issues of queueing theory (or the theory of 
queueing networks). Stemming from probability theory, as with reliability and 
statistics already presented, its application to the field of telecommunications 
for the solving of traffic problems has given rise to a well-known discipline: 
teletraffic. 

Queueing theory sets out to take account of the phenomena of waiting and 
congestion that are linked to the random and unforeseeable nature of the 
events encountered (in the case with which we are concerned, connection set- 
up requests, IP packets going through a router, tasks to be processed by the 
processor of a server, etc.). In view of the problems to be resolved as set out in 
the chapter on quality of service (waiting times to be complied with, loss 
probability in buffers, etc.), the importance of this theory will easily be 
understood from the viewpoint of our essential aim: to assess the performances 
of systems and networks. 

Whenever a theory is proposed, it offers a schematic and simplified vision of 
observed reality. In point of fact, this theory will be used on models, 
abstractions from the actual world which capture the essence of the 
phenomenon to be studied. The activity of modelling, which leads from the 
actual system to the queueing model, takes on essential importance in this 
case. 

Obviously, the theory does not take into account all the diversity of reality - 
or more accurately is not able to respond to it with perfect fidelity. Depending 
on the case in hand, we will have to make use of approximate results or 
sophisticated methods. In the most complex cases, we will have to associate 
with the theory methods such as simulation, which we will consider in 
Chapter 8. 
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7.1. The basic service station: clients and servers

Throughout this chapter, we will be dealing with two basic concepts: clients
(customers) and servers. In queueing theory, the clients are entities that move
in a network of servers, where they receive processing. When several clients
try to obtain a service simultaneously, some of them must wait in queues, or
buffers. This vocabulary is conventional and general. Clients may be people
queueing up at a ticket office to obtain a ticket (the server is the employee
issuing the tickets). In the field with which we are concerned, they may
represent packets that are forwarded to a transmission line and awaiting the
availability of the line (two packets may be competing). The server is then the
transmission link, and the service time is the transmission time. They may also
be programs (or "tasks") requesting processing in a real-time system.

Another type of client consists of requests for circuits, or bandwidth, in a
telephone system. In this case, the servers form a group: the circuits or the
links serve the direction requested.

The most general service station consists of a queue, of finite or non-finite
capacity, emptied by one or more servers, and supplied by a flow of clients
(see Figure 7.1).

To describe this system with greater precision, it must be possible to specify:

• The mechanism according to which clients arrive in the buffer (i.e. what
probability law the arrival process does comply with);

• Service time (i.e. the probability distribution of its duration);
• Service discipline (when a server becomes idle, which client does it

choose?).

7.2. Arrival process

To advance in the study of traffic properties, it is necessary to look at the two
components on which it depends, i.e. client arrivals and their service.

Arrivals of clients at the system input are observed. To describe the
phenomenon, the arrival law, the first idea is to use the time interval between
successive arrivals, or the number of arrivals in a given time interval.
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Figure 7.1. The basic service station

During the time T, n(T) arrivals occur. The flow intensity is then expressed as
a number, the arrival rate, whose intuitive definition is:

It is then also possible to estimate the average interval between arrivals, this
being the inverse of the previous quantity.

7.2.1. Renewal process

In the most favourable case, the statistical description of the time between
arrivals is very simple. Let us assume that the situation can be described as
follows:

Each time an arrival takes place, the interval until the next arrival is drawn
according to a given law, in such a way that successive intervals are
independent of each other. This is in fact the special case of a renewal
process. It is essential to understand the value of this concept, but also what is
rare about it. For example (in Figure 7.2) let us observe the arrival process
resulting from the superimposition of two independent renewal processes.
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Figure 7.2. Superimposing processes A and B does not result in a renewal
process: the arrival of "4 " is related to "3 ", but "5 " is related to "2 "

Clearly, this is a very common situation, but the superimposition process is not

a renewal process. To predict the arrival of the 4th client, reference must be
made to the 3rd, by using the inter-arrival time. But the arrival of the 5th client
can only be predicted by reference to the 2nd client, and not to the 4th.

7.2.2. Poisson process

Let us assume that the arrival process complies with the following rules:

• the probability of an arrival in an interval [ t , t + Δt [ does not depend on

what happened before the instant t. This is the so-called memoryless

property.
• the probability of the arrival of a client is proportional to Δt, and the

probability of more than one event is "negligible" (in the upper order of
the infinitely small, in mathematical language). The proportionality factor
is rated A (process intensity).

These are the classical assumptions that lead to the Poisson process. How can
the distribution of probability of the number of arrivals in a given time be
estimated on the basis of the above axioms? The reasoning applied is typical
of the theory:

Let us denote as Pk (t) the probability of k arrivals in the interval [0, t [. One

can describe how this probability varies over time: k clients will be observed
in the interval [0, t + Δt[ if:

• k clients have been observed in [0,t[, and no arrivals have been observed

in [t,t + Δt[;

• k - 1 clients have been observed in [0,t[, and one arrival occurred in
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• k — n, n > 1 arrivals have been observed in [0, t[ , and n arrivals in

[t, t + Δt[ , etc.

If these observations are put into an equation:

If k = 0, the terms k- 1, etc., disappear:

The development of the previous equation (making Δt 0 , etc.) leads to:

that is P0(t) = ae-λt , where a is a constant, still unknown at this point.

The general equation will be similarly developed. It should be noted that in the
passage to the limit that leads to the derivative (that is, Δt 0 ), the terms in
o(Δt)/Δt disappear:

The basic resolution method proceeds using a recurrence:

— P1 (t) = -λP1 (t) +λae-λt , and thus P1 (t) = λate-λt + be-λt

dt

The obvious condition /^(0) = 0 leads to b = 0; the reader will be able to write

the second iteration, which gives the intuition of the general solution:

P k ( t ) = a(λt)k/k! e-λt . This can be verified with the general equation. It can now
k!

be noted that, as a certain number of arrivals have taken place in the interval,

it is essential that:
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which gives a = 1 . Finally, the probability of observing k arrivals in an

interval of length t amounts to:

The above discrete distribution is the Poisson law, which is sometimes written,
by noting A = λt:

A is then the mean traffic offered during the period considered.

The distribution function of the probability law for the interval for two
successive arrivals is derived from the distribution: the probability of an
interval between arrivals greater than t is the probability that no arrival occurs
between 0 and t:

The average number of arrivals observed in any interval of length t is:

and its variance is also

(σ2 = λt (see also Chapter 3).

It should be noted that the Poisson process is a renewal process.

7.2.3. Where do the Poisson processes come into play?

When one knows nothing about an arrival process, it is tempting to attribute to

it the two properties set out above, which lead to the formulae of the POISSON
process, as they are both generally applicable and reasonable for many
systems. In point of fact this is not the case - and verifying these hypotheses
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will usually be a difficult process. In most cases, the justification for using the
Poissonian hypothesis is based on the following result.

Theorem [FEL 71, CIN 75].- Let us assume k independent renewal processes,

not necessarily Poissonian, with the arrival rates We denote

as A = the global arrival rate of the process resulting from their

superimposition.

If the previous sum has a limit of A when k increases indefinitely, then the

superimposition process tends towards a Poisson process with the rate A .

(Note: the use of the notation λi and of the concept of arrival rate does not in

any way mean that a Poissonian hypothesis is adopted for individual
processes.)

7.3. Service process

The service process may be extremely complex, but one usually limits oneself
to assuming that each service time is independent of the others, and that all of
them comply with the same distribution function: we speak of independent and
identically distributed variables. This law, the service law, is described by its
probability distribution:

B(x) = P{Service time < x}

The assumption about the independence and identity of distribution between
successive services, although a simplification, in fact represents a very good

approximation in most actual cases, such as calls or independent sessions
times, etc. We will however need to deal with systems handling clients whose
service laws obey different distributions. This is the case for example with
multi-service systems, in which each type of service has its own characteristic.

We will give some examples of classical service laws. First, let us introduce
the important concept of residual service time.

7.3.1. Residual service time

This concept will enable us to make explicit the "memoryless" property of
some processes. The following question is asked: if a service is observed
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which has already reached the "age" y, what is the distribution of the time X

still to elapse up to the end of the service?

Beginning of service End of service

Instant of observation

Figure 7.3. Distribution of the residual service time

The answer is very simple: saying that X>x seconds are still to be

accomplished is the same thing as saying that the total time will be greater
than y + x, and as Y = y this corresponds to calculating the conditional

probability knowing that the total time is greater than y. This gives for the

distribution of X:

In an equivalent way, the density will be:

We will see an application of this below.

7.3.2. The exponential law

The most popular service law is the exponential law, which is traditionally

written by using the letter μ as the "service rate":

The exponential distribution owes a great deal of its prestige to its

"memoryless" property, which has already been indicated, and which may be
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stated as: “Knowing that the service has already lasted for 1 hour provides no 
information about how soon it will end”. 

It will be noted indeed that, for the exponential law, the conditional event 
density (formula (7-2) above), is: 

b ( x / y ) =  = p-w = b ( x )  , independently of y.  

The application of this “memoryless” property shows that the probability of an 
end of service in the coming instant (in the interval [ t , t+dt[ )  is ydt,  
whatever the age of the service. 

This result (mentioned in the literature under the term “taxi paradox” or “bus 
paradox”) has an apparently paradoxical characteristic. The distribution of the 
remaining time is identical to the initial distribution, for an exponential law, 
and thus also its mean value. It can also be shown that “age” (time Y in the 
diagram) has the same distribution and the same average. This means that the 
interval observed has duration double that of the mean value of the law! 

The paradox can be dissipated when it is realised that the observation of the 
interval introduces a bias. Let us take the example of a colleague who wants to 
talk to you when you are taking part in a phone call. When he arrives in your 
office “by chance”, the risk is greater that he will arrive during a long 
conversation (as this interval is long). This colleague thus “samples”, without 
wishing it, samples of an exponential law which are biased: they have an 
average length that is greater; double in the case in hand. The fact remains that 
hidher “common sense” is somewhat disrupted. 

The same exercise, reproduced with a service of constant length, would give a 
result which is more in line with naive intuition: remaining duration is half of 
total length. In this case the sampling process does not influence the selected 
times, which are all identical! 

The exponential law is characterised by its moments: 

Mean of variable: m = 1 / y , 

Variance of variable: 0’ = 11 y2 
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Its coefficient of variation i.e. the ratio of standard deviation of service time to
its mean value is: c — (7 / m . Here, the coefficient of variation is 1.

7.3.3. Erlang laws

Let us assume that the service process is composed of a cascade of k
elementary exponential servers, which are identical (i.e. have the same μ
parameter) and independent of each other. The service time is the sum of the
times spent in each server. There is indeed only one server, with k stages (only
one client at a time is authorised to enter the server).

The service time is distributed as the sum of k exponential variables, which are
independent and with the same parameter. This case has already been
encountered in Chapter 4: it is an Erlang-k law whose form may be again
stated as follows:

As this is a sum of independent random variables, the mean and variance are

easily obtained, as the sum of the mean and the variance of each exponential
variable:

Mean of variable: k / μ ,

Variance of variable: k /μ2 ,

The coefficient of variation is: 1/ k •

We should recall the property of this law: its coefficient of variation

c = 1 k is always less than 1, and it is used as a system type in which the

service time is less variable than the exponential. The limit case will be, for a
very large k, a constant service time.

7.3.4. Hyperexponential law

Another interesting configuration is that of the hyperexponential law. The

"service" mechanism consists of two exponential servers with different rates,
between which the client chooses (Figure 7.4).
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Figure 7.4. The hyperexponential server

On entering the server, the client "chooses" service 1 (average duration l / μ1)

with probability a, and server 2 with probability 1 — (a . Only one client at a

time resides in the server. For example, the client is a task in a machine, which
according to a given criterion will run either one programme or another. The
situation can be enriched on the same principle, by proposing a choice
between n servers. The corresponding distribution has also been presented in
Chapter 4. Let us recall the form for 2 servers:

P(Service <x) = a(1-

The calculation of the mean and variance gives the following result:

Mean: E(s) =

Coefficient of variation: c =

This factor is always greater than 1: a "supervariant" law such as standard
deviation, which is stronger than the mean, may be represented by a

hyperexponential law. The couple (Erlang-k, hyperexponential) provides a
means of approximating any law whose mean and variance are known. We
may recall the generalisation in the form of the "Cox laws" which enable the
representation of any probability distribution of a service law by a
combination of exponential servers.

The example with two components is easily generalised to the case of a choice
between n exponential services (see also Chapter 4).
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7.4. Birth and death process

7.4.1. Notion of "state"

The state concept has an intuitive basis: describing the state of a system means
giving a list of the characteristics it possesses, and also providing elements
which enable predictions about how it will change. In mechanics for example,
a point particle is described by its coordinates (x,y,z) and by its velocity

(vx,vy,vz) . Once these quantities are known, it is possible to describe the

position of the point, and via the equations of mechanics and given the initial
state, the trajectory it must follow.

The same is true of a stochastic system, except that the forecast of the future
takes on a probabilistic character: it is not possible to predict the exact state
within a few seconds, but only its probability distribution.

7.4.2. Markov chains

Let us consider a random variable X, with discrete state space (it only takes its
values in a discrete space). X may represent the number of clients in a buffer:
X = 0,1,2... These states may be noted: E1, E2, ..., Ek, .... Let us note as

t1,t2,...,tn the successive instants of state changes of X, and as x1,...,xn the

sequence of the states visited. The tn could for example be the instants of

arrival in or departure from the buffer. In general, the study of the evolution of
X is very difficult. There is however one capital circumstance, which is the
basis of all the following developments:

In the general case, the value of X at instant tn+l depends on the whole of the

past, that is on X(tl ), X(t2 ) , etc. It may be said that X is obeying the Markov

property if:

In short, only the current state at instant tn influences the future evolution of
the process, and the earlier states may be forgotten. This is another form of the
memoryless property.

Let us also assume that the process is homogeneous, i.e. invariable by
translation over time. This enables the introduction of the notation:
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(without homogeneity, it would have been necessary to introduce a notation of

the type p"k ). The Markov property gives:

This is the elementary form of a fundamental result, known under the name of

Chapman-Kolmogorov equation. The process studied is a Markov chain.

7.4.3. Birth and death processes

The study of the most general Markov processes is one of the main concerns

of probability theory. Considering the very specific needs of this section we
will limit our interest to the very special, and very useful, case in which the
process can only make "jumps" to its direct neighbours. And for simplification

and without loss of generality we will say that the state of the system can

change from Ek to Ek_1 or Ek+l . The rate of passage from Ek to Ek+l is

conventionally noted λk: this is the birth rate. The rate of passage from Ek to

Ek_l is the death rate μk . The birth and death process concept has been

introduced into the study of population trends, where the state refers to the
size of the population. In agreement with this origin, and to simplify the
writing, the states will be named simply 1,2,3,..., k , with no loss of generality.

The problem is simple: we are aiming to derive the probability distribution of

the state, i.e. the function Pk (t) = P[ X(t) = k] , with the initial state being

supposed to be known.

Establishing the equation is relatively intuitive. In fact, the aim is simply to

rediscover the dynamics of the Chapman-Kolmogorov equations. Let us
examine the possible evolutions from instant t. At instant t + At , our process

will be observed in state k if:
• At instant t, the state was k and nothing happened in the elementary

interval [t, t + At].

• At t, the state was k-1 and a "birth" occurred during the interval
[t,t + Δt].

• At t, the state was k+1 and a "death" occurred during the interval
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The interval t + Δt is assumed to be "small". Other more complex events (2

arrivals, one arrival and one departure) will take place with probabilities in
. We will therefore write:

This equation accurately transcribes the description of the possibilities given
above. Based on this form, we write a differential equation by classical
analysis processing:

One special case: at 0 the "death" transition will not exist, as there is no state
noted " — 1". Finally, the passage to the limit leads to the fundamental
differential system:

This equation takes us back to the analogy of the mechanics of the point
particle. If the initial state is known, we can predict the distribution for any
instant in the future. The necessity of knowing the initial state seems very
difficult! Fortunately, there exists a class of systems, so that it is not necessary
to know this initial state. The analysis of this process leads to a distinction
being drawn between two cases:

- Case 1. When the time increases, the probabilities tend towards a limit that
is independent of the initial state. We then speak of systems that have reached
their statistical equilibrium - or their steady-state condition.

- Case 2. No equilibrium is achieved, the Pk(t) have no asymptote. This will

in particular be the case of overloaded systems (intuitively, for such a system,
the number of clients present increases indefinitely, no stationary condition
could exist). This configuration is of course entirely theoretical: in practice,
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congestion will result in the abandonment of requests, and in general by a
modification of the behaviour of the whole system.

We will limit ourselves to the study of the systems in Case 1, and we will
study the equilibrium state. For a dynamic system at equilibrium, a steady-

state condition exists, such that the state probabilities are equal to the
asymptotic value and thus do not depend on time. We will simply rewrite the
above system, cancelling all the derivatives. The stationary distribution will be

denoted Pk 

This system is resolved by recurrence: P1 as a function of Po, and then P2 as

a function of P0,,P1, and so on. The calculation is completed by the

normalisation condition, which simply stipulates that the system must exist
somewhere:

Figure 7.5. Evolution of the state of the birth-and- death process

The set of equations (7-7) is open to a very fruitful interpretation, illustrated in

Figure 7.5. The left hand term (λ k + μk )Pk can be interpreted as a probability

flow that is leaving state k. A. term such as λk Pk measures the probability flow

rising from k to k+1. This flow is the product of the probability of reaching the

state by the rising departure rate (knowing that one is there). The same
interpretation applies to the other terms. The equation says that, for the
probabilities to retain constant values, the incoming flows and the outgoing
flows of the various states must be equal.
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This interpretation is used to write the equations very rapidly, from a diagram
similar to that in the figure above. A particularly effective method consists of
noticing that the "principle of conservation" applies for all groups of states. In
particular, the outgoing flow of probability of the states 0, 1, 2, ... k, i.e. the
outgoing flow of k, must be equal to the flow that enters coming from the state
k+1: Figure 7.6.

Figure 7.6. Conservation flow around boundaries (a) or (b)
allows writing state equations

The application of approach (b) is extremely effective. The putting into
equations are compared:

It may also be checked that the sum, member by member, of the equations (a)
gives the system (b).

7.4.4. PASTA property (Poisson arrivals see time averages)

We come back here to the properties of the Poisson process. It has quite an
attractive property known as the PASTA property, which is particularly useful
in calculations relating to quality of service.

Imagine a system that evolves in such a way that it was possible to evaluate its
state probabilities. Rigorously speaking, we will speak of stationary state
probabilities, to indicate the fact that they do not depend on time (note the
passage to the limit carried out to establish state equations, and note that the
existence of stationarity is a property to be verified, as a given system will not
necessarily have a stationary state).



Queueing Theory 245

The intuitive significance of these stationary probabilities is as follows:

The system is observed for a relatively long period 0. The system runs
through, in accordance with its logic, a series of states (noted 1, 2, 3, ...). We
note the time of passage in each state, and we take the aggregate of the times
spent in each of the states θ (n). Now, if the observation time is relatively

long,

We often speak in the case of stationary probabilities of time averages, to
recall the formula. Now, one can imagine another method of system
observation. We observe the clients who arrive at the input to the system. Each
client arriving will note an instantaneous state. We add up the number of
clients observing the system in state 0, 1, 2, ...; thus q(n) is the number of
arrivals finding n clients, and N is the total number of clients taking part in the
experiment. It is possible to calculate the ratio Qk = q(k) /N, which is also a

set of probabilities (because 0 < Qk < 1, ΣQk =1) : probabilities at instants of

arrival. In general, the two sets of probabilities are different. But:

if the arrivals take place in accordance with a Poisson process, then Pk = Qk :

Poisson arrivals see time averages i.e. the PASTA property.

We will see later counter examples to this result, when the arrivals are not
Poissonian, and which can be interpreted as a certain correlation between the
system and the arrivals. The PASTA property signifies, or rather confirms,
that the Poisson process is carrying out a "pure chance" process.

7.5. Classical queueing models

We would like to very briefly recall the main results: reference should be
made to a more comprehensive queueing course for more results.

7.5.1. Kendall notation

To identify a queueing system, the following formal expression has been
proposed and unanimously adopted:
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A/B/n/K/N

The first letter identifies the arrival process distribution, the second the service
process, with in both cases the following conventions:

- M: memoryless law (Poissonian arrivals or exponential service);

- D: deterministic law;

- Ek: "Erlang-k" law

- Hk: "hyperexponential" law of order k;

- GI: general law, with the successive variables being independent;

- G: general law, without any independence assumption.

The following figure gives the number of servers, the following letters

(optional) identify the size of the queue, and the size of the source population
(if these values are omitted, they are supposed to be infinite).

For example, M/M/1 refers to the basic model: Poissonian arrivals,
exponential service, a single server, non-limited queue length. M/D/K/K

indicates a constant duration service, K servers and K places in total (i.e. no
waiting: Erlang model, see below).

In a queue, a parameter of prime importance is the utilisation factor, which is
traditionally noted p. This is the product of the client arrival rate by the
service time: ρ = λ E ( s ) .

It can be shown that 1 — gives the probability of finding the server inactive.

It is necessary (for a queue of infinite capacity) that ρ < 1 (stability condition:

intuitively, that the work must enter the system more slowly than the system
can handle it).

7.5.2. General results

"Resolving" a queueing system consists, depending on the system parameters
(arrival rate, service rate), of writing the distribution of the number of clients
in the system and the waiting time - or, at least, of forecasting the mean values

of these quantities. Some results of general significance, independent of the
laws of the processes used, can be mentioned:
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Parameter is the utilisation factor i.e. the server load, that is also the traffic

offered (in a stationary regime). The stationary probability that the server is

inactive is P0 = 1 — ρ (see the discussion of the concepts of traffic offered and

traffic carried on this matter).

The mean numbers and the waiting times are linked by the celebrated Little

formula: . Index x indicates that any possible interpretation

can be given to these values: the average waiting time and the number of
clients waiting, or the sojourn time and the number of clients in the system,
etc.

This last formula is very important. An intuitive proof can be given of this,
based on a very simple graphic reasoning.

Let us observe the occupation of the system (number of clients in the system -

note that no assumption is made on the system, or on the state of the clients,
waiting, in service, or otherwise). Each time a client enters or leaves, the
number of individuals present is updated, and the trend in N(t), the number of
clients present, resembles the diagram in Figure 7.7:

Figure 7.7. Little formula

To estimate the average number of clients in the system, the total surface area
intercepted by N(t) is counted: this is the sum of the surface areas contributed

by each client: Σ Dk , Dk being the time that client k will spend in our

system. The average number will then be:
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(in fact, the "mean" is traditionally defined as a limit).

Now the sum can be rewritten, by introducing the number n of clients

concerned in time T:

Under relatively general conditions, the limit of the product is equal to the
product of the limits. The term n(T)/T is simply the arrival rate of the process,

it is noted A. The first term is nothing other than the mean time that each client

spends in the system. If the "system" in question is the queue in front of a

server, we obtain the classical form of the LITTLE formula:

More generally, it may also be noted that, interpreting the "system" as a pool

of resources, we simply find the concept of traffic in erlangs as presented at
the start of the book. E(N) is the mean number of clients (calls, sessions, etc.)
simultaneously occupying the pool of resources, i.e. the traffic A generated by

an arrival rate A and a service time E(T).

It is possible to arrive at a greater degree of particularisation of clients (in a
system with priorities, the formula links up the number and waiting time of
priority clients, non-priority clients, etc.).

7.5.3. The queue M / M / 1

This is the best-known queueing model, and quite rightly so. It enables the

illustration of the fundamental concepts linked to queueing for a server, as

they are encountered in most of the network equipments, whether it is a matter

of call processing tasks in a processor, or packets in a router.

7.5.3.1. State probabilities

The system is described by the arrival process, Poissonian of rate A, the

exponential service law (rate μ), and the queue of infinite capacity. Clients
may be assumed to be served in the order of their arrival, if this assists the
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intuition, but this assumption is not in fact necessary. When n > 0 clients are
in the system (one in service, n — 1 queueing) at instant t, the end of service of

the client in progress occurs in the interval [t, t + Δt\ with a probability of

[μΔt + o ( Δ t ) : the fundamental property of the exponential service law.

Similarly, an arrival will occur in the interval with a probability of
λΔt + o(Δt). To this system is applied the formalism and results obtained

earlier in the birth and death process. The state is described by n, which this
time represents the total number of clients in the system. It evolves in
accordance with a very simple birth and death process shown schematically in
Figure 7.8.

Figure 7.8. Evolution of the state of the M/M/1 queue

From the diagram, the following results can be deduced. This will take the
form of a detailed demonstration. For the other systems presented later, the
exercise will be left to the reader.

The analysis of the system, in accordance with the Chapman-Kolmogorov
equations procedure, leads to the following equations:

The term to term summation of the equations of ranks 0 to n (approach (b} of
equation (7-8)) leads to the particularly simple expression λPn = [μPn+1:

thus Pn+l = ρPn , and by recurrence P n = ρ n P 0 . The normalisation condition

completes the processing, and finally:
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A client will wait if the server is active on his/her arrival, i.e. if the system

contains one or more clients. In other words, Pw , the probability that a client

will have to wait, is given by:

In fact, this expression gives the probability that an external observer will find

the server busy: to be precise, the distribution of Pn is a stationary probability

("time average"), and we speak of probability of congestion over time. It is
also, thanks to the PASTA property mentioned earlier, the probability
observed by the client arriving, and thus the probability of having to wait.

The above expressions are such that plays an important role. It will be noted
that they are meaningless in the absence of the condition ρ < 1 . This is what is

called the stability condition, or the ergodicity condition. It is shown that the
condition µ< 1 is a necessary and sufficient condition for the existence of

stationary probabilities, which is in line with intuition, as this parameter is

nothing other here than traffic offered. Intuitively, ρ > 1 amounts to having an
arrival rate A greater than the service rate : the system could not achieve a
stable state in this configuration.

The distribution of the number of clients is a geometric distribution of

parameter , from which are deduced the mean and the variance (see Chapter

4, we also recommend that the reader makes here the complete exercise):

With regard to waiting time: a distinction is drawn between queueing proper,
or waiting in short (time spent between arrival in the queue and the start of the

service) and sojourn time (time elapsed up to departure from the system).

These quantities are noted Wq (waiting in the queue) and Ws (sojourn time).

In the same way, a distinction is drawn between clients in the system and

clients waiting in the queue. There are 0 clients waiting if the server is inactive

or if a single client is present; there are n waiting if there are n+1 in the
system:
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P(n waiting) = ρn+l (1- ρ), n>1, ρ = λ / µ,

P(0 waiting) = (1 - ρ) + ρ(l - ρ) = 1 - ρ 2

And by operating as in the previous case, the mean number of clients waiting
is obtained:

From this can be deduced, via the Little formula, the mean waiting and sojourn
times:

In many sizing problems, the issue is the probability of exceeding a certain
queueing threshold, or a certain system threshold. The probability sought is
therefore P(> n) .

This is written simply as follows for the system:

And for the queue (excluding service): P(> nw ) = ρnw+1

7.5.3.2. Use of generating functions

The direct resolution by substitution of the state equations is immediately
comprehensible, but is sensitive as soon as the expressions become a little
more complex. In this case it may be advisable to use generating functions, as
presented in Chapter 3.

The generating function of the distribution (Pk, k = 0,...) is the function of the

complex variable: P(z)
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It is necessary to place oneself in the domain |z| < 1 , so that the function P(z)

exists: this is an analytical function of the complex variable. Its value is linked

to the use of its derivatives, which will directly give the moments of the

variable (see Chapter 3).

How can these properties be used? Let us look again at the elementary case of

the queue M/M/1: we have written the system of equations

So, from the set of equations, the form of the generating function is calculated
by application of the definition: in this extremely simple example, each of the

equations of rank k is multiplied by zk , and the sum is then calculated

member by member:

A simple algebraic manipulation leads to the result:

The normalisation condition translates here as P(l) = 1 , thus P0 = 1 — ρ .

From this highly synthetic expression are deduced the first and second

derivatives, and thus the first two moments, and the variance of the number of
clients in the queue; the reader is left to find the results already given. It is

also possible, by expanding in series the fraction, to find the state probabilities
by identification.

In this highly simplistic case, the justification may appear to be fallacious. But

we will see how, with this method, to obtain certain fundamental results in the

important case of the M/G/1 queue. The references, such as [KLE 76]. should
also be consulted. Finally, we should stress the fact that transforms are only
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being used here to resolve a previously established system of equations (as
with the Laplace transforms in Chapter 6). We will see subsequently how to
make use of the transforms, and more exactly the characteristic function, for
the resolution of complex problems, which are impossible to describe using a
system of state equations as before.

7.5.3.3. Waiting distribution

Even if the calculation of the mean or the variance of the waiting time is an
important result, it is often essential to have the distribution of the waiting
time, or at least its quantiles, particularly for sizing purposes (readers are
invited to refer to the discussion of QoS parameters in Chapter 2). In the case
of the M/M/1 system, it is possible to deduce the distribution of state
probabilities.

Let us assume that a new client arrives while n clients are already in the
system. He will have to await for n service times. As these n service times are
independent and distributed in accordance with the same exponential law
(even the service in progress, which according to the results of section 7.3.1
has the same exponential distribution), their total time is given by their
convolution product (see Chapter 3). In point of fact we have already
demonstrated that the resulting law is the Erlang-n law (special case of the
Gamma law for the discrete variable).

The probability density for n service times is (cf. formula 7-7).

If the waiting time in the queue is noted W , this gives:

The application of the total probabilities theorem (see Chapter 3) enables us to
write:
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and thus:

with, as seen previously, equation (7-9):

thus:

Now, we have:

Thus:

which after integration gives:
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which is the probability of waiting for less than t, for clients who are waiting

as n has been strictly taken to be greater than zero.

And thus also:

Noting that ρ represents the probability of waiting, one can also directly derive

from this result the distribution of the total time spent in the system (sojourn
time ts).

At last, the following important expressions give the distributions of the

waiting and sojourn times:

From these expressions, the means and variances are easily obtained:

—λx

(The reader remembers that, for the exponential distribution F(x) = 1 — e ,

one has E(x) — 1 / A and E(x 2 ) = 1 / A , see Chapters 3 and 4).

We find this result more directly by the Laplace transform method:

Let F(W / n) = P(W<t / n) denote the probability distribution function of the

time t spent in the system by a new client if he finds n clients ahead of him.

If the client finds n other clients in the system, the time he resides in the

system is the sum of the n service times of the n preceding clients plus his/her

own service time.

The distribution of the total time spent is then given by the convolution

product of the n+1 service time probability densities, as they are independent

(note that a client is in the process of service, but that in view of the properties
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of the exponential the remaining service time is still exponential). In view of
the properties already demonstrated, the Laplace transform of this convolution
product is simply the product of their Laplace transform.

Each of the service times follows an exponential law. If this exponential law is
of the parameter µ its Laplace transform is (see Chapter 3):

The Laplace transform of F(W /n) is then simply

And thus for the set of possible n:

By inspection we find the original, for it is the classical form of an exponential
function which is the probability density of the time spent in the system:

and thus for the distribution function:

To find the time spent waiting, it is just a matter of excluding the service time
of the client himself, and thus limiting the convolution product to n and no
longer to n+1.

We thus obtain:
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Given that the original of 1-ρ is necessarily the Dirac pulse function at the
origin u0(t) , with the factor 1-p simply expressing the fact that the probability

of not waiting is equal to the probability that the server is free and therefore
that:

and

We thus find the preceding result again.

7.5.4. The M/M/R/R model (Erlang model)

This is one of the most popular system model, and the first to have been
studied. Let us consider a group of R servers, operated in pool mode (i.e. each
of the servers can serve any of the clients presenting themselves.) The clients
arrive in front of the group of servers in accordance with a Poisson process, of
rate A. On their arrival, the clients are served immediately as long as at least
one server is free; if the servers are all busy, the client that arrives is rejected,
and is assumed to disappear definitively. We speak of a "loss" model.

Let us imagine a system in the state k < R. This means that k clients are
present, and occupy k servers (the others are inactive). In the coming interval
Δt , each of the services in progress may end, with a probability of
µΔt + o(Δt) (the services are exponential). The probability of one and only

one end of service is the sum of probabilities that each of the services ends,
after deducting the probability of two ends of service or more: event of

probability at o(Δt)2 , and thus negligible in the operation of passage to the

limit.

The service rate is thus kµ in this state, while k < R, and zero beyond (there

can not be any state beyond the limit k = R). The traffic offered is noted A
(A = λ / µ) and one can define a traffic by server ρ = A / R . The stability

condition remains A < R , that is ρ < 1 .



258 Communicating Networks: Traffic and Performance

Figure 7.9. State diagram of the Erlang model

Based on the diagram, we find the distribution of state probabilities:

The notation E(R, A) is relatively classical, and it gives the probability of
finding the system full (all the servers active); in view of the nature of the
arrivals, this is also the rejection probability. It is possible to prove that the
preceding result is valid even for a service of any type (M/G/R/R system).
(The Anglo-Saxons designate this fundamental result as the Erlang-B
formula).

When the number of servers becomes large, the denominator of the formulas
above tends towards the exponential of A, and in these conditions the state

probabilities are given by Pk A/k! e-A . They are governed by a Poisson law

(but this is an approximate limit, that is valid only for low loss probabilities, k
close to R and large R ).

The effective calculation of the loss formula raises a problem in the form
given above: it would be pointless to evaluate a factorial by a direct method,
for a relatively large R! It is best to use a recurrence method, based on the
relationship (derived directly from the above formula):
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(7-18)
R + 1 + AE(R,A)

which leads to the recurrence:

X := 1

for j going from 1 to R do

X := 1 + X*j/A

End for

E(R,A) := 1/X

It is also often possible to use an approximation (to replace the sum in the
denominator by the exponential, and use the Stirling formula for the factorials:

R —R I -R! RR e-R 2πR ), which gives quite spectacular precision:

If we return to the definition of traffic offered and traffic carried, the
calculation of traffic carried enables the checking of the matching up of the
definitions to be carried out:

The diagram given at the end of the book indicates the probability of rejection
of an Erlang system for several values of R. The Erlang formula can also be
used to illustrate the phenomenon of economies of scale already encountered.
For example, two groups of 5 servers each receiving a traffic of 3 erlangs will
present a rejection rate in the order of 10%. Grouping together the two groups,
6 erlangs will be offered to 10 servers, bringing this rate down to about 4%.

7.5.5. M/M/R queue

Let us consider again a system with R servers, this time with a queue. We are
in the situation of the previous case, but in this case when a client arrives and
finds the R servers occupied, he joins the queue.

What happens to service rates? As long as k < R, nothing changes compared
with the previous example: the service rate is kµ . As soon as k reaches the

value R, the servers are saturated and the service rate remains equal to Rµ, .
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The traffic offered is noted A and the traffic per server is ρ = AIR . The

stability condition remains A < R , that is ρ < 1.

Figure 7.10. State transition diagram of the M/M/R queue

The exercises of writing the equations and their resolution are left to the
reader. The following are obtained:

with:

The probability of having to wait is:

This is simply the stationary probability that R clients or more are in the
system. This formula is known by the name of "Erlang formula with waiting"
(or "Erlang-C ", C(R,A)). The mean waiting time is deduced from what goes

before, after some calculations:

R — A
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This formula makes it possible to obtain the mean waiting time, as seen by the
clients who are actually waiting. The calculation of the distribution of the
waiting of clients who are actually waiting is carried out by using the theorem
of conditional probabilities:

_, . . ^ , , ,. . , P( waiting < t) P( waiting <t)
P(waiting <t/the client waits) = - - - - - — = — - - - -

P(the client waits) Pw

The transition to mean values gives the following directly:

where W' is the mean time measured on clients who are actually waiting. The
comparison between the two expressions is instructive: waiting is not
perceptible, except by clients who are actually waiting, and the mean waiting
time calculated on all clients is only slightly representative of the perceived
quality of service.

Furthermore, the use of these results offers an initial example of the general
law of statistical phenomena, i.e. the gain in efficiency linked to the sharing of
resources. Let us consider this principle using here a very simple exercise.

Example: sharing of resources

A projected communication system is organised around two so-called
specialised processors, one of which processes the functions associated with a
user group and the other those of another group, each having its own queue.
This may be the case for example with call set-up or message or packet
switching functions. The processing request arrival rates are the same for each
processor (140/second). The arrivals are assumed to be in accordance with a
Poisson law. The service times are the same for each processor (same power)
and are assumed to conform to an exponential law with a mean of 6 ms.

a) What is the waiting probability, and the average waiting time?

b) The head of the system team decides to make the architecture evolve into a
system of two general-purpose processors: the processing will be carried out
by one or other of the processors, in fact the first one available, with both
processors handling a common queue. The aim is thus to optimise the system's
response time. What is the gain to be achieved by this modification?
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Solution

a) As the servers work independently, we are dealing with two separate M/M/1

queues, with identical characteristics: ρ1 = ρ2 =140x6.10-3 =0.84.

Hence immediately:

• the activity rate of each processor is 0.84, i.e. P(inactive)=0.16;
• the average waiting time is W = ρE(s)/(1- ρ) = 6×0.84/0.16 that is 31

ms (37.5 ms if this time is related to those who are waiting).

b) Now the servers are organised in a pool, which means the system is of the
M/M/2 type.

The arrival rate is double (280 requests per second),

The total traffic offered is double: A = 280x6/1000 = 1.68, and ρ = 0.84 (the

load of each of the processors remains identical).

The state probabilities of the system in this case can be written explicitly:

2(1-ρ)

Here, we have: P0 0.088, Pw 0.76, W 14ms. W' = 18 ms.

We have therefore almost divided in half the average waiting time, without an
increase in the installed power.

This elementary example illustrates the argument for pooling resources: an
M/M/k queue will be more efficient than k M/M/1 queues in parallel, all other

things being equal.

Relationship with the Erlang formula

It is useful to link up the preceding formulae with those of the Erlang "loss"
system. The Erlang formula is easily calculated by means of the recurrence
given above, which can also supply E2(R,A). A simple manipulation gives:

R-A + A.E(R,A)
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For low probability values, the following approximate form may be given:

Waiting time distribution

When all the servers are busy, the interval until the next end of service is
exponentially distributed, with a rate Rµ . The probability that no end of

service will occur for a time t is ( e - µ t ) R =e-µRt (this is the probability that no

service will stop, and thus the product of probabilities for each of the servers).
As soon as a server is released, and if there is at least one client waiting, the
server is immediately busy.

On arrival of a client, if there are i > 0 clients already waiting, the client will
wait for a time longer than t, if and only if there are fewer than i ends of
service during t. This probability is given by the Poisson law in view of the
preceding remark:

And thus by conditioning to the state of the queue on the arrival of the client:

(the latter relation is obtained by reversing the order of summations). By
developing the state probabilities, expressed on the basis of the waiting
probability, this gives:

The second sum is rewritten ( A]/I R ) /(1 — A/R) , and thus:
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7.5.6. Limited-capacity models

The M/M/l/K model corresponds to the case of a capacity of K clients. Note
that the customary use of K is to represent the total number of clients in the
system, i.e. waiting or in service (one occasionally finds the notation
M/M/l/K+1, indicating that K are on standby and one in service).

Figure 7.11. State transition diagram for the limited-size queue

The evolution diagram is obtained by truncating the M/M/1 diagram, and the
equations easily give the result:

For a limited capacity system, the performance criterion is of course the
rejection probability. In this case, it is simply the stationary probability of

observing K clients in the system, as then an arriving client will not be
admitted:

Of course, in this case it is possible to remove the stability condition ( <1),

a higher loading value resulting in a higher level of rejection. It will be noted
that the case ρ = 1 leads to a difficulty with the formula. This is only a

mathematical problem, and it would be necessary to read for example:

K

I! = - - - — , which removes the difficulty.
1 + ρ + ρ2

 +... + ρk
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7.5.7. M/M/ queue

There are situations in which arriving clients are always served immediately,
without waiting, because the number of servers is always greater than the level
of demand - the image used for this situation is that of an infinite number of
servers.

Figure 7.12. The queue with infinitely many servers M/M/

The modification of the M/M/R queue diagram is simple, and the state
probabilities can be easily written:

This system is quite special, in the sense that no client will ever wait. The term
sometimes used for this system is pure delay.

It will be observed that the state probabilities are governed by a Poisson Law
with parameter A.

It has already been noted, in the Erlang problem, that the Poisson Law is the
limit. This result is also found here, as the M/M/ system is the limit of the
M/M/R/R system, if R is tending towards infinity. In fact, we will see below
another configuration, the Engset problem, of which the Erlang and Poisson
distributions can be seen as special cases, which all have the Poisson law as a
limit. The importance of the previous result is related to the fact that when we
have a system that is very generously sized, to which Poissonian traffic is
offered, the system may be calculated using the Poisson law.

The reader will note that we have already found the application of this
property in the sizing of spare part lots, in which for low probabilities of
saturation of maintenance resources, the maintenance stock can be
dimensioned by the Poisson formula.
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7.5.8. Limited-population system: the Engset problem

The Poisson assumption, which enables the analysis of the preceding
mechanisms, is based on the assumption of a constant client arrival flow. A
particularly interesting case is that in which the flow stems from a population
of sources of finite size, with each of the sources having a very simple
behaviour, and governed by memoryless laws. This is the Engset problem.

It is assumed that the behaviour of each source is as follows: a source remains
inactive for a random time with an exponential distribution of the parameter λ.
When it becomes active again, it requests a service, which will last for a time
whose distribution is exponential (parameter μ). In the Engset problem, the
servers are in limited number, and if they are all busy when a request arrives,
the request is rejected and the source begins another period of non-activity.
The following diagram shows the behaviour of a source in schematic form.

Figure 7.13. The evolution pattern of a source

Let us consider a population of N sources with identical behaviour, served by a
group of R servers without waiting. To make the problem significant, we will
assume that R < N . This configuration is noted "M(n)/M/R/R".

The key to dealing with this problem can be found in the following statement:
the arrival process depends on the instantaneous state of the system. In fact,
"an active source does not generate a new request". Assumptions on the
behaviour of the sources make the same type of analysis possible: the system
is characterised by the number n of active clients. On this occasion however,
the elementary events are:

• The arrival of a new client, which causes a move from n to n + l if n < R.
In state n, only N - n sources are inactive and likely to become active
again: the corresponding birth rate is (N —n)λ .

• The end of a service, with the rate nμ, which moves n on to n — 1, as in

the system with several ordinary servers.
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Figure 7.14. State transition diagram for the M(n)/M/R/R system

The set of equations giving the stationary probability of observing n busy

servers is written (here form (b) of the equation (7-8) takes on its full

importance):

The solution is written:

In this equation, parameter a represents the behaviour of the elementary

source. But it does not play the offered traffic role (total traffic offered is not
A

Nα). The traffic offered by a source is a — - = - . This is also the
1+a

occupancy factor of the source, which may be noted p (= a). Then we have the

relationship: OL — - = — whose usage will be seen later.
1 — a q

Rejection probability

It is essential to note that, unlike the case of the Erlang problem, PR here is not

the probability of rejection! If we reflect on the construction of the diagram

and its significance, we realise that this quantity represents the proportion of

time during which all the servers are busy. It is the occupation probability that

would be measured by sampling by an external observer, in other words

independent of the system (in accordance with the remarks made in section

7.4.4). But clients who arrive do not do so independently of the state of the

system, as they arrive in fewer numbers when the system is filling up. This

system is a good a contrario illustration of the PASTA property.
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The special case N = R is instructive in this respect. It is worth noting the

simplified form that state probabilities then take:

We often speak of Bernoulli traffic in this configuration. We then have

PR

 = PN =pn =[a/(1+a)]N=0 , while the rejection probability is of course zero.

How then is it possible to calculate the rejection probability, in the general
case in which N > R ? Let us imagine observation of the system over a "long"

period T. In accordance with the state probability properties, the system

resides for a proportion Pn of this time in each state n. The number of clients

arriving in duration T will therefore be, on the average, (N-n)λ PnT . The

clients rejected are those who arrive in state R, in the number of (N — R)λ PR ,

and the rejection probability will be the quotient of these two values. Thus,

After a moderate amount of algebraic gymnastics, the formula will be
expressed as a function of known quantities:

This formula is known as the Engset formula.

As for the Erlang formula, the numerical evaluation of the loss probability is
made easier using the following recurrence:
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Lastly, as the probability of success of the activity attempt is 1 — , the mean
duration of the cycle is:

λ The traffic carried by each source will be given by the activity rate of the
source:

The total traffic carried will be N times this quantity.

The same holds for the traffic offered. The traffic offered per source is

0 — - .The total traffic offered will be N times this quantity (this0

value is generally the one given in tables).

Example: sizing of a subscriber concentrator

For example, let us consider the subscriber stage of a telephone switch,
concentrating the traffic of N users on a restricted number R of lines to the

switch. In view of the telephoning habits of the subscribers, it is necessary to
calculate R to offer a given level of service without using circuits whose
utilisation factor would be too low.

The following figure shows what the formula gives, depending on N and a
values, for R =10.
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Figure 7.15. Loss probability for the Engset model, R = 10

Clearly when N increases (for a constant Nα product), the loss probability
increases. It could be checked that the limit (when N — > ) is that given by

the Erlang formula (M/M/R/R queue). It can also be seen that the limited
population has a beneficial effect on the curve.

Numerical application: Poissonian traffic of 4 erlangs offered to 10 circuits
suffers a loss in the order of 5 10-3; if the traffic comes from a group of 20
sources, the rejection will be 5 times lower, in the order of 10-3.

7.6. More complex queues

The assumptions underlying the previous models (Poissonian arrivals,
exponentially distributed service times) make analysis simple. Abandoning
these hypotheses prevents the use of the birth and death process approach.
There are however systems for which adapted modelling enables precise
resolution.
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7.6.1. The imbedded Markov chain method

In the following, we will use this type of method to establish some important
results on queueing with any service law. However, the arrival process will be
such that the evolution of the system (clients and server) is what is known as
semi-Markov process. (Then, we carry on in the following stage to resolve the
general case, with any arrival law and any service law, using the Pollaczek
method).

For such a process, one attempts to characterize transition probabilities at
particular instants only (as opposed to the birth and death processes, where the
system is studied at an arbitrary instant t). The key to modelling always
consists of finding, in the evolution of the system, instants in which the future
and the past are independent. It is then possible to extract from this evolution a
Markov chain (imbedded Markov chain) , whose resolution is possible,
possibly in numerical form.

This method is particularly well suited to calculating the number of clients in
the system, if one is able to define instants such that knowing the
instantaneous state allows deducing the following one. Especially, the instants
of end of service have this property. The state of the system at these instants is
characterised by the number of clients left by the departing client. We must be
able to calculate the probability of having a certain number of arrivals, a,
during the next service duration, which depends only on the service duration

and is independent of the system state. This imposes several conditions on the
arrival process, such that the independence between arrivals occuring in the
successive service durations.

We now apply this method to a queue with general service distribution and
establish a quite interesting result concerning the number of clients in the
system. This result will be used in the following for the systems M/G/1, and
Geo/D/1 for example.

7.6.2. The number of clients in system

Let us consider a queue, with Poissonian arrivals, and service times distributed
in accordance with any law, whose distribution will be noted B(t), and with an
arrival process complying with the criterion given above (of the Poisson or
Bernoulli kind, for example). The stationary analysis of the birth and death
processes is not applicable, because the probability of an end of service in the
elementary interval Δt will depend on the service age in progress (referring
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back to the result on the remaining service time, it will become obvious that
the exponential law is the only one to demonstrate the "memoryless"
property).

Now, let us denote as α k the probability that k clients arrive during a service

(the arrival process must be such that this probability may be calculated), and
let us observe the system at the end of service instants. Let us note Xn the

number of clients left behind after the departure of the nth customer. If Xn is

greater than 0, another service starts immediately. If not, the server remains
inactive, until the arrival of a client, who will be served without having to
wait. In all cases, at the end of the next service, the system will have
accommodated other clients, in the number of An . These clients are those who

arrive, during the time of the nth service.

It is then possible to write a recurrence relation, whose resolution will give the

probability distribution of the Xn 's.

Let us assume that X n > 0 . The departure of client n results in the diminution

of one unit of the number of clients. Any arrivals during the next service will
make the number of clients increase, and this will give:

If on the contrary, X n = 0 , then the next client begins the service, and we

then see that:

These two cases are summed up by the abridged notation:

an expression in which [x]+ = max(x,0) .

(This is the Lindley relation. We will see later, with Pollaczek' s method, who
introduced this kind of relation, all the benefit one can draw from it.)

It is also possible to illustrate the behaviour of the system (evolution of
number of clients waiting or in service) by a diagram, similar to the preceding
ones, but which can no longer be termed "birth and death". Between the
departure of clients n and n +1, 0, 1, 2, etc. clients may arrive, causing jumps
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corresponding to the relation (7-31). Note that it is possible to speak of a state:
the number of clients just after the departure of the nth enables certain
prediction of the probability distribution at the next departure. Indeed, the

assumptions of the model allows calculation of ak , the probability that k

clients arrive during a service.

If the departure of a client leaves the system in state j > 0, then a service

immediately begins. If now k clients arrive during this service, the number
remaining after the next departure will be j + k — 1 (as the client served will

leave the system). More generally, the system jumps from a state j >0 to

another state m > 0 with the arrival of m +1 — j clients, event having

probability α m + 1 - j. This is shown in the graph in Figure 7.16.

Figure 7.16. State transition diagram of the imbedded Markov chain

In state 0, the server is inactive, and an arrival triggers a start of service. If k
clients arrive during this service, the departure of the client starting up the
period of activity will leave these k clients behind him, which explains the
particularity of the transitions observed since state 0, compared with the
transitions from the other states.

The resolution of this system, i.e. the calculation of the state probabilities, will
follow the same general method. A system of equations of the Chapman-
Kolmogorov type will be written:
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The resolution of this system will take place by means of the resolution of a
truncated matrix system, or better by making use of generating functions:

multiplying the equation of rank k by zk , and summing the system, the
generating functions are introduced:

Setting up the equation raises no difficulties. This gives:

Moreover, one has evidently

This gives finally the important relation giving the transform of the number of
clients in the system:

For Poissonnian arrivals, one has:

(we have introduced the Laplace transform of the service law).

At last we have the important result for the M/G/1 system:

which is, as we will see later, one of the forms of the Pollaczek transform.

As usual, we derive the moments of occupation probabilities from the
transforms. We will provide in Chapter 9 an example of application of these
results (Geo/D/1 queue for the case of a ATM switching matrix).
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7.6.3. Waiting times: Pollaczek formulae

7.6.3.1. Preliminary: calculation of remaining service time

Let us observe the server of an M/G/1 system at any instant. What is the time
remaining until the end of the service in progress (zero if the server is
inactive)? Note the difference with the calculation in Section 3, where it was a
matter of calculating the remaining time bearing in mind that y seconds had
already elapsed. Here the observation of the server takes place independently
of the server. We are therefore searching for the temporal mean of the
remaining service time - without knowing when it began.

We observe the system for a time T. Note as X(t) the time remaining at any
instant t. At each end of service, and if a client is present, a new service
begins, triggering an instantaneous increase in X(t) of a value equal to the
service time requested (we will note as Sk the service time of client k}. Finally,
the remaining time evolves analogously to the chart in the figure below.

Figure 7.17. Residual service time in the M/G/lqueue

The chart consists of initial jumps (at the start of each service, the remaining
time is increased by the new service time), and then by segments of 45°
slopes. The temporal mean can be calculated:

where N(T) represents the number of clients served in the interval, and Sk the
sequence of service times.

All the clients are statistically identical, and the passage to the limit gives:
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This quantity is conventionally noted as W0 . It is worth pointing out that the
calculation does not depend on the service discipline (i.e. on the choice that
the server makes about the next client to be processed).

7.6.3.2. The Pollaczek-Khintchine formula

We put ourselves in the context of the M/G/1 queue. A client who arrives in
accordance with the Poisson process, and thus independently of the state of the
queue, observes the queue's stationary state. He may find a client in service
(or the server inactive). He observes the corresponding service time remaining,
x. He also observes n other clients in the queue, who will be served before
him. His/her wait will therefore be:

Let us take the mean values. That of x has been calculated above. The mean of
the sum will be E(n) times the mean service time. But E(n), the mean number
of clients waiting, is linked to E(W), by the Little formula. Hence:

and finally the formula sought:
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into which we have introduced the coefficient of variation of the service time:

s = I I = , which quantifies the "variability" of service

times.

This is the Pollaczek-Kintchine formula (from the name of those who
developed it), often designated PK. We will redemonstrate this result in the
sequel, this time, as a special result of the original method of Pollaczek.

Its interpretation is extremely interesting. The first term quantifies the waiting
phenomenon, which depends on the system utilisation factor. The second

indicates the variability of the service, and the third is a "scale factor", the
scale of the phenomenon being given by the mean service time.

7.6.3.3. Example 1: the M/M/1 queue

For an exponentially distributed service time, it can easily be shown that

= 2 / μ 2 , i . e . C 2

S = 1 . Hence:

l-ρ

7.6.3.4. Example 2: the M/D/1 queue

Clearly, the variance of the service time is zero. Thus, c2

s = 0 , and:

- 7 . 6 . 3 . 5 . Generalisation: Takacs formulae

The following result, attributed to Takacs, enables obtaining the successive
moments of the waiting times for the M/G/1 queue. They involve the
successive moments of the service time.
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We will leave it for the reader to verify by exercises that, taking k = 1 in the

preceding form, we find again the PK formula. The following relations can be

deduced for sojourn times:

For example, for k = 1: E(T) = E(s) + E(W)

7.6.4. The Benes method. Application to the M/D/1 system

The Benes method focuses on "unfinished work" or "virtual waiting time". It
will be illustrated here by deriving the distribution of waiting times in the
M/D/1 queue.

Let us take an arbitrary instant as the origin, and note as A(t) the quantity of
work arriving in the interval [— t, 0) . (We assume the server processes 1 unit of

work per unit of time.) Let us term V_t the working time, or virtual waiting

time, remaining at the instant -t (time to serve the waiting clients, plus the
remaining time for any client in progress). We introduce ξ (t) = A(t) — t , the

work in excess arriving in the interval. It can be seen that the unfinished work
is given by:

In particular, V0 = supξ (t) (this is the strongest surplus of work to have
t>0

occurred in the past, the one whose effect remains at 0). The method is
classically focused on the complementary distribution Q(x):

The event {V0 > x} can be read: "there exists a value of t, such that ξ (t) > x".

One can thus condition on the last instant Tx (the largest interval) where one

observed ξ (t) = x: this is Tx = sup{t > 0; ξ (t) = x}. For more remote instants,

one must have ξ (t) < x , such that V_Tx = 0 (it is at this point that the

difference is greatest). We can then write (this is the key point of the method):
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Application to the M / D / 1 system

Let us term n(t) the number of clients arriving in [— t,0) . The service time is

taken as the time unit, such that ξ (t) = n(t) — t . The integral is then rewritten

as a sum:

The arrival process is independent of the state of the queue: the probability is
written as the product of the two terms. As the arrivals are Poissonian, this
gives:

(A and p are identical, as the service time is equal to 1). After manipulations
involving combinatorics, the result is rewritten in the form of a finite (but
alternate) sum:

7.7. The G/G/1 queue

Many methods can be used to establish results relating to GI/G/1 queues. We
will make use here of the Pollaczek method. Pollaczek was the first to
establish fundamental results relating to this type of queue, and above all
introduced a technique capable of solving the most complex problems.

7.7.1. Pollaczek method

The value of this method, in addition to its elegance, is that it can be used for
complex queueing problems, involving random variables governed by

extremely general distributions. We present the main elements of this method
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below. For a full presentation, see [LEG 62], [SYS 93], [COH 82] and
obviously the articles of Pollaczek [POL 57, POL 61].

The principle is as follows:

• on the one hand, very often it is possible to establish simple relationships
between independent random variables such as the waiting time of two
consecutive clients, their service time and their inter-arrival time,
whatever the arrival and service time distributions may be.

• on the other hand, in association with these relations we identify
incompatible events, for example: as a function of the arrival instants of
two consecutive clients, either waiting takes place or it does not. These
events, when introduced into the previous relations, define for the variable
studied (waiting, holding time, etc.) one or more fundamental relations
that may be called stochastic relations associated with the stochastic
variable studied.

As seen in Chapter 3, by associating with this expression of the variable its
indicator we completely define its probability distribution. It is then "enough"
to write characteristic function and from this deduce the moments by
derivation, and any other property such as the distribution function, by use of
the inverse transform and residue calculation.

Clearly a method of this type very rapidly leads to pure mathematical
developments. In fact, from the second stage onwards it may almost be said
that one has already left the pure domain of probabilities. This is its
attractiveness for those who love mathematics. The downside is that the
approach quickly seems to become abstract, and very often the developments
are relatively complex. This tends to put off the physicist. But it will always
be a good idea to refer to the physical phenomenon to gain better control of
the calculations, and particularly problems at the limits for example. In fact
simply practising the method more frequently opens up new perspectives,
bearing in mind that the resolution of the complex problems raised by the new
world of telecommunications would find it difficult to do without such tools. It
is in this spirit that we present, below, the method and its application to the
system with one server.

We will first introduce the method and show how the celebrated Pollaczek
transform can be very simply obtained. Then we will give application
examples.
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Characteristic function of a random variable corresponding to two
incompatible events

In the first stage, let us demonstrate a fundamental expression of the
characteristic function of a random variable corresponding to two
incompatible events.

Let Y be a random variable such that:

Y = X , if X > 0 ; Y = 0, if X < 0

This can also be noted as Y = X+ = Max(0,X), X being itself a random
variable.

There are only two possible and incompatible events: El is the event
X > 0 and E2 is the event X < 0 . The corresponding indicators are
respectively H(X) and H(—X) (the Heaviside functions). It should be recalled
(see the chapter on probabilities) that the indicator of the event (x - X) > 0 is

H (x - X).

As events El and E2 are mutually incompatible and represent all the possible
cases, we can write

By moving on to expectations, we have:

This is, it will be recalled, the characteristic function of variable 7.

And given that, (see the Heaviside function in Chapter 4):

and also:
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and if we note z + u = — ζ , therefore z = —

obtain:

and R(z) < 0 , we then

This gives us finally:

that is

Fundamental relation for the characteristic function of the variable Y =
corresponding to two incompatible events of X.

7.7.2. Application to the stochastic relation of the queue to one server
(GI/G/1 queue)

This result can be applied to the study of waiting in the simple case of an
isolated queueing system (i.e. that can be considered in isolation,
independently of any correlation with its environment).

The principle is to find an expression relating to waiting that translates two

incompatible events of indicators with values 0 and 1 .

The single server, with any service law, serves the clients, with any arrival

law, in their order of arrival. The first client is noted as n = 0, the second
n = 1, etc. Services and arrival instants are assumed to be independent.

Let the terms be as follows:

- Xn the random arrival instant of the nth client and

- Tn the random duration of its service.

Let:
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The Yn process is assumed to be regenerative (the Yn are therefore mutually
independent).

The waiting time of the nth client Wn is the time interval separating its arrival
instant from its start of service. And so the nth client begins to be served at the
random instant Xn + Wn and has finished being served at Xn + Wn + Tn.

There are two possible events.

Either client (n+1) arrives before the departure of the nth, in which case:

and its random wait is:

Or it arrives after the departure of the nth, in which case:

and its wait is zero: Wn+l = 0 ,

which brings us finally to the following relation:

which is a fundamental stochastic relation of the GI/G/1 and of which another
example has recently been encountered (see Lindley's relation).

By direct application to the fundamental application of the characteristic
function of the wait established previously, we have:

, with

Let us study this integral.
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As the variables Wn , Tn , Yn are assumed to be independent, and as W0 is fixed at
a constant arbitrary value, we have:

Let us return to the characteristic functions. We introduce the notations:

where

And thus the integral studied is written:

with 0 < R(ζ) < R(-z) .

This relation characterises the GI/G/1 queue. Although very simple to
establish, it is very important, and we will make use of it to demonstrate, in a
very simple way, the celebrated Pollaczek transform, more particularly
concerning the waiting time in an M/G/1 queue, following for this purpose the
use of the Pollaczek method according to the approach set out in [LEG 62].

Pollaczek has demonstrated another more elaborate expression of the previous

result, but which to be established necessitates more complex developments.
We provide the main lines in an appendix to this chapter. The result, still for

the GI/G/1 queue, is as follows:
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where φ(— ζ ) = φ1 (— ζ )(φ2 (ζ ) , R(z) < 0 • And bearing in mind that inrder to

exist this stationary limit process requires compliance with the condition

In the following we will also use this formula to establish the result of the

G/M/1 queue.

7.7.3. Resolution of the integral equation

7.7.3.1. Application to the M/G/11  queu

Let us reconsider the general expression (7-37)

where:

As the arrivals are Poissonian this gives

F2 (t) = 1 — e-λt and φ 2 (ζ ) = , where is the arrival rate.

The characteristic function becomes:

In the zone (ζ) > 0 the function:

has two poles 

which gives by application of the residue theorem:
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(with a minus sign as we do not integrate in the positive direction, we close
the contour on the right!).

At the pole ζ = — z , one has:0

Similarly at the pole ζ = A we have:

and therefore:

In a stationary condition, the relation becomes independent of n and therefore:

Recalling that the series expansion of φ1(z) gives:

z

2

(φ1(z) = 1 + m1z + m2 ---- , where ml = φ,] (0) , and p = λm1

the condition ø(0) = 1 finally gives, now noting φ(z) = φw(z) :

This is the fundamental relation giving the characteristic function of waiting
for the M/G/1 server. This is the celebrated Pollaczek transform, of which we
will see application examples in the following sections.

The simplicity of the demonstration is remarkable.
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It is now possible to easily obtain moments by deriving and by returning to 
series expansion: 

Let us recall that  that is: 

In particular the average waiting time is obtained: 

cp, "(0) , which is written: w =@yo) = - 
 

W =  x where x is the mean of the service times and c2 its 

coefficient of variation. 

Or again by taking x as the time unit: 

This is the celebrated Pollaczek-Kintchine formula, established for the first 
time by Pollaczek in 1930 and since then redemonstrated many times by 
various methods (as we saw earlier). 

We now need to calculate the sojourn time in the system: 

By definition, we have, by calling S,  the sojourn time of the nth client: 

and at equilibrium, 

As variables Wand Tare independent, this gives: 
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Hence:

This is the characteristic function of the total time spent in the M/G/1 system.

By way of examples, let us apply these results to a set of typical cases which

allow one to determine practical bounds (upper and lower) for most of real

cases.

M/M/1 queue

Let us first apply the previous results to the M/M/1 case.

As the service law is exponential, this gives: φ1(z) = μ\ μ-z , and we

immediately obtain:

The function has a single pole:

z1 = μ(1 - p)

Let us now apply our solution of the inversion formula:

The residue R1 in z1 is:

Hence:
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We of course obtain the already established result.

M/D/1 queue

Let us now apply this to the M/D/1 queue. As the M/D/1 queue has already

been processed, and as it gives rise to an expression which is complicated to

calculate, we will establish here an asymptotic expression of the distribution

of waiting. This is a very simple expression, which gives very precise results.

Let us start again from the Pollaczek transform. To simplify the writing we

will take the service time as the unit. The Pollaczek transform is thus written:

Let us now apply our asymptotic law as presented in Chapter 3:

Where z1 = βO > 0 a singular point for Øw(z) , and such that:

(This is the point closest to the origin, and on the real axis, see Levy's theorem
in Appendix 1), and R\ residue at z1.

It will be recalled that (see Chapter 3) we also have:

Hence

In the case of M/D/1 , we have

We have β0 such that p + β0 - peβ0 = 0 and pφ1 '(ß0) - 1 = peßo - 1
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And so,

This formula gives results that are sufficiently precise for most applications
(see Chapter 9).

M/H2/1 queue

Now let us apply our results to the M/H2/1 system. This is to some extent the
"opposite" of the M/D/1 case, from the viewpoint of the coefficient of
variation, greater than 1, the M/M/1 case being "intermediate".

We start again from Pollaczek formula:

with z1 = ß0 > 0 singular point for Øw(z) , and such that:

The service has a hyperexponential distribution H2, it becomes:

with being the service rate (larger than λ) given by

Hence:
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which gives, after a few developments, and using the relation

the solution of which is:

One has too

Hence the distribution function of the waiting time:

The reader may verify that, taking μ1 = μ2 = μ , one finds as needed

ß0 = (l- p) , and:

which is the expression to be expected, for the exponential service.

7.7.3.2. Application to G/M/1 queue

Let us now study the "symmetrical" case of the M/G/1 queue, still beginning
with the Pollaczek method.

This time let us start again from the general expression (7-38) of Pollaczek.

This gives:
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or again:

As the service is governed by an exponential law with a rate μ, this gives:

and

and so:

It will be noted that:

This gives:

The integration is carried out by parts (the form is u.dv), and we thus obtain:

Let us consider the last expression under the integral: (μ + ζ ) — μφ2(ζ )), , and

let us apply Rouche's theorem to μ + ζ — μ φ 2 ( ζ ) , (sum of two functions).

Inside the circle with the centre (-μ), and of radius μ, thus R(ζ) < 0, we

have
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According to Rouche's theorem applied to the expression on the circle
considered, it is deduced that it only has in the circle a single root ζ1 and thus

also in the whole plane R(ζ)< 0.

We may therefore write:

Let us apply the residue theorem to both poles:

ζ1 such that μ + ζ1 - μφ2 (ζ1) = 0,

and: ζ2 = — μ

We obtain:

And thus finally by now denoting φw(z))

waiting time, we obtain:

the characteristic function of the

A fundamental relation: the characteristic function of waiting for the G/M/1
server.

This expression is also written:

which becomes, by calling: σ = φ2 (ζ,) = μ+ζ1\μ
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This is a remarkable result as we find an expression similar to that of the
M/M/1 queue, this time σ playing the role of p.

We deduce from this immediately the expression for the waiting time

distribution:

Just as for the M/G/1 system, we can apply these results to several practical
cases approximating most of realistic cases.

M/M/1 queue

Before considering the more general cases, let us again apply first the previous

result to the M/M/1 case.

As the arrival instants are governed by an exponential law, we have:

the solution sought is such that

hence ß0 = μ — λ and finally

and: P(> x) = pe-μ(1-p)x

We find again the result already established.

Application to D / M / 1 case

This is "symmetrical" to the M/D/1 case. In this case we have:

φ2(z) = ez/λ , where λ is the arrival rate (lower than μ)

the solution sought is such that:
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We have: o = 1 - Po / p and P(> x) = oe-p(l-u)x, or of course: 

Application to HZ/M/I case 

This is in a sense the opposite case to the D/M/I case, in terms of the variation 
factor (greater than l),  with the MIMI1 case being an “intermediate” case. 

In this case we have: q 2 ( z )  =l+i, where A is the arrival rate (less 

than p) such that:

The solution sought is such that: 

We have: o = 1 -Po / p  and P(> x) = Oe-P(’-u)X, or of course: 

7.8. Queues with priorities 

If a class of clients has a particular level of urgency, it is possible in most 
cases to set up priority mechanisms. For example, a processor must be able to 
process very rapidly tasks relating to vital security functions, even if this 
means delaying less critical tasks. Alternatively, a router will give preference 
to a packet whose quality of service requirements (in terms of delay) involve 
greater constraints. This service mechanism will be represented by a model 
with priorities. 

The normal case, where clients are served in the order of their arrival, is the 
FIFO (First In - First Out) discipline. Under the LIFO (Last In - First Out) 
discipline, the last to arrive is the first one to be served. In the case of the HoL 
discipline (Head of Line), each client belongs to a priority level, clients of a 
given level are served after the ones of higher level have been served. 
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A further distinction is drawn between two variants in the analysis of priority
queues, depending on whether they incorporate a pre-emption mechanism. In
the case of pre-emptive priority, a client with a higher priority than the client
in service will interrupt the latter's service, and immediately take the latter's
place. On completion of the handling of the priority client, the client with a
lower priority will resume his/her place in service (and depending on the case,
start from the beginning or continue his/her service, referred to as "pre-
emptive resume").

7.8.1. Work conserving system

Two viewpoints are considered in the analysis of systems with priorities: that
of the client and that of the server. Understandably, in some cases the choice
of client is indifferent to the server, in the sense that this choice does not
change the total amount of work it must handle. The consequence is that at
each instant, the server is capable of accounting for the quantity of work it is
offered (unfinished work) : the service time still to be provided to the current

client, to which is added the sum of the services of clients waiting at the
instant in question. This quantity can be evaluated at a fixed instant, but it is
only meaningful if the remaining work does not depend on the next decision!
So, let us denote as τ the remaining (unfinished) work at instant t. Let us stop
the arrival process at this instant, and observe the random behaviour of the
system: the server will work continuously until t + τ , whatever the scheduling

decisions taken after t.

A work conserving system is a system of this type in which the unfinished
work does not depend on the choice discipline applied by the server.

Although this is a common situation, counter-examples are a multi-queue
system with switchover time; a system with impatience; a system in which the
service time depends on waiting (ageing), etc. For most of these systems, it is
not even possible to calculate this work at a given instant.

M/G/1 conservation law

It is clearly the case that, whereas the work remaining does not depend on
scheduling, the waiting time will depend on it. The conserving property
operates "from the server's viewpoint". For customers, we will see what is

involved.



Queueing Theory 297

A queue receives several different flows. We note as λj the flow intensity of

clients of j type (we speak of classes of clients) and as W j the mean waiting

time they experience. We note as A the total flow submitted to the server. It is
possible, experimentally for example, to measure waiting time while being

unaware of the existence of client classes. We note as W the corresponding

quantity. This is a weighted sum, with the weighting causing the intervention
of a proportion of each flow:

The importance of this weighted mean time is that it may be impossible to
measure any other quantity - let us assume for example a measurement

process unable to differentiate between classes.

CONSERVATION THEOREM.- Let us imagine a queue receiving clients belonging

to different classes and served in accordance with any priority mechanism,

which is conserving and non-pre-emptive (which may or may not be based on
classes). The conservation law is as follows:

The index i runs on client classes; pi = λiWi represents the load in class i (Wi

is the mean waiting time it experiences); p = Σpiiisisthee otal load offered to

the server.

The formula implies that the expression does not depend on the service

discipline; note that the sum of the waiting times is weighted as pi,,, ans not

by the λi as was the case for the mean wait W .
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Special cases:

Reminder:

- exponential law: E(s2) = 2E(s)2 , that is W0 =

- constant time: W

Let us assume two flows, with different service times, but without priority.
Their waiting times will therefore be identical, and the application of the
formula gives:

we return in this case to the PK formula.

PROOF OF THE CONSERVATION LAW.- We observe the system at an instant t,
and we count n(i) clients of the class i (the classes are numbered: 1, 2, ..., P);
the client whose service is in progress requests additional service with a time

of x0 . The unfinished work, (the name explains the traditional notation U), is

thus:

We have noted as xk ,i the service time that will be requested by client k in

class i. Taking the average,

Clients of the same class are assumed to be identical, i.e. to have the same

service law, such that: E [ Σ k x k , i ] = E(ni)E(si) . Bearing in mind that the use

of the Little formula links the mean number of clients to their mean waiting
time. Thus:
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Now, the unfinished work is independent of the scheduling mechanism - this
is a direct consequence of the work conserving system hypothesis. Thus its
mean value will be the same as with a service in the order of arrivals, a case
for which all Wi are equal, and in which E(U) = W0 /(1 — p) . Putting this

expression into the previous one supplies the result sought.

Priority between identical clients

We now assume that all clients have identical characteristics: same service
time distribution (no just merely the same average value). Whatever the choice
mechanism, provided that the system is work conserving, the choice made by
the server has no influence on the total occupation of the queue; in other
words, the distribution of the total number of clients queueing does not depend
on the discipline. In particular, the mean number of clients is independent of
the discipline. Therefore, the Little formula asserts that the mean waiting time
does not depend on the discipline (but the distribution of the waiting does
depend on it). One can check that this result is in agreement with the work
conserving relation (7-49). For example, FIFO, LIFO, and random choice give
the same mean waiting time.

7.8.2. The HOL discipline

It is assumed that there are P classes of clients, each class groups together
clients with identical statistical characteristics (but the characteristics differ
from one class to another). The server processes first clients of the highest
priority class (by convention, this is noted as 1), and then, if there are no more
priority clients in the queue, clients of lower priority (noted 2), etc., up to
clients of class P, of the lowest priority. The service mechanism is work-
conserving.

We introduce the notation:

This is the sum of the partial loads contributed by classes with a priority
greater than or equal to k. This is therefore the load "seen by" a client of class
k, as it overtakes the clients of lower classes. Note however that a client of a
given class will however be hindered by a client of a lower priority class in
service on his/her arrival (as the discipline is not pre-emptive).
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Then we have: 

In fact, for a non-pre-emptive discipline, 

W j  is the mean waiting time of clients in class j ,  and index i runs over classes 

( i=l ,  ... N ) ;  No represents the mean number of clients in class i already 

present on the arrival of the client of type j and who will be served before 
him/her (in particular, the client does not overtake those of hidher own class). 
M ,  represents the mean number of clients in class i arriving during the wait of 

the client of type j and who will be served before him. 

- 

- 

For our discipline, the use of the Little formula gives: 

N, =k,W;, i=1, ...j, and N, =0, i > j  (our test client overtakes clients in 

lower priority classes); 

M ,  = ktW,, i = l,,..j-l, and My = 0, i 2 j (only classes with strictly higher 

priority classes will overtake him/her). Finally: 

- - 

- - 

From this formula, we calculate first W, , then w, , etc. 

7.9. Use of approximate methods 

The “exact” methods presented up to this point enable strict mathematical 
resolution of a limited number of problems. Real world systems rarely come 
into these models. Use must therefore be made of approximations. To this end, 
several approaches will be possible. The first attitude consists of looking for 
other mathematical models, enabling, at the price of numerical calculations, 
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often difficult to resolve, exact models of very great complexity: for example,
a general law will be represented by a superimposition of exponential laws
(Cox laws), and we will use a Markovian analysis, giving numerical results.

The second consists of "forgetting" some details of actual functioning that
models cannot represent, and latching on to a known model (M/G/1 queue,
HOL priority, etc.). The principle of this approach is to represent in this model
the "essence" of the behaviour, and the results will be orders of magnitude,
which are more or less exact.

Finally, it will be possible to implement approximate results, without any solid
theoretical justification, but which one knows give satisfactory results: this is
the case of the Martin approximation, presented below, or results on cyclic
servers. This is also the principle of diffusion approximations, or so-called
"heavy traffic" approximations (see Chapter 9, M/D/1, N/D/D/1 queues).

7.9.1 Some approximate formulae

At the present time, one of the best and most universal formulae is the Allen-
Cunnen formula. It enables the estimation of the mean waiting time, for a
multiserver system with general arrival and service laws. Let us denote:

- c2
s , the squared coefficient of variation of the service time;

- C2
a , the squared coefficient of variation of the interarrival time;

, the traffic offered, and p = A / R the utilisation factor of each

server;

- C(A,R) is the waiting probability of M/M/R:

Thus,
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This is in fact the formula for the M/M/R queue (an exact formula in this
case), which is corrected by a factor that takes into account the arrival and
service law coefficients of variation. It is worth noting that:

- the formula is exact for the M/M/R queue;
- it is exact for the M/G/1 queue (it reduces to the Pollaczek-Khinchine
formula).

Quantiles calculation

"Quantiles" is the term given to an essential concept: the clients of a waiting
system are sensitive not to a great extent to mean waits, but rather to
"inadmissible" waits. In this respect, the reader will recall that the quality of
service standards not only specify mean values to be complied with, but also
values at x% (see Chapter 2). Quantile estimation is a delicate process, as the
distribution is rarely known explicitly, with the exception of M/M/c systems.
Use is quite often made of an empirical formula, known by the name Martin
formula:

The formula is in fact very general: it is based on the resemblance that
inevitably exists between any "good" distribution and a Gamma law (see
Chapter 4). This resemblance excludes non-unimodal or non-continuous
distributions. It will be preferably applied to sojourn time, which has no
discontinuity at the origin.

As an example, the table below shows the case of the 90% quantile of the
holding time of the M/D/1 queue (i.e. the time having 1 chance out of 10 of
being reached or exceeded):

Load

0.3

0.5

0.7

0.8

0.9

Exact value

1.85

2.5

4.1

6.0

11.8

Approximation
(Martin's formula)

1.73

2.35

3.6

5.1

9.6
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7.10. Appendix: Pollaczek transform

We had:

We can also write directly for the wait its characteristic function as follows:

and in particular for the first client:

Let us introduce the generating function:

which, applied to the integral studied (after development and summation),
gives the relation:

In the case in which W0 = 0, the solution of this equation is:

With 0 < R ( ζ ) < R(z). The verification, which is relatively complex, is

performed by inspection by expanding the logarithm in a Taylor expansion.
Reference may be made to [LEG 62, SYS 93] for a detailed demonstration.

By application of the residue theorem at ζ = 0, where

.
, this gives
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The stationary limit process being independent of the initial condition W0 ,we
come to:

which is the characteristic function of the waiting that was sought, with

φ(-ζ) = φ(-ζ) = φ 2 ( ζ ) , R(z)<0. And bearing in mind that to exist the

stationary limit process requires compliance with the condition

Recalling that the derivatives at z = 0 of the characteristic function give us the
moments, or that the expansion in Taylor series of In Ø(z) gives us the

cumulants, we obtain in particular the mean wait, and more generally the
cumulants:

The non-waiting probability is also obtained directly from the characteristic
function by growing R(z) to infinity by negative values. The waiting
probability is its complement.



8

Simulation

The previous chapters have given prominence to the power and efficiency of
the analytical approach to performance evaluation. However, many
realizations make use of such specific mechanisms so that their analysis is
beyond the scope of mathematical tools. In that case, the simulation method
provides an efficient way to overcome the difficulty.

A simulation experiment aims at reproducing the dynamic behaviour of the
system (customers, servers, etc) through a computer program, most often run
on specific software tools. On this software model, observations are
performed, which give the figures of interest, such as mean or variance of
delays, loss probabilities, etc. Clearly, the goal is not to reproduce exactly the
microscopic level of detail of the original system, but to take account of those
peculiarities in the mechanisms responsible of the overall behaviour. It takes a
careful analysis of the system, and a good understanding of the queueing
phenomena to extract the strict set of details compatible with the required
degree of precision and the budget set for the study, expressed both in terms of
the time needed to elaborate and validate the model as well as the duration of
each simulation run.

Actually, simulation happens to offer quite a powerful approach for the
engineer: it not only allows a quantitative analysis of complex systems to be
made, but it provides a software prototype of the system under development,
whose role is the same as the experiment for the researcher. Indeed thanks to
simulation one can observe and understand complex behaviours of the system,
hypotheses can be formulated and verified, alternative technological solutions
may be experimented with, eventually to give rise to an improved solution and
its model.

However, simulation is generally not the definite answer to the performance
problem. The large variety of external conditions (especially the traffic mix)
and the evolution of the services offered are such that synthetic and tractable
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analytical tools, even approximate, are mandatory for the equipment provider
or the operator. Actually, it would be quite expensive to run the simulation
program for each new set of parameters or for each new customer demand.
The real goal of a simulation experiment is the derivation of a set of rules or
models, as simple and robust as possible.

Two main approaches have been developed, referred to as roulette simulation
and discrete-event simulation. Both make use of random number generators as
the basic tool to emulate the environment (customers, occurrence of failures,
etc.). Another simulation method is sometimes described as continuous
simulation. In the latter, the system state is re-evaluated at short intervals of
time, just as in solving a differential equation by numerical integration.

8.1. Roulette simulation

Although use of this technique is somewhat restricted, it offers a powerful
method, especially in terms of speed of execution.

The principle is quite simple:

Assume the system can be represented through a set of denumerable states
enjoying the "memoryless property". For instance, the system could be a
multistage subscriber concentrator, where the occupancy varies at each
beginning and end of communication with exponentially distributed
communication duration; or it could be a cluster of redundant processors,
where failures occur according to a Poisson process, etc. The point is that one
is able to calculate the transition probabilities from each state to the next one.
Simulating such a system amounts to reproducing the sequence of transitions,
by drawing at each step the next state to be reached. Simultaneously, all
necessary counting is performed, allowing estimation of state probabilities. To
the evidence, this technique is fairly well suited to Markovian systems, such as
those studied in Chapters 6 and 7. Especially, if service durations or time
intervals between breakdowns, etc., are exponentially distributed, the
probabilities are the coefficients of the transition matrix already introduced (in
fact, roulette simulation is just a kind of "empirical" resolution of the state
equations summarised in the matrix).

Example

We consider the simulation of a subscriber concentrator (or a traffic sources
multiplexer) offering R servers to N Poissonian sources, generating calls at a
rate A, with duration exponentially distributed with average l/µ.. This system
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has already been considered in Chapter 7: it is the "Engset problem". The state
transition diagram is given in Figure 8.1:

Figure 8.1. State transition diagram of the concentrator

The "state" stands for the number of calls in progress in the concentrator.
Elementary events are:

• The arrival of a new request, which changes the state from n to n + 1 if
n < R. In state n, N — n sources only are idle and able to issue a request:
the birth rate is (N - n)λ .

• The end of a call, with a rate nµ, which changes the state from n to n - 1.

Given the state n the transition probabilities to adjacent states are respectively:

Clearly the events are complementary, the probabilities sum up to 1. The
simulation experiment runs as follows:

a) Draw a random number r, uniformly distributed in the interval (0,1).

b) Test if r < nµ/nµ + (N - n)λ . If yes (a departure occurs), move the system to

the state n - 1. If no (an arrival occurs), move to n + 1.

c) Repeat operations a) and b) until the number of events reaches the limit
assigned to the experiment.

As it will be clear, as compared with the classical discrete-event approach
presented in next section, the present method enjoys simplicity and efficiency,
especially at run time, as the code to be processed reduces to execute simple
calculations and to update a few counters. In the case of simulating a large
network, for instance, it reduces to choosing the destination, looking for an
available path, according to the routing algorithm and the architecture, and
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marking the corresponding resources as busy. Also, the occurrence of an end
of service depends on the total number of ongoing connections. Powerful
computers currently available make it possible to investigate fairly large
structures this way.

However, this real simplicity raises several issues. The first two are common
to all simulation techniques: the accuracy of the result, function of the
simulation duration, and the measurement technique. The reader is directed to
Chapter 5 for an in depth treatment of these issues, of which the main aspects
are summarized below.

The main drawback with roulette simulation is that it does not incorporate any
notion of "time". As already mentioned, the memoryless property of all the
processes is central to the method, so that non exponential service or
interarrival durations are impossible to take into account. However, it is
always possible to approximate arbitrary processes, replacing them by a
combination of exponential distributions (e.g. Erlang-k: distribution, see
Chapter 4).

More important, the principle of the method makes it unable to measure any
delay, such as waiting times, busy periods, etc. Here too various tricks may be
used, e.g. counting the number of events between significant changes of states
(possibly adding "null" events occurring according to an exponential
distribution), and deducing from it the corresponding duration.

In fact, as soon as time is the central parameter of concern, discrete-event
simulation will be the preferred approach.

8.2. Discrete-event simulation

This technique is commonly used in all specialized software packages, e.g.
Simula, Simscript, SES-Workbench, QNAP, OPNET).

As previously, the system under study can be described in terms of the states
among which it progresses. Formally, a state is a set of state variables
(number of busy servers, number of clients in a queue, date of the next arrival
or departure, etc.) giving all the information necessary to predict the future
evolution (on a probabilistic basis). Especially, the time to the next transition
is contained in the state variables. Each transition is caused by an event
(arrival, failure, etc.). The events occur at discrete epochs, and are described
in the simulation program. So, the evolution of the system is fully reproduced,
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but only by jumping from one date of event to the following one, as nothing
occurs between events from the simulation standpoint.

As opposed to roulette simulation, this method provides a full mastering of
time and allows its precise measurement. Also, the gain as compared with
continuous simulation is obvious, since in this last method much time is
devoted to increase the clock without effective action (since "nothing occurs
between events").

However, this method requires estimating the date of a future event, which is
obtained by generating random intervals according to a given probability
distribution. For instance, when a service of duration exponentially distributed
begins, its duration is drawn using the properties of the exponential
distribution, determining the date of occurrence of the event "end of service".
This operation is even simpler when the service is of constant duration. These
techniques are further discussed in section 8.4.

As events occur on a discrete-time basis (no simultaneous events) they are
processed chronologically, in the following way: the event notices describing
them (date of occurrence, actions to be executed) are stored in a timetable
(event list, sequencing set) in order of increasing dates. The simulation logic
scans the event in head of list, jumps immediately to the date of the first event
and executes the corresponding actions (new request, end of session, failure of
an element, etc.). Most often, the processing results in generating new future
events (a beginning of service generates an end of service) which are inserted
at the right location in the event list. Then the logic scans again the head of
list, etc.

The efficiency of such a process depends first on the complexity of the actions
to be executed, but also on the number of simultaneous events to be handled in
the event list. Dedicated software tools incorporate sophisticated and powerful
algorithms for managing the event list: inserting or extracting events (the so-
called synchronization kernel).

The event list

Let us briefly describe a possible structure for the event list. It can be built
using a circular twoway list, where each entry (event notice) is linked by
forward and backward pointers to the next and previous event notice.

Each event notice is a data structure storing the reference of the event, its date
of occurrence, a pointer to the code simulating it, pointers to the previous
event and to the next one (see Figure 8.2). Adding an event at a given date is
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done by inserting a new notice and updating the pointers (sophisticated
techniques are used to optimize the process).

As compared with continuous simulations, where the system keeps increasing
time and testing possible actions, here the computer executes only the pieces
of codes corresponding to the events. The gain in terms of run time is
important, and such a method allows the building of powerful simulators,
suited to traffic analysis of machines with more and more capacity (e.g.,
switches and call servers handling several millions of calls per hour, or routers
handling packets).

Figure 8.2. An event list organized as a circular buffer

The techniques to manage event lists are not restricted to classical simulations,
and the performance engineer may have the need to create such a structure for
his own machines, and especially for load tests (in labs or for field trials, see
Chapter 10). Actually, consider the realization of a call generator, creating
traffic for testing a system under real size load. At a given date a call is
initialized by an open message sent to the system (request for call set up, e.g.).
The generator then stands waiting for an answer from the system (connection
set up) initializing the communication, communication which will be
interrupted by the sending to the system of a close message, generated after a
random duration. Another open message will then be generated at a date
depending on the load level, etc.

As can be seen, an event list storing the scheduled dates of beginnings and
ends of calls is perfectly suited to the design of this call generator.

Managing event lists is one of the examples emphasising the interest, for the
specialist, of having a sound understanding of the techniques of simulation
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languages, as they may be re-used for the design and optimisation of all real-
time systems.

8.3. Measurements and accuracy

Two difficult issues are related to simulation, whatever the technique in use
(roulette or discrete-event approach): the precision of the measurement and
confidence to put in the results, and the technique of observation allowing
measurement (of sojourn time in various states, of number of events, etc.). The
reader is referred to Chapter 5 for further developments.

Here are a few basic principles.

8.3.1. Measurements

The ideal measure should supply a random sampling of the states the system
goes through during the simulation. One must always keep in mind this
fundamental rule, as numerous traps may distort the observation process. For
instance, think of how to measure queue lengths in the case of deterministic or
bulk arrivals, or to measure the load of a cyclic server, etc.(see Chapter 7 and
the Pasta property).

Fortunately, in most frequent cases it is possible to describe the phenomenon
to be observed in precise terms of queueing theory. The simulation experiment
then simply implements the measurement corresponding to the definition.
Remember however that the observation cannot tell more than what has been
defined, including all the a priori implicit in most of our reasoning.
Experiments, using random observations are always fruitful in this perspective
(they may make some unsuspected property appear).

These issues are less crucial in the case of roulette simulation, as the
"memoryless property" allows one to simply increase the number of visits in a
given state and the total number of transitions, the state probability being just
the ratio of these quantities.

8.3.2. Accuracy

Regarding the accuracy of the measurement, it is simply reduced to a question
of estimation, as we now explain.
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Assume one wants to estimate some state probability (for instance the
probability of having n busy servers, or the probability of more than n
customers in a buffer). If the estimation is made on series of k time units
(event driven simulation), or of k transitions (roulette simulation), the results
can be displayed in the form of curves, similar to those in Figure 8.3. The
value observed is the ratio: number of outcomes over k. The parameter k must
be taken large enough so that two successive series may be seen as
approximately independent.

These curves are called trajectories of the measurement process. Two different
curves are represented, corresponding to two different initial states of the
simulation.

Figure 8.3. Trajectories of the state observed

After a transient period, the process goes to a stable limit as the number of
measurements increases. This is because the system reaches a stationary
regime so that the state probabilities have constant values and the
measurement process converges toward these values. This represents the
situation of almost all systems to be considered. Based on the evidence, if the
initial state is closer to the stationary regime the results are more rapidly
significant.

As a matter of fact, sophisticated techniques have been developed that lead to
reduction in the simulation duration, for a given accuracy, especially in the
case where rare events are to be observed. The idea is to "restart" the
simulation when the trajectory of the system state reaches a zone of interest
(i.e. where the critical states are likely to be found). See [VIL 91] for further
developments.
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Let us consider the trajectory once the stationary regime has been reached
(after rank i, say). Then, the classical methods for estimating means and
variances apply. The set of values observed from the measures of rank (i+x) to
(i+y) is our sample. However, we clearly have no knowledge about the
probability distribution of the measures, and this implies several assumptions.
Most of the time, the process is considered as being stationary, and the
classical approach of the estimation gives the answer (point estimators as well
as confidence intervals). In most cases the normal assumption holds (as soon

as n > 30): this is the consequence of the central limit theorem, see Chapter 5.

Especially, the classical results for the mean value give:

n being the sample size, m the observed value, 1- α the confidence level and σ

the standard deviation of the population. An unbiased estimator for this
quantity, usually unknown, is

s = n/1σ, σ being the v    alues observed on the sample.

So finally,

for a risk symmetrically distributed. For instance, the 95% and 90% centred
confidence intervals (values in common use) are:

and

Remember that the above result holds also for samples of small size n,
provided the coefficients t are taken from the Student-Fischer table, in the
column corresponding to the risk level a.

This method (sometimes referred to as batch means) is of great importance, as
it visualizes both the transient period and the optimal measurement interval -
when the stationary regime is reached. Taking only the cumulated result may
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lead to erroneous predictions, related for instance to a biased measurement
during the transient period or also to the use of random number generators
with too short periods, provoking non stationary behaviours. This last remark
applies especially to "home made" generators, as modern simulation languages
provide correct enough generators.

One can also point out the interest of the measure of several states, in order to
obtain the whole probability distribution, and for different conditions, e.g.
different load levels. This allows one to draw curves and thus to extrapolate
the results for low probabilities. This can reinforce also the confidence
towards the measures as the curve obtained should present a plausible shape.

This is exemplified in Figure 8.4, built from the simulation of the N/D/D/1,
queue, and which exhibits the usual aspect of simulation results. The knee
observed around 10-9 indicates the limit beyond which results are no longer
valid, because of not enough observations. But the shape allows reasonable
extrapolations for lower probability values, if needed.

Figure 8.4. Simulation of the N/D/D/1 queue

The validity of the extrapolation is advantageously confirmed through another
curve, such as in Figure 8.5.
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Figure 8.5. Another view of the simulation results

Anyway, one should preferably consider lengthening the simulation duration,
or improving the simulation process (e.g. using such methods as Restart
[VIL 91]), before trying any extrapolation.

Moreover, these examples show clearly the usefulness of the graphical
representation, which greatly helps in clarifying the validity of the simulation
process and in increasing the confidence towards numerical results.

8.4. Random numbers

Although random number generators are a facility offered by most computers,
it is worth understanding their basic principles, as their usage goes far beyond
the needs of simulation experiments. Here again in fact the specialist, in
addition of his own knowledge of simulation languages, has to be able to make
use, or even to design random number generators for specific needs (real
traffic simulators, failure generation for reliability analysis, traffic
measurements, etc.).

Generally speaking, the problem is to generate a sequence of numbers obeying
as accurately as possible a given probability distribution, the latter being given
by measurements, by the assumption on the model, etc.

8.4.1. Generation according to a distribution

The principle is as follows: one wants to generate a series of numbers X, (say,
service durations) obeying a known distribution probability:
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The method consists in drawing a random number u uniformly distributed

between 0 and 1, and to estimate X = F-1 (u) (as the probability is between 0

and 1). Figure 8.6 illustrates the principle.

Figure 8.6. Drawing a random number distributed according to a given
probability law

One can verify that the number is such that P[X < x] = F(x). In fact,

x]=P[u<F(x)], and P[U <F(x)]=F(x), as u is

uniformly distributed in the interval (0,1).

The important example of the exponential distribution serves to illustrate the

method. The distribution is F(t) =

The drawing operation yields a sequence of numbers u = l — e-µt, from
which the values of the variable t are given:

It is immediately clear that the method can be generalized to the generation of
complex laws, by combining several drawings. Of special importance is the
case of distributions combining several exponential laws, such as the Erlang-k
or hyperexponential distributions, see Chapter 4. For instance, the Erlang-k
distribution is simply obtained by adding k successively drawn exponentially
distributed variables.
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Moreover, the method can be extended to the case of empirical distributions.
This is of particular importance for performance tests where it may be
necessary to reproduce a specific behaviour (experimental processing time
distribution, complex packet arrival process observed at the output of a
multiplexer, etc.). Assume the empirical distribution is given (actually a
cumulated histogram). The target value Xk is obtained by looking for the
interval (Xk,Xk+l ) containing the random variable u:

Other methods have been developed (especially for the case where no closed

form is available for F-1 . See e.g. [FIS 96].

All these developments assume the availability of a uniformly distributed
random variable. Let us now indicate how to solve this problem.

8.4.2. Generating pseudo-random variables

We introduce here the concept of pseudo randomness. Actually, the methods
in common use for generating "random" numbers rely on algorithms, rather
sophisticated but perfectly deterministic and periodic. The method will be such
that the series looks like a random sequence, presenting an autocorrelation as
low as possible and a period of maximum length.

Numerous methods have been successively experimented with to generate
such sequences. The first ones used quite empirical approaches (e.g. the mid
square method introduced by Von Neumann), but they quickly have been
discarded, in favour of more formal algorithms generating series that were
open to theoretical analyses (based upon the results of algebraic number
theory) guaranteeing optimal properties, with respect to periodicity and
correlation.

One can mention the congruential method (multiplicative or additive), the use
of shift registers, the use of specific series such as the successive decimals of

, and lastly the shuffling of several generators. The presentation here is
restricted to congruential methods and shuffling, most often used in our
applications.

Congruential methods

The method is based upon the following property: if / is an irrational number,
then the sequence un = nI,modl (modulo 1), is uniformly distributed (theorem

of Weyl Jacobi). The congruential method consists in taking
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un = k u n - 1 , m o d m , that is u n =k n u 0 ,modm. The value U0 is the seed. The

period of the generator is at best m - 1. The recommended values for m are

m = 2P -1 with p= 2,3,5,7,13,17,19, 31, 61, etc. (Fermat numbers). If

m = 2 q , q > 4 , which simplifies calculating the modulo, the maximum period

is at best equal to m/4. Table 8.1 provides examples of parameters for good
generators (see also [FIS 78, FIS 96]).

Table 8.1. Parameters for random generators using the
"multiplicative congruence" method

k
16807 (=7

5
)

62089911

4177924 (*)

1226874159 (*)

1099087573

2824527309

69069

1099087573

2824527309

3125

133955583 (2
27
-2

18
-1)

68909602460261

m

2
31
-1

2
32

2
35
 - 31

2
48

period

2
31
-2

2
30

2
35
 - 32

2
46

(*) These values presented as "best choices" in [FIS 96]

The additive congruence makes use of the Fibonnacci series un = un_1 + un_2,

mod m. An example is given by u0 = ul= 1, mod 2P, p being the machine data

width in bits (e.g. 32). The following algorithm shows the practical use of the
method:

Choose the seed u0 (between 0 and 30), m (arbitrary, large), and u1 (number <
module m);

Take α = u0 and β = u1;

1) Take k = α + β;

Test if k > m ; If yes: take k = k - m;

Take = α = β and β = k;
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k
Take u =k/m + 1; "u is the random number drawn, between 0 and 1"

m + 1

Repeat 1).

This method, fast and simple to implement usually provides generators worse
than multiplicative congruence. However, combining generators of poor
quality may overcome this weakness.

Shuffling generators

Shuffling two generators of low period is a way to generate another of
improved quality. This procedure is appealing as it allows use of basic and fast
generators, easy to be implemented. This is of special importance in field
trials, where an artificial load is generated, where failures are simulated, etc.
The principle is to use a first generator to fill a shuffling table which is
accessed randomly using the second generator (the successive outcomes of this
later are used as entry addresses in the table). Each number read in the table is
then replaced by a new drawing of the first generator. A table with around 100
entries happens to give satisfactory results.

A single generator can even be shuffled with itself: the algorithm is as follows.

1) Initialize the table with the 100 first drawings of the generator,
ti = ui,i = 1...100;

2) Draw the following random number uk and normalize it so as obtaining a
value between 1 and 100. This yields i

Entry i of the table gives the random number ti;

Draw the following random number uk+l and update ti = uk+l;

Repeat 1).

Another method, combining generators, results in sequences with increased
periods [LEC 97]. Presented here is the case of a combination of two
generators. Two generators are built, with k1,= 40014, m 1 ,=2 3 l -85, and

k2= 40692, m2 = 23l-249:

- The step j-results in X1,j and X 2 . J ;

- Let Yj = Xi,] -X2 . j mod 231 -86;

- The result is rj =yj /2147483563 if Yj >0, and 1-1/2147483563 if not.

This algorithm generates a sequence with period (m1 -1)(m2 -1), around 2xl018.
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Models 

In this chapter our aim is to define a set of models used to evaluate the 
performances of systems and networks, based on the theoretical results and 
tools presented in the previous chapters. The essential objective is to provide 
as accurate a reflection as possible of the highly varied problems associated 
with modelling in an industrial environment (constructors, operators, 
laboratories, etc.). 

The choice of these models is of course arbitrary and no attempt has been 
made to cover the whole of the subject. It is however based on two main 
criteria of essential importance: 
- utility in our area of interest, that is the field of telecommunications; 
- didactic interest from the viewpoint of modelling and the practical 
application of the theory. The level of demonstration will vary from one model 
to another, and it is the whole set of exercises which should provide a global 
view of modelling and resolution techniques. We will thus move from the 
simplest application of Markov graphs to the application of the Pollaczek 
method, while also covering simple rules of three and M/M/l queues. 

We will concentrate here solely on the field of traffic, as most of the important 
reliability models have already been covered in Chapter 6. 

For the sake of clarity, we will draw a distinction between two major 
categories of models: those related to the control of systems and those to the 
field of information transport. Here also the distinction is arbitrary. It is 
primarily based on the most frequent usage in our field. It will be noted that 
some equipment, such as the Ethernet link, may be considered to belong to 
both fields: interconnection of control processors or user level data transport 
network, etc. The reader will easily overcome these distinctions wherever 
necessary. 

9
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9.1. Models for system control

9.1.1. The simple feedback system

This is a system in which each request, at its end of processing, has a
probability p of being presented again in the system. This model for example
corresponds to a transmission system with a failure transmission probability

per message p, which results in its retransmission. It may also correspond to a
processing system having to perform macrotasks which will only be capable of
being run in several basic tasks. This may for example be the case of running
processing whose code is not totally present in local memory: the processing
must be interrupted with a probability p to go and retrieve the rest in the
central memory (problem of virtual memory and page miss, for example).
Figure 9.1 represents the system.

Figure 9.1. The simple feedback system

We have:

In the hypothesis of Poissonian arrivals with rate A, and with a service time
per task obeying an exponential distribution with mean 1/µ, the results of the
M/M/1 queue can be applied and we can thus write:

mean time spent in the system

- mean number of tasks in the system:
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We will find this type of model again in the case of a call repetition model (the
two should not however be confused, as the variables and the use of the
parameters are quite different).

9.1.2. Central server

The aim is to model a system such as a server (an IN server, a central
processing unit, or a repair centre, hence its name service centre, central
server or repairman model), handling requests from a finite number of
identical clients (terminals, installed base equipments, etc.).

Each client submits a new request every 1/λ time units on average, an interval
called thinking time or operating time. The processor of the central server
processes a request in a mean time of 1/µ, referred to as the service time.

This model is very popular as it corresponds to a very large number of network
cases. For example, it corresponds particularly well to the case of a server
common to several terminals in a local network, each terminal waiting for a
response after a request, or to that of a maintenance centre common to a
limited set of equipments (terminals, computers etc) waiting for repair after a
failure. Under similar conditions it may also correspond to the case of an IN
(intelligent network) server that is common to several exchanges on the
telephone network or on the NGN (next generation network).

Figure 9.2 shows the system and its N clients.

Figure 9.2. The central server model
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If we assume an exponential law for the thinking time and processing time,
with respective rates A and µ, the transition graph representing the number of
requests in the CPU is as indicated in Figure 9.3.

Figure 9.3. Markov chain of the central server

This is a special case of the Engset model (see Chapter 7) with a single server,
termed M/M/1/N/N. This gives us the following quite simply:

and:

where readers will recognise as the Erlang loss formula, E(N,a). This will

give readers food for thought (what is the source, which are the servers?).

The utilisation factor of the central processing unit (CPU) of the server is thus:

Let us denote as c the mean cycle time for processing the requests from a
terminal. This is the sum of its mean time between requests (thinking time),
plus the mean wait w, plus the mean service time. Thus:
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The mean cycle for the N terminal is N times smaller. This is the rate of arrival

of requests at the CPU of the server. Hence:

and so:

and finally:

The mean number of requests L in the central server queue is given by the

Little formula:

We also obtain the mean sojourn time T s, and the mean number of requests

Ls , in the central server:

It will be noted finally that these results apply to the case of a server
functioning in time sharing mode (see below) in the case of a finite number of
sources of processing. It will in fact be seen that such a system, from the
viewpoint of the mean sojourn time (also referred to as response time),
behaves in the same way as a simple M/M/1 server. We will therefore have as

previously:
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We will now deal with the case of a time sharing processor with an infinite
number of sources.

9 . 1 .3 . Time sharing processor

The aim here is to model a so-called time sharing system, as in such a system
the processor shares its time equally between all the tasks (clients) in progress.
There may be several call set-up contexts being simultaneously processed for
example. There is no queue as such. Ideally, it is assumed that the processor
spends an infinitely small time quantum on each task. This means that the
processing time of a task is proportionally longer the more tasks there are in
progress simultaneously, but also that the same processing time is smaller the
intrinsically shorter the task. A system of this type favours tasks of short
duration.

The model has been dealt with in particular by Coffman and Kleinrock
[COF 70, KLE 75]. The results relate to characteristics (waiting time, sojourn
time) of the processing of a given task (of given duration). We are interested
here in the determination of "mean" characteristics of the processing time of
all the tasks. It is in fact these parameters we will need to evaluate quality of
service, e.g. in call processing processors, as the processing of a call is
composed of several tasks of different durations. Essential characteristics are
of course the mean and the variance of the total processing time of a task (its
sojourn time in the system, i.e. its intrinsic processing time plus its elongation
or wait).

The preceding references give the mean time spent waiting by a given task (or
processing) of intrinsic service time s (i.e. its service time if it was alone in the
system):

It should be noted that this result holds for a general service law.

In the case of an exponential service time distribution, its variance is:

1/µ being the mean service time of the tasks, exponentially distributed.
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From this can be deduced the mean time spent in the system, i.e. the sojourn
(or response time) for this task:

and:

 , for a task of fixed duration s.

Let us now concentrate on the characteristics of an "average" task, in the case
of tasks with an intrinsic processing time s exponentially distributed with a
mean value of 1 /µ.

This gives:

For the variance:

where:

or:

and:

and therefore:
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remarkable result

We also have:

from which we deduce:

From which, taking 1/µ as the service time unit, we arrive finally at:

and:

9.1.4. Polling and token ring

Let us first consider the general case of a cyclic service or polling. This type
of service is used by many systems, both as a communication protocol
between stations and as a service mode for real-time management between
processes, or between message reception and transmission peripherals. We
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attempt to determine the waiting and processing time for a packet (or message,
or process). Assuming Poissonian arrivals, we see that this time will be
composed of the polling waiting time (for the first message) plus the waiting
time in front of an M/G/1 server. Let us evaluate the mean cycle time for all
the stations. This time is composed at each polled entity of an intrinsic polling
time at each station τi (checking if it is free or busy, or the time to go from
station to station), plus a service time si if there is a service to be performed.

Thus for N entities:

and so the mean is:

Now, for each entity i, on the assumption of arrivals with a rate of λi and tasks

with times ti, the mean number of tasks to be processed by cycle is λitc and

their mean processing time is si =λ itcti = ρitc . We also have of course

 From this the basic equation can be deduced:ed::

c0 denoting what is generally called the "empty cycle".

In most cases in practice, tc may be approximated to an almost constant value

for, as soon as the number of entities polled is great, the variance of the

scanning time becomes low, as in the case of service laws of the Gamma-n
type with n large (for more complex models see [KUE 79]).

Let us now consider in more detail the case of a token ring type LAN based on
the polling principle.

A token ring is a communication medium connecting in series a set of stations.
The information is transmitted sequentially from one station to another in the
ring. Each station retransmits the information to the next station bit by bit. The
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destination station retrieves the message intended for it by copying the
information in transit. When the information returns to the transmitting
station, this station erases the message from the ring. A station has the right to
transmit when it detects the token on the ring. The token is a specific sequence
of bits circulating in the medium and following each information transfer. The
station that appropriates the token changes it into a start of frame signal SFS
(start of frame sequence). When the transmission of its message has been
correctly performed (without error, within a maximum delay etc.), the
transmitter station reinitialises a new token which gives the following stations
the possibility of transmitting in their turn.

The basic architecture is described in Figure 9.4.

Figure 9.4. Architecture of the token ring LAN

A distinction is drawn between two major modes of token ring functioning:
single token mode and early token mode.

In single token mode, a station that has transmitted does not transmit the "free"
token to the next station until it has itself received in return the "busy" token
that it had previously transmitted.

In early token mode, a station transmits the free token following the packet it
transmits, thus enabling the next station to issue a message as soon as the last
bit of the packet has left the preceding transmitter station. Thus, if the frames
are short, several tokens may exist on the ring.

Single token mode

Let us first consider the single token mode, with an exhaustive service (all the
messages waiting at each station are served).
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The waiting time for a message or packet before transmission in the ring is the

sum of the mean waiting time before being polled, i.e. approximately tc/2 ,

plus the waiting time in front of an M/G/1 server. A message that finds no

other message before it in a station will wait at least for the time to be polled.
This instant will then be in a sense the start of the M/G/1 type service. If all
the N stations are identical, λ i = λ/N, ρi = ρ/N. This gives:

where:

c0, the empty cycle, is here the total propagation time on the ring. This is the

propagation time τ, plus N times the latency time per station (from 1 to 16
bits).

t is the service time of a packet on the ring. It is the transmission time of the

message, which depends on its length m (payload plus header, plus in some
cases latency and inter-frame gap). If the frames are shorter than the
propagation time, t is equal to c0; if not, it is m.

Finally the global transfer time of a message is thus its waiting time W plus the
transmission time t in the ring, plus the propagation time to reach a station, on
average c0/2:

In the case of exponential frame lengths of a mean length m , we obtain:

Similarly, we obtain:
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In the case of constant frame lengths, we obtain:

We thus deduce the maximum admissible load of the LAN, or its efficiency E:

And for example in the case of exponential message lengths:

This relation clearly shows the impact of the empty cycle time (propagation
and latency) compared with the length of the message to be transmitted.
Efficiency will be lower, the closer the empty cycle value is to message length
(or of course if it is greater than message length).

For example, in the case of a ring with a length of 1 km and a propagation
time of 5 ns/m, with a bit rate of 5 Mbit/s, connecting 100 stations, and
transporting messages of 1000 bits (200 µs), the impact of the latency is as
follows:

- latency per station = 2 bits, total latency + propagation = 45 µs, co/m =
0.225:

-latency per station = 8 bits, total latency + propagation = 165 µs,
c0/m = 0.825:

latency per station = 16 bits, total latency + propagation = 325 µs,
- 1.625
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Early token mode

Let us now consider the early token mode. The calculations are the same as in
the previous mode, but with the fundamental difference that the service time of
a message is this time simply the transmission time m of the message. This
gives:

and:

where:
- in the case of exponential frame lengths with a mean length of m :

- in the case of constant frame lengths:

In this mode, the efficiency of the LAN is no longer limited. In fact, more than
efficiency, it is the response time that will be significant. Let us study the
example of a communication LAN between processors of a distributed system,
functioning in the early token mode.

In this case the length is limited: about 100 m. The bit rate of the LAN is
16 Mbit/s. We assume that the messages have a length exponentially
distributed with a mean of 236 bytes (200 bytes of payload plus 32 bytes of
header plus 4 bytes of latency buffer). That means, with 1 byte of interframe
gap, a mean transmission time of 118.5 µs at 16 Mbit/s. The propagation rate
is 5 ns/m, or 0.5 µs for 100 m. We assume a number of stations of 30, and
latency per station is 2.5 bits, that is 0.156 µs.

We thus have:
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The share of the cycle time in the transfer time, at a load of 0.8 is therefore:

The share of the wait in front of the M/M/1 server is:

The total transfer time is therefore:

We note the preponderant influence of the M/M/1 service
(474 + 118.5 = 592.5 µs). We will therefore retain in practice that the LAN in
this application case may be modelled simply by an M/G/1 type server.

9.1.5. Ethernet link

Ethernet type LAN based on CSMA CD communication type protocols are
characteristic support elements for communication between machines
(processors or "stations" of a telecommunication system, servers, nodes of a
network). Modelling of their performances is therefore essential, and above all
allows the determination of the most significant performance parameters. As
we shall see, the performances of this type of communication medium may
differ greatly depending on applications.

These protocols have been developed as a result of problems relating to access
to a radio channel by independent stations. As each one is unaware if the other
one is starting to transmit, a collision may occur. Similarly, with an Ethernet
LAN, independent stations are connected in star mode to an Ethernet hub or
switch, and several may decide to transmit at the same time, if the link seems
to them to be free, and a collision then occurs.

To resolve these conflicts, the protocols CSMA CD (CSMA, carrier sense
multiple access, CD, collision detection) have been defined. There are three
different types: persistent CSMA CD, non-persistent CSMA CD and p-
persistent CSMA CD.

Persistent CSMA CD type. A ready-to-transmit terminal tests to see if the LAN
is free, i.e. if there is no transmission in progress. If the LAN is free, it
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transmits the packet with a probability of 1. If the LAN is busy, it waits until
the LAN is freed, and then transmits the packet with a probability of 1 (hence
the name persistence 1).

Non-persistent CSMA CD type. In the non-persistent case, the terminal
attempts transmission after a random time determined in accordance with a
certain distribution function (e.g. exponential).

In both cases, the time can be cut up (slotted) into basic periods with duration
Ts ((linked to the propagation time). All the terminals are synchronised and tet
the channel at the start of the period.

In the persistent case, we can thus see that when two terminals or more are
ready to transmit for the same period Ts, they will all transmit and will enter
into conflict with a probability of 1. This has given rise to the idea of
transmitting after a random time to minimise conflict problems.

P-persistent CSMA CD type. This is an evolution of the non-persistent case.
After a collision, the transmitter retransmits immediately with a probability of
p, and if not (with probability 1-p) waits for a time Ts, and then restarts the
same procedure.

Efficiencyy

Let us study the behaviour and more particularly the efficiency of these
protocols, based on the theoretical configuration of Figure 9.5.

Figure 9.5. Ethernet configuration

Let m be the holding time of the bus by a message; N the number of stations
connected to the bus; t the link test time (equal to the propagation time
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between stations A and B, which are physically the most distant from each
other); Ts: the time is divided into intervals with a duration of Ts, equal to

twice the propagation time τ. The physical specification of Rec. IEEE 802.2
gives TS = 512 "bit times" at 10 Mbit/s for 5 km, which corresponds to 51.2 µs
(this is the worst case; in practice it will be faster as the LAN will be shorter).

We first calculate the virtual transmission time of a message, i.e. the time
necessary to successfully transmit a message between two stations A and B. It
first takes A m time units to transmit the message. Then B must wait for time τ
to detect the end of transmission in view of the propagation time. The
minimum transmission time is therefore m + T.

Let us now consider the case of a collision: A has begun to transmit a message
and B also decides to transmit just before the message from A reaches it. B has
tested message absence for τ, and it will take another τ before A detects the

collision. There is therefore a time Ts equal to 2 τ to detect a collision. If we
suppose that it takes k periods of Ts to resolve the conflict, we then have an
expression of the virtual transmission time:

Let us calculate k, where k depends of course on the retransmission strategy.
For ethernet with persistent CSMA CD the following simplified model
accurately reflects the reality:

- let π be the probability of success at each interval Ts = 2. So:

- let p be the probability for a station of trying the transmission for Ts, and let
N be the number of stations. The success probability for a station is then:

Bearing in mind that this probability is optimum for p = 1/N, we choose:

And finally the mean value of the virtual transmission time is:
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We then define the efficiency of the protocol by the relation:

which is the maximum utilisation factor of the LAN.

One generally notes a =τ/ and thus 

And from this it is deduced that to obtain efficiency greater than 0.6, it is
essential that a < 0.1.

The interest of using such a LAN is therefore generally conditioned by this
relation, which calls for the adjustment of the length of messages to the
propagation and collision detection time.

Example of calculation of collision detection time Ts

We give an example of simplified calculation of this time in an actual
application case, for its adjustment is fundamental for the efficiency of the
protocol, as we have just seen. Above all we want to show the important
impact of the time taken to pass through the physical layers of the hub and of
stations.

We should first state that the time period during which the collision can
normally take place corresponds to the transmission time of a preamble of 7
bytes (typical value), plus the transmission time of the SFD byte (start frame
delimiter), plus the transmission time of the first 64 bytes of the ethernet
frame.

Let t0 be the instant at which the transmission ends without collision of a
message by a station i. At this instant, the station i starts its Interframe Gap
Time of duration Dg. The time t0 is taken as the origin.

Let t1 be the instant at which the last bit of the message from i is seen by all
the other stations (at physical level). This time is equal to the propagation time
Dp between station i and the hub, plus the time of passing through the hub Dh,
plus the propagation time between the hub and the other stations, Dp, plus a
time for passing through the physical layer in stations Ds.
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Let t2 be the time at which station i transmits its first byte of a preamble of a
message with the destination j:

Let t3 be the time at which station j transmits its first preamble byte. It does it
at t\ plus, in the worst case, Dg:

Let t4 be the time at which the first preamble byte of i arrives for transmission
on the j port of the hub. It is t2 plus the time for passing through the physical
layer of station i, plus the propagation time, plus the time for passing through
the hub:

Let t5 be the time at which the first preamble byte of j arrives at the hub. It is
t3 plus a time for passing through the physical layer of the station, plus the
propagation time Dp from j to the hub:

Let t6 be the time at which the message presence signal for reception is seen
by j. It is t4 plus the propagation delay from the hub to j, plus the station
detection time (which is assimilated to the time for passing through the
physical layer):

We therefore have:

We see therefore that the physical layer of station j detects at t6 the arrival of a
message when it is preparing to transmit. At t5 the hub detects the collision on
its port j. And finally station i will receive the collision signal at Ts. The
station will then switch to idle and the access attempt process will restart for
all stations:



Models 339 

Bit rate 
10 Mbit/s 

100 Mbitfs 
1000 Mbit/s 

r, = &+Dh + Dp + 0, 

r, = Dp + 4, + D, + D, + Dg + D, + Dp + 4, + Dp + D, 

A good approximation of the time sought is therefore: 

T,= 4 D, +2 Dh +3 D, + Dg 

Orders of magnitude for the times are: 

D, = 5.7 ns per meter 

Dh = 46 bit times (example for a 10 Mbit/s hub, a bit time equal to 0.1 ps) 

D, = 24 bit times 

D, = 96 bit times 

For an ethernet at k x 10 Mbith and hub to station lengths of L metres: 

T, = 4L x 5,7ns + 260 x (100/k) ns 

We obtain typical values shown in Table 9.1. 

Table 9.1. Collision detection time 

T, value 
22.8 + 26 = 48.8 ps 
22.8 + 2.6 = 25.4 ps 

22.8 + 0.26 = 23.06 ps 

LAN length 

10 Mbit/s 
100 Mbit/s 

1 000 Mbit/s 

L = 1000 m 

2.28 + 26 = 28.28 ps 
2.28 + 2.6 = 4.88 ps 
2.28 + 0.26 = 2.54 us 

L =  100m 

10 Mbit/s 

100 Mbitfs 
1 000 Mbit/s 

L = l O m  
0.228 + 26 = 26.22 p 
0.228 + 2.6 = 2.82 ps 

0.228 + 0.26 = 0.48 p 

This clearly shows the important influence of the physical layer transfer delays 
and transmission times. 
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In the following, in our applications and in a dimensioning example in Chapter
10, we will adopt the typical values of 50 µs and 10 ILLS.

Let us consider the case of the inter-node signalling of a network of stations,

or the case of VoIP packet exchanges, with an average message length of 200
bytes. To achieve an efficiency of 0.6, maximum distances between stations
and hub of about 100 m at 10 Mbit/s and 10 m at 100 Mbit/s are required.

Let us now consider the case of data exchanges consisting of files in IP

packets of 1500 bytes: the maximum distances required are 1000 m at
100 Mbit/s, and 100 m at 1000 Mbit/s.

This shows the fundamental impact of message length.

Transfer time

We are developing here an approximate expression for transfer time. We have

established that the mean value for virtual transmission time is:

We can now consider this time as the service time of the LAN, and thus
evaluate the response time as that of an M/G/1 server. If A is the rate of arrival

of the messages to be transmitted on the LAN, then its utilisation factor is:

The waiting time before transmission is:

and the transfer time is approximately:

Furthermore, in view of the above, it is clear that the system, in order to be
efficient, must comply with certain strict constraints, and in particular that
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T
corresponding to a= = < 0.1. In view of the orders of magnitude, we will

m

therefore write:

t2 « m2 + (4e + 2)τ m + (2e + 1)2τ 2

and thus finally:

This expression gives sufficiently precise results in actual application
conditions. A more detailed expression is given in the literature [BUX 81].

And the limit value for very small values of a will be:

Note also that in the case of frame lengths complying with an exponential
2

distribution we have: m = 2m , and in the case of constant frame lengths,

9.1.6. Benchmarks, processor modelling

The aim here is to evaluate the processing capacity of a new system, or a new
version of the system by the use, for example, of more rapid processors or
platforms.

In the case of a simple technological evolution, the use of a benchmark, i.e. a
performance test software, is the most appropriate. As soon as possible, a
significant extract of the code to be run will be tested on the new machine to
measure the change in execution time. In telecommunications applications, it
will be relatively easy to define the measurement of the most frequent
communication primitives (send, receive) and the measurement of typical

processing at application level. In many cases however, at this point in the life
cycle, it is not yet really possible to execute significant code on the machines,
and the evolutions are often complex (processor, but also memory, bus, etc.).
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Information about the possible change in performances may then be obtained
from benchmark results published in the literature, or on the Web, by users or
constructors. In particular we find results known under the term SPEC integer,
from the organisation System Performance Evaluation Corporation, an
organisation of computer manufacturers which develops benchmarks and
periodically publishes results. We then have Specs XYZ, where XYZ is the
Spec type and the year. For example, we have Spec CPU 20xx, etc. which
characterise the performances of computer centre type systems. But we also
find Spec Server, or Web, which are better adapted to the performances of
server or web type applications. The published results primarily constitute
points of comparison between machines (CPU, memory, compiler, etc.), in
very specific machine use conditions, as we shall see hereafter (type of
software run, cache rate, bus speed, etc.). These results should therefore be
handled with great care, but can provide some indications about the potential
performances of products.

A distinction may be drawn between simply replacing a processor by a new
and more rapid version of the processor, and using a new processor from
another family.

In the first case, the gain can be estimated on the basis of Spec integer ratios.

In the second case, the Spec integers are rarely significant, and the
performances must be estimated by a more detailed analysis of the behaviour
of the processor, taking into account the characteristics of the software to be
run. A typical behaviour model is given below.

The organisation of a processor board is shown in schematic form in Figure
9.6.

A processor board is characterised by its internal frequency, its cache capacity,
the speed of its internal bus, and its private memory capacity. Its
communication with other processors is characterised by its exchange memory
capacity and its external bus capacity.

Its internal clock frequency is fi:: it expresses the value of the basic cycle
ci = 1/fi, and thus the minimum value of the execution time of a processor
instruction. We have the relation: 1 instruction = p cycles + memory access
time, where p is generally equal to 1, or less (on an average per instruction),
for existing processors (internal architecture with multiprocessors and pipe).
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The memory access times are to be added as soon as the operation code or
operand is not present in the primary cache. The processor also must run a
certain number of cycles whose value depends on the access speed (local bus
or external bus).

Figure 9.6. General structure of a processor board

We will consider the case of a processor equipped with a primary cache (direct
execution in p cycles of duration cp), a secondary cache (access in s, cycles of
duration cs), and a private memory (memory access through the bus, access in
bi cycles of duration cb).

The term primary and secondary instruction hit rate refers to the probabilities
of finding the code to execute respectively in the primary and secondary
caches: hip, his/her.

If the code corresponding to the instruction is not in the primary cache, it is
necessary to go and retrieve it (line by line) from the secondary cache, or from
the private memory, and refresh the primary cache.

Similarly for the data associated with the instructions: if the data is not in the
primary cache, supplementary time is necessary to enable it to be found in the
secondary cache (sd cycles) or in the private memory (bd cycles). This also
leads to the definition of a primary and secondary hit rate: hdp, hds. We call di
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the reading rate of the data associated with the instructions (percentage of
access to data by instruction).

Finally, as we are dealing with systems involving large numbers of exchanges
between processors, we also have the times for access to external data via the
exchange memories (e.g. where transmit and receive waiting queues may be
located). We denote as de the exchange data reading rate, e the number of
access cycles with the duration ce and te the exchange memory reading time.

This gives the following relation for the mean execution time of an instruction:

The evaluation of the values associated with these parameters is of two kinds.

On the one hand, information is available in the constructors' manuals
enabling the quantification of the number of cycles necessary for the various
access cases (cache or other accesses) and thus the determination of access
times depending on bus speeds. For example, if the processor frequency is
266 MHz, we will deduce from this that cp = 3.76 ns, and if the external bus
frequency is 66 MHz, this will give cb= 15.15 ns, and we will also find that
p = 1 and bi= 12 (see examples below).

Furthermore, it is necessary to determine from the code to be executed the
cache rates and the access rates to private memories, exchange memories, etc.
This can only be obtained by analysis of the various types of applications, by
experience and analogy with previous measurements, or of course by new
measurements if some of the code is available. It is worth noting the relative
importance of the various parameters. For example, the access time to data in
private memory, or to the exchange memory, may be counted in hundreds of
ns (e.g. 150 ns) and be even larger if the information has to be retrieved from
an external memory via the external bus (e.g. 500 ns). The instruction time
will therefore be totally different, depending on whether the hit rate is high or
not, and on whether the application has a large number of external exchanges
or not.

This is why great caution must be shown in relation to the use of the Spec
integer. The actual gain value may be extremely variable depending on the
type of application in question.
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Let us consider three very simple cases.

Example 1. In the first case we have only repetitive code, which is mainly
located in the primary cache, or in private memory, and the same for the data.
We assume also an extremely low external exchange rate per instruction (less
than 10-3). This case may arise when running calculation programmes.
Furthermore, in the case of such linear programmes, any instruction that is not
present in the cache means in practice retrieval in groups of 8 instructions, and
thus the presence of the following 7 instructions in the cache. The hip rate is
therefore at least 0.875.

It is assumed that hip= 0.9 and cp= 3.76 ns (266 MHz processor).

The private memory is read in 12 cycles through the 66 MHz bus, in lines of
32 bytes, i.e. 8 instructions at a time. This therefore gives bi = 12 and
cbi= l / 8 x 6 6 M H z = 1.9ns.

We assume a data access rate per instruction of dt = 0.6. We also assume that
hdp= 0.9. If not, the data is in private memory. The reading of the data in
private memory is carried out by line of 32 bytes by instruction, and is
performed in 10 cycles. (Note that each time only the data for one instruction
is retrieved). This gives therefore bd= 10 and cbd= 15.1 ns.

The instruction value is therefore in this case:

I = 0.9 x 3.76 + 0.1 x 12 x 1.9 + 0.6 x 0.1 x 10 x 15.1 = 14.7 ns

Example 2. Let us now consider the example of software that again carries out
very few external exchanges, but which runs the code with many context
changes. This case may correspond to that of a central call processing
processor.

As in the previous case, the instructions are either in the primary cache or in
the private memory. The same applies to the data. But this time we assume
that hip= hdp= 0.6.

The value of the instruction in this case is therefore:

/= 0.6 x 3.76 + 0.4 x 12 x 1.9 + 0.6 x 0.4 x 151 = 47.6 ns

This represents a mean time over three times larger than in the previous case.
Note the very substantial impact of the cache rate.
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Example 3. Finally let us consider the case of software dedicated to external
exchanges. This case corresponds to that of a pre-processing processor,
specialising in exchanges, as part of a distributed system.

We assume that the machines are more specialised with limited software. We
assume that hip = hdp = 0.8, but this time we assume an exchange memory
access rate per instruction of de= 0.5%.

Access to the local exchange memory is via the 66 MHz bus in 10 cycles.
About 10 accesses per message are required for file management (e.g. for
updating pointers). This gives e = 100, ce= 15.1 ns. The message transfer itself
requires 5 cycles per block of 8 bytes. Thus the following is required for a
message of 100 bytes: te= 62.5 x 15.1 = 944 ns.

The value of the instruction in this case is therefore:

/= 0.8 x 3.76 + 0.2 x 12 x 1.9 + 0.6 x 0.2 x 151 + 0.005 x (1 510 + 944) =
37.9 ns

That is a mean time which is intermediate between those of the two previous
cases.

We could also have considered the case of a processor dedicated not only to
exchanges but also to processing. In this case it would have been necessary to
adopt slightly lower cache efficiency rates.

From the previous study, we could retain the following simplified model (in
which in particular the secondary cache is not considered):

with the following numerical values for a 266 MHz processor:

We will provide an example of the application of this model for system
capacity calculation in Chapter 10.
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9.1.7. Disc system

The disc is an essential element in telecommunications systems, because of its
enormous data storage capacity, which generally amounts to tens of gigabytes
(9, 18, 36 or 72 Gbytes). It has many uses, in servers (on the web, in fixed and
mobile networks), and in telecommunication network operating systems
(gathering of observations, storage of charging). The evaluation of its service
time is therefore an important consideration in evaluating the performances of
the systems which use it (response time of a server, for example). This is
particularly true in that mechanical elements intervene at this level which lead
to execution times which are of a quite different order of magnitude from
those of processors.

A subsystem with a disc is shown in schematic form in Figure 9.7.

Figure 9.7. Architecture of a subsystem with disc

Let us describe the actions necessary for reading a disc (parallels for writing
are easily established). A request is queued in the input/output system
controller (there may be a cache effect previously to avoid an unnecessary
input/output, but this forms part of the processor modelling, as in the case of
memory accesses).

The disc controller provides the interface with the system (processor) via the
input/output bus, and intelligently manages disk access by minimising reading
and writing operations. For this purpose it has a buffer to carry out two
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separate major functions: prefetch (or read look ahead), and the disc cache
function that we will describe a little later. 2 Mbytes is a typical buffer size.
There are two main types of controllers: IDE (integrated drive electronic
interfaces) and SCSI (small computer system interface). SCSI enables the
management of a larger number of peripherals and is well adapted for multi-
task applications on server type machines.

A disc is composed of several double-sided plates (e.g. 4 plates and 8
read/write heads). One face may contain 10, 15 or 20 gigabytes. On each plate,
the information is organised in tracks (20,000 to 30,000 tracks, with for
example 200 kbytes per track), and each track is divided into sectors of the
same size (512 to 4096 bytes). All the tracks of the same rank on the plates
form a cylinder. To read a block there will therefore be three operations: track
selection, disc rotation and reading (transfer) of the information. There is
therefore a horizontal displacement of the read arm to position itself on the
right track/cylinder (search time ts). It will be noted that the shorter the time,
the closer the information is to the edge of the disc. This may be favoured by
certain operating systems, and this is facilitated if the number of plates is
greater for the same quantity of information. To simplify we will not consider
this optimisation, just as in reality there is more information at the edges. The
disc is then rotated to position itself on the good sector (latency time tL). This
time depends on the disc rotation speed and the distance of the block sought in
relation to the arm position. This is followed by the transfer of the block from
the disc to the disc controller (transfer time tT). The transfer time depends of
course on the quantity of information to be read, the rotation speed of the disc,
but above all the possible density of information on the track.

Finally, the processing time at controller level is termed ( t c) (reception of the
read request, or write request, and information transfer to the processor).

Modelling

Disc read service time

An information block read request ("READ") specifies the address of the first
sector of the block to be read and its length expressed in number of sectors.

Reading of sectors

For mechanical reasons associated with disc rotation, there is a gap between
the sectors of a track. When the buffers were small, reading could only take
place sector by sector, and the buffer had to have transferred its information to
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the processor during the gap, before being able to receive the next sector. If
not, it was necessary to await a complete rotation of the disc to read the next
sector. This problem was particularly acute if the size of the cache was small.
The interleave technique overcame this phenomenon by extending the gap by
inserting physical sectors between two consecutive logic sectors (the logic
addresses do not necessarily correspond to the physical addresses). As systems
now have large caches (2 Mbytes), we can neglect this phenomenon.
Furthermore, even when reading several consecutive tracks, it is also possible
to use a similar method, the offset (track skew), to avoid the need for a
complete additional rotation.

Prefetch

In prefetch mode, the buffer is filled by the logic sectors of the disk
immediately behind the sector requested. Today, because of the size of the
buffers, it is possible to retrieve a whole track. Thus, if the following requests
relate to consecutive blocks, or blocks from the same track, the information is
already in the buffer. This avoids a certain number of disk accesses (arm
translation, rotation, etc.). If this happens, we speak about a hit prefetch, and if
not it is a miss. This mode is particularly efficient when there is a run of
requests relating to consecutive blocks. This is the case of a server-type
environment in which large quantities of information are sought in sequential
mode.

Cache

In cache mode, as for the memory cache, the controller keeps in its memory
the sector blocks that have already been accessed and stored in the buffer.
When a read request is made, if the address requested is already in the cache,
the controller transmits all the subsequent blocks to the processor. If not, there
is a disc access, transfer to the buffer, and then transfer to the processor. As in
the case of memory, efficiency depends on the hit cache rate. Cache mode is
particularly appropriate in the case of repetitive accesses to small segments of
data, which are often the same. This mode is for example very well suited to
desktop type environments.

Model

In view of the foregoing analysis, we evaluate the average service time of the
disc server tD, per request, by:

— prefetch k sectors mode:
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In point of fact, if the blocks sought are already in the buffer, there is only a
controller time tc to take into account. If not, with a probability of (1 - hpf), an
arm movement is required with a mean value ts, plus a half-rotation of the disc
on average to reach the first sector with a value of tL = cd/2, and then the
transfer of k consecutive sectors (tTk), and of course the processing time of the
controller as above;

- prefetch track mode: in this case it is possible to retrieve everything (all the
track in tTt) without even positioning the head on the first sector. The
controller will put the information back into order:

- cache mode: this is the same type of formula, with hc the cache hit rate:

A case study

Let us consider the case of request sequences with a length of n (there are n
consecutive requests concerning the reading of a total of k consecutive sectors;
this is also called a run of length n). The prefetch miss rate is then 1 /n. The
service time of the disc per request is then:

tc is of the order of magnitude of a few hundred µs. We will assume a value of
200 µs; ts is given by the constructor and has a mean value in the order of
magnitude of a few ms. For a type 18 GB-SCSI disc for example, the value is
6 ms. cd depends on the rotational speed of the disc, which is usually
expressed in revolutions per minute. For a type 18 GB-SCSI disc, for example
at 7200 rpm, this gives cd = 8.3ms. ?Tk depends on the number k of sectors
transferred and the transfer rate (given by the constructor). If we assume a
prefetch of 60 sectors of 2048 bytes at a transfer rate of 20 Mbytes/s (which is
a typical value). We thus obtain tTk = 6ms. Finally, for sequences of average
length, n = 5, with each reading 12 sectors on average, we obtain:
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Let us now assume that the whole track is being transferred:

Let us take a track of 200 kbytes, retaining a transfer rate of 20 Mbytes/s (the
reader will verify the coherence with the disc rotation speed of 7200 rpm). We
thus obtain tjt= 10 ms. So:

We thus obtain the same service time. In practice, it will be a matter of
obtaining the best estimate of the characteristics of the requests (run value,
number of sectors, etc.), to choose the best strategy depending on the
characteristics of the disc. The question of the advantages of one solution as
opposed to another will depend very heavily on all these characteristics
(requests size and disc characteristics).

Service time in write mode

The use of the disc cache in write mode is very different. In fact it is only used
for the temporary storage of the blocks to be written and to send back a write
acknowledgement ("GOOD") to the processor, before any actual writing on
the disc. The problem is that with this operating mode information is lost if the
writing does not take place correctly, or if a failure occurs. In practice, the
method of grouping will tend to be used at application level. The processor
groups together several write requests into a single request, and only clears its
transmission buffer once it has received an acknowledgment of actual writing
on the disc. The performance gain is obvious (a single arm movement, a single
rotation), and reliability is ensured by redundancies at application level. The
processor on the other hand has a slightly more complex processing task. This
method of grouping is particularly well adapted to real time data safeguard, for
example for charging accounts or call details records, a key function for an
operator.

If n is the average number of write requests that can be grouped into a single
write ("WRITE") of a total of k sectors, the service time is:
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Application example

Let us consider a billing agent. It receives and stores the charges and call
details from telecommunications exchanges (before periodically transmitting
them in files to a billing collector). The call detail reports (used for detailed
billing for example) are made in real time on completion of each call. A call
detail report corresponds to a message of about 250 bytes. It would clearly not
be efficient to transmit a message each time a call is made, or to write on the
disc each time there is a message. The exchanges thus group together call
details in blocks of 8 (for example) to form messages of 2 kbytes. This
packeting delay in transmission does not greatly disadvantage the real-time
aspect of the safeguard, bearing in mind that traffic per exchange is in the
order of hundreds of calls per second (anyway there is always a time out). The
billing agent then puts them together into groups of 16 kbytes (8 blocks) to
carry out the safeguards to disc and to send a global acknowledgment to the
exchange (which keeps the groups in its memory until they are acknowledged).
For a traffic of 2000 records per second (the traffic of a large exchange
generating several details per call), the billing agent thus has to process 250
messages/second and 62.5 disc writes/second (two accesses to the disk are
necessary, the second for pointers management with approximately the same
time ).

If we assume a processor processing time of 2 ms per message (including
grouping and acknowledgment operations), the processor load is thus in the
order of 50%.

If we assume that the disk has the same characteristics as before (7200 rpm,
etc.), the write time from 16 kbytes at 20 Mbytes per second is 0.8 ms and the
service time per group is:

(Note the preponderance of the access time in the sector, and that this time can
be reduced further if sequential writes are possible.)

This represents a disc load of about 70%. This clearly shows how the disc
might be the bottleneck and how essential it is to optimise writes.

Depending on the disk and information characteristics, an optimal strategy
may be defined.
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9.1.8. Managing a pool by blocks

We are attempting here to determine the size of a pool of resources organised
in blocks.

We thus consider a pool of resources organised in blocks of N resources, to
which several traffic flows are offered. How many blocks must be provided for
a given probability of lack of resources, bearing in mind that there is no
rearrangement of free resources between several blocks? This problem is a
matter of the allocation of memory space by blocks (context management, data
management for various types of transactions), or the allocation of ATM cells
in the AAL2 technique for voice on ATM for example (VoATM), or finally
the basic problem of circuit seizing on several trunk groups with overflow.

And still without rearrangement, either because the service does not support
interruption, or to simplify realisation.

This model, like the ethernet link model, covers both the control field and the
transport field. Figure 9.8 illustrates the basic problem.

Figure 9.8. Management of a pool of resources by blocks

Traffics of intensity Ai are offered to blocks of Ni resources (servers). Another
block of Si resources must be taken if the first Ni resources are not sufficient.
For this study only the single initially allocated block is considered. The
problem is easily generalised to ki initial blocks, to which are added a further
block if necessary.

Let us first consider a single traffic current A = λ/µ, where λ is the demand
arrival rate and µ the service rate.
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The calculation of the demand probability of another block is performed on the
basis of state equations, in accordance with a Markov chain as shown below.
We are following here Brockmeyer's demonstration [BRO 54]. We note
respectively n the number of resources taken in the first block and s that of the
second block. The behaviour of the first block of N places follows a birth and
death process with a number of states limited to N. That of the overflow block
is a pure death process as long as n < N. The second block only receives new
connections once the first block has reached state N. Its occupation process
then also becomes a birth and death process.

Let us call Pn
s the probability of the system state (n, s).

The following equations of the future can easily be written:

and at equilibrium we obtain:

To resolve this system we introduce the following expression Sm
r:

The solution is then written:
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with

The probabilities of the i states of the overflow block (states of second block)
are given by:

And finally the probability of utilisation of the second block (engaged) is:

In practice, we will take action to ensure that this single additional block will
suffice for traffic needs with a very high probability. In other words, the
probability of needing a third block is negligible. This is first roughly checked
with the simple Erlang formula, then a posteriori verified, and will be very
generally the case taking account of the actual size of the blocks.

We can now calculate the total number of blocks necessary for D traffic flows.

We are here simplifying the calculation by considering that all the Ai are
identical (Ai = A , f i ) , and that the blocks are of identical size.

As the traffic flows are independent, the binomial law is applied.

The probability of having X = 2k+(D-k) blocks "engaged" (not necessarily
totally occupied) is:



356 Communicating Networks: Traffic and Performance

where P is the previously calculated probability.

The average number of blocks engaged is:

If we assume a pool of 7 blocks, we can from these formulae calculate the
probability of pool saturation, P(Y), and thus determine the size of the pool.

X
We also have the pool utilisation factor: ρ = — .

The previous results are generalised to the case in which X0 blocks are

systematically taken initially, with a single additional block for overflow. This

models the actual case, as in general for each traffic flow a basic resource will
be required, with a single additional one whose size is small compared to that
of the basic resource.

We then have:

where this time P(X) is the probability of having X= k(xo+1)+(D—k) X0 blocks

engaged, and the mean number of blocks taken is:

These results are also generalised to the case of different traffic flows, by

replacing the binomial law by the multinomial law.

For example, let us study the case of a multiplex at 622 Mbit/s transporting

voice traffic in ATM technology (AAL2).

The principle is as follows: the voice samples of calls going in the same
direction are grouped together in one or more ATM cell(s) every 125 µs. On a

multiplex of this type, 183 cells are available every 125 µs. An ATM cell can
transport 48 voice samples (48 bytes of payload, plus 5 bytes of header). Let
us now assume that we wish to transport D = 128 identical traffic streams,



Models 357

each with an intensity A = 28.8 E. We therefore initially allocate X0 = 1 cell (N
= 48 places) to each stream, and we will allocate to it a second cell when this
is necessary, which will be released once it is empty. It is necessary to
evaluate the probability of a lack of cells, bearing in mind that it is not
possible to permanently allocate two cells to each traffic stream (256 would be
needed), except by reducing the total traffic handled.

Figure 9.9 shows the probability of having a certain number of cells engaged.

Figure 9.9. Distribution of the number of active cells in pool

The match between the simulation (dots) and the calculation (continuous
curve) is excellent.

9.1.9. Call repetition

The model describes the macroscopic behaviour of users in the event of
congestion.
In such circumstances (call rejection, extremely long wait, etc.) a phenomenon
of impatience arises on the part of users, leading to the abandonment of calls
and then insistent call renewal. These consecutive call attempts, most of which
are doomed to failure, represent an additional load on network resources,
causing more congestion and a snowball effect which is extremely detrimental
to quality of service.
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This phenomenon is extremely important in reality, particularly in the event of

overloads, failures, traffic imbalance, etc. It has been shown that it leads, even
in the event of initially slight overloads, to extremely severe overload
situations. It will be the role of regulation, as seen in Chapter 1 and as
analysed in the next paragraph, to protect systems and networks against these

phenomena. It should also be noted that in these circumstances traffic
observations should be carried out with great care. This is because it is
difficult to distinguish between "fresh calls" and "reattempts" and the

"blocking" rate observed will have a quite different significance.

The model below is a general model which links the final traffic offered to a
server (handling system, transport system, network, etc.) to the traffic handled
as a function of the probability of rejection by the server, and the perseverance
rate of the source.

The phenomenon is characterised by the following phenomena:

- traffic offered: we will note as the flow of 1st requests ("fresh" attempts)

and as A the total observed flow. Any client presenting him/her/herself in front

of the service constitutes an attempt, which is a 1st attempt or a renewal;

— repetition factor: this is the ratio β = λ / λ0, which measures the
amplification caused by the congestion; it enables the linking of actual demand
to the observation;

-perseverancece  raate: in a very simple model, allowance is made fo
perseverance of demand using a probabilistic method: let H be the probability

that a failed attempt will be presented again (one possible refinement would be

to take H as a function of the rank of the attempt, of the nature of the failure,

etc.);

- loss rate: we note as p the probability of rejection of each attempt; this is
assumed to be constant; reality is more complex (the failure rate differs
depending on the rank of the attempt and the time interval between attempts);

- efficiency rate: we note as r = λe/λ the efficiency rate. This is an apparent

efficiency rate, as it does not correspond to fresh traffic λ0..But this is thee

only one that is generally observable as it is difficult and very expensive to

separate fresh attempts from renewed attempts in observations of systems and
measurement campaigns.

Figure 9.10 shows the rejection and repetition mechanism in schematic form.



Models 359

Figure 9.10. The repeated attempts model

We note as λe the intensity of the flow successfully handled as λrnv the flow

from failures which give rise to a new attempt. This schematic representation
enables the estimation of the flows in each branch:

This model must be understood for what it is: it explains the behaviour
observed, and in particular the difference between fresh, actual demand and
observed traffic. Thus by measuring apparent offered traffic and handled
traffic, we can work out the fresh traffic for a given source perseverance rate

hypothesis.
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An approximate analysis of the behaviour of a system of this type, and an

evaluation of the various flows can be performed, assuming that the flow

resulting from the renewed attempts retains its Poissonian nature.

By way of example, let us consider the case of a system modelled by an

M/M/l/N queue.

We inject an unknown load λ0. The measurement procedure supplies λ. It is

assumed that the total resulting flow remains Poissonian, which would strictly

require that the wait before renewal would tend towards infinity; we have

made N = 4, and assumed a perseverance rate H = 0.9; the service time is

taken to be 1. A sample of results is given below:

-for o= 0.7, we measure = 0.78, p = 0.115: calculation based on M/M/1/4

would give p = 0.086;

— for o = 0.9, we measure = 1.2, p = 0.28: calculation based on M/M/1/4

would give p = 0.16;

- for o = 1.2, we measure = 3.07, p = 0.67: calculation based on M/M/1/4

would give p = 0.28.

One can easily imagine the wrong interpretations that might result: either a

traffic measurement underestimates rejection, or an actual rejection

measurement results in an overestimate of ρ0 .

An approximate analytical model of this system can be given by assuming that

the resulting flow of renewed attempts retains its Poissonian nature. We then

estimate p by the rejection rate of the M/M/l/N queue:

The resolution is iterative: for a given value ρ0, an initial value is chosen

ρ = ρ0 from which we deduce a value of P by the second formula, thus giving

a new estimate of ρ, by the first formula, then a second estimate for p, etc.,

and so on up until convergence (precision of 1/1000 in a few iterations). The

results are presented on the following charts:
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Figure 9.11. Behaviour of an M/M/l/N system with repetition

This model is applied not only to a control system but also to the case of a
network of independent nodes (transport or signalling network) in the event of
transmission errors resulting in repetitions.

Behaviour of a network with transmission error correction

Let us consider an end-to-end link of a data transmission network, whose
nodes may be considered to be independent (see later the case of series
queues).

Figure 9.12. End-to-end link configuration in a data network

When a node is saturated (S3 for example), server S2 which precedes it will
nevertheless handle and transmit a new packet that arrives; when it arrives at
the full buffer of S3, the packet is rejected, even if it is correctly received.
Node S2, which does not receive the expected acknowledgment, must
retransmit the same packet once, twice, three times.: it is as though the packet
was waiting by occupying server S2 and the transmission link until it is finally
transmitted.
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If we note as B the probability of rejection, the same at each stage (it is
assumed that the link is homogeneous), and the same at each attempt (these
assumptions are highly simplifying), then there is:

- one transmission, that is 1 service time, with a probability of 1 - B,

- two transmissions, that is 2 service times, with a probability of 5(1 - B),

- three transmissions, that is 3 service times, with a probability of B2(1 — B) ,

etc.

Thus on average l/(l-B) transmissions. This corresponds to taking an
equivalent mean service time E(s)/(l-B).

The service time increases with rejection, but also the load of transmission
equipments is considerably increased.

At the input, we note as A the arrival rate. The fresh traffic offered at each
stage is A: it is identical at each stage as it is assumed here that each rejection
is corrected, with each packet occupying the node until transmission is
successful. Each node is represented by an M/M/l/N model. Hence:

The equations are quite analogous to those of the previous model in which we
would make H = 1, although their interpretation is different. The numerical
resolution and the result would be comparable to the curve of the model in the
previous section.

9.1.10. Regulation

The use of regulation mechanisms is essential to protect the systems and
networks against overloads. It is not our concern here to consider a specific
mechanism in detail, but to throw light on the fundamental relations which
exist between calls (or transactions) that are accepted, rejected and prioritised.

The problem in fact is as follows: the system or network, in the event of an
overload, i.e. in the event of an offered traffic which is greater than the
handling capacity, must reject requests to preserve the correct processing of
the calls accepted, but also handle some types of requests as a priority.
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This is paradoxical in a sense:

On the one hand the system must refuse new requests as a saturated server has
an infinite response time, and above all in practice in actual complex systems,
queues will become saturated, information will be lost and there is a risk that
no transactions will be completed.

On the other hand, even in an overload situation, the system must devote some
of its time to identifying whether or not a new demand has priority, in order to

accept or reject it. This may be more or less expensive, as in the case of calls
to emergency numbers (fire service, police, etc.) for which the address
requested must be analysed. It is thus possible to cause system congestion
unnecessarily, as the proportion of calls which should really be prioritised is in
fact low. Clearly therefore, compromise strategies must be found.

The model below enables an evaluation of the efficiency of the various
strategies.

Let us consider a system to which the offered traffic has the following

characteristics: n types of calls with the respective arrival rates: λ1,... λi,.. λn;
τia is the processing time for an accepted call of type i; τiR is the processing
time for a rejected call (rejected for regulation reasons) of type i; and for a
given system regulation state: ai proportion of calls of type i accepted; ri

proportion of calls of type i rejected; where ai + ri = 1.

Let us take as a unit the mean processing time of an accepted call:

Let us term c i Athe relative "cost" of processing an accepted call:

and similarly for a rejected call:
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and also the proportion for each call type:

We thus have:

Load offered to the system:

System load:

Load rejected:

Regulation in our model is governed by the following principle. Given the

maximum load of the system ρSYS = ρ M A X , the calls are rejected in accordance

with a predetermined order as soon as the load reaches the value ρMAX and

accepted as soon as the load falls below this value again. The system therefore
oscillates between call rejection and call acceptance states. For the modelling
with which we are concerned (very strong and very long overloads), we will
neglect the oscillation phenomena which must be controlled by appropriate

load measurement mechanisms (processor load measurement), or load
evaluation mechanisms (e.g. call counting), by means of good adjustments of
measurement periods and smoothing. The system remains in a given regulation
state as long as the type(s) of calls rejected are sufficient to maintain its load
below the value ρMAX . If however the rejection of the calls of type x < i is not

sufficient, the system will begin to reject calls of type i+1, etc., bearing in
mind that:
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a) the types of calls with the highest priority are rejected last;

b) the higher the rejection level rises, the more drastic is the rejection, until it
costs virtually nothing for the system ("blind" rejection, without analysis of
the nature of the call).

Based on the previous equations, it is possible to describe the behaviour of the
system being regulated depending on the strategies adopted.

Let us consider the example of the behaviour of a system with reference to two
strategies.

Strategy 1 is the basic strategy, and is as follows:

As lower priority (first rejected) the non-urgent outgoing calls from users
(type 1), and then the additional rejection of non-urgent incoming calls
(type 2), and then the additional rejection of all outgoing calls (including
urgent calls, type 3), and then the additional rejection of all incoming calls
(including urgent calls, type 4).

Strategy 2 is more drastic:

From the second threshold onwards (once all type 1 calls have been rejected),
all outgoing calls (type 1 and type 3) are rejected, and then this continues with
the incoming calls.

Let us assume the following costs: c1A = c2A = c3A = c4A = 1, c1R= 0.25,
c2R= 0.1, c3R= 0.1, c4R= 0.1.

(Note the low rejection cost of an incoming call compared to that of an
outgoing call: the destination number has been analysed at the departure, then
giving rise to a simple indication easier to analyse).

Furthermore, we assume for the sake of simplicity that the proportions of
traffic remain the same in the various phases. This does not really correspond
to reality for the transient regime, but does not make the model any less
useful, for under actual conditions systems are very quickly subjected to a
quasi-stationary regime of overload traffic. In addition, changes in the
proportions may be assumed, and consequences evaluated.

The following thresholds are fixed: The first level of load rejection is 0.8, the
second level of load rejection is 0.85, and the third level of load rejection is
0.9.
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It is assumed that 60% of calls are outgoing, with 10% urgent calls, and that
40% of calls are incoming, also with 10% of urgent calls.

We thus obtain the curves shown in Figure 9.13, describing the fundamental
behaviour of the system being regulated.

Figure 9.13. Behaviour of a system under load regulation

Strategy 1

The curve shown in the dotted line describes the system's behaviour for this
strategy (strategy 1):

a) One can verify from the curve that the first regulation threshold is reached
at an offered traffic of 0.8:

b) Up to now all calls were accepted. Now non-urgent outgoing calls (type 1)
must be rejected. Up to a traffic of about 1.35, the load of 0.8 is maintained,
but it then rises, and the first rejection level no longer suffices.

The load processed for an offered traffic of 1.35 is:

We verify that the second threshold is reached at an offered traffic of 1.43:
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Note also that the handled load with traffic of 1.2 (1.5 times the reference
traffic) is greater than 0.7. This represents 90% of the reference traffic (0.8),
which corresponds to the objectives of the standards (see Chapter 2).

c) Beyond an offered traffic of 1.43, we must begin to also reject incoming
non-urgent calls (type 2).

We verify that the load is maintained at 0.85 up to an offered traffic of 3.14,
and then that the third threshold (0.9) is reached at an offered traffic of 3.32:

0.85 = 3.14 x (0.6(0.9 x 0.25 + 0.1 x 1) + 0.4(0.9 x 0.1 + 0.1 x 1)

0.9 = 3.32 x (0.6(0.9 x 0.25 + 0.1 x 1) + 0.4(0.9 x 0.1 + 0.1 x 1)

The traffic processed for an offered traffic of 3.14 is:

3.14 x (0.6(0.1 x 1) + 0.4 x 0.1 x 1) = 0.314

d) At this moment we begin to reject all outgoing calls without distinction
(including type 3). We then verify that the system maintains its load at 0.9 up
to a traffic of 6.6, and that the fourth threshold is attained at an offered traffic
of 7, i.e. for an offered traffic almost 10 times greater than reference traffic:

0.9 = 6.6 x (0.6 x 0.1 + 0.4(0.9 x 0.1 + 0.1 x 1)

0.95 = 7 x (0.6 x 0.1 + 0.4(0.9 x 0.1 + 0.1 x 1)

The handled traffic for an offered traffic of 6.6 is:

6.6 x( 0.4x0.1 x 1) = 0.26

The final threshold is not considered, as with this policy it is unlikely that it
would ever come into play.

This model demonstrates the usefulness of adopting quite rapidly a drastic
rejection policy to reduce the cost of rejected calls and thus process more
traffic, as we shall now see with strategy 2.

Strategy 2

The curve shown in an unbroken line describes the behaviour obtained if from
the second threshold onwards (0.85), all outgoing calls, type 1 and type 3, are
rejected (strategy 2).
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Up to traffic levels of around 1.85, the load is maintained at 0.85 and then
begins to rise. One can verify that the third threshold is reached at an offered
traffic of 1.95:

0.85 = 1.85 (0.6 x 0.1) + 0.4 x 1)

0.9= 1.95 (0.6 x 0.1) + 0.4 x 1)

The load processed with an offered traffic level of 1.85 is:

1.85x0.4x 1 =0.74

It is then possible to decide to reject all calls, without discrimination. As in the
previous case, the system load is maintained at practically the same level, as
the cost of rejected calls is negligible. We verify that this load level is
maintained up to a traffic overload of 900%.

Experience proves that this strategy is the most appropriate one for dealing
with real-life situations as in any case (particularly because of renewals),
overloads very rapidly become very large and the most severe rejection
thresholds are very quickly attained. Furthermore, note that with this strategy
the system handles more traffic during very high overload, and thus even with
blind rejection it gives more chance for an urgent call to be accepted on a
reattempt.

9.2. Transport plane models

9.2.1. Multi-bit rate traffic concentrator

9.2.1.1. Multi-bit rate Erlang model

The aim here is to evaluate the handling capacity of a system that concentrates
traffic from sources with different bit rates. This is typically the case of ISDN
user concentrators, and synchronous network links, which have to handle calls
with different bit rates (at n x 64 kbit/s for example). But above all, as we
shall see later, analysis of this case forms the basis of the modelling of
statistical multiplexing for ATM and IP traffic.

The aim is to evaluate the probability of blocking B (call rejection), for offered
traffic A.

Let c1 be the bit rate (or capacity) required by the source with the lowest bit
rate. It is assumed that c1 =1, ( c\ is taken as the bit rate unit). The bit rates ci
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of the other sources will be approximated to multiples of c\. C is the total
capacity of the concentrator in bit rate units c\.

The blocking probability is then simply given by the generalised Erlang
formula applied to a system with N = C servers.

The calls are grouped into bit rate classes: x is the number of bit rate classes,
and ai is the activity in erlangs of a bit rate class ci.

The probability P(n1 , ..., nx) of having (n1, ..., nx) calls in each class in
progress is then:

and the blocking probability of a call with a bit rate ci is:

and the mean blocking, for all types of call combined, is:

These fundamental formulae can give rise to relatively long calculations, and
above all do not enable the rapid assessment of the impact of the mix of
services. It is for this reason that approximations have been developed, all of
which are based on the adjustment of moments of the exact distribution
function with the moments of a simpler distribution. We present below the
peakedness factor method, which is very simple to use and which is
sufficiently precise for most practical purposes.

9.2.1.2. Peakedness factor method

It is simply a matter of adjusting the generalised Erlang law according to a
simple Erlang law. We thus define a single equivalent bit rate, and also an
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equivalent number of servers. Note that in Chapter 3 we dealt with the case of
the sum of independent random variables. We are now exactly in this case, as
we are looking for the probability P(n1 , ..., nX) of having (n1, ..., nx) calls in
each class in progress with x independent and Poissonian classes of traffic. By
applying the results of Chapter 3, we can replace x classes of traffic of bit rate
di and activity ai by a single equivalent traffic class with an activity of Alz and
a single bit rate z, such that:

z is called the peakedness factor because of its initial introduction by Hayward
in overflow traffic problems. z reflects the burstiness of traffic. It is, it will be
recalled, simply the ratio of the variance of the traffic to mean traffic

As a result, the model equivalent to the initial system is simply a concentrator
of reduced capacity C/z, to which is offered a reduced traffic intensity A/ z.
And so the average blocking is:

We then also deduce an estimate of blocking for the various traffic classes by
interpolation between two successive values of z.

We write:
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and thus for a bit rate c2 which is for example equal to 2 z + n, where
0 < n < z, we have:

When di is not too large, it is possible to simplify, by keeping a constant:

Table 9.2 provides an example of the precision of the approximation in the
case of a mixture of two classes of traffic. It will be noted in particular that for
many practical purposes the linear approximation is sufficient:

Table 9.2. Accuracy of the " peakedness factor" method

c

200

a1

105

d1

1

a2

7

d2

5

A

140

Erlang Loss
Generalised Erlang

B1

9.71 10-5

B2

6.84 10-4

B

1.34 10-4

Erlang Loss
Peakedness method

A/z

70

C/z

100

E(C/z,A/z)

1.38 10-4

z=10

C

200

a1

38.5

d1

1

a2

1.5

d2

21

A

70

B1

9.18 10-6

B2

6.83 10-5

B

3.45 10-5

A/z

7

C/z

20

E(C/z,A/z)

2.99 10-5
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The peakedness factor method of course remains an approximate method, but
it can easily be verified that the precision is excellent as long as the C/dx ratio
remains large, with dx being the highest required bit rate. This condition can
be verified in most practical multiplexing cases, as we shall see later, in view
of the high bit rates of the links.

We provide below some examples of results in order to validate the domain of
validity of the model. We consider a mixture of two types of traffic with a
total intensity of A, offered to a system of C servers:

a) C = 200, a1 = 105, d1, = 1, a2 = 7, d2 = 5 => A = 140, z = 2, Alz = 70,
C/z = 100

Generalised Erlang: B = 1.34 10-'4, Peakedness method: B = 1.38 10-4

b) C= 100, a1 = 45, d1= l, a2=3,d2= 5 => A = 60, z = 2, A/z = 30, C/z = 50

Generalised Erlang: B = 2.5 10-4, Peakedness method: B = 2.2 10-4

c) C = 50, a1 = 18, d1 = 1, a2= 1,2, d2 = 5 => A = 24, z = 2, A/z = 12, C/z = 25

Generalised Erlang: B = 5.35 10-4, Peakedness method: B = 3.78 10-4

d) C = 20, a1 = 3.75, d1 = 1, a2 = 0.25, d2= 5 => A = 5, z = 2, A/z = 2.5,
C/z = 10

Generalised Erlang: B = 7,52 10-4, Peakedness method: B = 2.16 10-4

It is immediately verified that precision depends on the ratio between the total
capacity of the link and the highest bit rate (d2). To obtain sufficient precision,
a ratio greater than about 10:1 is required.

This type of result can be verified even for large values of z and large ratios
between bit rates (for example a ratio of 21:1, as below, may corresponds to
one bit rate of 64 kbit/s and another of 1 Mbit/s):

e) C = 200, a1 = 38.5, dl = 1, a2 = 1,5, d2 = 21 => A = 70, z = 10, A/z =7,
C/z = 20

Generalised Erlang: B= 3.45 10-5, Peakedness method: B= 2.99 10-5

f) C= 100, a1 = 8, d1 = 1, a2 = 0.75, d2 = 16 => A = 20, z = 2, A/z = 2, C/z = 10

Generalised Erlang: B = 7,94 10-5, Peakedness method: B = 3.82 10-5
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9.2.2. Multiplexing

9.2.2.1. Multiplexing of identical periodical sources

Let us consider first the important case of identical periodic sources, such as
for example the case of CBR (constant bit rate) ATM sources. This indicates
the properties that are useful to simplify the processing of sources of different
bit rates and different packet lengths.

Let us consider a multiplexing system whose output link capacity is one cell
per time unit, to which is offered the traffic of N sources, N < D, each of
which transmits one cell every D time units. This system is called N/D/D/1.

The system is shown in schematic form in Figure 9.14.

Figure 9.14. Multiplexing of identical deterministic sources

Let us call VD the unfinished work at an arbitrary instant D. If N < D, there is
at least one instant during the interval (0,D)) in which the system is empty.
Therefore VD depends only on arrivals after this instant. If we consider that the
N arrivals are uniformly distributed between 0 and D, this gives:

where v(D',D) = n the number of arrivals in the interval (D', D), and

D' = D — n + x (as x arrivals have still to be handled).

This situation is illustrated in Figure 9.15.
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Figure 9.15. Unfinished work calculation

Because the arrivals are uniform (n-x)/D = (D-D')/D expresses the
probability, for an arrival, of being situated in the interval (D-D').

Therefore:

Similarly, because N<D and V(D',D)) = n, this gives N - n < D', and the

probability of having VD, = 0 is that of having D'- (N- n) service units free in
(0, D'), that is:

We thus obtain:

It may be verified from Figure 9.16 that this formula gives (for high loads)
results that are substantially different from those obtained by the formula
M/D/1, even for relatively large values of N. The periodic nature of the
arrivals is fundamental.
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Figure 9.16. Queue distribution for ND/D/1

The difference is attenuated, however, at low loads, as shown in Table 9.3.

Table 9.3. Comparison of M/D/1 and N/D/D/1

X

6

12

16

32

N

30
70
200

M/D/1

30
70
200

M/D/1

30
70
200

M/D/1

70
200
1000
M/D/1

ρ = 0.1
4.2e-ll
8.0e-ll
1.1e-10
1.2e-10

ρ = 0.3
5.0e-7
1.1e-6
4.4e-6
1.7e-6

1.7e-14
7.6e-13
3.8e-12
5.2e-12

ρ = 0.5
6.0e-5
1.7e-4
2.7e-4
3.5e-4

l.le-10
7.1e-9
6.7e-8
1.9e-7

1.1e-15
5.7e-12
2.0e-10
1.2e-9

ρ = 0.7
1.7e-3
5.8e-3
1.2e-2
1.3e-2

4.4e-8
7.4e-6
7.1e-5
2.5e-4

2.0e-12
3.2e-8
1.9e-6
1.7e-5

ρ = 0.9
2.8e-2
9.5e-2
1.9e-l
2.7e-l

6.2e-6
1.3e-3
2.0e-2
7.6e-2

9.0e-10
2.6e-5
3.0e-3
3.3e-2

1.8e-16
1.5e-8
1.8e-4
1.25e-3
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Approximation of formula

For practical reasons, and in particular for having better visibility of the
impact of the various parameters, it may be practical to have a very simple
approximation for rapid calculations (during an "on line" performance audit
for example, or when presenting the characteristics of a product), and in order
to better grasp the impact of the various factors (load, etc.). For this purpose,
we will now establish two simple expressions for the queues M/D1 and
N/D/D/1.

A high traffic approximation of the M/D/1 queue is given by:

(We will not develop the calculations here. For this the reader will refer to
specialised books or publications concerning heavy traffic approximations and
Brownian bridge approximations.)

Using the same method [ROB 96], the following approximation for N/D/D/1,
also at heavy load, is suggested:

This expression takes the following form:

Bearing in mind that for the M/D/1 queue we had the following very precise
approximation, valid even for low loads (see Chapter 7):

where β0 is such that ρ + β0 - ρeβ0 = 0 .

Let us use MacLaurin's expansion of 1n(y); we thus have:
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From the expression in β0 we deduce β0 = ln(β0 + ρ) - In ρ , thus:

Given that — In ρ(ρ + 1) + 2(ρ — 1) 0 , by again using here the first term of

MacLaurin's expansion of 1n , thus: β0 1 - ρ — In ρ .

And thus finally, for M/D/1, we obtain:

An expression of the form ae-βx from which we deduce for N/D/D/1, as seen

previously, an expression of the form

Thus for N/D/D/1:

Table 9.4 indicates the precision of the approximation.

The precision can be considered to be quite sufficient for the first calculations
aimed at obtaining orders of magnitude.
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Table 9.4. Approximation of M/D/1 and N/D/D/1

X

6

12

16

32

N

30
70
200

M/D/1

30
70
200

M/D//11

30
70
200

M/D/1/1

70
200
1000
M/D/1/1

ρ = 0.1

Exact
4.2e-11
8.0e-ll
1.1e-10
1.2e-10

App.
1.6e-10
6.3e-10
1.2e-9
1.7e-9

ρ = 0.3

Exact
5.0e-7
1.1e-6
1.4e-6
1.7e-6

1.7e-14
7.6e-13
3.8e-12
5.2e-12

App.
5.7e-7
l.le-6
4.4e-6
6.3e-6

4.7e-15
1.1e-12
1.6e-11
6.9e-11

ρ = 0.5

Exact
6.0e-5
1.7e-4
2.7e-4
3.5e-4

l.le-10
7.1e-9
6.7e-8
1.9e-7

1.1e-15
5.7e-12
2.0e-10
1.2e-9

App.
5.0e-5
2.0e-4
3.9e-4
5.6e-4

2.9e-ll
7.1e-9
1.0e-7
4.3e-7

1.4e-16
2.5e-12
2.8e-10
3.6e-9

ρ = 0.7

Exact
1.7e-3
5.8e-3
1.2e-2
1.3e-2

4.4e-8
7.4e-6
7.1e-5
2.5e-4

2.0e-12
3.2e-8
1.9e-6
1.7e-5

App.
1.5e-3
5.8e-3
1.1e-2
1.6e-2

2.2e-8
5.2e-6
7.5e-5
3.2e-4

8.9e-13
1.5e-8
1.8e-6
2.3e-5

ρ = 0.9

Exact
2.8e-2
9.5e-2
1.9e-l
2.7e-l

6.2e-6
1.3e-3
2.0e-2
7.6e-2

9.0e-10
2.6e-5
3.0e-3
3.3e-2

1.8e-16
1.5e-8
1.8e-4
1.2e-3

App.
2.5e-2
9.8e-l
1.9e-l
2.7e-l

5.5e-6
1.3e-3
1.9e-2
8.0e-2

1.4e-9
2.4e-5
2.7e-3
3.5e-2

2.6e-16
4.7e-8
4.7e-4
1.3e-3

9.2.2.2. Multiplexing of bursty sources

This time the sources are not periodic, but alternate between periods of
transmission (Ton) and periods of silence (Toff) .

In transmission phase, the source is periodic with the period D, as previously.
This type of source is called ON/OFF or "bursty".

Figure 9.17 describes the behaviour of a source.

Figure 9.17. Activity of an ON/OFF source
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We will begin with a few general considerations about the behaviour of a
bursty sources multiplexer which, although relating to observations, will
enable us to model the system studied relatively simply.

In the general case in which N > D, we observe the behaviour presented in
Figure 9.18.

Figure 9.18. Typical behaviour of a bursty sources multiplexer

It will be noted that the distribution function of the number of cells waiting is
composed of two clearly separate parts: one part called the cell or packet part
with a rapid decay and one part called the burst part with a slow decay.

This is clearly explicable when one notes that in the first part the multiplexer
is "weakly" saturated (a more "common" situation), only cells (or packets) are
waiting, whereas in the second part the multiplexer is "strongly" saturated (a
more "rare" situation), and bursts are kept waiting: the longer the bursts, the
longer the queue and the slower the decay. The point of transition between the
two parts is generally called the "knee".

The attentive reader will have noticed the analogy between the appearance of
the cell/packet part and that of the multiplexing of N periodic sources as seen
earlier. The behaviour in the two cases is identical, as we shall now verify.

9.2.2.3. Modelling of cell/packet part

The behaviour of the multiplexer in this part can be evaluated precisely in the
case of identical sources. This reflects a situation in which the probability of
saturation is negligible, i.e. the probability of having more than D sources in
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the ON state simultaneously is negligible. In this case we have the following
remarkable result.

We will look at the case of N identical sources, and as before we consider the
case in which N < D. This case will enable us to draw important conclusions
for more general cases.

From the previous study on the superimposition of periodic sources, it is easy
to see that the following can be written:

where with express the

probability for n sources of being in the ON state.

By developing this result, we obtain:

In fact:
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, and so We can also write that: 

by grouping: 

Let us introduce a= - ( l - B )  , so that the second summation is 

written: 

and thus by transferring into P(' x) and after calculation, we obtain: 
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We thus arrive at (9-74):

This result is remarkable as it relates the multiplexing of bursty sources to that
of periodic sources: only the mean period, i.e. the mean bit rate, counts. And
above all, once again, the performances are better than those of an M/D/1
queue (with the appropriate D). Given that the M/D/1 queue leads to queue
sizes which are quite acceptable, very generally this model should be
sufficient to evaluate quality of service, under these conditions.

This result can also be generalised to a number of sources N > D. One can
conclude that, even for a number of sources N > D, as long as the probability
of exceeding the output link bit rate of the multiplexer is very low, i.e. as long
as the probability of having more than D sources in the ON state
simultaneously is negligible, the system behaves like a multiplexer of periodic
sources and better than an M/D/1 queue.

Finally, this property can be generalised to the case of different bit rate
sources, as long as there is still a low probability of having a number of
simultaneously active sources so that the link capacity is exceeded. The
behaviour will be even better than that of an M/D/1 queue.

This will therefore be a pessimistic model for many practical cases of
multiplexing and of quality of service evaluation, with regard to the cell or
packet part. Finally, in the general case of variable packet sizes, it may be
approximated to an M/G/1 queue.

9.2.2.4. Modelling of the burst part

In this part we are mainly interested in determining the value of the knee in the
curve that we mentioned above.

We are assuming that N >> D, which corresponds to real-life situations whose
purpose is to take advantage of the multiplexing of a large number of highly
bursty sources.
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Let us first consider the case in which the sources have an identical peak bit
rate (identical bit rate in bursty periods) with an inter-arrival time for bursts
from a source obeying a negative exponential distribution.

Under these hypotheses, the arrivals of the bursts can be considered as
Poissonian. Accordingly, the multiplexer can be considered as a concentrator
with D servers, and the saturation probability can be estimated simply by
applying the Erlang law (or by using the Poisson law for very high D and N
values).

The Erlang model is particularly well suited to real-life systems with large
buffers, as in this case the multiplexer acts as a burst concentrator with D
servers with a queue. If p is the probability for a source of being in transmit
mode (ON state), then this gives A = Np and:

Let us now consider the case of sources with different bit rates. Let us call
more generally C the capacity of the link (C Mbit/s for example) and di the bit
rate, or capacity, required by a source of type i, and finally ai its activity
(proportion of time in ON state).

We return here of course to the case of the multi-bit rate. Accordingly, we can
apply the results that were previously established. And in particular, to
simplify the calculations, apply the approximate formulae.

The x classes of traffic with bit rate di and activity ai are replaced by a single
class of traffic with activity Alz and a single bit rate z, such that:

z, it will be recalled, is simply the ratio of the variance of the traffic to its
X

mean value: 
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The model equivalent to the initial system is simply a multiplexer with a
reduced capacity C/z, to which is offered a traffic of reduced intensity A/z,
whose saturation probability is:

9.2.3. Equivalent bandwidth

The concept of equivalent bandwidth is used to simplify the call acceptance
and session mechanisms, etc., in systems supporting services with different or
variable bit rate characteristics.

The aim is in fact to calculate the performance of the communication support
if the new request is accepted, taking into account the characteristics of the
calls already accepted, and to compare it with the required quality of service
criterion. It will easily be understood that, if this could be limited to the
simple problem of the pure sum of identical bit rates, as in the case of calls at
64 kbit/s, call acceptance would consist only of testing compliance with the
maximum load allowed for the link, or the maximum number of calls in
progress allowed on a link.

A great deal of research has been done on this issue, and we will develop here
only those aspects which relate to link saturation evaluation, as in practice
these are the ones that relate to the fundamental problem of multiplexing, as
we saw earlier.

In the case of traffic with constant but different bit rates, we have seen that the
saturation probability depends not only on the load but also on the mixture of
bit rates. The problem is raised in the same way when it is a matter of
multiplexing ON-OFF type sources with different bit rates. If we consider that
call and burst arrivals are Poissonian, the solution is obtained by applying the
Erlang multi-bit rate formula, or approximately by the peakedness factor
method, as already presented for the modelling of statistical multiplexing.

To avoid any long calculation times, the following empirical formula for
equivalent bandwidth has been proposed [ROB 96]:
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where mi and σi

2 are the mean and variance of the bit rate of calls of type i, a
(B) and β (B) are factors depending on the required saturation probability B,
and C is the capacity (total bit rate) of the link. Empirically, the factors a (B)
and β (B) have been adjusted to:

For example, for B=10-4 and B=10-9, the following is obtained:

It is then quite simple to check, each time a new call request occurs, that the

sum of the equivalent bandwidth is lower than the capacity of the link C to
decide whether or not to accept the call.

This empirical approach can be very simply explained, in the case of a large

number of sources, by considering first that the traffic offered is

approximately a Poisson one, and second that the final distribution resulting
from the superimposition of different types of sources can itself be
approximated by the same distribution as in the case of a single type (Poisson
or Erlang distribution). The quantile (at 10-x) is then obtained with a formula

such as (9-79) and with the same factors, for individual traffics as for the sum
of traffics. Here again we have the type of approximation already used by the

peakedness factor method.

To express this in more concrete terms, let us first consider the case of
identical ON-OFF sources, with a peak rate d, and an activity a (proportion of
time in the ON state).

The mean is then m = ad and the variance is σ2 = m (d-m).

The equivalent bandwidth formula becomes:

Let us call N the ratio C/d. If N is sufficiently large and m small with respect
to d, we may write:

e = α m + β m/N, and in general for a source of type i:
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That is to say that the maximum load of the link, for a saturation probability of
10-x, is given by Pi = mi /ei, (the link cannot accept more than C /e sources
simultaneously with a mean bit rate m).

And thus we have the equation:

We may now compare these results with those obtained using the Erlang
formula (see Table 9.5).
It may be observed that under the conditions stated, i.e. with a large N, or a
small d in relation to C, coherence is satisfactory. In fact the equivalent
bandwidth formula is only a linear approximation of the Erlang distribution (or
the Poisson law if N is very large).

Table 9.5. Equivalent bandwidth and Erlang formula

N =
C/d

1200

600

300

75

60

40

20

10

A
(Erlang)
at 10-4

1101

525

246

48,6

36.6

21.4

7.7

2.26

l/p =
N/A

1.09

1.14

1.22

1.54

1.64

1.87

2.6

4.4

l/p =
1.08+26/N

1.10

1.12

1.17

1.43

1.51

1.73

2.38

3.68

A (Erlang)
at 10-9

1013

470

210

34.5

25

13.2

3.5

0.65

l/p =
N/A

1.2

1.27

1.42

2.2

2.4

3.03

5.7

15

l/p =
1.18+64/N

1.23

1.28

1.39

2.03

2.24

2.78

4.38

7.58

The result can now be extended to the case of different types of sources with
different bit rates. Here again, the peakedness factor method is used, which
consists in fact of approximating the distribution resulting of the
superimposition to an Erlang distribution for a system handling traffic
equivalent with the single bit rate z.
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We had:

where z is the peakedness factor, a function of the mix of bit rates, A = Eai dt ,
(each type of traffic has an activity ai and a peak rate di), z = Eai di

2 / E
The same type of linear approximation as before thus gives:

Hence:

And thus for example, for two types of source, if we call e\ and e2 the
equivalent bit rate used by each class of traffic:

Hence:

We thus find again of course the basic relations of the equivalent bandwidth
for each source. In these application cases (large N), and for approximate
calculations, the peakedness factor method and the equivalent bandwidth
method are identical. They may be considered to be "symmetrical": one will
be preferentially used for dimensioning and the other will be used for call
acceptance. Finally, it may be noted that the actual capacities of the links are
such that the assumption that N is large is very generally true. This is why
these models are so useful.

9.2.4. Modelling and multiplexing of IP traffic

In this model we will consider that IP traffic has the following fundamental
characteristics:
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- the traffic originates from a large number of users and the process of

individual requests at session level, as at call level in telephony, forms a

Poisson process. Similarly global demand, at these levels, is predictable, and
results from the daily activity of the users;

- the IP traffic can be broken down into three main levels (see Chapter 1):

- session level: the sessions arrive in accordance with a Poisson process of
parameter p. For a link with a capacity C, if A is the arrival rate and v is the

mean volume per session (in bits, for example, the product of mean bit rate

and duration), the load of the link is then noted p = λ v/C,

- flow level: each session is made up of a succession of flows and periods
of silence. The flows consist of the transfer of files, e-mails, images, etc.

Traffic at flow level is "bursty", and the volume of flows is also extremely
variable (we will see how to deal with this problem by drawing a distinction
between two main types of flow),

- packet level: traffic at packet level is extremely bursty and has so-called
self similarity characteristics, particularly because of the interaction of the

origin traffic with flow control mechanisms (TCP) and error correction

mechanisms;

- IP traffic may be structured into two main categories of flow:
- real-time flows: such flows consist of the real-time transmission of voice

or video type data, usually under the control of the UDP protocol (no flow
control, no retransmission). Performance is mainly characterised by the
minimisation of the transfer delay (impact on the perception of interactivity by

the user, possible need of echo cancellers), by the minimisation of jitter and

compliance with an intrinsic rate (necessity of image and voice samples
synchronisation),

- elastic flows: such flows consist of the transfer of files, e-mails, Web

pages, etc., usually under the control of the TCP protocol (flow control,
retransmission). The real time constraint is less restrictive: for example,

transfer delays in the order of one second remain acceptable. Performance is
primarily characterised by the total transfer duration, or the effective average
bit rate corresponding to the ratio of volume to duration.

The IP traffic multiplexing model will be based on these characteristics as

follows. On one hand, a distinction is drawn between real time traffic and

elastic traffic, and most importantly (non-pre-emptive) priority is given to real

time traffic. This means that initially the required bandwidth can be evaluated

independently for each traffic category; the gains that are possible by
integration are then considered. Furthermore, because of the properties of the
session levels and flows, it is possible to overcome the complex problems of

packet level self similarity.
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9.2.4.1. Real time traffic

For such traffic, performance will be expressed in terms of loss rate or service
delay. Our problem is therefore to evaluate the bandwidth necessary to ensure

that the delays or losses to which packets are subjected are very low. The

simple models we present below enable this objective to be achieved, and
apply to most cases that arise in practice.

The bit rate generated by traffic and its characteristics (e.g. constant bit rate or
variable bit rate) are first determined by the coding characteristics.

For example, we may have a flow consisting of 1 packet of 200 bytes every

20 ms for a voice source handled in G711, that is a constant bit rate of
80 kbit/s. (Note that voice coded at 64 kbit/s generates one byte every 125 μs,

and that 160 are put in every 20 ms in a G711 packet intrinsically containing a

header of 40 bytes.) In this case, the flow corresponds to a session.

On the other hand, if the voice is coded according to G729A plus VAD (voice
activity detection), i.e. with silence suppression, we will have a variable bit

rate of series of packets of 60 bytes, with the average bit rate now being less

than 24 kbit/s. A session will be composed of flows corresponding to the

active periods (i.e. when no silence).

If we consider an MPEG 2 video coding session, and assume image by image
transmission, we would have for example the transmission of a flow of a
variable volume of data in the order of 20 kbits to 40 kbits on average every

40 ms, i.e. bursts of 2 to 4 packets on average every 40 ms (based on the
maximum size of the Ethernet frame which is 1500 bytes). The volume

obviously depends very greatly on the type of coding (MPEG 1, MPEG 2,
MPEG 4). Other packeting scenarios can of course also be considered.

The main coding characteristics of some fundamental types of real time

services are set out below.

VoIP

G.711: 1 sample of 1 byte every 125 μs (μ law), grouped in packets every 20
ms. Packet size = 160 bytes (20 ms) + 40 bytes (header) = 200 bytes (header -

20 IPV4 bytes + 8 UDP bytes + 12 RTP bytes).

50 packets/s = 80 kbit/s per direction.

G.729A: 1 sample of 10 bytes every 10 ms, grouped in packets every 20 ms.

Packet size: 20 bytes (20ms) + 40 bytes = 60 bytes.
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50 packets /s = 24 kbit/s per direction.

G.729A + VAD (silence detection): bandwidth reduction in the order of 50%.

Videoconference, visiophony

H261, H263 coding (64-128-384 kbit/s, 30 to 10 images/s).

Resolution: CIF (Common Intermediate Format) and QCIF (Quarter CIF).

Inter-arrival times of video frames:

Table 9.6. Visio coding and time inter-frames

Resolution

Codec

H261

H263

CIF

499 ms

340 ms

QCIF

214 ms

143 ms

On-demand or pay-per-view TV

MPEG: time compression (key I, and delta images B, P) and space
compression (jpeg, DCT):

-MPEG 1 for video (TV, CD) peak rate up to 3.5 Mbit/s (typical value
1.5 Mbit/s);

- MPEG 2 for better quality, > 5 Mbit/s to 15 Mbit/s (prediction);

- MPEG 4: TV HD. Possibility of low bit rates, of 64-128 kbit/s, but also high
bit rates. Use of VOP concept (video object).

In calculating the bandwidth necessary to multiplex this traffic, a distinction
must be drawn between constant bit rates and variable bit rates.

Constant bit rate case

The dimensioning of the necessary resources can be simply carried out as
follows. We first assume a call or session acceptance mechanism for each
service class. Acceptance or rejection of the session will be performed simply
by applying the Erlang formula, service type by service type, as the aim is to
guarantee a given rejection probability per service type (and not a mean
probability). For a service class of type i, bit rate di, activity (in erlangs) At ,
and for a rejection probability PRi, we have:
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which gives Ni, the maximum number of possible simultaneous sessions, i.e.
the maximum bit rate to be handled, Ni, dt.

Because of the multiplexing properties of constant bit rates as previously
studied (see the multirate concentrator/multiplexer model), the application of
an M/G/1 type model gives a good approximation of the bandwidth necessary
to handle this traffic (we are in the cell/packet zone), with an acceptable
quality of service. In practice, a simple rule could be adopted such as
compliance with a maximum utilization factor of 90%. This gives the
necessary bit rate capacity:

Variable bit rate case

Real time variable bit rate traffic (here we will speak also of stream traffic)
can be modelled by a source generating bursts of packets at a peak rate dt. It is
therefore an ON-OFF type source.

As previously, the maximum number of sessions Ni, that can simultaneously
coexist is determined, for an acceptable rejection probability, simply by
applying the Erlang formula. For a service class i, with a peak rate di, with an
activity (in erlang) of Ai (at session level) and for a rejection probability PRi,
we have:

which gives Ni, the maximum number of possible simultaneous sessions.

Let us first consider the case of flows of identical peak rate d. This model
corresponds to a system such that bit rate d is imposed, and chosen to comply
with sources with a higher peak rate (e.g. video).

For a relatively large number N of sessions constituting a flow of Poissonian
arrivals, it is then possible to evaluate the number of bursts simultaneously in
progress and thus the necessary capacity Cs simply by means of the Erlang or
Poisson formula, as in the case of ON-OFF source multiplexing considered
earlier. Cs being the total capacity and d the bit rate of the bursts, and if we
call D the ratio Cs /d, the system behaves like a concentrator with D servers. If
p is the probability for a source being in transmission phase (ON state), then:
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Psat = E(D,α) , or with the Poisson law: Psat =

where a = Np

(Note that it would also be possible to apply the Engset formula in the case of

a limited number of sources.)

Let us now consider the case of sources with different bit rates. This

corresponds to the case of a system in which the same peak rate is not imposed
for all flows, in particular to try to take advantage of better multiplexing gains,

as we have seen that this depends substantially on the equivalent number of

servers D. Note that it is necessary to be able to distinguish between flows. Let

us call di the bit rate or the capacity, required by a source of type i, and a i its
activity at burst level (proportion of time in ON state).

We thus return again of course to the multirate case. We can now apply the
results previously established, and to simplify calculations, apply approximate
formulas.

The x classes of traffic of bit rate dt and activity a i are replaced by a single
class of traffic with an activity a /z and a single bit rate z, such that:

The equivalent model to the initial system is again simply a multiplexer of
reduced capacity Cs/z, to which is offered a traffic of reduced intensity a / z,

whose saturation probability is:

Finally, the equivalent bandwidth approach will of course also be possible.

9.2.4.2. Elastic traffic

The performance of these traffics tends to be expressed in terms of processing
duration and response time for a flow, rather than at packet level.
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Our problem is therefore to determine the capacity Ce (in bandwidth) which is

necessary to obtain a response time T that is acceptable at flow level.

We still assume there are a large number of independent sources, and that as a

result the arrivals comply with a Poisson process. In this case, in view of the
role of the flow management protocols such as TCP, the system can be
modelled by a fluid system, such that the effective bit rate is immediately

adjusted to the number of flows to be processed simultaneously, assuming that
there is equitable sharing of the bandwidth between all the flows. Once again

we are considering the processor sharing model. The important point to be

stressed here is that it can be demonstrated that this model is insensitive to the
distribution of the "length" of "tasks", in this case the size of the flows. We
can thus overcome the difficulty of the great variability of flow level that
characterises this type of traffic.

Let λe be the flow arrival rate. Let x be the mean volume (size) of the flows

(in kbits for example, or product of source bit rate by flow duration). If Ce is
the capacity dedicated to this type of traffic, we have:

The distribution of the number of flows simultaneously in progress is given
by:

The average response time is:

for a flow of size x, and

Thus, by setting objectives on T , we can determine very simply the necessary

capacity Ce.
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9.2.4.3. Global capacity

The global capacity in this model can be obtained either by a model without
integration (i.e. a separate dimensioning for each type of flow), or by a model
with integration (that is by globally taking account of all flows).

For the model without integration we thus have:

For the model with integration, we suggest:

In this formula Csm designates the mean total flow of stream traffic (real time

variable). It may be considered that the bandwidth reserve, necessary to
correctly handle the total real time variable bit rate and constant bit rate
traffic, will be sufficient to handle the elastic traffic, provided of course that
the bit rate thus required is greater than the total of the mean bit rates of all
traffic. This is justified by the fact that elastic traffic has no strong real time
constraint, and does not have priority. Guaranteeing the corresponding mean
bit rate is therefore sufficient. Checks are however necessary to ensure that
variations in real time traffic strongly penalise elastic traffic only on
exceptional occasions (i.e. with a very low probability), so as not to create
periods of instability (a small reserve may also be taken against Ce).

We will see an example of the application of these results in Chapter 10.

9.2.5. Series queue model (M/M...M/1)

This is the name given to a succession of servers with a queue in series. This
model may correspond to certain realisations and routing strategies in
signalling networks or more generally in data networks. We will only deal
here with the simple (and extreme) case of a series of identical servers that
only process a single message flow (Poissonian at input), and whose
processing time is directly proportional to the length of packets (or messages),
a length that is governed by an exponential distribution. Under these
conditions, the service time varies with each message but is the same whatever
the server for a given message. We will however also show that this model can
also be applied, in certain conditions, to the general case of a meshed network
and in particular to the case in which converging flows are added.
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Figure 9.19. Network of queues in series

The basic problem is as follows: messages grouped at a node k (k 2), remain
grouped in the following nodes and an agglutination phenomenon occurs
which grows with k, leading to the formation of increasingly large bursts as
they pass through the network. This phenomenon is intuitively obvious, but is
difficult to quantify.

Let us make the phenomenon explicit. There is something specific about nodes
1 and 2: node 1 is of course an ordinary server of the M/M/1 type, and
agglutinations may occur in the queue. However, these groups may be broken
at node 2. Let us assume that a message of index m\ is in service at node 1 and
is followed by a message m1+1 that is waiting. At the end of service of m1 at
node, the service of m\ at node 2 begins and the service of m1+1 at node 1
begins. If m1+1 is longer than m1 then the end of service of m1 at node 2 takes
place before that of m1+ l at node 1, and the burst is broken.

On the other hand, if the message m1+ l is shorter than message m\ then the
messages remain grouped at node 2. It is easy then to check that at the output
of a node k, fork> 2,2, for any burst, we hav

- all messages belonging to a burst have a length shorter than or equal to that
of the leader (the first message of the burst);

- all bursts thus formed are conserved at the output of all the following nodes:
the messages that constitute it remain definitively attached.

Without going into detail, we can thus intuitively write the following
properties that are easy to verify:

- all messages belonging to a burst at node k have a sojourn time at this node
equal to the service duration of their leader;

- all bursts whose leader is shorter than the leader of the previous burst will be
(after some time) agglutinated with the previous burst (the more rapid
messages finally catch up with the slower messages).
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We can thus deduce that, if we call (n, k) the index of the burst of number n at
node k, then the necessary and sufficient conditions such that burst (n+ l, k-1)
catches up with burst (n, k-l) at node k are:

- its arrival date (the date of arrival of its leader) at node k—l, which is
necessarily later than that of the previous message, is in an interval x that is
shorter than the service duration of the leader of the previous burst;

- the service duration of its leader is shorter than or equal to that of the leader
of the previous burst.

All these results can be found by carefully considering Figure 9.19, which
shows the successive arrivals of the messages with the following notations:

B(n,k): burst n at the output of node k,

n
bn (i) : message i of burst B(n, k),

k

n
b (1): first message of burst B(n, k), called the leader,

k

n
b (j) : last message of burst B(n, k),

k

t0 : date of start of service of burst n at node k-l, burst B(n ,k-1),

t1: date of end of service of burst n at node k-l,

t2: agglutination instant at node k of bursts n and n + 1 of node k-l.

Figure 9.20. Burst formation
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NOTE: For the sake of simplicity, only the first message (in bold) of burst n+1
bk—l (1)n+1at node k-1 is shown, noted bn+1

k-1 (1) .

Now that these properties have been explained, we need to quantify the
agglutination phenomenon.

An initial approximate result can be easily obtained: this is the mean value of
the busy period (in number of messages) at each node, i.e. the mean length of
the bursts.

Based on the previous analysis and in particular the agglutination conditions,
we know that agglutination occurs at each stage for a time interval x which is
equal to the service duration of the leader, which is also the sojourn time of
each of the burst messages at each stage. At input into the network, because of
the Poissonian arrivals, the mean number of messages agglutinated, behind a
leader, is of course:

After a long time kx, all the groups of messages formed at the input between
two long messages, i.e. during successive sub-busy periods behind shorter
messages, will be agglutinated at stage k (behind a long message), and their
average number will therefore be approximately:

It is therefore possible to write the following approximate relation. The
average length of bursts n(k), in number of messages at each node k (k > 2), is
such that:

Figure 9.21 shows that this result matches up well with the simulation results.
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Figure 9.21. Mean burst length per node

Let us now study the wait at each node. To resolve this complex problem we
make use of the Pollaczek method. We will mainly follow here Le Gall's
approach [LEG 94a].

According to the general method, let us first establish the stochastic
relationship. We may write N = m + 1 (the network consists of m + 1 nodes in
series). Let us call, at node k, for the nth message:

wk : waiting time,
n

Tk : service time,

sk: sojourn time (sn
k = wk

n + Tk
n),

Y k : inter-arrival time (between messages (n-1) and n),
n-1

and let us introduce:

Tn (2,k) = T2
n ... + Tn

k: global service time from node 2 onwards,

Sn (2,k) = s2
n ... + Sk

n : global sojourn time from node 2 onwards.

Let us first consider the case of two servers in series. Let us write:
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We can then write:

This relation simply expresses whether or not there is a wait at node 2.

Let us now term ek
n: the free time period of server k (k = 1.2), if it exists,

between messages (n-1) and n. We have:

This relation simply expresses first whether or not there is a wait for message

n at node 2 (Max= [T1
n] if there is no wait), and second whether the service

of message n-1 at node 1 is finished (e1
n= 0), or not before the arrival of

message n.

These relations are easy to verify by referring to the type of chart presented
earlier (see Figure 9.20).

As the service durations are identical at each stage, we have:

and thus:

This is the basic stochastic relation from which we will begin to study the
general case.

Our network thus consists of m + 1 servers in series. It is possible to verify by
recurrence, by referring to the previously established properties, that the
previous relation can be generalised as follows:
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This is the fundamental stochastic relation of our network with m+1 nodes in

series. Thus, with a simple change of variable t—> t/m, we return to the
m

stochastic relation of the network with two nodes, and we can thus apply the
results (at the second server) of the network with two nodes to our system.

S(2, m + 1),
Furthermore, if we call S(m + 1)= S(2,m + 1)/m the mean sojourn time per

m
node (from node 2 onwards), we have the following approximate recurrence
relation:

and for the wait at node k (k = 2, m+1), taking the mean service duration as the
time unit:

Calculation of sojourn time in the case of two nodes

In the case of two servers in series, with Poissonian arrivals (of rate A) at the
first server, and an identical service law at all servers F(t), Boxma [BOX 79]
has demonstrated the following result for the sojourn time at the second
server:

where :

where z(t) is the single real and positive root of the equation in z:

z(t) being small, we make the following approximation:
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And we thus obtain:

where α(t)= λ f0 udF/1- α (t) (u) and α ( ) = p

and thus also 

Furthermore, by integrating by parts (α,(t) = λ f0 udF(u) , we have:

where

Given that 1 - F (u)/E(T) is simply the expression of the density of the residual
E(T)

service time (see Chapter 7) and thus:

Hence, where t is large, t[l — F(t)]— >0 and:

And finally:

hence
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Application to the network of m+l servers in series

In view of the stochastic relation we can treat each stage as stage 2 with the

change in variable t —> t/m. The variable t now takes the value — .
m m

Hence:

We thus have: S(t;m) = L ( t ) [ j ( t ) ] m F(t) and in view of the previous result

J(t) L(t) , we have:

The mean sojourn time by node (from node 2 to node to (m+ l)), is thus:

And the total sojourn time of node 2 up to node m+l is therefore:

m S(m)

Let us evaluate this expression in the case of an exponential service duration
distribution.

In this 

Hence:

Let us write: u = e-t , which gives us:
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S(m)

Let us write v =p/1-p u , which gives us:

Given that

And 1

Hence

And finally:

Finally by using the recurrence relation:

we obtain the mean wait at a node k, V k >2:
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For sufficiently large k values, we can write:

, and also,

where λ is the Euler constant (λ ~= 0.577)

and thus:

An asymptotic value of the wait is thus:

or in the case of very high values for k:

The result is remarkably simple in view of the relative complexity of the
calculations.

Figure 9.22 shows the very good coherence between the model and the
simulation.
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Mean witing time per node: simulation (S) and calculation (C) for different
loads (10..90%)

Figure 9.22. Mean waiting time per node

Generalisation for the case of convergent intermediate flows

This time we consider the possibility of additional flows converging on to the
same server.

Figure 9.23. Converging queues in a meshed network

It is then possible to demonstrate [LEG 94a, LEG 94b] that this network can
be reduced to an equivalent network of queues in series by changing the
number of servers m to an appropriate value m0. Similarly, the transversal
flows that have existed upstream can be ignored. We will not indicate these
results in detail. But it is important to note, on one hand, that these properties
enable treatment of the general case of meshed networks, and on the other
hand that agglutination phenomena may remain noticeable in very general
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cases (provided of course that the physical realisation gives rise to this
situation).

Conclusion concerning the series queues model

An expert in queueing theory will note the necessity of making use in certain
cases of global end-to-end modelling of the system. The behaviour at each
node, and particularly the arrivals, depends on the behaviour at the previous
nodes. As the messages can be grouped because of the agglutination
phenomenon, they become indiscernible and as such they cannot be processed
individually. Strictly speaking, the habitual concept of local traffic source is
no longer pertinent. This explains the relative complexity of the problem.

The performance expert will primarily take note of the strong impact of this
phenomenon of queues in series on the busy period, and on the local wait
value, when the conditions of realisation are met. He will take care to ensure
above all that these realisations should not lead to uncontrolled agglutination
phenomena. At transport level, techniques such as flow mixing, the limitation
of the maximum length of messages, the use of high bit rate links, etc. will
make it possible to avoid this type of phenomenon. At the system control
level, the chaining of excessively long tasks must be avoided, as this creates
the "hiccup" phenomenon which has an avalanche effect on processing queues.
These problems will then need to be handled on the same basis as exceptional
situations such as simultaneous arrivals (on failure and switchover, on game
synchronisation pulses, etc.). We are here entering the field of the defence of
systems and networks in extreme situations, and the analysis must then take as
much account of the deterministic approach as of the probabilistic approach.

9.2.6. Switching matrix

We will here study the case of an ATM switching matrix which switches
packets of constant length. The modelling of this system, although specific,
will enable us to deduce relatively general results.

Let us consider a matrix with output queues, switching M input links to M
output links, organised as indicated in Figure 9.24.
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Figure 9.24. Switching matrix with output queues

Let p be the probability of occupation of a cell time of an input link. We
therefore assume a Bernoulli process for occupation of the cell times on this
link, which relatively well represents the actual behaviour of a link on which
various traffic currents have been multiplexed.

We therefore also assume perfect equiprobability of traffic routing, which
means that each cell has a probability of 1/M of going towards one of the
outputs. The probability for an output link of having a cell time occupied
because of an input is therefore p/M.

Note also that the output link load, or the cell time load, is = p. Let us now
calculate the number of cells in the system, awaiting sending on an output
link. For this purpose, let us calculate the number of arrivals on this link over
a cell time.

The probability of i cells arriving simultaneously at a given output at a given
instant is:

The characteristic function of P(x) is then:

or in terms of the generating function F(z) =

And therefore (see also Chapter 4):



408 Communicating Networks: Traffic and Performance

We can now apply the Pollaczek relation for the number of customers (cells in
this case) in the system (see Chapter 7):

Hence:

The moments can be deduced by differentiation relative to z, and for z = 1 (see
Chapter 3).

At this stage, it is interesting to compare this with the classical result of the
M/D/1 queue.

We have (see Chapter 7):

and:
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This shows that as soon as M is large enough (> 10), even without really being
very large, our system is equivalent to an M/D/1 queue.

Finally let us note the expression of mean waiting time, obtained by applying

the Little formula (the arrival rate is 1/p):

E(W} = (M - 1/M )1 -- 2P/1-Pτ , where τ is the cell time
M

Once again we note the similarity with the M/D/1 queue.

This result is of course obvious when M is tending towards infinity. What is
remarkable is the rapidity of the convergence. The approximation to the M/D/1
queue can thus be applied in most real-life cases. And more generally, in the
case of packets of variable length, approximation to an M/G/1 queue will be
valid.

9.2.7. Switching network

The switching network, or connection network, is an equipment that enables
the establishment of a physical path for the transport of information between a
data input and a data output for the duration of a call, or session, or any

communication phase whose duration and integrity justify the establishment of
such a path. It may of course be a matter of establishing virtual paths (circuits)
between virtual input and output circuits, supported by physical links. A
switching network necessarily includes several subsystems, usually called
matrices, arranged in stages and interconnected. The purpose of this assembly
is to construct networks with a very high capacity using elements of limited

capacity. Figure 9.25 illustrates the principle of a 3-stage network in schematic
form. The end stages include m matrices with n inputs and k outputs, and the

central stage includes k matrices with m inputs and m outputs. If the capacity
of each input or output link is c (e.g. c channels at 64 kbit/s or c Mbit/s) the
network is said to have a capacity of nxmxc. But this capacity of course
depends on the interconnection capacity of the end matrices by the central
stage, and thus on the value of k, and on the capacity of the internal links.
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Figure 9.25. Three stages switching network

Very generally speaking, a network is characterised in traffic terms by three
main parameters:

- its blocking, i.e. the probability that no free path will be found between the
free input and the free output considered (point-to-point blocking). Blocking
will occur for example if no physical path is found with the minimum
bandwidth required by the communication;

- its transfer delay, i.e. the characteristics (mean, dispersion, quantiles, etc.) of
the total of the waiting times and service times to which the elementary
information (the packet for example) is subjected at each switching stage. In a
synchronous network, such as a conventional telephone network, there will be
no waiting time except for some fixed re synchronisation delays. On the other
hand, in an asynchronous network (ATM or packets), each stage may include
queues and thus cause variable delays. (Note here the maximum delays given
by Q.551, see Chapter 2.);

- the probability of information loss. In a packet or ATM connection network,
queue overflow will result in information loss.

9.2.7.1. Blocking calculation: Lee-Le Gall model

This model is very general, and encompasses calculation methods such as
those of Lee and Jacobeus.

Let us return to our example of three-stage network architecture. For the sake
of simplicity, we assume that all the links have an identical capacity c, i.e. we
allocate a capacity of c places, or virtual circuits, or resources, per link
represented. We call links A and B the links between the input stage and the
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central stage on the one hand, and between the central stage and the output

stage on the other hand.

To facilitate the reasoning, we first show the possible paths for a

communication, between a given input and a given output, using a so-called

Lee graph (see Figure 9.26). We first establish what Le Gall has called the

"fundamental function" of the network [LEG 62], assuming a Bernoulli

distribution for the occupation of places and paths at each stage. It is generally

assumed that the stages are independent of each other.

Figure 9.26. Graph of paths in a three stages switching network

Thus if we callp1 the probability that a resource in a link A is occupied, and P2

the probability that a resource in a link B is occupied, then the probability B

that all the possible paths between an input of A and an output of B are

occupied, assuming that the paths are independent, is:

A path is in fact only free if there is a free place on link A and a free place on

a corresponding link B. Blocking occurs if there is no free path on any link.

To simplify writing, let us now write π1 = p1

c the probability that a link A is

occupied (the c places are occupied), and π2 = p2

c the probability that a link B

is occupied. The previous relation is now written:

And by applying the Pascal binomial law:
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we obtain:

This is the fundamental function of the network, which is written as follows:

This clearly indicates three terms. The two π terms independently express the
probabilities of occupation of the places and paths at each stage based on the
Bernoulli assumption. And the term with the factorials, independent of the
occupation probabilities, reflects the impact of the network meshing type. The
model can be generalised to all meshed structures, obviously with analyses of
greater or lesser complexity, but which remain in the field of counting and
combinational analysis.

In a second stage, we do away with the binomial hypothesis.

Clearly the blocking expression in the previous form is not particularly useful
based on the binomial distribution only, and the (1 - p) type expression such
as (9-120) would fully suffice in this case. In practice, we will have to take
other distributions, first depending on whether the edge matrices concentrate
the traffic or not, and secondly depending on the free path seek mode (e.g.
equally traffic distribution, sequential hunting..), which result in a greater or
lesser degree of interdependence between the resources. However, in most
cases we will find necessary to make simplifying assumptions.

Initially, let us abandon the independence assumption concerning the
independence of the links of the same matrix. In fact, the traffic from a matrix
A is offered globally to all the k outgoing links and thus the probability of
occupation of a given link is not independent of the state of other links.

Thanks to the previous formulation, by replacing π1'
+j by Hi+J and π2

k-i by

Hk_i , we can write:
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HI represents the probability of having j links out of k occupied, whatever the

state of the remaining k-j links, that is to say, the probability of having j x c
places occupied out of c x k places. In fact, defining whether a link is occupied
is equivalent to defining that the c given places that constitute it are occupied.

Secondly, we must express this probability H. As explained previously, the
distribution to be used may vary depending on the nature of the traffic offered
and the mode of network operation. Let us first calculate Hr, the probability of
occupying r given places out of N, on the often verified hypothesis of place
occupation equiprobability.

Let x be the total number of places occupied on the N, and let r x the places
with which we are concerned. The number of ways of having the r places
given amongst the x is the number of ways of placing the remaining x-r places

in the x, that is . And the number of ways of occupying x places

amongst the N is

The probability of having r specified places occupied is thus:

Palm Jacobeus formula

A rather pessimistic assumption consists of taking the Erlang law as the law of
distribution for the occupation of x places out of all the N places, with A being
the offered traffic. We then obtain by summating all the possible cases:

, also written // =
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And thus:

which is the well-known Palm-Jacobeus formula.

Extension to Engset

We can easily obtain, in the same way, a similar expression in the Engset case.
This exercise can be carried out by the reader, who will verify that we then
obtain:

where E(N,S,A) is the Engset formula for N servers, S sources and traffic A.

This expression can be used in the case of traffic from a limited number of
sources.

Blocking

In our case, assuming Erlang traffic, the probability of having j links occupied
is that of having r = j x c places occupied amongst k x c, and therefore:

assuming that traffic is identical in both stages.

The network blocking probability is therefore:
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Table 9.7 gives some examples of numerical results.

Table 9.7. Blocking as a function of the capacity and the number of links
between stages

c

k

4

8

16

32

1

A=0.235

B=4.79 10-4

A=1.42

B=7.51 10-4

A=5.34

B=1.17 10-3

A=15.60

B=1.68 10-3

5

A=7.771

B=2.44 l0-4

A=21.4

B=2.48 I0-4

A=52.7

B=2.76 10-4

A= 120.9

B=3.45 l0-4

10

A=21.4

B=2.2 10-4

A=52.7

B=2.17 10-4

A=120.9

B=2.36 10-4

A=264.75

B=2.68 10-4

25

A=69.3

B=2.07 10-4

A=156.2

B=2.058 10-4

A=338.4

B=2.11 10-4

A=714.3

B=2.273 l0-4

50

A=156.2

B=2.029 10-4

A=338.4

B=2.023 10-4

A=714.3

B=2.054 10-4

A=1481.7

B=2.138 10-4

100

A=338.4

B=2.011 10-4

A=714.3

B=2.016 10-4

A=1481.7

B=2.028 10-4

A=3037.8

B=2.074 10-4

200

A=714.3

B=2.010 l0-4

A=1481.7

B=2.010 10-4

A=3037.8

B=2.019 10-4

It is easy to verify that if k x c is large compared with k, the blocking is very
well approximated by:

This can easily be explained by the fact that the most frequent blocking cases
are:

- either k links are totally occupied in the second stage, whatever the state of
occupation in the first stage, which corresponds to i = 0 and j = 0,

- or k links are occupied in the first stage, whatever the state of occupation in
the second stage, which corresponds to i = k and j = 0.

For each of these cases, the blocking probability is E(ck,A) .

This practical result is important as it clearly shows the preponderant influence
of c, capacity (or bit rate) of the internal links, relative to meshing.

To complete this model, let us consider the special and extreme case of the
same network where c = 1. This simple case can be directly studied on the
graph.
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As previously, blocking occurs if the free places amongst the k possible places
in each stage do not match up. If we call i the number of occupied places in
stage A and j the number of occupied places in stage B, such that i + j k , the
blocking probability is:

This is the number of ways of placing the k— j free places in the second stage
in front of the /' occupied places in the first stage, divided by the number of
ways of placing they amongst the k. And so, still assuming the Erlang law, and
summating all the possible cases, we obtain:

which can also be written:

and if we introduce u = j - (k - i), we obtain:
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Hence:

This result is remarkable, because of its simplicity (after a few developments
however, which explains the usefulness of the Lee-Le Gall method for more
complex cases), but above all because it again demonstrates the relative
influence of k and c. As there are not many possibilities for each link (here
there is only one, c = 1), a very high value of k is required to obtain low
blocking with good efficiency.

9.2.7.2. Multi-bit rate network case

The analysis we have presented is very general, and applies as already
explained to TDM (time division multiplexing) networks, ATM (asynchronous
transfer mode) networks, or packet networks, if the connections are
established on the basis of a virtual circuit and at an identical bit rate. The
blocking evaluation in the case of the mixing of connections of different bit
rates is far more complex, but can be simplified and brought into compliance
with the previous case by some simple considerations. In most cases the bit
rates to be transported remain low compared with the bit rate of the links. This
is in fact a prerequisite to obtain significant gains in multiplexing. In this case,
we can apply with sufficient precision the peakedness factor model on each of
the links, as presented in the multi-bit rate concentrator and multiplexer cases,
and thus arrive at the "reduced" network model. The reduced network consists
of the initial network but with the capacity of each link divided by z, the
peakedness factor value. For example, the previous network path graph thus
becomes that indicated in Figure 9.27.
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Figure 9.27. Equivalent graph with the "reduced" network of a multi-bit
rate network

In the previous expressions therefore we need only to replace the Erlang
c A

formula by its equivalent multirate formula: E(c/z ,A/z), where c is the number

of places corresponding to the smallest bit rate traffic taken as the unit. Thus
for example for the network considered, the blocking given by the
approximate formula B = 2E(ck ,A) — E(ck ,A)2 becomes quite simply:

Note that, consequently, for a given blocking probability and a given link
saturation probability, call acceptance may be simply based on the equivalent
bandwidth approach.

9.2.7.3. Non-blocking networks

This section would not be complete if it did not consider the fundamental
characteristics of non-blocking network structures. It is also the role of the
performance engineer to identify and compare solutions, which although
clearly more expensive in hardware terms, can also simplify problems relating
to path seeking, bandwidth reservation, and QoS.

Non-blocking connection network structures are frequently referred to as Clos
structures.

The principle is simple in the light of the previous analyses.

In view of the number of possible inputs and outputs on a network, the aim is
to increase the number of paths sufficiently so that at least one free path
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always remains between a free input and a free output (here also, we are only
interested in point-to-point blocking; the case in which all inputs or outputs
are occupied is an access problem).

Let us look again at the previous network structure (see Figure 9.28).

Figure 9.28. Non blocking structure (k = 2n - 1)

a) We will first consider the simple case in which c = 1 (one single place per
link).
The non-blocking condition is:

As a matter of fact, if it is intended to establish a connection between a free
input of A and a free output of B, given that this input and this output are free,
then there are at most n - 1 inputs taken on A and n - 1 outputs taken on B.
Therefore there are at most x = n — 1 internal A or B links taken on each side
of the network. For there to be at least two links free (A and B) in
correspondence, the necessary and sufficient condition is that:

k 2x +1, therefore k >2x=

This is what is called an expansion factor network of e = 2 - l /n . In fact the
number of internal links is e times higher than the number of external links.
This is the price to be paid to ensure that there is no blocking.
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b) Let us now study the case in which c 1 . A place is said to be free if there
is bandwidth available on the link (input, output or internal) that corresponds
to the bit rate required by the connection.

As previously, when we want to establish a connection between a free input of
A and a free output of B, there are at most nc-l inputs taken on A and nc - 1

outputs taken on B. And therefore there are at most x= internal A or

B links taken on each side of the network. This can also be written

For there to be at least two free links (A and B) in correspondence, the
necessary and sufficient condition is that:

We thus obtain the previous condition.

c) Let us now study the case of mixing connections with different constant bit
rates.

Let D be the bit rate of a link (still supposed to be the same for all links). Let d
be the highest bit rate of the connections to be established. We want to
establish a connection whatever its bit rate di d . There are at most nD - d

inputs taken on A and nD — d outputs taken on B. And therefore there are at

most        te r nal links taken on each side of t he 

network, with d0 « d depending on the modularity ("granularity") of the bit
rates to be transported:

Thus, if all the services have an identical bit rate d and if D = cd, we have:

= n — l. We obtain the previous condition, that is

If the connection bit rates are different, the expansion factor may become far
larger, depending on whether d is high or not relative to D. For example, let us
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consider the case in which d = D/2. We obtain:

And thus with the condition k > 2x +1, we obtain:

This extreme case shows the role of the parameter d0 which reflects the impact
of connections of a lower bit rate than d. In practical terms, it should be

understood that a simple bit rate connection di « d alone may prevent the

establishment of a bit rate connection d, even if a bit rate d - di. remains.

Conclusion

From a practical viewpoint, when the maximum bit rate to be handled is
clearly lower than that of the link, for example 2 Mbit/s on a 600 Mbit/s link,

the network behaves as a conventional network. It is possible to guarantee for
any connection with a bit rate lower than d, either zero blocking, by carrying
out expansion to 2n - 1, or accept a certain blocking, lower than that of the
network transporting only connections with the bit rate d. The models and
methods presented will enable the identification of the structures that are most
suitable for the chosen objective.

9.2.8. Traffic matrix, Kruith of method

We will now consider the problem of evaluating the distribution of traffic
flows between the various directions of a telecommunications network in the
broadest sense (international, national and local network). This knowledge is
of course absolutely necessary to determine the capacity of the equipment to
be installed.

In many cases, it will be a matter of having to estimate a new distribution,
because of traffic growth, the introduction of new services, or the installation

of new network and subscriber equipments. The Kruith of method is an attempt
to resolve this problem.

The problem faced is that of the extrapolation of traffic data. To be more
precise, we know the present distribution of the flows in the network. This
distribution is given by the traffic matrix, the A matrix whose element

ai,j gives the value of the traffic circulating from node i to node j (see Chapter
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1). The number of nodes in the network is noted N. The sums by lines and by
columns, which are respectively designated by Ai,. and A., j , represent the

traffic leaving node i or entering node j:

This matrix is assumed to be known for the current instant t and the problem
faced is predicting its value for a future period, which can be noted t + 1.

Forecasting tools, based on the general planning methods, taking
socioeconomic data into account, enable the prediction of the change in global
traffic Ai., and A., j (these traffics are linked for example to the composition of

the clientele connected to the nodes and to changes in its behaviour). A direct
forecast of the ai,j is however impossible. The purpose of the Kruithof

method is to construct a new matrix, whose structure is closest to the initial
matrix, in terms of affinity between lines and columns, and complying with the
global traffic forecasts.

Note also that, because of its principle, the method enables the calculation of a
probable matrix based solely on knowledge (or assumption) of global traffics
and proportional distribution of traffics. This is particularly useful in the case
of network creation or introduction of new services.

The method is iterative as described hereafter.

Let us note as a(m)
i,j (t + 1) the traffic forecast for period t + 1 at the end of

iteration m.

ITERATION 1 : On each line a proportional transformation is carried out with the

ratio Ai., (t + l)/ Ai,.(t):

ITERATION 2: Clearly, the movement on the lines will disrupt the columns, such

that the sums A(1)
., j will not be identical to the forecast. The second iteration

attempts to overcome this difference, by renormalising relative to the target
value:
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a:(2):=a:(1):.

ITERATION 3: As the normalisation of stage 2 has in turn disrupted the sums of
the lines, we therefore reiterate stage 1:

ITERATION 4 AND SUBSEQUENT ITERATIONS: Iteration 4 is identical to 2, and the
process continues until a stop criterion is verified.

One possible criterion would be a test on the quadratic error:

Example of use

Let us assume a matrix of traffic between 5 given nodes, as shown in Table
9.8.

Table 9.8. Initial traffic matrix

To
From

A

B
C
D
E

Total
incoming

A

10

9
12
19
14
64

B

20

12
21
23
13
89

C

25

21
30
14
18
108

D

18

11
13
10
21
73

E

24

18
10
19
22
93

Total
outgoing

97

71
86
85
88
427

Let us now assume that the incoming and outgoing traffic forecasts are given
in Table 9.9.
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Table 9.9. Global traffic forecasts

To

From

A

B
C
D
E

Total
incoming

A

70

B

100

C

120

D

100

E

135

Total
outgoing

110

100
90
105
120

525

On the first iteration, we will multiply the elements of line 1 by 110/97, those

of line 2 by 100/71, etc. There is thus an initial iteration. The column sums,

giving the incoming traffics, differ from the target, and we thus carry out

iteration 2, advancing by columns.

Iteration 1

A

B

C

D

E

Σ

A

11.34

12.68

12.56

23.47

19.09

79.14

B

22.68
16.9

21.98

28.41

17.73

107.7

C

28.35

29.58
31.4

17.29

24.55

131.16

D

20.41

15.49

13.6

12.35

28.64

90.5

E

27.22

25.35

10.47

23.47

30.0

116.5

I
110
100

90

105

120

Iteration 2

A
B
C
D
E

I

A
10.03
11.21
11.11
20.76
16.89

70

B
21.06
15.69
20.41
26.38
16.46

100

C
25.94
27.06
28.72
15.82
22.46
120

D
22.56
17.12
15.03
13.65
31.64

100

E
31.54
29.38
12.13
27.2
34.76
135

I
111.12
100.46
87.4
103.81
122.21

The same process is continued, and convergence is very rapid. Iteration 5

supplies the matrix that we will adopt as definitive (see Table 9.10).
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To
From

A
B
C
D
E
Total
incomin
g

A

9.91
11.14
11.43
20.97
16.55

70

B

20.78
15.57
20.96
26.6
16.1

100

C

25.62
26.88
29.54
15.98
21.99

120

D

22.39
17.09
15.53
13.85
31.14

100

E

31.31
29.33
12.53
27.6
34.22

135

Total
outgoing
110
100
90
105
120

525

NOTE: For prediction problems, refer to the UIT planning manual (see
bibliography).
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Performance Methodology

In this chapter, we present a methodology which, when applied to the various
phases of equipment and network development, should ensure that
performance and quality of service (QoS) objectives are met. As in Chapter 2,
we will stress the generic aspects of the approach, while drawing on concrete
examples of existing networks and equipments.

In the preceding chapters, we presented an overview of performance
parameters and the corresponding objectives which are generally required by
standards or by suppliers of networks and services. We have also presented the
tools necessary for calculating these parameters.

We will now show how these various elements can be applied as part of a
methodology which is truly integrated with the development life cycle of
products and networks. This methodology is aimed at guaranteeing to the
equipment supplier that the targets will be met within the required time
frames, to the network supplier that the equipments comply with the
specifications, and finally to the user that the service provided will meet
his/her expectations.

In practice, we will show here the various facets of the performance evaluation
profession, focussing in particular on the necessity of a global and coherent
approach, from the start of the project up to the experimentation and the
operational phase.

10.1. Project life phases

The development of a system, or the setting up of a telecommunications
network usually follows what is called a V-shaped life cycle, as shown in
Figure 10.1.
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Figure 10.1. Project life cycle and performance activities

Six major activities can be identified here: analysis of need (or contract
definition), general analysis (or architecture definition), production, analytical
tests, validation and monitoring-maintenance.

The performance evaluation methodology is itself associated with six other
activities in parallel: performance objectives definition, architecture
modelling, code measurements, unitary performance measurements, on-load
tests and monitoring of performance during operation.

For each of these activities, which we will consider in detail, one or more
documents will normally be compiled, and these are listed in Table 10.1.

We will now set out the main tasks in detail and provide examples
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Table 10.1. Performance activities and documents

Performance documents
Project phase

Contract
definition

Definition
of architecture

Development of
code

Analytical tests

Validation/
Integration

Client support

Title
1 -Reference
environments and
performance
objectives
1-Modelling of
traffic performance

2-Modelling of
dependability
performances

3-Dimensioning
rules

4-Traffic and
dependability test
strategy
1-Definition of code
measurements.
2-Measurements
and results
1-Definition of
unitary performance
measurements
2-Measurements
and results
1-Definition of on-
load and overload
tests
2-Definition of
dependability tests
3-Tests and results

1-Presentation of
performances
2-Monitoring of
sites

Object
Specifies traffic hypotheses, mechanical
and climatic conditions, capacities and
performance objectives under normal
load and overload conditions.
Models architecture in terms of clients
and servers, evaluates capacities and
response times. Proposes solutions.
Models architecture in terms of
redundancies, defence mechanisms and
deduces availability, etc. Proposes
solutions.
Defines the capacities of each element
and the rules for calculating the number
necessary to handle the traffic.
Defines the list of tests to be performed
to verify performances, and the
necessary test facilities.

Defines the code parts to be measured,
and the means.
Interprets the measurements and
provides an overview of results.
Defines the types of calls and processing
to be measured (CPU time, etc.), and the
means.
Interprets measurements and provides an
overview of results.
Defines the call mixes to be tested, the
means, and the on-load capacities and
overload capacities to be checked.
Defines the faults to be injected, and the
defence mechanisms to be checked.
Interprets tests and provides an
overview of results.
Presents performances and
dimensioning rules to clients.
Observes on-site behaviour. Analyses,
explains and corrects site problems.
Draws conclusions.
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10.2. Analysis of need

Definition of performance objectives and reference environments

The analysis of need, also called contract definition phase, is upstream of the
life span of the project and in fact is at the basis of the birth of the project. It
consists of analysing the external specifications, standards and specifications,
to identify in terms of services (functions and capacities) the content of the
project, its duration and the associated realisation costs. During this phase, the
performance engineer will participate in the definition of the global capacity
targets of the projected equipments, and identify the main performance
parameters and objectives to be met, and the reference environments to be
taken into account (both in terms of traffic and dependability).

These three aspects are intimately linked: determining a traffic flow capacity
is only meaningful if the traffic hypotheses are defined, i.e. the mixes or the
proportions of calls of each type to be handled, together with the expected
response times or loss rates. For example, the bit rate required by a video
service (several Mbit/s) is not the same as that required for voice (a few
kbit/s). Similarly, a telephone call with additional services requires more
resources than an ordinary call, and an unsuccessful call (failing because of
congestion for example) occupies network resources for less time than a
successful call resulting in a call of several minutes, or several tens of minutes
for IP sessions. Finally, response time requirements of greater or lesser
severity may considerably change the number and nature of equipment to use,
and thus the cost of the products developed, and finally the project cost.

10.2.1. Reference environments in traffic

When defining performance and particularly capacity targets, it is clearly
necessary to define which service types are to be handled and for which traffic
volumes. Clearly also, it is not a question of defining a product or network for
a single value and single traffic mix, nor at the other extreme designing a
product that is ideal for everything. This would either be unrealistic or
uncompetitive. The aim therefore is rather to define one or more reference
models, which will be termed reference mixes. As we shall see, they will
reflect proportions of activation for each traffic type, and on this basis it will
simply be a matter of determining and testing the characteristics of
architectures to meet performance targets.

Beginning with a typical population of users, described by the proportion of
each category (professionals, residentials, large and small companies, etc.),
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services, and what are known as service penetration rates and service
activation rates, are associated. For example, it will obviously be understood
that a professional user (such as a large company) will make more use of the
broadband videoconference facility than a residential user (the normal
subscriber in his/her home will not be equipped with the necessary equipment,
and will use a simpler service). Based on a similar penetration rate, we can
also conclude that the utilisation or activation rate of a service such as voice
calls or the exchange of e-mails will be far higher for a professional than for a
residential user (there is no comparison between the two cases in terms of
number of calls per time unit and number of erlangs per user).

The other dimension to be considered when establishing a reference mix is that
of traffic flows relating to the determination of the traffic matrix. Whether at
network or network element level, it is necessary to distinguish between
incoming flows, outgoing flows, local and transit flows, as explained in
Chapter 1.

To explain what this means in practice, we give below a few examples of
mixes, in the field of fixed telephony, mobile telephony and IP. We will not
set out in detail the method used to obtain each of these mixes, but we will
give an example, and will finally show how the result must above all be
synthetic.

For the first example in fixed telephony, a distinction is generally drawn
between four user categories: residential users, small companies, medium-
sized companies and large companies. Furthermore, it is necessary to
distinguish between users equipped with broadband lines and others (ISDN
subscribers, ADSL subscribers, etc.). An equipment rate and a utilisation rate
is allocated to each of these categories. Then, allowing for the distribution of
population, the characteristics of mean demand are obtained.

Tables 10.2 and 10.3 sum up this approach for fixed subscribers in a country
with a high equipment rate and high efficiency.

These are only indicative values illustrating an approach which is very widely
applied to all types of networks and services as we will see later.

The mean call time is taken here to be equal to 150 seconds., which can easily
be verified: e.g. (0.96 x 150)/3600 = 0.04. In view of the distribution of
subscribers, an average value is obtained for the average subscriber:



432 Communicating Networks: Traffic and Performance

Table 10.2. Telephone service: penetration and activity

Penetration and activity
Subscriber
category

Residential
Small companies
Medium
companies
Large companies

Number
of

64 kbit/s
accesses

1
1.2
2.7

92

Activity in
erlangs/access

0.04
0.12
0.15

0.3

Activity in
BHCA/access

0.96
2.88
3.6

7.2

Distribution
%

84.4
14.1
1.49

0.01

Table 10.3. Telephone service: average penetration and activity

Average
subscriber

Number of
64 kbit/s
accesses

1.06

Activity in
erlangs/access

0.06

Activity in
BHCA/access

1.44

Distribution
%

100

This type of approach will be used for various types of access and service. At
this stage we therefore obtain an expression of demand (in terms of calls and
erlangs) per subscriber. It is very important to note that this expression will
enable us to link up equipment capacities in terms of calls to subscriber
connecting capacities: an equipment capable of handling 1 call/second will be
capable of handling the traffic of 3600/1.44= 2500 "average" subscribers.

To determine the processing capacity, we now need to specify the call mix. In
the relatively simple case of fixed telephony, to begin with, a distinction is
generally drawn between two typical mixes: the high efficiency mix for
countries which are very well equipped, and the low efficiency mix for less
well equipped countries, such as developing countries. Efficiency is an
important parameter as the handling of calls and the resources engaged differ
substantially, as mentioned earlier. For the same reasons, it is necessary to
specify the rate of utilisation of subscriber IN services such as CNIP (call
name identity presentation), credit card, free phone, voice mailbox, etc., and
networks services such as portability, the prepaid service (your account is
credited for a certain number of calls), and black and white lists (call
filtering). These services can be broadly divided into two categories: simple
and complex. From the processing viewpoint, these services are added as
extras to basic calls (outgoing, incoming). Tables 10.4 and 10.5 sum up the
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main characteristics of a fixed subscriber centre. The values are of course
indicative but stem from real-life cases.

Table 10.4. Fixed telephone service: high efficiency mix

High efficiency mix
Call type
% Flow
% Successful
% No reply
% Busy
% Incorrect dialling
General characteristics and
supplementary services
Average call time
Average conversation time
% simple IN services / call
% complex IN service / call

Internal
17
58
15
10
17

Outgoing
40
58
15
10
17

Incoming
33
70
18
12
0

Transit
10
70
18
12
0

160s
228s

30
5

Table 10.5. Fixed telephone service: low efficiency mix

Low efficiency mix
Call type

% Flow
% Successful
% No reply
% Busy
% Incorrect dialling
% Network failures
General characteristics and
supplementary services
Average call time
Average conversation time
% simple IN services / call
% complex IN services / call

Internal
%
5

40
10
25
25
0

Outgoing
%
50
36
9

23
22
10

Incoming
%
30
47
11
29
13
0

Transit
%
15
42
10
26
12
10

60s
100s

10
5

The reader will observe the marked differences in busy rates (a private
individual's set acts as a "telephone kiosk" in a country where there are few
telephones), incorrect dialling and network failure (the network is sometimes
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undersized or partially out of order). Note that these models change rapidly as
the countries concerned develop.

Let us now consider another important example: mobile telephony.

This example is interesting for more than one reason. Theoretically, a detailed
approach is needed to characterise the various types of subscriber (pedestrians,
motorists, etc.) in terms of mobility, depending on cell size, and network
organisation. In fact, very rapidly a macroscopic characterisation has emerged
very similar to that of fixed networks: i.e. in terms of call types, as OC
(originating calls), TC (terminating calls), GW (gateways, or rerouted call or
call in transit), while adding the typical attributes of mobility, i.e. HO rates
(handover, or change of coverage zone) and LR rates (location register i.e.
subscriber location), thus reflecting the average mobility observed on the
network considered.

Furthermore, the operators have found it more convenient to directly associate
the value of the activity with the different types of calls. This leads to a single
table, which is a merging of the previous activity and call mix tables. This is
only a matter of presentation, and can change depending on use and needs.

Table 10.6. Mobile telephone service: low traffic mix

Average traffic mix
Call type

Number of calls/hour/MS
% Successful
% No reply
% Busy
% Called party not accessible
% Unsuccessful rerouted to voice
mailbox
Mobility
Events/hour/MS

OC

0.487
70
10
All

TC

0.3

55
20
5

20
80

GW

0.357
70
10
20

HO intra HO inter
0.27 0.10

General characteristics and extra services

Average call time
Average conversation time
% simple IN services / call
% complex IN services / call

OSMS

0.15
100

LR intra
0.6

TSMS

0.15
50
50

LR inter
1.2

120s
150s
20
10
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Table 10.7. Mobile telephone service: high traffic mix

High traffic mix
Call type

Number of calls/hour/MS
% Successful
% No reply
% Busy
% Called party not accessible
% Unsuccessful rerouted to voice
mailbox
Mobility
Events /hour/MS

OC

3
70
20
10

TC

2.1
68
1
2
29
50

GW

2
70
20
10

HO intra HO inter
0.13 0.05

OSMS

0.05
100

LR intra
0.9

TSMS

0.05
50
50

LR inter
0.9

General characteristics and extra services

Average call time
Average conversation time
% simple IN services / call
% complex IN services / call

80s
100s
20
10

In practice, here also a distinction has been drawn between two main types of
mix: the average traffic mix that in fact corresponds to the normal case of
countries that are already well equipped with fixed telephones, and the high
traffic mix found in countries which have given a very high priority to the
development of their mobile network (See Tables 10.6 and 10.7).
As in fixed telephony, there are extra IN services such as the prepaid service,
and also a particular and very attractive type of call: the SMS (short messages
service,) which uses only signalling resources (as for other calls we will speak
of originating and terminating SMS).
Let us now consider a final complementary example, that of the
characterisation of a multi-service IP environment. Although this domain is
changing fast, the main characteristics can be identified (See Chapter 9):

- division into three main levels of activity: call or session level, flow level
and packet level;

- division into two main traffic categories: stream traffics with real time
constraints and elastic traffics, with no strong real time constraint.

Modelling studies for the performance and sizing of equipment concerned with
these traffic types have demonstrated that (see Chapter 9):
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- for elastic traffic it is enough to know the mean volume of flows offered to
the network and its equipment, with the sizing and performances being
evaluated by the processor sharing model;

— in the case of stream type traffic, knowledge of the mean and variance of
flow bit rates is sufficient for the sizing and evaluation of performances by the
use of Erlang multi-bit rate models.

Table 10.8 illustrates the case of a prospective study for a user group of an IP
multiservice network using the following stream services: voice service with
coding at 64 kbit/s (G.711), or with G.729 coding with silence suppression,
video conference services (H.261) and videocommunication (H.263), real time
video services for both high quality (MPEG 2), and lower bit rate (MPEG 4),
and finally elastic services such as the Web (e-mail, etc.) and file transfer
(FTP). Note that we are concerned here with an "average" subscriber of
course.

Table 10.8. Mix in a multi-service environment

Service

Penetration/
user
Activity
(erlangs)
Bit
rate/flow
- peak
(kbit/s)

- mean

- variance

VoIP
G711

0.5

0.1

80

80

VoIP
G729A

0.5

0.1

24

12

H261

0.01

0.1

384

384

H263

0.01

0.1

128

128

MPEG2

0.1

0.1

500
2502

MPEG4

0.2

0.1

64
322

WEB

1

0.1

15

FTP

0.01

0.1

8

Attentive readers will have noticed that for ON-OFF type traffic (G.729 with
VAD), as described in Chapter 9, the peak bit rate and the mean bit rate are the
only ones given, as the variance can be directly deduced from them. For video
traffic however the variance is necessary. For elastic traffics (Web and FTP),
only the mean value is necessary (see Chapter 9).

For complete characterisation of demand, it will be necessary to associate with
this description values for efficiency and flows similar to those set out in the
previous tables.
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We will not provide any more examples, as the important thing is to indicate
the approach, so that it can be applied and adapted to the various situations of
a field that is constantly changing.

Let us now consider the aspects relating to dependability.

10.2.2. Reference environments for dependability

The aim here is mainly to define two main types of parameters: those that
describe the climatic and mechanical operating conditions used to calculate the
failure rates of components, boards, transmission media, etc., and those that
characterise the maintenance policy used to calculate the availability of
equipments and networks. Distinctions will therefore be drawn between
equipments that are to operate on the ground, those carried on satellites and
those subjected to a submarine environment.

These environments are usually well defined in what are known as reliability
handbooks (or guides), and from these rules are obtained (usually simply
factors) to be applied to the formulae used to calculate equipment failure rates.
As for the software, it is considered that its failure rate is practically
independent of these constraints as the main factor is very much the rate of use
of the code, and this is only a function of traffic. We set out below as an
example the case of terrestrial telecommunications systems, in a protected
room (air conditioned, earthquake-proof buildings, etc.). This environment is
generally termed ground benign.

Table 10.9. Mechanical and climatic environmental conditions

Mechanical and climatic conditions

Vibrations

Shocks

Relative humidity
Temperature

Acceleration
Frequency
Amplitude
Duration

Ambient at component level

1m/s2

200 Hz
50m/s2

22ms
40% to 70%

40°C

With regard to maintenance (see Chapter 2), it is characterised by the various
intervention times and the on-site repair times that the operator allows itself.

In fact this is a trade-off between the consequences on the service offered to
the user and the target of facilitating maintenance, e.g. by authorising deferred
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interventions. Table 10.10 provides an example of average values adopted by
several operators.

Table 10.10. Maintenance conditions

Maintenance conditions
Intervention type

Immediate intervention
Deferred intervention

Non-imperative intervention

Intervention time
3.5 hours
12 hours
72 hours

Average on-site repair time: 30 minutes

10.2.3. Capacity and quality of service objectives

Having defined the traffic and dependability reference environments, we now
turn to the definition, under these conditions, of the capacity targets, mainly in
terms of:

- number of erlangs,

- number of calls,

- number of packets to be handled,

- number of users,

- number of circuits, STM links, etc., that can be connected,

- QoS parameters required.

As far as the handling and connection capacities are concerned, the aim is in
fact to fix the marketing and modularity targets.

On the one hand, the aim is to satisfy various sectors of the market, which
means using either access equipments (able to connect clusters of users, local
or remote)), or large switches or routers in the core of the networks.
Furthermore, the equipments must be modular to adapt to the various needs in
capacity terms and the clients' needs for evolution: the same operator may
manage different networks (access, core, fixed, mobile), but must also provide
for extensions to the capacity of its equipments, and evolutions of services.
Handling capacity targets are mainly expressed in terms of processing capacity
in BHCA, packets/s, or messages/s. Traffic handling capacity targets will be
expressed in erlangs. Connection capacity targets are expressed in numbers of
subscribers and connectable links (PCM, STM, etc.). Note that these targets
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will be stipulated mainly for Load B level (usually the most demanding) but
also for Load A level (see Chapters 1 and 2).

With regard to QoS and the associated performance parameters, the aim is
primarily to identify and select the parameters and standards that apply to the
project in question: traffic standards, dependability standards, overload
standards (see Chapter 2). Usually only a handful of fundamental parameters
are considered. A brief example of the case of an access node is given below.

Traffic performances

Table 10.11. Traffic performance objectives

Parameter

Access outgoing call set-up delay
(Q543)
Incoming call indication sending
delay (Q543)
Access call release delay (Q543)
Access call blocking probability
(Q.543) for:
- outgoing calls
- incoming calls
Message transfer delay / real time
packet (Q766/Y 1541)
Variation of transfer delay of an IP
packet at 10-3 (Y.1541)

Normal load (A)
Mean
600ms

650ms

250ms

0.5%
0.5%

180ms/
100ms
50ms

95%
800ms

900ms

300ms

N/A
N/A

360ms

Not
specified

High load (B)
Mean
800ms

1000ms

400ms

3%
3%

450ms

Not
specified

95%
1200ms

1600ms

700ms

N/A
N/A

900ms

Not
specified

Dependability performances

Table 10.12. Dependability performance objectives

Unavailability of an access equipment for:
-auser(Q541)
- all users of this access (operators)

Premature release at node level (Q543)
Maintenance load at access node level
(operators)

30 min/year
3 min/year

210-5
< 15 failures per year

per 10,000 users

For market-related reasons, more ambitious performance objectives may be
specified. Above all, directives should be given concerning the distribution of
these values between the various subsystems (what is the "budget" for each:
connection, matrix, control) and ensure feasibility. By this stage, a substantial
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feasibility study should already have been carried out. The document for the
specification of performance objectives and reference environments is
therefore a crucial overview document for the success of the project. As such
it should be discussed and approved both by the project managers and by the
marketing managers.

10.3. Modelling

We now turn to modelling, which with tests forms the core of our profession.
During the general analysis phase, when the general architecture of the system
is defined, modelling translates real time operation into terms of clients and
servers and evaluates their performances. This modelling will strongly
contribute to the choice of the architectures most appropriate for supplying the
service required, based on the required quality of service criteria.

The modelling task will be highly varied depending on the nature of the
project, and on whether it is a completely new project from the hardware and
software viewpoint, or a mere hardware or software upgrade. In order to cover
the whole range of techniques used, we will illustrate this activity through the
example of a totally new project.

The first stage consists of establishing the call set-up diagrams and the
forwarding of the information flows exchanged through equipments and
networks, in order to identify the processing to be performed and to identify
the resources, or servers, that are involved from the quality of service
viewpoint.

The control and user information message flow diagrams will be established
for the various services, along the same lines as those presented in Chapter 2.
Based on traffic mixes and capacity targets, the volumes of the various flows,
the associated processing and the resources engaged will be determined.

An initial distinction will be drawn between two main types of resources:
processing units and defence unit. These concepts correspond to entities that
can be considered as independent from the viewpoint of traffic or
dependability. They may relate to the control plane or to the user plane. A
processing unit may for example be a functional block (a processing software
entity), a processor, or a station with several processors, a transmission link,
etc., such that the impact on traffic flow is clearly identified. Similarly, a
defence unit may be a processor, a multiprocessor station, a network node or a
link, etc. A defence unit is a set of hardware and software that can be put out
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of service in the event of a fault, and whose impact on service continuity is
clearly identified.

These units will then be characterised in performance terms.

For processing units we will thus define the type of service: processor sharing,
cyclic service, M/M/1 or M/D/1 server etc., and the queue and priority
management mode. For this purpose, reference will be made to the theoretical
models presented in the earlier chapters.

The service time distributions will be determined on the basis of the
characteristics of the flows to be handled and allowing for the mixes. For
example, call set-up software processing times can follow an exponential or
constant distribution, while packet lengths will tend to have heavy tailed
distributions. In each case, it is important not to neglect the influence of the
mixes, which fortunately often bring us back to simple distributions (e.g.
exponential). As for the service time itself, although it is easy to evaluate it for
a message or packet on a transmission medium, it is more complex to estimate
it for a software processing time. This is where we will use processor power
forecasting methods such as those presented earlier: breakdown into
primitives, extrapolation, spec-integer, etc.

In the case of defence units, the following will be defined: failure rates
(hardware and software), redundancy type, switchover and re-configuration
times. For this purpose, reference should be made to the models presented in
Chapter 6. The following will also be defined: the number of sessions and
calls simultaneously in progress and that may be affected by a failure.
Similarly, messages and packets may be lost in the event of a failure, even
with rerouting possibilities.

Finally, the last stage will consist of evaluating the performance parameters as
expressed in the performance objectives specifications and of course the
standards. This is where the theoretical calculation models developed in
Chapters 6 and 7 will be used.

For this purpose, from the traffic viewpoint, for each parameter concerned we
will establish the sequence of processing required and the series of resources
engaged, in accordance with the diagrams in Chapter 2. Based on the
previously defined traffic hypotheses and models, we will then evaluate the
load of each entity and the response times, or individual blocking
probabilities. Finally, we will evaluate the global behaviour of the elements in
series based on the properties of the sum of random variables. Fortunately, we
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can often consider the elements in series as independent, and thus make use of
the properties of the convolution products of independent variables as set out
in Chapter 3. This is particularly the case if care has been taken, during the
design of the system, to comply with the rules recommended in Chapter 9
concerning queueing networks. Even more simply, it is possible for example to
approximate a global response time by a normal or Gamma law, whose
moments will be the sum of the moments of the individual laws.

To make this more concrete, we will consider some examples, beginning from
the lowest level and moving on to the most general level, i.e. from the
equipment level to the network level.

10.3.1. Message processing delay

This initial evaluation is essential for the estimation for example of the
capacity of a control equipment, and subsequently (as we will see later) for the
evaluation of the response times of systems. As early as the objectives
definition phase, initial evaluations of these processing delays, and evaluations
of the number of messages to be processed depending on the mixes adopted,
will enable the determination of the feasibility of a global capacity target, and
the technology or the number of equipments to be employed. As we saw in
Chapter 9, the exercise is extremely risky when we are considering both a new
project and new technologies. However, by combining experience, analysis
and measurements, it is possible to obtain the first significant elements.

Let us now look again at our modelling of the processor board.

It should first be stated that the concept of "message" used here, which
corresponds more to messages actually exchanged on a bus, could equally well
be applied to messages exchanged between software blocks.

The processing delay of a message can be broken down into three main parts:
reception of the message with activation of the consumer process (primitive
receive), application level processing of the message and the sending of the
subsequent message (primitive send).

We will apply the execution delay evaluation model for a processor instruction
described in Chapter 9. The simplified model, we recall, is the following:
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where:

hip= instruction rate in the primary cache, tic = execution delay in the cache,

tim = execution delay for an instruction in private memory;

di = data read rate per instruction;

hdp = data rate in the primary cache, tdm = access delay to data in private

memory;

de = data read rate in exchange memory, ae+ te = read delay in exchange

memory.

Message reception

The data processed are mainly in local exchange memory, and the code is
limited but executed intermittently, with an access rate to the data per
instruction of di = 0.6. The size of the code is evaluated at about 200
instructions with hip and hdp rates of around 0.8. For each message the

following take place: management of queues (exploration, unchaining,
occupation table management) and transfer of message into private memory.

We have thus returned to our example from Chapter 9. With a 266 MHz

processor we had obtained: tic= 3.76 ns, tim= 23 ns, tdm= 151 ns, ae= 1510 ns,

te= 944 ns. Hence:

t receive = 200 x 0.8 x 3.76 ns+ 200 x 0.2 x 23 ns + 200 x 0.6 x 0.2 x 151 ns
+ 1 X (1510 ns + 944 ns) ~ 7600 ns

Message sending

Without going into detail, let us assume a similar value for the sending of a

message:

t send = 7.6 μs

Let us now evaluate the "cost" of application processing. We are in the case of
software with many context changes (processor sharing type on several
processes of call set-up or release). The analysis of the code leads to a number

of instructions in the order of 2500, with a hip rate of 0.6. In these phases, there
are no external exchanges. We have an access rate to data, per instruction, of
0.6, and the data are also in the cache with a hdp rate = 0.6. We thus have, as in

our example in Chapter 9:

t appli = 2500(0.6x3.76 ns + 0 .4x23 ns + 0.6 x 0.4 x 151ns) ~ 119,000 ns
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And thus finally:

t mess = 7.6+ 119 + 7.6~ 134 μs

It is advisable to set aside a precautionary margin of around 10% to 20%.

In conclusion, the message processing delay can thus be estimated at around
150-160μs.

Bearing in mind that an "average" call requires the processing of about 50

messages (sending and reception), a processor of this type when 80% loaded
could process around 100 calls per second. The subsequent modelling of the
service and of all the other resources of the system will enable us to determine

precisely the maximum load and the response times compatible with the
quality of service targets. We consider this point in the following example.

10.3.2. Incoming call indication delay

Let us now consider a calculation example for a call set-up phase in a switch.

This example will enable us to show what the modelling of a multiprocessor

control system can be, and to show that the values specified by the standards
for equipments tend to be on the pessimistic side, in view of the increased
power of the new technologies.

In schematic terms, the system consists of several processors, which may or
may not be specialised in various call set-up functions.

An essential distinction is drawn between so-called main functions

corresponding to call processing supervision (CP) and so-called secondary

functions corresponding to the realisation of services such as translation
(TRA), charging (CHA), the management of extra intelligent network services
(IN), and the processing of network signalling such as no. 7 signalling channel

management (SIG), and finally "termination" (connection) units for
subscribers (STU) and 64 kbit/s circuits (CTU), and of course the switching
matrix (MCX).

The IN services are piloted by an IN server (SCP), which is generally common

to several switches and accessible through the network.

The diagram in Figure 10.2 is a schematic of the switch with IN services, i.e.
an SSP (switching service point), with its various stations interconnected via
its local network.
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CP : Call processing
TRA: Translation
CHA: Charging

SIG : Signalling MCX : Switching matrix
IN : IN interface STU: Subscriber termination unit
SCP: Service Control Point CTU : Circuit termination unit

Figure 10.2. Switching service point architecture

To simplify the representation and the analysis, a function is associated with a
station, which may actually be the case for very large switches, while for small
exchanges functions may be concentrated on a single station. But this does not
change the performance evaluation method in any way. To achieve the very
large capacities desired, there are usually several stations of each type on
which the new calls are distributed with equiprobability.

The functions are usually (because of the standards in fact) implemented in the
form of functional blocks with clearly defined interfaces. To carry out a call
set-up, the various machines and blocks exchange a series of messages
sequentially through a local network (LAN). The messages correspond to
service requests and their responses, thus enabling the chaining of the various
elementary processings, until the set-up function has been completely realised.
In view of the great number of independent calls in progress simultaneously,
and the variety of the messages exchanged, it is justified, and verified, to
consider all these machines as independent servers subject to arrivals of
Poissonian requests.

We will consider the case of the set-up of an incoming call with an IN service
of the free phone type, and estimate the set-up delay of the incoming call,
corresponding to the standard for incoming call indication delay.
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The diagram in Figure 10.3 provides an example of the messages exchanged
and the processings performed on the various machines, with involvement of
the IN server, between reception of a call set-up request from the network
(IAM) and the transfer of this request to the connection unit of the subscriber
requested.

The following are present in succession. First, the call set-up request
signalling message (IAM), from the network, transmitted by the signalling
processor (SIG) to call processing (CP) which will reserve an incoming circuit
for the call. Then the CP will ask the translator (TRA) for the characteristics
of the number requested (discrimination, destination, etc.). The translator
detects whether it is a free phone number (0800, etc.). The CP then reserves a
context in the charging unit (CHA) to charge for the service (to the service
provider), and then presents the service request to the IN server via its IN
interface and then via the network. The IN server common to several switches
is accessed like the rest of the network by using network signalling. In the
normal case, i.e. when the service can be provided, the IN server answers the
switch by asking it to set-up the connection to the party called and to start up
the charging. The CP then asks the translator to give it the designation, the
outgoing direction corresponding to the number requested (the number must be
translated into a physical equipment address, and the outgoing links from the
switch to the subscriber connection unit of the subscriber requested must be
determined). The incoming circuit is then connected to the outgoing circuit,
and the set-up request message is sent to the subscriber connection unit of the
called party.

Thanks to the study of the architecture of each machine (we will provide an
example later), we can evaluate their response time by means of relatively
simple models.

Thus for example the CP can be modelled by a processor sharing server such
that for a task with a time of si, the mean and the variance of the response time
are (see Chapter 9):

and:

being the mean task duration, exponentially distributed.
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Figure 10.3. Incoming call indication, with free phone type IN service

The processor sharing model is extremely suitable for this type of machine,
which shares its time equitably between several processes simultaneously in
progress in the machine, such as call set-ups. In particular, it enables a fine
estimation of the response time for tasks of different durations. However, as
presented in the diagram, because of the variety of tasks involved in the call
phase studied, we will be interested not in a single type of processing but in
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processing as a whole, and thus with the mean value 1/μ. From the previous
formulae we can deduce for an average processing (see Chapter 9):

The other ("secondary") machines are presented basically as elementary task
servers, with a quasi-constant service time s. We therefore adopt the M/D/1
model, whose response time characteristics are as follows (see Chapters 7
and 9):

To these response times must be added the sending and reception times of the

messages exchanged on the LAN.

These times can be assimilated to a constant c (for transmission and
reception), plus the response time for an exponential server. For it is a matter
on the one hand of message acquisition, formatting and routing delays and, on
the other hand the waiting time and the sending delay on the internal
communication link. For the sake of simplification, this server will be
approximated to an M/M/1 server (see Chapter 7). Thus:

, plus the constant c

and:

We are simplifying the calculations here by not differentiating between tasks
in detail, but simply by assuming orders of magnitude for the processing
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delays depending on the two types of servers. Thus, we will assume an average

processing delay of 150 μs for the CP and a delay of 250 μs for a service

processor. (We will see below to which processing capacity these values

correspond.) We are assuming the LAN to be composed of 100 Mbit/s links,

and messages of a mean length of 100 bytes, giving a transmission delay in the

order of 8 μs per message. We assume c to be 50 μs. The processors are all

assumed to be 80% loaded, and the LAN to be in degraded mode (there are at

least two links for dependability reasons; in normal conditions, each link is

loaded at 0.4).

We thus obtain:

The response time of the IN server (SIN) is an item of data, external to the

switch, of which we assume the TSIN and σSIN characteristics to be known. In

our example, we assume that:

bearing in mind that we include in them the access delays through the

signalling network.

Based on the message diagram, we can write:

and:

and finally, still using our approximation:
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It will be noted that these times are easily in line with our target. This is not
surprising as the switches, as we will also see in the case of the routers and
network links, use equipments whose technologies are increasingly powerful.
However, let us not forget that we have considered a relatively simple service
case to facilitate comprehension.

Finally, the important impact of the IN server is worth noting. As already
stated, the IN server is usually a network element that is external to the switch.
As such its response time characteristics will also be specified by a mean

value and a 95% value. In our example, we have taken tSIN = 20ms and
=60ms. By using an approximation to the Gamma law, we deduced

from this: σ SIN = (t(95%)SIN -tSIN) / 2 = 20ms .

10.3.3. Transfer delay for packets through a network and variation in
transfer delay

Let us consider the following structure:

Figure 10.4. Model for packet network transfer delay

This diagram represents the succession of nodes and links passed through by a
message or packet on the network(s) considered. The access gateway (AGW)
connects the subscribers, "packeting" and "depacketing" the information, and
the routers (R) forward the packets through the network.

We have adopted the simplifying assumptions (to be carefully verified) that
the structure considered is strongly meshed (large number of directions at each
node, and several flows on the same link), and that traffic flows are strongly
mixed inside nodes, thus minimising series queue problems (see Chapter 9).
This will not be verified for all routing policies, as some (such as tunnelling)
favour convergence of flows on the same itinerary through a large number of
consecutive nodes. This hypothesis may however be considered to be
acceptable on an initial approximation. In these conditions, we can adopt the
assumption of independence between nodes and neglect the series queue
phenomena, and also consider the arrivals as Poissonian.
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We will therefore consider the packet or message waiting times before

sending, independent at each node, bearing in mind however that the packet

transmission delay of course remains the same at each node for links with
identical bit rates.

Before its queueing for transmission on the outgoing link, an incoming packet
must be taken into account by the processor (input scheduling delay, internal

routing, classification, etc.). These times are relatively short and, in our
modelling, we consider them to be constant. Upon transmission, the packet
may enter into competition with other packets of different sizes corresponding

to different services that do however have the same priority. In the case of
priority services, with important real time constraints, such as voice on IP, the
node transfer delay will be modelled by the sum of a constant processing

delay, a wait at an M/G/1 type server, and a packet transmission delay.

10.3.3.1. Calculation of transfer delay

With regard to transfer delays, the standards specify mean values and 95%

values. The following evaluation method is therefore adopted: the holding
time moments at each node, mean and variance, are calculated independently.
By summation (independent variables), we obtain the mean characteristics and

global variances. Finally we deduce from this by adjustment to the gamma (or

Gauss) law the 95% value (see Chapters 4 and 7).

It will therefore be necessary to summate the time spent in the access gateways

and the time spent in the routers.

Transfer delay at accesses

In the outgoing direction, this delay is the resultant of any transcoding delay,
and the packeting delay. If we take the example of the Voice over IP service

(VoIP), we would have the G711 (64 kbit/s) coding of the voice changed to
G729 (8 kbit/s), to reduce the bit rate on the network. The voice samples are
then put into packets. If we assume we were to remain in G711, in this case
the voice samples are grouped into packets every 20 ms, thus leading to

packets of 200 bytes (1 voice sample of 1 byte every 125 μS, grouped in
packets every 20 ms, i.e. 160 bytes per packet plus 40 bytes of header).

Associated with this packeting time, we should add a processing delay

(< 1 ms), that we however consider to be negligible. We must finally allow for
an additional processing delay corresponding to the acquisition and routing of

the packets, and also a sending and transmission waiting time for the packet on
the output link to the network. In the interest of simplicity, in our example we
will consider such delays to be identical to those of the routers.
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On arrival, we find the same operations reversed, but with an additional
operation, "dejittering", i.e. jitter cancellation. As we will see later, the
packets of the same call do not all take the same time to be transferred through
the network. To comply with real time service constraints (one voice sample to
be delivered to the user every 125 μs), compensation is made for the jitter by
storing the packets in a buffer for a sufficient duration which is to be
determined below. This fixed delay will therefore need to be added to the total
transfer delay.

Router transfer delay

As already indicated, this transfer delay will consist of a constant processing
delay, a wait in the sending queue, and the transmission delay on the link.

Transfer delay on the network

In front of the output link, at the access and in the routers, with a hypothesis of
exponential packet length, and thus the M/M/1 model at each node, we obtain
for the total mean wait and its variance:

and:

We deduce from this by adjustment to the gamma law (or using Martin's
formula, see Chapter 7), the 95% value:

To these delays must be added processing delays, transmission delays and
propagation delays (which depend on the length of the links), as previously

described.

Let us assume a network made up of N transmission links with identical bit
rates (including the part concerned by the access gateway), and evaluate the
transfer delay for a VoIP packet.



Performance Methodology 453

Let us denote as c the processing delay (packet acquisition, routing, etc.) at
each node, 1/μ the average sending delay for packets on the link at each node,

τ the sending delay of the voice packet and P the total propagation delay.

We will thus have for the transfer delay:

or:

and

The following is an example of values, in the case of VoIP with G711 coding.
Let us consider the case of a national call. Each packet passes through 2
accesses plus 9 routers and covers a total distance of 1000 km with a
propagation delay of 5 ns per metre. The processing delay of a packet in each
node is 50 μs. A reference VoIP packet has a length of 200 bytes. All the links
are at least at 155 Mbit/s and have loads of 60% in the most unfavourable

case.

We assume a mean length for all the real time packets processed by the link of
500 bytes. We thus obtain:
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We arbitrarily adopt a dejittering delay of 20 ms (we will estimate the
probable value for our network a little later). And thus:

Tmen = 20 ms + 11 x 0.05 ms + 1 ms + 10 x 0.01 ms + 5 ms + 20 ms =
46.65 ms

T95%= 20 ms + 11 x 0.05 ms + 1 ms + 2 x 0.4 ms + 10 x 0.01 ms +5 ms
+ 20 ms = 47.45 ms

This calculation example, although based on arbitrary values, clearly shows
that the impact of transmission through the IP network remains negligible
when compared with packeting and dejittering delays, provided that the
network is equipped with links with sufficiently high bit rates, such as STM1.

Finally it may be noted that these values easily meet the requirements of the
standards (T< 100ms, see the packet performance target specification at the
beginning of this chapter). On the other hand, these values are well outside the
requirements of Q.551: for IP transmission associated with analogue telephone
equipments the use of echo cancellers is therefore essential.

Let us now study the variation of the delay.

10.3.3.2. Calculation of transfer delay variation

In this case the standards specify values with very low probabilities (e.g. 10-3,
10-4). Adjustment by the first two moments is thus no longer sufficiently
precise. To solve our problem, we directly calculate the distribution of transfer
delay probability. We will approximate the variation sought to the transfer
delay value at 10-x, minus the minimum transfer delay for the reference packet
or message. This is a pessimistic evaluation as it amounts to considering that
the previous message or packet was not subject to any delay.

Based on the assumption of independence, the distribution of the total delay is
given by the convolution product of the distributions at each node. In our
example, the service time is assumed to be exponential. We then have to
calculate the convolution product of M/M/1 queues. As shown in Chapter 7,
the waiting time probability density at a server of this type is:

The convolution product for n queues such that fi(t) = Aie
-ait (i = l,2,..n) , is

easily obtained by Laplace transforms:
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In the case of n identical queues, this of course gives:

We recognise the result already obtained for the Erlang n law, of which the

original function is: f

Which gives us, applied to w(t), and taking account of the probability at the

origin (probability of not waiting):

and the distribution function is:

The calculations therefore give for N= 10 and a probability of 10-3,

t= 30xl/μ. Hence:

This value gives the variation of the delay as it is the only variable part of the
transfer delay.

Once again, we find a very low variation, again due to the high bit rate of the

transmission links.
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These orders of magnitude remain true even in the case of lower bit rate links
between access gateways and the network, such as E3 links at 34 Mbit/s.
Indeed, in that case, we have on two links:

This has little impact on the overall result.

Based on this result, we could fix dejittering delays in the order of 10 ms, but
we must also allow for cases in which the number of routers is far greater, and
in which the number varies in the same call. We will therefore retain the initial
value of 20 ms.

10.3.4. Call set-up delay

Let us now consider the evaluation of the end-to-end call set-up delay in the
case of an NGN network. The configuration studied is represented in Figure
10.5.

The origin media gateway controller (MGC) sets up a call with the destination
media gateway controller through the IP network, so as to connect the two
local exchanges.

Figure 10.5. NGN configuration
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Functioning

The outgoing media gateway controller (MGC) receives a call set-up message
from the local exchange via the signalling gateway (SGW) whose role is
simply to adapt the signalling.

The origin MGC sends via the IP network an IP address request to the origin
trunk gateway (TGW), which provides it in return (ADD messages). Then the
origin MGC sends the set-up request to the destination MGC (SET UP). The
latter requests its IP address from the destination TGW, which in turn sends it
back. The destination MGC resends the information to the origin MGC (SET
UP ack), which resends it to the origin TGW (MOD). On the reply from the
origin TGW, the MGC requests the set-up of the call by the destination MGC
(SET UP), which then sends the IAM set-up message to the destination LEX
via the TGW and the signalling gateway. In return, the origin LEX receives
the call acceptance by the reverse path.

Figure 10.6 shows the messages exchanged and the processing carried out in
the different elements of the network.

Figure 10.6. Call set-up diagram in the NGN
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Determination of individual delays

To estimate the end-to-end set-up delay as defined by the standards, between
IAM and IAM, we must refer to the values specified for the various
components. If we adopt the position of the network designer, we must

assemble different equipments whose behaviour we do not know in detail, but
whose performances are specified by standards and by specifications.

Table 10.13 recapitulates values by way of example. These values have been
established on the basis of existing recommendations, and may of course
change, but also on the basis of possible time evaluations for new elements
(TGW, MGC...), with new technologies as in the previous example.

Table 10.13. Parameters and reference values for end-to-end set-up delay
calculation

TLESETUP

T1MGC

=TGW

TLEICISD

TSGW

T2MGC

TLETRANS

TROUTER

TLINKTRANS

Network
component

Originating LE

MGC and TGW

Terminating LE

SGW

Transit exchanges

Originating/
Terminating LE

Router

Transmission
links

Parameter

Call set up delay

(Table 30/Q543)

IAM processing
(l/2Table 1/Q766)

Incoming call
indication sending

delay (Table
4/Q543)

Message transfer
delay (l/2Table

4/Q706)

ANS processing
(l/2Table 1/Q766)

Signalling transfer

delay (Table
28/Q543)

Packet Transmission
delay (operator)

Transmission delay
(Q.41)

Value

Mean

800ms

130ms

800ms

20ms

80ms

350ms

1 ms

5 μs/km

95%

1 200 ms

260ms

1 200 ms

40ms

160ms

700ms

3 ms

-

From these values, by applying as before the properties of the gamma law,
(see Chapter 7), we can deduce the variances:
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and:

Thus, in view of the assumption of independence between the various elements

of the network, and bearing in mind that we are interested in mean values and
the variance of the delay sought, we can estimate the characteristics of the

global response time by the sum of the means and individual variances.

Determination of global set-up delay

According to the set-up diagram, we have:

and:

where N is the number of transfers through the routers and L the total length of

the transmission links over which the messages pass.

Let us take as our example a distance of 500 km between the two MGC, 200
km between SGW and MGC, 200 km between MGC and TGW, 6 routers
between the MGC and 3 routers between TGW and MGC.

According to the set-up diagram, we thus have a total length travelled by the

messages of:

Similarly we find a total number of router crossings of:

The numerical application gives us:
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T SETUP 

and thus: 

It will be noted that this network complies with standard objectives (see
Chapter 2).

10.3.5. Dependability

We will now evaluate the performances of the project from the viewpoint of
dependability. We will evaluate in succession the maintenance load, total
unavailability and the probability of premature release of a set-up call.

Let us recall the main targets: total unavailability < 5.7 10-6 (3 min. per year);
premature release < 2 10-5.

The simplified diagram in Figure 10.7 represents, from the viewpoint of the
defence units, the architecture of the project in its mobile centre application
(the same system taken as an example carries out both functions: fixed centre
and mobile centre).

LAN: Local inter station network
TUs : Subscriber access term. unit
CS : Control station (call proc, trad...)
AS : Auxiliary stations (signalling...)

MCX: Switching matrix
TUc : Circuits termination units
RCP : Mobile server (radio control point)

Figure 10.7. MSC (Mobile Switching Center) architecture

The data forming the basis for our evaluations are the redundancy types and
the predicted failure rates of the various equipments.
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Redundancies and failure rates

LAN: duplicated and self-healing.
MCX: the switching network is duplicated, redundancy is active, calls are
established in parallel on both matrices, one matrix (on its own) can handle all

the traffic.
TU: redundancy type N+k, i.e. there are k TU on standby for N TU of
connection.
CS: the control stations are in N+1 redundancy, of the stand-by type.
RCP: each mobile server is duplicated, in individual redundancy of stand-by
type.
AS: the auxiliary stations are in N+1 redundancy of the stand-by type.

The configuration studied, corresponds to a centre with about 500,000
subscribers.

The number and the hardware failure rate (or software failure rate if
applicable), of the equipments of each type are as follows (the following rule

is adopted: λ software

 = λ hardware):

MCX: there are two branches composed of several boards. These planes may
be equipped to a greater or lesser extent depending on the capacity desired. In
our case, the equipment leads to a system equivalent to two matrices, each
with a failure rate of λ MCX

 = 5 10-6/h.

TUs: there is only one very high capacity equipment (N = 1), plus a standby
equipment, as these equipments are placed behind the mobile subscriber access
network (BSC, UTRAN)), having already concentrated the traffic on very high
capacity links. λ TUs = 10 10-6/h.

TUc: there is a large number of equipments of this type (N = 20) for the
network directions are numerous and the modularity is great (STM1 link
connection). λ TUc = 5 10-6/h. There are 3 standby equipments for all the other
20 equipments.

CS: the modularity of the control stations enables adaptation to the various
processing capacity needs. For the configuration studied here, the number of
control stations is N = 2, plus one standby, each one with a failure rate of A CS

= 50 10-6/h. (A sizing example will be considered later).

RCP: there are two RCP servers (with standby). λ RCP = 60 10-6/h.
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AS: the auxiliary stations are organised in modular mode, as are the control
stations. Here we have N = 5, plus a standby station, and λAS = 50 10-6/h.

We do not take into account the impact of the LAN as its failure rate is
negligible compared with those of the other equipments.

Maintenance load

The maintenance load can already be evaluated. Only hardware failure rates
are involved here: it is considered that software failures are "repaired" by very

rapid restarts of the station (see Chapter 6). We have the global failure rate:

and thus λ G= 835 10-6/h, i.e. 7.3 interventions per year on average.

In this matter, in accordance with the conditions specified in the objectives,
we are assuming an intervention policy which makes a distinction between
deferred intervention (the standby equipments are used but there is not yet any
loss of service) and immediate or urgent intervention (which is necessary
when there is a loss of service).

We will denote the deferred intervention rate as μ d (μ d = 8 10-2/h,
corresponding to a mean time for travel plus repair of 12.5 hours) and the
immediate intervention rate μ i (μ i = 0.25/hour, corresponding to a time of 4
hours).

Total unavailability

All the functions previously identified are in series from a reliability
viewpoint. We will examine the reliability diagram, shown in Figure 10.8, in
more detail below.

Figure 10.8. Reliability diagram
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We must first state what we mean by total failure, particularly with relation to
the concept of degraded mode.

In the case of control stations (CS), the failure of a single station does not
cause any deterioration of the service; this is because the processing capacity
is maintained by the replacement of the failed station by the standby station.
However, the simultaneous failure of two control stations means that it is no
longer possible to handle all the traffic; thanks to the standby station, half of
the traffic can be handled. This is degraded mode. However, if the three
control stations fail simultaneously, unavailability is total.

In the case of RCP, only the simultaneous failure of the two RCP will cause
total unavailability. The failure of a single RCP means that half of the traffic
can still be handled. Furthermore, as the RCP is itself a machine with standby
processor, the failure of an RCP means in fact the simultaneous failure of both
of its elements.

In the case of auxiliary stations (AS), depending on the number of stations that
have simultaneously failed, the states will be more or less degraded. Because
of the number of stations and standbys, total unavailability will be considered
to be negligible.

Similarly, the loss of some network connection (termination) units does not
lead to an unavailability sufficient to be considered to be total, because of the
large number of equipments of this type and redundancy. They will therefore
be considered to be negligible.

As the other equipments are duplicated, total unavailability will occur in the
event of simultaneous failure of the two equipments.

Here also, only hardware failures are significant (software failures are repaired
by very rapid restarts).

We therefore have the following expression:

We will not detail here the Markov graphs, the reader has only to refer to
Chapter 6 to solve these simple cases of redundancy. We should state however
that, for RCP, we consider that an intervention is urgent as soon as two
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equipments have failed, wherever they are (on the same RCP or on different
RCP).

The numerical application gives:

We have given the details of the calculations as they reflect the impact of each
function. The overwhelming impact of the access interfaces shows the

importance of ensuring a high degree of dependability for elements that have a
strong concentrating effect. In this case it would also perhaps be advisable to

carry out a more detailed modelling of these equipments. It is also clear that as
soon as modularity is large, total unavailability becomes low. Clearly, we can

conclude that this architecture easily enables the meeting of the objective set
of 5.7 10-6, but note that we have considered the rate of "severe" software
failures as negligible (see Chapter 6). This can only be guaranteed if the
product has been well tested. Hence the importance of the test phase that we
will consider a little later.

Premature release

Let us assume that a call has been set up and analyse the failure events that

could lead to a premature release of the call.

CS and AS: In the event of failure of this type of station, all the calls set up
are lost when there is a switchover to the standby station (loss of context). The
fresh traffic is of course immediately taken over by the standby station. We

assume that the call involves two CS and two AS (which is the most usual case
with the "half call" approach). Furthermore, this time we must take into

account the software failure rate.

The occurrence rate of this event for a given call is thus 2 x (2λC5 + 2λAS).

On the other hand, for the RCP server, it is assumed that there is no call
release: the contexts are saved (in real time or periodically) on the RCP on
standby, which is easy in the case of single redundancy.

Similarly, for the TU and switching matrices, there is no loss. It is only a
matter of physical transport and the system is such that the switchover to the

standby TU is instantaneous, and (as we pointed out for the switching

network) the calls are set up on both branches.
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Finally, call release only occurs if there is traffic to handle. We will adopt the
pessimistic assumption of the equivalent of 10 loaded hours per 24 hours.

Taking as the reference an average call time I of 100 s, we thus obtain the
probability of release of a set-up call, by the relation:

-5The objective of 2 10-5 has thus been met.

The study demonstrates the importance of this criterion in the choice of
architecture (software and hardware).

10.4. On-load tests

The global performances of the project will be validated during the integration
phase. We then have a complete configuration of the equipments and means to
simulate the reference environments to be tested. The list of tests to perform
and the definition of the configuration(s) to be tested will have been defined at
an earlier stage. The test facilities will enable the generation of the flow of
messages or packets, corresponding for example to the calls to be set up,
which may come from the network or from the accesses (gateways, subscriber
connection units). The aim is then to minimise the hardware used, and to make
the tests feasible with very high traffic volumes. Traffic simulators are
therefore developed, replacing subscribers, circuits, and signalling and data
links, etc. These may be autonomous external devices, or software developed
on equipments in the system. To properly clarify problems when large systems
are validated, it is advisable to break the tests down into one preliminary phase
consisting of the validation of certain subsystems, and then a phase of
"lighter" global tests.

To make this clearer, let us consider the concrete case of a network
constructed around accesses, switches, routers and IN servers. First, each of
these entities is validated under load and overload conditions by simulating
(generating by simulator) its traffic environment in respect of the reference
traffic mix, before the validation of the correct functioning of the whole
interconnected system (the whole network). For example, to test a switch, we
will simulate the messages exchanged with the accesses, with the server, etc.
For this purpose, we will have developed, at access or server level, simulation
software that carries out only elementary chaining of the messages exchanged
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at the interfaces, as described below. Thus all the processing to be performed
by the switch will be performed, including connections, the sending of ringing,
etc. But as there is no terminal really connected, there will be neither reception
of ringing nor voice samples exchanged. These functions will be subjected to
separate tests. For this purpose, there will also be available a limited number
of actual accesses and terminals to carry out detailed user-viewpoint quality of
service measurements, and standard subscriber simulators (approved by the
operators) which are faithful replicas of the subscriber terminals.

The principle of the traffic simulators is as follows. Once again, reference is
made to the call set-up and release message diagrams to define the scenarios or
message sequences exchanged at an external interface and corresponding to
the service call type (outgoing, incoming, etc) to be tested. These lists of
messages, requests and responses are recorded in the simulator as scenarios.
The scenarios are run randomly, in proportions that correspond to the call mix
to be tested, as defined in the objectives document. Note here the importance
of the random nature of this call request generation. It is necessary to first
reproduce normal operating conditions, in order to distinguish "normal"
congestion phenomena from specific phenomena relating to malfunctions. The
precision required here on the random aspects is however far less great than in
the case of a detailed simulation, such as that of a queue, and it is therefore
sufficient to use simple algorithms (see Chapter 8). Once the initial call
requests have been launched, the exchange process between the simulator and
the device tested is chained, call by call. Each message from the system tested
generates another message from the simulator to the system, and so on, until
the end of the call which itself generates the launch of another call, etc. It is
the rate of regeneration of these call requests which will define the volume of
traffic offered to the system (see example below).

It will therefore be necessary to have available, in addition, standard
subscriber equipment or circuit simulators approved by the operators. This is
in order to generate a certain (low) proportion of actual traffic, and thus
measure in detail the quality of service perceived by the user, such as set-up
delay, good reception of ringing and tones, and the quality of transmission in
the conversation phase, etc. It will also of course be necessary to have
available real terminals to carry out test calls, e.g. in severe overload
conditions, to test the capacity to handle priority calls. Finally, by taking up a
position at the standardised interfaces (e.g. no. 7 signalling channel interface),
it will be easy to check the exactness of simulation, as the message sequences
exchanged by the internal simulators and by the standard external simulators
must be exactly the same.
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Test phases

Distinctions may be drawn between three major test phases: traffic
performance tests, overload tests and dependability tests. We will now
describe these phases.

10.4.1. Traffic performance tests

During this phase, the system will be progressively subjected to traffic with
two important levels, Load A traffic and Load B traffic, in accordance with the
objectives.

Compliance with the call mix will be verified and measurements will be
carried out of traffic handled, response times and processor loads. Delays
objectives such those specified in the standards will be verified.

The system observation functions will be implemented to obtain these results
(number of calls of different types presented, number of calls rejected,
response times). Use will also be made of the observations of standard external
simulators, call counters, and fault counters, in order to confirm the results.
Thanks to the observation of processor load, it will be possible to validate and
if necessary refine the modelling and the dimensioning rules.

In many cases this phase will be important for the development of the system,
not just in terms of processing capacities, but also from a functional
viewpoint. This is because during the tests the following will be identified:
processing delays and exchanges between machines to be optimised, and also
cases of conflicts of access to common resources, or defence faults following a
queue or time out overflow.

This explains the importance of the work done in advance during modelling.
The capacity of the system to handle the forecast traffic in the stipulated
project time frame (according to the roadmap) will be all the greater if the
evaluations of the loads and real-time behaviour of processors and hardware
(such as ASIC) were accurate. Furthermore, the more detailed the modelling,
the easier will be the identification, comprehension and resolution of problems
(we will know which parameters are to be measured and what "normal" values
should be).
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10.4.2. Overload tests

The aim here is to subject the system to load levels that are exceptional, but
nonetheless likely to occur in real life.

It is worth recalling the basic phenomena: exceptional events such as TV game
shows, catastrophes, special days such as New Year's Day, and the impact of
indiscriminate call renewal that occurs when the level of congestion is
noticeable. It is not of course possible to simulate call arrivals in detail under
such circumstances. Fortunately, however, as proven by observation, for a
large switch for example, the traffic presented can be assimilated to Poissonian
traffic of very large volume, which also lasts for a very long time.

Furthermore, observation also shows that a distinction must be drawn between
incoming overloads and outgoing overloads. For example, for a TV game
show or a disaster, calls will arrive in excessively high numbers at a given
point in the network, but from all directions. Above all, an incoming overload
will arise. On the other hand, during a great gathering (the Soccer World Cup,
or if people are blocked somewhere by adverse weather conditions, e.g. snow
on a ring), all the mobiles will be activated simultaneously, creating a rush of
outgoing traffic. Finally, on particular days of cultural or national importance
(such as the start and end of Ramadan, New Year's Day), it is the whole
network (both outgoing and incoming) that will be loaded. We will look at this
situation in more detail a little further on.

In each case, we will draw the system response curve (traffic handled as a
function of traffic offered), and a check will be made to ensure that the pattern
required by the standards (see Chapter 2, Figure 2.6), and the validity of the
priority strategy between call rejections are complied with.

Figure 10.9. Traffic handling under overload conditions
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This will primarily be a phase of regulation threshold adjustment on all the
elements of the system. The aim is to detect an overload at an early stage so as
to preserve the satisfactory handling of calls already accepted: in other words,
the queues for the processing of subsequent messages, like the resources
associated with the transport of user level information corresponding to
sessions in progress, must never be saturated. The call processing delay and
processor load measurements must also be completed by measurements of call
rejection costs, so as to fully validate the modelling of the system. Figure 10.9
sets out the type of response curve that is expected (see Chapters 2 and 9).

10.4.3. Dependability tests

While the system is handling Load A and Load B traffic, faults are injected on
to the equipments, or units will simply be set to an out of order state by an
operator command.

The expected reactions of the defence mechanisms will then be verified:
failure detection, isolation of the faulty element, switchover to standby and
reconfiguration. Measurements will of course be taken of any losses of calls
and of unavailability times. The values obtained will enable the confirming
and refinement of the dependability model parameters.

Besides the measurement of the reaction times, the role of failure injection is
also to verify the efficiency of the mechanisms used to locate the faulty
element (board), as, normally, in complex systems any hardware or software
malfunction is detected very rapidly at application level and leads to the
setting of machines to the "out of order" state.

Whereas making settings by commands are relatively simple to carry out, as
they result from normal operating procedures, the injection of failures is on the
other hand more complicated. Generally speaking, boards will be put on a
connector and points will be grounded. It is here that sampling methods must
be applied: the points affected are drawn at random after weighting for the
predicted failure rates of the components. But in this respect, allowance should
also be made not only of the probability of failure of an element, but also of
the impact of its failure on quality of service. For example, any failure of a
common element or part of an element that could lead to total non-availability
must in all cases be tested (e.g. a time base, certain bus elements).

Here again we see all the importance of having first modelled the system from
the dependability viewpoint, to better identify the parameters and elements to
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be tested, and to enable a better judgment of the results obtained, compared
with the objectives.

10.4.4. General organisation of tests

The diagrams below sum up the main phases and the expected results.

This is only an example of a sequence of operations, and the relative times
may vary, depending on the difficulties encountered.

Figure 10.10. Load test sequence

In an overload phase, it will be noted that it is necessary to distinguish
between several stages, in accordance with the model (see Chapter 9). In the
first stage, the capacity of the system to handle priorities may be observed: for
example emergency calls (fire service, etc.) and incoming calls. Then, as the
overload continues, tests are performed on its capacity to maintain the level of
traffic handled at an acceptable level, with a very heavy overload over a very
long period of time.

It should also be noted that it is necessary to verify the return to normal
operation, in reasonable delays, after each "stress" phase, defence test or
overload.

Traffic generation example

We present a method which, although it introduces a certain bias to the
Poissonian nature of the traffic, has the advantage of very great simplicity in
implementation, while giving quite significant results.



Performance Methodology 471

We wish to generate traffic of outgoing, internal, incoming and transit calls
complying with the high efficiency mix presented in the objectives and set out
below in simplified form.

Table 10.14. Traffic mix for load test

High efficiency mix
Type of call
%Flow
% Efficient
% No reply
% Busy
% Incorrect dialling

Internal
20
58
15
10
17

Outgoing
35
58
15
10
17

Incoming
35
70
18
12
0

Transit
10
70
18
12
0

For this purpose, we have available one (or more) simulator(s) managing on
the one hand couples of calling subscriber and called subscriber to generate
internal outgoing and incoming traffic, and on the other hand couples of
circuits to simulate transit traffic.

The diagram in Figure 10.11 presents the principle of traffic generation
organisation.

Figure 10.11. Organisation of traffic generation

The fact of working by couples of the same nature (subscribers or circuits)
introduces a certain correlation between outgoing and incoming calls, but
which in normal operating conditions may be neglected. On the other hand, for
overload tests, allowance must be made for this (as the rejection of an
outgoing call also automatically suppresses an incoming call), and in some
cases use more complex organisations, with the management of subscriber
plus circuit couples.
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For each couple, the simulator program will first draw random numbers
according to an exponential law with a parameter 9 = 1/λ (see Chapter 8) and

defining the inter-call delay. This value will define the arrival rate of the calls

offered to the system. As soon as a call is initiated, the initiation date of the
next call is calculated. For example, if the intention is to generate a traffic of

500 calls per second (1.8 MBHCA), the parameter 6 will be fixed at 2 ms.
Each time a call is made, the call type is drawn at random, in accordance with
a uniform law corresponding to the reference mix. To simplify implementation
and provide a better reflection of reality, the draw is carried out in several

stages. For our mix, we will therefore have the following operations:

1) draw at random the traffic nature of the call (internal call or outgoing-

incoming call): the random number drawn between 0 and 1 is compared to the
values 20/55 and 35/55;

2) draw at random the efficiency type of the call (efficient call, busy, no reply,
etc.): for example, for an internal call, a new random number is compared to
the values 58/100, 15/100, 10/100, 17/100.

In the same way, a decision may be taken about the signalling type, and the
existence and the nature of an IN service, etc.

Then the call set-up request message (IAM, see set-up diagram) is initiated in

the system with the number of the called party (which corresponds to that of
the other element in the couple). As the appropriate routing and forwarding
information have been prepared in advance in the system (translation tables,

routing, etc.), the incoming call message (set up) returns to the simulator,
which from the number requested, recognises the couple concerned and its

characteristics (busy, no reply, efficient, etc.) and thus sends the appropriate
response back to the system. This continues in accordance with the set-up and

call release diagrams. Defence mechanisms (time out, etc.) enable the release
of the couple in the event of absent or erroneous messages.

10.5. Dimensioning

The definition of the dimensioning rules for the equipments and the network
is a key activity from an economic viewpoint. The aim is to determine the

optimum number of equipments to be installed to guarantee that the service is

supplied with the required quality. The aim in this phase of activity is to

define the basic rules used for sizing, bearing in mind that specialist teams

will translate these basic rules into calculation programmes for numbers of
boards, racks, etc., and price calculations.
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The first rules are supplied at the modelling phase, so that the products can be
launched on the markets (this demonstrates the importance of the modelling,
which must ensure that the risk of error is minimised). The rules are then fine-
tuned in the light of the performance tests. During these tests, the "costs" in
UC load (c) of the various types of calls and processing, are refined, as well as
the maximum admissible utilisation factors (i.e. the maximum UC load or
capacity C,) compatible with the response times required. The dimensioning
rules then consist of calculating the number of equipments necessary to handle
a given traffic, bearing in mind that the capacity of each equipment is given by
the basic relation:

A distinction should be drawn between two main types of resources which can
be sized: control plane processors and user plane transport resources. Two
examples of traffic-related applications are considered below: calculation of
the number of processors necessary to handle calls in a mobile network and
calculation of the throughput and number of links necessary to handle IP
multimedia traffic. We then give an example of calculating the size of the
maintenance stock (i.e. the number of spare parts needed).

10.5.1. Dimensioning of the control of a mobile centre

The aim here is primarily to describe the approach, the use of the Load A and
Load B concepts, and in particular the use of the data attached to the site
(operator domain), and that attached to the constructor equipments (equipment
vendor domain).

We will consider the case of a "mobile" centre and more precisely the
dimensioning of a CSCN in a GSM environment. Let recall that the CSCN
(circuit switch core network) is the control part of the core network that
connects mobile subscribers via the BSS (radio stations) and sets up
connections with the PSTN (public switched telephone network).

In accordance with the functional breakdown set out in Chapter 1, we will
consider this centre composed of two main physical entities: the mobile server,
or RCP (radio control point) and the switching centre or SSP (service
switching point).
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The mobile server (RCP) acts as the interface with the radio stations that
connect the mobile subscribers and is in charge of the mobility functions
(hand over, etc.). This is the RCF function (radio control function) with which
it combines the VLR function (visitor location register).

The SSP carries out the classical switching functions: call set-up, call release,
call to IN server (the RCP can also make calls to the IN server), etc., and thus
establishes the connections with the fixed network to reach other subscribers
(fixed or mobile).

This is of course only an architecture hypothesis, which we have chosen as it
enables distinctions to be drawn between processing without making the
explanation excessively complicated.

The first stage consists of entering the traffic environment data, in order to
evaluate the average processing cost per call per machine. These are "site"
data (usually provided by the operator).

For the site in question, we have for example 500,000 mobile subscribers (MS)
generating an average traffic per subscriber of 0.025 erlangs (0.77 OC plus TC
per hour, with an average duration of 120s), at Load A. In view of the
subscriber and network characteristics, the traffic mix is as follows (see the
paragraph on objectives and environments, with a simplified mix as the aim is
simply to demonstrate the approach).

Table 10.15. Site mix

Site mix
Call type

Number of calls/hour/MS

Mobility
Events /hour/MS

OC

0.57

TC

0.2
HO intra

0.08

GW

0.25
HO inter

0.04

IN

0.33

OSMS/TSMS

0. 08
LR intra

0.8
LR inter

0.4

It is important to note at this point the considerable difference between the
total number of events (OC, TC, GW, HO, LR) to be processed and the number
of calls (OC, TC) seen from the subscriber viewpoint. This is a key
characteristic of mobile telephony.

The second stage consists of associating with these call types the "machine"
costs which are those of the manufacturer data. These costs are usually
expressed in machine time.
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We thus have for example:

Table 10.16. Machine costs (processing costs)

RCP costs
Call type

RCP processor cost
(seconds)

Mobility
Events /hour/MS

OC

0.0052

TC

0.0063

GW

0.0025

HO intra HO inter
0.002 0.0045

IN

0.0018

OSMS/TSMS

0.0036

LR intra LR inter
0.002 0.0045

SSP costs
Call type

SSP processor cost
(seconds)

Mobility
Events /hour/MS

OC

0.0128

TC

0.0128

HO intra
0.0075

GW

0.0128

HO inter
0.023

IN

0.026

OSMS/TSMS

0

LR intra LR inter
0 0

The costs are different of course depending on the machine, and some types of
processing are not available on certain machines.

The third stage consists of calculating the average cost per subscriber on each
machine.

The RCP processor cost of an "average" call of the mix is thus:

c = 0.57 x 0.0052 + 0.2 x 0.0063 + 0.25 x 0.0025 + 0.33 x 0.0018 +
0.08 x 0.0036 + 0.08 x 0.002 + 0.04 x 0.0045 + 0.8 x 0.002 + 0.4 x 0.0045 =
0.0095 s/h/MS.

The machine must process this traffic mix in Load B conditions (see Chapter
2). The Load B value is "site" data. It is generally accepted in the standards
that: Load B = 1.2 x Load A. Under these conditions, the machine cost per MS
thus becomes:
c = 0.0095 x 1.2 = 0.0114 s/h/MS.

Similarly, the SSP processor cost of an "average" call from the mix is:

c = (0.57 + 0.2 + 0.25) x 0.0128 + 0.33 x 0.026 + 0.08 x 0.0075 +
0.04 x 0.023 = 0.0232 s/h/MS.
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As the machine must process this traffic mix in Load B conditions, the
machine cost per MS becomes:

c = 0.0232 x 1.2 = 0.0278 s/h/MS

The fourth stage consists of calculating the number of machines necessary.

It is necessary to first find out the maximum load of the machine at which
quality of service can be maintained (response time, etc.). This is also
constructor data (from the modelling). It may not be explicitly stated in the
rules. It is then simply taken into account in the costs (i.e. the cost is given
with reference to 100% maximum load), but the drawback of this is that it
makes it difficult to interpret load measurements during tests.

Let us assume that the maximum load of a machine, RCP or SSP, at which
quality of service requirements are met (response time, etc.) is C = 80%.

We can now calculate the equipment required.

RCP case

In our architecture hypothesis, the machine is of the server type. We merely
need to determine the number of servers of this type that are necessary.

The maximum Load B capacity of an RCP machine is (0.8 x 3600)/0.0114
~252,600 MS.

As our centre must handle the traffic of 500,000 subscribers (MS), we must
equip it with 2 RCP.

We have assumed that redundancy problems are resolved in each individual
machine (each RCP machine is itself a station with a processor and standby).

Let us now consider the SSP function

The approach is the same, but this time the machine structure is different. The
structure consists of a set of multiprocessor stations, of modular capacity,
managed by configurations which are more or less powerful. These
configurations are constructor data and it is a matter of determining the right
configuration, which is best adapted to the needs of the site.

The maximum Load B capacity of an SSP processor is (0.8 x 3600)/0.0278
~103,600 MS.
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The configurations proposed for example are classified as small (S), medium
(M), and large (L), depending on the number of processors with which they
are equipped (see the chapter on models). These are constructor data. For
example we have:

Table 10.17. Configurations

Configuration
n processors/station
N stations

S
1
1

M
3
2

L1
4
2

L2
4
3

L3
4
4

L4
4
5

L5
4
6

L6
4
7

The S configuration thus consists of 1 station, equipped with 2 processors. The
M configuration consists of 2 stations equipped with 3 processors. The L6
station is equipped with 7 stations equipped with 4 processors. All the
configurations are backed up on the basis of one redundancy at N + 1, for
example, the M configuration will in fact have 2 + 1 stations, one of which is
on standby.

As our centre must handle the traffic of 500,000 subscribers (MS), we must
equip it with a configuration of 5 processors in all. As this is not proposed, we
must therefore choose the M configuration. However, it would be advisable
when making this choice to carefully reconsider the traffic hypotheses with
their uncertainties, and the installed base evolution strategy, particularly in
view of the progressive extension facilities offered by this type of
configuration structure.

10.5.2. Dimensioning of the links of a gateway

The example considered is that of an IP access gateway. We apply the
properties of the model previously defined for IP services. Dimensioning is
performed in two stages.

In the first stage, dimensioning is performed at call level, in order to determine
(for a given rejection probability) the number of subscribers that can be
connected to the gateway. As the aim is to guarantee a given rejection rate for
each service, the Erlang formula is simply applied for each service or group of
services. It is thus assumed that call acceptance is performed on each call
category.

In the second stage, dimensioning is performed at flow level, to guarantee the
quality of service at packet level. For real time services, we must first verify
that all peak bit rates are of a lower order of magnitude than the bit rate of a
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link. This is the case if the links used have a bit rate of 155 Mbit/s or higher.
We then apply the multi-bit rate formula, plus the time sharing formula for
elastic traffic.

Let us apply this approach to a gateway that concentrates the traffic of
n = 20,000 subscribers.

To simplify, we are allocating the same rejection probability, for example
PR = 10-3, to all services. For each service we have for a type i, a penetration
rate pi and an activity per subscriber ai:

PR i=E(N i ,A i) , where Ai =pi.ai.n

and in view of the activity hypotheses defined in the performance objectives,
we obtain, for example, for the VoIP G711 service: A1 = 0.5 x 0.1 x 20,000 =
1000. And by applying the Erlang formula for a loss probability of 10-3, we
obtain N1= 1070.

If this is repeated for all the services, we arrive at Table 10.18.

A distinction must be drawn between the calculation rule, which applies to all
traffic hypotheses, and its application, which is intended to quantify the
resources for each specific traffic mix case. In this case we only take the
performance target reference mix as an example. In reality each site will
constitute a special case.

Table 10.18. Multi-service mix

Service
n = 104 users
Penetration/user
(p)
Activity in erlang
(a)
Total activity (A)
Number (N), of
simultaneous calls
at 10-3

VoIP
G711

0.5

0.1

1000

1070

VoIP
G729a

0.5

0.1

1000

1070

H261

0.01

0.1

20

34

H263

0.01

0.1

20

34

MPEG2

0.1

0.1

200

237

MPEG4

0.2

0.1

400

450

WEB

1

0.1

2000

2094

FTP

0.01

0.1

20

34

Let us now determine the needs at flow level. As defined in the models chapter
(Chapter 9), we draw a distinction between real time traffic and elastic traffic.
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Real time traffic

These types of traffic consist in fact of the VoIP, H26x, and MPEG services.
Amongst these services, another distinction should be drawn between constant
bit rate services and variable bit rate services.Constant bit rate services: These
services are simply sized on the basis of a link occupation rate of 0.9 (safety
factor). If applied to our hypotheses, this gives:

Table 10.19. Constant bit rates: calculation of bandwidth Cc

Service
N= 10,000 users
Number of
simultaneous calls N
(at 10-3)
Bit rate by flow (kbit/s)

-peak
- mean
- variance

Total bit rate Mbit/s (c)
Link (Cc - c/0.9)

VoIP
G711

1070

80
80
0

85.600

H261

34

384
384
0

13.056 98.656
109.618

Variable bit rate services: For each service in the call phase, we have the mean
bit rate requested mi, and the peak bit rate di, or the variance of the bit rate σ, .
When we have the peak bit rate di, we determine the variance by:

For example, for the VoIP G729A service, the peak bit rate is 24 kbit/s, and
the activity is of the ON-OFF type, at around 50%, and thus the average bit
rate is 12 kbit/s and the variance is 288.
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Table 10.20. Stream traffic: calculation of the bandwidth Cs

Service
n = 10 000 users
Number of
simultaneous
calls N (10-3)
Bit rate/flow
(kbit/s)

-peak di

-mean mi

Total mi

- variance σi

 2

Total σ i

2

Z
Cs(10-6) Mbit/s

VoIP
G729A

1070

24
12

L 12840
288

308160

H263

34

128
64

2176
8192

278528

MPEG2

237

500
118500
2502

14812500

MPEG4

450

64
28800

322

460800

162316

15859988
97.71
179.592

We then apply the peakedness factor method (see Chapter 9) for a very low
congestion rate Ps at the flow level, for example 10-6.

The total traffic is: M = . The total variance is: σ2 =

We also have: z = i/

and the application of the Erlang formula gives the required capacity Cs:

Based on the hypotheses of section 10.2, we thus obtain Table 10.20 (a
capacity of about 179 Mbit/s, for an offered traffic of 162 Mbit/s) .

Elastic traffic

We apply the processor sharing model. As noted in Chapter 9, this model gives

response times that correspond to bit rates d = Ce(1-ρ )). By adopting a
maximum load of 0.8, we obtain the results shown in Table 10.21.
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Table 10.21. Elastic traffic: calculation of the bandwidth Ce

Service
N= 10000 users
Number of simultaneous
calls N(10-3)
Bit rate by flow (kbit/s)

-peak
- mean

Average number of 64 (or
56) kbit/s sources
Total Mbit/s: ce

Ce= Ce/0.8

WEB

2094

15
561

31.410

FTP

34

8
4.86

0.272 31.682

39.602

Finally, we apply the rule for integration of stream and elastic traffic:

In this example, there is no enormous bit rate gain using the integration rule
compared with sizing without integration:

This is quite simply because of the large proportion of real time traffic.

Finally, allowance must be made for failures. The capacity thus calculated
must be ensured in the event of loss of a link (the occurrence of a double
failure is not considered). The gateway will therefore be sized with four 155
Mbit/s links, i.e. three links in degraded mode, representing a capacity of 465
Mbit/s.

10.5.3. Dimensioning of maintenance stock

This activity is of course fundamental in guaranteeing the dependability of
telecommunications systems, which consist of repairable systems, at least as
far as the terrestrial part is concerned.

Calculations are generally simple, because we can very often assume a
situation equivalent to a continuous re-stocking strategy, and almost always
the number of equipments in the installed base of each type is sufficiently
large compared with the stock to enable the simple application of the Poisson
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law (see Chapter 6). However, let us look at some practical aspects based on
an example.

Let us consider a network comprising several sites for which we wish to
dimension a common maintenance stock. Over the whole of the network
concerned, we list the following types of equipment, together with their
number and their respective failure rates (see Table 10.22).

Table 10.22. Characteristics of the installed equipments

Typei

1
2
3
4
5
6
7
8

Ni

6
6
6
6
12
78
78

624

λi 10-6/h
3.5
3.5
1.5
4

3.3
0.16
6.3
0.9

As there are several types of equipment, the first problem is the definition of a
stockout. In practice, we often define the overall stockout probability Ps,
which is the probability of a stockout whatever the type of equipment affected.

We have:

where PSi is the probability of individual stockout for each type of equipment.
To carry out this calculation, we begin by assuming that the PSi values are
equal to PS. We then readjust the value of the PSi to get as close as possible to
the PS that has been fixed.

Another practical problem also stems from the very low number of failures
generated by certain types of equipment (either because there is a small
number of such equipments or because they have a very low failure rate). The
safe solution is to put at least one equipment of this type in stock. However, if
the actual individual stockout probability is very considerably lower than that
fixed, for example 10 times lower, it may be acceptable not to have this type
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of equipment in stock. But this then means that for this type of equipment PSi =
1, which could have a very strong impact on PS.

Let us apply the above to our example with a restocking time (rotation time) of
90 days (we are considering the case of sites abroad) and an overall stockout
probability target of 2%. We thus obtain the following stock.

Table 10.23. Dimensioning of spare parts

Typei

1
2
3
4
5
6
7
8

Si

2
2
0
2
2
2
5

20

λi 10-6/h
3.5
3.5
1.5
4

3.3
0.16
6.3
0.9

The reader will verify the fact that because the number of equipments of each
type is necessarily a whole number, this gives an effective Ps of 1.38%, with
PSi of 2.4%.

The results of course depend strongly on the values adopted as the objective,
on the restocking modes adopted, and fundamentally on the validity of the
failure rates adopted. It should not be forgotten that a stockout could possibly

have an impact on the availability of the system (repair times are lengthened),
although usually in the event of a critical situation an emergency procedure
will then be adopted for restocking.

In all cases, these strategies must be decided on and adjusted by the operator,
based on failure rate forecasts and observations. These strategies may form the
subject of contracts between the equipment supplier and the operators.

10.6. Operating monitoring

The aim here is to monitor the behaviour of systems in the operational life
phase in the networks, in order to verify the validity of our forecasts, and our
sizings, and also to gather more information from in situ observation.

We give below an example of equipment reliability monitoring.
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Principle of operational reliability monitoring

The monitoring of the operational reliability of the equipment (boards,
components, etc.) is usually the responsibility of the quality departments. The
role of the performance engineer is partly to define, in close conjunction with
these departments, procedures enabling the gathering of significant data
enabling the evaluation of equipment reliability, and to provide assistance in
the mathematical interpretation of results (trends and evolution over time,
degree of confidence, etc.).

We give below an example of the procedure and the type of data to be
gathered. The raw operational reliability data are provided by the quality
departments based on returns of equipment recorded in repair centres. In the
case of a telecommunication equipment manufacturer, this monitoring applies
for example to the boards installed both on the test models and on clients'
sites. The operating time of the boards is calculated on the basis of a reference
data, such as the date of the issue of the product to the client plus 2 months (to
allow for the model stage).

The raw return data are analysed by specialists (hardware designers, for
example), object by object, based on fault report sheets opened by the repair
centre for each object processed. This fine analysis enables the focussing of
lines of improvement and weaknesses, if any, and the dividing up of the
returns into "false failures" and "genuine failures": these purely symbolic
terms are meant to help in drawing a distinction between manipulation and
installation faults, and other faults.

Genuine failures and false failures can be classified as follows:

- genuine failures: component faults; manufacturing faults (brazing fault, pin
twisted, copper breakage, etc.); doubts (faults not clearly identified); various
faults (non repairable faults, standard exchanges);

- false failures: boards that are physically damaged (mainly caused by a lack
of care during manipulations, transport, etc.); non-compliant cases
(components missing or non-compliant); returns due to quality alerts; faults
resulting from erroneous software configurations; cases in which there is no
problem.

From the genuine failures and operating hours, we deduce:

- a "corrected" "real" operational failure rate, including all the genuine
failures: we calculate a mean value and a confidence interval by applying the
Chi-2 law:
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- a "component" operational failure rate calculated solely on the basis of
component failures:

These "real" operational failure rates are then compared to the predicted
failure rates for possible action, depending on the result of the ratio. Thus, if
the failure rate observed is very much greater than the predicted failure rate
(ratio > 2:1), component analysis (visual checks, expert appraisals) and
possibly corrective actions (replacements of certain components, quality
alerts) are then undertaken.

Table 10.24 shows the typical structure of a reliability monitoring report, and
presents examples of results observed on equipments (boards in this case),
which have in most cases recently been commissioned on site.

It is important to recapitulate the approach:

- comparison with expected values;

- comparison between raw data and data after fault analysis: in this case, we
are looking to draw a distinction between that which is purely a matter of
catalectic reliability (and which can be estimated by the predicted failure rate)
and that which is a matter of fine tuning equipment (poor manufacture, poor
manipulations, poor installations, etc.), and which after identification will be
corrected;

- importance of the cumulative number of hours;

- importance of having reports at different dates so as to monitor estimates
over time.
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Table 10.24. Operational reliability monitoring report

Eqt

N°

1
2

3
4

5

6

7

8

9
10

11

12

13
14
15

16

17

18

19

20

CUMULATIVE results at xx(date)

T
o

ta
l 

re
tu

rn
s

4
116

33

1

8
84

30
18

85

80

8

19

7

8
8

3

10

4

17

3

S
ta

n
d

ar
d

 e
xc

h
an

ge
s

0
2
1

0
0

0

0
1
1
0

0

0

0
0
2
0

0

0

0

0

Nopb

in
te

rv
en

ti
on

0
19
1

0

0

3

0

0

8

3

1

0

0
1
0

0

1
0

1
0

W
it

h 
in

te
rv

en
ti

on

3
16

16

1

7

33

8

5

11

9

3

2

2
1
4

1

0

1

5

0

Ir
re

p
ar

ab
le

0
1

0

0

0

2

0

0
2
1

0

0

0

0
0
0

1
0

0

0

Repaired
C

om
po

ne
nt

s

3
27

4

0

0

16
11

4

35

48

2

9

2
2
0

0

0

0

7

0

O
th

er
s

0
49

11

0
1

24

8

6

27

18

2

7

3
4
2

2

8
2

4

2

In
 p

ro
gr

es
s

1
2

0

0
0

4

3

2

1
1

0

1

0

0
0

0

0
1
0

1

Hours
of

operion

(106)

3.24
9.50

4.56

1.16
1.74

15.00

11.00
2.13

2.74

1.55

1.47

1.48

16.00

2.00
0.93

1.15

1.03

0.62

2.74

0.48

Raw
RELIABILITY

λ pred
(10-9)

850
3000

970

990
500

1590

1600

940

3950

4950

1150

1830

290
1430
880
70

110
1090

2460

2270

λ
oper
(10-9)

926
7995

3286

574

2690

1668

4687

22580

42419

2704

10772

306

2996
2149

1738

7751
3207

4006

4103

Ratio
λo/λp

1.1
2.7

3.4

1.1
1.7

1.0

5.0

5.7

8.6

2.4

5.9

1.1
2.1
2.4

24.8

70.5
2.9

1.6

1.8

Reliability after
analysis

G
en

u
in

e 
fa

il
u

re
s

3
21

4

0
0

13

8
4

30

29

1

8

2

2
0

0

0

0

7

0

926
2209

876

0

0

874

702

1875

10926

18639

676

5386

122

999
0

0

0

0

2549

0

Final
ratio

λr/λp

1.1
0.7

0.9

0.0

0.0

0.5

0.4

2.0

2.8

3.8

0.6

2.9

0.4

0.7
0.0

0.0

0.0

0.0

1.0

0.0

The following elements should also be noted in the table.

There is a high proportion, in the order of 50%, of false failures: non-

compliance with dossier, poor software configuration, physical data. Amongst

the genuine failures found, another 50% are "component" failures and 30% are

manufacturing faults. As we will verify later, this is because we are studying a

set of boards at the start of their operational life.
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Boards 15, 16, 17 and 18 present an abnormal number of faults compared with
forecasts. They are not however "component" faults. The observed failure rate,

although relatively insignificant because of the low number of hours of
operation, has led to analysis and enabled the highlighting of manufacturing
faults, and particularly brazing faults. This information made it possible to
intervene at manufacturing plants.

Boards, like those mentioned, with a low cumulative number of hours of
operation (< 100,000 hours), present practically no component faults. This is
for example the case of boards 4, 5, 15, 16, 17, 18 and 20. For these
equipments, reliability can only be estimated by an upper limit with a certain
confidence interval. For board 20, for example, the application of the Chi-2
law gives us a failure rate below 2000 Fit (2000 10-9, 1 Fit = 10-9) with 60%
confidence. We are here in a case in which faulty elements are replaced as
failures occur. If T is the cumulative observation time, which is equivalent to
the cumulative duration of a so-called truncated test, and r is the number of
failures observed, so the lower limit of the confidence interval for a unilateral
confidence interval of 1-α , is (See Chapter 5):

which, it should be noted, means that MTBF is θ > θ i with a probability of
1 -a.

In the case we are considering, we have: T = 487392, χ2

2;0.6

 = l.83 (see tables

in Appendix 2) and thus θi = 532 668 that is A, = 1 877 10-9.

Let us now consider equipments with a large number of hours of operation.
The failure rates presented are very satisfactory when compared with the
forecasts, and are even better than the expected values/This is in particular the
case of boards 2 (ratio = 0.7), 6 (ratio = 0.5), 7 (ratio = 0.4), 11 (ratio = 0.6),
3 (ratio = 0.9), 13 (ratio = 0.4), 14 (ratio = 0.7).

In this respect, it is important to consider the trend in failure rates as a
function of time. We show here, as examples, the cases of two boards: board 2
and board 7. Monitoring gives the following curves in Figure 10.12.
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Figure 10.12. Failure rate evolution as a function of time

These graphs show that equipments, such as equipment no. 7, have reached
their useful life period, and so their failure rate can be evaluated with a good
degree of confidence. For example, the aggregate observation time of this
equipment is T = 1.1 107 hours, and 8 genuine failures have been observed. We
deduce from this by applying the Chi-2 law for a centred interval (see Chapter

5):

where 1 - a = 0.8, we obtain (See tables in Appendix 2):

Which gives: 9.36xl05 <θ < 2.018xl06, or 4.95 10-7 < λ < 1.06 10-6, with

80% confidence for a forecast A of 1.59 10-6.

On the other hand, equipment no. 2 seems to be at the end of its "youth
period". Its failure rate is tending towards the forecast value, and a precise
estimate can only be made at the next observation period. As in simulation and
in traffic, the importance of observing the evolution of the phenomenon
studied over time should be stressed.
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Finally, we would note that some equipments, although they have a large
number of hours of operation, have a high failure rate compared with the
forecast value. The boards concerned are 8, 9, 10 and 12. The analysis has
enabled the identification of faults on specific components, and also soldering
faults associated with these components, which obviously call for corrective
action.

Many other lessons should be taken from these examples, but we will end our
study at this point, and recommend that the reader should explore this subject
more deeply in cases based on his/her own observations.
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Conclusion

Our incursion into the domain of performance evaluation comes here to its
end. Throughout these ten chapters, the reader has been able to discover, or
rediscover, the foundations of disciplines which form the basis of operation of
telecommunication networks. These include telecommunication principles,
standards related to quality of service in telecommunication, probability
theory, statistics, reliability, queueing theory, and the methodology that
permits the efficient use of these techniques.

It is now for the engineer to practise, and to acquire his/her own expertise, by
continuously exercising and learning from real problems.

But this is nothing but the starting point: the field of telecommunications is
perpetually changing, raising new problems of performance. The expert is thus
continuously dealing with new challenges. Practice, and mastering the whole
set of knowledge presented in this book, will give him/her the tools needed to
make the synthesis between past problems and issues to come, between the
beauty of the mathematical construct and the field constraints.

If ever a profession was to be driven by modesty, constant learning and
progress, it is this. And the reader is prompted to bear in mind this quotation:
"The past cannot be revised, but present is just like materials at the builder's
disposal, it is up to you to forge your future" (Antoine de Saint Exupery,
Citadelle).

We hope that this book, among others, will remain a worthy companion to the
reader in his/her fascinating journeys ahead.
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Appendix 1

Mathematics

We recall in this appendix several definitions and basic theorems concerning
the functions of the complex variable. We give also the elementary results for
power series, which are of constant usage in performance studies.

Functions of the complex variable: theorems and definitions

Definition of the function of the complex variable

Let Ω be an open set of the field C of complex numbers. A function of the
complex variable on Ω is an application from Ω to C, which for every z in Ω
yields a complex number denoted as:

It can always be written as:

The set Ω is the domain of the function.

Uniform function

The function f(z) is said uniform (or single-valued) if every z in Ω has a single
image Z = f(z) .

Continuity

Definitions about the limits of complex functions are identical to the ones
concerning scalar functions.
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Especially, z being a continuous function in the complex plane, every
polynomial in z is a continuous function on the whole plane. Similarly, every
rational fraction of z is continuous on the plane, except in these points where
the denominator vanishes (these points are the poles of the fraction).

Analytical function

A function of the complex variable is derivable at a point of the complex plan
if its derivative exists in that point. It is said analytic in a domain if it is
derivable at every point of this domain.

A necessary and sufficient condition for the derivability of the function f(z) at
point z = x + iy is that its real and imaginary parts X(x,y))and Y(x,y) aree

differentiable in m(x,y), image of z, and verify the Cauchy-Riemann

equations:

Holomorphic function

A function f(z) is said holomorphic at a point z0 if f(z) is derivable in z0 and if
it exists a circle of centre z0 in which f(z) is continuous and uniform.

A function f(z) is said holomorphic within a domain D if it has a derivative at
each point of D, and if it is uniform in D.

Singular points and poles

Every point z0 where the function f(z) is not holomorphic is said to be a
singular point (or singularity) of the function. The critical points of a multiple-
valued function, and the poles of a fraction, are singularities. More generally, z
= z0 is a pole of f(z) if l/f(z) is holomorphic in z0.

Integral of a continuous function

Let AB be a smooth arc in the complex plane:
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The integral of a complex function is a linear combination of line integrals. It
possesses all properties of the ordinary integral.

Example: a basic integral

dz
, where C is the circle with centre z = a and radius p.

fcz — a

Let us denote |z — a| = p and z - a = peiθ .

One has:

Cauchy's integral theorem

Given a function f(z), holomorphic in the domain D, and C a smooth closed
curve contained in D, then:

Cauchy integral

C+ meaning that the integral is evaluated along the positive direction

(trigonometric, or counterclockwise sense) .

Paul Levy's theorem

If Ø(z) is an indefinitely derivable function, and if the series Σ n=0ø(n) (0)/n!(iu)n is

convergent, u being a real number, in a circle of radius a, then Ø(z) is an

analytic function in the band —a < R(z) < +a, R(z) being the real part of z.
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Corollaries

a) if Ø(x) exists for x real, a < x < β , Ø (z ) is analytic in the band

α < R ( z ) < β ;

b) the closest to the origin singular point of Ø(z), being on the convergence

circle and outside the band of analyticity, is necessarily real.

Rouche's theorem

If f(z) and g(z) are analytical inside and on a closed contour C, and if
|g(z ) <|f(z)| on C, then f(z) and f(z) + g(z) have the same number of zeroes

inside C.

Series expansions (real functions)

Taylor's formula

Let f be a continuous function in the interval [a, b], having derivatives up to
order n, continuous on the interval, and a derivative of order n + 1 on the
interval ]a, b[, then there exists c on ]a, b[ such that:

A practical form for this result is:

One gets the Mac-Laurin expansion if a = 0:

Here are the expansions of several functions of constant use in the domain of
performance studies.
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Binomial theorem

Let us apply the Taylor formula to the function (a + b)n , with n integer. One

has:

The binomial coefficient is:

From which the binomial theorem is written:

Note that

One verifies easily that:

(relation which allows building the Pascal triangle).

Using the binomial theorem, the expansion of the function (l + x)n is:

Exponential function

x x2 xn

ex =1+ + +... + x n ε ( x ) . with ε such that ε(x)—>0 as x—»0, for
1! 2! n!

every value of x.
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Power function

+..., for every value of x

Polynomial

xp +..., for arbitrary

m positive or negative, integer or fractional.

If m is integer, one finds again the binomial development:

The following is an important special case:

and also:

taking the derivative, one has:

Logarithm



Appendix 1 : Mathematics 499

Series expansion of a function of the complex variable

Taylor series

A function f(z), holomorphic inside a circle C of centre a and on the circle
itself, is expandable in the powers of (z - a) and the series is convergent as
long as z remains inside the circle. The expansion is unique, this is the Taylor
expansion about z = a:

which is of the same form as in the real domain.

The expansions of the usual functions are identical to those obtained for the
real variable, inside their radius of convergence. For instance,

z z2 zn

ez = 1 + --- + --- + ... -- + .. , with R, radius of convergence infinite.
1! 2! n!

Laurent series expansion

A function f(z) holomorphic inside an annulus of centre a and on its limits
formed by the circles C and 7 (7 inside C), is the sum of two convergent
series, the first in the positive powers of de (z - a), the other one in the powers

of
One has:

which is the Laurent series of f(z) about z = a, with:
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and

If a is the only singular point inside γ, then the Laurent series provides the
expansion of f(z) around the singularity z = a (the result holds for z as close at
possible of a but not for z = a). A.1 is the residue of f(z) in a. This is, too, the

coefficient of (z — a)n-1 in the Taylor expansion of (z — a)n f(z).



Appendix 2

Tables

This appendix provides a brief set of data concerning the most commonly used
distribution functions. More complete results are nowadays easy to obtain,
through specific software packages or more comprehensive tables available
e.g. on CD ROMs or on the Web. The goal of the following tables and graphs
is to allow quickly visualising and quantifying the behaviour of important
laws.

Erlang distribution

Erlang loss formula

Erlang tables
A (offered traffic) as a function of B (loss probability) and N (number of
servers).

Table 1. Erlang distribution

B%->
N
1

3
5
7
10
15
20
25
30

0.01

0.0001

0.0868

0.452

1.05
2.26
4.78
7.70
10.9
14.2

0.03

0.0003

0.127

0.577

1.27
2.61
5.34
8.44
11.8
15.3

0.05

0.0005

0.152

0.649

1.39
2.80
5.63
8.83
12.3
15.9

0.1

0.001
0.194
0.762

1.58
3.09
6.08
9.41

13
16.7

0.2

0.002

0.249

0.900

1.80
3.43
6.58
10.1
13.8
17.6

0.3

0.003

0.289

0.994

1.95
3.65
6.91
10.5

14.3
18.2

0.5

0.005

0.349

1.13
2.16
3.96
7.38
11.1
15
19
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35
40
50
60
70
80
90
100
120
130
140
150
160
170
180
190
200
210
220
230
240

250
300
350
400
500
600
700
800

900
1000

17.8
21.4

28.9
36.6
44.6
52.7
60.9
69.3
86.2
94.8
103.4

112.1
120.8
129.6
138.4
147.3
156.2

165.1

174
183
192

201
246.4
292.3
338.4
431.4
525.2
619.5
714.3
809.4
904.8

19
22.7
30.5
38.5
46.6
54.9
63.4
71.9
89.2

97.9
106.7

115.6
124.4

133.4
142.3
151.3
160.3
169.4

178.5
187.6
196.7
205.8
251.8
298.2
344.8
438.8
533.4

628.5
724
819.9
916

19.6
23.4

31.3
39.4
47.7

56.1
64.6
73.2
90.7
99.5
108.4

117.3
126.3
135.3
144.3
153.4
162.5
171.6
180.7
189.9
199.1
208.3
254.6
301.2
348.1
442.5
537.6
633.2

729.1
825.3
921.7

20.5
24.4

32.5
40.8
49.2

57.8
66.5
75.2
93

101.9
110.9
119.9
129

138.1
147.3
156.4
165.6
174.8
184.1

193.3
202.6
211.9
258.6
305.7
353
448.2

543.9
640.1

736.6
833.3
930.3

21.6
25.6
33.9
42.4

51
59.7
68.6
77.5
95.5
104.6
113.7
122.9
132.1
141.3
150.6
159.8
169.2
178.5
187.8
197.2

206.6
216
263.2
310.8
358.5
454.5
551
647.9
745.1
842.5
940.1

22.2
26.3
34.8
43.4
52.1
61
69.9
78.9
97.1

106.3
115.5
124.8
134
143.4
152.7
162.1
171.4
180.9
190.3
199.7
209.2

218.7
266.2
314.1
362.1
458.7
555.7

653.1
750.7

848.6
946.6

23.2
27.4

36
44.8

53.7
62.7
71.8
80.9
99.4
108.7

118
127.4

136.8
146.2
155.7
165.2
174.6
184.2
193.7
203.2
212.8
222.4
270.4
318.7
367.2
464.5
562.3
660.4
758.7
857.2
955.9

N
1
3
5

1

0.0101
0.455
1.36

2

0.0204
0.602
1.66

5

0.0526
0.899
2.22

10

0.111
1.27
2.88

15

0.176
1.60
3.45

20

0.250
1.93
4.01
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7
10
15
20
25
30
35

40
50
60
70
80
90
100
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
350
400
500
600
700
800
900
1000

2.50
4.46
8.11
12
16.1
20.3
24.6

29
37.9
46.9
56.1
65.4
74.7
84.1

103
112.5
122
131.6
141.2
150.8
160.4
170.1
179.7
189.4

199.1
208.8
218.6
228.3
277.1
326.2
375.3
474

573.1
672.4
771.8
871.5
971.2

2.94
5.08
9.01
13.2
17.5
21.9
26.4

31
40.3
49.6
59.1
68.7
78.3
88

107.4
117.2
127
136.8
146.6
156.5
166.4
176.3
186.2
196.1
206
215.9
225.9
235.8
285.7
335.7
385.9
486.4
587.2
688.2
789.3
890.6
991.9

3.74
6.22
10.6
15.2
20
24.8
29.7

34.6
44.5
54.6
64.7
74.8
85
95.2
115.8
126.1
136.4
146.7
157
167.4
177.8
188.1
198.5
208.9
219.3
229.7
240.1
250.5
302.6
354.8

407.1
511.8
616.5
721.4
826.4
931.4
1036

4.67
7.51
12.5
17.6
22.8
28.1
33.4

38.8
49.6
60.4
71.3
82.2
93.1
104.1
126.1
137.1
148.1
159.1
170.2
181.2
192.2
203.3
214.3
225.4
236.4
247.5
258.6
269.6
325
380.4

435.8
546.7
657.7
768.7
879.7
990.8
1102

5.46
8.62
14.1

19.6
25.3
31
36.7

42.5
54

65.6
77.3
88.9
100.6
112.3
135.7
147.4
159.1
170.8
182.5
194.2
206
217.7
229.4
241.2
252.9
264.7
276.4
288.1
346.9
405.6
464.4

582
699.6
817.2
934.8
1052
1170

6.23
9.68
15.6
21.6
27.7
33.8
40

46.1
58.5
70.9
83.3
95.7
108.2
120.6
145.6
158
170.5
183
195.5
207.9
220.4
232.9
245.4

257.9
270.4
282.8
295.3
307.8
370.3
432.7
495.2
620.2

745.1
870.1
995.1
1120
1245
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Erlang curves B = f (A,  N) 

Erlang curves A = 0.1-1 0 
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Erlang curves B = f(A, N) 

Erlang curves A = 10-1 00 
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Normal distribution (Gauss distribution)

Laplace-Gauss density function (standard Normal density)

Laplace-Gauss distribution function

Values of a as a function of P (e.g. P = 10'3: a = 3.29 and P = 0.11 : a = 1.598)
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Table 2. Laplace-Gauss distribution (standard normal distribution)

P 10-3

3.290

10-4

3.890

10-5

4.417

10-6

4.892

10-7

5.327

10-8

5.731

10-9

6.110

P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1.645

1.281

1.036

0.842

0.674

0.524

0.385

0.253

0.126

0.01

2.576

1.598

1.253

1.015

0.824

0.659

0.510

0.372

0.240

0.113

0.02

2.326

1.555

1.226

0.994

0.806

0.643

0.482

0.345

0.215

0.088

0.03

2.170

1.514

1.200

0.974

0.789

0.628

0.482

0.345

0.215

0.088

0.04

2.054

1.476

1.175

0.954

0.772

0.613

0.468

0.332

0.202

0.075

P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

1.960

1.440

1.150

0.934

0.755

0.598

0.454

0.318

0.189

0.063

0.06

1.880

1.405

1.126

0.915

0.739

0.583

0.440

0.305

0.176

0.050

0.07

1.812

1.372

1.103

0.896

0.722

0.568

0.426

0.292

0.164

0.038

0.08

1.751

1.341

1.080

0.878

0.706

0.553

0.412

0.279

0.151

0.025

0.09

1.695

1.310

1.058

0.859

0.609

0.539

0.399

0.266

0.138

0.012
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Poisson distribution

Poisson density function

Poisson table: density function

Table 3. Poisson density function

λ->
k

0

1

2

3

4

5

0.1

9.0e-l

9.0e-2

4.5e-3

1.5e-4

4.0e-6

0.3

7.4e-l

2.2e-l

3.3e-2

3.3e-3

2.5e-4

1.5e-4

0.5

6.1e-l

3.0e-l

7.6e-2

1.3e-2

1.6e-3

1.6e-4

1

3.7e-l

3.7e-l

1.8e-l

6.1e-2

1.5e-2

3.0e-3

2

1.3e-l

2.7e-l

2.7e-l

1.8e-l

9.0e-2

3.6e-2

3

5.0e-2

1.5e-l

2.2e-l

2.2e-l

1.7e-l

l.Oe-1

4

1.8e-2

7.3e-2

1.5e-l

1.9e-l

1.9e-l

1.6e-l
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6

7

8

9

10

12

15

18

20

22

25

28

30

1e-6 1.3e-5

le-6

5.1e-4

7.3e-5

9e-6

le-6

1.2e-2

3.4e-3

8.6e-4

1.9e-4

3.8e-5

le-6

5.0e-2

2.2e-2

8.1e-3

2.7e-3

8.1e-4

5.5e-5

le-6

l.Oe-1

5.9e-2

3.0e-2

1.3e-2

5.3e-3

6.4e-4

1.5e-5

λ->

k

0

1

2

3

4

5

6

7

8

9

10

12

15

5

6.7e-3

3.4e-2

8.4e-2

1.4e-l

1.7e-l

1.7e-l

1.5e-l

l.Oe-1

6.5e-2

3.6e-2

1.8e-2

3.4e-3

1.6e-4

6

2.5e-3

1.5e-2

4.5e-2

8.9e-2

1.3e-l

1.6e-l

1.6e-l

1.4e-l

l.Oe-1

6.9e-2

4.1e-2

l.le-2

8.9e-4

7

9.1e-4

6.4e-3

2.2e-2

5.2e-2

9.1e-2

1.3e-l

1.5e-l

1.5e-l

1.3e-l

l.Oe-1

7.1e-2

2.6e-2

3.3e-3

8

3.3e-4

2.7e-3

l.le-2

2.9e-2

5.7e-2

9.2e-2

1.2e-l

1.4e-l

1.4e-l

1.2e-l

9.9e-2

4.8e-2

9.0e-3

9

1.2e-4

l.le-3

5.0e-3

1.5e-2

3.4e-2

6.1e-2

9.1e-2

1.2e-l

1.3e-l

1.3e-l

1.2e-l

7.3e-2

1.9e-2

10

1.7e-5

1.8e-4

l.Oe-3

3.7e-3

l.Oe-2

2.2e-2

4.1e-2

6.4e-2

8.9e-2

l.le-1

1.2e-l

l.le-1

5.3e-2



510 Communicating Networks: Traffic and Performance

18

20

22

25

28

30

4e-6 3.9e-5

4e-6

2.3e-4

3.0e-5

3e-6

9.4e-4

1.6e-4

2.2e-5

1e-6

2.9e-3

6.2e-4

l.le-4

6e-6

le-6

1.4e-2

4.6e-3

1.2e-3

1.2e-4

8e-6

le-6

Poisson table: distribution function

integer

Table 4. Poisson distribution function

k->
λ
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0.90
0.82
0.74
0.67
0.61
0.55
0.50
0.45
0.41
0.37
0.13
0.50
0.02
0.01
0.00

1

0.99
0.98
0.96
0.94
0.91
0.88
0.84
0.81
0.77
0.74
0.41
0.20
0.09
0.04
0.02
0.01
0.00

2

1
1
1

0.99
0.99
0.98
0.97
0.95
0.94
0.92
0.68
0.42
0.24
0.12
0.06
0.03
0.01
0.00

3

1
1
1
1

0.99
0.99
0.99
0.98
0.86
0.65
0.43
0.26
0.15
0.08
0.04
0.02
0.01
0.00

4

1
1
1
1
1

0.95
0.81
0.63
0.44
0.28
0.17
0.10
0.05
0.03
0.01
0.01
0.00

5

1
1

0.98
0.92
0.78
0.62
0.45
0.30
0.19
0.12
0.07
0.04
0.02
0.01
0.01
0.00

6

1
1

0.97
0.89
0.76
0.61
0.45
0.31
0.21
0.13
0.08
0.05
0.03
0.01
0.00
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k->
λ
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

7

1
1

0.99
0.95
0.87
0.74
0.60
0.45
0.32
0.22
0.14
0.09
0.05
0.03
0.02

8

1
1

0.98
0.93
0.85
0.73
0.60
0.46
0.33
0.23
0.15
0.10
0.06
0.04

9

1
1

0.99
0.97
0.92
0.83
0.72
0.59
0.46
0.34
0.24
0.17
0.11
0.07

10

1
1

0.99
0.98
0.90
0.82
0.71
0.58
0.46
0.35
0.25
0.18
0.12

15

1
1
1

0.99
0.98
0.95
0.91
0.88
0.76
0.67
0.57

20

1
1
1

0.99
0.99
0.97
0.95
0.92

25

1
1

0.99

Bernoulli distribution

Bernoulli density function
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Table 5. Bernoulli density function

N

2

3

5

8

10

p%->

k

0

1

2

0

1

2

3

0

1
2

3

4

5

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

5

0.9025

0.0950

0.0025

0.8574

0.1354

0.0071

0.0001

0.7738

0.2036

0.0214

0.0011

0.6634

0.2793

0.0515

0.0054

0.0004

0.5987

0.3151

0.0746

0.0105

0.0010

0.0001

10

0.81

0.18

0.01

0.729

0.243

0.027

0.001

0.5905

0.328

0.0729

0.0081

0.0005

0.4305

0.3826

0.1488

0.0331

0.0046

0.0004

0.3487

0.3874

0.1937

0.0574

0.0112

0.0015

0.0001

20

0.64

0.32

0.04

0.512

0.384

0.096

0.008

0.3277

0.4096

0.2048

0.0512

0.0064

0.0003

0.1678

0.3355

0.2936

0.1468

0.0459

0.0092

0.0011

0.0001

0.1074

0.2684

0.3020

0.2013

0.0881

0.0264

0.0055

0.0008

0.0001
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N

2

3

5

8

10

p%->
k
0
1
2
0
1
2
3
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
10

30

0.49
0.42
0.09
0.343
0.441
0.189
0.027
0.1681
0.3602
0.3087
0.1323
0.0284
0.0024
0.0576
0.1977
0.2965
0.2541
0.1361
0.0467
0.0100
0.0012
0.0001
0.0282
0.1211
0.2335
0.2668
0.2001
0.1029
0.0368
0.0090
0.0014
0.0001

40

0.36
0.48
0.16
0.216
On432
0.288
0.064
0.0778
0.2592
0.3456
0.2304
0.0768
0.0102
0.0168
0.0896
0.2090
0.2787
0.2322
0.1239
0.0413
0.0079
0.0007
0.0060
0.0403
0.1209
0.2150
0.2508
0.2007
0.1115
0.0425
0.0106
0.0016
0.0001

50

0.25
0.50
0.25
0.125
0.375
0.375
0.125
0.0312
0.1562
0.3125
0.3125
0.1562
0.0312
0.0039
0.0312
0.1094
0.2188
0.2734
0.2188
0.1094
0.0312
0.0039
0.0010
0.0098
0.0439
0.1172
0.2051
0.2461
0.2051
0.1172
0.0439
0.0098
0.0010
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χ R;β • Chi-2 distribution with R degrees of freedom, at confidence level β = 1- a

Table 6. χ2 distribution (confidence interval)

χ2

R;β

R

2

4

6

8

10

12

14

1 - a = 0.95

Interval

v2

A 0.025

0.05

0.48

1.24

2.18

3.25

4.40

5.63

% 0.975

7.38

11.1

14.5

17.5

20.5

23.3

26.1

limit

% 0.95

5.99

9.49

12.6

15.5

18.3

21.0

23.7

1 - a = 0.90

Interval

χ2
 0.05

0.103

0.711

1.64

8.73

3.94

5.23

6.57

χ2
 0.95

5.99

9.49

12.6

15.5

18.3

21.0

23.7

limit

χ20.90

4.61

7.78

10.6

13.4

16.0

18.5

21.1
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16

18

20

22

24

26

28

30

6.91

8.23

9.59

10.98

12.40

13.84

15.31

16.79

28.8

31.5

34.2

36.78

31.37

41.92

44.46

46.98

26.3

28.9

31.4

33.92

36.41

38.88

41.34

43.77

7.96

9.39

10.9

12.34

13.85

15.38

16.93

18.49

26.3

28.9

31.4

33.92

36.41

38.88

41.34

43.77

23.5

26.0

28.4

30.81

33.20

35.56

37.92

40.26

χR;β

R

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

l-α = 0.80

Interval

χ20.10

0.21

1.06

2.20

3.49

4.87

6.30

7.79

9.31

10.9

12.4

14.04

15.66

17.29

18.94

20.60

χ2 0.90

4.61

7.78

10.6

13.4

16.0

18.5

21.1

23.5

26.0

28.4

30.81

33.20

35.56

37.92

40.26

limit
χ20.80

3.22

5.99

8.56

11.1

13.4

15.8

18.1

20.5

22.8

25.0

27.3

29.5

31.8

34.0

36.2

l-α = 0.60

Interval

χ2
 0.20

0.45

1.65

3.07

4.59

6.18

7.81

9.47

11.15

12.85

14.57

16.31

18.06

19.82

21.59

23.36

χ2
 0.80

3.22

5.99

8.56

11.1

13.4

15.8

18.1

20.5

22.8

25.0

27.3

29.5

31.8

34.0

36.2

limit
χ2 0.60

1.83

4.04

6.21

8.35

10.5

12.6

14.7

16.8

18.9

21.0

23.1

25.2

27.3

29.4

31.5
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Student-Fisher table

     as a function of r (degree of freedom)

Table 7. Student-Fisher distribution (confidence interval)

α
r

1

2
3
4
5
6
7

8

9
10
12
15
18

20
22
25

0.9

0.158
0.142
0.137
0.134
0.132
0.131

0.130

0.130
0.129
0.129
0.128
0.128
0.127

0.127
0.127
0.127

0.8

0.325
0.289
0.277
0.271
0.267
0.265
0.263
0.262
0.261
0.260
0.259
0.258
0.257
0.257
0.256
0.256

0.7

0.510
0.445
0.424
0.414
0.408
0.404
0.402

0.399
0.398
0.397
0.395
0.393
0.392

0.391
0.390
0.390

0.6

0.727
0.617
0.584
0.569
0.559
0.553
0.549
0.546
0.543
0.542
0.539
0.536
0.534
0.533
0.532
0.531

0.5

1

0.816
0.765
0.741
0.727
0.718
0.711

0.706
0.703
0.700
0.695
0.691

0.688
0.687
0.686
0.684

0.4

1.376
1.061
0.978
0.941
0.920
0.906
0.896

0.889
0.883
0.879
0.873
0.866
0.862
0.860
0.858
0.856

0.3

1.963
1.386
1.250

1.190
1.156
1.134

1.119

1.108
1.100
1.093
1.083
1.074
1.067
1.064
1.061
1.058
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28
30

0.127
0.127

0.256
0.256

0.389
0.389

0.530
0.530

0.683
0.683

0.855
0.854

1.056
1.055

α

r

1

2

3

4

5

6

7

8

9

10

12

15

18

20

22

25

28

30

0.2

3.078

1.886

1.638

1.533

1.476

1.440

1.415

1.397

1.383

1.372

1.356

1.341

1.330

1.325

1.321

1.316

1.313

1.310

0.1

6.314

2.920

2.353

2.132

2.015

1.943

1.895

1.860

1.833

1.812

1.782

1.753

1.734

1.725

1.717

1.708

1.701

1.697

0.05

12.706

4.303

3.182

2.776

2.571

2.447

2.365

2.306

2.262

2.228

2.179

2.131

2.101

2.086

2.074

2.060

2.048

2.042

0.02

31.821

6.965

4.541

3.747

3.365

3.143

2.998

2.896

2.821

2.764

2.681

2.602

2.552

2.528

2.508

2.485

2.467

2.457

0.01

63.657

9.925

5.481

4.604

4.032

3.707

3.499

3.355

3.250

3.169

3.055

2.947

2.878

2.845

2.819

2.787

2.763

2.750

0.001

636.62

31.598

12.924

8.610

6.869

5.959

5.408

5.041

4.781

4.587

4.318

4.073

3.922

3.850

3.792

3.725

3.674

3.646
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Binomial distribution 123
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