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Preface

Roger learnt that he was seriously ill late in December 2002. When he heard this,
Rick Rashid, Microsoft Senior Vice-President for Research, suggested that there
should be some occasion to mark Roger’s contribution to the field, and an asso-
ciated publication.

In response, we proposed a one-day meeting with both technical talks and a
more personal session about Roger, with the presentation of a volume of papers
from Roger’s many technical colleagues as the key element.

There was not much time to prepare the volume. So we asked for short pa-
pers on any technical topic of each contributor’s choosing likely to be of interest
to Roger. The papers could be on an area of current research, a conjecture about
the future, or an historical reflection. They had to be delivered in four weeks. We
much appreciated the rapid and enthusiastic responses to our invitation, and were
delighted with the range of topics covered and their technical interest. We were
also grateful, as each editor reviewed all the papers, for the positive spirit with
which our comments and suggestions were received.

The meeting itself, ‘Roger Needham: 50 and 5,’ marking Roger’s fifty years
in Cambridge and five at Microsoft Research, took place on February 17th,
2003. The programme is given, for reference, following this Preface. The entire
proceedings were recorded, publicly available at:

http://www.research.microsoft.com/needhambook
We would like to thank all those who wrote for the volume, and those who spoke
at the meeting.

We know that Roger was very touched by how many came to the meeting,
some from far away, by how many wrote for the volume and in doing so re-
sponded to his interests, by the references to his work in the technical talks, and
by the accounts of his roles and contributions in the presentation session. At the
end of the meeting he said:

The first thing to say is thank you very much—which is sort of obvious.

The next thing I want to say is one or two words about what I’ve done and
what my subject is. In many sorts of engineering the theoretical background
is obvious: it’s continuous mathematics which comes from the 18th century.
In computing there is a theoretical background and it’s not obvious but it had
to be invented, and people in the theoretical part of our subject have devoted
themselves to inventing it—which is fine because you can’t expect it to hap-
pen by itself and you can’t go and build computer systems with any complex-
ity at all without some formalised understanding to fall back on.
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It is an odd thing that in my career I have contributed one or two bits to that,
but that’s basically not what I’m about.

I have the greatest respect for the people who build the theoretical underpin-
nings of our subject, and I wish them every success because it will enable the
people who want to get on and make things to do it better and to do it more
quickly and to do it with less mistakes—and all of this is good: but at the end
of the day I am a engineer—

and so saying, he put on his engineer’s hard hat. He died less than two weeks
later, on March 1st.

Roger’s last major talk was his Clifford Paterson Lecture ‘Computer secu-
rity?’ at The Royal Society in November 2002. We have included its text, which
is also posthumously published in the Society’s Philosophical Transactions, as
the last paper in the volume, along with a complete list of Roger’s publications.
We have used the classic Needham-Schroeder authentication protocol as the
cover design.

The papers in this volume are as they originally appeared for the meeting,
apart from some minor corrections and some small modifications, necessary in
the circumstances, to specific references to Roger.

These papers address issues over the whole area of computer systems, from
hardware through operating systems and middleware to applications, with their
languages and their implementations, and from devices to global networks; also
from many points of view, from designers to users, with lessons from the past or
concerns for the future. Collectively, they illustrate what it means to be a com-
puter system.

Acknowledgements

We are very grateful to Microsoft for supporting the celebration meeting itself,
producing the volume in its original form, and for further supporting the prepara-
tion of the volume for formal publication.

We are also grateful to Professor Fred Schneider for facilitating the Springer
publication and to Tammy Monteith for her work on formatting the material.

Andrew Herbert, Karen Spärck Jones
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Introduction: Roger Needham1

Rick Rashid
Senior Vice President, Microsoft Research

I first encountered Roger Needham almost 20 years ago while lecturing in an
advanced course on distributed systems being held in Glasgow during the sum-
mer of 1983. I must admit that I felt just a bit out of place lecturing alongside the
likes of Gerald Le Lann, Jim Mitchell and Roger Needham. Roger had become
head of Cambridge University’s fabled Computer Laboratory just three years
earlier, about the same time I had received my Ph.D.

When I heard Roger lecture for the first time, I was taken aback by his re-
markable and very unusual speaking style. I’ve since seen it described in the
press as “deliberate and thoughtful,” and it is all of that. Listening to a lecture in
computer science can sometimes make you feel as though you are chasing after
the words trying to piece together the speaker’s meaning. When Roger spoke I
found myself hanging on each word, wondering with great anticipation what
would come next. The wait was usually worthwhile. That summer in 1983 I dis-
covered to my delight Roger’s keen insight, dry wit and ability to turn the Eng-
lish language into his personal plaything:

An improvement is something your program will not work with and a bug fix
is something it will not work without.

Looking back, I still find it hard to believe that 20 years later I would be run-
ning a large research organization for Microsoft and would have the privilege of
working with Roger on a daily basis as Managing Director of our Cambridge
research laboratory. It has been quite a journey.

Early career

I’ve heard the story told that while studying for his Ph.D., Roger lived in a cara-
van with his wife Karen Spärck Jones, with whom he also collaborated on sev-

1 This text is as written before Roger’s death, except for changes in the last paragraph.
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eral papers. The reason for their unorthodox living arrangements was that while
completing his Ph.D., Roger and Karen also undertook the building of their own
house. Despite this rather strenuous side occupation, Roger completed his Ph.D.,
at Cambridge in 1961. This was on automatic classification and information re-
trieval, exciting, new and interdisciplinary areas. At the time, Roger was working
with the Cambridge Language Research Unit, which was investigating machine
translation, automated retrieval, and the like. He joined the University’s Mathe-
matical Laboratory—what is now known as the Computer Laboratory—in 1962,
as a Senior Assistant in Research.

Although his Ph.D. was on an applications topic, Roger’s career has been
that of a classic—almost prototypical—“systems” computer scientist. It is hard
to pin him down to a single area. Roger has made significant contributions to
areas such as operating systems, networking, distributed systems, computer secu-
rity and multimedia. In an interview for SIGSoft’s Software Engineering Notes
published in January 2001, Roger is quoted as saying:

I regard myself as a systems person, not an OS person, nor a communications
systems person. I think all three systems require the same kind of skills.

During his career Roger has had a knack for apparently being at the right
place at the right time, working with the right collaborators and hitting on the
right idea. Roger is fond of saying,

Serendipity is looking for a needle in a haystack and finding the farmer’s
daughter.

The reality is that his consistent contributions have had nothing to do with
serendipity but rather his personal talents and ability to draw to himself talented
people and find ways to inspire and motivate them.

The first major system Roger worked on following his Ph.D. was TITAN.
The Laboratory, under Maurice Wilkes, was providing the software for hardware
built by Ferranti (subsequently ICT/ICL). TITAN was the earliest computer sys-
tem to employ cache memory, and its operating system was the first multi-access
system written outside the US to go into public use. Roger first worked with
David Wheeler on design automation, and then became involved in building the
operating system. One of Roger’s enduring innovations was the use of a one-way
function to protect its password file—something virtually every modern com-
puter system does today. The TITAN file system also introduced the notion of
full backup and restore and the ability to do incremental backups.

Computing in the 1960s and early 1970s was a “full contact sport.” In keep-
ing with his “systems” image, Roger was not above doing anything that might be
required to keep his operating system running. In addition to developing
TITAN’s software, he enjoys telling the story of the miserable day he sat in an
air conditioning unit pouring water from a bucket over a pile of bricks to cool the
system and keep it running for users.

As a member of staff, Roger also began to teach, initially for the Diploma
and later, when Cambridge accepted Computer Science as a degree subject, to
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undergraduates; and he began to take Ph.D. students, now to be met round the
world.

CAP, Rings and the Cambridge Model Distributed
System

Building on lessons learned from TITAN, in the late 1960s Roger began to con-
centrate on protection—providing fine-grained access control to resources be-
tween users, between users and the operating system, and between operating
system modules. From the early 1970s he worked with Maurice Wilkes and
David Wheeler on the design and construction of the CAP computer, an experi-
mental machine with memory protection based on capabilities implemented in
hardware. Once the machine was running in 1975, Roger then led the develop-
ment of the machine’s operating system and was responsible for many innova-
tions in computer security. The CAP project received a British Computer Society
Technical Award in 1977. As the Internet moves toward adoption of a common
web services infrastructure, there is renewed interest in capability based access
control today.

Working with Maurice Wilkes, David Wheeler, Andy Hopper and others,
Roger was also involved in the construction of the Cambridge Ring (1974) and
its successor the Cambridge Fast Ring (1980). The 10-megabit-per-second Cam-
bridge Ring put the Computer Laboratory at the forefront of high-speed local-
area networking and distributed computing research. The Cambridge Fast Ring
ran at 100 megabits per second—still the typical speed of local computer net-
works more than 20 years later—and helped to inspire the creation of the ATM
switching networks in use today.

The software developed to run on top of the Cambridge Ring was no less re-
markable than the hardware. The Cambridge Model Distributed System on
which Roger worked with Andrew Herbert and others was an innovative distrib-
uted software environment exploiting the Ring. It included computing compo-
nents such as a Processor Bank, File Server, Authentication Server, Boot Server,
etc., and was an early model for what we would today call “thin client comput-
ing.”

This line of work on distributed systems was taken further in the 1980s in
work with Ian Leslie, David Tennenhouse and others on the Universe and Uni-
son projects, where independent Cambridge Rings that sat at several UK sites
were interconnected by satellite (Universe) and high-speed point-to-point links
(Unison) to demonstrate wide-area distributed computing. Both rings were used
to do real-time voice and video applications (the Cambridge “Island” project)—
another “first.”

There were several commercial and academic deployments of Cambridge
Rings spun out from the Computer Laboratory. It is believed that a derivative of
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the Cambridge Ring still runs part of the railway signalling system at London’s
Liverpool Street Station!

Head of Department, Computer Laboratory

Roger had been promoted to Reader in Computer Systems in 1973, and was
made Professor in 1981. When Maurice Wilkes retired in 1980, Roger became
Head of Department. In addition to his personal scientific achievements, Roger
oversaw the growth and maturation of Cambridge University’s Computer Labo-
ratory during an important part of its history. When he took over as Head of De-
partment, the Laboratory had a teaching and research staff of 10 and just over 40
Ph.D. students. Ten years later, in 1990, the teaching and research staff had
grown to 27, and the number of Ph.D. students had more than doubled. Roger is
quoted as referring to this as the Laboratory’s

“halcyon days”—an expanding Laboratory and no external interference.

Though the Laboratory’s strength was in systems, and Roger himself was a
“systems” scientist, he encouraged new areas to develop, for example, formal
methods, and language and information processing. One topic of research Roger
particularly promoted at Cambridge was the intersection of multimedia systems
and networking. As a result, Cambridge became one of the first research labora-
tories in the world where teleconferencing and video mail became regular tools
for research.

Roger continued in the 1980s and 90s to be interested in all aspects of com-
puter systems, but was especially concerned with security. He participated in
every one of the ACM Symposia on Operating Systems Principles, and is be-
lieved to be the only person to have achieved a 100% attendance record. With
Ross Anderson and others he significantly developed and expanded Cambridge
research into computer security. He took an active role in creating a security
programme at the Newton Institute and hosting an annual Security Protocols
Workshop, which he continues to do from Microsoft. He has recently combined
his intellectual and (left wing) political interests as a Trustee of the Foundation
for Information Policy Research. He has also emphasised, in a related spirit, in
his 2002 Saul Gorn Lecture at the University of Pennsylvania and Clifford Pater-
son Lecture at the Royal Society, that doing system security properly is as much
about people as about machines.

Referring to Roger’s impact on the Computer Laboratory on the occasion of
his Honorary Doctorate from the University of Twente in 1996, Sape Mullender
wrote:

Needham works as a catalyst. When he is around, systems research gets more
focus and more vision. He brings out the best in the people around him. This
helps to explain why, for as long as I can remember, the Cambridge Univer-
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sity Computer Laboratory has been among the best systems research labora-
tories in the world. This is recognized even by Americans, although their na-
tional pride doesn’t always allow them to admit that MIT, Stanford, Berkeley,
Cornell, and the rest of them, have something to learn abroad, in Cambridge.

Public service

Roger began his public service career in the 1960s as a member of the Science
Research Council’s Computing Science Committee. His public service activities
ramified in the 80s and 90s, extending into all kinds of government and other
boards and committees. He has said he found some of them fun—the Alvey
Committee, for example, had the opportunity to drive a large national computing
research programme; some were interesting, like the Research Councils’ Indi-
vidual Merit Promotion Panel; and some were keeping a particular show on the
road. He has felt the obligation to do these things; he has also enjoyed learning
and deploying the skills required to do them effectively. His most recent chal-
lenge has been chairing a Royal Society Working Party on intellectual property.

Roger was able to exploit these skills, and what he had learnt about the Uni-
versity while Head of Department, as Pro Vice-Chancellor from 1996–1998,
with a remit on the research side of the University’s operations. This had all
kinds of interesting side-effects, like chairing Electors to Chairs across the Uni-
versity and so getting snapshots of what’s hot in pharmacology, or economic
history, or Spanish.

The list of awards and honors Roger has received for both his personal
achievements and his contributions to Cambridge and to the field is impressive,
including being named Fellow of the British Computer Society, Fellow of the
Royal Society, Fellow of the Royal Academy of Engineering and Fellow of the
ACM. Roger was also awarded the CBE (Commander of the Order of the British
Empire) for his services to Computer Science in 2001.

Working with industry

One constant of Roger’s career has been his consistent connection to industrial
research and development. He was a Director of Cambridge Consultants in the
1960s, and for ten years on the Board of Computer Technology Ltd. He was a
consultant to Xerox PARC from 1977 to 1984 and to Digital’s System Research
Center from 1984 to 1997. From 1995 to 1997 he was a member of the interna-
tional advisory board for Hitachi’s Advanced Research Laboratory, and on the
Board of UKERNA from its inception until 1998.

Spin-offs from the Computer Laboratory had begun in the 1970s, contribut-
ing to the “Cambridge Phenomenon.” When Roger was Head of Department, he
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fostered these connections, welcoming the idea of a Laboratory Supporters Club
and becoming one of the “Godfathers” for Cambridge entrepreneurs.

Some of Roger’s most famous papers were conceived during consulting trips
and sabbaticals working at industrial research laboratories. The secure authenti-
cation system he described in his 1978 paper with Mike Schroeder of Xerox
PARC became the basis for systems such as Kerberos—still in use today—and
represented a turning point in distributed system security research. Working with
Digital Equipment’s Mike Burrows and Martin Abadi, he created the first for-
malism for the investigation of security protocols to come into wide use (also
called the BAN logic, named for its authors). Roger also made contributions to
Xerox’s Grapevine project and Digital’s AutoNet project.

Roger valued his longstanding connections with these company research cen-
tres. He was also able to observe the business of running a research centre—
how, and also how not, to—at first hand.

In 1995 Roger was asked in an interview how he viewed the relationship be-
tween academic work and industrial work in computer science:

If there wasn’t an industry concerned with making and using computers the
subject wouldn’t exist. It’s not like physics—physics was made by God, but
computer science was made by man. It’s there because the industry’s there.

I didn’t realize it at the time, but I would soon become the beneficiary of
Roger’s positive attitude toward working with industry.

By the mid 90s, too, Roger was finding university life, squeezed between a
rampant audit culture and a lack of money, less and less satisfying. Doing some-
thing new without either of these features, and with positive advantages of its
own, looked very attractive.

Microsoft Research, Cambridge

My personal history intersected again with Roger’s almost 14 years after my first
meeting with him in 1983. In 1991 I left Carnegie Mellon University, where I
had been teaching for 12 years, and joined Microsoft to start its basic research
laboratory: Microsoft Research. From the beginning, Nathan Myhrvold, who had
hired me as the first lab director, had contemplated creating a laboratory in
Europe to complement the one we were building in the United States. For the
first 5 years of Microsoft Research’s growth our Redmond facility was small
enough that our first priority was to build it up to critical mass. By 1996 we had
grown to over 100 researchers, and it was time to consider expanding outside the
US.

It was in the fall of 1996 as we were considering European expansion that we
learned through the grapevine that Roger Needham was willing to consider tak-
ing the position of director of a new lab. When I first heard the news I was tre-
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mendously excited. I couldn’t imagine a better person to anchor this new ven-
ture.

In December, Nathan Myhrvold, Chuck Thacker, Roger Needham and I all
met for a day in a hotel near the San Francisco airport to talk about starting the
lab, and by the end of the meeting it was clear we were moving forward. By
April of 1997 the lab was announced with much fanfare, and in October of 1997
Microsoft Research Cambridge officially opened with Roger Needham as its
Managing Director.

In its first temporary space in the middle of Cambridge, the Microsoft lab
was close to the Computer Laboratory. Their two new buildings in west Cam-
bridge are also close together, striking additions to the growing West Cambridge
campus, and with their people interacting as Roger wanted.

In a 1999 interview for the book Inside Out—Microsoft—in Our Own
Words, Roger talked about the new lab he had started:

I had a complete restart of my career at age 62, when I was asked to open
MSR at Cambridge. I asked Rick what he wanted me to do. He said, “Hire
the best people and help them to do what they are good at.” Nathan Myhrvold
added, “If every project you start succeeds, you have failed.”

One of the most important rules of this research game is that unless you can
get some of the best people in the field, you should not bother.

I spent 35 years at Cambridge surrounded by brilliant people, and I rarely had
sufficient money to hire them. That is why I enjoy this job so much.

Just as he was able to build the strength of the Computer Laboratory during
the 1980s and 1990s, Roger did a stellar job hiring “some of the best people in
the field,” and in so doing turning Microsoft Research Cambridge into one of the
premier institutions in Europe and a strong engine for innovation within Micro-
soft. Technology from Microsoft Research Cambridge is now embedded in many
of Microsoft’s key products, including Visual Studio, Office and Windows.
Coming full circle, one of the earliest Cambridge technologies incorporated into
Microsoft’s products was an information retrieval engine—the field in which
Roger received his Ph.D. nearly 40 years earlier.

In celebration of Roger Needham

The papers in this volume were written to celebrate Roger’s 50 years at Cam-
bridge and 5 years at Microsoft and the tremendous impact he had on so many
people in our field. In them you will find a variety of work contributed by some
of the top computer scientists in the world—all of whom had worked with Roger
or been touched or influenced by Roger’s work. These papers were a labor of
love and friendship and deep admiration. Enjoy
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1
On Access Control, Data Integration,
and Their Languages

Martín Abadi

This paper considers the goals and features of recent languages for access con-
trol in distributed systems. In particular, it relates those languages to data inte-
gration.

Languages for access control

Access control is central to security, and in computer systems it appears in many
guises and in many places. Applications, virtual machines, operating systems,
and firewalls often have their own access-control machinery, with their own idio-
syncrasies, bugs, and loopholes. Physical protection, at the level of doors or
wires, is another form of access control.

Over the years, there have been many small and large efforts to unify models
and mechanisms for access control. Beyond any tiny intellectual pleasure that
such unifications might induce, these may conceivably contribute to actual secu-
rity. For example, when there is a good match between the permissions in appli-
cations and those in the underlying platforms, access control mechanisms may
have clearer designs, simpler implementations, and easier configurations. The
benefits are, however, far from automatic�the result is sometimes more prob-
lematic than the sum of the parts�and there probably will always be cases in
which access control resorts to ad hoc programs and scripts.

Those efforts have sometimes produced general languages for access control
(e.g., [2–5, 7, 10, 11]). The languages are flexible enough for programming a
wide variety of access control policies (for example, in file systems and for digi-
tal rights management). They are targeted at distributed systems in which cryp-
tography figures prominently. They serve for expressing the assertions contained
in cryptographic credentials, such as the association of a principal with a public
key, the membership of a principal in a group, or the right of a principal to per-
form a certain operation at a specified time. They also serve for combining cre-
dentials from many sources with policies, and thus for making authorization
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decisions. More broadly, the languages sometimes aim to support trust manage-
ment tasks.

Several of the most recent language designs rely on concepts and techniques
from logic, specifically from logic programming: Li et al.’s D1LP and RT [10,
11], Jim’s SD3 [7], and DeTreville’s Binder [4]. These are explicitly research
projects. Languages with practical aims such as XrML 2.0 include some closely
related ideas, though typically with less generality and simpler logic. This note
will focus on Binder.

One might question whether the use of these sophisticated languages would
reduce the number of ways in which access control can be broken or circum-
vented. Policies in these languages might be difficult to write and to under-
stand�but perhaps no worse than policies embodied in Perl scripts and
configuration files. There seem to be no hard data on this topic.

A look at Binder

Binder is a good representative of this line of work. It shares many of the goals
of other languages and several of their features. It has a clean design, based di-
rectly on that of logic-programming languages.

Basically, a Binder program is a set of Prolog-style logical rules. Unlike
Prolog, Binder does not include function symbols; in this respect, Binder is close
to the Prolog fragment Datalog. Also, unlike Prolog, Binder has a notion of con-
text and a distinguished relation says.

For instance, in Binder we can write:

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

may-access(p,o,Rd) :- good(p)

These rules can be read as expressing that any principal p may access any ob-
ject o in read mode (Rd) if Bob says that p may do so or if p is good.

Here only :- and says have built-in meanings. The other constructs have to
be defined or axiomatized. As in Prolog, :- stands for reverse implication (“if”).
As in previous logical treatments of access control, says serves to represent the
statements of principals and their consequences [1]. Thus,

Bob says may-access(Alice,Foo.txt,Rd)

holds if there is a statement from Bob that contains a representation of the for-
mula

may-access(Alice,Foo.txt,Rd)

More delicately,

Bob says may-access(Alice,Foo.txt,Rd)
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also holds if there is a statement from Bob that contains a representation of the
formula

may-access(Alice,Foo.txt,RdWr)

and another one that contains a representation of the rule

may-access(p,o,Rd) :- may-access(p,o,RdWr)

The author of an access control policy need not be concerned with the details
of how formulas are associated with piles of bits and network protocols. In par-
ticular, says abstracts from the details of authentication. When C says S, C
may send S on a local channel via a trusted operating system within a computer,
on a physically secure channel in a machine room, on a channel secured with
shared-key cryptography, or in a certificate with a public-key digital signature.

Each formula is relative to a context. In our example, Bob is a context (a
source of statements). Another context is implicit: the local context in which the
formula applies. For example,

may-access(p,o,Rd) :- Bob says may-access(p,o,Rd)

is to be interpreted in the implicit local context, and Bob is the name for another
context from which the local context imports statements. This import relation
might be construed as a form of trust.

There is no requirement that predicates mean the same in all contexts. For
example, Bob might not even know about the predicate may-access, and might
assert

peut-lire(Alice,Foo.txt)

instead of

may-access(Alice,Foo.txt,Rd)

In that situation, one may adopt the rule:

may-access(p,o,Rd) :- Bob says peut-lire(p,o)

On the other hand, Binder does not provide much built-in support for local
name spaces. A closer look reveals that the names of contexts have global mean-
ings. In particular, if Bob exports the rule

may-access(p,o,Rd) :-

Charlie says may-access(p,o,RdWr)

the local context will obtain

Bob says may-access(p,o,Rd) :-

Charlie says may-access(p,o,RdWr)

without any provision for the possibility that Charlie might not be the same
locally and for Bob. Other systems, such as SDSI/SPKI [5], include more elabo-
rate naming mechanisms.
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Distributed access control as data integration

In the database field, a classic problem is how to integrate multiple sources of
data. The basic problem set-up is that there is a collection of databases, each
defining some relations, and one wants to do operations (in particular queries) on
all of them. The query language may be some variant of Prolog, or of its frag-
ment Datalog. Modern versions of the problem address the case where some or
all of the sources of data provide semi-structured objects�on the Web in XML,
for instance. The languages vary accordingly.

Each database may expose a different interface and export its data in a differ-
ent format. In systems such as Tsimmis [6, 12], wrappers translate data from
each source into a common model. Mediators then give integrated views of data
from multiple (wrapped) sources. For instance, the following is a mediator, writ-
ten in the language MSL (Mediator Specification Language) of Tsimmis:

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-

<person {<name N> <dept ‘CS'> <relation R> |

Rest1}>@whois

AND decompose_name(N, LN, FN)

AND <R {<first_name FN> <last_name LN> | Rest2}>@cs

This mediator defines an information source med in terms of two others,
whois and cs. A query to med on cs_persons results in two queries, one on
whois and one on cs, plus a call on the external predicate decompose_name.
In expressions of the form <...>@s, s is a site: a constant or a variable that
represents an information source. The details, which are unimportant for present
purposes, can be found in Papakonstantinou’s dissertation [12].

MSL and Binder have more in common than their proximity to Datalog. Both
deal with multiple sources of data (sites or contexts). In Binder, access control
policies may be regarded as mediators that integrate data from multiple contexts.
Each context may define some relations (good, may-access, etc.), so we may
as well regard contexts as databases. However, the databases may be imple-
mented by certificates, rather than with big tables (so revocation and negation
can be difficult). There is even a remarkable syntactic similarity between MSL
and Binder, at least at the level of abstract syntax: @ in MSL is analogous to
says in Binder, and we may read P@s as s says P.

These similarities suggest the possibility of exploiting ideas and methods
from databases in security. For instance, we may borrow implementation tech-
niques and some theory. We may also borrow some language design. The
thought of basing access control on semi-structured data is inevitable but some-
what frightening. More conservatively, languages for access control may incor-
porate important query-language constructs that go beyond first-order logic and
Datalog, for example for aggregating data.
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While MSL and Binder have similarities in syntax and semantics, their prag-
matics are quite different. In short, the two languages are used in different envi-
ronments, for different purposes, and under different constraints.

• Work on data integration seems to assume a messy but benign world.
This attitude may sometimes motivate pragmatic shortcuts, for example
the plausible assumption that two relations with the same name in dif-
ferent sites might be intended to mean the same unless stated otherwise.

• In security, on the other hand, we tend to regard data from foreign con-
texts with a healthy dose of distrust. While users may work around mis-
takes in data integration, and tolerate them as ordinary bugs, mistakes in
access control are vulnerabilities, often with serious consequences.

The term “views,” so often used in data integration, suggests that each source
of data provides part of the truth on a whole. The literature on data integration
explores two possible approaches [9]:

• Global-as-view (GAV): each relation in the mediator schema is defined
by a query over the data sources;

• Local-as-view (LAV): the data sources are defined by queries over the
mediator schema.

Both approaches have benefits in data integration. On the other hand, Binder
seems to fit only the GAV model; it is not clear how the LAV model might apply
in distributed access control.

Security is primarily a property of systems, not a property of languages. The
observation that some “security languages” resemble some “data integration lan-
guages” seems intriguing, and perhaps useful, but it mostly ignores the systems
for which the languages were invented.

Nevertheless, distributed access control is at least partly about data integra-
tion. We may therefore hope that advances in data integration, and more broadly
in databases, would eventually be of some benefit in security. We may even
imagine that we will be able to dispense with much of the special machinery for
access control, relying instead on systems for data integration and the like (e.g.,
[8]), by subsumption. Whether that outcome would be good, rather than merely
interesting, remains open to debate.
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2
Protocol Analysis, Composability
and Computation

Ross Anderson, Michael Bond

Security protocols—early days

The study of security protocols has been associated with Roger Needham since
1978, when he published the seminal paper on the subject with Mike Schroeder
[2].

The problem they investigated was how to distribute cryptographic keys in a
network of computers. One solution is to have an authentication service with
which all the principals share a key. Then if Alice wants to chat with Bob (for
example) she can call the service and get two encrypted messages containing the
same session key—one encrypted under the key she shares with the service so
she can read it, and one encrypted under the key Bob shares with the service so
Bob can read it. She can now send the second of these to Bob to establish secure
communication. The mechanism that Needham and Schroeder designed for this
evolved into Kerberos, which is now part of Windows and is probably the most
widely used of all authentication protocols.

Security protocols are now embedded in a great many applications, but it is
common to find unexpected bugs in them. For example, many banks used to en-
crypt each customer’s PIN using a key known to their ATMs and write it on the
ATM card magnetic strip. The idea was to provide limited service when the net-
work was down. Years later, a villain discovered that the account number and the
encrypted PIN were not linked: he could make up a bank card with his own en-
crypted PIN but someone else’s account number, and loot their account. He went
on to steal a lot of money, and once in prison wrote a manual telling everyone
else how to do it too. The banks had to spend millions on changing their systems.



16 Anderson, Bond

Clarifying the assumptions

Researchers started to gnaw away at the protocols described in the literature and
found fault with essentially all of them. The failure to bind protocol elements
was one frequent problem; another was that old messages could be replayed. In
the case of the original Needham-Schroeder protocol, for example, the freshness
of the key generated by the server was guaranteed to only one of the principals.
This was not necessarily an attack, as its inventors only claimed to protect honest
insiders from dishonest outsiders. However, it led to a debate about the assump-
tions underlying security protocol design. Do we protect only against outsiders,
or against insiders? Against the malicious, or the merely careless? For example,
if we use timestamps to guarantee protocol freshness, are we vulnerable to prin-
cipals who carelessly let their clocks run slow? Do we only consider an attacker
to have won if he can impersonate an authorised principal, or do we need to stop
people abusing the protocol mechanisms to perform a service denial attack?

The early attacks led to a second seminal paper, which Roger wrote with
Mike Burrows and Martin Abadi in 1989 [1], and which introduced a logic of
authentication. This enables an analyst to formalise the assumptions and goals of
a security protocol, and to attempt to prove its correctness. When a proof cannot
be found, the place at which one gets stuck often shows where an attack can be
mounted. This style of analysis turned out to be very powerful, and a large litera-
ture quickly developed in which the “BAN Logic” and other formal tools were
developed and extended to tackle a range of problems in protocol design.

One of the remarkable things about security protocols is that they have not
become a solved problem. One might think that managing the objects associated
with authenticating users over a network—passwords, keys and the like—was a
fairly compact problem which would have been done to death within a few years.
However, the more we dig, the more we find.

Between 1992 and 2002, Roger hosted a protocols workshop every Easter.
Early events dwelt on matters of authentication and logic, but by the mid-90s, the
growing interest in electronic commerce was yielding papers on mechanisms for
micropayments, bets, streaming media, mobile communications and electronic
voting. Later years brought work on PKI, trust management and copyright en-
forcement. More and more problems come along as more and more businesses
reinvent themselves online; threat models have also become more realistic, with
dishonest insiders displacing the mythical ‘evil hacker on the Internet’.

Dishonest insiders, and the composition problem

Over the last two years, we have been exploring exactly how one might re-
engineer cryptography to cope with dishonest insiders. One conclusion is that the
analysis of security protocols must be extended to application programming in-
terfaces. This is because the crypto keys used in authentication and payment pro-
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tocols are often kept in separate hardware security processors, or at least in cryp-
tographic libraries, to which access can be restricted using physical or logical
mechanisms. However, an interface has to be exposed to the application pro-
gram, which will occasionally be suborned—whether by a corrupt insider or by
malware. How much harm can be done, and how can we limit it?

Protecting protocols was hard enough, and yet the typical protocol consists of
3–5 messages exposed to manipulation. The API of a modern crypto library or
hardware cryptoprocessor may contain 30–500 callable functions, many with a
range of options. This provides a very rich and complex environment for mis-
chief.

Attacks often involve using two separate mechanisms provided by the cryp-
toprocessor for different purposes, each of which could be innocuous by itself
but which combine to cause trouble. For example, it is common to compute a
customer PIN by encrypting the account number with a ‘PIN derivation key’: the
cryptoprocessor then returns the PIN encrypted with a PIN storage key, so that
the application has no access to its clear value. So far, so good. Then there is
another transaction that can be used to encrypt a communications key under the
terminal key loaded in an ATM. Here things start to go wrong, as the crypto-
processor does not distinguish between a terminal key and a PIN derivation key;
it considers them both to be of the same type. The upshot is that an attacker can
supply the device with an account number, claiming that it is a communications
key, and ask for it to be encrypted under the PIN derivation key.

Attacks like this extend protocol analysis all the way to the composition
problem—the problem that connecting two systems that are secure in isolation
can give a composite system that leaks. This had previously been seen as a sepa-
rate issue, tackled with different conceptual tools.

Differential protocol analysis

We are now working on the second generation of API attacks, which exploit the
application syntax supported by the cryptographic service. These attacks are
even more powerful, and at least as interesting from the scientific point of view.
PIN generation provides a neat example here too. In more detail, the standard
PIN computation involves writing the result of the encryption as a hex string and
decimalising it. As some banks like to let customers change their PIN to a more
memorable number, there is a provision to add an offset to give the PIN that the
customer actually enters:

Account number: 8807 0123 4569 1715
PIN derivation key: FEFE FEFE FEFE FEFE
Encrypted account number: A2CE 126C 69AE C82D
Natural (decimalised) PIN: 0224
Offset: 6565
Customer PIN: 6789
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The typical implementation requires the programmer to send the cryptoproc-
essor the account number, a table describing the decimalisation (here, ‘0123
4567 8901 2345’) and the offset. The processor returns the PIN, encrypted
under the PIN storage key.

The designers do not seem to have realised that a crooked programmer can
manipulate the decimalisation table and the offset as well as the account number.
A multitude of attacks follow. For example, one can send in an account number
with a decimalisation table of ‘1111...11’ to find out the ciphertext corre-
sponding to a clear PIN of ‘1111,’ and then with a decimalisation table of
‘0111...11’ to see if there is a zero in the first four digits of the encrypted
account number (if so, the PIN, and thus the ciphertext output, will be different).
By manipulating the decimalisation table further, he can get all the digits in the
PIN, and by then playing with the offset, he can get their order. In total, the at-
tack requires only 15–25 unprivileged cryptoprocessor transactions to discover
the PIN on a single target account.

This second type of attack takes protocol analysis into yet another realm: that
of differential attacks. Over the last ten years, a number of techniques have been
invented for attacking cryptographic systems by bombarding them with inputs
with chosen differences. For example, in differential cryptanalysis, one analyses
the changes in the output of the encryption algorithm; while with differential
power analysis, one measures changes in the current consumption or electro-
magnetic emissions of the equipment. Now we have examples of how consecu-
tive runs of a protocol can leak information if the inputs are suitably chosen. The
resulting ‘differential protocol analysis’ appears to be very powerful against ap-
plication-level crypto.

It will take us some time to figure out the general lessons to be drawn from
attacks like this, the robustness principles that designers should use to avoid
them, and the analysis techniques that might assure us of a particular design’s
soundness. The randomisation of all protocols (another feature of Roger’s work)
is likely to be important.

Quantitative analysis and multiparty computation

Various researchers have speculated about whether there might one day be a
quantitative analysis of protocol security. This might be feasible for PIN proc-
essing applications as we can measure the information leakage per transaction in
terms of the reduction of entropy in the unknown PIN. This leads in turn to a
possible real-world attack previously considered theoretical.

Gus Simmons wrote extensively on covert channels in protocols. One such
channel that is always present is the ‘balking channel’—when one of the princi-
pals in a protocol signals something by halting and refusing to continue. This is
normally considered unimportant, as its information capacity is only a third of a
bit per transaction. But with systems designed to cope with large transaction vol-



Protocol Analysis 19

umes, this need no longer hold. For example, a Trojanned cryptoprocessor could
balk when it sees a predetermined PIN. If the PIN length were eight digits, this
would be unlikely to hinder normal operation, but at a thousand transactions a
second, a programmer could quickly find a number in a typical nine-digit ac-
count-number range with just this PIN, and open an account for it. Once this
kind of problem is appreciated, one can start to look for attacks that involve in-
ducing rare error conditions that cause the cryptoprocessor to abort a transaction.
(They exist.)

A third emerging link is between protocol analysis and secure multiparty
computation. In application-level crypto we may have several inputs to a compu-
tation, some of them coming from an untrusted source, and we have to stop users
manipulating the computation to get outputs useful for bad purposes. In the PIN
decimalisation example above, one might try to solve the problem by blocking
tables such as ‘1111...11.’ Yet an attacker can get by with scarcely more
work by using two normal-looking tables that differ slightly (another kind of
differential attack). We might therefore think that if we can’t sanitize the inputs
to the computation, perhaps we can authenticate them, and use only those tables
that real banks actually use. But building every bank in the world into our trust
base is what we were trying to avoid by using cryptography!

Conclusion

The protocol work that started off a quarter of a century ago may have seemed at
the time like a minor detail within the larger project of designing robust distrib-
uted systems. Yet it has already grown into the main unifying theme of security
engineering. Application-level protocols, and especially those from which an
attacker can harvest data over many runs, open up new problems. The resulting
analysis techniques are set to invade the world of composable security and the
world of multiparty computation. The influence and consequences of Roger’s
contribution just keep on growing.
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3
Access Control in Distributed Systems

Jean Bacon, Ken Moody

We trace the evolution of access-control-policy expression and implementation
from centralised operating systems, through locally distributed, LAN-based sys-
tems, to large-scale, widely distributed systems with independently developed
components. Current approaches to the latter favour role-based access control
enforced through encryption-protected certificates that have their roots in capa-
bility mechanisms.

Access-control policy and mechanism

Access control is a crucial aspect of most computerised systems. Access-control
policy is the specification of the rights of principals to access objects or use ser-
vices. Access-control mechanisms implement the policies at runtime. There is a
tension between expressiveness of policy and efficiency and functionality of
mechanism. We trace the evolution of policy and mechanism from early central-
ised systems to current, large-scale, widely distributed systems.

From the earliest operating system (OS) designs, discretionary schemes have
been supported. Here, policy on service use is implicit, and an object’s owner
specifies its access permissions. An access-control list (ACL) associated with an
object has been the most usual form of policy specification; implementation is by
checking the list on object access. ACLs can be expressive, most generally con-
taining any combination of groups (with nesting) and principals. As systems
grow and groups contain increasing numbers of members, the implementation
becomes unacceptably slow, as shown for Grapevine [7].

For this reason the alternative of issuing authorised principals with capabili-
ties has been investigated. Capabilities are efficient to check, but how to manage
and revoke them has exercised the research community over many years. Signed
authorisation certificates are the most recent manifestation of capabilities.
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Capabilities in centralised and distributed systems

The CAP operating system [11, 12, 13] was the culmination of capability-based
OS design. The CAP project explored how a general-protection-domain structure
(as opposed to nested rings) might be enforced and used to implement minimum
necessary privilege both in the use of services and in access to objects. But
hardware support for protection is expensive compared with off-the-shelf proc-
essors, and before the CAP project ended, the emerging local-area-network tech-
nology was making distributed systems feasible and changing the research focus.

Many distributed system designs—such as the Cambridge Distributed Com-
puting System (CDCS) [14], Amoeba, Mach and Chorus— have been based on
capabilities. In CDCS, capabilities were issued to authenticated principals to
allow subsequent use of system services. The CDCS file system (CFS) [6] was
also capability-based, providing a universal storage service on which any number
of OS directory services could be built. The MSSA (multi-service storage archi-
tecture) project [1, 10] extended this design approach to provide a hierarchy of
services above the lowest flat-file level. Specialised continuous media services
were supported, as well as structured objects such as OS directories, indexes,
mail objects and general database objects.

Issues for capability-based access control

A capability contains an object name and some access rights. The necessary
properties of a capability are as follows:

1. Integrity. It is essential to protect capabilities from illegal construction,
tampering and theft. A principal must not be able to create a capability
for itself. The possessor of a capability must not be able to increase its
access rights. It should not be possible for a network eavesdropper to
pick up and use a capability.

2. Propagation. The transfer of capabilities should be controlled. For ex-
ample, should it be possible for a principal with a capability to pass a
copy to some other principal? It may be that this should be allowed only
under system control; that is, a principal should ask the system to create
a capability containing specified rights for some other principal. A
mechanism is needed to enforce such a policy.

3. Delegation. A specific example of the use of the capability transfer
mechanism is for a principal to delegate a subset of its rights to an ob-
ject to another principal. This may be for a specific purpose for a lim-
ited time. For example, one may wish to delegate to a printing service
the right to read a file only for the time it takes to print that file.

4. Revocation. Capabilities are held by principals, or their agents, rather
than residing with objects. It may therefore be difficult for a system to
keep track of all the capabilities that exist for an object. Some may have
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been issued directly to principals by the system; some may have been
passed from one principal to another. If the access-control policy for an
object is changed, then some capabilities may need to be revoked. Ide-
ally, individual revocation should be possible. The alternative is to re-
voke all the capabilities for an object, thus forcing all principals to
request new capabilities; the new access-control policy will determine
which ones will succeed. This is simple to implement but imposes
avoidable overhead on the valid principals each time the access-control
policy for an object is changed.

Capability generation and checking in distributed
systems

In a distributed system, capabilities may be used to prove a principal’s right to
use a service or access an object. If capabilities are to be transferred around a
distributed system, it is no longer sufficient to protect them by hardware in the
memory of individual nodes of the system. Encryption techniques must be used
instead. One scheme is as follows: when an object is created, a secret (random
number) is generated and stored with the object. An encryption function, such as
a one-way function, is available to the object manager. When a capability is is-
sued, the object name, rights and the secret are put through the encryption func-
tion and the result is stored in the capability as check digits. When the capability
is presented with a request to use the object, the object name and rights from the
capability and the stored secret are put through the encryption function. The re-
sulting number is compared with the check digits in the capability. If they are the
same, access may go ahead. If they are different, then the capability has been
tampered with and is invalid. This scheme allows the object name and rights to
be represented in clear in the capability.

The four issues for capability-based access control highlighted above are
only partially addressed in the approach just described. The scheme protects
capabilities from tampering but not from theft. Propagation is as difficult as ever
to control and capabilities may now be transferred widely throughout a distrib-
uted system. Revocation cannot be selective; a typical approach is to invalidate
all existing capabilities by associating a new secret with the object. Newly gen-
erated capabilities will use the new secret, old ones will fail the encryption
check, and the principal must request a new capability.

Principal-specific capabilities

A simple extension of the scheme described above is to include the name of a
principal in the capability [9]. The principal’s name is put through the encryption
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function, together with the object name and access rights, when the capability is
issued and checked. We then have a mechanism to enforce that only the principal
whose name is embedded in a capability for an object may access the object; a
principal cannot use a capability it has acquired by eavesdropping on network
communication. Principal-specific capabilities were used in two later Computer
Laboratory projects, MSSA (mentioned above) and OASIS (see below); in the
latter, with the additional insight that the principal ID need not be embedded in
the capability, provided that it is input to the encryption function.

The principal naming mechanism is based on the system’s authentication in-
frastructure; it assumes that the identity of the principal making the request can
be ascertained correctly and that one principal cannot masquerade as another.
But the IP address and port number of the presenting principal are not suffi-
ciently secure, and some public key of the principal is likely to be needed [15].

The transfer of capabilities can now be controlled; only the object manager
with access to the secret can generate capabilities. A principal must ask the ob-
ject manager to generate a new capability for some other principal. Selective
revocation may be supported more easily; for example, a ‘hot list’ of principals
whose rights to access an object have been revoked by a change in access-
control policy may be held with the object and checked when a capability is pre-
sented.

Certificates and integration with a PKI

Over the years this approach has grown in popularity as systems have become
larger and more widely distributed. Capabilities have been implemented as stan-
dard, signed certificates, for example, as X.509 authentication certificates with
access-control information in the extension fields or, more recently, as X.509
attribute certificates [8]. The presenting principal may be challenged for knowl-
edge of the private key associated with the public key within the certificate, or
public/private key encryption may be used for communication, which integrates
access-control with a standard PKI (public key infrastructure).

Role-based access control (RBAC)

Managing the access rights of principals to objects becomes increasingly diffi-
cult as systems grow in size and their user communities vary. The privileges of a
group or “role” are largely independent of the principals who are members, and
these privileges change slowly as an organisation evolves. This is the key idea
behind role-based access control (RBAC), in which access-control policy assigns
privileges to roles rather than to individual principals. There are usually many
fewer roles than principals in an organisation, although a large organisation may
have several thousand roles. Also, the privileges associated with a particular role
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change less frequently than people join and leave, or move to a new role within
the organisation. RBAC therefore promises to be an appropriate access-control
scheme for large-scale systems. An additional requirement for managing access
control in widely distributed applications is that heterogeneous, independently
developed and administered systems should interwork; that is, principals man-
aged by one system will need to use the services of others. Access to such privi-
leges must be negotiated between the systems. For example, the services may be
associated with e-government, where police, social services or health trusts may
be authorised to access certain electronic records managed by another agency.

Various RBAC models have evolved over the years, most notably [16], but
there are few architectures and implementations. If RBAC is to be adopted in
practice, large-scale engineering issues must be addressed.

OASIS: an open architecture for secure, interworking
services

The OASIS project at the Computer Laboratory draws these threads together. An
overview of OASIS is given in [2, 3], details of its architecture and engineering
can be found in [4], and a formal model is presented in [5].

OASIS is an access control system for open, interworking services in a dis-
tributed environment, with services being grouped into domains for the purpose
of management. Services may be developed independently, but service level
agreements allow their secure interoperation. OASIS is closely integrated with
an active, event-based middleware infrastructure. In this way we can notify ap-
plications of any change in their environment, making it possible to ensure that
security policy is satisfied at all times. A heartbeat infrastructure means that fail-
ures of nodes or communications can be detected. The receiver of an alarm,
which that may (or may not) be delayed, can take appropriate action.
OASIS is role-based but has important differences from other RBAC schemes:

• Roles are service-specific; there is no notion of globally centralised
administration of role naming and privilege management.

• Roles may be parameterised, as required by applications.
• Roles are activated within sessions. An OASIS session is started by

strong authentication of a principal, and an initial role such as
logged_in_user is created as a side effect of authentication. Roles may
have activation conditions that require prerequisite roles, and a depend-
ency tree of active roles is built up within a session (see Figure 1).

• All privileges are associated with roles. We use appointment instead of
delegating roles or privileges; the activation conditions of roles may in-
clude appointment certificates. Persistent credentials (as opposed to
session-limited role membership certificates (RMCs)) are implemented
as appointment certificates, which do not confer privileges directly.
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• We provide an active security environment. Constraints on the context
can be checked during role activation; the role may be deactivated, or
use of a service may be forbidden, if particular conditions subsequently
become false.

Figure 1: OASIS role activation within a session

Although the OASIS architecture overcomes many problems, the expression
and management of policy for role activation and service/object use is still a ma-
jor concern. Policy may derive from multiple sources such as national legislation
and local management. Consistency must be ensured and evolution must be con-
trolled. Our current work is concerned with these issues, and a web-based im-
plementation is a basis for our investigations.

Summary

Research on capabilities as an access-control mechanism in centralised, then
distributed, systems has led directly to current, widely used, certificate standards.
Roger Needham’s work has been key at every stage in this development.
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The need for large-scale, widely distributed systems comprising separately-
developed, independent, administrative domains leads to many new problems.
These include how access control policy can be negotiated, expressed and man-
aged when principals’ work spans several such domains. At present members of
our group are working in two specific application areas. In complex applications
the privileges of a number of users change as progress is made towards achieving
one or more real-world tasks, possibly described by a workflow. Access-control
policy must be integrated with the workflow specification, with the enforcement
mechanism responding as workflow subtasks are completed. More speculatively,
how mutually unknown principals and services might establish sufficient trust to
interwork is a challenging problem. We would have enjoyed Roger’s insight on
all of these topics.
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4
Implementing Condition Variables
with Semaphores

Andrew D. Birrell

Introduction

All of today’s popular systems for programming with multiple threads use de-
signs based around three data types:

• “Thread,” with operations Fork and Join
• “Lock” with operations Acquire and Release
• “Condition Variable” with operations Wait, Signal and Broadcast

This is true of PThreads, Java, and C#. It’s also true of their predecessors:
Modula-3, Modula-2+ and Mesa.

In 1984 a group of us at DEC SRC were implementing a new multi-processor
operating system: the system was Taos, the machine was Firefly and the lan-
guage, which we created, was Modula-2+. As part of that effort we implemented
these data types. In doing so we observed that the semantics of Acquire and
Release were identical to those of a binary semaphore.1 Also, the semantics of
Wait and Signal are tantalizingly similar to those of a binary semaphore. So we
thought we could provide a single abstraction in the kernel and present it as
locks and condition variables in the language support layer. This paper is the tale
of what happened then.

The system we were building used what would nowadays be called a micro-
kernel architecture (the term hadn’t been invented then). The lead programmer
for the kernel was Roy Levin, and I was doing the user-mode thread support
code (and the RPC system). We were ably assisted in building the threads facil-
ity by a large and highly qualified cast of other SRC employees, consultants, and
passers-by, including Butler Lampson, Paul Rovner, Roger Needham, Jerry Salt-
zer and Dave Clark.

1 Modula-2+ did not support the notion of re-entrant mutexes. If a thread holding m
tried to acquire m again, the thread would deadlock. This still seems like a good idea.
Implementing locks with semaphores is messier if for some reason you want to allow
re-entrant locking, but it’s still not difficult.



30 Birrell

Ground rules

I’m not going to give formal semantics for the threads operations here. You can
read the ones we wrote for Modula-2+ [1], or you can read the reasonably good
description in Chapter 17 of the Java Language Specification [3] (ignoring the
stuff about re-entrant mutexes). It’s worth reading those specifications sometime,
but the following summary should be enough for appreciating this paper.

• A condition variable, c, is associated with a specific lock, m. Calling
c.Wait() enqueues the current thread on c (suspending its execution) and
unlocks m, as a single atomic action. When this thread resumes execu-
tion, it re-locks m.

• c.Signal() examines c, and if there is at least one thread queued on c, then
one such thread is dequeued and allowed to resume execution; this en-
tire operation is a single atomic action.

• c.Broadcast() examines c, and if there are any threads queued on c, then
all such threads are allowed to resume execution. Again, this entire op-
eration is a single atomic action: the threads to be awoken are exactly
those that had called c.Wait() before this call of c.Broadcast(). Of course,
the awoken threads have to wait in line to acquire the lock m.

Note that these are the Mesa (and Modula, PThreads, Java and C#) semantics.
Tony Hoare’s original condition variable design [4] had the Signal operation
transfer the lock to the thread being awoken and had no Broadcast.

See Dijkstra’s 1967 paper [2] for a precise description of semaphore seman-
tics. In summary:

• A semaphore sem has an integer state (sem.count) and two operations,
“P” and “V”.

• sem.P() suspends the current thread until sem.count > 0, then decrements
sem.count and allows the thread to resume execution. The action of veri-
fying that sem.count > 0 and decrementing it is atomic.

• sem.V() increments sem.count atomically. For the special case of a binary
semaphore, the increment is omitted if sem.count is already 1 (this is
done by setting sem.limit to 1).

It’s quite easy to implement semaphores very efficiently using a hardware test-
and-set instruction, or more modern interlocked memory accesses (such as the
load-locked and store-conditional features of the MIPS and Alpha architectures,
or the analogous features of modern Intel processors).

To give this historical tale a modern flavour, I’m going to use C# for the pro-
gramming examples (Java would be almost identical). In reality the implementa-
tions for the Firefly were written in Modula-2+, and the actual data
representation was somewhat different than given here. I’m also going to ignore
exceptions completely, to avoid cluttering the code with try … finally statements.
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Getting started

A semaphore is ideal for implementing a lock with the Modula or Mesa seman-
tics. We represent the lock directly as a semaphore, with its integer restricted to
the range [0..1], initially 1. The Acquire operation is exactly P and Release is ex-
actly V:

class Lock {
Semaphore sm;
public Lock() { // constructor

sm = new Semaphore(); sm.count =1; sm.limit = 1;
}
public void Acquire() { sm.P(); }
public void Release() { sm.V(); }

}

You can come quite close to implementing a condition variable in a similar way:

class CV {
Semaphore s;
Lock m;
public CV(Lock m) { // Constructor

this.m = m;
s = new Semaphore(); s.count = 0; s.limit = 1;

}
public void Wait() { // Pre-condition: this thread holds “m”

m.Release();
(1) s.P();

m.Acquire();
}
public void Signal() {

s.V();
}

}

Most of this is obvious. The condition variable is associated with a Lock m. En-
queueing a thread on a condition variable is implemented by the s.P() operation.
The only issues occur in the area around (1). Recall that the semantics say that
c.Wait should atomically release the lock and enqueue the thread on c, which this
code blatantly doesn’t do.

The critical case is where there is no thread currently enqueued on c, and
some thread A has called c.Wait() and has reached (1). Then thread B calls
c.Signal(). This calls s.V(), which sets s.count to 1. When thread A eventually gets
around to calling s.P(), it finds that s.count is 1, and so decrements it and contin-
ues executing. This is the correct behaviour. The effect was christened “the



32 Birrell

wake-up waiting race” by Jerry Saltzer [5], and using a binary semaphore en-
sures that A will not get stranded enqueued incorrectly on s.

However, this does have a side-effect: if a thread calls c.Signal() when no
thread is inside c.Wait(), then s.count will be left at 1. This mean that the next
thread to call c.Wait() will just decrement s.count and drop through, which isn’t
really what the semantics said. Fortunately, we were experienced enough to no-
tice this problem immediately. You can fix it by counting the calls of c.Wait() and
the matching calls of c.Signal(). The counter also gives us a plausible implementa-
tion of c.Broadcast.

Of course, you need a lock to protect this counter. For the purposes of the
current description I’ll use another semaphore x in each condition variable. In a
real implementation you’d probably optimize to some form of spin-lock, perhaps
combined with a private agreement with the thread scheduler. Java and C# avoid
this extra lock by requiring that the caller of Signal or Broadcast holds c.m; we
didn’t want this restriction in Modula-2+.

class CV {
Semaphore s, x;
Lock m;
int waiters = 0;
public CV(Lock m) { // Constructor

this.m = m;
s = new Semaphore(); s.count = 0; s.limit = 1;
x = new Semaphore(); x.count = 1; x.limit = 1;

}
public void Wait() { // Pre-condition: this thread holds “m”

x.P(); {
waiters++;

} x.V();
m.Release();

(1) s.P();
m.Acquire();

}
public void Signal() {

x.P(); {
if (waiters > 0) { waiters--; s.V(); }

} x.V();
}
public void Broadcast() {

x.P(); {
while (waiters > 0) { waiters--; s.V(); }

} x.V();
}

}
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This looks pretty good and we were happy with it for several weeks. But actu-
ally, it rates only as a “good try.” It took us a while to notice.

Fixing things up

The problem with the above implementation of condition variables again lies at
position (1), and there are actually two bugs there.

The first one we noticed is that there might be arbitrarily many threads sus-
pended inside c.Wait at (1). Although a call of c.Broadcast() would call s.V() the
correct number of times, the fact that it’s a binary semaphore means that s.count
stops at 1. So all but one of the threads at (1) would end up stranded, enqueued
on s. We noticed this one day when Dave Clark was visiting. The obvious fix is
to declare that s is a general counting semaphore, with unbounded s.count. That
ensures the correct number of threads will drop through in c.Wait.

Unfortunately, they might not be the correct threads. If 7 threads have called
c.Wait and are all at (1) when c.Broadcast is called, we will call s.V() 7 times and
bump s.count to 7. If the threads that are at (1) were to continue, all would be fine.
But what if before that some other thread were to call c.Wait()? Then that thread
would decrement s.count and drop through, and one of the 7 threads would end
up enqueued on s. This most definitely violates the specified semantics. Notice
that c.Signal has the same problem.

So our next attempt was to use some form of handshake to arrange that the
correct threads drop through. We do this by introducing yet another semaphore
h, a general counting semaphore. This lets the signaller block until the appropri-
ate number of threads have got past the call of s.P() in Wait. The thread in c.Signal
waits on h.P() until a thread has made a matching call of h.V() inside c.Wait().

class CV {
Semaphore s, x;
Lock m;
int waiters = 0;
Semaphore h;
public CV(Lock m) { // Constructor

this.m = m;
s = new Semaphore(); s.count = 0; s.limit = 999999;
x = new Semaphore(); x.count = 1; x.limit = 1;
h = new Semaphore(); h.count = 0; h.limit = 999999;

}
public void Wait() { // Pre-condition: this thread holds “m”

x.P(); {
waiters++;

} x.V();
m.Release();
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(1) s.P();
h.V();
m.Acquire();

}
public void Signal() {

x.P(); {
if (waiters > 0) { waiters--; s.V(); h.P(); }

} x.V();
}
public void Broadcast() {

x.P(); {
for (int i = 0; i < waiters; i++) s.V();
while (waiters > 0) { waiters--; h.P(); }

} x.V();
}

}

By this time you’re probably thinking that this implementation is getting a bit
heavyweight. You’re probably right. But it’s worse than that.

I think that the above version of CV is formally correct, in that it implements
the correct semantics. However, it has a fundamental performance problem:
there are necessarily two context switches in each call of Signal, because the sig-
nalling thread must wait for the signalled thread to call h.V() before the signalling
thread can continue. We noticed this and worried about it. There are a lot of
similar designs you can construct, but as far as we could tell in 1984, all of them
either give the wrong answer or have unacceptable performance problems.

So eventually we gave up on the idea that we should build locks and condi-
tion variables out of semaphores. Roy took the semantics of condition variables
and implemented them directly in the kernel. There it’s not difficult to do them:
we built the atomicity of Wait as part of the scheduler implementation, using the
hardware test-and-set instructions to get atomicity with spin-locks, and building
the requisite queues through the thread control blocks.

The sequel—NT and PThreads

Microsoft released Windows NT to the world in 1993. At SRC we observed that
this was a high-quality kernel running on widely available hardware, and we de-
cided it would be good to port our Modula-3 development environment to NT.
As part of this I volunteered to implement Modula-3 threads on top of the Win32
API provided by NT. On the face of it, this seemed like it should be easy. It
turned out to be easy in the same way that building condition variables out of
semaphores was easy.
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Even in 1993 the Win32 API provided lots of potentially useful features for
concurrent programming. There was a satisfactory design for multiple threads in
an address space, and a lot of synchronization primitives (events, mutexes,
semaphores and critical sections). Unfortunately, none of them was exactly what
was needed for condition variables. In particular, there was no operation that
atomically released some object and blocked on another one. I went through
much the same sequence of bad solutions as we went through in 1984 (our
memories were short). In this case, though, we couldn’t give up and modify the
kernel primitives. Fortunately, there is another solution, as follows.

You can indeed build condition variables out of semaphores, but the only
way I know of that is correct and adequately efficient is to use an explicit queue.
If I have an object for each thread, I can implement Wait by running a queue
through the thread object, with the head being in the condition variable object.
Here’s an outline (to keep it simple, the queue in this outline is LIFO; it should
of course be roughly FIFO, allowing for thread priorities).

class Thread {
public static Semaphore x; // Global lock; initially

// x.count = 1; x.limit = 1;
public Thread next = null;
public Semaphore s = new Semaphore(); // Initially

// s.count = 0; s.limit = 1;
public static Thread Self() { … }

}
class CV {

Lock m;
Thread waiters = null;

public CV(Lock m) { // Constructor
this.m = m;

}

public void Wait() { // Pre-condition: this thread holds “m”
Thread self = Thread.Self();
Thread.x.P(); {

self.next = waiters;
waiters = self;

} Thread.x.V();
m.Release();
self.s.P();

(2) m.Acquire();
}
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public void Signal() {
Thread.x.P(); {

if (waiters != null) {
waiters.s.V();
waiters = waiters.next;

}
} Thread.x.V();

}
public void Broadcast() {

Thread.x.P(); {
while (waiters != null) {

waiters.s.V();
waiters = waiters.next;

}
} Thread.x.V();

}
}

Mike Burrows encountered this problem one more time when implementing
Posix Threads (PThreads) for the DEC Tru64 operating system. Once again, the
kernel primitives didn’t include a suitable operation to let him build condition
variables in an obvious way, so once again he implemented them by running an
explicit queue through per-thread control blocks.

Optimising signal and broadcast

Since we’re considering this level of the threads implementation, I should point
out one last performance problem, and what to do about it. If Signal is called with
the lock m held, and if you’re running on a multi-processor, the newly awoken
thread is quite likely to start running immediately. This will cause it to block
again a few instructions later at (2) when it wants to lock m. If you want to avoid
these extra reschedules, you need to arrange to transfer the thread directly from
the condition variable queue to the queue of threads waiting for m. This is espe-
cially important in Java or C#, which both require that m is held when calling
Signal or Broadcast.

Conclusions

Well, history doesn’t really have conclusions. But it does have a tendency to
repeat. It will be nice if reading this anecdote prevents someone from repeating
our mistakes, though I wouldn’t bet on it.
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Implementing condition variables out of a simple primitive like semaphores
is surprisingly tricky. The tricky part arises because of the binary atomic opera-
tion in Wait, where the lock is released and the thread is enqueued on the condi-
tion variable. If you don’t have a suitable binary operation available and you
attempt to construct one by clever use of something like a semaphore, you’ll
probably end up with an incorrect implementation. You should either do the
queuing yourself or lobby your kernel implementer to provide a suitable primi-
tive.

Eager readers of the Win32 API will have noticed that NT version 4.0 and
later provides such a binary operation (SignalObjectAndWait). This is probably
sufficient to do a simple implementation of condition variables, but I’m not go-
ing to write it here. Using SignalObjectAndWait does have the down-side that the
object being released has to be an NT kernel object, for example a kernel mutex
or kernel semaphore. This makes it trickier to use if you want to implement locks
with the more efficient Win32 “critical section” operations.

Finally, I should admit that this is an area where a small investment in formal
methods would help. With a formal specification of the underlying primitives
and a formal specification of the desired condition variable semantics, it should
not be difficult to see at least the correctness flaws in the buggy designs. Current
formal methods would do less well in detecting unacceptable performance penal-
ties.
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5
Clumps, Clusters and Classification

Christopher M. Bishop

Introduction

The clustering problem has been widely studied in many fields, including infor-
mation retrieval, machine learning and statistics, and it remains an active area of
research. Its goal is to take a set of observations, or data points, and to partition
them into groups such that, in some appropriate sense, the similarity of points
lying within a group is greater than the similarity of points lying in different
groups. The number of such groups is generally not known in advance.

Clustering may be performed as a step towards data compression, as a pre-
processing stage for pattern recognition algorithms, as a way of identifying natu-
ral groupings in the data, and for many other applications. Historically, the clus-
tering problem was often referred to as classification [5]. Today, in the machine-
learning community at least, the term classification refers to the problem of as-
signing observations to one of a number of predefined classes. This is typically
achieved by constructing a model using a ‘training set’ of examples, each of
which has been labelled (possibly by hand) with the desired class or category. I
will not discuss classification in this categorisation sense here.

In order to define an operational procedure for clustering it is necessary to
quantify the notion of similarity. It is clear that many definitions are possible,
and that the choice will necessarily be application dependent. In speech recogni-
tion for instance, training data may be clustered based on Euclidean distance in
the space of Mel Cepstral coefficients. However, Euclidean distance need not
always be an appropriate similarity metric, and indeed even the triangle inequal-
ity may be inapplicable. Consider a problem involving word clustering based on
the frequency with which two words occur within 3 words of each other in the
Encyclopaedia Britannica. We might discover, for instance, that the word “bank”
is similar to “overdraft” and is also similar to “river,” even though “river” and
“overdraft” may be strongly dissimilar. For simplicity, however, we shall focus
here on the use of Euclidean distance as a measure of similarity.
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The definition of a similarity metric alone, however, is insufficient to deter-
mine the clusters within the data. We also need to prescribe how the similarity
measure will be used. For instance, Needham [6] defines a B-clump as follows:

A set S is B-clump if no member has a resemblance greater than a threshold θ
to any non-member, and each member of S has a resemblance greater than θ
to some other member.

Many clustering algorithms aim to minimize a cost function which that de-
pends on the values of the pairwise similarities of points in the data set, and the
choice of this cost function can have an important impact in determining the re-
sulting set of clusters. However, other approaches are also possible, for instance,
those based on geometrical properties of the cluster boundaries.

An additional requirement is to be able to find numerical solutions within
reasonable computational time for the problems of interest, and this can easily
rule out some otherwise appealing strategies [6]. Even where it is computation-
ally feasible to minimize a cost function, it may be non-convex, and the solution
found by iterative strategies can depend upon the initialization because of the
presence of multiple local optima.

Example: K-means

One widely known clustering technique is the K-means algorithm, which aims to
partition the data set into K clusters, each of which is summarized by a single
prototype vector which acts as a representative of all the data points assigned to
that cluster. The prototype vectors are first initialised (for instance by setting
them equal to K randomly chosen points from the data set), and then the algo-
rithm proceeds iteratively, where each iteration comprises two successive phases.
In the first phase the prototype vectors are held fixed and each data point is as-
signed to the cluster whose prototype vector is closest. For the second phase, the
cluster assignments are fixed, and the prototype vectors are recomputed to be the
means of the corresponding clusters of data vectors. The K-means algorithm is
simply minimizing a cost function given by the sum of squares of the Euclidean
distances between each data point and its corresponding prototype vector, in
which the two phases correspond to alternate minimization with respect to the
class assignments and with respect to the prototypes. In fact, the algorithm must
necessarily converge in a finite number of steps, since there is only a finite num-
ber of possible partitions of the data. An example of the K-means clustering al-
gorithm applied to the “Old Faithful” data set is shown in Figure 1.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Illustration of the K-means clustering algorithm for two clusters (K = 2) using
the “Old Faithful” data set, which comprises a plot of time between eruptions (vertical
axis) versus eruption duration (horizontal axis) for the Old Faithful geyser in Yellow-
stone National Park. These axes have been rescaled such that each has zero mean and
unit standard deviation over the data set. (a) The data points, together with the initial
prototype vectors shown as white and black crosses. (b) In the first phase the data points
are assigned to the nearest cluster prototype. The dashed line indicates the ‘decision
boundary’ between the two clusters. (c) In the second phase the assignments are held
fixed and the prototype vectors are re-calculated by moving them to the mean of the cor-
responding cluster of data points. This completes one iteration of the K-means algorithm.
(d) In the next iteration the data points are re-assigned to the clusters using the new deci-
sion boundary. (e) The new assignments are then used to re-calculate the prototype vec-
tors by setting them to the means of the corresponding clusters. (f) After two further
complete iterations the algorithm has converged, since re-calculation of the data point
assignments leaves them unchanged.

We can illustrate the use of clustering in a simple data compression scenario
by applying the K-means algorithm to the compression of images, as shown in
Figure 2.
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K = 2 K = 3

K = 10 Original image

Figure 2. Illustration of the K-means clustering algorithm applied to a simple image com-
pression problem. Here each pixel of an image is associated with a grey-level intensity
value. The set of pixel values is then clustered using the K-means algorithm for various
values of K. In each case we illustrate the result by replacing the actual pixel intensity by
the prototype value of the cluster to which it is assigned (a process known as vector quan-
tization).

From clusters to probabilities

One rather unsatisfying aspect of the K-means approach involves the ‘hard’ as-
signment of data points to clusters. Consider two data points A and B, and sup-
pose that, at some point in the algorithm, A is much closer to prototype m than to
any other, while B is only slightly closer to prototype m than to the next nearest
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prototype. Nevertheless, both A and B will be assigned exclusively to the proto-
type m. We might expect some benefit to be had by taking account of what may
be interpreted as the different degree of certainty associated with the assign-
ments, and indeed this proves to be the case, as we shall see shortly. Further-
more, there are strong reasons to believe that probability theory provides the
most appropriate framework for quantifying such uncertainty [1].

In fact the probabilistic version of K-means turns out to be another well-
known clustering model called a Gaussian mixture. This is simply a model for
the probability distribution of the data comprising a linear superposition of
Gaussian components, in which the coefficients in the superposition (known as
mixing coefficients) themselves have a probabilistic interpretation. We can fit
such a model to the data by optimizing the parameters of the model (the centres,
covariances and mixing coefficients) so as to maximise the probability of the
observed data. This approach is called maximum likelihood.

While we could solve the maximum likelihood problem using standard non-
linear optimization strategies such as conjugate gradients, there exists a very
elegant and general approach to tackling such problems known as the EM (ex-
pectation-maximization) algorithm. This is an iterative algorithm in which each
step comprises two successive phases. In the E phase, the parameters are held
fixed and for each data point the posterior probability of assigning that data point
to each of the clusters is computed. These probabilities (which are sometimes
also called responsibilities, since they reflect the responsibility which each clus-
ter takes for ‘explaining’ that data point) are non-negative numbers which sum to
one. They represent ‘soft’ cluster assignments, in contrast to the hard assign-
ments of K-means. In the M phase the probabilities are held fixed and the pa-
rameters re-estimated. Each EM step is guaranteed to increase the likelihood
function (unless the model is already at a local maximum). Rather than giving
the mathematical formulation of this algorithm, we provide a graphical illustra-
tion in Figure 3, using the same data set as in Figure 1.

If we consider a mixture of Gaussians whose covariance matrices are all
given by ε times the unit matrix and we consider the limit ε � 0, then the EM
algorithm becomes the K-means algorithm [2]. In this limit, the means of the
Gaussian components become the prototype vectors, and the probabilities (which
tend to 0 or 1) become the hard cluster assignments. The E step then becomes
the assignment phase, while the M step becomes the re-calculation step for the
prototype vectors.

One of the many powerful aspects of the probabilistic approach is immedi-
ately apparent, since we can easily obtain a whole raft of generalizations of K-
means by considering, for example, diagonal covariance matrices, common co-
variance matrices for all components, mixtures of non-Gaussian distributions and
so on, and then taking an appropriate deterministic limit.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Illustration of the EM algorithm for fitting a mixture of Gaussians, applied to
the same data set as used in Figure 1. (a) The data points are shown in grey, and the white
and black circles represent the initial 1-standard-deviation contours of the two Gaussian
components. (b) After the first E step each data point has been assigned a probability of
belonging to each of the white and black components. This is illustrated graphically by
shading each data point according to the probability associated with each cluster. Thus, if
a data point has a probability p of belonging to the black cluster, and hence probability (1
– p) of belonging to the white cluster, then we can think of the point as having been ren-
dered using a proportion p of black ink and a proportion (1 – p) of white ink, giving the
appropriate shade of grey. (c) In the M step the parameters (means and covariances) of
the Gaussian components are re-calculated, which simply involves fitting each compo-
nent to the mean and covariance of the corresponding distribution of black or white ink.
The mixing coefficients (not shown) are also re-calculated in the M step. (d) The situa-
tion after 2 complete iterations of EM. (e) The situation after 5 complete iterations of
EM. (f) After 20 iterations of the EM algorithm, the model is now close to convergence.

Model complexity

There remains the interesting problem of deciding on the appropriate number of
clusters. If our algorithm is based on the minimization of a cost function, we
might naively think of comparing a range of models having different numbers of
clusters and then choosing the model having the smallest (converged) value of
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the cost function. This approach, however, suffers from a major flaw called over-
fitting, which favours overly complex models. In K-means, for instance, this
would lead us to choose a model with one prototype vector per data point, since
the cost function can then be reduced to zero. One pragmatic approach is to
measure the value of the cost function using new data which was not used to fit
the model (so called ‘hold out’ data). This approach avoids the over-fitting prob-
lem but is wasteful of possibly expensive data, and in many cases can prove
computationally expensive.

How then should we decide on the number of clusters? One clue comes from
the predictive power of a proposed partitioning, as Needham [6] points out:

In a good classification, a lot follows from a statement of class membership,
so that in a particular application the predictive power of any classification
that we propose is a good test of its suitability.

This intuition can be formalised through the framework of lossless data com-
pression. Imagine each data point is expressed (for simplicity, we consider the
case of finite precision) by a bit string of given length. Instead of transmitting the
raw data, we might hope to achieve a lower data rate by first clustering the data
set. Then we transmit the (relatively small number of) prototype vectors fol-
lowed, for each data point, by the identity of the nearest prototype together with
the error between the prototype and the data point. It is not difficult to see that, if
the data comprise tightly packed clusters, this can lead to a significant reduction
in the total number of bits which need to be transmitted. Now if our model has
many clusters, then a lot of bits are needed to specify the cluster identity,
whereas if there are few clusters, then the discrepancy between individual data
points and the cluster representatives can become large, again requiring many
bits. We see that there is a natural trade-off favouring models having some in-
termediate number of clusters. Indeed, choosing the model which leads to the
shortest message length thus provides a principled approach to selecting the
number of prototype vectors.

This minimum-description-length framework [8] in fact has a deep relation-
ship to the probabilistic viewpoint since the number of bits needed to code an
observation x under a distribution p(x) is related to –log p(x) [9]. The overall
message length corresponds to the marginal probability of the data given the
model, in which the model parameters (means, covariances and mixing coeffi-
cients in the case of a mixture of Gaussians) have been integrated out with re-
spect to appropriate prior distributions. The optimal number of clusters, under
the given probabilistic model, then corresponds to the maximum of the marginal
probability of the data.

It may not be immediately clear why the maximum of the marginal probabil-
ity corresponds to the required solution. For instance, we might expect that the
more complex the model, in other words the greater the number of clusters, the
better the model could fit the data, and hence the higher the probability of the
data under the model. We can gain some intuition as to why the marginal prob-
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ability prefers a model of intermediate complexity (having neither too few nor
too many clusters) from the schematic illustration in Figure 4.

Figure 4. An illustration of why the marginal probability can be largest for models of
intermediate complexity. The graph shows schematically the marginal probability p(D|K)
of the data given some number K of components in the mixture model plotted against the
space of all possible data sets D. Here we imagine the data sets have been ordered so that
simpler data sets (having fewer clusters) are to the left of the horizontal axis, while more
complex data sets are to the right. The marginal probability distribution for a ‘mixture’
model comprising one component is shown schematically by the dotted line. This only
assigns significant probability to simple data sets. Conversely, a more complex model
having three components has the marginal probability distribution shown by the dashed
line. This is able to provide a good fit to data sets comprising one, two or three clusters.
The distribution shown by the solid line represents a model of intermediate complexity
having two components. Since these distributions are normalized, the broader the distri-
bution, the smaller is its typical value. If we observe a particular data set D0, we see that
the highest marginal probability (corresponding to the highest of the three dots) arises
from the model having intermediate complexity, corresponding to two clusters.

Unfortunately, the integrations required to evaluate the marginal probability
are analytically intractable. Although they could be computed numerically using
Monte Carlo techniques, in recent years powerful new deterministic approxima-
tion schemes based on variational methods [4] have been developed which pro-
vide a practical alternative to numerical integration.

In fact we can take this approach a stage further and use variational methods
to evaluate the marginal probability as a function of the mixing coefficients and
then optimize with respect to those coefficients [3]. The result is that surplus
components in the mixture model are automatically pruned out by virtue of hav-



Clumps, Clusters and Classification 47

ing their mixing coefficients driven to zero. This leads to an algorithm for clus-
tering which simultaneously performs soft clustering of the data while determin-
ing the appropriate number of clusters (illustrated in Figure 5).

(a) (b)

(c) (d)

Figure 5. Illustration of the use of variational methods to fit a mixture of Gaussians in
which the number of components is determined automatically, again using the Old Faith-
ful data set. The model is initialized using six components with means given by a random
subset of the data points and covariance matrices set to a multiple of the unit matrix. (a)
The ellipses show the initial 1 standard deviation contours for each of the six compo-
nents. (b) After 32 iterations two of the six components have had their mixing coeffi-
cients driven to zero and no longer play a role. (c) After 58 iterations a further component
has been pruned out. (d) After 120 iterations, only two components remain and the algo-
rithm has converged.

It should be noted that this approach determines an optimal number of clus-
ters from a data-representation perspective. However, in a particular application,
for example information retrieval, there will be some overall system performance
measure for which the optimal number of clusters may be different.



48 Bishop

Current research directions

Clustering techniques such as mixtures of Gaussians make strong assump-
tions about the cluster structure which may not always be appropriate. For this
reason the last few years have seen considerable interest in spectral methods
based on the eigenspectrum of the ‘affinity’ matrix A of inter-point similarities.
Needham [6] recognised this possibility but considered it to be computationally
impractical using the technology of the day (which in part still relied on punched
paper tape and cards).

There is clearly some relation between clumps and the eigenvectors of A. …
In matrices of the order likely to arise in classification problems, the solution
of the eigenproblem would almost be a research problem in itself.

Figure 6 shows an example of the spectral approach based on the recent algo-
rithm of Perona and Freeman [7]. Data clustering has come a long way in the last
forty years. Nevertheless, there are still many open problems, and insights devel-
oped in the 1960s remain equally valid today.

(a) (b) (c)

Figure 6. Example of the spectral approach to clustering, for the Old Faithful data set. (a)
Plot of the affinity matrix A whose elements are defined by Aij = exp(–d2

ij/2�
2), where dij

is the distance between points i and j, and � is a length scale. For clarity, the data points
have been sorted according to the value of the eruption duration. (b) Plot of the compo-
nents of the first eigenvector of the affinity matrix corresponding to each of the 272
points in the data set. The horizontal line shows the threshold used to partition the data
into two clusters. (c) Assignments of data points to the two clusters, in which points
above the threshold in (b) are shown in white and those below are shown in black.
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6
How to Implement Unnecessary
Mutexes

Mike Burrows

Introduction

In languages like Modula, Java, and C#, it is common to write reusable modules.
In order to allow for multithreading, programmers typically protect the invariants
of their modules with mutexes (i.e., binary semaphores). These are used via lan-
guage constructs like synchronized in Java, or lock in C#.

Often, only one thread touches a particular object. An example is Java’s
StringBuffer class. Typically, a thread creates a StringBuffer, uses it to create a
new String, and then discards the StringBuffer. All of the methods of StringBuffer
acquire a mutex to allow potential concurrent use from multiple threads, even
though this almost never occurs.

When a mutex is used by only one thread, the mutex is unnecessary and
could be removed. Removal is desirable, because mutex operations typically
involve hardware-atomic instructions that are considerably more expensive than
normal memory accesses. We measured mutex acquisition at between 50 and 70
cycles on various Alpha systems, whereas incrementing a memory location only
takes four or five cycles. As a result, applications can waste several percent of
their CPU time on unnecessary synchronization. However, one would not wish to
allow programmers to specify whether they need to use mutexes, because they
may make mistakes, and even correct decisions may become wrong in the future.

Various people have investigated static analysis techniques to identify unnec-
essary mutexes and to translate compiled modules automatically so that unneces-
sary mutexes are omitted [1]. An annoyance here is that the analysis can take
some time and is necessarily conservative.

Hardware-atomic instructions have been avoided on uniprocessors by pre-
venting context switches during code sequences that should be atomic [2, 3]. But
these techniques do not help with multiprocessors and require support from the
scheduler.
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It is also possible to enable hardware-atomic sequences only when the second
thread is created. The strategy fails in complex run-time systems, such as Java’s,
which create multiple threads in every application.

Goal

Our goal is to optimize mutexes for the case where they are not needed. That is,
we optimize for mutexes that are used by only one thread of control, yet we hope
not to lose significant performance when multiple threads access the mutex. It is
a requirement that the mutexes must function correctly with multiple threads, that
the technique work on both uniprocessors and multiprocessors, and that no un-
usual operating-system support be needed. We assume that loads and stores of
individual words are atomic.

The technique

This section initially describes the technique, which seems slow at first sight.
Optimizations and refinements follow in later paragraphs. In the description, we
assume that mutexes normally occupy a machine word, and are re-entrant, so
each mutex contains a lock nesting count. Re-entrant mutexes are odious, but are
now almost universal; they allow locked regions to be nested, and hence make it
easier for the writer of an object method to call another method without dead-
locking, and without maintaining that pesky monitor invariant.

The representation of each mutex M is modified to contain the thread identi-
fier M.assoc of some thread that has been associated with the mutex. The asso-
ciated thread is typically the last thread to have used the mutex. Initially,
M.assoc is either null or identifies the thread that created the mutex.

A thread T wishing to use the mutex proceeds as follows:
T loads the word for M
T checks whether (T == M.assoc)
If so, T updates the lock nesting count and stores the mutex back
into its word.
Otherwise, T takes the slow path.

This is the fast acquire/release sequence. Notice that the fast path requires no
memory barriers and no hardware-atomic operations.

When T is using the mutex, any other thread T' will fail to verify that (T' ==
M.assoc). In this case, T' must obtain exclusive access to the mutex word. This is
done at great cost, but later refinements will guarantee that it is done infre-
quently.
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T' must stop two classes of threads from touching M:
a. the associated thread, M.assoc
b. all other threads

We deal with case (b) first. With each mutex M, there is a supervisor mutex
S(M) that operates on normal principles—that is, it does not use the present tech-
nique. There could be one supervisor mutex for all mutexes in the address space,
or one supervisor mutex for each mutex, or anything in between.

T' acquires the supervisor mutex S(M). Since all threads operating on M other
than M.assoc will attempt to acquire S(M), we can assume that once T' has ac-
quired S(M), only T' and M.assoc will operate on M.

T' now suspends the thread M.assoc (assuming M.assoc is non-null). The
thread_suspend operation is required by many garbage collectors, so no operat-
ing-system changes should be required provided that the suspend operation is
reference-counted. T' must now verify that the thread M.assoc is not in a fast
acquire/release sequence on M, and if it is, it must dislodge M.assoc. There are at
least three ways to determine whether M.assoc is in a fast acquire/release se-
quence:

1. If the sequence cannot be inlined, T' can compare the program counter
of M.assoc with the known address of the acquire/release sequence(s).

2. T' can look at the pattern of instructions around the M.assoc program
counter to determine whether it could possibly be an acquire/release se-
quence.

3. The acquire/release sequence can be augmented to force each thread to
set a per-thread variable on entry to the sequence, and to reset it on
leaving the sequence. T' may then check this variable. This may slow
down the acquire/release sequence somewhat, but it works even when a
thread’s program counter cannot be obtained by another thread.

All of these techniques have been tried and can be made to work. In addition,
T' may be able to determine that M.assoc is not operating on M by checking that
the address of M is not in the appropriate register(s).

There is an extra complication on systems that allow asynchronous user-
space trap handlers (e.g., UNIX signal handlers, or VMS ASTs). The handler
return sequence (the “trampoline code”) must test whether it is about to return
into the middle of an acquire/release sequence.

If M.assoc is in an acquire/release sequence for M, it must be dislodged. This
can be done in any of three ways:

1. T' can resume M.assoc and suspend it anew, then test again to see
whether it is in a fast acquire/release sequence.

2. If the sequence is restartable, T' can move the program counter of
M.assoc back to the start of the sequence so that when awoken,
M.assoc will re-execute the sequence.

3. T' can interpret the state of M.assoc forward until it is out of the se-
quence. This requires a machine-code interpreter.

All of these techniques have been tried and can be made to work.
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T' must now check M once more to ensure that the value of M.assoc did not
change while it was in the process of acquiring S(M) and suspending M.assoc. If
M.assoc changed, T' releases S(M), resumes the thread it stopped, and tries again.

If M.assoc is unchanged, T' now has exclusive access to M. It may now do
one of two things:

1. set M.assoc to T', so that T' becomes the associated thread, or
2. set a bit in M indicating that all further operations on M must use hard-

ware-atomic sequences.
In case (2), the format of the mutex word may be changed arbitrarily, pro-

vided that one bit allows the associated thread format to be distinguished from
the hardware-atomic format. Thus, if the technique described here is merged
with an existing mutex implementation, only one spare bit need be found in the
existing mutex word. The fast acquire/release sequence must be modified to test
this bit. The atomicity of loads and stores guarantees that other threads will see
either that the bit has been set, or that it has not been set and M.assoc is not the
thread’s identifier. The memory barrier in thread_resume ensures that a thread
that was once the associated thread will no longer observe its thread ID in
M.assoc.

Different designs may choose different approaches for choosing between (1)
and (2). A simple implementation may choose to revert to hardware-atomic op-
erations if M.assoc is non-null—this works reasonably well. A slightly more
sophisticated implementation can use a small (8 or 9 bit) saturating counter
M.counter in the mutex. Each time the associated thread acquires M on the fast
path, it increments M.counter. Each time a thread suspends the associated thread,
it decrements M.counter by some constant K. If M.counter underflows, T' chooses
(2), and otherwise chooses (1). K is calculated according to the speeds of the
various operations so that M.counter will underflow when the optimization is not
paying off. If Tfast is the time taken to acquire and release the mutex by the fast
path, Tatomic is the time taken to acquire and release the mutex using hardware-
atomic instruction, and Tsuspend is the time taken to suspend and resume the asso-
ciated thread, we want the time for K fast operations plus one suspend/resume to
equal the time for K operations using hardware-atomic sequences:

K × Tfast + Tsuspend = K × Tatomic,
so:

K = Tsuspend / (Tatomic – Tfast).
Typically Tatomic is much bigger than Tfast, so

K = Tsuspend / Tatomic.

We used K = 200 in one implementation and K = � in another. (K = � means
convert the mutex as soon as the second thread touches it.)

If K is chosen well, mutexes that do not benefit from the optimization will be
converted quickly to use the hardware-atomic sequences, and performance
should not suffer. One could conceive of applications that create new mutexes,
use them just long enough to force them to be converted and then discard them,
causing the application to be slowed down. We have found no such applications
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among the Java spec benchmarks and C server applications we tried. If this were
a serious concern, one could arrange to detect this dynamically. When it occurs,
new mutexes may be created so that they always use hardware-atomic instruc-
tions.

One could imagine converting mutexes back, depending on the usage pattern,
but we have not implemented this, and it seems unlikely to be of practical value.

Memory barriers are not needed in the fast-path sequences, because the oper-
ating system thread suspend/resume must perform the necessary memory barriers
when communicating with whatever processor is running the target thread.

Reducing the cost of finding a thread’s identifier

In the preceding section, each thread operating on mutex M is required to test
whether the thread identifier in the mutex, M.assoc, is equal to the thread’s own
identifier. In one of our implementations, where we controlled the code genera-
tor and had a large number of integer registers, we were able to store the thread
identifier in a general purpose register. This makes the test quite cheap.

When the code generator cannot be changed, or when the processor has too
few integer registers, it may take a significant number of cycles to obtain the
thread ID. In one of our implementations, it required a seven-cycle operation,
which significantly exceeded the time for the rest of the fast acquire/release se-
quence.

In order to optimize this case, we chose to store not the thread ID, but the
high-order bits of the stack pointer. When these match the current thread’s stack
pointer, we can be sure that it is the associated thread. When the bits do not
match, the thread reads its stack bounds and checks them. If the value in the
mutex is within bounds, the value can be updated to match the current stack
pointer value. We found that this optimization worked well and produced a fast-
path sequence of 5 cycles.

In a system with a page size of 2P bytes and where at least one guard page
separates each pair of stacks, two threads will differ in the high-order bits of
their stacks even if the bottom (P + 1) bits are ignored. Thus, these (P + 1) bits
can be used for M.counter, a bit to indicate which representation is in use, and
two or three bits for a small lock-nesting count. In the rare case where the lock-
nesting count overflows, the mutex can be converted to the hardware-atomic
style.

A disadvantage of using stack pointers to identify threads is that they must be
mapped back to thread identifiers in order to allow the corresponding thread to
be suspended or resumed. The requirement is for a mapping from a stack page to
a thread identifier, which is best done with a balanced binary tree or a skiplist.

We implemented this scheme in a system where the client could choose
where to put each thread’s stack. In this case, we were forced to turn off the op-
timization if the client chose to use stacks not separated by at least one page.
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Results

We found that no real applications were measurably slowed down by using this
technique. Many applications show no change in performance—this is because
most applications are not limited by the speed at which mutex acquisition and
release occur. Some applications show a few-percent speedup, and a few appli-
cations show more significant speedups, as high as around 10%. Contrived ex-
amples can show speedups of a factor of three.

Almost all of the gain is obtained when K is set to infinity, that is, by choos-
ing to convert the mutex to use hardware-atomic instructions as soon as it is
touched by the second thread. However, we did observe some interesting benefi-
cial effects with K = 200. In particular, we had assumed that a mutex with ex-
tremely high contention would not benefit from this technique and would quickly
be converted to use the previous scheme. However, if the contention is high
enough, this does not happen. Consider this code:

for (;;) {
acquire (M);
x++;
release (M);

}

If multiple threads are running this code on a uniprocessor, the thread that
has the current time slice will saturate M.counter. At the next context switch,
M.counter will be decremented by K once, but this will not cause it to underflow.
The thread running in the next time slice will then saturate M.counter once more.
This is, of course, a contrived example, but in cases where locks protect fast op-
erations, a similar effect may occur in real applications.

We felt sure that the effect described in the previous paragraph could not pay
off on a multiprocessor. But on small-scale multiprocessors we found that the
(contrived) loop above did benefit from the technique. We found that threads
took so long to wake up (that is, the scheduler path was so long), that the associ-
ated thread had time to saturate the counter before the previous associated thread
could suspend it. We were unable to confirm that this occurred in any real appli-
cation.

Summary

We have constructed a mutex that is optimized for the case where only one
thread uses it. We achieved this by allowing only a designated thread to access
the mutex until another thread displaces it through the use of thread suspend and
resume operations. This technique provides a modest, but possibly valuable, gain
in performance in situations where code is written to work with multiple threads,
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but often is used by just one. It also provides a gratifying increase in complexity
that will entertain programmers for many happy hours.
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7
Bioware Languages

Luca Cardelli

Preface

I have not operated, technically, in the research areas of direct interest to Roger
Needham, and therefore have not worked with him. However, I have enjoyed at
least one of the research environments that he was instrumental in setting up and
running. I will try here to give a (possibly extreme) example of the kind of free
research spirit that he has encouraged. Incidentally, a basic technical notion in
this note is the ‘pure names’ that Roger pioneered in a slightly different context
[4].

Introduction

This work can be seen as example of an emerging class of languages for describ-
ing, and possibly programming, biological systems (bioware). A living cell is, to
a rather surprising extent, an information-processing device [1]. One can envi-
sion describing precisely such complex biological systems, and then deriving
simulation and analysis from such descriptions. One can even imagine one day
“compiling” bioware languages into real biological systems, just like silicon
chips are today compiled from hardware languages.

Biological systems, far from being unstructured chemical soups, employ
membranes to organize and isolate chemical reactions and their products. Hier-
archies of membranes are a necessary component of any description of such sys-
tems. The π-calculus [3] has been used to model chemical reactions [6]. As an
extension [7], the ambient calculus [2], which is based on a dynamic hierarchy of
containers, can be used to model biological interactions. (Stochastic aspects can
be handled, but are not discussed here [5].)

We represent biological systems with a graphical (rather than textual) nota-
tion; this is somewhat natural because of the aspect and hierarchical structure of
many such systems. It is also possible to provide a formal textual notation and
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related semantics, using standard techniques from process calculi. Moreover, it is
possible to provide a formal graphical notation and related semantics, as a spe-
cial case of Milner’s BiGraphs. But here we just present a (formalizable) graphi-
cal notation: the graphical language of biographs.

Biographs

A biograph represents a biological system via three primitive constructions and
eight basic reactions. (The number of reactions could be reduced, but it then be-
comes harder to program ‘instantaneous’ reactions.)

Membranes. For our purposes, a membrane is simply a boundary that con-
fines reactions to its interior, unless these are reactions that explicitly interact
with a membrane, as discussed below. Graphically, a membrane may contain
reagents or other membranes. Membranes are nameless, but it useful to attach
comments to them (e.g., “cell membrane” or “virus capsid”).

Reagents. A reagent represents a biological (or chemical) entity that is ready
to interact with some other biological entity. Reagents typically represent protein
complexes that are ready to bind to each other and transform each other as a re-
sult. Rather than considering the countless protein structures that exists in reality,
we take a fixed set of primitive reagents, enumerated later, that can be used to
express a large class of interactions (the formalism is, in fact, Turing-complete).
Each reagent is parameterized by a number of binding sites. These binding sites
are named by pure names [4] n1 … nk, that is, names that have no structure other
than their identity. Graphically, a reagent encloses the future product of its acti-
vation inside a dotted line.

Binding. The binding of, e.g., a protein to a ligand, can be represented as a
binding site (a pure name) n that is privately shared by two reagents. A binding
box represents a region where a pure name n is privately shared. Unlike mem-
branes, which have physical existence, binding boxes are more of a bookkeeping
device. A binding box for n can graphically expand, contract, and cross other
membranes and binding boxes, as long as this process does not lead to revealing
n or to confusing it with some other n.

mmeemmbbrraannee

rreeaaggeenntt nn11 …… nnkk

((nn))
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Named subsystems. This is meta-notation for subsystems, used when express-
ing general interaction rules (named subsystems do not occur in specific system
instances). The notation below represents a subsystem (the dashed boundary)
that is named P so we can refer to it. Sometimes we need to apply a name re-
placement {m/n} (replacing m with n) to a still undetermined subsystem; the
name replacement then sits on the boundary, until later when the subsystem is
determined and the replacement can be applied.

Membrane reactions

We start by describing reagents that affect membranes. These reagents typically
represent protein complexes that sit on or across a membrane, and cause mem-
branes to interact with each other. Graphically, these reagents are drawn inside
the membrane that they actually sit on or across, so that they are transported
along with the membrane.

On the left of the reaction arrow we have the situation before the interaction,
and on the right we have the situation after the interaction.

The first reaction describes a membrane that enters another contiguous mem-
brane, through the interaction of two specific reagents, enter and accept, that
have a common binding site n. Here P and Q represent the residuals of the inter-
acting reagents (which could be void), while R and S represent whatever else is
initially contained in the membranes. The following two reactions describe the
effects of reagents that cause membranes to exit each other (exit and expel) or to
merge (merge+ and merge−), each based on a common interaction site n.

P

RR

aacccceepptt nn

SS

PP

RR

QQ

SS

→ EEnntteerr  
Q

P

eexxiitt nn

RR

Q

eexxppeell nn

SS

→ PP

RR

QQ

SS

EExxiitt

P

{{mm//nn}}

eenntteerr nn
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Site reactions

The next group of reactions do not affect membranes (although membranes may
be involved), but affect only reagents. In these reactions, reagents interact on a
binding site n, and can also exchange tokens m. These tokens can represent fur-
ther binding sites, or other entities that get passed along in reactions (e.g., elec-
trons or small molecules).

The first site reaction represents a pure chemical reaction: two molecules in-
teract and produce two other molecules, within the confines of some common
solution (the two molecules must be inside the same membrane, if any). The two
complementary molecules are indicated by n! and n?. The common name n
means that they can interact, and the !,? pair determines the direction of the in-
teraction. In full, n!{m}(P) means that this is a molecule that, when interacting,
provides a token m to the other molecule and transforms itself into P. On the
other hand, n?{p}(Q) means that this other molecule receives some token m, and
transforms itself into Q{m/p}. Here p is really a formal input parameter, and
Q{m/p} is Q where the formal p is replaced by the actual m.

The next two reactions are similar, but the interaction between reagents hap-
pens across a membrane. The exchanged token m flows either down through a
membrane (indicated by ‘_’) or up through a membrane (indicated by ‘^’).

→P Q

mmeerrggee−− nn

MMeerrggee

mmeerrggee++ nn

Q

R S SR

P

Q

nn??{{pp}}

P

nn!!{{mm}}

→ Local 
{{mm//pp}}

P Q

Q

nn^̂??{{pp}}

P

nn__!!{{mm}}

→
{{mm//pp}}

TToo cchhiilldd  

S

P Q

S
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Finally, we have a reaction where the token m flows through two sibling
membranes (indicated by ‘#’).

Repeat reaction and some abbreviations

A “repeat” reagent creates new copies of a given reagent or subsystem. This
models, abstractly, unbounded resources and processes.

Moreover, we use some graphical abbreviations to simplify drawings:

rreeaaggeenntt11

rreeaaggeenntt22

rreeaaggeenntt11
rreeaaggeenntt22

=P P

Q

nn##??{{pp}}

P

nn##!!{{mm}}

→
{{mm//pp}}

R S R S

P Q

nn__??{{pp}}nn^̂!!{{mm}}

→
{{mm//pp}}

TToo ppaarreenntt  
P

R

Q P

R

Q

P

rreeppeeaatt

→ RReeppeeaatt  

rreeppeeaatt

P P

TToo ssiibblliinngg  
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Example: symporter

A symporter is a molecular channel. It binds two specific proteins, here called
protein-P and protein-Q, from outside the cell in either order, and then simulta-
neously transports them inside the cell.

The symporter subsystem can repeat its behavior indefinitely (given suffi-
cient energy, which is not modeled), and persists within the cell. It is first written
separately, and then indicated by name in the larger system below. Two interac-
tion sites, bind-P and bind-Q, represent the binding sites of the symporter with
any instance of protein-P and protein-Q respectively. Each repeated interaction
uses a fresh pair of distinct tokens p, q, which represent bindings with specific
protein instances. After an instance of a protein is bound, nothing can then inter-
fere with that binding because nothing else knows the freshly created pure names
p, q. We write a symporter thus:

The whole system then looks like the picture below. Initially, a cell contains
a symporter and whatever else, and is contiguous (that is, within the same sur-
rounding membrane, if any) with instances of protein-P and protein-Q. Note that
the proteins are themselves modeled as membranes: this is common because pro-
tein complexes can have a complicated structure.

After a sequence of reactions, during which the proteins are bound in either
order, the proteins are both transported inside the cell membrane. Each reaction
in the sequence is an instance of one of the reactions explained previously.

((nn))((mm))

((nn))

((mm))

=P
P

rreeppeeaatt

bbiinndd--PP##!!{{pp}}
bbiinndd--QQ##!!{{qq}}
aacccceepptt pp
aacccceepptt qq

((pp))((qq))

ssyymmppoorrtteerr ==
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Although this protocol works under ‘ordinary conditions,’ it is not perfect,
and one can study ways in which it can be subverted. In fact, this is an important
reason for modeling biological systems in all their complexity: many drugs and
natural defences work by subverting natural pathways. We need to model bio-
logical systems in order to understand them, but also to study how they can or
cannot be tampered with at any level of abstraction.
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8
The Economics of Open Systems

David D. Clark

Computer system designers have a set of principles and techniques they use in
their trade: modularity and interfaces, layering and dependency relationships.
Breaking a large system into parts so that they can be separately designed and
built is among the most basic of techniques to tame size and complexity.

However, systems are not just designed and built, they are operated in the
real world, and modularity matters here too. This paper is concerned with dis-
tributed systems that are operated by multiple commercial providers in a profit-
seeking context, such as the telephone system and more recently the Internet.
The central observation of this paper is that in systems such as the Internet,
modularity and interfaces shape not only the technical design but the industry
structure, and system designers would do well to consider the desirability and
viability of the industry structure that their modularity induces.

The obvious starting point

How can I make money? That is the question that almost everyone asks when
they think about a commercial undertaking. But the system designer should ask a
more sophisticated set of questions. For a system to work, all the parts have to fit
together, so the questions have to address all the parts:

• What are the industry sectors defined by the interfaces?
• How does each of them make money?
• What sectors may not make (enough) money?
• Does the system fit together economically?

This is not a design space that most technical engineers are familiar with.
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Some examples

The industry structure of the Internet offers many illustrations of interfaces and
industry structure. One of the earliest examples is the interface between
routers—the protocols that exchange control and routing information. The crea-
tors of the first routers argued that there was so much complexity and uncertainty
in these router interfaces that it would not be practical to standardize them. They
needed to be kept proprietary, so that they could be upgraded or replaced
quickly. But this approach would have prevented the emergence of a competitive
market in router vendors, and the Internet designers strongly resisted the call to
leave those interfaces as closed, engineering interfaces. Without these interfaces,
companies like Cisco could never have come into existence.

Cisco, of course, is an equipment manufacturer, not a service provider. The
open interfaces that permit routers from different companies to interoperate also
permit different Internet service providers (ISPs) to interoperate. (The business
arrangement behind the standards-based connection is another matter, of course.)
We have now lived with commercial ISPs for almost a decade, and the industry
structure seems natural. It is important to remember that there is no fundamental
reason why it had to come out the way it did: the number of and interrelation
between the providers, and the degree of vertical integration in the marketplace,
is a result of the particular protocols and interfaces. For example, a redesign of
the Internet routing protocols was undertaken in the 1980s specifically to allow
multiple competitive wide-area ISPs, as opposed to the prior structure of
NSFNet as the single wide-area service provider.

There are many other examples that can be found in the Internet. Internet
routers both forward packets and compute routes. The interface between these
two functions is not standardized, but is left as a proprietary interface, almost
always an internal software interface inside the router. So there is no separate set
of companies that sell systems to compute routes. One can debate if this alterna-
tive structure would have advantages, but it cannot come into existence because
the interfaces don’t allow it.

Consequences of economic modularity

The design rules for breaking a system into parts for technical reasons are fairly
well known. It is recognized that getting the modularity of a system right is a
hard design problem that requires skill and judgment. Good modularity is sub-
jective, and a bit of an art. In a system where the modules represent distinct
business entities, the design questions are expanded. It is still the case that the
answers (and the resulting modularity) will be subjective.

The first question is, How will the business entity representing each module
make money? Again, the communications industry provides a useful example. In
the telephone system, there is no business interface between the part of the
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telephone company that provides the actual wires and the part of the company
that provides the telephone “service.”1 The money raised from selling the service
covers the cost of the wires, and this value transfer was inside the business mod-
ule represented by the telephone company. In the Internet, there is an open inter-
face between the basic network service (provided by the Internet protocol with
its packet transport capability) and the higher level services such as email, the
Web, content in general, and so on. This open interface makes it easy (indeed, it
was the goal) for different players to provide the basic Internet service and the
higher level services on top. So each sector must separately have a strategy for
making money.

In this structure, how do the ISPs make money? ISPs charge fees to the par-
ties that attach to them, roughly in proportion to the size of the access link they
use. What ISPs cannot do today is charge more for carrying “more valuable
bits.” Competition drives prices toward marginal cost, and squeezes out the op-
tions for value pricing. Some services, like television, require orders of magni-
tude more bits than others, like Internet telephony. Looking at the typical
monthly consumer expenditure for television and telephone, even a rough calcu-
lation suggests that to capture an equivalent share of what the consumer is will-
ing to pay, a provider must charge a lot more for a “telephone call” bit than a
“television show” bit. This sort of value pricing does not work in the Internet
today. ISPs are forced to be commodity carriers of undifferentiated bits.

There is an analogy to the well-know history of the railroads. Railroads used
to charge more to haul a ton of valuable product than a ton of rock. But when
trucking and other forms of competition entered the market and skimmed off
these valuable products, the railroads were left with only the bulk, low-value
cargo unless they converted to a fee based only on weight. Economic disruption
followed. And that is what has happened with the Internet. The “old” telephone
companies were vertically integrated and provided both the wires and the ser-
vice. The revenue structure did not require them to “price the bits,” but only the
“telephone service.” As soon as an open interface was inserted into the industry
structure, those who looked ahead and saw the consequences realized that any-
one who had to “charge for the bits” as the only way to make money would make
no money from telephony, because there were so few bits to carry it as compared
to other services.

The fact that there are physical facilities at the base of the Internet companies
that actually install and operate fibers, wires, and so on, signals another eco-
nomic reality. Owners of facilities are in a “sunk cost” industry. They spend
money up front to install these communication links, and then try to recover
these costs from subsequent utilization or resale. Industries with major sunk
costs have to deal with the economic reality that competition tends to drive
prices toward marginal or incremental cost of providing service, and prices
based on incremental costs may not recover the capital initially invested. If in-

1 An interesting topic not explored in this paper is that recent regulatory tactics try to
create such an interface.



70 Clark

dustries with major sunk costs become highly competitive, there is a risk that
all the players go out of business. (In practical terms, what happens is that the
weaker ones go out of business or are acquired by the stronger players, until the
competition is not so demanding.)

So the open interface in the Internet architecture implies two painful facts for
the ISPs and the facilities providers on which they depend (if ISPs don’t own
their own facilities). First, the open interface has deprived them of an important
opportunity for value pricing, and second, it has imposed competition on a sector
with major sunk costs. Both of these signal economic stress. While it was not
reasonable to expect an observer in the mid-90s to predict the full trajectory of
the industry—with over-exuberant investment in facilities, followed by bank-
ruptcy, an oversupply of long-distance fiber that owners cannot even afford to
light, components of old-line telephone companies fighting for their economic
life, and major industry consolidation raising anti-trust concerns—all of these
consequences are consistent with the economic constraints imposed by slicing a
competitive open interface through the middle of what had been a stable, verti-
cally integrated industry.

The withering of openness

The pressures of commodity bit-carriage and covering sunk costs may in fact
drive toward industry consolidation at the lower levels of the Internet industry—
the ISPs and the facilities providers that support them. What might this imply for
the Internet interfaces?

The Internet interface, at the present time, seems to remain open. But if one
ISP achieved significant market power, it might be to its advantage to offer a
“modified” or “enhanced” or “just different” interface, and try to get a number of
higher-level service providers to adopt this interface instead. By doing so, they
shut other ISPs and other higher-level service providers out of the market. So an
erosion of competition among ISPs might not just cause higher prices for Inter-
net access, but might cause erosion in the entire Internet model. It is for this rea-
son that the possible lack of competition among broadband ISPs is being so
closely watched.

The paper started with a simple question, How do I make money? It contin-
ued by observing that the more important (and sophisticated) question is, How
does every sector make money? We can now see the full import of this question.
If an open interface is seen as desirable to shape the market structure but the
sector on one side of this interface is not in a market situation that can sustain
competition, consolidation among players may well lead to the consequence that
this open interface is driven from the marketplace by the actions of the dominant
player. So thinking about how to ensure that all the sectors can make money is a
key to ensuring that the open architecture itself survives.
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Facing the design challenge

When we think about interfaces as a problem in economic design, what should
our design principles be? Experts in economics and business may have many
suggestions, but a few principles emerge from the discussion to this point.

Competition is a tool to impose discipline on the market

This discipline is a two-edged sword. It can motivate players to invest and inno-
vate; it can drive them out of business. An example is end-point controlled rout-
ing, which is not a part of the Internet today. There is no way for a consumer to
route his traffic over one ISP rather than another. If this feature were added, it
might increase the total competitive pressures and actually make things worse for
the ISPs. On the other hand, it would allow a provider with a new idea for a ser-
vice enhancement to bring it to market and attract (and charge) users. Consumers
might be persuaded to pay more, in exchange for real innovation in value that
they cannot obtain today.

Price discrimination may be better than monopoly

Few would argue for a return to the good old days of vertical integration, high
margins and regulated monopoly. But if the pressures on the facilities providers
lead to consolidation and market exit by enough of the ISPs, that might be the
result. The alternative is to let the providers make a little more money, with the
hope that more competitors survive. Our instinct as consumers is to build a sys-
tem that appropriates all the excess utility to us. We may need to build mecha-
nisms that deliberately give up some of that to the providers. Allowing the
sectors of the industry with sunk costs to recover more of the value associated
with consumer utility may be the best compromise to insure a stable industry.

For example, the telephone system has the concept of a “normal” and “800”
long-distance call. The idea is that different ends of the call can pay, depending
(presumably) on which end attaches more value to the call. The Internet has no
such mechanism. Should Internet packets have “Which way is the value flow-
ing?” tags? Quality of service (QOS) is the term in the Internet to describe the
concept that some customers can obtain better service (presumably by paying for
it). This is an obvious starting point for pricing tiers.

A debate of engineering and religion

By and large, Internet tools for price discrimination were resisted, and still are
resisted, because of the fear that incorporating them into the network would cre-
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ate uncontrollable opportunities for the ISPs to impose new costs even on users
who did not want them. If there is a high value-tier, one way to make it prefer-
able is to degrade the low value tier, and so on. This resistance, which is almost
of religious quality in some network architects, puts at a disadvantage those cus-
tomers who would actually be willing to pay more for better service. But the risk
is real. The force that will resist abuse here is competition. So designers face a
dangerous gamble. If putting in these tools is sufficient to sustain competition,
then adding them is a good thing. But if competition fails anyway, adding them
may make monopoly pricing worse.

Creative market entrants are finding clever ways to bypass the architectural
limitations of the basic interfaces and impose price discrimination. Leaving a
feature out of an interface does not make it go away. It drives it under the covers,
outside the architecture, but not out of existence. We see ISPs today seeking
ways to introduce value stratification, and they will do this whether the building
blocks are in the architecture or not. This raises the question of whether this af-
ter-the-fact evolution is the right approach to achieve economically motivated
innovation, or whether we would have been better served to have designed these
sorts of value-building blocks into the original open interfaces, so that the facili-
ties providers could have had more direct access to them.

We as system designers should make a conscious choice whether to design
these sorts of mechanisms and interfaces, or let them happen after we lose con-
trol.
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From Universe to Global Internet

Jon Crowcroft

The Universe project was a seminal research program that aimed at deploying
the Cambridge Distributed System (CDS) over a wide area. In retrospect, the
goals were similar to many of the now common test-bed projects in the world: to
build from existing ideas, and learn the key problems, and some tentative solu-
tions, for future systems.

Universe sites ran a variety of operating systems and applications that were
connected together by 10 Mbps (million bits per second) local and wide area
links. At this stage, at the start of the 1980s, when the project spanned several
institutions, academic and industrial, such capacity was more than two orders of
magnitude greater than that enjoyed by the early Internet researchers. We are
still learning from the results over 20 years later.

Research as you mean to develop

A feature of the Universe project was that the system was used by the partici-
pants. Many research projects before (and after) entailed two systems: one for
development, one for research. In Universe, the operating systems, networks and
applications under test were the systems of choice. This is culturally common-
place now in the computer science research community, but in those days, and in
a large system where failures could disable every day work in catastrophic ways,
this was a high-risk, but high-payoff decision.

A number of features of the CDS were notable, and we look at these next.

Naming, addressing and routing

The CDS architecture was notable for a clear separation of concerns. Unsurpris-
ingly, given the strong links maintained between Cambridge distributed-
computing researchers and counterparts in laboratories such as those run by
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Xerox and the Digital Equipment Corporation (DEC), the network architecture
was much more elegant than the Internet Protocols, which had evolved in a nar-
rower manner from research at Bolt, Beranek and Neumann (BBN, a US re-
search company responsible for much of the early Internet development), centred
around the problems of survivable routing. It is clear from the first that Universe
had a clean design for names, and name-servers operated 5 years before the
Internet Domain Name System (DNS); it had an addressing system that kept
apart system identifiers and path identifiers; and it had a routing system which
seamlessly allowed the community to scale from a single university to many.

Protocols

The protocols in the Universe project are of historic interest, since they include
aspects of the Internet Datagram Protocol, but also of the Broadband ISDN
communications approach of cell switching.

At the lowest level, at least on the site LANs, the mini-cell structure of a ring
was a given. In its full generality, this was a major advantage when it comes to
fine-grain resource allocation on the network, including experiments with mixed
data and voice (20 years before Voice-over-IP!).

Above this structure, both locally and in the wide area, there were several
choices. The Universe project was “agnostic” with regard to network state versus
end-to-end state, and thus provided both.

For client-server applications employing Remote Procedure Call (RPC),
there was the Single Shot Protocol (SSP, a bit like the Internet’s User Datagram
Protocol, UDP, commonly used for RPC, albeit with a response; perhaps more
like Transaction-Transmission Control Protocol, T-TCP, whose author worked at
a Universe partner site at this time). For long-lived flows, there was the Byte
Stream Protocol (BSP), which was semantically similar enough to the Internet’s
Transmission Control Protocol (TCP) that transport-level relaying between them
was implemented successfully.

Both SSP and BSP were capable of using state in the intermediate network:
the ring-ring bridges that connected local area networks together (a misnomer,
for surely they implemented routing functions) assisted in the setup of the return
path.

To enable the Internet protocol to run over the Universe infrastructure, a na-
tive framing protocol known as the Universe Datagram was developed. This was
really a concession to a less well designed protocol suite, but a pragmatic one,
since native internet applications could then run over the Universe infrastructure,
albeit without the advantages of resource management.
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Resource management and policy

In Universe, the network was a distributed system no different than the processor
farms, storage servers, name servers, boot servers and so on. Ring-ring bridges
booted from the same place as file-servers. Thus it was natural to manage re-
sources and policy for management in the same way as for any type of resource.
Access to network routes, file permissions, process capabilities are all unified.
When built in this way, why would one consider any of these components differ-
ently?

Similarly, when it came to looking at quantitative resources (network, stor-
age, processor capacity) and associated policies, it was clear that there are no
especial reasons to manage these in different ways.

Now and then—universal expectations

In the last two and a half decades, we have seen the components of computing
and communications approximately double in performance every year in every
dimension, be it processor speed (in line with Moore’s Law), memory, stable
storage or communications speed (and displays). The Internet was as important
as the personal computer because it connected all the users, information storage
and processing together. The Universe project pre-empted the performance in
terms of numbers of users, services and devices by 15 years.

1970s 1980s 1990s 21st Century

Processor Kilo-instructions

per second (KIPS)

MIPS GIPS TIPS

Storage Kilobytes (Kbps) MBytes Gbytes Tbytes

Networks Kilobits per second (Kbps) Mbps Gbps Tbps

Number of devices Tens Hundreds Millions Billions

(US)

Table 1: Performance trends of every dimension

Other aspects of networking were presaged in more fundamental ways. At the
physical layer, most local area networks in the world today use twisted pairs of
wire, as did the Cambridge Ring.



76 Crowcroft

The transmission substrate for most networks for the 1990s was Asynchro-
nous Transfer Mode (ATM), a cell switched system whose units of transfer al-
lowed for fine-grain control of delay, as did the Cambridge Ring1. This meant
that voice and data integration on the same communications resource (and pro-
cessing environment) was straightforward and natural. We have yet to regain this
capability in the Internet of the 21st century!

Before the Universe Project (and for some time afterwards) a great many re-
searchers treated wide-area-network systems (geographically distributed over
multiple organisations) as if there was some important difference between them
and local-area networks. This was especially true of the telecommunications and
broadcast networks that evolved from the telephone system and analogue TV
and radio. In contrast, at the time in a most revolutionary way, the Universe pro-
ject had what we now call a “Control Plane,” which was as much a part of the
distributed system as the management of any other facility. This is now the stan-
dard approach to building signalling systems that control network resources.

What more can we rediscover?

The US Academy of Science published a report recently entitled “Looking over
the fence at network research.” There were two goals, one to see what computer
scientists in other areas could learn from the successes of networking and dis-
tributed-systems research, and vice versa. It was clear that there was more of the
former than the latter. The National Science Foundation recently published a
report of a meeting to discuss network test beds, which reaffirmed most of the
principles which were exemplary in the Universe project.

The EPSRC recently held an International Review of UK Computer Science,
and this review regarded systems (implicitly operating systems, security net-
works and distributed systems) as notable.

To summarise, we could say that the lessons were these:

Be realistic, to get real results: you learn more from the practice of the-
ory than from the theory of practice.

Nothing scales an experiment like scale: the bigger we test a better idea,
the better we learn about how much better it is bigger.

Network control is a distributed application: if the idea doesn’t apply to
itself, it ain’t computer science.

1 Albeit a very small cell, known as a mini-packet, of only 16 bits!



10
Needham-Schroeder Goes to Court

Dorothy E. Denning

In 1978, Roger Needham of the University of Cambridge Computer Labora-
tory and Michael Schroeder of the Xerox Palo Alto Research Center pub-
lished a seminal paper on protocols for remote key distribution. Their paper
was titled ‘Using Encryption and Authentication in Large Networks of Com-
puters’ and appeared in the December issue of the Communications of the
ACM. It provoked considerable excitement in computing circles and was
widely read.

Needham and Schroeder addressed the problem of how entities in a com-
puter network could establish a data-encrypting key (called a conversation
key in their paper) when they did not already share a secret key-encrypting
key. To solve the problem, Needham and Schroeder introduced a trusted Au-
thentication Server (AS). Each entity has a private key-encrypting key that is
shared with the AS. The AS generates the conversation key and sends it to
one entity enciphered under its private key-encrypting key together with cop-
ies of the conversation key enciphered under the private keys of the other en-
tities. The first entity can then forward the enciphered key to the other parties
with the encrypted message. Alternatively, it can provide the key in advance.
Needham and Schroeder showed how this could be done in the context of
both one-way (e.g. electronic mail) and two-way communications.

As a young assistant professor of computer science at Purdue University, I im-
mediately recognized the significance of the paper and made it required reading
in my computer security class. One of my students, Giovanni Sacco, found a
security weakness in one of the methods described in the paper. This led to our
jointly writing a paper called “Timestamps in Key Distribution Protocols,” which
showed how timestamps could be added to the Needham-Schroeder protocol to
enhance its security. This paper was submitted to the Communications of the
ACM in November 1979 and published in August 1981.

About the same time I also co-authored a paper with Fred Schneider of Cor-
nell University that built on the Needham-Schroeder protocol. Titled “Personal
Keys, Group Keys, and Master Keys,” and later “The Master Key Problem,” the
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paper showed how group keys could be generated and managed in order to allow
for secure group communications in broadcast networks.

While the entire security community recognized the value of Needham-
Schroeder to secure communications and, as the Internet evolved, to e-commerce
and the future of the Internet itself, it was considered a scientific and technical
matter. It was not something to discuss with colleagues and friends in other dis-
ciplines. They would be able to communicate securely without concern for ex-
actly how it was done. Even though the public now appreciates the need for
Internet security, few are interested in the details of cryptographic algorithms
and protocols.

Imagine my surprise then when about two years ago, lawyers called me to
talk about Needham-Schroeder and various other cryptographic protocols, in-
cluding my own. Not only did they know about this highly technical work—they
had delved into its inner workings.

It turned out that Needham-Schroeder would become a significant piece of
prior art in a patent litigation case. The plaintiff in the case was arguing that pat-
ents of theirs dating back to the early 1980s had been infringed. I was contacted
by the lawyers for the defense and eventually agreed to serve as an expert wit-
ness.

My initial reading of the claims in the patents was “How could they get a
patent for this—it had all been done!” I would quickly learn that proving this
was not a simple matter. After learning more about patent law than I ever
thought I would need to know, I wrote a report explaining why I thought the pat-
ents were not valid in the first place. In particular, I showed that the patents’
claims were disclosed in prior art (and hence not novel) or were obvious.

My report describes Needham-Schroeder and various other protocols for key
establishment. The opening two paragraphs of this paper are quoted almost ver-
batim from that report.

The case went to trial, and I was impressed with the judge’s understanding of
the technology and issues. I looked forward to testifying, but the two parties
agreed on a settlement just minutes before I was to be called to the witness stand.

In the end, I think the lawyers for the plaintiff realized the patents were on
shaky ground. The prior art was just too compelling. Had the case gone to com-
pletion and the judge ruled the patents invalid, they would not have been in a
good position for future litigation involving those patents. I doubt the plaintiff
was pleased with the settlement, but rather viewed it as a better alternative to
losing. We, on the other hand, went out and celebrated.

In 1978, Needham and Schroeder recognized the value of their work for net-
work communications. Little did they know that one day their work would also
help defeat a lawsuit.
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The Design of Reliable Operating
Systems

Peter Denning

Back in the summer of 1975, Dorothy Denning and I, then still newlyweds, spent
a month at Cambridge. During that time Roger Needham and I met daily to dis-
cuss topics in the design of operating systems. We were searching for fundamen-
tal principles for reliable systems. I recorded many of my conclusions in my
paper, “Fault tolerant operating systems,” in ACM Computing Surveys, Decem-
ber 1976 [1]. Two topics of our discussions have stuck in my mind for all these
years because the principles were sound and remain relevant to real systems.
They are interrupts and capability addressing.

Interrupts

Roger and I were concerned about the considerable variation in the interpreta-
tions of the purpose and operation of interrupt systems, which had been a part of
operating systems since the Atlas Project at University of Manchester in the late
1950s. We saw no clear consensus on their design principles. The Atlas team
called them interrupts because they were used to interrupt normal processing to
allow calls to operating system functions. Other operating systems called them
traps—a metaphorical reference to a mousetrap springing in response to a pre-
set condition. In describing the Burroughs and Multics operating systems, Elliot
Organick called them unexpected procedure calls. In their seminal paper “Pro-
gramming semantics for multiprocess computations” [2], Jack Dennis and Earl
Van Horn (DVH) called them exceptional conditions and linked them to the pro-
tected entry of any routine providing a function for a class of objects. IBM re-
ferred to interrupts as exceptions. By 1975 several leading language designers
believed that every procedure call, whether to the OS or not, should provide both
a normal return and an exception return. The common features of these interpre-
tations were that interrupts gave safe access to supervisory functions of the oper-
ating system, stopped programs that encountered error conditions, enabled the
operating system to divert to high-priority functions, and relied on the procedure
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calling mechanism. Roger and I were specifically interested in a uniform inter-
pretation of interrupt systems that accommodated these common features and
gave clear guidance on how the interrupt hardware and software should be de-
signed for reliability of the whole operating system.

In a nutshell, our conclusions were these:
• An interrupt system is at a low kernel level, just above the procedure

mechanism.
• The interrupt vector, which points to the handler routines for each type

of exception, should encode not only the handler entry points, but their
proper supervisor state and interrupt mask settings. The procedure
mechanism should, on call, replace the current supervisor state and
masks with those encoded and, on return, restore them.

• Hardware condition detectors notify the interrupt dispatcher of faults
and external device signals. The detectors for faults could generally be
synchronized with the system clock, but the detectors for external con-
ditions could not.

• Failure to realize that external-condition signals could occur simultane-
ously led to interrupt dispatchers prone to arbitration failures.

Now some explanations. The interrupt system itself consisted of detectors, a
dispatcher, a mask, and a vector (list) of interrupt handler routines. The detectors
were hardware devices that monitored for pre-set conditions and raised a signal
when one occurred. The dispatcher, a combination of hardware and microcode,
selected one of the unmasked, raised conditions and invoked a procedure call on
the corresponding handler. The mask told which signals to respond to. The vec-
tor listed the interrupt-handler routines.

One of the open questions concerned the placement of the interrupt system in
the functional hierarchy of the operating system. Following the principle of lay-
ering, which was gaining popularity since Edsger Dijkstra used it successfully in
the THE system, we concluded that the interrupt system belonged in the kernel
just above the procedure mechanism, which was itself just above the instruction
set. The interrupt system had to be higher than the procedure mechanism since
the dispatcher calls procedures. It had to be lower than everything else, since all
other OS functions could define exceptional conditions.

Another open question was how to get the dispatcher to safely put the CPU
into supervisor mode when it invoked an interrupt handler, and restore user
mode upon return. Entry into the supervisor state had to be coupled tightly to
interrupt dispatching lest a separate mechanism become a back door for intrud-
ers. We borrowed from the DVH capability idea to describe a clean way to do
this. The entries in the interrupt vector would encode the entry point address, the
target supervisor mode, and the target interrupt mask. Procedure call would load
the instruction pointer, mode, and mask registers simultaneously from these data.
Procedure return would restore the former values.
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Still another open question was what kinds of conditions should be handled
by the interrupt system. Real systems recognized two categories of conditions:
faults and external signals. A fault condition meant that the running program
could not continue until the detected error was corrected; examples were mem-
ory parity, arithmetic, addressing, protection, illegal instructions. An external
signal meant that a peripheral device (such as disk) needed an OS action before a
deadline; examples were disk completion, receipt of network packet, clock inter-
ruption. We did not see any good mechanism for separating these two kinds of
conditions. Yet there was a crucial difference between them. Errors could be
detected in the CPU between instruction cycles; therefore, the dispatcher always
saw a stable set of error-condition signals. In contrast, external signals were un-
constrained by the CPU clock; therefore, the dispatcher could witness simultane-
ously arriving device signals and suffer arbitration failures. Arbitration failures
are a serious threat to reliability.

David Wheeler and other colleagues had documented arbitration failures that
occur when the dispatch circuit is unable to select, within a clock cycle, exactly
one of several simultaneously occurring incoming signals. Wheeler argued per-
suasively that, although the probability of an arbitration failure might appear
small (e.g., 1 in 100,000), it is only a matter of a few days before enough inter-
rupts have been processed that a failure is nearly certain. When the failure oc-
curs, the CPU mysteriously hangs up, losing data and requiring a complete cold-
restart. Wheeler designed a threshold flipflop (TFF) for the interrupt system that
would pause the CPU clock until the TFF indicated it had reached a decision.
This averted arbitration failure in exchange for an occasional delay of more than
one clock cycle until the TFF correctly registered an interrupt.

Capability addressing

Roger and I also discussed capability addressing and the structure of capability-
based operating systems. Invented by Dennis and Van Horn in 1966 [2], capa-
bilities were long, protected, globally unique addresses for objects. Robert Fabry
built a prototype capability machine two years later. Within a few more years the
Plessey Company built the System 250, a telephone switching computer that
used capability addressing; they reported ultra-high reliability, security, and re-
sistance to software errors. In 1975, Roger and his colleagues were undertaking a
project to build CAP, a general-purpose capability machine and operating sys-
tem. Their own preliminary experiments had suggested that such a system would
be extremely reliable because errors could not spread outside the local address
space in which they occurred.

Roger was extremely worried about the complexity of the CAP operating sys-
tem. It appeared that the requirement that capabilities be hardware protected
from alteration could only be met by partitioning the memory of the machine into
separate data and capability parts, which then precipitated a similar partition of
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the operating system and its data structures into separate data and capability
parts. There was a significant problem of maintaining consistency between data
and their corresponding capabilities. The complexity was further aggravated by
the rigid interpretation of capabilities as “access tickets” for objects. File owners
seemed to find it more natural to control access to their files with access control
lists than to set up a daemon process to hand out capabilities on request to quali-
fied users. Roger and I discussed possible ways to reduce the complexity to be
competitive with other operating systems.

We concluded that the principle of hardware-protected capabilities was the
source of much complexity. If we could relax that principle, we could preserve
the good features of capability addressing without the cost of special memory or
of partitioning. One way to do this would be to use type-checking in compilers to
verify that capability arguments passed to system routines were in fact capabili-
ties. The integrity of capabilities could be guaranteed if the set of OS programs
that used capabilities (all layers up through the directory level) were all part of a
trusted set assembled and verified by experienced programmers. This might not
prevent a determined hacker from penetrating the kernel and modifying capabili-
ties, but it would guarantee the proper use of capabilities for all normal users.
Unfortunately, the CAP hardware was already committed to memory partition-
ing, and the OS design was too far along for this to be a realistic option. Besides,
compiler technology had not evolved to the point where the required type-
checking could be trusted.

We also developed a hybrid access-control method that would combine fea-
tures of access control lists and access tickets. We observed that an access con-
trol list is permanent and persists as long as the file exists. In contrast, a
capability list can be a temporary structure that survives only as long as the asso-
ciated computational process. After a process is created, its capability list can be
loaded (on demand) with capabilities dynamically constructed from the access
lists attached to the files holding the objects addressed by the process. This hy-
brid generalized the standard virtual memory: the mapping tables contain capa-
bilities constructed on the fly from access control lists attached to files. This
hybrid was of great interest both to Roger and to Maurice Wilkes. But again, the
CAP project was too far along to retrofit this.

In their 1979 follow-on book about the CAP operating system [3], Roger and
Maurice lamented that they were unable to reduce the complexity of the system
enough to make it competitive with more conventional operating systems. The
main benefit, reliable and secure object addressing and sharing, had too large a
cost.

Was that the end for these ideas? Was it futile to pursue operating systems
with the reliability of capabilities and at conventional costs? Far from it. These
ideas are the backbone of modern object-oriented programming systems. The
compilers use “handles” to refer to objects—handles are software capabilities—
and type checking to assure that handles are passed only to functions authorized
to receive them. Objects can be dynamically loaded from external files, to which
conventional access lists control access. Although these ideas did not make it in
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CAP, Roger can nonetheless take pleasure in seeing the technology he helped to
develop become a mainstay in computing.
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An Historical Connection between
Time-Sharing and Virtual Circuits

Sandy Fraser

I left Ferranti for Cambridge University in 1966 after having spent six years in-
venting and then developing Nebula, a language and compiler for commercial
data processing. At Cambridge, Maurice Wilkes was Professor and Head of the
Mathematical Laboratory, home of EDSAC I and EDSAC II, and in 1966 home
of the Atlas computer known as Titan. Sir Maurice, as he is today, had been in-
spired by CTSS [2] to create a time-sharing system for the Titan, and had assem-
bled a team which included Roger Needham, David Hartley and Barry Landy. I
was very grateful to these gentlemen for accepting into their midst a programmer
and engineer without anything more than a BSc in Aeronautical Engineering.

The Titan, constructed in Cambridge under the leadership of David Wheeler,
had recently become operational when I arrived. Peter Swinnerton-Dyer had
astonished everyone by creating a usable operating system, seemingly overnight
after a period of much thought and no contact with the machine. Peter’s operat-
ing system allowed the Titan to provide a computing service for the University.
That service quickly acquired customers, including physicists and chemists,
some of whom at the time were engaged in the personality-testing task of per-
forming long computations of great scientific importance on a machine that was
not quite convinced that it wanted full-time employment. But Maurice wanted
time-sharing and I was at once inducted into the team.

I do not recall anyone explaining to me that there was a management struc-
ture for the Titan operating-system project, other than Maurice’s leadership of
the laboratory. Roger, David and Barry had tables (substitutes for desks) clus-
tered in one room, and I was assigned a table in an adjacent room. We all
seemed to know what part of the operating-system we were responsible for. My
task was to create a file system.

The basic architecture for the Titan operating system was already established.
There was to be a small kernel responsible for resource management, process
creation and scheduling, operation of peripherals, and administration of data
transfers to and from disk. The Atlas under Tom Kilburn’s guidance, it will be
recalled, had pioneered virtual memory, and it was the operating system’s task to
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manage it. Each process had its own address space, and the machine distin-
guished between user-mode (virtual addressing) and kernel-mode (absolute ad-
dressing). It had already been decided that the file system would be implemented
as a trusted suite of user-level programs with a system call interface to the ker-
nel. The File Master was the central component. It provided file directories,
managed disk space, coordinated access to files and administered a permissions
control system. Other programs in the suite were responsible for long-term file
integrity, file backup and file archiving on magnetic tape.

Two aspects of the file system were perhaps notable. The permissions control
system was unusually general. It allowed a user’s authority to be computed on
the basis of simple functional expressions stored as independent entries in a file
directory. Whereas today a file directory might contain a file descriptor or a
symbolic link to a file, in the Titan system a directory entry might be a ‘privacy
arrangement.’ For example, there was one function type which, when decoded,
meant: if the name of the program currently executing is ‘x’ then activity ‘y’ is
authorized. The union of all such authorizations contained in a user’s directory
enabled file access or allowed the use of certain restricted system functions.

The other unusual feature concerned the file backup and archiving system.
As is now common, an incremental backup system copied files to tape, and
through a less frequent process all ‘known’ files were copied onto archive tapes.
A known file was one that had a directory entry. If a user deleted the directory
entry, the archive copy eventually disappeared from the archive. A file title in-
cluded a ‘class’ identifier as the last component of its name. Three classes were
defined: permanent (P), temporary (T) and archive (A). A file designated as class
A would disappear from disk after two copies of the file had been made on ar-
chive tape. When the class was changed from A to P the file would automatically
(with the invisible help of a computer operator) be restored to disk.

I will not elaborate further on the Titan file system. If interested, one can re-
fer to Maurice Wilkes’ book and other publications [1, 5, 6, 7]. By 1968 it was
running well enough that the new operating system was launched into service.
That itself was not an easy task when one considers that we were working with
what amounted to being prototype hardware, including David Wheeler’s tunnel
diode cache memory, prototype software, which implemented ‘time-sharing,’ at
the time a new concept for British computing, and a large user population that
spanned the university and had a heavy workload for the machine. We scram-
bled, and Maurice held the critics at bay.

My future in research was much influenced by the fact that the file system
was a separate program, that data transfers were separated completely from the
administration of files, and the fact that it was so much of a struggle to construct
and maintain such a ‘mammoth machine’ as the Atlas. Would it not be possible
to assemble an interconnected collection of smaller machines along with a sepa-
rate machine for storing files, and operate on the whole a time-sharing service
for a large user community? I made some informal measurements of traffic vol-
umes and transfer rates to convince myself that this was a plausible and interest-
ing idea if a suitable interconnection method could be devised.
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At some point in 1967–68 Roger and I were invited to participate in the very
British sport of educating and berating the government in the princely surround-
ings of a London club. Those who would now be considered to be the Chief In-
formation Officers of some of England’s largest corporations paid for the meals
and on each occasion invited to dinner a senior politician or civil servant. The
goal was to persuade the Post Office, which at that time was the government arm
that operated the telephone system, to take time-sharing seriously and to provide
a data communication service for its customers. In this era, data communications
meant allowing modems on the phone network. While I cannot say how success-
ful the Real Time Club was, for that became its name, I can say that these discus-
sions of using the telephone network for data communication had a big impact
on me. It was the possibility that there might one day be a national communica-
tions service devoted to computer communications that attracted my attention
and curiosity.

In May 1969 I moved to the United States. My interest in computing and file
systems was now expanding rapidly to include communications. Surely, comput-
ing and communications would become one, and computers would become as
widespread as telephones. Where better to go for an education in communica-
tions than Bell Laboratories. However, when I arrived there I was surprised and
disappointed to find that Bell Labs, the research laboratory for world-wide
communications, at the time had no data network and only the smallest program
of research on the topic. Andy Hall, my host during those early days in America,
encouraged my interest in computer communications, and we talked of a network
that would link together the many mini-computers that were then to be found at
Bell Labs. Clearly, my ambition to build a network-based file system would have
to wait while I figured out how to network those mini-computers.

Henry McDonald became my mentor for a rapid education in the logic and
science of the telephone system. At this time there were three ongoing research
interests that Bell Labs had in data networking. Ed Newhall and Wayne Farmer
were working on what would soon be demonstrated as a token ring. Wes Chu (at
the time just departed from Bell Labs) had spawned an interest in stochastic
models for statistically multiplexed traffic between asynchronous terminals and a
time-sharing system. Dave Weller and Carl Christianson were working on a ring
bus to connect peripherals with their mini-computer. I was excited by the vision
of a world-wide network that could carry telephony and data, and eventually
video. One need spend but a moment in Bell Laboratories to acquire a sense of
grandeur and possibilities. The telephone network was going digital, Bell Labs
had tested a video telephone on its network, digital switching was in the throes of
being born, microprocessors were on the horizon, and in this one research labo-
ratory there was all the expertise that it would take to create a single network that
could bring an integrated communications service for voice, video and data to
every home and business throughout the land.

By the Fall of 1969 I had learned enough of digital switching and wide area
networking to conceive of a switching machine and network access arrangement
that might eventually scale to large proportions with the performance and quality
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of service which was husbanded so dearly by the operators of the Bell System [3,
4]. Thus, there were born that year notions of virtual circuit switching, asynchro-
nous time-division multiplexing of cells, window flow control, and the slotted
ring. A network, called Spider, was in due course constructed with connections
to twelve computers, including one that served as a print server and another as a
file server. For the latter, which was based on Unix, we re-implemented the Titan
method of incrementally dumping files on magnetic tape. The original goal had
been to logically recreate the Titan file system, not as part of some new large
machine but as the networked hub of many small machines. To a limited degree
that goal had been reached. It was successful because some of the mini-
computers had weak operating systems and very limited storage. However, sev-
eral years would pass before network performance would be sufficient that dis-
tributed computing with shared file storage would be seen as a competitive
option.

I would like to conclude by thanking Roger and Maurice for their part in
shaping my career. By giving me the opportunity to be part of the Titan team, to
benefit from the rich environment that is Cambridge, and to join in the discus-
sions of The Real Time Club, they started my career down an ever widening path
that, over the years, has brought great pleasure and professional satisfaction.
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On Cross-Platform Security

Li Gong

Why cross-platform security?

Today in any IT system installation of a non-negligible size, heterogeneity is a
given. From hardware platforms, to operating systems, to networking protocols,
to applications, one is bound to discover a variety of technologies for every layer
of the system stack. Heterogeneity has its advantages: it fosters innovation, com-
petition, and even has the potential to improve security and reliability in that one
may hope that the same error or security hole does not exist in all of the different
designs.

Heterogeneity also brings a number of problems for implementing security
requirements. For example, system administrators with different knowledge and
skills are needed to manage different systems. In addition, these different sys-
tems may offer vastly different sets of security properties so that interoperability
becomes difficult if not impractical.

The most important problem, though, is how to provide security support for
application developers. In other words, when developing an application that
must run on a number of different platforms (think about web services, for ex-
ample), how does the developer ensure that the required security properties can
be correctly implemented and deployed across the different platforms.

The primitive way to deal with heterogeneity is to find out the collection of
the target deployment platforms a priori and design a solution that works on this
set of platforms. However, a solution obtained this way does not apply to a new
environment. It also needs to change, usually with great difficulty, when a new
target platform is added into the mix. What is desirable is a systematic approach
to cross-platform security.
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Approaches to cross-platform security

The obvious idea towards cross-platform security is to find common ground
among the diverse systems that is sufficiently broad to implement needed secu-
rity requirements. Let us consider, bottom up, a number of common grounds
from the system stack.

The one thing that is common to all systems, especially in today’s world of
the Internet, is a set of communication protocols such as TCP/IP. These proto-
cols, however, are too low-level to represent basic system and security concepts
such as files and file security. Moreover, some devices may be equipped with
802.11 or Bluetooth, but not TCP/IP.

Next up, all systems have operating systems. The difficulty here is that there
are multiple systems that are widely used (Unix and Microsoft Windows, for
example), which all have unique characteristics. Moreover, just Unix alone has a
number of different flavors, notably Solaris from Sun Microsystems and HP/UX.
Even Windows has incompatibilities among its own versions, Win95, Win98,
NT, and XP. What’s worse, more operating systems are popping up and gaining
widespread use, such as Linux and embedded Linux, Palm OS for PDAs, and
systems for mobile phones and other emerging devices. In other words, there is
not a lot of common ground to find at the OS level.

The most promising area for interoperability seems to be programming lan-
guages and APIs. After all, implementing a language on different platforms is
not too difficult a task. Traditionally, we have had BASIC, Fortran, COBOL, and
the more popular, C and C++. However, none of these languages offers a secu-
rity model. Java is perhaps the first widely deployed programming language that
has cross-platform operation and security declared as its two primary design
goals. What also helps Java tremendously is the associated set of APIs that can
be used to implement just about any application, independent of the underlying
operating systems. If everyone adopted Java, cross-platform security would have
been a problem largely solved. For a while, this was indeed the dream of many
practitioners. Eventually, the harsh reality of commercial competition dictates
that the dream remains a dream. Support for Java on MS Windows—the plat-
form with the largest number of seats—cannot be guaranteed or expected. The
same fate awaits C#, the Microsoft competitor to Java, which is unlikely to be-
come standard on all major platforms.

Failing all the above, many folks are pushing so-called web services as the
conceptual layer for interoperability, where technologies like HTML and its
variants are the basis for interoperation. This approach is still evolving, so it is
too early to write its obituary. But the early-warning signs are already here:
ASCII-based exchanges have severe limitations. To be powerfully expressive,
flexible, and extendable, exchanging text messages alone is not enough. One
must either exchange commands to be executed by the end systems (here we
must not replicate the shortcomings of CORBA) or communicate programs that
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can run directly on the end systems, both of which lead us back to the problems
we started with.

What now?

Recently, a new interoperability approach has emerged as an open source com-
munity effort, JXTA, at jxta.org. JXTA attempts to describe entire systems com-
pletely within a set of protocols. The basic elements are peers and messages.
Through discovery, peers can form groups, communicate with each other, share
contents, and so on. Everything stored or communicated is in the form of a mes-
sage. JXTA is designed to be independent of networking protocols, operating
systems, and programming languages. In other words, it is truly cross-platform.

In this environment, we can think of peers and messages as subjects and ob-
jects in the traditional security model. Messages can have types, such as adver-
tisements, which can then be subdivided into advertisements for peers or for
content. Content can be code or data; they are no different in JXTA and are all of
the type “CODAT.” Messages can be encrypted for secrecy and/or integrity.
Typical authentication and authorization systems can be used. Access control
policies can be embedded or encoded into the messages. Cryptographic tech-
niques can be deployed to enforce access controls.

Although promising, JXTA is still very new. Its security design is not yet
complete. (Solving the cross-platform security problem is not what JXTA was
started for.) It is too early to predict whether this approach will work out at the
end. Even if it works, it be non-threatening enough so that it can be adopted on
all major platforms? Will commercial competition stand in the way yet again?
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14
Distributed Computing Economics

Jim Gray

Computing economics are changing. Today there is rough price parity between 1
database access, 10 bytes of network traffic, 100,000 instructions, 10 bytes of
disk storage, and a megabyte of disk bandwidth. This has implications for how
one structures Internet-scale distributed computing: one puts computing as close
to the data as possible in order to avoid expensive network traffic.

The cost of computing

Computing is free. The world’s most powerful computer is free (SETI@Home is
a 54 teraflops machine).1 Google freely provides a trillion searches per year to
the world’s largest online database (2 petabytes). Hotmail freely carries a trillion
email messages per year. Amazon.com offers a free book search tool. Many sites
offer free news and other free content. Movies, sports events, concerts, and en-
tertainment are freely available via television.

Actually, it’s not free, but most computing is now so inexpensive that advertising
can pay for it. The content is not really free; it is paid for by advertising. Adver-
tisers routinely pay more than a dollar per thousand impressions (CPM). If
Google or Hotmail can collect a dollar per CPM, the resulting billion dollars per
year will more than pay for their development and operating expenses. If they

1 This paper makes broad statements about the economics of computing. The numbers
are fluid—costs change every day. They are approximate to within a factor of 3. For
this specific fact: SETI@Home averaged 54 teraflops (floating point operations per
second) on 26th January 2003, handily beating the sum of the combined peak per-
formance of the top four of the TOP500 supercomputers registered at
http://www.top500.org/ on that day.
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can deliver a search or a mail message for a few micro-dollars, the advertising
pays them a few milli-dollars for the incidental “eyeballs.” So these services are
not free—advertising pays for them.

Computing costs hundreds of billions of dollars per year. IBM, HP, Dell, Uni-
sys, NEC, and Sun each sell billions of dollars of computers each year. Software
companies like Microsoft, IBM, Oracle, and Computer Associates sell billions of
dollars of software per year. So, computing is obviously not free.

Total cost of ownership (TCO) is more than a trillion dollars per year. Opera-
tions costs far exceed capital costs. Hardware and software are minor parts of
the total cost of ownership. Hardware comprises less than half the total cost;
some claim less than 10% of the cost of a computing service. So the real cost of
computing is measured in trillions of dollars per year.

Megaservices like Yahoo!, Google, and Hotmail have relatively low operations-
staff costs. These megaservices have discovered ways to deliver content for less
that the milli-dollar that advertising will fund. For example, in 2002 Google had
an operations staff of 25 who managed its two petabyte (215 bytes) database and
10,000 servers spread across several sites. Hotmail and Yahoo! cite similar
numbers—small staffs manage ~300 terabytes of storage and more than 10,000
servers.

Most applications do not benefit from megaservice economies of scale. Other
companies report that they need an administrator per terabyte, an administrator
per 100 servers, and an administrator per gigabit of network bandwidth. That
would imply an operations staff of more than 2,000 people to operate Google—
nearly ten times the size of the company.

Outsourcing is seen as a way for smaller services to benefit from megaservice
efficiencies. The outsourcing business evolved from service bureaus through
timesharing and is now having a renaissance. The premise is that an outsourcing
megaservice can offer routine services much more efficiently than an in-house
service. Today, companies routinely outsource applications like payroll, insur-
ance, web presence, and email.

Outsourcing has often proved to be a shell game—moving costs from one place
to another. Loud Cloud and Exodus trumpeted the benefits of outsourcing. Now
Exodus is bankrupt and Loud Cloud is gone. Neither company had a significant
competitive advantage over in-house operations. Outsourcing works when it is a
service business where computing is central to operating an application and sup-
porting the customer—a high-tech low-touch business. It is difficult to achieve
economies-of-scale unless the application is nearly identical across most compa-
nies—like payroll or email. Some companies, notably IBM, Salesforce.com,
Oracle.com, and others, are touting outsourcing, labeled On Demand Comput-
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ing, as an innovative way to reduce costs. There are some successes, but many
more failures. So far there are few outsourced megaservices—payroll and email
are the exception rather than the rule.

SETI@Home sidesteps operational costs and is not funded by advertising.
SETI@Home is a novel kind of outsourcing. It harvests some of the free (un-
used) computing available in the world. SETI@Home “pays” for computing by
providing a screen saver, by appealing to people’s interest in finding extra-
terrestrial intelligence, and by creating competition among teams that want to
demonstrate the performance of their systems. This currency bought 1.3 million
years of computing; it bought 1.3 thousand years of computing on 3 February
2003. Indeed, some SETI@Home results have been auctioned at eBay. Others
are emulating this model for their compute-centric applications (e.g., Pro-
tein@Home and ZetaGrid.net).

Grid computing hopes to harvest and share Internet resources. Most computers
are idle most of the time, disks are ½ full on average, and most network links are
under utilized. Like the SETI@Home model, Grid computing seeks to harness
and share these idle resources by providing an infrastructure that allows idle re-
sources to participate in Internet-scale computations [4].

Web services

Microsoft and IBM tout web services as a new computing mode—Internet-scale
distributed computing. They observe that the HTTP Internet is designed for peo-
ple interacting with computers. Traffic on the future Internet will be dominated
by computer-to-computer interactions. Building Internet-scale distributed com-
putations requires many things, but at its core it requires a common object model
augmented with a naming and security model. Other services can be layered atop
these core services. Web services are the evolution of the RPC, DCE, DCOM,
CORBA, RMI, standards of the 1990’s. The main innovation is an XML base
that facilitates interoperability among implementations.

Neither grid computing nor web services have an outsourcing or advertising
business model. Both are plumbing that enable companies to build applications.
Both are designed for computer-to-computer interactions and so have no adver-
tising model—because there are no eyeballs involved in the interactions. It is up
the companies to invent business models that can leverage the Web services
plumbing.

Web services reduce the costs of publishing and receiving information. Today,
many services offer information as HTML pages on the Internet. This is conven-
ient for people, but programs must resort to screen-scraping to extract the infor-
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mation from the display. If an application wants to send information to another
application, it is very convenient to have an information structuring model, an
object model, that allows the sender to point to an object (an array, a structure,
or a more complex class) and simply send it. The object then “appears” in the
address space of the destination application. All the gunk of packaging (serializ-
ing) the object, transporting it, and then unpacking it is hidden from sender and
receiver. Web services provide this send-an-object/get-an-object model. These
tools dramatically reduce the programming and management costs of publishing
and receiving information.

So web services are an enabling technology to reduce data interchange costs.
Electronic Data Interchange (EDI) services have been built from the very primi-
tive base of ASM.1. With XML and web services, EDI message formats and
protocols can be defined in much more concise languages like XML, C#, or
Java. Once defined, these interfaces are automatically implemented on all plat-
forms. This dramatically reduces transaction costs. Service providers like
Google, Inktomi, Yahoo!, and Hotmail can provide a web service interface that
others can integrate or aggregate into a personalized digital dashboard and earn
revenue from this very convenient and inexpensive service. Many organizations
want to publish their information. The World Wide Telescope is one example,2

but the example is repeated in biology, the social sciences, and the arts. Web
services and intelligent user tools are a big advance over publishing a file with
no schema (e.g., using FTP).

Application economics

Grid computing and computing on demand enable applications that are mobile
and that can be provisioned on demand. What tasks are mobile and can be dy-
namically provisioned? Any purely computation task is mobile if it is written in a
portable language and uses only portable interfaces—write once run anywhere
(WORA). Cobol and Java promise WORA. Cobol and Java users can attest that
WORA is difficult to achieve, but for the purposes of this discussion, let’s as-
sume that this problem is solved. Then, the question is,

What are the economic issues of moving a task from one computer to an-
other or from one place to another?

A computation task has four characteristic demands:
• Networking—delivering questions and answers
• Computation—transforming information to produce new information

2 See http://SkyQuery.net/ and http://TerrraService.net/. These two websites each act as
a portal to several SOAP web services.
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• Database access—access to reference information needed by the com-
putation

• Database storage—long term storage of information (needed for later
access)

The ratios among these quantities and their relative costs are pivotal. It is fine
to send a gigabyte over the network if it saves years of computation—but it is not
economic to send a kilobyte question if the answer could be computed locally in
a second.

To make the economics tangible, take the following baseline hardware parame-
ters:

3

2 GHz cpu with 2GB ram (cabinet and networking) $2,000
200 GB disk with 100 accesses/second and 50 MB/s transfer $200

1 Gbps Ethernet port-pair $200
1 Mbps WAN link $100/month

From this we conclude that one dollar equates as follows:
1 $

� 1 GB sent over the WAN
� 10 Tops (tera cpu operations)
� 8 hours of cpu time
� 1 GB disk space
� 10 M database accesses
� 10 TB of disk bandwidth
� 10 TB of LAN bandwidth

The ideal mobile task is stateless (no database or database access), has a tiny
network input and output, and has huge computational demand. For example, a
cryptographic search problem: given the encrypted text, the clear text, and a key
search range. This kind of problem has a few kilobytes input and output, is state-
less, and can compute for days. Computing zeros of the zeta function is a good
example.3 Monte Carlo simulation for portfolio risk analysis is another good
example. And, of course, SETI@Home is a good example: it computes for 12
hours on half a megabyte of input.

Using the parameters above, SETI@Home performed a multi-billion dollar
computation for a million dollars—a very good deal! SETI@Home harvested
more than a million cpu years worth more than a billion dollars. It sent out a bil-
lion jobs of ½ MB each. This petabyte of network bandwidth cost about a mil-

3 The hardware prices are typical of web prices, the WAN price is typical of rates paid
by large (many Gbps/month) Internet service providers. Hardware is depreciated over
3 years.
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lion dollars. The SETI@Home peers donated a billion dollars of “free” cpu time
and also donated 1012 watt-hours, which is about 100 million dollars of electric-
ity. The key property of SETI@Home is that the compute-cost:network-cost ra-
tio is 10,000:1. It is very cpu-intensive.

Most web and data processing applications are network or state intensive and
are not economically viable as mobile applications. An FTP server, an HTML
web server, a mail server, and an online transaction processing (OLTP) server
represent a spectrum of services with increasing database state and data access.
A 100 MB FTP task costs 10 cents, and is 99% network cost. An HTML web
access costs 10 microdollars and is 88% network cost. A Hotmail transaction
costs 10 microdollars and is more cpu intensive so that networking and cpu are
approximately balanced. None of these applications fits the cpu-intensive state-
less requirement.

Data loading and data scanning are cpu-intensive, but they are also data inten-
sive, and therefore not economically viable as mobile applications. Some appli-
cations related to database systems are quite cpu intensive: for example, data
loading takes about 1,000 instructions per byte. The “vision” component of the
Sloan Digital Sky Survey that detects stars and galaxies and builds the astronomy
catalogs from the pixels is about 10,000 instructions per byte. So they are break-
even candidates: 10,000 instructions per byte is the break-even point according
to the economic model above (10 Tops of computing and 1 GB of networking
both cost a dollar). It seems the computation should be at least 30,000 instruc-
tions per byte (a 3:1 cost benefit ratio) before the outsourcing model becomes
really attractive.

The break-even point is 10,000 instructions per byte of network traffic or about
a minute of computation per MB of network traffic. Few computations exceed
that threshold; most are better matched to a Beowulf cluster. Computational
fluid dynamics (CFD) is very cpu intensive, but again, CFD generates a continu-
ous and voluminous output stream. To give an example of an adaptive mesh
simulation, the Cornell Theory Center has a Beowulf-class MPI job that simu-
lates crack propagation in a mechanical object [5]. It has about 100 MB of input,
10GB of output, and runs for more than 7 cpu-years. The computation operates
at over one million instructions per byte, and so is a good candidate for export to
the WAN computational grid. But the computation’s bisection bandwidth re-
quires that it be executed in a tightly connected cluster. These applications re-
quire inexpensive bandwidth available to a Beowulf cluster [7]. In a Beowulf
cluster networking is ten thousand times less expensive than WAN networking—
which makes it seem nearly free by comparison.

Still, there are some computationally intensive jobs that can use Grid comput-
ing. Render-farms for making animated movies seem to be a good candidate for
Grid computing. Rendering a frame can take many cpu hours, so a Grid-scale
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render farm begins to make sense. For example, Pixar’s Toy Story 2 images are
very cpu intensive—a 200 MB image can take several cpu hours to render. The
instruction density was 200 k to 600 k instructions per byte [2]. This could be
structured as a grid computation—sending a 50 MB task to a server that com-
putes for ten hours and returns a 200 MB image.

BLAST, FASTA, and Smith-Waterman are an interesting case in point—they are
mobile in the rare case of a 40 cpu-day computation. These computations match
a DNA sequence against a database like GenBank or SwissProt. The databases
are about 50 GB today. The algorithms are quite cpu intensive, but they scan
large parts of the database. Servers typically store the database in RAM. BLAST
is a heuristic that is ten times faster than Smith-Waterman, which gives exact
results [1, 6]. Most BLAST computations can run in a few minutes of cpu time,
but there are computations that can take a cpu month on BLAST and a cpu year
on Smith Waterman. So it would be economical to send SwisProt (40GB) to a
server if it were to perform a 7,720 hour computation for free. Typically, it does
not make sense to provision a SwissProt database on demand; rather, it makes
sense to set up dedicated servers (much like Google) that use inexpensive proc-
essors and memory to provide such searches. A commodity 40 GB SMP server
would cost less than 20,000 dollars and could deliver a complex one cpu-hour
search for less than a dollar—the typical one minute search would be a few mil-
lidollars.

Conclusions

Put the computation near the data. The recurrent theme of this analysis is that
“on demand” computing is only economical for very cpu-intensive applications
(100,000 instructions per byte or a cpu-day per gigabyte of network traffic). Pre-
provisioned computing is likely to be more economical for most applications—
especially data-intensive ones.

How do you combine data from multiple sites? Many applications need to inte-
grate data from multiple sites into a combined answer. The arguments above
suggest that one should push as much of the processing to the data sources as
possible in order to filter the data early (database query optimizers call this
“pushing predicates down the query tree”). There are many techniques for doing
this, but fundamentally it dovetails with the notion that each data source is a web
service with a high-level object-oriented interface.
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Caveats

Beowulf clusters have completely different networking economics. Render farms,
materials simulation, and CFD fit beautifully on Beowulf clusters because there
the cost of networking is very inexpensive: a GBps Ethernet fabric costs about
$200/port and delivers 50 MBps, so Beowulf networking costs are comparable
to disk bandwidth costs—10,000 times less than the price of Internet transports.
That is why rendering farms and BLAST search engines are routinely built using
Beowulf clusters. Beowulf clusters should not be confused with Internet-scale
Grid computations.

If telecom prices drop faster than Moore’s law, the analysis fails. If telecom
prices drop slower than Moore’s law, the analysis becomes stronger. Most of
the argument in this paper pivots on the relatively high price of telecommunica-
tions. Over the last 40 years telecom prices have fallen much more slowly than
any other information technology. If this situation changed, it could completely
alter the arguments here. But there is no obvious sign of that occurring.
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15
The Titan Influence

David Hartley

The Titan project was the major focus of research and development in the Cam-
bridge Mathematical Laboratory for most of the 1960s. The objective, as with
the EDSAC 1 and EDSAC 2 before, was to pioneer a computer system (hard-
ware and software) exploiting the latest technology to produce a next-generation
system to meet and stimulate the computational needs of the University of Cam-
bridge.

To say that Titan was the last such major development in the laboratory
might appear to deny many substantial and successful system development pro-
jects since then, but it certainly was from my perspective as one who worked in
the project and, in 1970, became responsible for the computing service.

Tradition and objectives

Having built two pioneering systems by the end of the 1950s, the laboratory
could claim to have established a tradition. If these first two systems were
ground breaking and pushed forward the state of the art, then any third system
was bound to follow the same ambitions. Further, the first two systems were in
regular use by a growing community of scientists and others breaking new
ground in their research, and we had created a demand for more.

The main objectives were efficiency, utility, and advancement. Efficiency to
get as much as possible out of very limited hardware; optimization was very
much the name of the game. Utility came in two senses: the system had to be
simple to use for simple tasks, and at the same time provide a comprehensive
range of facilities. Advancement, because there was clearly much scope for
pushing forward the state of the art.
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Not entirely home-made

The basic central-processor design of Titan was not something we developed
ourselves. Manchester University, in collaboration with Ferranti, were develop-
ing the Atlas, and on the face of it the Laboratory might have settled for one of
those. But Atlas was far too expensive, and it was decided that Cambridge would
develop with Ferranti a much-reduced version. Indeed, Titan became the proto-
type of the Ferranti Atlas 2, although its commercial success was no more than
its big brother’s. Including the prototypes, only three machines of each type were
ever built.

Apart from the basic central processing unit, Titan was so different from At-
las that a new operating system had to be developed. Atlas had a one-level store,
with hardware paging and a high-speed drum, while Titan originally had a simple
relocation register, a limited amount of main memory, and a magnetic tape back-
ing store. We did, however, adopt the same design philosophy, and learnt much
from studying the work of our Manchester colleagues.

Operating systems for all seasons

Titan being the prototype Atlas 2, the operating-system project from the outset
was a collaboration with Ferranti (later ICT and eventually ICL). We began with
common motives, namely to develop a multiprogramming system, optimising
mainframe processor use while enabling a mix of jobs of various sizes, shapes
and priorities to make their way smoothly through the system.

With a Cambridge team of about five and at least twice that number in Fer-
ranti, we laid the foundations for the operating system. A notable achievement
was the design, mainly by the leader of the Ferranti team, Chris Spooner, of a
highly sophisticated input/output buffer using a dynamically variable number of
magnetic tape drives. Several of us found it difficult to believe it would work,
but eventually work it did, although not on Titan itself.

Our aims and objectives began to diverge when Cambridge tradition and ob-
jectives began to clash with the conservatism of marketing executives. Ferranti
found difficulty selling the concepts of multiprogramming to potential custom-
ers, who could see little value in an operating system unless it exhibited the fea-
tures of the Fortran Monitor System, popular in those days on IBM mainframes.
When we set our sights on time-sharing, this was too much for the collaboration
to continue. So before any version of the operating system had been completed,
Cambridge and Ferranti agreed to go their separate ways, each in the end devel-
oping different, but very successful, systems built on the same hardware and
software technologies.

Maurice Wilkes discovered CTSS on a visit to MIT in about 1965, and re-
turned to Cambridge to convince the rest of us that time-sharing was the way
forward. This didn’t take much doing, although to add terminals and interactive
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working to a partly completed job system was something of a challenge. It was
essential to maintain our tradition and policies of an efficient and useable system.

Inevitably, we had a desire to do better, but more important was the need to
do differently. David Wheeler came to our help by adding a second memory re-
location register so we could, for example, place a program in one part of mem-
ory and its working data in a different part. This rather rudimentary kind of
segmentation enabled us to create a workable system for on-line interactive
working. The alternative of an investment in high-speed secondary storage for
memory swapping was quite out of the question.

A generous gift from Ferranti did, however, produce a disc unit to hold a file
store. The filing system was designed chiefly by Sandy Fraser, and in due time
developed by Mike Guy into a highly practical system embodying sophisticated
access controls, and comprehensive back-up and archive facilities.

One innovation, which to us was an obvious requirement, was compatibility
between off-line jobs and terminal access. Whether you used Titan by submitting
a background job or by running a program at a terminal, the commands to edit
and manipulate files, to compile programs, and to handle input and output called
the same system modules and were therefore the same commands. This was in
contrast with other developments of the time, where system designers saw time-
sharing as fundamentally different from previous ways of using computers. This
approach was followed when the Computing Service later developed Phoenix on
IBM’s 370 mainframe operating system, with considerable success.

Programming language excursions

One of the less well known, and indeed less successful, elements of the Titan
project was CPL. The world discovered high-level programming languages with
the advent of Algol in the early 1960s, when computers had become sufficiently
powerful for the languages not to have to exhibit quirky features of the underly-
ing hardware. In spite of this, it still seemed natural to want a new language to go
with our new computer. Collaborating with University of London colleagues, we
set out to develop a language that would be complete and sufficient for all appli-
cations.

CPL made many strides forward in establishing new and regular language
concepts. But the objectives were too ambitious, and the approach too theoreti-
cal, so we were forced to put aside the pragmatic requirement of a complete and
implementable system. A user circular, rashly produced in the early days, de-
clared that CPL would be the language for all applications on Titan, and no other
language, not even assembly language, would either be needed or available. This
came home to roost a few years later, when a research student was hastily com-
missioned to write a Fortran compiler.

In the context of Titan, CPL failed to follow the tradition of efficiency and
utility. But it did have its influences. Martin Richards developed a simpler ver-
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sion, known as BCPL, designed for writing systems programs, which was im-
plemented in a readily portable manner and lived long beyond not only Titan but
also Cambridge. BCPL was to influence Bell Laboratories to develop their own
language, first as B and later as C.

A quart from a pint pot

Providing facilities to satisfy the needs of upwards of 1,000 academic users was
a challenge that called for some ingenious techniques of resource allocation and
control, and also a little marketing. To provide a fully interactive system in
which all users could interact on-line with any and every program, be it a text
editor, a compiler or their own application, was out of the question because of
the lack of any kind of one-level store.

Instead, we found the following pragmatic and efficient solution. Certain
tightly written programs, such as the text editor, were permitted to operate inter-
actively, communicating directly with the user’s terminal. All other programs, be
they compilers or users’ applications, could be called at the terminal, but were
permitted to communicate only with the file store. Once such a program had
completed execution, its output file would then be automatically printed at the
terminal.

The effect to the user was a form of command level interaction that largely
satisfied their needs. At the same time, by restricting interaction in this way,
memory swapping to disc was avoided, and Titan supported far more simultane-
ous users than otherwise.

Other techniques for sharing the severely limited resources of the system
were developed. File space was at a premium; the amount available for the aver-
age user was tiny when compared with a modern PC. We had to find a way of
ensuring that only the most immediately required files were kept on disc, with
the remainder archived on magnetic tape.

It was wisely decided not to develop an intelligent system to purge files
automatically to tape, our pragmatic approach telling us that, given the right in-
centives, the human user had the best intelligence to do this. Incentive came from
an accounting system that not only limited total disc use, but also controlled
average use over time, so that minimising disc space accumulated credit to use
more later. It worked like a treat.

We had discovered the principle that a wasting asset is best regulated by con-
trolling the rate of its use, rather than just its maximum use. It worked well and
the technique was re-used on the later Phoenix system, not just for file storage,
but for controlling computer time as well.
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Avoiding new releases

Titan was, for most of its existence, a unique one-off system. Apart from the
Atlas 2 installed at the CAD Centre, other Atlas computers had substantially
different operating systems. This virtual singularity provided the opportunity to
solve one of the major software engineering problems of large complex systems,
namely the control of repairs and enhancements.

We had discovered the problem associated with the management of new
software releases, where bug fixes, patches, and new features are first introduced
into a development version and saved until sufficient to endure the trauma of
inflicting a new release on users. It is well known that new software releases can
introduce more problems than they resolve. Barry Landy developed tools to in-
stall changes, whether repairs or new features, on an incremental and almost
daily basis. Changes could be made almost on the fly and, just as important, re-
moved if and when they caused problems, all with minimal disruption to the op-
erational service.

Of course, the problem is more difficult when there are many instances of the
system out in the field, but the advent of the Internet has at last enabled some
suppliers to provide incremental upgrades and fewer major new releases.

A secure and trusted environment

Given incremental development, we adopted a policy that any bug, security ex-
posure, or other loophole was fixed immediately after it was discovered. In con-
sequence, the Titan system became highly secure, and was relatively impervious
to user errors, whether accidental or otherwise. Obviously there was no guaran-
tee of complete security, but if systems today were as secure as Titan, the hack-
ing menace of the Internet would be vastly diminished.

Those who served

Almost everyone in the Laboratory in the 1960s, from Maurice Wilkes down-
wards, was involved in the Titan project, and for some of us it consumed our
formative years.

Bill Elliott joined the Laboratory to act as project leader and to bring the
joint efforts of the Ferranti and Cambridge teams to the stage of hardware being
designed, delivered, installed, and commissioned. David Wheeler commanded
the logical design efforts, and Roger Needham, having just completed his PhD,
was engaged to do pioneering design automation. Our trusty team of engineers
and technicians put it all together and kept working what, by today’s standards,
was a very unreliable piece of equipment.
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On the software side, the operating-system team was initially led by David
Barron and later by Roger Needham, and included David Hartley, Barry Landy,
and Mike Guy, with Sandy Fraser coming from Ferranti in the later stages. David
Barron and David Hartley started the CPL project, joined in due course by
Christopher Strachey.

Contributions were made by other laboratory staff and research students, as
well as by the wider user population. It is worth mentioning that Steve Bourne
worked on text editors as a research student, before taking his Titan experiences
to Bell Laboratories to influence the development of UNIX.

That Titan was highly successful there is no doubt. It broke new ground in
providing computing facilities to a large, diverse user population, was well engi-
neered, and in the end highly stable. Its legacy stretched into later computer sci-
ence research activities in Cambridge and the wider world, while it set standards
for future service systems within Cambridge. Indeed, the quality of today’s Uni-
versity Computing Service, although totally transformed by advancing technol-
ogy, can be traced back to those pioneering days of the 1960s.

Titan followed the tradition and policies of an efficient and useable system.
We were driven to make a real system that advanced the state of the art while
providing a service for very demanding university users. EDSAC 1 and EDSAC
2 had user populations of around 50 and 200 respectively. Titan’s user popula-
tion rose to nearly 1,000, and almost all of them used time-sharing facilities—no
mean feat on a machine with the power of 0.25 MIP, about 0.75 Mbytes of
memory, and 128 Mbytes of on-line file storage.

At the celebrations for the 50th anniversary of the EDSAC held in 1999,
Roger Needham, who certainly contributed as much to the project than anyone
else, gave a presentation on the Titan. He summed up the achievements of Titan
with the following:

If you are in our trade, nothing gives you more charge than having put to-
gether a system which nobody else can match.
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Middleware? Muddleware!

Andrew Herbert

From 1978 to 1985 I worked with Roger Needham and others in the Computer
Laboratory on the Cambridge Model Distributed System (CMDS) [9]. CMDS
admirably demonstrated the benefits of local area networks and distributed com-
puting. My role was to develop several of the management services and proto-
cols that glued the CMDS processor bank and associated servers together. The
work caught the attention of industry, and I was invited to become Chief Archi-
tect of the Alvey Advanced Networked Systems Architecture (ANSA) Project
[1]—an industrial collaboration to research, develop, and standardize what came
to be known as “middleware.”

Now I find myself back working with Roger once more, but no longer study-
ing middleware, since it is firmly out of the “doing research with a shovel”
phase. In this paper I explore how middleware evolved, what succeeded, and
what fell by the wayside.

Beginnings

Much of the CMDS environment was built using simple microprocessor-based
systems, each dedicated to a single function and networked together to form an
integrated system. The foundation for this was a very simple packet-level re-
quest-reply “single-shot” protocol (SSP). A software library was provided to
applications for assembling the request packet, following agreed layout and for-
mat conventions, transmitting it, waiting for the reply, and extracting the results.
Developers were carefully told about the possibility of packets being lost and the
need to design idempotent operations. With these uncomplicated facilities we
created dynamic naming services, user-authentication services, distributed-
resource-management services, boot servers, automatic wire-wrapping machine
controllers, amongst others. The services were documented in one or two sides
of simple English text each.
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Evolution: remote procedure call

Very quickly the systems community spotted the relationship between protocols
like SSP and procedure calls in programming languages, and hence “remote pro-
cedure calls (RPC)” [3] were invented. The driving force for RPC was “trans-
parency”: that is, hiding the nitty gritty of distributed computing behind familiar
programmatic syntax.

Unfortunately, transparency was found to be too demanding a mistress, in re-
spect of differences in failure models, parameter-passing mechanisms, and type
systems between the local and remote case.

Failure models

Procedure calls are atomic. In contrast, a request-reply exchange across a net-
work might fail, leaving the caller unsure whether or not the operation had been
executed at the server. Many argued for “exactly-once” RPC execution, since
this matched local procedure calls. However, this could leave orphan executions
stranded on a server. “Orphan extermination” techniques were investigated but
were found to be a slippery slope towards multi-phase commitment protocols,
and clearly overkill. Idempotency (“at least once” semantics) was held to be too
limiting, so the consensus settled on “at most once,” with sequence numbering of
request and reply packets, and a simple state machine to manage the retransmis-
sion of lost data.

Parameter passing

Parameters passed by reference present problems in the remote case, since client
and server are in separate address spaces. Some argued for a distributed shared
memory to underpin RPC, others for various forms of copying. This was a par-
ticularly serious issue for languages like C, where only a single result parameter
is permitted. The normal pattern of returning complex data structures by updat-
ing a variable through a reference argument didn’t work.

Type system

Potentially client and server in an RPC system are written in different program-
ming languages with different type systems. Consequently, a key component of
early RPC systems were Interface Definition Languages (IDLs), providing syn-
tax for describing request and reply interactions, characteristically in terms of
“in” parameters (arguments) and “out” parameters (results). Client and server
“stub code” to marshal data in and out of packets was generated automatically
from IDL specifications, removing one source of potential programming errors.
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Programmers had to learn how IDL concepts mapped onto their program-
ming language of choice, and also obscure conventions for managing the heap
memory used to marshal arguments and results in and out of packets. Arguments
reigned about IDL syntax: many held it should be language-neutral, both for
clarity and to emphasize the potential for working between different languages.
To reduce the burden on the user, others wanted IDLs to be close to a specific
language (or a subset of it, for example, object type specifications in languages
like C++). Several systems, such as Sun RPC [11], managed without an IDL,
relying instead on a standard encoding and supporting libraries.

RPC performance

In the early days of RPC research groups competed to demonstrate how their
implementation was faster than anyone else’s—whatever it took, including bury-
ing the protocol inside the operating system [10, 12]. This was driven not only
by competition between researchers, but in the belief that RPC was a tool for
constructing specialized application protocols, displacing “general” protocols
such as TCP.

Evolution: network objects

The later stages of RPC development coincided with the emergence of object-
oriented programming into the mainstream, in the form of the C++ programming
language. Many groups, including ANSA, extended their RPC systems into
“network object” systems [4]. The basic idea was that the client held a “network
pointer” or “object reference,” and an operation was invoked using a network
pointer to identify which object should respond. Objects moved the computa-
tional model for distributed computing from remote “procedure call” to remote
“method invocation” and introduced the concept of a “service”: a set of methods
(operations) over a shared state. With RPC, the relationship between procedures
and state had been left implicit, dependent upon implementation details and op-
erating-system structure. With an object model, a server could support multiple
services as independently named entities, including, for example, multiple in-
stances of the same service bound to different state variables. The paradigm ex-
ample was of a “bank server,” which embodied individual bank accounts as
separate objects. Network pointers became capabilities, as envisioned in an early
paper by Needham [8].

Network pointers resolved many of the problems with reference parameters
that had arisen with RPC systems, since objects provided a way to wrap up com-
plex data structures and network pointers provided a way to reference objects on
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one machine from another. Nothing is for free, however, and now such issues
arose as how long-lived network pointers should be, how tightly bound they are
to object instances, and how a server might garbage-collect objects that are no
longer referenced by its clients.

Object model variations

The network object model developed along two paths. Some systems empha-
sized programming language independence and working between operating sys-
tems and runtime environments. Others looked for more complete integration
with a single language and operating system: the attraction of doing so being that
little new syntax was required.

Network objects and databases

In the academic research community the emphasis was on RPC as a system-
building tool for general distributed computations. In contrast, in the rapidly
growing market for PC applications the focus was on interactive desktop client
applications making use of database servers through “database connectivity”
protocols such as ODBC [7].

Network objects and a flurry of interest in object-orientated databases
brought these strands together. For example, in the Guide system [2], the data-
base server was treated as a repository of “passive objects” to be “activated”
when a database operation touched them. Depending upon the particular system
architecture, the activation was either local to the server or by copying the state
to the client. The latter was attractive if database objects were small, rarely
shared, and frequently accessed—they were effectively cached at the client for
the duration of a transaction. However, if the object was heavily shared, distrib-
uted locking and cache consistency had to be introduced. Some systems did this
by introducing transactional capabilities, others by using a distributed virtual
memory. A further challenge in these systems was the need to ensure that clients
had the correct “object manager” code available—which opened another can of
worms having to do with implementation repositories, security, and code ver-
sioning.

The final evolution of the network object model was its extension to include
“mobile objects” [5], often linked to notions of “(intelligent) agents” [13]. This
permitted objects to migrate from computer to computer automatically in re-
sponse to operation invocation, or explicitly in response to application instruc-
tions to the infrastructure that an object be relocated, or because the object itself
decides to migrate to a different location.
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Evolution: application servers

Around 1993, from a research perspective network objects were done—they
were being standardized by the Object Management Group though its portfolio
of CORBA specifications. At this time the World Wide Web1 exploded and e-
commerce was invented. Very quickly people saw the attraction of offering web
front-ends to CORBA applications, and network objects evolved into “web ob-
jects.” These were the first steps towards the emergence of application servers
supporting the now classic three-tier model of 1) web-browser based “thin” cli-
ent, 2) application objects representing dynamic state (typically electronic shop-
ping carts), executing on an application server 3) back-end databases queried
and updated in response to transactions issued by the application objects, all
three tiers interconnected using RPC.

Evolution: reflective middleware

The CORBA specifications tried to span all the various flavours of network ob-
ject systems. This turned out to be a complex task, and made implementations of
CORBA object request brokers cumbersome. People asked if it would be possi-
ble to build customized brokers using re-usable middleware components and, if
so, how much common architecture there could be across them. This spawned
research into “reflective middleware” which continues to this day. Network ob-
jects have become introspective (you can find out from an object what opera-
tions it supports, and what infrastructure it requires). Object request brokers have
become reflective (you can intercept internal data paths, and dynamically add
and replace components). Java, the dominant programming language used in this
research, fortunately has the necessary language facilities. The result has been
highly flexible systems such as the author’s “FlexiNet” system [6], developed in
1996-8, which at last achieved the goal of “selective transparency” that had been
the ANSA project’s holy grail since the outset in 1984.

This strand of research was given a great deal of impetus by interest from the
telecommunications industry looking to apply the ideas of network objects to
distributed control of Asynchronous Transfer Mode (ATM) networks, as part of
their attempt to deliver integrated data and real-time communication services,
and to reclaim the Internet. It led to extended interaction models to allow net-
work objects to consume streamed traffic, and to operate in the context of real-
time control.

1 Itself an RPC system but with none of the baggage of IDLs, fussy failure models or
network objects.
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Evolution: web services

At the time of writing, we are in the fourth generation of middleware, called
“web services” [14]. Web services are promoted as the means to integrate appli-
cations across the Internet and develop “virtual businesses.”

In web services, interfaces are defined using an XML based IDL called the
“Web Services Description Language” (WSDL) and requests are transported
using the SOAP protocol (“Simple Object Access Protocol”) RPC layered above
HTTP.

Curiously, in many respects web services have taken us back to a simpler
model which is perhaps closer to the SSP of the Cambridge Model Distributed
System, than to contemporary reflective middleware:

• Distributed systems are composed of services: The unit of specification
and binding in web services is “the service,” a collection of inter-related
operations encapsulating data and applications. The service is not
strongly tied to any specific language or object-request-broker concept
of “object.” In this respect it is implementation neutral.

• Services are defined semantically: WSDL is based on XML, which is a
general notation for describing data. It is not tied to programming lan-
guage views on the structure of concrete data types.

• Services are stateless: Web services don’t have a notion of network
pointer. Because they are intended to be used over the global Internet,
there is an expectation that requests will fail, and therefore using idem-
potent operations is a good thing. State (e.g., an electronic shopping
cart) is stored by the Web service, fetched by the client when needed,
and pushed when changed. If there is a conflict, the client is invited to
retry. Thorny issues, like garbage collection, that are hard to make work
at the Internet scale have been side-stepped.

Hindsight

Looking back over the evolution of middleware, we can see there were many
false paths and perhaps lessons for the future:

• Moore’s Law solves performance problems: Performance is not the
first priority in web services. A SOAP-level-request reply may itself be
mapped onto lower-level reliable message passing. XML is not an effi-
cient coding. That doesn’t matter: we have CPU cycles and network
bandwidth to burn. What does matter is that we can’t assume the speed
of light will double, and so latency (round-trip times) is an issue, but
with the standard distributed computing techniques of caching and par-
allel and speculative execution, we can often conceal this.

• RPC is not a tool for building optimized application protocols: TCP
rules in this respect. It has been honed to handle both interactive re-
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quest-reply traffic and bulk flows. The global Internet is optimized for
TCP. TCP is optimized to use network resources fairly, and because of
this TCP is often the only protocol that is widely available and sup-
ported.

• Component-oriented middleware isn’t a user feature: While vendors
may construct their middleware using component-oriented software en-
gineering, this isn’t something they expose to users, except in very sim-
ple ways—for example, selecting between different profiles for local
versus wide-area networking. Probably in part this is to protect the ven-
dor’s ability to ship different product variants and control evolution of
their products. Moreover, conservative users (which most are) generally
stick to standard profiles recommended by the vendor.

• Distributed control of telecommunications networks missed the boat: A
lot of the reflective middleware research was driven by an interest in
“telecomms object request brokers” This didn’t happen: ATM disap-
peared into the backbone and the telecommunications industry has
spent all its money for the foreseeable future.

• Network objects are too general: Web services are not network objects.
Distributed object systems and mobile object systems are mostly rele-
gated to academic interest. This comes about because many of the pro-
gramming-language concepts that crept into distributed computing, such
as garbage collection, don’t work at the Internet scale. However, there
are some applications of distributed-object platforms found in tightly
coupled cluster-based computing, and database connectivity protocols
have continued to evolve and remain important. For example, Micro-
soft.Net provides a facility called “Active Data Objects”—which allows
a federation of databases to stream query results to a client and take in
updates.

In summary, with hindsight, Roger and his colleagues, when designing the
Cambridge Model Distributed System and its single-shot protocol, mostly got it
right: services were defined semantically, they were stateless, entanglement with
programming-language concepts was avoided, and no attempt was made to use
SSP as a protocol-building tool—other system services, such as the file server,
had their own custom protocols designed from the ground up and optimized for
the task in hand.2

2 There were conventions about the location of addressing information to help gate-
ways and network monitors, but fortunately, since protocol layering hadn’t reached
Cambridge in 1979, we refrained from overdoing it.
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Grand Challenges for Computing
Research

Tony Hoare

The Microsoft Research Laboratory at Cambridge provides a wonderful envi-
ronment for pursuit of pure and applied research. It is the policy of the Company
to promote research according to the traditional pattern that has contributed so
much to the progress of science in the past. Researchers are free to pursue their
interests in exciting directions, and there is no prior target set for the first appli-
cation of the results of research in industrial products. Open publication is the
norm, and contact and collaboration with researchers in universities is encour-
aged.

Ironically, the policy that has directed much university research in recent
years throughout the world is in stark contrast with Microsoft’s research policy.
The current administrative procedures for funding bodies for academic research
favour short-term industrial goals that will lead to competitive advantage for the
community that provides the funds. One reason that I took up Roger’s offer of a
job in Cambridge was because I strongly believed in Microsoft research policy,
which he so successfully implemented. More than that: I wanted to encourage
my former colleagues in universities to raise their eyes to longer term goals and
take control of the general scientific agenda. I also hoped to use my influence (if
any) to rectify the imbalance in current funding policies in UK.

When Roger promoted an initiative to set up a UK Computing Research
Council (UKCRC), I felt that my membership of this body would offer me a
good opportunity. And when the Council sponsored a Workshop entitled Grand
Challenges for Computing Research, I volunteered to serve as co-organiser. In
the call for proposals, I drafted a list of criteria relevant for evaluation of a re-
search proposal as a grand challenge. These criteria emphasised the long-term
contribution to science itself that can arise from pursuit of an ambitious long-
term challenge on an international scale, and this complements the kind of re-
search initiative that pursues shorter-term local goals. In order to test the forma-
lisation of the criteria, I applied them to my own favourite challenge, the old
challenge of constructing a verifying compiler.
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The call for proposals attracted over a hundred excellent submissions. The
workshop took place on 24–26 November 2002 in the highly suitable environ-
ment of the National e-Science Centre in Edinburgh. There were over fifty par-
ticipants, including representatives from abroad. The attending scientists were
very enthusiastic at the prospect of formulating and pursuing a grand challenge
generated by scientific curiosity or engineering ambition. Many of the partici-
pants are still engaged in refinement and more detailed planning of a small selec-
tion of proposals that inspire support among the scientists best qualified to
contribute to them. I have also been developing my own challenge proposal for a
verifying compiler, both because it is dear to my heart and to show an example
that may be useful to others.

What follows is my latest draft of criteria for maturity of a grand challenge,
followed by a sample from a report on the Verifying Compiler. The original list
of criteria was sent out in the call for submissions for the Edinburgh Workshop;
it was adopted by participants at the workshop as the basis for evaluation of pro-
posals, and it is was applied in the detailed proposals that were submitted to the
UKCRC in June 2003.

Criteria for a grand challenge

The primary purpose of the formulation and promulgation of a grand challenge is
to contribute to the advancement of some branch of science or engineering. A
grand challenge represents a commitment by a significant section of the research
community to work together towards a common goal, agreed to be valuable and
achievable by a team effort within a predicted timescale. The challenge is formu-
lated by the researchers themselves as a focus for the research that they wish to
pursue in any case, and which they believe can be pursued more effectively by
advance planning and co-ordination. Unlike other common kinds of research
initiative, a grand challenge should not be triggered by hope of short-term eco-
nomic, commercial, medical, military, or social benefits; and its initiation should
not wait for political promotion or for prior allocation of special funding. The
goals of the challenge should be the purely scientific goals of the advancement of
skill and of knowledge. It should appeal not only to the curiosity of scientists and
to the ambition of engineers, but also to the imagination of the general public. It
may thereby enlarge the general understanding and appreciation of science, and
attract new entrants to a rewarding career in scientific research.

An opportunity for a grand challenge arises only rarely in the history of any
particular branch of science. It occurs when that branch of study first reaches an
adequate level of maturity to predict the long-term direction of its future progress
and to plan a project to pursue that direction on an international scale. Much of
the work required to achieve the challenge may be of a routine nature. Many
scientists will prefer not to be involved in the co-operation and co-ordination
involved in a grand challenge. They realize that most scientific advances, and
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nearly all break-throughs, are accomplished by individuals or small teams, work-
ing competitively and in relative isolation. They value their privilege of pursuing
bright ideas in new directions at short notice. It is for these reasons that a grand
challenge should always be a minority interest among scientists, and that the
greater part of the research effort in any branch of science should remain free of
involvement in grand challenges.

A grand challenge may involve as much as a thousand man-years of research
effort, drawn from many countries and spread over ten years or more. The re-
search skill, experience, motivation, and originality that it will absorb are quali-
ties even scarcer and more valuable than the funds that may be allocated to it.
For this reason, a proposed grand challenge should be subjected to assessment
by the most rigorous criteria before its general promotion and wide-spread adop-
tion. These criteria include all those proposed by Jim Gray in his Turing address
[1] as desirable attributes of a long-range research goal. The additional criteria
that are proposed here relate to the maturity of the scientific discipline and the
feasibility of the project. In the following list, the earlier criteria emphasize the
significance of the goals, and the later criteria relate to the feasibility of the pro-
ject and the maturity of the state of the art.

• Fundamental. It arises from scientific curiosity about the foundation,
the nature, and the limits of an entire scientific discipline, or a signifi-
cant branch of it.

• Astonishing. It gives scope for engineering ambition to build something
useful that was earlier thought impractical, thus turning science fiction
to science fact.

• Testable. It has a clear measure of success or failure at the end of the
project; ideally, there should be criteria to assess progress at intermedi-
ate stages too.

• Inspiring. It has enthusiastic support from (almost) the entire research
community, even those who do not participate in it and do not benefit
from it.

• Understandable. It is generally comprehensible and captures the imagi-
nation of the general public, as well as the esteem of scientists in other
disciplines.

• Useful. The understanding and knowledge gained in completion of the
project bring scientific or other benefits; some of these should be at-
tainable, even if the project as a whole fails in its primary goal.

• Historical. The prestigious challenges are those which were formulated
long ago; without concerted effort, they would be likely to stand for
many years to come.

• International. It has international scope, exploiting the skills and ex-
perience of the best research groups in the world. The cost and the pres-
tige of the project is shared among many nations, and the benefits are
shared among all.
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• Revolutionary. Success of the project will lead to radical paradigm shift
in scientific research or engineering practice. It offers a rare opportunity
to break free from the dead hand of legacy.

• Research-directed. The project can be forwarded by the reasonably
well understood methods of academic research. It tackles goals that will
not be achieved solely by commercially motivated evolution of existing
products.

• Challenging. It goes beyond what is known initially to be possible, and
requires development of understanding, techniques, and tools unknown
at the start.

• Feasible. The reasons for previous failure to meet the challenge are
well understood and there are good reasons to believe that they can now
be overcome.

• Incremental. It decomposes into identified intermediate research goals,
which can be shared among many separate teams over a long time-
scale.

• Co-operative. It calls for planned co-operation among identified re-
search teams and research communities with differing specialized skills.

• Competitive. It encourages and benefits from competition among indi-
viduals and teams pursuing alternative lines of enquiry; there should be
clear criteria announced in advance to decide who is winning, or who
has won.

• Effective. Its promulgation changes the attitudes and activities of re-
search scientists and engineers.

• Risk-managed. The risks of failure are identified, symptoms of failure
are recognized early, and strategies for cancellation or recovery are in
place.

The tradition of grand challenges is familiar in many branches of science. If
you want to know whether a challenge qualifies for the title ‘grand,’ compare it
with the following:

• Prove Fermat’s last theorem (accomplished)
• Put a man on the moon within ten years (accomplished)
• Cure cancer within ten years (failed in 1970s)
• Map the Human Genome (accomplished)
• Map the Human Proteome (too difficult for now)
• Find the Higgs Boson (under investigation)
• Find gravity waves (under investigation)
• Unify the four forces of physics (under investigation)
• Hilbert’s programme for mathematical foundations

(abandoned in the 1930s)

All of these challenges satisfy many of the criteria listed above in varying de-
grees, though no individual challenge could be expected to satisfy all the criteria.
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The first in the list was the oldest and in some ways the grandest challenge, but
being a mathematical challenge, my suggested criteria are considerably less rele-
vant to it.

In computer science, the following examples may be familiar from the past.
That is the reason why they are listed here, not as recommendations, but just as
examples:

• Prove that P is not equal to NP (open)
• The Turing test (outstanding)
• The verifying compiler (abandoned in the 1970s)
• A championship chess program (completed)
• A GO program at professional standard (too difficult)
• Literature translation from English to Russian
• (failed in the 1960s).

The first of these challenges is mathematical. It may seem quite easy to ex-
tend this list with new challenges. The difficult part is to find a challenge that
passes the requirements for maturity and feasibility. That was the task of the
Workshop on Grand Challenges for Computing Research, and the work still con-
tinues.

The verifying compiler: implementation and application

A verifying compiler uses automated mathematical and logical reasoning meth-
ods to check the correctness of the programs that it compiles. The criterion of
correctness is specified by types, assertions, and other redundant annotations that
are associated with the code of the program, often inferred automatically, and
increasingly often supplied by the original programmer. The compiler will work
in combination with other program development and testing tools to achieve any
desired degree of confidence in the structural soundness of the system and the
total correctness of its more critical components. The only limit to its use will be
set by an evaluation of the cost and benefits of accurate and complete formaliza-
tion of the criterion of correctness for the software.

An important and integral part of the project proposal is to evaluate the capa-
bilities and performance of the verifying compiler by application to a representa-
tive selection of legacy code, chiefly from open sources. This will give
confidence that the engineering compromises that are necessary in such an ambi-
tious project have not damaged its ability to deal with real programs written by
real programmers. It is only after this demonstration of capability that program-
mers working on new projects will gain the confidence to exploit verification
technology in new projects.

I found that the most difficult criteria to satisfy were those for testability, fea-
sibility, and effectiveness. These are my latest thoughts on just these points.
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Testable. If the project is successful, a verifying compiler will be available as a
standard tool in some widely used programming productivity toolset. It will have
been tested in verification of structural integrity and security and other desirable
properties of millions of lines of open-source software, and in more substantial
verification of critical parts of it. This will lead to removal of thousands of er-
rors, risks, insecurities, and anomalies in widely used code. Proofs will be sub-
jected to check by rival proof tools. The major internal and external interfaces in
the software will be documented by assertions, to make existing components
safer to use and easier to reuse. The benefits will extend also to the evolution and
enhancement of legacy code, as well as the design and development of new code.
Eventually programmers will prefer to confine their use of their programming
language to those features and structured-design patterns which facilitate auto-
matic checks of correctness.

Feasible. Most of the factors which have inhibited progress on practical program
verification are no longer as severe as they were.

1. Experience has been gained in specification and verification of moder-
ately scaled systems, chiefly in the area of safety-critical and mission-
critical software, but so far the proofs have been mainly manual.

2. The corpus of open-source software is now universally available and
used by millions, thus justifying almost any effort expended on im-
provement of its quality and robustness. Although it is subject to con-
tinuous improvement, the pace of change is reasonably predictable. It is
an important part of this challenge to cater to software evolution.

3. Advances in unifying theories of programming suggest that many as-
pects of correctness of concurrent and object-oriented programs can be
expressed by assertions, supplemented by automatic or machine-
assisted insertion of instrumentation in the form of ghost (model) vari-
ables and assignments to them.

4. Many of the global program analyses which are needed to underpin cor-
rectness proofs for systems involving concurrency and pointer manipu-
lation have now been developed for use in optimizing compilers.

5. Theorem-proving technology has made great strides in many directions.
Model checking is widely understood and used, particularly in hardware
design. Decision procedures are beginning to be applied to software.
Proof search engines are now well populated with libraries of applica-
tion-dependent theorems and tactics. Finally, satisfiability checking
promises a step-function increase in the power of proof tools. A major
remaining challenge is to find effective ways of combining this wide
range of component technologies into a small number of tools, to meet
the needs of program verification.

6. Program analysis tools are now available that use a variety of tech-
niques to discover relevant invariants and abstractions. It is hoped that

7. that these will formalize at least the program properties relevant to its
structural integrity, with a minimum of human intervention.
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8. Theories relevant for the concurrency correctness are well established,
and theories for object orientation and pointer manipulation are under
development.

Effective. The promulgation of this challenge is intended to cause a shift in the
motivations and activities of scientists and engineers in all the relevant research
communities. They will be pioneers in the collaborative implementation and use
of a single large experimental device, following a tradition that is well estab-
lished in astronomy and physics but not yet in computer science.

1. Researchers in programming theory will accept the challenge of extend-
ing proof technology for programs written in complex and uncongenial
legacy languages. They will need to design program-analysis algorithms
to test whether actual legacy programs observe the constraints that
make each theoretical proof technique valid.

2. Builders of programming tools will carry out experimental implementa-
tion of the hypotheses originated by theorists. Following practice in ex-
perimental branches of science, they seek to explore the range of
application of the theory to real code.

3. Sympathetic software users will allow newly inserted assertions to be
checked dynamically in production runs, even before the tools are
available to verify them.

4. Empirical computer scientists will apply tools developed by others to
the analysis and verification of representative large-scale examples of
open code.

5. Compiler writers will support the proof goals by adapting and extending
the program analyses currently used for optimization of code; later they
may even exploit, for purposes of further optimization, the additional
redundant information provided with a verified program.

6. Providers of proof tools will regard the project as a fruitful source of
low-level conjectures needing verification, and will evolve their algo-
rithms and libraries of theories to meet the needs of actual legacy soft-
ware and its users.

7. Teachers and students of the foundations of software engineering will
be encouraged to set student projects that annotate and verify a small
part of a large code base, thus contributing to the success of a world-
wide project.
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18
Sentient Computing

1

Andy Hopper

Sentient computing is the proposition that applications can be made more re-
sponsive and useful by observing and reacting to the physical world. It is particu-
larly attractive in a world of mobile users and computers.

Location sensing

Cheap sensors make it possible for computer systems to react to the physical
environment. Sensors giving location information are probably the easiest to
construct and deploy. Use of such location information makes it possible for user
interfaces to be based on space itself. Such context-aware, or sentient, interfaces
and applications have been constructed and used for a number of years.

Infra-Red Location

15 metre range
diffuse
room-scale accuracy

95% of time
containment location

Figure 1: Containment—active badge

1 This is an abridged and updated version of the Royal Society Clifford Paterson Lec-
ture, 1999. The original paper was published in Phil. Trans. R. Soc. Lond., vol. 358,
pp. 2349–2358, Royal Society, August 2000.
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Sensors tell us about the location or position of things. To reflect the require-
ments of different applications, we take three different approaches to categoris-
ing the concept of location. First, containment is where we say that an object is
within this container, e.g., a room. Second, proximity is where we register that
we are close to something. Finally, co-ordinate systems provide a point location
in space, subject to some error value. These categories are not hard and fast and
can blend together. Small containers are very similar to a co-ordinate system,
and proximity has much in common with the concept of containment.

Our first experience of developing a sensor specifically to provide spatial in-
formation originated in the late 1980s in the form of the Active Badge (Figure
1). Personnel and equipment could be tagged using the Badge, which transmitted
a unique infrared signal every few seconds. The transmissions were diffuse, and
receivers in a room picked up the signal, giving room-scale containment. It told
us who and what was in which room. The Active Badge was the inspiration that
started us on this whole line of enquiry.

In the case of proximity, promising commercial systems are starting to ap-
pear. The radio-based Bluetooth system gives accuracy of about 10 metres using
the received-signal-strength indication (RSSI). This will improve to about 50
centimetres in future implementations by using specialised on-board ranging
circuitry. Similarly, RSSI information from Wavelan (802.11) systems, together
with heuristics about the movement of people, can be used to provide in-building
location information.

Outside, one can use the Global Positioning System (GPS), which has given
rise to a large number of applications. GPS is accurate to around 30 metres most
of the time, although greater precision can be achieved, and is one example of a
co-ordinate based system.

In order to test the impact of fine-grain location information, we have devel-
oped a co-ordinate system for indoors. This uses a tag, which incorporates ultra-
sonic transmitters, and an array of ceiling-mounted detectors. A detector on the
far side of the room will register a pulse later than a detector directly above an
object. Using this differential timing information, we can calculate the position
of objects to within a few centimetres almost all the time (Figure 2). If two
transmitters are attached to a rigid object, it is possible to compute its orienta-
tion. The Active Bat technology is likely to remain the basis of the most precise
indoor location systems for the foreseeable future. There will be many applica-
tions that do not require this level of precision and refinement. However, as a
research tool, it is providing us with valuable information on what can be done
with very precise positional data.
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Mobile
Transmitter

(Bat)

Fixed
Receivers

Ceiling

Ultrasonic Location
5 metre range
3 cm accuracy 95% of time
3D co-ordinate location

Figure 2: Co-ordinate system—Active Bat

The Active Bat system requires a substantial amount of infrastructure, par-
ticularly in ceilings. A new technology, which may provide similar location in-
formation, is ultra-wideband radio. This emits very short pulses of several
picoseconds duration, from which we can measure propagation delays accurately
at the receiver from transmitters spaced up to 20 metres apart. A large spectrum
is used, for example, from 3 GHz to 10 GHz, but the power levels are low, so
that interference to other users is minimised. Ultra-wideband transmissions may
be less susceptible to interference in particular parts of the band, and thus in-
strumenting buildings may prove much easier than with the Active Bat system.
However, it is likely that the precision will be some 10 times worse than the ul-
trasonic Active Bat, with a location accuracy of about 30 centimetres most of the
time. It also remains to be seen what the local effect of monitors and other metal-
lic objects is on precision.

Spatial monitoring

Our sensors provide raw spatial facts about objects. They tell us where an object
is, and possibly the direction in which an object is pointing. Location-aware ap-
plications need more than raw spatial data, they need to be notified of spatial
relationships between objects that are significant for the execution of the applica-
tion. But how do we decide whether a spatial relationship is significant? The



128 Hopper

approach we have adopted operates on the basis of zones of containment sur-
rounding objects. In Figure 3(a) X represents a person and K a keyboard. Now
suppose we have an application that needs to be notified when person X is in a
position to use keyboard K, when X is possibly “holding” K. If the zone of con-
finement of K overlaps the zone of confinement of X, then X is said to hold K,
and the application receives the appropriate space-location event. The situation
in Figure 3(b) indicates how this principle could be applied to support a multi-
camera video conferencing system, giving participants the freedom to look in
different directions while talking, or even walking around their offices.

(a) Person X is “holding”
keyboard K.

X

K

(b) Person X can be “seen” by camera B but
not by camera A.

X

B

A

Figure 3: Evaluating spatial facts

The principle of turning raw spatial data into application-significant events
through geometric containment and overlapping is reasonably straightforward.
Scalability can be addressed by applications indicating the interest and precision
required. The computations are then only performed to the required level, and
the computational task scales linearly with the number of overlapping spaces.
This approach can be thought of as the mouse/desktop metaphor mapped onto
the physical world in real time.

The operational system that has been built uses a variety of sensors. It allows
space representations to change quickly, provides the means to express event-
driven control logic, uses caches and proxies to handle large volumes of data
quickly, and executes in real-time to satisfy a human in the loop.

Note that Figure 3 is a 2D representation of what in reality would be a 3D
environment. This simplification can be made because, in general, people and
objects tend to remain relatively fixed in the vertical plane. At the heart of such
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spatial monitoring systems we need to define a world model that is easily under-
stood by the user yet computable by the system. Is 3D important or is 2D satis-
factory for most office and home applications? What is the precision of location
information required? How can the spatial metaphor be made obvious to the
user?

Data distribution

Publishing sensor data that relates to the position of people and objects is one
end application. Beyond this we consider the automatic control of the digital
environment with reactive and possibly predictive features. An attractive appli-
cation for a user in a networked environment is the ability for the personal desk-
top to follow the user to any nearby device. In order to achieve this, in addition
to location information we need a platform for connecting and displaying infor-
mation on all these devices in a ubiquitous way.

One way to do this is to tunnel connections to all devices using a simple de-
vice-independent protocol. We have devised one such ubiquitous platform called
the Virtual Network Computer (VNC). In our approach the viewer, at the receiv-
ing end of the connection, has no state and simply displays information graphi-
cally. The connection from viewer to server is also stateless, just keystrokes and
pointer clicks. Our viewer is a particularly simple version of the so-called thin
client (Figure 4), with all application state and processing centralised on a server.

Figure 4: VNC—the platform

The absence of application state at the viewer eliminates any requirement for
re-synchronisation, and the appearance is of user-interface mobility. In order to

Rectangle
descriptions

Keyboard / click
events
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achieve this we have traded bandwidth, or more precisely we have relied on
ubiquitous connectivity and low latency end-to-end.

The low-level nature of the protocol is the key to device independence, pro-
viding a platform that supports the connection of any device to anything. The
connections can be one-to-one (fixed or mobile), and the streams can be split,
giving one-to-many, many-to-one, and many-to-many.

The performance of the VNC system has turned out much better than ex-
pected. By using a variety of compression schemes and caching, it has been pos-
sible to operate useably across links with capacities of only 10’s of Kbps and
latencies of up to 40 milliseconds. Therefore, incorporating the simplest devices
with wireless connectivity within this framework now appears plausible.

Applications

Location information appears to be a powerful tool in constructing new applica-
tions. Opening and closing doors automatically is an obvious example. In my ten
or more years of being immersed in such systems, some of the most enduring
applications have been those where raw location data is processed in a simple
way and made available ubiquitously. A textual indication of where someone is,
how fast they are moving, how long they have been there, has proved the most
popular. Showing the local context, including who and what else is nearby, is
also attractive. Publishing such information to the local (trusted) peer group
saves time; if someone is not observed by the location system, they are not avail-
able, whatever the reason. Graphical representations and in particular maps ap-
pear attractive but can become cumbersome in what is a familiar physical
environment. So simple sensing and simple logic appear to work, and applica-
tions using these stand the test of time. The containment location information
provided by the Active Badge is quite sufficient for this purpose.

Personalisation by teleporting VNC desktops has also proved popular. The
teleport can be triggered without using location data, but having a personal tag
with a button, which acts as a personal ubiquitous controller, is neat. More pre-
cise coordinate location information as provided by the Active Bat becomes im-
portant for its ability to select the correct workstation or other device. Another
use that takes advantage of the more precise location information associates a
control function with any 3 centimetres cube of space. Typically this is done on
the surface of a wall or other planar object and is normally a control trigger of
some type. This use appears to have some merit and the walls of our laboratory
are sprouting a number of such “active posters.” For this specific application a
local proximity RFID tag can provide the same location information in a simpler
way.

Specialist applications, for example, surveillance where the selection of a
particular camera is based on spatial data, can provide opportunities. However,
there is always scope for such bespoke solutions.
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Observations

So what are the results of over a decade of research, and what is the prognosis
for the future? The research area is now very popular and is variously labelled
ubiquitous, pervasive, ambient, calm, as well as sentient. In this paper I have
permitted myself to give users attributes such as “holding,” “seen,” and have
even suggested the notion of prediction. Is this realistic?

We have learnt many aspects of how to construct such systems. Sensor in-
formation can be generated on a reasonable scale and presented to users in vari-
ous ways. It seems the more direct the presentation the more attractive (or
perhaps less irritating) the application. Some simple logic to interpret the data
can be useful. Occasionally, a domain-specific agent operates as envisaged.

Our attempts at automatic control without user intervention have not proved
enduring. For example, automatically teleporting to the nearest screen through-
out the laboratory did not stand the test of time. Similarly, automatic routing of
phone calls had sufficiently serious flaws that the human operator remained as
the interpreter of location data. User profiles were attempted but quickly became
confusing themselves. Applications where predictions of user preference or in-
tent are required have so far not been successful at all.

So anything beyond promulgation and simple interpretation seems problem-
atic. Once more than a simple inference is attempted, we seem to hit a brick wall.
We realised this with the Badge system a decade ago. Interpreting the sighting of
three or more badges in a single space was presented as a “meeting.” However,
even in an office environment there are many reasons for three or more sightings
at one place (meeting, tea time, passing in corridor). And that is before we ex-
tend to home or other environments.

One potential research direction is to provide much more feedback to the
user. When we move a cursor on a screen, it is clear where it is and what is likely
to happen when we click. When walking through space, it is much less obvious
what the options are and how to control them. So visual and aural feedback with
perhaps every nearby wall being used as a display may be one approach. The
user might then be able to keep up as the context keeps changing. If proxy deci-
sions are being made, the reasoning can now be presented more easily. The user
can interact in a much more informed way and help guide any decision-making
process.

Perhaps a way to make progress beyond the engineering level is to imagine a
“perfect” sensing system with full coverage of the environment. How would we
define the context (world knowledge), semantics of queries, and user intent?
How would the user interact to resolve ambiguities? Are statistical techniques
likely to make useful predictions or are there too many plausible choices at each
point? Could a series of functional tests be devised which would give us the
foundations to build on? It seems we are a long way from finding answers, and
only by moving away from unrealistic ambitions will we prevent the research
area being discredited in due course.
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Cyber Security in Open Systems

Anita Jones

In the early days of computer systems, the 60s through the 80s, software systems
were closed, that is, a single operating system owned and doled out the computa-
tion and storage resources. Each computer system stood alone, and operated
solo. Security properties, if any, were integral to and enforced by the operating
system architecture. Today, multitudes of computers are interconnected, com-
municating via messages. Operating systems still manage the same resources for
one or a few computers and their attachments, as of old. But typically only soft-
ware with limited function has cognizance of the overall interconnected software
and hardware. The interconnected parts can be called an open system. It is open
just as human society is open; individuals each operate with some degree of
autonomy. Cyber security has been a casualty of the transition from closed to
open systems.

In closed systems sufficient protection of one user from another could be as-
sured by designing a single, preferably elegant (!), mechanism that was integral
to the operating system. Roger Needham and his colleagues, and my colleagues
and I, helped advance a protection mechanism called capabilities. Access-control
mechanisms likewise served well. Both continue to be useful in limited contexts.
Both of these protection mechanisms incorporate an assumption that the single
mechanism is sufficient for its correct functioning, and that no software can get
around the mechanism and obviate the protection that it provides. That assump-
tion is unfounded in open systems, and sometimes in closed systems.

As the transition from closed to open occurred, the security-research commu-
nity adopted a paradigm of perimeter defense. The notion was to continue to
trust the protection mechanisms within the closed system, and to check all infor-
mation flowing across the perimeter into the closed system to ensure that it was
“acceptable.” Firewalls are one example of perimeter guards. The perimeter-
defense paradigm permitted the preservation of the “one-mechanism” closed-
system approach to security.

But the perimeter-defense paradigm is fatally flawed. First, it assumes that
the “thing” that we need to protect is “inside” the system and that we need to
keep “outside” attackers from penetrating our defenses and gaining access to the
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inside. The perimeter-defense paradigm is like the French Maginot Line. It is
fragile. In WWII, France fell in 35 days because of its reliance on this model. No
matter how formidable the defenses, an attacker can make an end run, and once
inside, can compromise the entire system. Second, the paradigm fails to account
for the reality that many security flaws are “designed in.” Security may be com-
promised while the system is performing exactly as specified. In 1993, the Naval
Research Laboratory performed an analysis of some 50 security flaws and found
that nearly half of them (22) were designed into the requirements or the specifi-
cations for correct system behavior! Third, perimeter defenses face outward, and
are typically useless against an inside attack. Lastly, there exist attacks, such as
distributed denial-of-service attacks, which do not rely on penetration. They cre-
ate a flood of false requests for service. The closed system cannot discern the
difference between legitimate and false requests and squanders resources servic-
ing false requests. The perimeter-defense paradigm cannot work for sound theo-
retical reasons. Other approaches are needed.

Open systems are distinguished by the fact that they have heterogeneous
components, some of which may come and go without warning. There is no sin-
gle architecture, no single set of behavioral attributes except at the most primi-
tive of levels. Unlike in a closed system, there is no single mechanism through
which all access flows. Many open systems of interest are integral to human
processes and procedures, e.g., information systems involved in health care
administration or (just in time) inventory delivery to a chain of supermarkets.

We need a new model of cyber security to accommodate open systems.
Indeed, the fundamental security properties of privacy, integrity of information,
and denial of service that are implemented in part today are insufficient. We
need a model that permits tailoring of security properties to what is important for
the real-world situation in which an information system is embedded. Factors
such as the timing or the temporal order of actions need to be considered.
Likewise correlation of operations on related entities are essential for real-world
security. The new model of cyber security should be appropriate to the context
of the user’s application. This is far from the notion of perimeter defense.

This new model of security may require software that, in effect, detects and
reacts to the emergent “overall” behavior of the open system. Today, system
administrators “stick their fingers in the dike” to stem “leaks” of many kinds as
they attempt to configure and upgrade software to assure security. In a recent
attack, called “Slammer,” the company whose software had holes that made the
attack possible had announced those holes and some associated fixes. However,
even that company had not protected all of its own systems. That illustrates how
difficult it is for system administrators to keep up with the myriad patches, fixes,
and reconfiguration changes they must apply to close security holes, not to
mention dealing with a spate of false alarms. Their systems have little self-
awareness, little ability to self-configure or self-sustain.

In the absence of open systems being able to “police” themselves, and in the
absence of the research community finding a new approach to security, it is not
surprising that increasingly society is beginning to rely on traditional societal
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mechanisms to assure well-behavedness—courts, government regulation, and
law enforcement.

Most societal approaches to assuring socially acceptable behavior involve
“after the fact” enforcement involving a detective force, arrest, trial, and
incarceration.

Unless an alternative model for securing cyberspace is found, society will use
its physical-world approaches, whether they fit well with cyberspace or not. We
see this playing out in the music industry in the United States today. Application
of these traditional (re)actions may trample and destroy some of the attributes
that open information systems deliver, such as a release from associating all
actions and all actors to a geographical “place.”

Conclusion

Cyber security concerns and the inadequacy of current systems stem from the
transition from closed to open systems and to the integration of those systems
into the very processes of society. Improving security of today’s systems is
greatly impeded by our current inability to design, develop, and maintain large
and complex software systems. The inability of a system to recognize its own
emergent behavior as it unfolds and of systems to self-adapt in the face of that
observed behavior makes progress toward more secure and more reliable
systems difficult.

We need entirely new models of information security that go beyond notions
of privacy, integrity, and assurance of service quality. Security of an information
system that is integral to a physical, human activity needs to reflect the specific,
possibly unique, needs of that activity. Today’s models and mechanisms are not
up to the task. As a result, society is moving along the path toward using
traditional approaches to assuring well-behavedness. The window in which it
might be possible to formulate new notions of security and well-behavedness that
do not reflect today’s “place-based” laws and jurisdictions is closing rapidly.
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Software Components: Only the
Giants Survive1

Butler W. Lampson

For many years programmers have dreamed of building systems from a library of
reusable software components together with a little new code. The closest we’ve
come is Unix commands connected by pipes. This paper discusses the funda-
mental reasons why software components of this kind have not worked in the
past and are unlikely to work in the future. Then it explains how the dream has
come true in spite of this failure, and why most people haven’t noticed.

Introduction

People have been complaining about the “software crisis” at least since the early
1960’s. The famous NATO software engineering conference in 1968 brought the
issue into focus, and introduced the term “software engineering.” Many people
predicted that software development would grind to a halt because of our inabil-
ity to handle the increasing complexity; of course this has not happened.

What is often overlooked is that the software crisis will always be with us (so
that it shouldn’t be called a “crisis”). There are three reasons for this:

• As computing hardware becomes 100 times more powerful every dec-
ade (because of Moore’s law), new applications become feasible, and
they require new software. In other branches of engineering the pace of
change is much slower.

• Although it’s difficult to handle complexity in software, it’s much easier
to handle it there than elsewhere in a system. A good engineer therefore
moves as much complexity as possible into software.

• External forces such as physical laws impose few limits on the applica-
tion of computers. Usually the only limit is our inability to write the
programs. Without a theory of software complexity, the only way to

1 This paper is based on a keynote address given at the 21st International Conference
on Software Engineering, 1999.
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find this limit is trial and error, so we are bound to over-reach fairly of-
ten. As Browning said “A man’s reach should exceed his grasp, or
what’s a heaven for.”

At the 1968 NATO conference, Doug McIlroy proposed that a library of
software components would make programming much easier [7]. Since then,
many people have advocated and worked on this idea; often it’s called “reusable
software,” though this term has other meanings as well. Most recently, the
PITAC report [9] proposed a major research initiative in software components.
This paper explains why these ideas won’t work.

User
Interface

Business
logic Database

Netscape Visual Basic Oracle

Figure 1: A typical business application

How much progress has there been in software in the last 40 years? Either a
little or a lot: the answer depends on what kind of software you mean.

A little if you are writing a self-contained program from scratch or modifying
an existing self-contained program. The things that help the most are type-safe
languages such as Pascal and Java, and modules with clean interfaces [8]; both
have been around for 30 years. Program analysis tools help with modifications,
and they have been improving steadily [3].

A lot if you are doing a typical business computing application. You build
your application on top of a few very large components: an operating system
(Linux or Windows), a browser (Netscape or Internet Explorer), a relational da-
tabase and transaction processor (DB2, Oracle, or SQL Server), and a rapid ap-
plication development system (Visual Basic or Java); see Figure 1. You use only
a small fraction of the features of each component, and your program consumes
10 or 100 times the hardware resources of a fully custom program, but you write
10% or 1% of the code you would have written 30 years ago. Certain kinds of
domain-specific programs are also dramatically easier. If a spreadsheet, SQL,
Matlab, Mathematica, or HTML is a good match for your problem, again you
can write your program 10 or 100 times more easily.
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The component library: dream and reality

McIlroy’s idea was a large library of tested, documented components. To build
your system, you take down a couple of dozen components from the shelves and
glue them together with a modest amount of your own code.

The outstanding success of this model is the Unix commands designed to be
connected by pipes: cat, sort, sed, and their friends [6]. There are quite a few
of these, and you can do a lot by putting them together with a small amount of
glue, usually written in the shell language. McIlroy [1] gives a striking example.
It works because the components have a very simple interface (a character
stream, perhaps parsed into lines or words) and because most of them were writ-
ten by a single tightly-knit group. Not many components have been added by
others.

Another apparent success is the PC hardware industry. PC’s are built from
(hardware) components: processor and chipset, DRAM SIMM, hard disk, moni-
tor, graphics card and driver, etc. Manufacturers really do slap these components
together to make systems. Reality is uglier than appearance, though. Only a few
components really work well, the ones that can be tested adequately by running
Windows on them for a few days. Others cause lots of problems, as anyone
knows who has tried to build a PC. And Microsoft is responsible for the integrity
of the PC ecosystem.

For the most part, component libraries have been a failure, in spite of much
talk and a number of attempts. There are three major reasons for this:

• There’s no business model.
• It costs a client too much to understand and use a component.
• Components have conflicting world views.

No business model

Design is expensive, and reusable
designs are very expensive. It costs
between ½ and 2 times as much to
build a module with a clean interface
that is well-designed for your system
as to just write some code, depending
on how lucky you are. But a reusable
component costs 3 to 5 times as much
as a good module. The extra money
pays for the following:

• Generality: A reusable module must meet the needs of a fairly wide
range of ‘foreign’ clients, not just of people working on the same pro-
ject. Figuring out what those needs are is hard, and designing an im-

Reusable component

½ – 2

3 – 5

Good module for your system

Just code it
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plementation that can meet them efficiently enough is often hard as
well.

• Simplicity: Foreign clients must be able to understand the interface to a
module fairly easily, or it’s no use to them. If it only needs to work in a
single system, a complicated interface is all right, because the client has
much more context.

• Customization: To make the module general enough, it probably must
be customizable, either with some well-chosen parameters or with some
kind of programmability, which often takes the form of a special-
purpose programming language.

• Testing: Foreign clients have higher expectations for the quality of a
module, and they use it in more different ways. The generality and cus-
tomization must be tested as well.

• Documentation: Foreign clients need more documentation, since they
can’t come over to your office.

• Stability: Foreign clients are not tied to the release cycle of a system.
For them, a module’s behaviour must remain unchanged (or upward
compatible) for years, probably for the lifetime of their system.

Regardless of whether a reusable component is a good investment, it’s nearly
impossible to fund this kind of development. It’s not necessary for building to-
day’s systems, and there’s no assurance that it will pay off.

It’s also very difficult to market such components:
• There are many of them, so each one gets lost in the crowd.
• Each client needs a number of them, so they can’t be very expensive.
• Each one is rather specialized, so it’s hard to find potential customers.

Cost to understand

To use a component, the client must understand its behaviour. This is not just the
functional specification, but also the resource consumption, the exceptions it
raises, its customization facilities, its bugs, and what workarounds to use when it
doesn’t behave as expected or desired. One measure of this cost is the ratio of
the size of a complete specification (which of course seldom exists) to the size of
the code. For a modest-sized component, this ratio is usually surprisingly large.

Furthermore, because the written spec is almost always quite inadequate,
there is uncertainty about the cost to discover the things that aren’t in the spec,
and about the cost to deal with the surprises that turn up. If the module has been
around for a while and has many satisfied users, these risks are of course smaller,
but it’s difficult to reach this happy state.

The client’s alternative is to recode the module. Usually this is more predict-
able, and problems that turn up can often be handled by changing the module
rather than by working around them. This is probably feasible if the module is
built as part of the same project, but impossible if it’s a reusable component.
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Conflicting world views

The interface to a component embodies a view of the world: data types, resource
consumption, memory allocation, exception handling, etc. If you take 10 compo-
nents off the shelf, you are putting 10 world views together, and the result will be
a mess. No one is responsible for design integrity, and only the poor client is
responsible for the whole thing working together. There can easily be n2 interac-
tions among n components.

Good things that aren’t reusable components

People often ask “What about Corba and COM; aren’t they successful?” Perhaps
they are, but they are ways to run components, not components themselves. They
play the role of a linker and a calling convention for distributed computing.

The “components” that you can get for Visual Basic, Java, Microsoft Office,
and browsers are not reusable components either. You can use a couple of them
in your system, but if you use 10 of them things will fall apart, because they are
not sufficiently robust or well-isolated. If you don’t believe this, try it for your-
self.

Nor is a module with a clean interface a reusable component, for all the rea-
sons discussed above. A clean interface is a very good thing, and it’s certainly
necessary for a reusable component, but it’s not sufficient.

Platforms

The next to last section showed why a public library of software components is
not possible. Some less ambitious things have worked, however. Most of them
are variations on the idea of a platform, which is a collection of components on
top of which many people can build programs, usually application programs.
Windows, Linux, Java, DB2, Microsoft Office, OpenGL, the IMSL numerical
library, and PC hardware are examples of platforms. So, on a smaller scale, are
the Unix shell and text processing commands discussed in the introduction.

The essential property of a platform is that someone takes responsibility for
its coherence and stability. Often this is a vendor, motivated by the fact that hav-
ing lots of application expands the market for the platform. It can also be a
community, as in the case of Linux or OpenGL, in which component builders are
motivated by status in the community or by the fact that they are also clients. A
platform needs a shared context that everyone understands and a common world
view that everyone accepts; this means that its community must include both the
component builders and many of the clients. A shared context is much easier
when the domain is narrow and there’s a clean mathematical model, as with
graphics or numerical libraries.
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Sometimes people try to build lots of components on a common and hospita-
ble platform, such as Visual Basic or Java. This can work if the components
come from (or pass through) a single source that takes responsibility for their
coherence. Otherwise, the problems of too little generality, cost to understand,
and conflicting world views make it impossible to use more than two or three of
them in a system.

Big components

As we saw in the introduction, big components like browsers and database sys-
tems do work, even though a library cannot. They are five million lines of code
and up, so huge that you only use three or four of them: Linux or Windows, Net-
scape or Internet Explorer, Oracle or DB2, Visual Basic or Java. How do they
overcome the problems with component libraries?

Business model: there’s a market for such big things. Lots of people need
each one, there are only a few of them, and the client only has to buy a couple of
them, so marketing is feasible. Building your own, on the other hand, is not fea-
sible, even if you only use 1% of the features: 1% of 20 million lines is still
200,000 lines of code to write, and that’s a low estimate of the amount of code
for 1% of the features.

Cost to understand: the specification may be large and complicated, but it is
much smaller than the code. Because the market is large, vendors can afford to
invest in documentation; in fact, every such component has a mini-industry of
books about it. They can also afford to invest in customization: operating sys-
tems have applications and scripting languages, browsers have scripts, Java,
plug-ins, and dynamic HTML, and database systems have SQL.

Conflicting world views: if you use three of them, there are only three pair-
wise interactions, and only two if they are layered. The vendor provides design
integrity inside each big component.

In fact, big components, along with transaction processing, spreadsheets,
SQL, and HTML, are one of the great successes of software in the last 20 years.

People often complain about big components because they are wasteful. A
business application built on a browser and a database system can easily con-
sume 100 times the resources of one that is carefully tailored to the job at hand.
This is not waste, however, but good engineering. There are plenty of hardware
resources; what’s in short supply are programmers and time to market, and cus-
tomers care much more about flexibility and total cost of ownership than about
raw hardware costs.

Another way to look at this is that today’s PC is about 10,000 times bigger
and faster than the Xerox Alto [10], which it otherwise closely resembles. It cer-
tainly doesn’t do 10,000 times as much, or do it 10,000 times faster. Where did
the cycles go? Most of them went into delivering lots of features quickly, which
means that you can’t have first-class design everywhere. Software developers
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trade hardware resources for time to market. A lot of them also went into integra-
tion (for example, universal character sets and typography, drag and drop, em-
bedding spreadsheets in text documents) and into compatibility with lots of
hardware and with lots of old systems. And a factor of 10 did go into faster re-
sponses to the user’s actions.

What else could work?

If components can’t help us much to build software, what can? Two approaches
are promising: declarative programming and specifications with teeth.

Declarative programming

“Declarative programming” is not a precise concept, but the idea is that the pro-
gram is close to the specification, perhaps even the same. For example, in a sim-
ple spreadsheet the program is just the formulas; if there is no higher structure,
the formulas express the user’s intent as simply as possible. Of course, if the
user’s intent was “a capital gains worksheet with data from my brokerage ac-
count,” the raw spreadsheet has a lot of extra detail. On the other hand, when
equipped with suitable templates, Excel can come fairly close to that intent.

Other examples of declarative programming are the query language of SQL,
a parser generator like YACC, a system for symbolic mathematics like Mathe-
matica, and a stub generator for calling remote procedures. What they have in
common is that what you have to tell the system is closer to your intent than an
ordinary program. This makes programming faster and more reliable. It also
opens up opportunities for analysis and optimization; parallel implementations of
SQL are a good example of this.

Specifications with teeth

Specifications are useful as documentation, but they have the same problem as
all documentation: they are often wrong. A spec is more valuable if it has teeth,
that is, if you can count on its description of the program’s behaviour. Such
specs are much more likely to pass Parnas’ coffee-stain test: the value of a spec
is proportional to the number of coffee-stains on the implementers’ copies. A
type declaration is an example of a spec with teeth.

Teeth mean tools: the computer must check that the spec is satisfied. There
are two kinds of teeth: statically checked and dynamically enforced by encapsu-
lation. A type-safe language, for example, usually is mostly statically checked,
but has dynamic checking of some casts. Static checks are better if you can get
them, since they guarantee that the program won’t crash in Peoria. We are slowly
learning how to check more things statically.



144 Lampson

Encapsulation takes many forms. The simplest and most familiar is the sand-
boxing provided by operating system processes or Java security permissions.
Much more powerful is the automatic concurrency, crash recovery, and load
balancing that a transaction monitor provides for simple sequential application
programs [5]. Another example is the automatic Byzantine fault-tolerance that a
replicated state machine can provide for any deterministic program [4].

Conclusion

A general library of software components has been a long-standing dream, but
it’s unlikely to work, because there’s no business model for it, it costs the client
too much to understand a component, and components have conflicting world
views. In spite of this discouraging conclusion, very large components do work
very well, because they have lots of clients and you use only three of them.

Two other approaches can make software easier to write: declarative pro-
gramming and specifications with teeth. The latter guarantee something about
the behaviour of a module. The enforcement can be done statically, as with a
type checker, or dynamically, as with transaction processing.
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Security Protocols:
Who Knows What Exactly?

Peter Landrock

All security protocols have a number of players, typically each with distinct in-
formation available. Security protocols are very difficult to design. It is an art
rather than just good craftsmanship to develop a secure yet useful and practical
protocol. The potential pitfalls are plentiful but, thanks to work by Roger
Needham and many others who have collaborated with him (see, e.g., [1, 2]), we
have a pretty good understanding today of the challenge—at least of how not to
do it!

Common to most such protocols are the following ingredients:
1. A neat mathematical trick which forms the basis of the protocol
2. The use of various keys given to various players (which in the following

we will call “classified information”
3. The most treacherous part: to fit the protocol into a scenario, or a real

application where it does not fall apart because of the fact that e.g. one
of several principles described so well in [1, 2] were not taken into ac-
count.

In this note I will focus on the following pieces of advice taken from these
references:

Principle 4: Account for all the bits: how many provide equivocation, redun-
dancy, computational complexity, and so on. Make sure that the redundancy you
need is based on mechanisms which are robust in the application context, and
that any extra bits cannot be used against you in some way [2].

Principle 11: The protocol designer should know which trust relations his proto-
col depends on, and why the dependency is necessary. The reasons for particular
trust relations should be explicit, even though they will be founded on judgment
and policy rather than logic [1].



148 Landrock

“Classified information”

I am interested in protocols using public key techniques. Given a public key pair
(P, S), P is the public information, S the private. Here we are, of course, already
making substantial assumptions which fundamentally are based only on trust: we
assume that even though we publish P, we can keep S secret. However, it is gen-
erally agreed that this is a reasonable assumption, and in any event this is not an
issue we want to pursue further in the discussion here. We will just assume that
we have some means at hand of well defined magnitude, such as computational
power, time, etc. We will also assume similarly that it is not possible to calculate
S from P.

The first issue I would like to address is the following: does there exist some
“degree” of classified information between the class of S and the class of P (i.e.,
all information that may be derived from P using S with the means we have at
our disposal)?

Ultimately, as already pointed out, this is a question of trust, and we have to
keep Principle 11 above very much in mind. For instance, do we believe there
exists a “semi-private” key M such that

a. M cannot be calculated from P,
b. M can be calculated from S, but S cannot be calculated from M,
c. no digital signature can be calculated from P and M,
d. it is possible in an interactive protocol to prove possession of M to any

verifier who knows P?
Note that (c) implies that M cannot merely be a signature.

Surprisingly, perhaps, the answer sometimes appears to be affirmative, even
though it would be difficult, if not impossible, to support this with an extension
of the complexity usually employed to justify the concept of public keys (e.g., if
P = NP, the public key concept as such does not have any theoretical founda-
tion).

Note that “secret sharing” schemes would not satisfy our assumptions. This
concept was first introduced by A. Shamir: a polynomial of degree k – 1 with a
secret number (such as a private RSA key) a as the constant term is constructed.
Choose n “shares” as n random points on the defined curve, where n � k. Then
any k of these determines the curve and hence a may be derived from these
shares.

But each individual share is useless as such, and the owner will not be able to
determine if he has a genuine share, i.e., (d) above does not apply. But more to
the point, unless the polynomial was to be introduced as a function of the secret
key, (b) above is not satisfied either.

Others have introduced solutions where the user may verify that indeed he
does have a share. But the user is unable to prove to a third party that he has a
share (see [3]).

Quite some time ago, a new concept in identification protocols was intro-
duced, namely that of zero-knowledge identification—or proof—schemes. Out
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of this grew a number of interesting practical protocols, such as the Fiat-Shamir
scheme. This is based on one particular family of digital signature schemes,
namely Rabin/RSA, but produces signatures of its own, which are weaker in a
sense than signatures produced by the underlying Rabin/RSA pair. The underly-
ing zero-knowledge scheme proves possession of the digital signatures on, say, k
publicly known messages.

However, as we have carefully added condition (c) above, these schemes
would not fit either.

An example

In the following, “a � b” mod k means a and b have the same residue modulo k.
In [5] we introduced the concept of “computational delegation,” which is an ex-
ample of what we are after.

P. Fermat observed that if p is a prime, then
(1) p � 1 mod 4 iff there exist a, b with p = a2 + b2

i.e., p factors to (a + ib)(a − ib) in the Gaussian ring Z[i] (with a unique factori-
zation domain). This beautiful result is mentioned in T.H. Hardy’s “A Mathema-
tician’s Apology” as an example of a delightful mathematical theorem.

An equivalent statement is that
(2) p � 1 mod 4 iff –1 is a square root modulo p.

Now, let n = pq be an RSA modulus, where p and q are primes which both are 1
mod 4.

Let p = a2 + b2 and q = c2 + d2.

Then (also known by Fermat)
(3) n = (a2 + b2)(c2 + d2), and so, expanding out:

n = (ac + bd)2 + (ad – bc)2 = (ac – bd)2 + (ad + bc)2

Thus n can be written as a sum of 2 squares in (exactly) 2 different ways.

Let
(4) � = (ac + bd)(ad – bc)-1 mod n
(5) � = (ac – bd)(ad + bc)-1 mod n

Then obviously �2
� �

2
� –1 mod n.

As may be seen from our discussion in [5], � and � both satisfy (a), (b), (c),
and (d) above, unless someone is able to solve the problem of Fermat primes:
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Conjecture: Let s be a power 2n of 2. Then a number of the form 2s + 1 is a
prime iff and n 	 4.

That (a), (b), and (c) above are satisfied is clear. For completeness, we prove that
(d) is satisfied as well.

Assumptions
Prover knows a square root � of –1 mod n.
Verifier knows Prover’s public key.

Protocol (cut and choose)
Prover chooses r at random and sends r2 mod n to Verifier.
Verifier may choose to receive either r or �r mod n.
Verifier receives x and verifies that either x2 = r2 mod n or x2 = –r2 mod n.
If successful, this is repeated k times for a suitable security parameter k.

Having accomplished this, I thought of the following as one of the best ideas
I’ve had so far in my career—for a while (and for exploitation)!

Theorem
Same notation as above, i.e. �2 = –1 mod n, where n is the product of 2 primes,
each equal to 1 mod 4.

Let m be a random number.

Then there exist r, s with m = r2 + s2 mod n.

Proof
Choose a random and calculate b to satisfy 
ab = m mod n.

Set r := (a + 
b)/2, s := (
a + b)/2.

Then r2 + s2 = (a2 – b2 + 2
ab – a2 + b2 + 2
ab)/4 = 
ab mod n.

So why does this look as a good idea? Because it suggests a new digital sig-
nature:

For m a message, let the pair (r,s) be the digital signature. All that is required to
calculate it is about 2 modular exponentiations, and verification is equally easy.

This of course would be nothing short of a sensation—so how does one break it?
Find a number x such that y = x2m mod n is a prime which is 1 mod 4. This is
relatively easy using say the Rabin primality test.
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Use Cornacchia’s algorithm to find a, b with y = a2 + b2

Then m = (x-1a)2 + (x-1b)2 mod n, and we have broken the scheme. In fact in do-
ing so, we generalised our theorem. You do not even need the assumption that n
be the product of two primes equivalent to 1 mod 4 to write m as a sum of two
squares modulo n!

So I did not manage to introduce a new signature scheme, but I believe I
managed to introduce a security protocol which satisfies all principles of [2] as
well as [1] including Principle 11 of [1], which was my focus.

How to blackmail a Certification Authority

I end our discussion with a protocol which does not really fit into any traditional
scheme. Indeed, this is a protocol where the verifier pretends to know more than
he really does! How can he pull this off? It is all explained in Principle 4 of [2].
Here is the scenario:

• A well-known Certification Authority, CA, announces a nation-wide
PKI scheme based on RSA, 1024 bits, public exponent 3.

• Message received week 1 at CA from unknown source: “I know your
private key! I am going to publish the 1st upper byte of your secret ex-
ponent, unless you send me 2 €!”

• CA ignores.
• Message received week 2 by CA: “Here is the 1st byte 11011010. I am

going to publish the 2nd upper byte of your private key, unless you send
me 4 €!”

• CA is puzzled. The blackmailer is right about the first byte! Could he
be guessing, or maybe the first byte is not so difficult?

• Message received week 3 by CA: “Here is the 2nd byte 00011001. I am
going to publish the 3rd upper byte of your secret key, unless you send
me 8 €!”

• The CA hires a security specialist. The problem is that it will cost
100,000 € to switch to a different key pair!

• This continues.
• Message received week 52 by CA: “Here is the 51st byte 01111101. I

am going to publish the 52nd upper byte of your secret key, unless you
send me 252 €!”

• Conclusion of the specialist: offer him 25,000 € now!

Did the “unknown source” break RSA?
Well, 1024 bits is 128 bytes. He can only do what he does up to the first 64

bytes. Here is how he does it:
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1. Subtract 1 from the modulus n.
2. Divide by 3 and multiply by 2.
3. The upper half of this number is the upper half of your private expo-

nent.

CA: What about the lower half? Only the CA knows! The system is secure. It
is all mathematics.

The point is that the secret exponent d is calculated to satisfy
(6) 3d – x(p – 1)(q – 1) = 1 for x a natural number.

But as d < n, this implies that x 	 2! And, as the public exponent is 3, p – 1 and
q – 1 are prime to 3, i.e., p and q cannot be 1 mod 3. Hence they must be 2
modulo 3, and reading (6) modulo 3, it follows that x is congruent to 2. Hence:
(7) d = (1 + 2(p – 1)(q – 1))/3

Now, even though we do not know (p – 1)(q – 1) = pq – p – q – 1, we know the
upper half basically, as p and q are always chosen to be of about the same size.
Indeed, this is just the upper half of pq, the public key! Obviously the CA should
have thought of Principle 4 of [4]!

This has been observed independently by Mike Wiener [6].
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Volume Rendering by Ray-Casting in
Shear-Image Order

Hugh C. Lauer, Yin Wu, Vishal Bhatia, Larry Seiler

Figure 1: Shear-image gallery—various volumes with lighting effects or embedded
geometry

Roger and I arrived at Xerox Palo Alto Research Center on the same day in May
1977 and immediately jumped into issues of operating system design for desktop
computers. A debate was raging in the field at that time over whether it was bet-
ter to design an operating system around a small, relatively static set of heavy-
weight processes with explicit message passing or a large number of rapidly
changing, lightweight processes (nowadays called threads) and a synchroniza-
tion mechanism based on shared data. We quickly realized that the two ap-
proaches are duals of each other in design and performance and that the choice
depends mostly upon the underlying mechanisms available for the implementa-
tion. We published this “duality hypothesis” in [1], which eventually settled the
issue.

For the past seven years or so, I have been involved in real-time volume im-
aging, a field that combines the challenges of system design, high-performance
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semiconductor design, and computer graphics. I hoped Roger would enjoy read-
ing about this.

Introduction

Real-time volume rendering is a technique for creating interactive images of ob-
jects and phenomena represented as sampled data in three or more dimensions. It
is becoming increasingly important in medical imaging, oil and gas exploration,
and scientific visualization, and it has potential applications in industrial inspec-
tion, non-destructive testing, airline security, and any area where it is important
to see the internal or hidden structures of the objects under study. While volume
rendering algorithms have been known for years, there are three principal chal-
lenges to achieving useful, interactive visualization: amassing enough computa-
tional power to render images at multiple frames per second; moving huge
amounts of data from memory to the processing power; and providing high-
quality, visually meaningful images.

This paper describes shear-image order, a method of ray casting that pre-
serves the data handling efficiency of shear-warp, the fastest known volume ren-
dering algorithm, but that eliminates its intermediate image and final warp step.
Shear-image order produces high-quality images by casting rays through the cen-
ters of pixels of the image plane. It is computationally efficient, requiring four
interpolations per sample vs. seven interpolations per sample for full-image or-
der. Shear-image order supports the accurate embedding of polygon and other
objects, and it enables direct rendering of anisotropic and sheared data sets with-
out the need for resampling. The shear-image-order method is implemented in
VolumePro™ 1000, a second-generation real-time volume rendering engine de-
veloped by the author and colleagues at Mitsubishi Electric Research Laborato-
ries in Cambridge, Massachusetts. This paper is an abbreviated version of [4],
which describes shear-image order in more detail.

Background

Shear-warp order

One of the fastest classic algorithms for volume rendering is shear-warp [2]. In
shear-warp, the 3D viewing matrix is factored into “a 3D shear parallel to slices
of the volume data, a projection to form a distorted intermediate image, and a 2D
warp to produce the final image.” Shear-warp has the advantage of retrieving
volume data from memory in a coherent manner, thereby maximizing the utiliza-
tion of memory bandwidth. It has the disadvantages of requiring a 2D warp step
and difficulty in accurately embedding polygons and images of other objects.
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Figure 2 illustrates the shear-warp factorization. Voxel positions are shown
as dots at the intersections of the grid. In shear-warp, the volume data is resam-
pled into slices parallel to one of the faces of the volume. Within each slice, the

sample points are arranged in a rec-
tangular grid with axes parallel to
the axes of the volume. Each sample
point denotes where a ray intersects
its slice.

This is equivalent to shearing
the stack of slices with respect to
each other, as shown in the right
side of Figure 2. The × characters
denote both sample points on each
of the slices and also the pixels on a
base plane, i.e., an intermediate
image plane that is co-planar with a

face of the volume. The value of each pixel is formed from the projection of the
corresponding sample points of all slices.

The resulting image on the base plane is distorted and must be resampled in
two dimensions to produce the final image of the volume. This resampling is
called the warp step. It is possible to achieve high image quality using shear-
warp. However, doing so requires over-sampling the volume data set and high-
precision calculation to reduce error propagation. These requirements impact
performance.

Because of the alignment of the grid of sample points with the grid of voxels,
linear interpolation operations can be shared between adjacent points in each
dimension. Tri-linear interpolation therefore requires only three multiplication
operations rather than the usual seven. However, the alignment of rays with pix-
els on the base plane rather than the image plane makes it impractical to embed
objects generated with traditional polygon graphics.

Full image order

Another class of ray-casting methods is called full-image order. In full-image
order, rays are cast directly through the centers of pixels of the image plane and
thus are not necessarily aligned with the grid of voxels in any dimension (left
side of Figure 3). In addition, samples are organized into slices parallel to the
image plane (Figure 3 right side). These methods eliminate the need for the warp
step of shear-warp, and they can produce high-quality images without over-
sampling the volume. However, the cost is increased complexity in data handling
and buffering and the loss of coherent memory access.

Interpolations in full- image order cannot, in general, be shared between ad-
jacent samples, so seven multiplication operations are needed for tri-linear inter-
polation: four in the first interpolation dimension, two in the second dimension,

xv

yvzv

Figure 2: Volume data set (left) and shear-
warp slices
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and one in the third dimension. As a result, full-image-order methods are not yet
competitive in performance with shear-warp methods. The shear-image method
will have the same screen view as full-image order to achieve high image quality
efficiently.

Image quality

In volume rendering, images of interior structures are generated by assigning
different opacities to different types of tissue or materials. The interfaces be-
tween different opacity levels create the appearance of surfaces and 3D shapes.
In our experience, the two most important factors in achieving high-quality,
visually meaningful images are the ability to cast rays through the centers of the
pixels of the image plane and a good illumination function. Ray-per-pixel ren-
dering avoids the artifacts and degradation that result from repeated resampling.
Illumination appeals to the fundamental capability of the human eye to recognize
three-dimensional shapes from the way their surfaces are lighted. Figure 4 is a
dramatic illustration of this. The illumination of the blood vessels of the brain
highlights their positions and relationships in a way that no flat or unilluminated
image can.

Traditional Phong illumination
requires a surface normal at each
sample point. In volume rendering,
these surface normals are estimated
from the gradients derived from
voxel data. In shear-warp, gradients
are easy to calculate on the fly be-
cause the volume data is read and
buffered in a coherent way [3]. A
convolution kernel can be applied to
adjacent slices to derive the rates of

change of voxel values in each of the three dimensions. These rates of change
then form gradients that can be interpolated to estimate the surface normal vec-

Figure 4: Image of a cerebral aneurysm

Interpolations
not shared with

neighbors

Sample slices parallel
to image plane

Rays

Image plane
yi xi

Figure 3: Full Image Order
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tors at sample points. VolumePro uses central differences, the simplest of gradi-
ent-estimation convolution kernels.

Shear-image order

Shear-image order preserves the shear-warp organization of sample points in
slices parallel to the slices of the volume but casts rays directly through the cen-
ters of pixels of the image plane, as in full-image order. It thereby eliminates the
intermediate image and 2D warp step of shear-warp. It is similar to 2D texture
methods but substantially more efficient. Shear-image order decomposes the 3D
viewing transformation into two parts: a transformation from voxel space to an
intermediate sample space that defines the positions of each sample point, and a
depth warp to characterize the distance from each sample point to the image
plane. This decomposition has four beneficial features: (1) sample space is spa-
tially coherent with the image plane and with slices of the original volume; (2)
each sample of sample space is projected directly onto a pixel of the image
plane, requiring no additional resampling; (3) the depth warp enables the em-
bedding of polygons; and (4) flexible control is retained over super-sampling
factors, allowing equal sample spacing in three dimensions for any view angle.

This is illustrated in Figure 5,
which depicts a cross section of a
volume and an image plane—for ex-
ample, a vertical slice perpendicular
to the page through the left figure of
Figure 3. The voxels are arranged in a
rectilinear array and represented by
dots; voxel spacing is exaggerated for
clarity. At the left of Figure 5 is an
edge view of the image plane, with
the pixels represented as squares.
Parallel rays are cast through the cen-
ters of the pixels toward the volume,
as indicated by the arrows. Sample
points are represented by ×××× charac-

ters. It can be seen that the sample points are organized into slices parallel to
slices of the volume itself. Each pixel is the composition of the sample points
defined by where its ray intersects each slice. As in Figure 3, the projection of
the grid of voxels bears no relationship to the grid of pixels on the image plane.

Shear-image order has the same memory coherence as shear-warp. That is,
voxels can be read from memory in an order related to their storage. This makes
it possible to exploit the burst mode capabilities of modern synchronous-
dynamic-random-access memory. The fundamental difference between shear-

Image plane

yi zs

Figure 5: Side view of shear-image or-
der ray casting
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warp and shear-image order is that shear-image-order rendering allows rotation
and shear of the sampling plane onto which rays are projected.

The shear-image algorithm operates in two parts. The first part steps through
volume memory one slice of voxels at a time, like shear-warp. Gradients are es-
timated at each voxel point by determining the spatial rate of change of the voxel
values. Then the voxel values and their associated gradients from two adjacent
slices are interpolated to derive a “virtual” slice of what we call z-interpolated
samples. This virtual slice, a sampled representation of a cross section of the
volume, is parallel to slices of voxels but not necessarily aligned with any par-
ticular voxel slice, and it includes a gradient at each point. The sample points
within these z-interpolated slices are organized in grids parallel to the x- and y-
dimensions of the volume, as in shear-warp.

The second part of the algorithm steps through each slice of z-interpolated
samples in the x- and y-dimensions of the image plane. Sample points are located
at the intersections of rays with the virtual slice. Color and opacity values are
assigned to the sample points and accumulated along their respective rays,
thereby producing an image of the volume directly on the image plane. In addi-
tion, a depth value is associated with each sample point to measure the distance
from the eye, image plane, or some other reference. These depth values corre-
spond to the z-values of traditional polygon graphics and make it possible to
embed polygons in the rendered image.

Figure 6 shows a comparison of shear-warp and shear-image order. Both im-
ages were rendered from the same data set and view, at the same scale, and with
the same lighting, transfer function, and other parameters. It can be seen that
shear-image order produces a higher-resolution image.

Anisotropic data sets—in which voxels are spaced differently in each dimen-
sion—are the rule rather than the exception in medical and geophysical imaging.
In computed tomography (CT scans), for example, the spacing of slices in the
longitudinal axis of the patient is determined by the speed of the table, whereas
the spacing within a slice is determined by the geometry of the scanner. Also

Figure 6: Comparison of shear-warp (left, rendered by VolumePro 500) and
shear-image order (right, rendered by VolumePro 1000)



Volume Rendering 159

common are sheared data sets in which the axes are not at right angles to each
other. For example, the gantry of a CT scanner may be tilted with respect to the
axis of the patient. Most of the images in this paper are rendered from aniso-
tropic data.

The mathematics of shear-image order automatically compensates for anisot-
ropy and shear. In these cases, the shear image algorithm steps by different in-
crements in each of the three dimensions. The net effect is to keep the ray
spacing and sample spacing constant with respect to the image plane, regardless
of the view direction and the spacing of voxels in that direction.

Embedding polygons

Volume visualization applications often need
to render volume and polygon data together.
For example, a surgical planning application
might create a model of prosthesis in a CAD
environment, render it using conventional
polygon graphics, and then embed that device
into a volume-rendered image of the patient’s
body. Figure 7 illustrates an example of a sim-
ple polygon object passing through the cranial
cavity of a human head as rendered from a CT
scan of a living person. It can be seen that the
object lies in front of some parts of the volume
(e.g., blood vessels and bone) and behind other
parts.

Various techniques have been used in the past to combine volume and poly-
gon data into the same image. In methods where volumes are converted to poly-
gons, it is a simple matter to sort all of the polygons and render them using a
conventional 3D-graphics engine. Another technique is to voxelize the polygon
objects, that is, to convert them to voxels, then write them into the volume data
set.

Shear-image order makes it easy to use fast commodity-graphics engines to
render polygons and embed them into volumes. The polygons are rendered in the
graphics environment using the same Model, View, Projection, and Viewport
transformations as the volume itself. When all of the polygons have been ren-
dered, the depth and color buffers are captured and are used in the following
process:

• In the first pass, rays are initialized to the foreground color and then are
cast through the volume starting at the foreground and ending at the
captured depth buffer. This renders the portion of the volume in front of
the polygons.

Figure 7: A polygon object
embedded in a volume
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• The previously captured color buffer is then blended behind the image
plane resulting from the first pass, placing the image of the polygons in
the volume.

• In the second pass, rays are initialized with the result of the blend op-
eration and then cast from the captured depth buffer to the background.
This creates the image of the part of the volume behind the polygons.

• The result is a correctly located image of the polygonal objects embed-
ded within the volume. If the polygons are opaque, only the first render
is necessary.

Using two depth buffers, the process can be generalized to arbitrary translu-
cent geometry and images of other objects, if they can be expressed as an or-
dered sequence of layers. By carefully managing the depth and color buffers,
each polygon object can be inserted pixel-by-pixel between the samples along
the rays. Obviously, the process must be repeated for each change in view direc-
tion, model transformation, and other parameter. The method can also be ex-
tended to embed images of non-polygon objects. More details are explained in
[4].

Implementation

VolumePro 1000 implements the shear-image-order method and is a second-
generation volume-rendering system developed as a successor to the VolumePro
500. It comprises an ASIC (Application-Specific Integrated Circuit) and up to 2
gigabytes of high-performance memory on a board to be plugged into the PCI
bus of a personal computer, and a library of supporting software.
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A simplified block diagram of the VolumePro 1000 ASIC is shown in Figure
8. It includes a sequencer, four processing pipelines, a memory controller, a PCI
bus interface, and on-chip buffers for voxels and z-interpolated samples. The
sequencer and processing pipelines operate at 250 MHz, so the ASIC can render
109 samples per second. Memory is organized so that 3D objects are stored as
mini-blocks of 2 × 2 × 2 voxel values, and 2D objects are stored as 2 × 2 stamps
of pixel values. This allows sequences of related data values to be read or written
in burst mode. The memory subsystem itself comprises eight channels of 16-bit
Double Data Rate SDRAM operating at a data transfer rate of 266–333 MHz.
Eight 16-bit voxels or four 32-bit pixels can be fetched or written per memory
cycle.

Each pipeline is partitioned into two parts, decoupled by a set of buffers.
Voxels are read two slices at a time into the voxel buffers at the top of the figure.
The voxel processing part estimates gradient from the data in the buffers and,
optionally, maps voxel values to color and opacity (RGB�) values. Then adja-
cent slices of voxels and gradients are interpolated in the dimension most nearly
parallel to the rays and are stored in the z-interpolated slice buffers between the
two pipeline parts. The sample processing part of each pipeline reads from the z-
interpolated slice buffer in an order unrelated to voxel order, interpolates in the
remaining two dimensions to obtain sample values and gradients, maps the re-
sulting values to RGB� (if this was not already done by the voxel-processing
part), then does illumination and filtering before compositing the samples into a
frame buffer to form the final image.

Voxels may have up to four fields, programmable by the application as to
size, position, and format. Each
field is associated with its own
lookup table for mapping field
values to color and opacity val-
ues. These can be combined by
a hierarchy of arithmetic-logic
units as described in [3]. The
interpolator is linear in the z-
dimension and bi-linear in the x-
and y-dimensions, thereby re-
quiring four multiplications per
sample. There are seven inter-
polation channels, one for each
voxel field or color-opacity
component plus one for each
gradient component.

Illumination is done in the
sample processing part of each
pipeline and is a reflectance-
map implementation of the
Phong lighting model. This pro-

Figure 9: A CT Scan of a foot, with bone
surfaces highlighted by gradient-magnitude
modulation
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vides emissive, diffuse, and specular lighting from an arbitrary number of light
sources. It also provides a modulation function based on the magnitude of the
gradient. This makes it possible to highlight surfaces in a translucent manner so
that both the surface and the interior structure of the object can be seen. An ex-
ample is shown in Figure 9.

VolumePro 1000 tries very hard to skip over invisible samples. The se-
quencer keeps track of samples that are cut, cropped, clipped, or that fail depth
tests, and it jumps over them when it is useful to do so. This kind of space leap-
ing is called geometry-based space leaping because it depends only upon the
position of a sample, not its value. A second kind of space leaping—content-
based space leaping that jumps over samples that are invisible by virtue of opac-
ity assignment or filtering—is not provided in VolumePro 1000.

One of the most important factors in
the design of the ASIC was the amount
of buffer memory needed on the chip.
The shear-warp algorithm and shear-
image order both require one or more
full slices of voxel values to be buffered
in on-chip memory. This is far more
than could be accommodate by modern
semiconductor processes. VolumePro
addresses this issue by partitioning the
volume to be rendered into sections and
rendering one section at a time. The
amount of on-chip memory is thus lim-
ited to that needed for the number of
voxels and/or samples per section, but
at the cost of re-reading voxels near the
boundaries of sections more than once.

The final example image, Figure 10, shows a zoomed view of the CT scan of
the human head from the left of Figure 1. The arrow, superimposed on the figure
by the author, clearly shows a blockage of the left medial carotid artery.
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This paper describes a conceptual authorization model for web services. It is an
adaptation of those of Taos [2] and SDSI [3] with terms changed to correspond
more closely to those introduced with the WS-Security model [1]. In contrast to
the more formal and mathematical presentation used for Taos and SDSI, this
presentation is conceptual and informal, which hopefully may provide more in-
tuition for some readers; it also might provide an outline for the class hierarchy
of an object-oriented implementation.

In addition, this model abstracts away from issues of distribution and net-
work security such as authentication [4] and encryption (for example, by assum-
ing that messages include the unforgeable identity of the sender and are private
and tamperproof) so as to focus on authorization, but it does deal with the exten-
sibility and composability of security services, and partial trust. It also abstracts
away from issues of syntax and encoding (for example, ASN.1, proprietary bi-
nary formats, and XML) and focuses on semantics.

Figure 1 illustrates many of the elements of this model that will be described
in this paper.

Basic computational model

Computations are done by running programs in processes, which contain one or
more parallel threads of execution. Processes have separate address spaces and
are isolated from unwanted interactions with other processes. A program may
use an interprocess communication facility to send requests to other programs;
or to receive requests from other programs, process them, and return results in a
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response. A program sending requests is called a client; one receiving them is
called a service; a program may be both a client and a service.

Figure 1: Elements of an authorization model.

There are many providers of services, not just the system. In particular, many
security services are provided by non-system entities, and they may be not fully
trusted.

We use an object oriented model: clients use requests to ask services to per-
form some operation on an object that the service implements.1 Services in turn
invoke other services to perform the requested operation. Ultimately, they invoke
drivers to write pixels to the screen, bits to the disks, packets to the network, etc.

Basic security model

Computations run on behalf of principals; principals may be users or services
(and other kinds, to be defined below, but these two are the basic ones). A sys-
tem service can start an initial process and program on behalf of a user after veri-
fying the user’s identity and his permission to use the system.

1 Another frequently used term for object is resource. In this context, they mean the
same thing. A service may implement only a single object, or it may implement many.
If many, they may all be of the same kind, or they may be of different kinds.
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Requests can be in many forms; typical examples are messages sent over a
network or interprocess communication mechanism, or application program in-
terfaces (APIs) that call into the operating system.2

Services are responsible for securing themselves; i.e., making sure that only
authorized principals will have their requests executed. When a service receives
a request, it forms the security context for that request, uses its trust policy to
validate all the information in the security context, and then uses the information
to evaluate its authorization policy to decide if the request should be honored.3

The next few sections expand on this process.

Model components

A statement is a collection of data created by a principal; statements can contain
other statements. A claim is a statement consisting of security-relevant informa-
tion about a principal; a security token is statement containing one or more
claims. An important type of claim is the attribute-value (AV) claim, stating that
a principal has certain attributes; such a claim might be that a user has a certain
identity, is a member of a specific group, or has a certain credit limit. A security
token might be a list of group memberships for a user.

A signed statement is a statement for which an AV claim attesting to the
identity of the principal making the statement can be requested from the system;
they are particularly interesting when the statement is a security token. The sys-
tem guarantees that signed statements are tamperproof and the principal’s iden-
tity is unforgeable.4

Requests and responses are statements, and they too may be signed.5 When-
ever necessary, the system can guarantee that signed requests and responses are
private; i.e., the contents are not accessible to any process except the intended
recipient.

A security context is a collection of claims related to a particular request. It
can be initialized with the AV claim identifying the sender of a signed request, or
by a security token. Security tokens may be received in requests, or returned in
responses to requests made to other services; a service whose primary purpose is
to do the latter is called a security-token service (STS). Multiple security con-

2 The request identifies the operation and the object on which it is to be performed (if
it’s not implicit) and contains any other data needed to perform the operation.

3 The analogy is to the standard model of interpretation: the policy contains free vari-
ables that are bound with reference to the context.

4 To simplify exposition, we have simply posited that the system can do this, but it
should be noted that in Taos both identity and authorization are verified in a uniform
way using (its analog to) claims and the trust validation we outline in this paper. That
is, user identity is just an AV claim.

5 We allow unsigned requests for cases where anonymity is allowed or desired.
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texts may be merged to form a new security context just by taking the union of
all their claims.

Trust model

The claims in the security context are validated against the service’s trust policy.
The trust policy for a service defines which of a security token service’s claims
will be used when evaluating its authorization policy; the service will trust a
claim if it deems the service (often an STS) that made the claim authoritative for
that claim. Any given STS may (and usually will) be considered by any given
service to be authoritative for only a subset of all principals, and, for any princi-
pal, for only a subset of the possible kinds of AV claims that can apply to that
principal; we call this its authorization scope with respect to that service. For
example, the human resources service for a division of a corporation may be
authoritative for AV claims about salaries of division employees, while the divi-
sion IT department’s group membership service is authoritative for AV claims
about its group memberships.

There is a kind of claim, which we call a trust claim, which defines an au-
thorization scope for a particular STS. The trust policy for a service is a collec-
tion of such claims. In addition, authorization scope claims can be in the security
context and will be trusted if they were made by an STS that is trusted (i.e., au-
thoritative for them). Note that trust claims are themselves a kind of AV claim:
they specify a set of claims for which a service is authoritative and is therefore
trusted to make.

Trust policy, in the form of a security token containing trust claims, can be an
argument to a request, and is also validated against the service’s trust policy.
Trust claims that pass validation may be added to the service’s trust policy. Trust
policies can be combined to create a new trust policy just by taking the union of
all their claims.

More complex principals

Principals can be organized into groups: a group is a set of users or groups. A
group is a kind of principal: a group member is authorized to do anything that
the group is authorized to do.

Principals can also be organized into roles. A role is a kind of principal: a
role member is authorized to do anything the role is authorized to do. A role
differs from a group in that its membership is tied to an object type and a
scope—see the next section.
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A principal may be formed from a set of other principals, making an access
token:6 a token is authorized to do anything that any principal in the token is au-
thorized to do. Tokens can also be restricted by specifying a second set of prin-
cipals; a restricted token is authorized to do anything that both sets of principals
are allowed to do. These constructs allow taking the “or” and “and” of principals
(respectively).

Authorization policy

A service may associate with each operation of the service a permission that au-
thorizes the operation;7 the operation is said to require the permission.8 Associ-
ated with each object in a service is its authorization policy.9 An authorization
claim for an object specifies a set of principals, and the permission(s) granted to
that set.10 The set of principals can be specified by a Boolean expression which
evaluates to true for all members of the set, where the free variables in the ex-
pression are bound to the values of attributes in AV claims in the security con-
text. The authorization policy for an object is a set of such claims.

Objects in a service can be organized into scopes: all objects of the same
type in the same scope have the same assignment of principals to roles.11 Assign-
ing scopes simplifies authorization management by removing the need to manage
authorization policy for each object.

One kind of authorization policy is role-based: all objects in the service of
the same type have the same authorization policy, and the only principals in the
authorization policy are roles. With role-based authorization, the authorization
policy is fixed by the implementation of the service, which “hard codes” the as-
signment of permissions to roles; authorization is managed by changing the as-
signment of principals to roles and objects to scopes.

Authorization policy, in the form of a security token containing authorization
claims, can be an argument to a request, and also is validated against the ser-
vice’s trust policy. Authorization claims that pass validation may be added to the
service’s authorization policy. Authorization policies can be combined to create
a new authorization policy just by taking the union of all their claims.

6 Often referred to simply as a “token” when the context is clear.
7 More than one operation may be associated with a given permission.
8 It is possible, but not encouraged, for an operation to require more than one permis-

sion.
9 More than one object may be associated with a given authorization policy.
10 Note that the set of principals with a given permission essentially defines a group.
11 For purposes of this paper, it suffices to define objects as having the same type when

they implement the same operations.
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Authorization verification

To secure itself, a service utilizes a reference monitor: for each request, it asks
the reference monitor to decide whether it should grant the request. The refer-
ence monitor bases its decision on the security context for the request, the opera-
tion requested, the service’s trust policy, and the service’s authorization policy.
(For example, a basic kind of authorization policy could simply specify which
principals can perform what operations on its objects; one way to express this is
with access-control lists on the objects.) Essentially, the trust policy is used to
create a trusted security context that has only trusted claims. Then the authoriza-
tion policy is treated like a program to be executed, with the free variables in it
assigned values from the trusted security context. If the reference monitor OKs
the request, then the service executes the operation, using its own identity to
make the requests on any other services or drivers needed to do so.

The model above leads to the following flow for verifying that the authoriza-
tion policy is satisfied when a service processes a request:

Get the operation specified in the request.

Combine all the security tokens to create the security context.

Create the trusted security context by using the trust policy to

remove untrusted claims.

Get authorization policy:

If only one policy for the service, just return it; else:

determine the object being referenced by the request;

determine the object's scope;

determine the object's type;

get authorization policy for that type in that scope.

Determine if the requesting principal is given the required per-

missions by the authorization policy:

If the principal is an access token, take the union of the

permissions associated with each principal in the access to-

ken.

If the principal is a restricted token, take the intersec-

tion of the permissions associated with each principal in

the restricted token.

If the permissions do not include the one required for the re-

quested operation, return an access-denied error, else return

OK.

Note that if a service does not have need for flexible configuration of au-
thorization policy and wants the ultimate in efficiency, then it can associate a
role with each operation, and have the implementation of each operation simply
check whether the requesting principal is that role (or an access token that con-
tains that role).



A Conceptual Authorization Model 171

Conclusions

We have briefly described a conceptual model for authorizing web services. If
one contrasts it with “more traditional” models, the more interesting differences
include:

• authorization based not just on user identity and group memberships but
also on attributes of users,

• support for partial trust on attributes as well as user identity and group
memberships,

• trust and authorization policy that can be arguments to requests from
untrusted clients, as long as they originate with parties trusted to set
such policy.

Finally, this model isn’t really tied to web services—it could be used in other
distributed-systems contexts that need the features that differentiate it from the
more traditional model, just as web services need them.
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The Trouble with Standards

E. Stewart Lee

Standards, as they used to be used, are great. Railways usually run on tracks of
the same gauge. Railway cars can easily hitch together regardless of which com-
pany owns the car. One can tell the value and tolerance of a resistor independ-
ently of who manufactures it. The colour coding that contains this information is
universally used and became a standard. Electrical apparatus can be plugged into
a socket with little worry about the voltage or the frequency of the supply, at
least within a single country. All these examples and many more allow the prod-
ucts of different manufacturers to interoperate with the consumer having little to
worry about.

This is because these standards evolved over many years and represent a use-
ful compromise between effectiveness, usefulness, and economy. Some manufac-
turers took a bath, but the consumer barely noticed.

An interesting example of great expense being incurred by a manufacturer
concerns the frequency of electrical power generation. The original AC power
generated at Niagara Falls was at 25 hertz; in the late 1950s Ontario Hydro had
to spend some $2 billion (circa 1958 currency) to convert the power to 60 hertz,
including the replacement of all household devices that were frequency sensi-
tive.1 This benefited the consumer and ultimately the power generator.

However, the information-technology industry has gone a different route. In
IT, what happens all too often is that a consortium of manufacturers agrees to
prescribe a so-called standard before anybody has built any component. It has
been stated that this is being done to allow interoperability. A cynic, however,
can often support the thesis that such consortia are a plan to dominate a given
market before a product is offered for sale and often before it is even conceived
as a design. Manufacturers want to build to a standard in order to protect their
investment. Rarely does a manufacturer produce something that he considers a
cutting edge product without joining a consortium to spread the risk.

1 DC had been generated for some years before the switch to AC, which was done to
facilitate power transmission.
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Fortunately for the consumer, market forces often intervene. Thus, the con-
sortium that specified Bluetooth delayed in finalizing their standard, and several
competing systems came to exist; some of them are in many respects as effective
as Bluetooth. Various efforts to protect the intellectual property of recorded or
broadcast information have been proposed, but as far as I know, either they are
not very effective or they require the consumer to invest in expensive equipment
that has only one purpose, the protection of the intellectual property of the owner
of the information that the consumer wishes to access. Surely, the IP owner
should pay for his own IP protection.

These consortia often resemble a cartel2 in that they restrict the use of their
standard to those organisations that contributed to it. Newcomers are often ex-
pected to pay a substantial usage fee. For this to work, the standard must be cer-
tified and protected by an influential body that is prepared to fight against its
adoption by organisations that did not contribute to it. Regrettably, some stan-
dards bodies cooperate with such consortia.

Some, however, deal primarily with national standards organisations. The In-
ternational Organization for Standardization is such a body.3 It has no fewer
than 225 technical committees that deal with areas as diverse as information
technology; tyres, rims, and valves; gas cylinders; and nuclear energy. The IT
Technical Committee covers 1696 standards directly related to IT, of which 565
are under the direct responsibility of the ISO. There are 18 subcommittees cover-
ing the field.

The ISO defines standards thus:

Standards are documented agreements containing technical specifications or
other precise criteria to be used consistently as rules, guidelines, or defini-
tions of characteristics, to ensure that materials, products, processes and ser-
vices are fit for their purpose.

For example, the format of the credit cards, phone cards, and ‘smart’ cards
that have become commonplace is derived from an ISO International Stan-
dard. Adhering to the standard, which defines such features as an optimal
thickness (0,76 mm), means that the cards can be used worldwide.

This quote is not consistent with many of the so-called industry standards that
are continually being conceived. Industry standards often exist for more com-
mercial reasons. It would be pleasant to believe that some mechanism could be
invented that would allow the desirable features of international standards to
apply to industry standards. I believe it to be unlikely that such a mechanism will
be forthcoming in the near future. It seems to me to be evident that the consor-

2 American Heritage Dictionary, 4th ed., 2000: “A combination of independent busi-
ness organizations formed to regulate production, pricing, and marketing of goods by
the members.”

3 http://www.iso.org/
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tium-of-manufacturers approach is going to continue, with all its downsides. Pre-
sumably, therefore, we just have to hope that with a worldwide and continually
growing industry, we will be able to rely enough on market forces of one sort or
another (where perhaps one such force is the kind of anti-market market force
that open source represents) to provide some countervailing pressures.
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Novelty in the Nemesis Operating
System

Ian Leslie

Background

The opportunity to develop an operating system from scratch, even in a research
environment, does not arise very often. One needs the inclination, a motivating
proposition, and the resources to carry the development through. However, the
results can be very rewarding; starting with a blank sheet of paper encourages
novelty and allows conventional wisdom to be challenged.

In the early 1990’s the Systems Research Group at the Cambridge Computer
Laboratory began a project to develop an operating system to support the proc-
essing of continuous media. The team wanted to investigate the provision of
guarantees of predictable performance for a dynamic mix of applications gener-
ating, playing, and/or processing audio and video information. The work was
carried out within two serial EU funded projects.1

Providing predictable performance to applications entails giving them the re-
sources they need at the time they need them. If one concentrates simply on the
processor(s) as a resource, then it is tempting to think of this problem simply as a
scheduling problem. While scheduling is key, it is not the only issue. It was rec-
ognised that uncontrolled resource interference between applications—denoted
as resource crosstalk—could arise as a result of the structure of the operating
system over which the applications ran.

An operating system, computer scientists are told from a very early point in
their immersion in the subject, is a program (or set of programs) that controls the
resources of a computer system, protects users from one another and provides
services above the mere hardware of the system. They are also told about hard

1 The other partners were the University of Twente, Glasgow University, the Swedish
Institute of Computer Science and APM (later Citrix). Their main involvement was in
the production of components such as tools to support development or applications
which used the operating system, rather than operating system itself.
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ware support for protection, and are shown how this can be used to prevent,
among other things, the operating system from being circumvented by users. Just
how much of the operating system belongs inside special protection domains, or
indeed how many different types of protection domain there should be, has been
a topic for discussion and reinvention as long as there have been operating sys-
tems.

The goals of Nemesis gave its designers the academic luxury of exploring
this issue at an extreme end of the spectrum. If, as Roger Needham often sug-
gested, systems research is about sticking a pin in at an interesting point in a de-
sign space and then thoroughly examining the implications through
implementation, then this was systems research.

Rather than a complete description of the system, we describe below a num-
ber of interesting developments made within Nemesis as a result of exploring
this extreme point on the spectrum. Some of these can be seen as logical implica-
tions of initial choices, while others arose simply because of the clean sheet of
paper we had.

Vertical structure and the separation of control
and data paths

A significant amount of application processing is usually performed directly by
the processes and threads created specifically for the application. In this case,
resource contention amongst application processes is controlled by the system
scheduler implementing a resource allocation policy. However, applications in-
variably make use of operating system services, either within the kernel or
through an operating system process (server) used by other applications. Obvi-
ous examples of such services are network protocol processing, filing systems,
memory management, and window systems. Within any component performing a
task for multiple client applications, there is the potential for performance inter-
ference between applications. Given the design goal of controlling such interfer-
ence, two obvious approaches present themselves:

• Control the interference amongst applications within shared operating
system servers and the kernel. (Be careful when you’re there.)

• Minimise processing performed by the kernel or shared operating sys-
tem servers on behalf of applications. (Don’t go there.)

The designers of Scout, at the University of Arizona and later Princeton,
opted for the first of these approaches [5]. The Nemesis designers opted for the
second. This decision was embraced wholeheartedly: the question arose as to
what the minimum functionality was that had to be provided within a kernel or
shared server.

The answer was to some extent influenced by the context in which Nemesis
was developed. The playing, processing, and generation of continuous media
were seen as key drivers. Traditional applications—that is, everything else— had
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tolerated application crosstalk. Continuous media applications can be partitioned
into control path execution and data path execution, with data path execution
expected to take the vast bulk of processing time. The initial solution, then, man-
dated that data path execution take place inside application domains, while (in-
frequent) control path execution would, where necessary, take place in shared
servers. As an added bonus, this division corresponded well with the thinking
about network control within the research group.

To use an alternate but compatible formulation: applications should be iso-
lated from each other’s behaviour, should be exposed directly to the capabilities
of the underlying hardware, and should be responsible (in an accounting sense)
for the actions performed on their behalf.

The organisation of the operating system which emerged [1, 4] was termed
vertically structured; each application executed the bulk of what would tradi-
tionally be operating system code within its own process, called a domain. In
fact it was still operating system code, but provided through shared libraries
rather than shared servers. Much the same organisation was arrived at in the
Exokernel system developed at MIT during the same period [2], but in that case
the motivation was simply to allow applications to provide their own abstractions
where those provided by the operating system were inappropriate.

Nemesis supervisor

The Nemesis “kernel” became simply a scheduler and a small set of simple trap
handlers and device stubs. The word “kernel” was deprecated within Nemesis,
and the temptation to talk in terms of “nano” or “pico” kernels was avoided.2

There were no threads in the supervisor; rather, application threads could invoke
a trap which would either execute a handful of instructions and return, or
deschedule the domain and enter the scheduler.

The most commonly used scheduler provided a domain with a guaranteed
slice, s, of processor time within a specified period, p. This gave each domain a
notional share of the processor (viz., s/p), but also specified the granularity of
time over which that share should be delivered. Domains could also indicate that
they wished to use any available slack time, over and above their guarantee. To
support multiplexing within domains, each was expected to have its own user-
level thread scheduler. Special support for these schedulers was provided; for
example, a domain could dynamically choose between being transparently re-
sumed from where it was last descheduled, or alternatively having its scheduler
entry point invoked.

Trap handlers were primarily concerned with the descheduling of an applica-
tion, and we implemented an event delivery mechanism over which an event

2 However, we did not avoid the temptation to call the supervisor the Nemesis Trusted
Supervisor Code (NTSC).
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count and sequencer package used for interdomain communication. While the
delivery mechanism was within the privileged code, the event count and se-
quencing system was implemented in shared library code executing within each
domain.

Device organisation: control and data paths

The handling of devices was a particularly interesting aspect of Nemesis. Again,
the desire was for application domains to perform as much of the application’s
device processing as possible. The separation into control and data paths became
more formalised, with each device having two recognisable interfaces. The con-
trol interface was necessarily implemented by a shared server. Ideally the control
interface simply provided a means by which a client could configure its access to
the device. The device itself, possibly aided by the memory protection system,
only needed to police correct access to devices. The notion of a model device
was developed, although it was recognised that few hardware devices adhered to
this model. The graphics frame buffer was a good example of nonadherence.

Conventionally, window systems are implemented by a shared server which
“owns” the graphics frame buffer. In Nemesis this was undesirable; an applica-
tion can cause some window systems to engage in vast amounts of processing. If
the window system is running within each application domain, as would be the
Nemesis ideal, excessive processing on behalf on one domain does not create a
problem, since that domain will have the processing performed charged to its
account. However, the window system does eventually have to write pixels into a
frame buffer, and one can hardly classify this as a control function. We desired a
frame buffer optimised for Nemesis having the property that various address
space portions could be allocated to different application domains, and allow
only pixels allocated to a domain to be written to by that domain. The pragmatic
implementation was to have a device stub within privileged code that provided
precisely that functionality, that is, checking that domains were attempting to
write only the pixels they “owned” and then writing them. There was no loss of
accounting accuracy, since the client domain was not descheduled when execut-
ing the privileged code.

Similar considerations with other devices led to follow-on work in placing
“Nemesis ideal” functionality into the device in a way that can be exploited by
traditional operating systems.

Memory management: self-paging

The memory management system in Nemesis was interesting because it was de-
signed somewhat post hoc. Much of the operating system’s structure and design
philosophy had been determined: handling memory access exceptions had been
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envisaged as a control problem, not a data-path-execution problem, and memory
management was therefore destined for a shared server. However, the issue of
how much could be done by applications for themselves was revisited during the
implementation. It was clear that novel memory-management techniques had a
role to play in processing continuous media, but why should one application suf-
fer for the novel memory management used by another? The system developed,
called self paging, made domains responsible for their own memory-fault han-
dling [3].3 Although a domain might make use of a standard library paging algo-
rithm, this executed as part of the domain. A shared system domain was required
to configure the memory resources of domains, but this was the only “control
path” operation.

Binding and bulk I/O

Other novel features were prompted by the flexibility of the memory system and
the structure which supported application domains, but perhaps most signifi-
cantly, simply by the opportunity to “do it from scratch.” Particularly noteworthy
were the binding model used for inter-domain communication, sometimes de-
scribed as “a full distributed system in a box”4 and the bulk I/O channel organi-
sation, which met the requirements for both traditional data and continuous
media communication.5 Full details can be found in the references in the bibli-
ography.

Implementation and performance

The initial implementations of Nemesis were on the DEC Alpha AXP, MIPS,
and ARM architectures. The Alpha AXP was the preferred architecture, which,
combined with the requirement to share large amounts of code amongst different
domains, led, not unreasonably, to a single-address-space system. (Although
sharing a single address space, domains of course had different protection views
of the address space.) The Alpha architecture had a provision for the direct ma-
nipulation of native hardware resources known as PALcode. Much of the super-
visor code on the Alpha was implemented as PALcode and its performance was
outstanding.

3 Self paging is distinct from external paging; external paging is paging within a shared
server outside of a kernel, and suffers the same drawbacks as any shared server.

4 The influence of the ANSA distributed computing architecture on the research team
was very pronounced.

5 Arguably, it met the requirements of each better than existing schemes designed spe-
cifically for either.



182 Leslie

Later, an implementation of Nemesis on Intel Pentium platforms was devel-
oped. Although the primary goal of Nemesis was realised, that is, providing con-
trol of interference between applications, the amount of state, in particular
protection state, which had to be updated on a context change, was significantly
higher.6 One of the research team remarked that “modern processors are a bit
like American cars: very fast in a straight line but not very good at turning cor-
ners.”

Resource (re-)assignment tools

While the bulk of the effort on Nemesis was about providing mechanisms to en-
force allocation policy, some work was done on allowing users to define policy.
The most primitive, although most widely used, tool was a simple interface
which allowed the user to move resources, notably those defined by the schedul-
ing parameters, amongst application domains. Another tool allowed applications
to be monitored to determine the appropriate-resource allocation for a desired
performance, while yet another allowed a user-preference profile to be specified
and acted on that profile to move resources around dynamically. These made for
fun demos, not a usual output of operating systems research!

A few of the novel features that came out of the Nemesis development have
been touched upon. It is difficult to see how many of them would have arisen in
an incremental development of an existing system. The clean sheet was of enor-
mous value, enabling the quite remarkable team of research students and re-
search assistants who developed Nemesis to make interesting contributions to the
subject. It was, of course, far from the first time this happened in Cambridge, and
has not been the last.
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26
A Technology Transfer Retrospective

Roy Levin

Many have written about the challenges that industrial research organizations
face in trying to transfer the technology they create to other organizations. Re-
search pursues a long and winding road from the proof of concept of a technol-
ogy in the lab to the adoption of that technology by others and its use for
corporate benefit. To follow the road to its end requires persistence, determina-
tion, flexibility, and (when, as is often the case, the road ends short of the desti-
nation) good humor. In this short paper, I offer a personal recollection of a part
of one such journey—one in which the destination reached wasn’t the one origi-
nally sought.

The road

My story tells of the Vesta system, the eventual result of an extraordinarily long
research activity that spanned more than twenty years and three companies. The
focus of this research was software-configuration management, especially the
problem of building large-scale software systems incrementally and reproduci-
bly. (An incremental build is one in which the minimum amount of compiling
and linking occurs, exploiting as much as possible the results of previous com-
pile/link steps.) Butler Lampson sparked my initial interest in this topic in the
early 1980’s at Xerox PARC. At that time, the software environment in which
we were working differed significantly from those in general use elsewhere,
since it had been constructed around a custom programming language and oper-
ating system (both called Cedar). Nevertheless, the overall problems of system-
building were largely the same as one would have encountered under Unix or
any other programming environment at the time.

Many researchers had investigated tools to build software incrementally, and
some commercial systems of the time included them. Perhaps the best known
was make [1], a simple tool originally built for Unix but subsequently adapted in
many other environments. Make provided facilities for two essential aspects of
system-building: (1) a concise way to express dependencies between compo-
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nents of a software system, and (2) a script of rebuilding actions for each com-
ponent, to be executed when a predecessor in the dependency relation was up-
dated. Make was designed and worked well for systems of a few tens of
thousands of source code lines, but its limited notion of dependency did not ex-
tend well beyond that. Systems at the next order of magnitude or larger typically
required build tools that supported branched development and/or multiple target
platforms and/or a geographically dispersed organization. Developers of such
systems still wanted to build incrementally—the value of doing so was even
greater with large systems—but make could not do so reliably. As a result, de-
velopers of larger systems had to abandon incremental building and, while they
might still use make as the mechanism for scripting the build actions, they re-
verted to “scratch” building which, for large systems, was an overnight activity
conducted by a “release management” organization. As Lampson observed, this
was effectively a return to the 1960’s, when such systems were built overnight by
submitting large card decks as a batch process.1

This unsatisfactory state of affairs had not gone unnoticed in the research
community, and many variants of make were developed that sought to address
the problem. Mindful of Roger Needham’s maxim to do research “with a shovel
rather than a tweezers” and unburdened at PARC by existing build processes
based on make, we embarked on a line of research to rethink software system
building from first principles. An early result of this research was the Cedar Sys-
tem Modeler [3], built by Ed Satterthwaite. However, this tool focused less on
the problems of scale and incremental construction than on the use of a strong
type system to minimize errors in building.

Before the Cedar System Modeler could see any significant use, Lampson
and others (including me) left Xerox to found the DEC Systems Research Center
(SRC). This group immediately set about creating a programming environment
incorporating some of the features to which we had grown accustomed in Cedar.
However, while this environment had a custom operating system (Taos [5]) and
programming language (Modula-2+ [6]), the software development tools came
from Unix and make was the system builder. We thus became acquainted first-
hand with make’s characteristics, and I soon initiated a new project to attack
“the system-building problem” afresh. The project was named Vesta.2

The Vesta research project produced a practical system that was deployed at
SRC around 1989. It used a modular, functional programming language to ex-
press the build “script” and was able to build all of Taos, the Modula-2+ com-
piler and tools, and hundreds of libraries and applications built on them, all
incrementally and reproducibly [4]. This body of code comprised nearly 1.5 mil-

1 Those too young to have experienced system construction in the days of batch proc-
essing can glean a sense of it, and much more besides, from [6].

2 According to Bulfinch, “Vesta (the Hestia of the Greeks) was a deity presiding over
the public and private hearth.” That duty struck me as an apt characterization of the
role of a configuration management tool.
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lion source lines, well beyond what make could reliably build incrementally. It
was language-independent—that is, programs written in languages other than
Modula-2+ could be built by Vesta—and supported both branched and cross-
platform development.

The Vesta developers were excited by this successful demonstration of the
feasibility of large-scale, incremental, reliable software system building.3 As a
result, we embarked on a series of visits to DEC product organizations that we
hoped would embrace the technology. DEC had two substantial programming-
environment product suites, one based on VMS, one on Unix. Both used make
or its relatives as their build engine, and we believed the demonstrable superior-
ity of the Vesta approach would be appealing. The tools purveyed by these
groups were DEC products and were also used internally by the VMS and Unix
operating-system and layered product-development groups for their very large
code bases.

We returned from these visits sadder but wiser. While these groups found the
Vesta technology attractive, they could not adopt it. There were several show-
stoppers. For expediency, we had implemented Vesta by exploiting features of
the Taos operating system that made it impractical to port Vesta to other plat-
forms. We believed this could be fixed,4 but it nevertheless put off the potential
recipients. Furthermore, the whole Vesta system was implemented in Modula-
2+, a language unsupported by DEC and unknown to most of its developers.
More seriously, Vesta’s idiosyncratic build-scripting language, uncertain scal-
ability beyond systems of a few million lines, and inability to support geographi-
cally dispersed development made it an inadequate replacement for the make-
based build systems that the product development organizations had cobbled
together. We were disappointed, but went back to the drawing board, and began
a new project to address these shortcomings.

The result, several years later, was Vesta 2. While continuing the original re-
search goal, Vesta 2 had different technical objectives and substantially new
personnel. Goaded by Bill McKeeman, we recast the syntax of the build-
scripting language to resemble C, while retaining the underlying functional se-
mantics that were essential for Vesta’s incremental building machinery.5 We

3 To be fair, the initial Vesta system was not without problems. Its build language was
difficult to use, the builder’s performance was quirky, and the whole system’s ability
to scale was limited, although still much better than make’s. Indeed, these problems
led us to conduct an internal user study to understand how Vesta might be improved,
but that’s another story.

4 Indeed, by that time, SRC had shifted from Taos to Unix as its research platform and
some of our colleagues were encouraging us to reimplement the Taos-dependent parts
of Vesta so that they could continue to use it on Unix.

5 An explanation of the language semantics would go far beyond the scope of this pa-
per. The key idea, however, is that the function calls of interest in a Vesta build script
are invocations of tools (e.g., compiler, linker). The arguments to these function calls
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completely redesigned the storage system and language interpreter to accommo-
date systems of 10 million (or more) source lines and to support geographic dis-
tribution of their development. We implemented Vesta 2 in C++ on top of
DEC’s Tru64 (Unix) operating system and equipped it with Unix-like manage-
ment tools. The resulting system is described in detail in [2].

By the time that Vesta 2 was completed, DEC had largely ceased to invest in
software development tools as part of its product portfolio. Some of the organi-
zations we had previously visited no longer existed, but the operating system
groups did, and the Unix organization expressed some interest in Vesta 2. Ulti-
mately, however, they decided not to use Vesta for a combination of reasons,
most of which are familiar to researchers who have followed the technology
transfer road. Two in particular deserve note:

• Vesta 2, while technically superior to existing build tools, represented
too radical a departure from make. To adopt Vesta would require re-
thinking the entire building methodology of the Unix organization, not
to mention the structure and function of its release management group.
Despite Vesta 2’s evident benefits, the conversion effort and retraining
necessary to adopt it were simply too much to consider.

• Vesta 2 came from a research group, not another product group or ex-
ternal vendor. The Unix organization would need long-term assurances
of support before adopting the system, and (justifiably) didn’t believe
that the research organization could provide that assurance.

We could not make headway against these objections. To us it seemed ironic
that the operating-system organizations periodically revised their build proc-
esses, occasionally even building specialized tools to enable them to continue to
build their systems from scratch overnight or over a weekend, but they would not
consider a systematic rework that could have a major impact on their productiv-
ity.6 We were about to shelve Vesta 2 when we encountered an unexpected bend
in the technology transfer road.

An unexpected destination

I was sitting in Chuck Thacker’s office sometime in 1997 complaining about our
inability to find an outlet for the Vesta 2 technology. Chuck reminded me that

are all the dependencies (e.g., included files); there are no global variables and, be-
cause of the functional language, no side-effects. Consequently, the function calls can
be cached, and a cache hit indicates that a tool invocation can be bypassed and the
cached result (e.g., compiler or linker output) can be used instead. This is the seman-
tic basis of incremental building in Vesta. For an in-depth discussion, see [2].

6 This syndrome was familiar to some of us from our time at Xerox, where analogous
events spawned the lament: “There’s never time to do it right, but there’s always time
to do it over.”
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modern hardware development had become software-intensive and that DEC of
course was fundamentally a hardware company. The company was sharply re-
ducing its formerly broad investments in software to focus on its core line of
Alpha-based computers. The software involved in development of an Alpha chip
was not quite on the scale of an operating system, but it was well beyond what
make could comfortably handle. Chuck thought Vesta 2 might help.

I realized that I had been wearing blinders. As the Vesta group had consid-
ered applications of Vesta and potential organizations for technology transfer, I
had always focused on enhancing a conventional C or C++ programming envi-
ronment. The Vesta group, being software developers ourselves, had never really
considered the applicability of our system to hardware development. Moreover,
we had generally focused on transferring Vesta technology to a group that al-
ready produced software development tools, since we knew that the support of
Vesta would have to be assumed by the receiving organization. We didn’t expect
that a receiving organization would be willing to incur the support cost (or ac-
quire the expertise) for the Vesta system simply in order to use it. Our experi-
ence with the operating systems groups had taught us that, but we were wrong.

DEC’s Alpha division had two teams, each developing a new version of the
Alpha processor chip. One of these teams was finishing up its current chip and
beginning to prepare for the next one, code-named Araña. The build system they
had been using was based on CVS, RCS, and make and had significant opera-
tional problems. Matt Reilly, who had responsibility for the development tools
that the chip designers would use for Araña, was looking for something better.
With a colleague, Walker Anderson, he created a list of desiderata, and then
Walker prepared a comparative analysis of some potential replacement tool
suites, including Vesta 2. After some stress testing showed that Vesta 2 could
meet Araña’s needs, Matt initiated a series of exploratory meetings with us. In
the course of these discussions, we revisited all the issues that had prevented the
transfer of Vesta 2 to other DEC organizations. Many were significant, but none
proved to be show-stoppers. What was different this time?

• Because the Araña designers were beginning a new chip, they had the
opportunity to take a fresh look at their development environment and
revise or revamp it. Development of a modern CPU chip is a multi-year
task involving hundreds of people, so an investment in new tools that
will improve the process and resulting product merits serious considera-
tion. Thus, Vesta 2 arrived on the scene at a propitious moment.

• While some of the basic development tools carry over from one genera-
tion of chip design to the next, many need to change to reflect advances
in the underlying process technology. Moreover, little of the previous
design (expressed as software) carries over; there is, in effect, a new
“code base” with no legacy code. This stands in sharp contrast to the
situation in the operating system groups, which have an ever-growing
legacy code base.
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• Despite their interest in Vesta, the Araña group could not risk wholesale
introduction of a new system, with the attendant training and inevitable
adoption problems involved. But, in part because they were getting a
fresh start, they could structure their development to introduce Vesta in
a small subgroup (about 20 engineers) first, fitting the outputs of that
group into those of the rest of the organization, which continued to use
older build processes. Over time, as they developed confidence in
Vesta 2, they could scale up its use by introducing it to additional sub-
groups.

• Matt Reilly found Vesta 2’s functionality (incremental build, scalability,
reproducibility, parallel builds, branched development) sufficiently
compelling that he was prepared to lobby his organization to commit an
engineer, Ken Schalk, to become their local Vesta expert. Ken under-
stood the needs of the Araña developers far better than we did, and
could both convey problems back to us and help the Araña developers
to use their new system-building tool to maximum effect.7

• Because the Araña group committed to taking on Vesta 2 maintenance
eventually, the Vesta researchers could agree to support the Araña
group until they could “go it alone.” By contrast, the operating system
organizations were looking for a customer/vendor relationship, which a
tiny research group could not provide. An atmosphere of mutual com-
mitment between the Vesta and Araña groups was thereby established
from the outset.

The transfer of Vesta 2 technology thus began. The Vesta implementers
(Allan Heydon, Tim Mann, and Yuan Yu) worked closely with and through Matt
and Ken to provide training and support, which was occasionally challenging
because the Araña group was in Massachusetts and the Vesta group was in Cali-
fornia. The groups took advantage of Vesta’s support for geographically dis-
persed organizations, using it to exchange updates between their sites and with a
small remote branch of the Araña group (also in California). This worked
smoothly, enabling fast and orderly response by the Vesta implementers to prob-
lems the Araña group uncovered and thereby delivering on the support commit-
ment required to make the technology transfer succeed.

Gradually, the daily involvement of the Vesta implementers decreased;
within a year the Araña team had become essentially self-sufficient. By this time
the user base had grown from an initial cadre of about 20 to over 130, and a
large fraction of the Araña tools and code had come under Vesta 2’s manage-
ment. By the time Compaq (which acquired DEC in 1998) sold the Alpha busi-
ness to Intel, the Araña team had come to depend on Vesta 2 and was even using

7 Ken became intimately familiar with the Vesta 2 implementation and eventually
became the primary support engineer for the system on-site. In fact, he ultimately
took overall responsibility for porting Vesta 2 to Linux and making an open-source
version available. See www.vestasys.org.
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it to build software outside the scope of their original plan. They obtained per-
mission for Vesta to be released under an open-source license before they left
Compaq, and the system went to Intel with them. We had reached the end of our
technology-transfer road, though the destination turned out to be an unexpected
one.

Lessons

Our repeated attempts to transfer Vesta technology, and our eventual success,
lead me to draw the following lessons.

• Successful technology transfer depends on finding a window of oppor-
tunity. Candidate recipient organizations have development cycles and,
during most of a cycle, they cannot absorb new technology. In our case,
the window was the “clean point” between Alpha chip generations,
across which little code and few tools are carried forward. Only when
the window is open is the development organization receptive; when the
window is closed, they can’t hear the researchers, no matter how loudly
they shout. We found the window open largely by accident. If I had it to
do over again, I certainly would seek to understand the development
organization’s schedule well enough to respond if/when the window
opens.

• Appearances matter. Researchers often look for intellectual or aesthetic
purity and ignore ugly details that are conceptually straightforward to
clean up.8 By contrast, development groups want things that work, and
therefore they care about the details. Those details tell them how care-
fully the researchers have thought about their needs, which amounts to a
litmus test of the practicality of the system under consideration. So the
lesson for researchers seeking to transfer a software system is: remove
the twigs over which the developers will otherwise trip. In Vesta 1, the
language syntax repeatedly tripped up potential adopters.9 We resisted,
essentially on aesthetic grounds, marrying C syntax with functional lan-
guage semantics. When we finally did so, we removed a place to stum-
ble. Hiding the functional semantics under C syntax enabled many

8 This is not a character flaw. Rather, it is an often necessary aspect of getting research
done with a small team—non-essential corners should and must be cut. Nevertheless,
what gets the research done faster can be an impediment to subsequent technology
transfer, and researchers need to recognize the trade-off.

9 Matt Reilly confirmed that the old Vesta language syntax would have been a signifi-
cant impediment, giving the Araña developers one more new thing to learn.
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developers to read the standard build scripts without being immediately
aware of the non-C semantics.10

• Having a champion within the candidate receiving organization is es-
sential. Matt Reilly and Ken Schalk were our champions. The old adage
that “you can’t push on a rope” applies; without pull from the technol-
ogy recipients, the transfer will fail. Some believe that successful tech-
nology transfer requires people transfer. I don’t subscribe to this view—
Vesta 2 is a counter-example—but I do believe that technology transfer
requires a champion, who pulls on the rope. An influential champion is
especially important when a methodological change is involved, as with
Vesta, because that change must be embraced and promulgated by man-
agement.

• Commitment by the research group to make the transfer succeed is
equally essential. As Allan Heydon put it, “While you can’t push on a
rope, if the other side pulls and you’re not holding on, things won’t go
very well either.” Supporting technology transfer can be very time-
consuming; the Vesta 2 implementers each spent the better part of a
year supporting the Araña group. (This is the alternative to people-
transfer.) Therefore, both researchers and their management must be-
lieve this is time well-spent.

• When the technology transfer requires a substantial change in thinking
or operation, success depends on finding a small, somewhat separable
group as the point of introduction. Even the forward-thinking Araña
group couldn’t swallow Vesta 2 all at once; they had to adopt it incre-
mentally. Success is contagious, and once the initial group has had a
successful adoption experience, they then become champions for the
new technology within the rest of their organization.

• Technology transfer must take bounded time; there must be a plan for
making the recipient organization self-sufficient. This generally means
that either the receiving organization or some other non-research group
commits to ongoing support of the technology. In our case, it was the
former, in the person of Ken Schalk.

None of these lessons is particularly earth-shaking. Some have been noted by
others, and no doubt other travelers on the technology-transfer road have en-
countered them along the way. However, if in recording the Vesta 2 experience I
have helped to straighten the road for some future researcher, I will be well satis-
fied.

10 Going even further, Ken Schalk created user-interface tools that made it possible for
most Araña developers to manipulate build scripts without having to write in the
scripting language at all!
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27
An Optical LAN

Derek McAuley

There are significant outstanding technological challenges in providing optical
switching on timescales short enough to provide statistical multiplexing at a
comparable granularity to that of packets; buffering, synchronization, and regen-
eration within the optical domain all present problems. This paper discusses
some of these issues and presents an architecture for a sub-network technology
that uses optical switching but avoids these issues by limiting the scalability of
the system through concentrating on local, system, storage, and desk area net-
works.

Introduction

There is no doubt that optical networks using Wavelength Division Multiplexing
(WDM) are at the core of today’s communications networks. They have massive
capacity—leading commercially available equipment can multiplex 160 wave-
lengths at 10 Gbps per channel over 5000 km without regeneration [1]. How-
ever, deployed networks are currently controlled by network management
systems operating on long timescales. The arrival of Generalized Multi-Protocol
Label Switching (GMPLS) [2] for the control of optical and Synchronous Digital
Hierarchy (SDH) path configurations has enabled more rapid provisioning, but
the timescales are still significant and statistical multiplexing gains are at best
coarse grained.

To try and achieve finer grained gains in statistical multiplexing, researchers
have investigated techniques such as Optical Burst Switching (OBS) [9] and
Optical Packet Switching (OPS) [4]. Simulations and component demonstrators
have been built, but major hurdles remain in the realization of a complete sys-
tem; I consider buffering and synchronization in this paper.

Furthermore, even allowing for great leaps forward in optical technology, my
view is that the realization of an end-to-end all optical network for data commu-
nications will experience the same issues in deployment as earlier proposals for
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end-to-end asynchronous transfer mode (ATM). At network boundaries, issues
concerning security, trust, classification, quality of service (QoS), etc., will re-
quire significant computing power to conduct deep inspection of packets; and,
for the foreseeable future, this computation will necessarily be electronic.

However, recently there have been dramatic improvements in the capabili-
ties, cost, and availability of certain photonic components and transmission sys-
tems. This trend is set to continue with key developments in short haul WDM,
amplifiers, and switches delivering low-cost components that are well matched to
local data-communications applications.

Together these developments lead naturally to the consideration of optical
data-paths for a local area sub-network technology for system, storage area, and
local area networks (LANs).

There was frantic activity in the 1970s building LANs. Valuable lessons are
to be learned from their design; most importantly for the new optical era, they
were designed to avoid network buffering. Drawing on this experience we pre-
sent a design for an optically switched local network. Taking a local area net-
work focus

• allows acceptably high utilization in the optical data-path without the
need for optical buffering,

• limits problems due to non-linearity (e.g., dispersion, etc.),
• changes the optical power and transmission requirements,
• obviates the need for in-band processing of data within the network.

This paper highlights the optical issues in transmission, buffering, and syn-
chronization, and then presents an architecture that can live with the limitations
of optical components becoming available in the near term.

Optical issues

Dispersion

A simple ray-trace model using an ideal single wavelength is often used to illus-
trate the difference between single-mode and multi-mode fibre. In multi-mode
fibre, the core of the fibre is much larger than the wavelength of light and a ray
can take multiple paths (modes) of differing lengths down the fibre, effectively
spreading an optical pulse in time, whereas in single-mode fibre only a single
path is allowed. This simplistic geometric argument suggests that single-mode
fibre can support much higher bit rates because the photonic pulses maintain
their shape as they propagate.

A more thorough analysis involves Maxwell’s equations. The classic treat-
ment of “single-mode” propagation makes a number of simplifying assumptions
which need to be reviewed as we consider higher speeds and hence shorter time-
scales. In particular:
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• The propagation is assumed independent of wavelength. However, in
fact the properties of the material (silica) and the manner in which the
electromagnetic wave propagates through it (the proportion in the clad-
ding versus the core) are both dependent on wavelength. The effects of
this are commonly thought of on two different scales: material disper-
sion: the different wavelengths of a WDM channel propagate at differ-
ent speeds; and chromatic dispersion: even within a single channel, the
finite frequency range of a single bit pulse spreads out in time.

• The fibre is assumed isotropic, but manufacturing produces fibres that
are not perfectly circular. Even moving to an elliptical model for the fi-
bre results in the generation of polarization mode dispersion—the ef-
fective refractive index of the material varies depending on the
polarization of the wave. Worse still, the polarization modes intermix as
they propagate, again leading to a general spread of the pulse.

With the main use of optical transmissions for wide-area connectivity, these
effects are significant at speeds 10 Gbps and above; however, they become im-
portant even in shorter links as we drive the transmission rate higher.

Temperature

Changes in operating temperature have subtle effects on optical propagation. The
macro-scale effects include changes in effective refractive index within the fibre
itself, at splices between fibres, and through connectors. Measurements show
diurnal cycles in the “length” of the fibre [8]. However, the same experiments
show a massive variation in the dispersion properties on much shorter time-
scales.

Optical power

A final effect worth noting is the dependence of the effective refractive index on
the optical power density; that is, the propagation of the photons is affected by
the density of photons—this is referred to as non-linearity. At high power levels,
typical of long haul optical transmission, such effects must be taken into account.
Importantly, high optical power in one wavelength will modify the propagation
of photons in another—thus WDM is not truly an orthogonal multiplexing
scheme, although it approximates one at low power.

Optical multi-wavelength coding issues

In standard WDM format an information channel over one link is entirely coded
onto one wavelength. Several of these channels on different wavelengths are then
launched into a fibre. This format has considerably increased the capacity of
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fibre optic-transmission systems, but each of the channels is considered inde-
pendent.

In contrast to standard WDM, “optical bus” [7] and bit parallel WDM [3]
coding have been proposed. In this format the bits forming a word are formed
into pulses launched simultaneously on different wavelengths. To avoid confu-
sion we call this wavelength striping. Within the optical domain considerable
effort has gone into ensuring the time alignment of pulses for a given word is
maintained, which makes for simple electronics; on the other hand, compensa-
tion in the electronics is straightforward and a very small addition to the total
number of gates involved in a network interface card.

Moreover, recent work has demonstrated multi-wavelength soliton-like be-
haviour, which is in fact reliant on the non-linearity described above. Taken to-
gether, solitons and electronic compensation offer the opportunity to consider
new multi-wavelength or wideband coding techniques.

Optical switches

Switching on packet timescales and with data-rates of interest at 1 Gbps and
above dictates the use of devices based on electro-optical effects rather than me-
chanical (e.g., MEMS), thermal, or acoustic devices. Electro-optical devices are
capable of switching in several nanoseconds [10], which, although quite fast, is
of the order of some number of bit times at significant data rates. We must en-
sure that, while the switch is in transition, no packet data is lost; we either intro-
duce gaps between packets or require sacrificial packet preambles.

Buffering

At present there are no practical optical RAM elements available from which to
build even small memories; photonic crystals offer some possibilities, but cur-
rently remain in the photonic laboratories.

Fibre used as a delay line (FDL) offers one means of buffering. Combined
with the use of multiple wavelengths, such a delay line permits multiple packets
to be simultaneously buffered in the same fibre. FDL components have been
demonstrated in laboratories. One matter of concern is that during the recircula-
tion, losses accumulate, especially in the delay-line tap for insertion and removal
of packets.

Using delay lines as a buffer naturally leads to the consideration of “slotted”
systems: either ATM style packets with labels, or synchronous TDM. In the gen-
eral case we need to deal with the variability in the slot arrival time compared to
the slot switching time. Using a slot synchronizer (Figure 1) we can insert a vari-
able delay of up to one slot time in increments of some quantum of time based
on the degree of bit-level synchronization required. For example, for a 1024 bit
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slot with a requirement for phase match of �/8, a phase synchronizer composed
of a chain of FDLs, each a factor of 2 longer that the previous, requires 14
stages. This is unsatisfactory: 14 stages of loss and noise are injected even before
the packet reaches the main FDL buffer.

Wavelength conversion has often been proposed as an alternative to optical
buffers: at the point of contention where two packets wish to travel on the same
output link at the same time, simply ensure they are on different wavelengths.
The classic Optical Burst paper by Turner [9] shows specifically the trade-off
between more wavelengths and burst buffers. On the other hand, a single FDL
can also hold multiple packets if they are on different wavelengths, though it
requires that the tap on the FDL be able to add and remove specific wavelengths
[5].

At the core of the buffering and synchronization problem is the problem that
full “3R” optical regeneration, which involves reshaping and retiming pulses, as
well as amplification, is not yet practical.1 Even just with amplification alone to
deal with the losses in the switch and fibre elements making up the synchronizer
and buffer, noise accumulates rapidly to an unacceptable level.

Lessons from history

LANs

The original LAN technologies—Ethernet, Hubnet, Token Ring, Slotted Ring,
Dual Bus, Folded bus, FDDI, etc.,—all held packets in end-systems until trans-
mission was (believed) to have been successful. There was no buffering in the
network. It is easy with today’s full-switched multi-rate LANs to forget that at
one point the concept of a LAN bridge, which would buffer and forward packets,
was seen as a new and challenging research topic [6].

The original LANs could be categorized as either synchronous or asynchro-
nous. In the synchronous ones, nodes in the network received a continuous signal
from the communications media to which they synchronized their transmissions

1 3R: re-amplify, re-shape, re-time.

20 21 2n-1 2n

Figure 2: Chain of 2 × 2 elements and FDLs used as synchronizer
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at the bit level, and in which was encoded the information needed to implement
Media Access Control (MAC) based on contention avoidance. The rings and
unidirectional or daisy-chained busses are examples. In the asynchronous ones,
exemplified by systems such as Ethernet and Hubnet, a receiver would re-
synchronize to the bit clock on a per packet basis and the MAC would imple-
ment contention resolution.

Wireless

Wireless networks by their very nature are “un-buffered,” and there is consider-
able experience from wide area (ALOHA and satellite), metropolitan (mobile
telephony), and local (802.11) networks to draw on. While local wireless net-
works often use asynchronous access techniques similar to local wired networks,
experience in the wide area led to what can be categorized as semi-synchronous
networks—that is, synchronized at a time slot level, but asynchronous at the bit
level. In these networks, even when fed from a single base-station master clock,
the variability in delay (jitter) introduced in radio propagation and/or mobility
mean that it is simply not possible to ensure that two packets from different
sources arrive at the base-station (or satellite) with the required sub-bit timing
accuracy to run synchronously.

However, designing with realistic quantitative evaluations of these effects al-
lows the imposition of a slot structure into which packets can be inserted by
transmitters and be received within the defined time slot by the base-station. For
example, a normal GSM “packet” is 144 bits within a time slot of 152.25 bits,
allowing 8.25 bits of slack. To deal with longer-term drift as conditions change
(e.g., as a cell-phone moves), the packet launch timing (skew) must be constantly
re-evaluated; for the GSM example, a handset can be up to 35 Km from a base-
station giving a maximum skew of approximately half a packet.

The media-access issue is orthogonal to clock synchronization and for these
semi-synchronous systems has been implemented using both contention resolu-
tion and avoidance, with both fixed (TDM) and variable (demand-driven reser-
vations) access for nodes.

Architecture

With the limitations of optical devices available in the short-term laid out and
lessons from LAN and Wireless experience highlighted, the rabbit is in the hat.

Slot format

We consider a semi-synchronous optical network composed of point-to-point
links and a central switch, which itself might be composed of several switching
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stages. Quantitative estimations for all of the effects of dispersion, temperature
variation, and switch behaviour indicate that a semi-synchronous optical network
can be constructed in the local area and achieve good utilization. Work continues
on detailed analysis of exact materials and wavelengths, and I use illustrative
numbers in the following discussion.

The switch communicates slot timing and phase information to each of the
network nodes so that the transmitters can lock onto the switch slot structure.
This bi-directional control channel is also used as the request/grant channel to
implement Media Access Control (Figure 2). As with wireless communications,
we can consider MAC layers implementing reservation and contention mecha-
nisms. When granted access to a time slot, a node can transmit using wavelength
striping on the data channels, 
1..n, which are routed through the optical switch to
the designated destination.

Figure 3 illustrates typical values of the various timing parameters that have
an impact on the design. Importantly in the small-scale network under considera-
tion, polarization and chromatic dispersion can be neglected, while material dis-
persion and temperature effects are pronounced.

Assuming a commercial-grade network (rather than military grade), we might
expect temperature changes of 50oC; constraining ourselves to a network of 1 km
radius, we see that the most significant jitter effect is the temperature-dependent
element; allowing for this jitter in both directions, we obtain a value for tj of 6
ns. Operating within a 50 nm band around 1550, this results in a “gap” time (tg)
of 12 ns. Operating at a nominal 100 Gbps, and presuming a slot sized to take a
standard Ethernet frame (12,000 bits = 120 ns), the slot time, tp, is 132 ns—90%
utilization is achieved.

Media access

The network size envisaged leads to a 5,000 ns node to switch transit time, or up
to about 40 slots in flight. With a pure demand-driven reservation system, this
would result in 10 �s access latency. However, two further points are worth con-
sidering: some links will be significantly shorter than the full 1 km, and we en-
visage the number of nodes would be smaller than 64, perhaps as small as 4.
Taken together, these indicate that in order to minimize latency, there will be
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times when it will be advantageous to implement a predictive reservation system;
future work is to study the behaviour of such an adaptive scheme.

Figure 3: Timings for transmitted and received packets



An Optical LAN 203

Summary

Optical switches capable of switching on the timescales of packets exist, and
together with low-cost short-haul WDM components enable the design of local
area optical packet oriented networks. There are no practical solutions to the
problems of optical buffering and the related problem of synchronization. Learn-
ing from previous LANs and wireless networks, we presented a network design,
and through an illustrative example, showed that an acceptable utilization is pos-
sible.
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28
What’s in a Name?

Robin Milner

In the late eighties Roger Needham wrote a paper called ‘Naming,’ which is now
a chapter in a leading text on distributed systems [4]. The paper highlights some
subtleties of naming, and points out how these can either illuminate or confuse
system design. Around the same time colleagues and I worked out the π-calculus
[3], a calculus for mobile systems intended for modelling and analysis. Names
are the most prominent feature in the π-calculus, and in this essay I explain in
simple terms how it deploys them.

Some things about names are so buried in our linguistic habits that we hardly
ever talk about them. Roger talked about one of them: the difference between
pure and impure names. To paraphrase him, a pure name is nothing but an iden-
tifier or pointer; you can follow the pointer, but otherwise you can only test it for
equality with another one. A name is impure to the extent that you can do other
things with it. You can resolve it into parts, or you can take advantage of your
knowledge about the thing that it designates; an email address like
Robin.Milner@cl.cam.ac.uk illustrates both of these.

We also habitually assume that a name designates something with persistent
identity. This assumption works well for us in sequential programming: a pointer
designates a storage cell, and a procedure identifier designates a piece of code. It
doesn’t work reliably in distributed systems. Consider a call-centre; on each call
you get someone different. Consider an e-mail message to
Robin.Milner@cl.cam.ac.uk; it may go to me, or to an agent to which I (on
holiday) have delegated the power to respond.

The π-calculus is built upon the idea that the respondent to (or referent of) a
name exists no more persistently than a caller of the name. In other words, the
notions of calling and responding are more basic than the notions of caller and
respondent; every activity contains calls and responses, but to have a persistent
respondent to x—one that responds similarly to every call on x—is a design
choice that may be sensible but is not forced.

What follows is a taxonomy of the small range of things you can do with
names in the π-calculus. At the end I speculate on whether these are enough.
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Using and mentioning names

The logician W.V. Quine discussed the distinction between the use and mention
of names. In natural language, a name is used when something is intended of the
referent, mentioned when intended of the name itself; further, a use can be im-
perative (an invocation), or indicative (an assertion). In the π-calculus we only
have imperative use, and what it intends is an act. But we distinguish between a
call act and a response act, even though one cannot occur without the other. The
reason to distinguish them is that, in describing any agent, we define its potential
behaviour: what calls/responses it can make, provided that its environment
makes homonymous responses/calls. Here is a call on x, mentioning y:

Pyx .��

This can be pronounced ‘x, here is y; now I’ll do P’. Superficially, it is like
‘John, here is Stephen’; actually, it corresponds to ‘John, here is (the name)
“Stephen”.’ It is just a message with address x and content y; we can call this
quoting y.

Here is a response on x, mentioning z:

Qzx .)(

This can be pronounced ‘x, thanks for z; now I’ll do Q with it.’ We can see how
calls and responses are dual. Following the mathematical convention of ‘co-’ for
a dual, we can say that the response is co-quoting z, because z acts as a place-
holder in Q for a name quoted by a call.

In fact the only rule of action in the π-calculus is that, when a call may con-
cur with a homonymous response, as in

QzxPyx .)(|.��

then they are fused together; thereafter P and Q happen concurrently, with y oc-
cupying the place in Q held by z.

It is better to think of ‘response on x’ rather than ‘respondent designated by
x,’ because there need be no agent identifiable as respondent. The power to re-
spond on a name can be delegated or duplicated (consider the call-centre), just as
the power to call on a name can be so. For example, in the above rule of action,
if Q happens to contain a response on the place-holder z, then the call that quoted
y has delegated to Q the power to respond on y.

Creating names

So far we have only talked about use and mention. But where do all the names
come from? How can we represent the very specific mechanisms (e.g., time-
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stamps) that allow a system to create names which it can safely assume to differ
from all other names?

The π-calculus does this by fiat. It has a name-creator new that is assumed to
create a globally distinct name. In some eyes this is cheating; in other eyes it
isolates the implementer’s problem of creating new names in practice from the
analyst’s task of explaining how a system works, assuming generated names are
unique. Here is an example of unique name creation:

QPz |)(new

This creates z local to P. Whatever P does, this name remains different from any
name occurring in Q—or in the wider environment—even if such a name is tex-
tually identical with z, and even if P mentions its new z to Q.

We can illustrate new with a simple example: simulating a function call. The
π-calculus has no built-in notion of call-and-return, but if a process calls on x
quoting y, then it can simultaneously create a private channel res and pack it up
with y in the call; thereafter it can respond on res to receive the result that comes
back. This call-and-return action is defined by:

).)(|,( Qzresresyxres ��new

(A multiple quotation, such as �� resy, , can easily be coded in the π-calculus.)
The creation of res ensures its distinction from every other return-address. This
little sequence is very commonly used, so we shall abbreviate it to:

Qzyx .)(���

Matching names

So far we have seen only one way to mention a name: quoting it in a call (or co-
quoting in a response). Surprisingly, with a few control mechanisms this is
enough to model all computation! Nonetheless, it does not give the direct facility
to ‘test a name for equality with another name’. So there is a second way to men-
tion names: matching. With (only) these two kinds of mention, the π-calculus
can much more directly model the handling of names in real systems.

1

Matching in the π-calculus can done by the construction

QPyx /][ =

1 In applied languages built upon the π-calculus, there can, of course, be impure names
like 23, which designate known entities, operations on them like + and ×, and vari-
ables or place-holders a, b, c, ... for them. With appropriate type discipline, this
doesn't impair the rigorous handling of pure names.
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meaning ‘if x and y are the same name, then do P, else do Q.’ (It matches names,
not their referents, because referents need not exist.)

In the context of π-calculus we can illustrate how directory lookup can be
handled, following closely how Roger Needham illustrates it. A hierarchical di-
rectory—say the one containing the graduate students at Wolfson College, Cam-
bridge—typically has a composite name like Wolfson/Grads. It is not a unique
designator; there will be a directory with this name at Oxford too, because both
Oxford and Cambridge have a Wolfson College. However, usable systems will
ensure that each directory and subdirectory will also have a unique directory
identifier (DI), which is a pure name.

If I know the DI of Cambridge University, I can access the University’s main
directory and then use a composite name like Wolfson/Grads—or extensions
of it – to get to all its subdirectories, even if I don’t have their DIs. For example,
suppose I want to get hold of (the DI of) Smith-J at Wolfson College Cam-
bridge. If the DI of the Cambridge University directory is #312, then I can get to
where I want (without knowing any other DIs) by a composite call as follows:

Qdi .)312# ,, (J-SmithGradsWolfson ���

This call-and-return will cause the required DI to occupy the place held in Q
by di. To make this happen, the directory itself can be defined with matching like
this:

�� //

,203#][/

,427#][

).,,(312#

��=

��=

persongroupcollege

persongroupcollege

persongroupcollege

Wolfson

Trinity

!

Here #427 and #203 are the DIs of Trinity and Wolfson. Thus a matching
occurs at each level. Notice that there is only one kind of pure name. We chose
to write college, Trinity, and #427 differently because we treat them differ-
ently; for example, we never use the first two, but only mention them.

Finally, you may have noticed the new operator ‘!’ in the above code for a di-
rectory. It is a replicator; it gives persistent identity to the respondent that it
qualifies, making it a re-usable resource. So in this case the pure name #312 does
designate a persistent agent: the Cambridge University Directory.

What else is in a name?

We have illustrated use (call, response), mention (quote, co-quote, match), and
creation of names. That is all the π-calculus can do with them. Are there other
things it might do?

I have not said anything so far about computer security, which has in fact
been a main application of process calculi that use names. Another influential
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paper by Roger Needham and his co-authors [2] has inspired much of the recent
logical work on security, authentication and associated topics, and under this
heading come many approaches using process calculi that use names whose
scope may be controlled (for example by new in the π-calculus). A leading ex-
ample is the spi calculus of Abadi and Gordon [1], which is largely based upon
the π-calculus, but uses extra features for encryption and decryption.

These extra features allow the spi calculus to represent security protocols
very directly, and have led to powerful analytical studies. But there is a theoreti-
cal question that hasn’t been fully answered as far as I know: in what rigorous
sense do they extend the expressive power of the π-calculus? It would be illumi-
nating to prove that the extra features can, or that they cannot, be mimicked in
the π-calculus in some exact sense.

More generally, if we suspect that the π-calculus can’t do something that can
be done with pure names, then where could we look for the weakness? A more
powerful form of use of names might have something to do with synchronisation.
The π-calculus only ever synchronises a pair of actions, one call and one re-
sponse. What about synchronising two (or more) calls with a single response?
The calls could be on two distinct names x1 and x2, and the response on both of
these names simultaneously. So our rule of action would be strengthened to syn-
chronise these three actions:

QzzxxPyxPyx .)(|.|.
2121222111

����

causing y1 and y2 simultaneously to occupy the places held in Q by z1 and z2, and
then P1, P2, and Q to proceed concurrently. Can this be mimicked in the π-
calculus? What exact meaning would ‘mimicked’ have here?

Such theoretical questions may seem arcane. They certainly should not dis-
tract us from applying process calculi to security (or to anything else). But they
have their own charm, and the better we can answer them, the more confident we
can be of finding good primitives for expressing and analysing mobile communi-
cation.
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The Cryptographic Role of the
Cleaning Lady

Bob Morris

By the cleaning lady, I mean some person or entity that you believe could not
possibly be part of your security or cryptographic system. I leave it to the reader
to identify his or her own cleaning ladies in the remainder of this note and in real
life.

Once there was an occasion when some bad guys, a man and a woman,
wanted some key material (code books) from a foreign embassy. They waited
until the end of the working day and managed to persuade a guard to let them
into the building.

They knew that there was a guard who would show up at unpredictable times
during the night and would naturally wonder what the two were doing in the
building. While they were getting at the code books, they heard him coming in
the front door and they had only a very short time to solve their problem. The
woman rapidly took off all of her clothes and when the guard arrived in the room
he seemed to understand exactly what they were planning to do—he apologized
and left the room. The two intruders obtained the code books and left with them.
This is a true story, but what else they did that night is not part of this story.

It is my understanding that all major countries employ cleaning ladies in this
capacity.

Another sort of cleaning lady is arranged as follows. In the part of Moscow
that houses foreign embassies there are two quite different fire stations. One of
the fire stations responds to fires in foreign embassies, and the second responds
to fires in ordinary buildings.

Would the reader please think hard about ‘trusted third parties’ and woman-
in-the-middle attacks?
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Real Time in a Real Operating System

Sape J. Mullender, Pierre G. Jansen

Introduction

The quality of an operating system is more a subject of religious debate than of
technical merit. The Windows community is like the Catholic Church; it has the
largest following, and its members are mostly laymen who do not participate
much in religious debates. The community is organized on strong hierarchical
lines.

The Unix community is like the mainstream Protestant Church; it has not as
large a following as the Windows community, and its members define the system
and run the community. Like the Protestant Church, there are many flavors of
observance: Linux, FreeBSD, NetBSD, Mach; the list is as long as the list of
protestant variants. Most are highly evangelical—a good Protestant trait—with
Linux perhaps being the most fanatical.

The Macintosh community hangs somewhere in the lurch between Windows
and Unix, the Catholics and the Protestants, a bit like the Anglican Church;
they’re Protestants acting like Catholics.

Plan 9 from Bell Labs is like the Quakers: distinguished by its stress on the
‘Inner Light,’ noted for simplicity of life, in particular for plainness of speech.
Like the Quakers, Plan 9 does not proselytize.

Plan 9 is relatively little known and has but a small user community (a few
thousand installations). Nevertheless, it is a complete operating system, and it is
the only operating system booted by many of its users. Plan 9 is also used in sev-
eral embedded environments. For instance, it is the system inside the Viaduct, a
computer system the size of a packet of cigarettes that provides an encrypted
bridge between Lucent employees’ home computers and the corporate intranet. It
is also beginning to find use in experimental wireless base stations.

New technologies (the printing press, organ transplants, birth control) and
changing world views (the solar system, evolution) have always been upsetting
to churches, causing violent debates and schisms. This is just as true in the oper-
ating system community, where new things like object-oriented programming,
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copyleft licensing, Ethernet vs. token ring and real-time support can cause simi-
lar violent debates and schisms.

It is the doctrine of real-time support in a general-purpose operating system
that will, in this paper, be stamped with ecclesiastical authority.

We have integrated a real-time CPU scheduler in our operating system Plan 9
[7]. Although our scheduler is a new scheduler in terms of sharing the operating
system resources, it has its fundaments in the EDF scheduler as first introduced
by Liu and Layland [6]. Instead of only considering the CPU resource, our
scheduler also considers other shared OS resources: applications indicate which
resources they require (including processor use), and our scheduler determines if
the set of applications can run concurrently and remain schedulable.

Although other operating systems may also have real-time support, we be-
lieve there are only few general-purpose operating systems with a comparable
native support for real-time applications.

In many embedded systems, some applications have stringent real-time re-
quirements, while others can be best effort. Traditionally, general-purpose oper-
ating systems have never been good at guaranteeing deadlines. Various attempts
have been made to introduce real-time schedulers to general-purpose operating
systems. A few systems deal with real-time applications by shutting out other
applications (the general modus operandi for the Windows family of operating
systems).

In the subsequent sections, we shall describe our system and the theory be-
hind it, omitting, for lack of space, most proofs and a discussion of related work.
As such, this paper has the status of an extended abstract more than a full-
fledged paper. For a more formal introduction, see Jansen & Laan [4], and
Jansen’s forthcoming thesis.

Practicalities

Adding real-time functionality to Plan 9 as a layer below regular user programs
was deemed to be undesirable. At best it would make the API for writing real-
time applications a subset of the standard API; at worst, it would be completely
different. We wanted to give real-time applications access to all operating system
services and access to an interface to control an application’s real-time behavior
as well. The price one has to pay in this approach is that real-time applications
may risk missing their deadline by using non-real-time services.

Although we consider this to be clumsy programming, we have no desire to
forbid it. We envision that, with time, real-time versions of various operating
system services will become available, e.g., a real-time file server along the lines
of Nemesis’ Clockwise mixed-media server [3]. Plan 9 makes extensive use of
file servers, which, through their name space mounted in a per-process mount
table, provides access to much more than secondary storage. The window sys-
tem’s interface is a file system; a play list file system may be associated with an
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audio device; mail messages present themselves as subdirectories in a mail file
system, and so on. Talking to file systems is important to most applications, so it
cannot be forbidden. In fact, our real-time scheduler presents itself as a file sys-
tem too.

Another issue was how to deal with processes whose deadlines depend on
one another. The most common example of this is a set of processes in a pipe-
line, for instance, a process decrypting a video stream feeding another that ren-
ders it. Scheduling theory has problems with such dependencies. We chose to
allow several processes to share a single allocation of resources: one period, one
deadline, and one slice of the CPU equal to the sum of the run times required by
each of the member processes.

Resources are identified to the scheduler by name. A resource is shared when
tasks share the name of the resource. When a resource is acquired or released,
tasks inform the scheduler. This is the only involvement the scheduler has with
shared resources. Resources can, therefore, be anything. One important assump-
tion is that tasks give up any resources they hold when they give up the proces-
sor. Tasks can cause themselves to be scheduled non-preemptively with respect
to each other by sharing a resource full time. When they share no resources, a
task with an earlier deadline can always preempt a task with a later one.

Theory

A task set � consists of a set of preemptable tasks �i ( i = 1 ... n ). Each task �i is
specified by a period Ti, a deadline Di, a cost Ci, and a resources specification �i.
It is released every Ti seconds and must be able to consume at most Ci seconds
of CPU time before reaching its deadline Di seconds after release (Ci � Di � Ti).
We use capital letters for intervals (e.g., T, D, C) and lower case for points in
time: in particular, r for the next release time and d for the next deadline.

The utilization U of � is defined as
i

n
i i TCU /0� ==

For � to be schedulable, U � 1 must hold. We define two functions, processor
demand H(t), introduced by Baruah et al. [2], and workload W(t), introduced by
Audsley et al. [1], H(t) represents the total amount of CPU time that must be
available between 0 and t for � to be schedulable. W(t) represents the cumulative
amount of CPU time that is consumable by all task releases between time 0 and t.

Figure 1 illustrates the functions for an example task set. All tasks in � are
released simultaneously at t = 0. This is known as a critical instant, the time at
which the release of tasks will produce the largest response time. If � is schedul-
able from a critical instant, it is schedulable from any other starting point. A
critical instant occurs in resource-free preemptive EDF scheduling when all tasks
are released simultaneously. This is a well-know result, but we have also proven
it for our EDF scheduler.
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Figure 1: Example task set and its EDF schedule on the left, and the processor demand
and workload functions on the right.

The right half of the figure shows the functions H and W as a function of
time. It also illustrates the schedulability analysis. Note that the vertical distance
between W and the diagonal in the graph represents the amount of work still to
do in released tasks. At point L, there is no more work to do, and the system be-
comes idle. H represents the amount of work that must be finished. If H crosses
the diagonal, then more work would have to be finished than there is time avail-
able. The schedulability analysis tracks W and H until either W touches the di-
agonal or H crosses it. If H crosses the diagonal, the task set is not schedulable.
If W touches it, the task set is schedulable. The example task set is thus schedul-
able. Task sets can be constructed in which neither W nor H reaches the diago-
nal. The schedulability analysis, therefore, traces these functions for only a
predetermined maximum number of steps and rejects a task set if this maximum
is reached.

The scheduler manages the set of admitted tasks using two queues and a
stack: The Wait Queue holds tasks awaiting their release. When a task gives up
the processor or reaches its deadline, it is put on this queue, in release-time or-
der, from which it will be transferred to the next queue when it is released. The
Released Queue holds processes that have been released but have not yet run.
This queue is maintained in deadline order, earliest deadline first. The Run Stack
holds the tasks that have already run; the currently running task is at the top of
the stack and pre-empted the task immediately below.

The scheduler maintains two timers. The Release Timer goes off when the
task at the head of the Wait Queue needs to be released. Released tasks are then
transferred to the Released Queue. The Deadline Timer goes off when the cur-
rently running task reaches its deadline. When this timer goes off, the currently
running task is removed from the (top of the) stack and put back in the Wait
Queue.
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When a task gets to the front of the Released Queue or when a task is popped
from the Run Stack, the deadlines of the task at the head of the Released Queue �
and the task at the top of the stack �' are compared. If d� < d�', it is removed from
its queue and pushed onto the Run Stack. Then the Run Timer is set and the task
gets the processor. If both Run Stack and Released Queue are empty, best effort
processes are scheduled.

A resource specification � is a series of zero or more quadruples name, R, C,
{�'}, where name names the resource, R indicates whether the resource is a
shared-read or (in its absence) an exclusive-access resource, C is the cost of the
resource (the time the resource is held), and {�'} is a sub-specification which
specifies nested resources, or may be absent. An example of a task set with a
resource specification is:

D=4s T=5s C=1s resources='a R 900ms { b }'

D=5s T=8s C=1s resources='a R 800ms {b 200ms { c 100ms }}'

D=6s T=10s C=2s resources='b R 200ms c R 1.7s { b R 1.3s }'

D=9s T=9s C=3s resources='a R 1.8s { c R }'

When costs are omitted, they are inherited from their parent resource specifi-
cation or, in the case of a top-level specification, from the task’s cost C. Note, by
the way, that the strings in this example can be written precisely as they are to
the scheduler file system to specify a task’s real-time parameters.

Task 1 has a period of 5 seconds, a deadline of 4 seconds (if it is released at
t, its deadline is at t + 4 and its next release is at t + 5); it needs at most 1 second
of CPU time between release and deadline. Resource a is shared by tasks 1, 2,
and 4. In all cases it is a shared-read resource, so it imposes no restrictions on
the schedulability of these tasks. Resource b is shared by tasks 1, 2, and 3. Task
1 needs exclusive access to it, and for the full 900 ms, it also holds resource a.
Task 3 needs shared-read access to resource b for 200 ms and again for 100 ms
while holding resource c.

The principle behind scheduling a task set with shared resources is that we
keep tasks on the Released Queue until there are no tasks left in the Run Stack
holding resources that the task on the Released Queue may claim. Thus, it is not
possible for a task to (try to) claim a resource already held by another task. Such
a task would simply not have been scheduled. Tasks never need to be preempted
waiting for a resource.

Here’s how we enforce this: every resource R is assigned an inherited dead-
line �R = min�∈� D� | R ∈ �, the minimum of the deadlines of all tasks using R.
Every task � also receives an inherited deadline �� = minR �R | R ∈ �, the mini-
mum of the inherited deadlines of all resources used by the task. A task’s � thus
changes as the task acquires and releases resources; � is only relevant for run-
ning tasks.

Each released task is now characterized by the triple {d, D, �}, where d is
the current absolute deadline (D is the deadline interval; d is the absolute dead-
line).
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Earlier, we presented the scheduling rule that the task � at the head of the Re-
leased Queue would move to the top of the Run Stack if its d� was less than d�' of
the task �' on top of the Run Stack—a released task with an earliest deadline will
pre-empt the currently running task. Now we modify that rule:

ττττττ ′′ ∆<∧<′ Dddiffpreempts

Figure 2 shows an example Run Stack (rectangles) and Released Queue (el-
lipses). At this time, the task at the head of the Released Queue may not preempt
the one on top of the Run Stack (9 < 7 ∧ 3 < 4 is false). For every task �, �� �
D� and, because of the scheduling rule, for a task � higher on the Run Stack than
another task �', D� < ��'. There is, therefore, a partial ordering from D to � to D,
etc. up and down the Run Stack. This is indicated by the arrows.

7, 4, 4

8, 6, 5

10, 9, 9

9, 3, 3 12, 8, 7 14, 9, 5

if (9 < 7 && 3 < 4) ...

Released tasks, sorted on d

Running

Preempted

Preempted

d, D, ∆

Figure 2: Example Run Stack (rectangles) and Released Queue (ellipses); the arrows
indicate the partial order between the parameters.

This ordering, plus the definition of �, establishes the property that the cur-
rently running task—which is at the top of the Run Stack—will not attempt to
acquire any resources held by preempted tasks, which are further down in the
Run Stack, because, if they held such resources, their � would be less than or
equal to the D of the running task, and this the scheduler does not allow.

A second property is that there is no transitive blocking, because a process
that is blocked due to shared resource usage only has to wait for the blocker to
release the resource. This property was already known from the Priority Ceiling
protocol [8], a protocol that was the first to introduce static priority inheritance,
similar to our static deadline inheritance.

The schedulability analysis is only moderately more complex with resource
sharing. The processor demand and workload functions do not change, because
the work that needs to be done and when it needs to be done is the same. But we
do have to take into account now that one task may block another’s access to the
CPU.
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This causes ‘spikes’ on the processor demand function. The height of the
spikes encodes the time a task may have to wait for a task with a later deadline
that holds a resource the task needs. A task set is inadmissible if one of the
spikes crosses the diagonal. If there are no shared resources, there is no blocking
(and there are no spikes), and the schedulability test reduces to the normal pre-
emptive-EDF schedulability test. If there is one resource, shared full-time by all
tasks, the schedulability test reduces to Jeffay’s [5] non-preemptive schedulabil-
ity test. Our schedulability test spans the range between the extremes of com-
pletely preemptive and completely non-preemptive scheduling.

Implementation

We implemented the scheduler in Plan 9. This was a fairly straightforward proc-
ess, although we had to change the behavior of spin locks in the kernel slightly.
A process is now allowed to finish its critical section before being subject to
scheduling. None of the spin locks hold the CPU longer than 50 µs or so.

As explained earlier, two timers control the real-time portion of the sched-
uler: the Release Timer goes off when the task at the head of the Wait Queue
must be released. If that task gets to the front of the Release Queue, a scheduling
decision is made, otherwise, the current task continues running. When the Dead-
line Timer goes off, the running task has used up its quantum, and the processor
is taken away from it until the next release. We also raise an exception in the
process.

The interesting part about the implementation is the use of a file system to
control the system. In the default mount point of /dev/realtime we find three
files, clone, resources, time, and a directory: task. Existing tasks are repre-
sented by files (whose names are numbers) in the task directory. A new task is
created by opening the file clone, which then behaves like the corresponding
(new) file in the task directory. The main loop for a typical real-time process
would look something like the following:

char *clonedev = "/dev/realtime/clone";
void processvideo(void){
int fd;
fd = open(clonedev, ORDWR);
if (fprint(fd,

"T=33ms D=20ms C=8ms procs=self admit") < 0)
sysfatal("%s: admission: %r", clonedev);

while (processframe())
fprint(fd, "yield");

fprint(fd, "remove");
close(fd); }

This sequence creates a new task by opening /dev/realtime/clone, sets
period, deadline and cost, and puts the running process into the process group of
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the task. It then asks the scheduler to admit the new task by running the sched-
ulability test. If the write succeeds, the task was admitted.

The main loop processes a video frame and then gives up the processor
(yield) while waiting for the next frame. When the application has finished, it
removes the task from the system and exits.

Conclusion

The real time scheduler is installed in the currently distributed version of Plan 9
(obtainable through plan9.bell-labs.com). It has already been used in sev-
eral applications, one of them an experimental wireless base station. But there
have not been any applications that have challenged the scheduler much.

We have had some lively debates over whether it is worthwhile to have a
real-time scheduler that can manage shared resources. Most of the real-time ap-
plications we considered do not have any resources that are shared. But one real-
time application we built has nothing but shared resources: the Clockwise mixed-
media file system has many real-time processes, with varying periods and costs,
sharing disks. As it turned out, scheduling the disks was much more important
than scheduling the CPU, so the Plan9 scheduler would not have been adequate
for this application.

The battle about whether or not to include support for resource sharing in our
real-time scheduler was won by the resource-sharing camp when the algorithms
presented here emerged: the schedulability test is not overly complicated and the
run-time complexity is practically O(1): only the queue insertions are not con-
stant-time operations, but the queues are invariably very short. In addition, the
scheduler prevents resource contention from causing gratuitous context switches,
and it is completely deadlock free. Finally, the same scheduler can trivially be
used for preemptive or non-preemptive real-time EDF scheduling.
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Zen and the Art of Research
Management

John Naughton, Robert W. Taylor
(with apologies to Sun Tzu)

1. HIRE ONLY THE VERY BEST PEOPLE, EVEN IF THEY ARE
CUSSED. Perhaps especially if they are cussed. Your guiding principle
should be to employ people who are smarter than you. One superb re-
searcher is worth dozens of merely good ones.

2. ONCE YOU’VE GOT THEM, TRUST THEM. Do not attempt to micro-
manage talented people. (Remember rule #1.) Set broad goals and leave
them to it. Concentrate your own efforts on strategy and nurturing the en-
vironment.

3. PROTECT YOUR RESEARCHERS FROM EXTERNAL INTER-
FERENCE, whether from company personnel officers, senior executives,
or security personnel. Remember that your job is to create a supportive
and protective space within which they can work.

4. MUCH OF WHAT YOU DO WILL FALL INTO THE CATEGORY OF
ABSORBING THE UNCERTAINTY OF YOUR RESEARCHERS.

5. REMEMBER THAT YOU ARE A CONDUCTOR, NOT A SOLOIST.
(Rule #1 again.) The lab is your performance.

6. DO NOT PAY TOO MUCH ATTENTION TO “RELEVANCE,”
“DELIVERABLES,” and other concepts beloved of senior management.

7. REMEMBER THAT CREATIVE PEOPLE ARE LIKE HEARTS: they
go where they are appreciated. They can be inspired or led, but not man-
aged.
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8. KEEP THE ORGANISATION CHART SHALLOW. Never let the lab
grow beyond the point where you cannot fit everyone comfortably in the
same room.

9. MAKE YOUR RESEARCHERS DEBATE WITH ONE ANOTHER
REGULARLY. Let them tear one another’s ideas to pieces. Ensure frank
communication among them. Observe the strengths and weaknesses which
emerge in the process.

10. BE NICE TO GRADUATE STUDENTS. One day they may keep you,
even if only as a mascot. (Moreover, they are a lot of fun!)

11. INSTALL A WORLD-CLASS COFFEE MACHINE and provide plenty
of free soft drinks.

12. BUY AERON CHAIRS. Remember that most computer science research
is done sitting down.

13. INSTITUTE A “TOY” BUDGET, enabling anyone in the lab to buy any-
thing costing less than a specified amount on their own authority. And
provide a darkened recovery room for accountants shocked by the discov-
ery of this budget.

14. PAY ATTENTION TO WHAT GOES ON IN UNIVERSITIES. Every
significant breakthrough in computing in the last four decades has in-
volved both the university and corporate sectors at some point in its evo-
lution.

15. REMEMBER TO INITIATE AND SPONSOR CELEBRATIONS when
merited.

16. WHEN IN DOUBT, ASK YOURSELF: “WHAT WOULD ROGER
NEEDHAM DO IN SIMILAR CIRCUMSTANCES?”
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The Descent of BAN

Lawrence C. Paulson
(with apologies to Charles Darwin)

The famous BAN paper [3] determined the research agenda of security-protocol
verification for nearly a decade. Many others had worked on verifying security
protocols, and the problem appeared to be intractable. The real-world systems
were too complicated; too many different things could go wrong; the formal
treatments were unusable. The BAN logic was abstract, formalizing intuitive
notions directly. For example, if you receive a message containing a secret pass-
word and you know that the password is known only to you and Joe, then the
message must have come from Joe. BAN proofs were short and simple, and each
reasoning step could easily be rendered into plain English.

BAN certainly had some deficiencies. The paper incorrectly claimed that the
Otway-Rees protocol could be simplified in a certain way. In fact, an intruder
could attack this protocol, masquerading as Bob to Alice, when Bob was not
even present [7]. More generally, BAN ignored all non-encrypted information,
so it could “verify” any protocol that broadcast the session key in clear. Some
criticisms arose from a misunderstanding of the logic’s objectives. BAN as-
sumed that the protocol would not give secrets away—a defensible assumption,
since cryptanalysts already knew how to investigate such questions. BAN’s
strength was that it provided a precise notation and deductive mechanism for
reasoning about freshness and authenticity.

Researchers introduced a great variety of other authentication logics. These
were generally more complicated than BAN. Dietrich [4] published a proof of
the Secure Sockets Layer (SSL) protocol using the belief logic NCP (Non-
monotonic Cryptographic Protocols). This logic allowed formulae to be retracted
as well as asserted, and the author accordingly had to write lengthy lists of facts
holding at each step. NCP must have been more precise than BAN, but it was
obviously difficult to use. Some people attempted to build automatic provers for
the BAN logic, which was pointless: BAN logic proofs were easy to write, and if
you wrote them yourself, you were unlikely to reach an absurd conclusion. For
the more complicated authentication logics, automation became essential;
Brackin [2] was a leading exponent of this approach. As do-it-yourself logics
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proliferated, their benefits (especially when applied using an automatic prover)
were not always clear. Roger may have been right to call BAN “the original and
best.”

In hindsight, it is clear that all such logics must share certain limitations.
Many attacks on security protocols are not clear-cut, and involve disagreements
about the working assumptions. The famous attack on the Needham-Schroeder
public-key protocol by Lowe [6] is a classic example. Alice opens a session with
Charlie, who proceeds to attack Bob. This scenario involves a misbehaving in-
sider, when the traditional threat model assumes that all criminals are outsiders.
Only recently have researchers recognized the danger posed by corrupt insiders.

The failure possibilities of modern protocols are rather complicated. The
Zhou and Gollmann non-repudiation protocol [9] is designed to be fair. Its prin-
cipals are Alice and Bob, who are arranging some sort of contract, and a trusted
third party, Clarence. A successful run should give both Alice and Bob sufficient
evidence to prove the other’s participation. It is also acceptable that neither of
the pair should obtain this evidence; however, it is unfair if one of them obtains
evidence and the other does not. Gürgens and Rudolph [5] recently demonstrated
an attack on this protocol. Alice reuses a session identifier, retaining information
from the first protocol run in order to attack a second run. She leaves enough
time between the runs to ensure that Clarence will have erased all record of the
first run. Alice will be left with evidence confirming Bob’s participation. When
Bob seeks the corresponding evidence from Clarence, it will not be available.

Formal models typically make ideal assumptions, and in this case would
probably endow Clarence with unlimited storage. Alice’s attack would then fail.
In a more detailed model, Clarence would not be able to store all past session
identifiers online, and the attack would succeed. In the real world, Clarence
would probably maintain a full audit trail, though most of it would be offline.
Whether this attack can succeed or not therefore depends on a detailed descrip-
tion of the dispute resolution mechanism. For this protocol, Gürgens and Ru-
dolph have proposed a neat solution: let Bob contribute to the session identifier.
However, we can imagine situations in which algorithms (such as the one for
dispute resolution) must be formalized as part of the protocol description. In
such situations, authentication logics are unlikely to be helpful, and formal mod-
els of any sort are likely to yield misleading results unless the practitioner is
aware of the critical issues.

My involvement in protocol verification originated in a research project,
funded by the EPSRC, which I held jointly with Roger. The project’s original
objective was to develop a new authentication logic based upon advanced the-
ory. Through informal discussions (involving Kim Wagner) in Roger’s office, I
became familiar with the concepts of authentication protocols. I noticed that in-
formal justifications of protocols used inductive reasoning: if X went wrong in
step 4, then Y must have happened in step 3, but then Z must have happened in
step 2, which is impossible by the nature of step 1. Identifying the first step at
which something goes wrong is inductive reasoning, and this underlies the induc-
tive approach to protocol verification [7].
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An inductive model has much in common with the models investigated by the
Oxford group of Lowe, Roscoe, and Schneider. Principals and messages are the
primitive notions. Messages are recursively constructed from principal names,
keys, and nonces by concatenation and encryption. The semantics of a protocol
is given by the set of possible traces of events, such as the sending and receiving
of messages. Such models are far removed from the real world, but more low-
level than the BAN models. Roger encouraged this new approach, though it dif-
fered radically from his own. He offered advice of the sort that I imagine he of-
fered his research students. He suggested, for example, that I focus attention on a
specific message of the Needham-Schroeder shared-key protocol.

Roger’s influence, and that of the BAN paper, ensured that my models in-
cluded the necessary elements. BAN is mainly about freshness: we have received
a session key, but how do we know that it is fresh? An old key may have become
compromised. One of the BAN paper’s most interesting analyses is that of the
Yahalom protocol. Here Bob receives in separate packages a session key K
(bearing no evidence of freshness) and his nonce NB, encrypted using K. Ordi-
narily, encryption using a potentially compromised key would yield no firm evi-
dence. However, the Yahalom protocol keeps NB secret; an intruder in
possession of K would still be unable to perform the encryption {NB}K. There-
fore, this message firmly associates NB with K, proving the latter’s freshness.
BAN formalizes this argument quite easily; in my inductive model of Yahalom,
it was much more difficult [8].

Freshness is no less important these days, and protocol designers are careful
to include the nonce challenges necessary to achieve it. Recent attacks seldom
involve freshness, and many recent formal models do not represent freshness. I
have been lucky to work in a research environment that is strong in both theory
and computer security. (Roger can be given the credit for creating this environ-
ment.) That is how I have been able to avoid some of the mistakes made by re-
searchers who do not work with a security group. If some authors do not
understand what a nonce is for, or know that a timestamp should carry a valid
time, or appreciate that a certain type of field will always have the same length in
bytes, then they should spend time at the Computer Laboratory.

The BAN logic, like many other approaches to analysing security protocols,
assumes perfect encryption. This assumption means, in particular, that no infor-
mation can be deduced from a ciphertext without the corresponding key. Encryp-
tion is obviously not perfect, but many protocols are flawed even under this
assumption.

The problem of security-protocol verification under perfect encryption is es-
sentially solved. Numerous researchers have worked on it, and even the most
complicated protocols have undergone formal scrutiny. Many of today’s hard
problems concern how to formalize the vulnerabilities of specific encryption
methods such as Diffie-Hellman or RSA. Even exclusive-OR is difficult to
model, particularly in typed formalisms, because the exclusive-OR of two bit
strings can yield data of any type. Probabilistic mechanisms are also difficult to
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verify, although recent progress gives ground for optimism. Another difficult
area concerns the composition of protocols from separately verified components.

I have heard Roger say that the BAN logic is obsolete. How many research-
ers would say that about one of their most important achievements? However,
even if the BAN logic is obsolete, the BAN paper is certainly not. It remains an
excellent tutorial on cryptographic protocols. It describes and analyzes a variety
of different protocols. With Roger’s other papers, such as Abadi and Needham
[1], it remains essential reading for anybody wishing to do research in this area.
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Brief Encounters

Brian Randell

In compiling these personal reminiscences of Roger, I have—I must confess—
mainly relied on my memory rather than consulted my files in any great detail.
Given my pretensions to be somewhat of a computer historian, albeit very much
part-time, it is somewhat embarrassing to reveal this lack of regard for primary
evidence. However, my excuse is that I have no wish to encourage any of you to
classify Roger (or me) as historical exhibits.

I cannot recall when Roger’s and my paths first crossed—I’m not sure
whether they did before I left the UK in 1964 to join IBM Research in Yorktown
Heights. Up to this time I’d been working on compiler design for English Elec-
tric’s DEUCE and then for its KDF9 computers. I had not concerned myself
much with computer or operating system design, and had had little contact with
Cambridge. So after I arrived at Yorktown Heights I was surprised to learn that
one of the people they had contacted to check me out before head-hunting me, so
to speak, was Maurice Wilkes.

At Yorktown I made a very deliberate switch from compilers to computer ar-
chitecture, and this led to me operating systems and so, I presume, to my first
contacts with Roger. I’m not sure now how it happened, but in 1966 I became
Editor of the Operating Systems Department of the Communications of the
ACM, a post I held for the next seven years. I have tried to find whether I could
proudly claim to have accepted any papers by Roger during my seven-year edito-
rial term. As far as I can tell he did not publish in the CACM until after I’d left.
Luckily, I have no easy way of checking how many of his papers I rejected!

In 1967 I participated in and was editor of the proceedings of the first SOSP,
the ACM Symposium on Operating System Principles. The SOSP series, which
is one that Roger has had long and extensive involvement with, has in general
tried hard to live up to its name and encourage papers that truly do deal with
principles—though more recently I gained the impression that it had for a while
become somewhat of a mere “Unix Improvements Society”—something I’m sure
Roger tried very hard to prevent.

My main memories of the 1967 SOSP symposium, which was held in Gatlin-
burg, Tennessee, include the fact that at the time Gatlinburg was dry—all you
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could get within the town limits was something they called “near beer.” I pre-
sume Roger was in attendance, and remembers this with even more pain than I
do, though I believe that his first SOSP paper was at the 3rd Symposium, held in
Palo Alto in 1971—in fact a paper entitled “Handling Difficult Faults in Operat-
ing Systems” [1].1 This is a paper with a typically high signal-to-noise ratio, cov-
ering both principles and practice, whose introductory paragraph is, I think,
worth quoting in full:

It is commonplace to build facilities into operating systems to handle faults
which occur in user-level programs. These facilities are often inadequate for
their task; some faults or incidents are regarded as so bad that the user cannot
be allowed to act on them and this makes it difficult or impossible to write
subsystems which give proper diagnostics in all cases, or which are ade-
quately secure, or which are adequately robust. This paper looks into why
there is a need for very complete facilities and why there is a problem provid-
ing them, and provides an outline structure which could be used.

I returned to the UK in 1968 and joined the Computing Laboratory of the
University of Newcastle upon Tyne. The laboratory had been created a dozen
years earlier by Ewan Page. Ewan was a Cambridge man, and the laboratory he
set up was, I’m sure, deliberately patterned after Cambridge’s Computer Labora-
tory, and similarly combined the roles of academic department and university
computing service, a characteristic which we proudly continued to hold and de-
fend for many years, just as Cambridge did. I have often characterized my move
from IBM Research to the University of Newcastle upon Tyne with a phrase due
to John Buxton, dating from about this time. I cannot resist using an appropriate
variant of Buxton’s phrasing to describe Roger’s rather differently directed ca-
reer move, a few years ago, when what he did was abandon the sordid commer-
cial reality of a university computing laboratory for the ivory towers of industry.

But I’m getting ahead of myself. When I arrived at Newcastle, one of the
tasks I took over was the organization of the second in the series of annual New-
castle International Seminars on Computing Science. Roger was one of my
choices of speaker for this 2nd Newcastle Seminar. His 1969 talk was on “Fail-
ure Recovery” [2], a fact that I must confess that I’d completely forgotten. It
would be intriguing to try and determine whether this talk predated the planning
we undertook at about this time, following my experiences at the now famous
1968 NATO Software Engineering Conference, that led to our first SERC-
sponsored project on dependability, a topic that has been a major feature of my
and Newcastle’s research ever since. I have gone back and looked at the report
of Roger’s 1969 talk and found that it was about the problems of file system in-
tegrity and back-up in the face of unreliable hardware—it includes the nice re-
mark “It is psychologically desirable to take greater care of users’ files than they
would themselves”—rather than overall system failure and recovery, so I don’t

1 It was actually his second SOSP paper.



Brief Encounters 231

see any strong link to our early work, which was on techniques for providing
continued service despite the presence of residual software faults.

To my surprise, in preparing these remarks, I found that Roger was not pre-
sent at the 1968 NATO Conference at Garmisch in Bavaria, only at the follow-
up conference held a year later in Rome. For various reasons the Rome confer-
ence was much less effective and influential than its predecessor, but Roger
made some notable contributions, including one prepared during the conference
itself in an intriguing instant collaboration with Joel Aron of IBM Federal Sys-
tems Division. My understanding is that Roger and Joel had never met before.
Their backgrounds could hardly have been more different—Joel had been heav-
ily involved in the awesome computing-system project that supported the Project
Apollo series of moon shots, a project whose scale and style were vastly differ-
ent from Roger’s work on operating systems in the Cambridge Computer Labo-
ratory. Their styles of speaking were also very different, though in each case
very attractive. Joel’s splendid talk on the Project Apollo Ground Support Sys-
tem, and each contribution he made to any discussion, always sounded as though
he was giving a reading of a carefully structured and punctuated piece of elegant
prose. Indeed, he did this so clearly that it was child’s play to transcribe a re-
cording of his voice and produce a fully grammatical and properly punctuated
text, something that I and the others involved in producing the report of the con-
ference much appreciated. Roger’s style of delivery is, on the other hand, more
notable for its wit and brevity, and thus as entertaining to transcribe as it is to
listen to first hand. Yet they somehow found time during a very intense confer-
ence to reach a common viewpoint and co-author a paper, albeit a brief one, on
“Software Engineering and Computer Science” [3].

At the preceding conference a disparate set of participants, ranging “from the
inhabitants of ivory-towered academe to people who were right on the firing line,
being involved in the direction of really large scale projects” found “commonal-
ity in a widespread belief as to the extent and seriousness of the problems facing
the area of human endeavour which has, perhaps somewhat prematurely, been
called ‘software engineering’.” However, the report on the Rome Conference, a
conference which had a similarly disparate set of participants, comments that
“the sense of urgency in the face of common problems was not so apparent as at
Garmisch—instead, a lack of communication between different sections of the
participants became … a dominant feature” and explains that “eventually the
seriousness of this communication gap, and the realization that it was but a re-
flection of the situation in the real world, caused the gap itself to become a major
topic of discussion.” The Aron-Needham paper was a thoughtful contribution to
this discussion, and demonstration of the bridgeability of the communication
gap, one that I enjoyed re-reading when I prepared these remarks.

Returning to the subject of Roger’s contributions to the Newcastle Seminar
Series, I should mention that during the thirty-four years of the series, we nor-
mally had different speakers each time. Roger is one of the very few speakers
who have been invited back not just once but three times—the others being Eds-
ger Dijkstra and Kristen Nygaard. Roger’s first reappearance was in 1978. The
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overall subject of this seminar was Distributed Computing Systems, and Roger
talked on “User-Server Distributed Computing” [4]. His two talks provided a
very thoughtful analysis of the properties of local area networks such as Ethernet
and the Cambridge Ring and how such networks could be exploited in order to
distribute many of the tasks that traditionally were all bundled together into a
large monolithic operating system across a set of much simpler specialized serv-
ers.

His next appearance was for our 25th seminar, when we used the general title
“Computing Science” and deliberately chose our speakers from the by now large
set of highly-renowned past speakers. In fact the other speakers at our Silver
Jubilee seminar were Edsger Dijkstra, Tony Hoare, Donald Knuth, Butler
Lampson, John McCarthy, Kristen Nygaard, and Michael Rabin. Almost all of
the Jubilee speakers fully lived up to their reputations and gave excellent talks—
Roger certainly did, with talks on “Communication System Development,” and
on “Reasoning about Cryptographic Protocols” [5]. This latter was, of course,
largely based on his very influential and much-cited work with Michael Burrows
and Martin Abadi on the BAN logic, the notation they designed for use in ana-
lyzing and verifying authentication protocols [6]. To complete the list, I should
mention that Roger was a speaker at the last in the Seminar Series, in September
2001 [7]—this was a sort of benefit match for me, since it was on Dependability,
and marked my (so-called) retirement. It was the first seminar in over thirty years
that I had not organized—my colleague and professorial successor, Cliff Jones,
was in charge—and thus for the first time ever in the series I found myself hav-
ing to lecture. But who better could Cliff have chosen to speak on security than
Roger?

But again I’m getting ahead of myself. Following my return to the UK, I had
many opportunities to meet up with Roger. For example we served together for
what seemed like many years on a whole succession of Department of Trade and
Industry (DTI) advisory committees. Though at times this was an enjoyable ex-
perience—because Roger has an inimitable way of speaking to and dealing with
recalcitrant civil servants, one that I find much more entertaining than they do—
it was also, we both agree, an immensely frustrating experience. Though we were
not so naïve as to assume that all our advice would be heeded, it is clear in retro-
spect that we were almost entirely wasting our time. No wonder that, as I’ve
since learned, the department is referred to by some as the Department of Timid-
ity and Inaction.

The one exception, the one really worthwhile experience I had with the DTI,
was again one I shared with Roger. This was on a 1981 DTI mission to Japan.
There is a fairly full description of this mission in the book Alvey: Britain’s Stra-
tegic Computing Initiative by Brian Oakley and Kenneth Owen [8]. One enter-
taining (and all too true) passage is the following: “On arrival in Tokyo team
members were fascinated to discover a completely alien culture, with strange
customs, exotic behaviour, and quaint patterns of speech. And that, they recall,
was just the British Embassy.”
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We (namely Roger, Alan Fox of RSRE Malvern as it then was called,
Charles Read of the Inter-Bank Research Organization, Reay Atkinson, an un-
characteristically splendid DTI civil servant, and I) had been sent out to Japan by
a minister who had come back from a visit completely entranced and highly flat-
tered by the Japanese government’s invitation to the UK to participate in the
Fifth Generation Computer Project that they were planning. The Alvey book
attributes to me the following subsequent assessment of the Japanese plans:

The Japanese conference presentations were an amazingly well-orchestrated
series of vague accounts of various parts of an ambitious and wide-ranging
plan. . . . Everybody made respectful references, at least, to logic program-
ming and knowledge engineering, and some of them obviously believed, and
perhaps even understood, what they were saying. It came over to me as a very
skilful plan which filled MITI’s wish for a very ambitious goal that sounded
very plausible and which could be presented to a layman in such a way as to
seem socially beneficial.

However, though attributed to me, I think I detect the hand of Roger in that
text—if not, it is the effect on me of an extended period of close proximity to
him. The team rapidly came to the conclusion that we wished to dissuade the
government from setting up a general scheme of UK-Japanese collaboration,
since it was clear to us that the main beneficiaries would be Japanese industry.
(We had discovered from visits we paid to various Japanese computer companies
that they all were much better informed on the latest UK academic computer
science research than any UK company.) Instead, we argued, what was first
needed was some effective means of encouraging collaboration between UK
academics and industry on a large-scale programme of information technology
R&D, a programme which should not be so narrowly focussed on logic pro-
gramming and knowledge engineering as the Japanese 5G plans.

After our return to the UK we were thus both heavily involved in the schem-
ing that led to the Alvey Programme, but that is a whole story by itself, and one
that has already been well documented. However, it is important to point out
how central was the role that Roger played in the setting up of the Alvey Pro-
gramme, not least as the sole academic allowed to join the committee of senior
industrialists and civil servants, chaired by Sir John Alvey, whose report directly
led to the creation of this ground-breaking programme.

The Mathematical Sciences Sub-Committee of the late lamented University
Grants Committee was another arena that has provided me with happy memories
of encounters with Roger. There was, for example, the sub-committee visit to a
particular university (fortunately, I cannot remember which one), when, during
the obligatory tour of the CS department aimed at gaining our support for addi-
tional accommodation, Roger became aware that the faces in the various labora-
tories we inspected were becoming familiar. This was because a crowd of
students was being rushed round back corridors of the department to reappear in
front of us repeatedly, rather like the chorus during the Grand March in an un-
der-staffed performance of the opera Aïda. Such visits also normally involved
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meetings with the local Vice-Chancellor—at which Roger demonstrated a skill in
the sometimes rather delicate discussions which I’m sure proved very useful
when he became a Pro Vice-Chancellor himself at Cambridge some years later.

During this time, the UGC Mathematical Sciences Sub-Committee, under the
able leadership of Prof. Douglas Jones, a canny Scot if ever there was one, was
involved not just in a regular programme of such visits, but also in considering
submissions from just about all the UK computer science departments to a whole
succession of funding initiatives. We were thus able to gain detailed knowledge
of the then fifty or so departments, as well as to achieve a number of significant
resource enhancements for UK computer science. As a result, when we learnt
that we were going to have to perform what turned out to be the first of the
dreaded Research Assessment Exercises, Roger and I independently drew up,
while waiting for our trains at Kings Cross Station, virtually identical and re-
markably accurate predictions of the gradings that later resulted from the subse-
quent formal consideration of the detailed RAE submissions by the overall panel.
To paraphrase a comment once made about Algol 60, this first RAE exercise was
in my opinion, in regard both to the way it was carried out, and the degree of
acceptance of the results by the UK computer science community, an improve-
ment over all its successors.

Enough of committees and bureaucracy—let me end with a few further re-
marks on research. Roger’s and my research trajectories diverged somewhat over
the last thirty years. He concentrated largely on security issues—to great effect—
whereas I’ve worked on fault tolerance, as applied to reliability and availability,
though I have on occasion had fun investigating potential links between fault
tolerance and security. However, in the early days Roger was equally interested
in what was essentially fault tolerance even if he didn’t use this term—I recall an
early aphorism of his to the effect that operating systems should be designed and
implemented via incremental additions to a very robust dump and restart system.
I have enjoyed looking back at a number of his early papers—even if I now have
some concerns as to whether I paid them as much attention at the time as they
evidently deserved. Thus I can sympathize very much with the comment that
Roger made in an interview in 2001: “Although for most of my career I was a
practical builder of systems, the things I’m best known for are [two papers on
authentication], both of a theoretical nature and both done when I was on sab-
batical leave. So you can work away on a complicated system for seven years,
and nobody remembers that” [9]. (Incidentally, during my little investigation of
Roger’s early papers, I was startled to find that he had published one in 1964
entitled “Exploitation of Redundancy in Programmes” [10]—however, this
turned out to be concerned with instruction set representation, and the issues
discussed were instruction storage efficiency and processor performance, not
dependability!)

Regarding security, Roger’s expertise regarding cryptography of course far
exceeds mine—in fact, I’m sure my evident lack of knowledge of, or interest in,
cryptography was of considerable benefit when I was seeking official permission
to investigate Britain’s highly classified wartime code-breaking machines, in
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particular the Colossus. But we both share a degree of scepticism about the sub-
ject of cryptography, and I very much like the comment: “Anybody who asserts
that a problem is readily solved by encryption, understands neither encryption
nor the problem” [11]. This comment is often attributed to Roger, by Butler
Lampson among others, though I gather Roger claims it was Butler who first
made it.

To have been with Roger was to enjoy, and benefit from, a whole succession
of such wise and pithy remarks—it is thus a great pleasure to place on record
how highly I value all the opportunities I’ve had of encounters with Roger from
time to time over the years, and all the enjoyment and benefit I’ve thus gained.
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34
Retrieval System Models: What’s New?

Stephen Robertson, Karen Spärck Jones

Automated retrieval systems

In the postwar development of computing, most people thought of computers as
machines for numerical applications. But some saw the potential for automatic
text processing tasks, notably translation and document indexing and searching,
even though words seemed much messier as data than numbers. For Roger, as
one of these early researchers, building systems for language processing was
both intellectually challenging and practically useful, and in the late 1950s he
began to work on document retrieval [5]. The specialised scientific literature was
growing too fast for the existing broadly based and rigid indexing and classifica-
tion schemes. This lack of appropriate retrieval tools, and the opportunities of-
fered by computers, stimulated a critical examination of existing approaches to
indexing and searching and the introduction of radically new ones.

Document (or text) retrieval systems, like libraries before them, depend on a
model of the way documents should be characterised to facilitate searching, and
of effective strategies for searching. Many models for retrieval systems have
been proposed since the 1950s. The most innovative, attractive, and successful
have been those that, unlike the earlier library models, have exploited the behav-
iour of the actual words used in document texts, and have facilitated flexible
matching between queries and documents, leading to a ranked search output.
These ground features of modern systems fit automation very well, and automa-
tion has made it possible to take advantage of the distribution of terms in docu-
ments to allow, e.g., term weighting. There are, however, different ways of
modelling retrieval systems within this broad framework, and it has not been
possible, until recently, to provide concrete evidence for the real value and rela-
tive merits of the competing models. It has been impracticable to conduct the
necessary large-scale retrieval experiments, because performance evaluation
depends on having information about which documents are relevant to a query,
and getting this information is extremely expensive.

This situation has changed in a number of ways. The development of the
Web and the proliferation of machine-readable text (in the broadest sense) have
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made the ‘information layer’ and its operations much more central to computing
in general than they were in the 50s. ‘Retrieval’ is now taken to encompass a
wide range of different tasks. Probably as a consequence, seriously more re-
sources have, over the last decade or two, become available for work in the gen-
eral area of text retrieval. Retrieval research since Roger worked on it in the late
1950s and early 60s has changed out of all recognition.

These changes have brought the issue of models to the forefront, and have
also afforded much greater opportunities for experimental work. Both these
themes are explored below.

Retrieval system evaluation and model testing

The NIST/ARPA Text REtrieval Conferences (TRECs), initiated at the begin-
ning of the 90s and still flourishing, have made it possible to evaluate retrieval
systems far more thoroughly than ever before. The scale of the data in TREC, the
range of tasks, the number of participants, and the multitude of tests have all
contributed to this sea change.

Much of this effort has indeed gone into exploring variations on, and devel-
opments of, familiar themes, in fact ones dating back to the beginnings of auto-
mated retrieval research. But TREC has led to more than this, in two important
ways. Many (though not all) of the retrieval systems tested have an explicit theo-
retical underpinning, or at least implicitly assume one. The Cornell Vector Space
Model (VSM) is the most commonly invoked, but the University of Massachu-
setts Inference Model (IM), and the London/Cambridge Probabilistic Model
(PM) have also been conspicuous since TREC began in 1992.

TREC has been sufficiently rigorous to subject not only system implementa-
tions based on these models, but the models themselves, to serious stress testing.
The models have benefited from the development forced on them. They have
also performed very well. Newer models have appeared too. Tests with a recent
and strongly-argued Non-Classical Logic Model (NCLM) have so far been lim-
ited, but what we will summarily refer to as the Language Model (LM), derived
from language modelling as used in speech recognition, has been very success-
fully applied in TREC to the rather different retrieval task.

All of these models operate within the generic framework mentioned in the
previous section, and are statistically based. They exploit occurrence and co-
occurrence patterns in index terms and documents for term weighting, search-
query expansion, and the like. The fact that the models perform well, and scale
up, is no longer a research surprise. Nor is the fact that they perform much the
same. The basic data are all the same: there are document texts, query texts, and
documents judged relevant to queries; and these are all data supplying some us-
able information about what retrieval is really about, namely document contents,
information needs, and so forth. Further, since document retrieval is essentially
an approximate task being conducted in a large and partially understood concep-
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tual space, the same general properties of the objects in the space matter for all
the theories and invoke the same responses from all of them, as eventually re-
flected in tf*idf

1
term weighting. Several of the models also share, again not sur-

prisingly, a generic probabilistic approach to retrieval.
But the models at their most fundamental are rather different. So we may ask

how one might compare these different views, or on what grounds one might
choose between them. The primary issue both of comparison and of choice is
usually taken to be retrieval performance. But they may be compared in other
ways, particularly in the absence of a consistent and material performance differ-
ential. We may consider the richness of each approach, in the sense of the extent
to which it suggests or promotes different methods or techniques. We may, in
ideal scientific fashion, attempt to make and validate experimentally further pre-
dictions from the models, other than of good retrieval performance. We may also
—this is the main aim of the present note—discuss how each type of model
views the critical relationships between retrieval objects (documents, queries,
terms).

Model characteristics

This attempt to characterise the various models by how they see the relationship
between documents and queries is of necessity crude and over-simplified, if only
because it is often perfectly feasible for different theorists to accept the same
formal framework on the basis of very different fundamental assumptions or in-
terpretations. However, what follows may be a useful sketch.

The VSM treats the query-document relationship simply as an object prox-
imity relation in an information space. There may be other objects associated
with the space, like index terms. The vectors characterising objects (or the di-
mensions of the space itself, as in Latent Semantic Indexing) are manipulated to
bring queries and relevant documents closer together [8].

The IM views the query-document relationship as a connectivity one. The
connections that can be made between the two, e.g., through terms, justify the
inference that a document should be retrieved [10].

The NCLM takes the query document relationship as a proof one, with the
document proving the query, e.g., through statements about the index term de-
scriptions [6].

The PM has a generative relation from a query to a document, making a pre-
diction that a document, e.g., because it has certain terms, belongs to the class of
relevant documents [7].

1 A commonly used form of term weighting which gives more importance to a term
occurring frequently in the document under consideration, and less to a term which
occurs in many documents
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In the LM there is also a generative relationship, but the other way round,
from the document to the query, i.e., the query is thought of as derived from the
document in the same sort of way that in speech the heard sounds are generated
from a word string [1, 4].

From these broad descriptions, it may not be clear whether or not the differ-
ences are fundamental, or how important they are practically speaking. The
comparison may be further confused by other similarities between them, for in-
stance, because in the IM inference is probabilistic, or because the PM may be
given a network implementation [3]. One difference which does appear funda-
mental lies in whether the key retrieval notion of relevance figures explicitly as a
model primitive. It does this in the PM, so that the generation relation is actually
from both query and relevance to a retrieval-worthy document. Relevance does
not figure so explicitly in the VSM, or in the IM or NCLM. We have argued
elsewhere [2] that the LM does not explicitly use relevance either (although it
has more recently been presented with an explicit relevance variable included in
the model—see Lafferty and Zhai in [2]).

But though relevance may be taken as a primitive in a model, strictly rele-
vance is inaccessible, a hidden variable, and at a very practical level, all the
models may be interpreted as saying that the stronger the prox-
imity/connectivity/... relation between query and document is, and thus the more
highly ranked a document is in the search output, the more likely it is that a user
will find the document relevant to his information need. Furthermore, for all the
models, the specific expression of this proximity/... notion always makes use of
the same basic statistical facts.

Model implications

The point just made does not, however, imply that the models are mere nota-
tional variants of one another. They indeed all deal in the same objects, queries,
documents, terms, etc., and all (in one way or another and in various versions)
respond to the statistical properties of retrieval data. But they make use of no-
tions that are individually distinctive, albeit very general. So one question is
whether any of the ground notions like proximity, inference, generation, etc., is
more intuitively satisfying as a (or perhaps the) key concept for a theory of re-
trieval. Such a question may be taken as essentially a metaphysical matter, but
another question is whether thinking about retrieval systems in terms of one cen-
tral notion rather than another is more productive as a base for building effective
(and robust, etc.) systems.

One possible position here is that the fact that some generic model has been
used for different information and language processing tasks is important, be-
cause it reflects the fact that these tasks are all, broadly speaking, discourse (text)
transformation tasks with something in common. From this point of view the
LM, which has been applied to translation and summarising as well as speech
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transcription and retrieval, has something going for it. But on inspection, the LM
generative account for some of these tasks seems distinctly forced. Other model
mechanisms, like vector operations or the use of Bayes’ Theorem, have been
very widely exploited, but these are too abstract to make substantive task links in
the way that language modelling is claimed to do through the idea of generation.

However, another view is that even if there are genuine differences between
the abstract models, this doesn’t really matter, because it is not where the shoe
pinches. Thus consider the three input contributors to a retrieval system: the
formal model (F); the estimation accuracy (or training potential) of the model
(E); and the implementation detail (I). As already noted, when it comes to I, the
weighting formulae used, for example, are much the same. With F, on the other
hand, there either are no real differences, or the only differences that count are
those that affect E, since this is what is going to determine operational system
effectiveness. Any system using any model, in the statistical retrieval world, has
to exploit its known data to predict what documents will be valuable. It may be
that the LM approach (with a variety of different applications already developed)
has an advantage here, in the form of a rich range of estimation methods on
which to draw.

With the evaluation data we now have, we are in a much better position to
assess claims of this kind. We can hope to demonstrate whether any of the mod-
els is superior to the others, either because its key notions are more productive in
leading to good ways of looking at different retrieval tasks, or because it pro-
vides better ways of dealing with the challenges of estimation, or even because it
leads to better performing implementations in, say, choice of weighting formu-
lae. The question of what a retrieval system should be like, in its essentials, was
one that Roger worked on, and his work was one of the sources of a modern
probabilistic system [9]. Just as we benefited from his comments in the past, so
would we have welcomed his views on the present Retrieval Model Action
Space.
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Slammer: An Urgent Wake-Up Call

Jerome H. Saltzer

The Slammer worm is an unusually urgent wake-up call,
1

demonstrating as never
before the remarkable ease with which an attacker might paralyze the otherwise
very robust Internet. Slammer did not quite succeed, because it happened to pick
on an occasionally used interface that is not essential to the core operation of the
Internet. If Slammer had found a target in a really popular interface, the Internet
would have locked up before anyone could do anything about it, and getting
things back to even a semblance of normal operation would probably have taken
a long time.

How it worked

The basic principle of operation of Slammer was stunningly simple:2

1. Discover an Internet port that is enabled in many network-attached
computers, and for which a popular listener implementation has a buffer
overflow bug that a single, short packet can trigger. IP/UDP ports are
thus a target of choice. Slammer exploited a bug in Microsoft SQL
Server 2000 and Microsoft Server Desktop Engine 2000, both of which
enable the SQL UDP port. This port is used for database queries, and it

1 This paper was written in January 2003 just following a devastating attack on the
Internet by the Slammer worm. A later comparison of the measurements reported
here with those reported in the final version of the paper by Moore et al. [footnote 4]
suggests that Internet congestion distorted our measurements enough that they should
not be relied upon; the situation in all respects is probably worse (from the point of
view of defenders of the Internet) than the analysis here suggests.

2 This description of the operation of Slammer is based on a preliminary report found
at Internet Worm W32/SQL/Slammer.worm, McAfee Security Virus Information Li-
brary: http://vil.nai.com/vil/content/v_99992.htm
(URL verified 30 January 2003)
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is vulnerable only on Windows computers that run one of these data-
base packages, so it is by no means universal.

2. Send to that port a packet that overflows the buffer, captures the execu-
tion point of the processor, and runs a program contained in the packet.

3. Write that program to go into a tight loop, generating an IP address at
random and sending a copy of the same packet to that address, as fast as
possible. The smaller the packet, the more packets per second the pro-
gram can launch. Slammer used packets that were, with headers, 404
bytes long, so a broadband-connected (1 Megabit/second) machine
could launch packets at a rate of 300/second, a machine with a 10
Megabits/second path to the Internet could launch packets at a rate of
3,000/second and a high-powered server with an OC-3 (155 Mega-
bits/second) connection might be able to launch as many as 45,000
packets/second.

Forensics

Receipt of this single packet is enough to instantly recruit the target to help
propagate the attack to other vulnerable systems. Recruitment modifies no files
and leaves few traces, because the worm exists only in volatile memory. If you
stop a recruited machine, disconnect it from the Internet, and reboot it, you will
find nothing. There may be some counters indicating that there was a lot of out-
bound network traffic, but no clue why. So one remarkable feature of this kind of
worm is the potential difficulty of tracing its source. The only forensic informa-
tion available is likely to be the payload of the intentionally tiny worm packet.

Exponential attack rate

The second thing that makes this worm significant is how rapidly it increases its
aggregate rate of attack. It recruits every vulnerable computer on the Internet as
both a prolific propagator and also as an intense source of Internet traffic. The
original launcher need merely find one vulnerable machine anywhere in the
Internet and send it a single worm packet. This newly-recruited target will im-
mediately begin sending copies of the worm packet to other addresses chosen at
random. There are about 4 billion IP addresses, and even though many of them
are unassigned, sooner or later one of these worm packets will hit another ma-
chine that has the same vulnerability. The worm packet immediately recruits this
second machine to help with the attack. The expected time until a worm packet
hits yet another vulnerable machine is now half and the volume of attack traffic
double. Soon third and fourth machines will be recruited to join the attack; the
expected time to find new recruits halves again and the malevolent traffic rate
doubles again. This epidemic process proceeds with exponential growth until
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either a shortage of new, vulnerable targets or bottlenecked network links slows
it down; the worm will quickly recruit every vulnerable machine on the Internet.3

The exponent of growth depends on the average time it takes to recruit the
next target machine, which in turn depends on two things: the number of vulner-
able targets and the rate of packet generation. If we suppose that the average
recruited machine can generate IP addresses and send worm packets at a rate of
1 thousand per second, it will hit any one IP address about once every 4 million
seconds, or roughly 45 days. At my home, my computer advertises a single IP
address, and at the peak I was receiving a worm packet every 80 seconds. Start-
ing with that observation, we can estimate the minimum number of recruits, as-
suming that the IP address generation mechanism of each worm is independent
and memoryless and hits every IP address with equal probability:4

observed arrival rate: 1/80 = 0.0125 packets/second/IP address

number of IP addresses: 232 = 4 · 109 IP addresses

aggregate rate: .0125 · 4 · 109 = 5 · 107 packets/second

assumed rate per recruit: 103 packets/second/recruit

number of recruits: 5 · 107/103 = 50,000

This number is a minimum, because at the peak of the packet storm it is
likely that link and router saturation in many parts of the Internet substantially
reduced the observed arrival rate. These 50 thousand or more recruits would be
launching at least 50 million packets per second into the Internet, and the aggre-
gate extra load on the Internet of these 3,200-bit packets probably amounted to
something over 150 Gigabits/second, but that is well below the aggregate capac-
ity of the Internet, which is why reported disruptions were localized rather than
universal. (Warning: these back-of-the-envelope calculations depend on rough

3 The initial rate of spread up to the point that Internet bandwidth limitations begin to
cap it can be described by a well-known formula called the logistic equation, applica-
ble to population growth and epidemics. An analysis of the application of the logistic
equation to Internet worm recruitment rate can be found in:
S. STANIFORD, V. PAXSON, AND N. WEAVER, ‘How to own the Internet in your spare
time,’ Proceedings of the 11th USENIX Security Symposium, San Francisco, August
5–9, 2002.
http://www.icir.org/vern/papers/cdc-usenix-sec02/
(URL verified 30 January 2003)

4 An early report by disassemblers of Slammer indicates that its pseudo-random num-
ber generator was defective, and that the equal probability assumption did not apply,
at least during the initial propagation of the worm. See D, MOORE,. ET AL., ‘The
spread of the Sapphire/Slammer worm.’
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
(URL verified 1 February 2003)
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measurements, unconfirmed assumptions, and a speculative guess about average
rate of packet generation of each recruit. With luck this estimate of the number
of recruits may be in the right order of magnitude.)

With 50 thousand vulnerable ports scattered through a space of 4 billion ad-
dresses, the chance that any single packet hits a vulnerable port is 1 in 120 thou-
sand. If the first recruit sends 1 thousand packets per second, the expected time
to hit a vulnerable port would be about 2 minutes. In four minutes there would be
4 recruits. In 6 minutes, 8 recruits. In half an hour, nearly all of the 50 thousand
vulnerable machines would probably be participating.5

Extrapolation

The real problem appears if we redo that analysis for a port to which 5 million
vulnerable computers listen: the time scale drops by two orders of magnitude.
With that many listeners, a second recruit would receive the worm and join the
attack within 1 second, 2 more 1 second later, etc. In less than 30 seconds, most
of the 5 million machines would be participating, each launching traffic onto the
Internet at the fastest rate they (or their Internet connection) can sustain. This
level of attack, about two orders of magnitude greater than the intensity of
Slammer, would almost certainly paralyze every corner of the Internet. And it
could take quite a while to untangle, because the overload of every router and
link would hamper communication among people who are trying to resolve the
problem. In particular, it could be very difficult for owners of vulnerable ma-
chines to learn about and download any necessary patches.

Prior art

Slammer used a port that is not widely enabled, yet its recruitment rate, which
determines its exponential growth rate, was at least one and perhaps two orders

5 These estimates both of the speed of onset and the Slammer worm’s relatively mild
effect on the Internet as a whole are confirmed by published measurements that show
packet loss rates averaged across many servers increasing from near zero to a peak of
a little under 20% in less than 30 minutes—see Matrix Net Systems Event Adviso-
ries, Slammer Worm Attack, Weekly summary, January 24 through January 30, 2003.
http://www.matrixnetsystems.com/ea/index.jsp
(URL verified 1 February 2003)
In their paper cited above, Moore, et al., report observing Slammer to have an initial
recruitment rate of 7/minute, about 15 times as fast as my calculation. This observa-
tion suggests that there were actually many more vulnerable hosts than estimated
here. The alternative explanation, that the generation rate of the average recruit was
far higher than 1 thousand packets/second, seems unlikely, though a somewhat higher
generation rate may have contributed part of the difference.
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of magnitude faster than that reported for the previous generation of fast-
propagating worms, Code Red and Mind.6 Those worms attacked much more
widely-enabled ports, but they took longer to propagate because they used com-
plex multipacket protocols that took much longer to set up. Interestingly, Slam-
mer did not use any of several propagation enhancement techniques suggested by
Staniford et al. Instead, the Slammer attack demonstrates the power of brute
force. By choosing a UDP port, infection can be accomplished by a single
packet, so there is no need for a time-consuming protocol interchange. And the
smaller the packet size, the faster a recruit can then launch packets to discover
other vulnerable ports.

Another risk

The worm also revealed a risk of what in the Internet are called class A or CIDR
/8 networks. At the time that my computer, which advertises a single IP address,
was receiving 1 Slammer worm packet every 80 seconds, a class C network
(which advertises 256 addresses) would have been receiving 3 packets per sec-
ond, a class B network (which advertises 65 thousand addresses) would have
been receiving 750 packets/second, and a class A network (which advertises 16
million IP addresses) would have been receiving 200 thousand packets/second,
with a data rate of about 640 Megabits/second. In confirmation, incoming traffic
to the M.I.T. class A network-border routers peaked at a measured rate of around
500 Megabits/second, with the 155 Megabits/second link to the public Internet
saturated.7 Being the home of 16 million IP addresses has its hazards.

Lessons

From this incident we can draw some important lessons for different Internet
participants: For users, the perennial but often-ignored advice to disable unused
Internet ports does more than help a single computer resist attack, it helps protect
the entire Internet. For vendors, shipping an operating system that by default
activates a listener for a feature that the user does not explicitly request is haz-
ardous to the health of the Internet. For implementers, the importance of diligent

6 The above-cited paper by Staniford et al., reported that Code Red had an initial re-
cruitment rate of about 2 recruits/hour. Our lower-bound estimate for Slammer of 0.5
recruits/minute is 15 times greater, and the measurement of Slammer by Moore et al.
of 7/minute is 200 times greater.

7 The M.I.T. router traffic statistics were reported in an e-mail message:
From: James D. Bruce (Director of Information Systems)
To: the MIT community,
Date: 28 January 2003 09:51:51 EST
Subject: Weekend Network Outage
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care in network listener implementations, especially on widely activated UDP
ports, has just ratcheted up another notch or two.
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Caching Trust Rather Than Content

1

M. Satyanarayanan

Position statement

Caching, one of the oldest ideas in computer science, often improves perform-
ance and sometimes improves availability [1, 3]. Previous uses of caching have
focused on data content. It is the presence of a local copy of data that reduces
access latency and masks server or network failures. This position paper puts
forth the idea that it can sometimes be useful to merely cache knowledge suffi-
cient to recognize valid data. In other words, we do not have a local copy of a
data item, but possess a substitute that allows us to verify the content of that item
if it is offered to us by an untrusted source. We refer to this concept as caching
trust.

Mobile computing is a champion application domain for this concept. Wear-
able and handheld computers are constantly under pressure to be smaller and
lighter. However, the potential volume of data that is accessible to such devices
over a wireless network keeps growing. Something has to give. In this case, it is
the assumption that all data of potential interest can be hoarded on the mobile
client [1, 2, 6]. In other words, such clients have to be prepared to cope with
cache misses during normal use. If they are able to cache trust, then any un-
trusted site in the fixed infrastructure can be used to stage data for servicing
cache misses—one does not have to go back to a distant server, nor does one
have to compromise security. The following scenario explores this in more de-
tail.

1 This contribution originally appeared as an article in Operating Systems Review, vol.
35, no. 4, October 2000.
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Example scenario

An engineer with a wearable computer has to visit a distant site for troubleshoot-
ing. Because of limited client cache capacity, it is impossible for him to hoard all
the repair manuals and proprietary company documents he may require at the
site. He therefore has to be prepared to cope with cache misses while on site.
Unfortunately, that site only has occasional connectivity via a satellite link to the
servers at home. Further, satellite communications are restricted to off-peak
hours to reduce cost; at other times, the site is effectively disconnected.

At the remote site there is excellent, high-bandwidth short-range wireless
coverage. There are also many machines with ample disk capacity available for
temporary use by the engineer. It would be convenient to use one of these ma-
chines as a surrogate server, staging data in bulk from the real servers to the sur-
rogate so that cache misses can be serviced efficiently on site. Unfortunately,
security is lax at the remote site. The engineer cannot be confident that the sur-
rogate will not be tampered with. Under these circumstances, how can the engi-
neer be assured that the data he accesses at the remote site is indeed authentic?

Integrity and privacy

A common trust model is to assume that servers are physically secure and
trusted, and that the client-server communication channel is encrypted for pri-
vacy. Staging data at an untrusted surrogate hurts both integrity and privacy. The
challenge is to preserve these properties even when the surrogate is physically
compromised. This can be accomplished either using private or public key en-
cryption. For brevity, the discussion below focuses on a private key approach.
The corresponding public key approach is easy to derive.

Integrity is the easier of the two security properties to preserve. We envision
an approach in which the user hoards the fingerprints (such as MD5 checksums
[5]) of all files of potential interest directly from the server before leaving on his
trip. Since fingerprints are much smaller than file contents, this is only a small
burden on the disk capacity of the client. When a cache miss occurs at the remote
site, the corresponding data is fetched from the surrogate and its fingerprint is
computed by the client; the data is accepted only if the computed and cached
fingerprints match.

The problem becomes more complex if data can change at the server after the
user leaves home. In that case, the user needs to obtain fresh fingerprints. This
requires a trusted channel from client to server, but a low-bandwidth modem link
may suffice. A public key approach would be simpler in this regard, since digi-
tally signed updates can be sent over an untrusted channel.

It is simple to extend this idea to privacy. In addition to a fingerprint, the cli-
ent also hoards a per-file private encryption key. The server encrypts each file
before staging it on the surrogate. To handle a cache miss at the remote site, the
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client fetches the data from the surrogate, decrypts it, verifies its fingerprint and
then uses the data. The volume of cached keys can be reduced by using a single
private encryption key for all files, at the price of total exposure if that key is
broken.

This solution to the privacy problem is not fully satisfactory. It is not possible
to ensure purging of staged data from the surrogate because it lies outside the
administrative domain of the client and server. With enough time and effort, the
keys of staged files can be broken and their contents revealed. The keys can be
chosen to be strong enough that breaking them will take much longer than the
expected duration of surrogate use. However, it is not feasible to guarantee the
privacy of staged data indefinitely. This approach may therefore be restricted to
situations where privacy is not an issue, or where there is a well-defined time
bound on privacy of information.

Status and plans

We are in the early stages2 of building a system that uses the idea of caching
trust. Our work is being done in the context of the Aura Project at Carnegie Mel-
lon, a new research initiative whose theme is “distraction-free, ubiquitous com-
puting.” Support for nomadic data access in Aura uses the Coda File System as a
back end. Coda was recently extended to exploit surrogates for efficient update
propagation over low-bandwidth networks [4]. We now plan to further extend
the system to exploit surrogates for servicing cache misses, as described here. An
important implementation question we hope to answer is whether the support for
using surrogates securely can be fully encapsulated in a user-level proxy that
runs on a Coda client, avoiding changes to Coda itself.

From a broader perspective, opportunistic exploitation of remote infrastruc-
ture is key to the long-term success of mobile computing. Unfortunately, security
concerns loom large in such architectures. Caching trust may prove to be an im-
portant enabling technology for these architectures. The idea is particularly rele-
vant to secure coprocessors and smartcards because their limited storage
capacity may be adequate for caching trust but not data content.
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Least Privilege and More1

Fred B. Schneider

Introduction

What today is known as the Principle of Least Privilege was described as a de-
sign principle in a paper by Jerry Saltzer and Mike Schroeder [4] first submitted
for publication roughly 30 years ago:

Least privilege: Every program and every user of the system should operate
using the least set of privileges necessary to complete the job. Primarily, this
principle limits the damage that can result from an accident or error. It also
reduces the number of potential interactions among privileged programs to
the minimum for correct operation, so that unintentional, unwanted, or im-
proper uses of privilege are less likely to occur. Thus, if a question arises re-
lated to misuse of a privilege, the number of programs that must be audited is
minimized. Put another way, if a mechanism can provide ‘firewalls,’ the prin-
ciple of least privilege provides a rationale for where to install the firewalls.
The military security rule of ‘need-to-know’ is an example of this principle.

The power of this principle comes from leaving unspecified how frequently
privileges might change and their granularity. Back in 1972, Roger Needham
certainly understood the value of support for dynamic assignments of privileges,
writing [3]:

1 Supported in part by AFOSR grant F49620-00-1-0198, Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory Air Force Material
Command USAF under Agreement number F30602-99-1-0533, National Science
Foundation Grant 9703470, and ONR Grant N00014-01-1-0968. The views and con-
clusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or im-
plied, of these organizations or the U.S. Government.
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Protection regimes are not constant during the life of a process. They may
change as the work proceeds, and in a fully general discussion they should be
allowed to change arbitrarily. Statements would be allowed, for example, to
the effect that certain segments were only accessible if the value standing in a
system microsecond clock were prime. In practice one departs from full gen-
erality, and limits those circumstances which may give rise to a change of
protection regime.

My own interest in the Principle of Least Privilege developed in connection
with devising security enforcement mechanisms for systems structured in terms
of a base and a set of extensions which augment the functionality of that base.
Such extensible systems are prevalent today in mass-market PC software, where
we see new hardware being accommodated in Microsoft Windows platforms
through “plug and play” and we see Web browsers—hence, the Web itself—
supporting new data formats by use of downloaded “helper apps” that extend a
browser’s functionality.

A misbehaving extension Ext has the potential to compromise the base sys-
tem B it extends. Examples abound: email containing executable attachments,
Microsoft Word documents bearing hostile macros, and new browser “helper
apps” that are a far cry from being helpful. This situation could be improved if
we posit some sort of reference monitor that intercepts all program actions and,
according to privileges held by the issuer of the action, blocks those that would
be disruptive. However, to make this vision a reality, two technical questions
must be solved:

1. implementing the reference monitor
2. determining a policy for it to enforce

Regarding (1), my collaborators and I have elsewhere reported success with pro-
gram rewriters to modify an object program before execution, adding tests that
effectively place a fine-grained reference monitor in-line [2]. This paper sketches
my current thinking on (2).

What policy to enforce?

Least privilege

Policies consistent with the Principle of Least Privilege depend not only on the
code to be executed but also on what job that code is intended to do. For an ex-
tension Ext and some specification �Ext of a job to be done, we define �Priv(Ext,
�Ext) to be the policy that grants the minimum privileges needed for execution of
Ext to satisfy �Ext. (A policy here is a mapping from system histories to sets of
privileges.) As an example, specification �Ext of a spell-checker extension Ext
for a word processor might specify that misspelled words be flagged in the word
processor’s open file F; we would then expect �Priv(Ext, �Ext) to be a policy that
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permits the spell-checker read (but not write) access to F, read (but not write)
access to a file containing a spelling dictionary, and read/write access to a file
containing user-added spellings for local jargon terms.

It is clear how the base system comes to get an extension Ext, but how does it
get �Priv(Ext, �Ext) for use by its reference monitor? Here are two possible ap-
proaches:

1. The base system could itself compute �Priv(Ext, �Ext).
2. The base system could fetch �Priv(Ext, �Ext) from some site S.

Approach (1) presumes that �Priv(Ext, �Ext) can be computed—a questionable
supposition. Implicit in computing �Priv(Ext, �Ext) is establishing that extension
Ext satisfies specification 	Ext, and we know that question cannot be decided for
general-purpose programming and specification languages. There might exist
specialized languages, however, for which �Priv(Ext, �Ext) could be computed;
this is a research question that bears closer scrutiny. One might start by restrict-
ing consideration to specifications �Ext that are safety properties, because the
language of specifications now can be restricted to state predicates that hold
throughout system execution. The weakest precondition (wp) predicate trans-
former might then provide a starting point for defining �Priv by structural induc-
tion on Ext.

Approach (1) also presumes that �Ext is known. This, too, is a supposition of
dubious practicality. Since extensions are generally downloaded with some ex-
pectation of the job they are intended to do, one might suspect that a high-level,
task-oriented specification �Ext would be known to the initiator and serve as the
impetus for the Ext download. But employing such a high-level task-oriented
specification does not suffice if Ext involves implementation details that are not
obvious for the task and thus have been omitted from �Ext. For example, recall
the spell-checker extension introduced above, which is specified in terms of a
single file F. This spell-checker actually also involves accessing two other files
(a spelling dictionary and a jargon dictionary) and might in addition even access
a backing-store file perhaps over a local network. Such knowledge of implemen-
tation details is not going to be available to the initiator of an Ext download and,
therefore, would not be included in high-level task-oriented specification �Ext,
though clearly �Priv(Ext, �Ext) would need to include privileges for accessing the
spelling dictionary, the jargon dictionary, and the backing store.

If Ext cannot be deduced locally, then perhaps it could be downloaded and
checked. Unfortunately, this architecture also has problems. The local checking
is really a form of policy review, and policy review is a hard problem whenever
the policy being checked is complicated. A specification �Ext that involves inter-
nal details is going to be complicated and thus difficult for a human to under-
stand. The alternative to policy review is simply to trust the source of �Ext. But,
then, why not simply trust the source of Ext to provide a safe extension and dis-
pense with reference monitoring altogether?

For approach (2) to be workable, either S must be trusted or the base system
must itself have some means to check whether what it has fetched equals
�Priv(Ext, �Ext). The latter is unworkable for the reasons argued above. Regard-
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ing the former, an obvious question is whether trusting S to provide �Priv(Ext,
�Ext) could be materially different from trusting S to provide a safe implementa-
tion of Ext.

And more

At least for the time being, then, it seems as though obtaining �Priv(Ext, �Ext) for
use by a reference monitor associated with the base of an extensible system is
infeasible, and an alternative must be sought. So the policies we are now investi-
gating seek to prevent extensions from subverting a base system or, equivalently,
seek to prevent any extension from violating the assumptions underlying the de-
sign and implementation of that base. Such assumptions include the following:

• Characteristics of the programming model employed for building the
base, such as properties of underlying system abstractions and lan-
guage-level abstractions. For example, the separate address spaces usu-
ally accorded to process abstractions bring guarantees about integrity of
storage; and type systems in modern programming languages, like Java
and C#, bring guarantees about how certain variables can be used.

• Invariants that the base maintains about state. For example, a compli-
cated linked-list data structure might be characterized by an invariant
stating which nodes are reachable from each other; each routine to ma-
nipulate the data structure is then designed (i) to work correctly if that
invariant holds prior to execution and (ii) upon termination, to leave the
data structure in a state satisfying the invariant.

Provided these assumptions can be expressed as safety properties—and most
can—then they can be enforced by use of in-line reference monitoring. Prior to
execution, each extension is rewritten by adding checks that ensure no action the
extension performs will violate any assumption required by the base system.

Notice that in this alternative to �Priv(Ext, �Ext), a single policy is being em-
ployed, independent of extension Ext. The problems of deciding what specifica-
tion �Ext to use with a given extension Ext is thus eliminated. But the use of a
single policy for all extensions implies that the policy being enforced might not
be as restrictive as it could be (thereby admitting attacks) or might be too restric-
tive (thereby ruling out execution of certain extensions). And there is thus some
flexibility in formulating a policy for a given base.

Some final comments

The articulation of abstractions and principles is an important facet of doing re-
search in computing systems. An implementation is certainly one way to demon-
strate the utility of a new systems abstraction or principle, with system
performance a sensible figure of merit. However, some abstractions are useful
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even though they cannot be implemented. Belady’s optimal page replacement
policy [1], which involves predicting future memory references and therefore is
unrealizable in practice, is one example. The Principle of Least Privilege might
be another, offering value primarily as a benchmark against which to compare
policies that are being enforced—when compared with �Priv(Ext, �Ext), a de-
ployed policy would be considered inferior if it either admits additional attacks
or excludes certain classes of extensions.

The classical approach to computer security—address space isolation associ-
ated with processes—would seem a good place to start in a comparison of secu-
rity policies for extensible systems. It isn’t. The context switches required on
modern processors for communication and synchronization between separate
processes make it impractical to have fine-grained interaction between a base
implemented as one process and an extension as another. Without the possibility
of such fine-grained interaction, the set of functions that can be implemented as
extensions becomes quite limited.

But with in-lined reference monitors, different programs can be isolated from
each other without incurring the high cost of context switches. In fact, many
forms of fine-grained access control that are not practical with traditional refer-
ence monitors become practical with in-line reference monitors. Another concern
now confronts us, though: how best to exploit the flexibility. To make progress
here, not only must we learn the art of writing policies but we must also develop
the mathematical tools for analyzing them. Collections of weak policies are
likely to provide workable defenses for broad sets of extensions, for example.
Weak policies might well be easier for humans to understand, too. Exactly how
these advantages trade with the “security” �Priv(Ext, �Ext) provides is the ulti-
mate question. For the present, however, it seems that practical protection for
extensible systems is most easily obtained using policies that grant more privi-
leges than would �Priv(Ext, �Ext)—the least privilege and more.
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Using Sharing to Simplify System
Management

Michael D. Schroeder

The cost of ownership for many computer systems in non-home environments is
dominated by ongoing system management. This paper addresses the manage-
ment issues around storage-intensive systems that serve network-attached clients,
particularly file servers, mail and calendaring servers, and database servers. The
paper begins by describing a three-layer structure for large server systems that is
often employed where availability and scale considerations require the use of
multiple computers to implement a single service. It then contrasts a system or-
ganization called the uniserver model, in which the permanent state is partitioned
among the application servers, with an organization called the multiserver
model, in which the permanent state is shared among all the application servers.
Reviewing the relative advantages and disadvantages of the two models suggests
using a multiserver as a uniserver. The sharing from the multiserver model
makes a system easier to manage than a uniserver. But if dynamic sharing is
avoided in normal operation, as in a uniserver, then the combined system avoids
many of the drawbacks of both models.

Three-layer systems

A useful structure for a multi-computer system that maintains a significant per-
manent state and has network-attached clients is to organize the hardware com-
ponents into three layers by function.

At the bottom is the storage subsystem, consisting of large numbers of disks
and their controllers. These days the storage subsystem is usually interconnected
with a storage area network, such as Fibre Channel, to which all the computers
are also attached. In the middle layer are the computer systems that implement
the service: file servers, mail servers, or database servers. At the top layer are the
computer systems that front the system to the network. They collect client re-
quests from the network and distribute them to the middle-layer computers.
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Network interface to clients

These top-layer computers can be simple directors that pass requests directly
to the middle layer, or they can be web servers that implement the visible inter-
face and formulate the needed middle-layer requests.

The bottom-layer storage subsystem is usually responsible for reliably storing
the permanent state, although in some systems the middle layer participates too.
Reliability is achieved by using data-redundancy techniques such as RAID, as
well as by replicating the controllers and network components. Data is usually
backed up to offline media. In addition, if the bottom layer provides storage vir-
tualization, then it can do things like load balancing to improve performance.
This possibility is discussed later.

The three-layer system organization can be used in two different ways: uni-
server or multiserver. With the uniserver model, each middle-layer server acts on
a unique partition of the permanent state of the system that is stored by the bot-
tom layer. With the multiserver model, each middle-layer server can act on all of
that permanent state. These two models have different strengths and weaknesses.

The uniserver model

Today, the most common organization for dividing the work among the middle-
layer servers is to partition the permanent state of the system among them. I call
this organization with partitioned state the uniserver model. For example, in a
file system, different sub-trees of the naming hierarchy will be implemented by
different file servers in the middle layer; in an email system, different sets of user
accounts will be implemented by different mail servers; in a database system,
different tables of the database will be implemented by different database serv-
ers.

The top-layer directors understand the partitioning scheme and direct each
request to the middle-layer server that “owns” the permanent storage needed to

Top layer
Directors

Middle layer
Application servers

Bottom layer
Storage subsystem
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answer it. Sometimes a request needs to be divided into several pieces, each of
which is directed to a different server, and the results combined in order to re-
spond to the client, although atomicity is usually not provided for requests that
span multiple servers

As the patterns of client requests evolve and as the system state grows, it is
sometimes necessary to redistribute the state among the middle-layer servers and
add new ones to maintain good performance. Available tools can detect load-
pattern changes and overloaded servers, suggest optimal partitioning of the state,
and reorganize the storage layers to achieve good performance.

Another reason for changing the distribution pattern is the failure of a mid-
dle-layer server. If high availability is a goal, then the system will be provisioned
with extra standby servers to take over from failed servers. Failover requires
detecting the failure, detaching the associated permanent state from the failed
server, attaching it to a standby server, starting the standby server with the trans-
ferred state, and cleaning up any unfinished business found in that state. The top-
level directors are then told to direct requests to the new server.

There is some global shared state in a uniserver system: the list of application
servers and the characterization of the partitions of the data they each serve. This
global state needs to change when the partitioning is changed and when failover
occurs, but it changes infrequently and it is small.

The uniserver organization is sometimes called the shared-nothing approach
because middle-level servers share no permanent state. The partitions of the
permanent state are attached to one middle-level server at a time. The shared-
nothing approach was once mandatory, since there were no storage interconnects
that allowed disks to be accessed by more than one computer at a time. But even
though this constraint has been removed by the march of technology, people
continue to claim the enduring value of the shared-nothing approach. The
shared-nothing model is used widely in commercial products. For example, Mi-
crosoft’s SQL, Exchange, or NTFS servers deployed on Microsoft Cluster
Server [5] are examples of this organization. I use the term “uniserver” instead of
“shared-nothing” because uniserver contrasts better with its alternative, the mul-
tiserver model, discussed below.

The multiserver model

An alternative to the uniserver model for three-layer systems is the multiserver
model. In this approach all middle-layer servers in a system can operate on all
the permanent state contained in the bottom-layer storage subsystem. For exam-
ple, with a multiserver file system a single (large) hierarchical name space is
served by all servers in the middle layer. Any of the servers can operate on any
folder or file. Over the last ten years or so, progress in storage area networks,
systems area networks, and local area networks has made shared access to stor-
age affordable and scalable with good performance. With the multiserver model
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the top-layer director function is still required in order to do load balancing and
avoid failed servers. In the case of a multiserver, however, the directors can
make dynamic decisions that are not completely dictated by data location.1

The multiserver model makes extra demands on the implementation of the
middle-layer servers. In particular, they need to coordinate their access to the
permanent state. Coordination is usually done using a global locking service that
allows middle-layer servers to set locks on portions of the permanent state. A
lock prevents conflicting access from other servers. Choosing the best granular-
ity for the locking, e.g., per folder, per file, or per byte range in the case of a file
service, depends on the pattern of expected client requests. The need to coordi-
nate also complicates the management of data caches in the servers.

A multiserver system is expanded by attaching a new middle-layer server to
the storage subsystem, updating the membership list so that the top-layer direc-
tors know about the new server, and letting the new server initialize itself by
reading from the permanent state.

Failure of a middle-layer server can be covered by directing requests to an-
other server, because all servers can operate on all parts of the permanent state.
When servers encounter locks still held by the failed server, they must take a
special action to recover the lock and complete or abort the operations it pro-
tected. This is similar to cleaning up the unfinished business of a failed server
when doing failover for a uniserver system. In both cases the new server reads
and acts on the operation log written by the failed server.

Multiserver systems have been around for some time. An early successful ex-
ample was the DEC VAX/VMS cluster [1], which provides a multiserver file
system. The Rdb/VMS data base implemented on such a cluster was the TPC-A
performance champion of its time [4]. More recently the Frangipani global-
cluster file-system prototype [6] has demonstrated good performance and auto-
matic operation using these techniques.

Arguments in favor of uniservers

Uniserver systems realize several benefits directly from their organization. By
having each partition of the permanent data under control of a single server, un-
desirable interactions among the servers are minimized. Each server has a free
hand in managing and caching that data and in accessing the permanent state

1 For both uniserver and multiserver systems it is possible to put the director function
in a clerk module in the clients. The clerk module retrieves configuration information
directly from the middle-level servers and uses it to send each client request directly
to the appropriate server. With this structure the top-layer directors are bypassed.
Clerk modules work best when clients are modest in number and well-connected to
the server system. For large-scale systems with many distant clients, it is best to have
the director run on top-layer servers of the system, as described here.
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without the interference of other servers. Lack of interference can lead to good
performance. An application server is “near” its data, in the sense that the con-
nection from the data storage subsystem to the server for the associated partition
doesn’t need to branch. When a server crashes it cannot affect the operation of
other servers or other partitions. This lack of unwanted interaction contributes to
system stability. Finally, failover is an activity confined to the chosen standby
server, without system-wide repercussions other than temporary unavailability of
data from the affected permanent state.

Arguments against uniservers

The partitioning of the permanent state that characterizes the uniserver organiza-
tion generates some problems. Perhaps most important is that maintaining opti-
mal partitioning is a management burden in operating such a system. Growth in
the load, changes in the access patterns, and growth of the permanent state re-
quire repartitioning the system. Such repartitioning can involve copying the data.
Repartitioning can be time intensive and can take the system entirely or partially
offline. In typical implementations failover is slow: getting the standby server up
to speed from scratch can take minutes. Addressing this problem by having a hot
standby mitigates some of the simplicity and non-interference advantages men-
tioned earlier.

Arguments in favor of multiservers

Multiserver systems also have their benefits. Requests can be dynamically dis-
tributed according to load. Requests to read-only hot spots in the data, for exam-
ple, can be satisfied from multiple middle-level servers in parallel without any
pre-positioning of the data. The needed data would find its way from the shared
storage subsystem into the caches of all the servers, where it could be accessed
rapidly at each, increasing throughput of the overall system. Recovery from the
failure of a middle-level server can be fast because all other servers are auto-
matically “hot.” Repartitioning the permanent state is never necessary since all
servers can access all of the permanent state. The result is that management
overhead for such a system is low and there are no lengthy outages for reconfigu-
ration.

Arguments against multiservers

Problems with the multiserver organization include interference between servers
needing temporary exclusive access to the same data. Such lock conflicts can
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result in unpredictable performance. Also, implementing the global lock service
as a high-performance, scalable, distributed program is complex. With multis-
erver systems, failures can impact the operation of all other servers as they re-
cover the locks held by the failed server and take over the load. Another negative
for the multiserver organization is that many existing commercial file servers,
mail servers, and database servers are not designed to share access to their per-
manent data. While there is general ignorance about how hard fixing this would
be, it clearly would be a major development task. Finally, the storage subsystem
has to be able to deliver all of the permanent state to all servers with good per-
formance, a requirement that has been difficult to achieve.

Using a multiserver as a uniserver

It seems possible to combine the advantages of the uniserver and multiserver
models and lose most of drawbacks. The idea is to use the top-layer directors
and distribution tables from a uniserver system on a multiserver system with the
same permanent state. The uniserver directors will route requests in a pattern that
prevents the multiservers from sharing items from the permanent data, even
though they could share. Under this scheme, at system start-up or reconfiguration
there would be an initial flurry of activity at the global locking service while
each application server collects the locks it needs as requests come in. There
would never be contention for these locks, since the directors are implementing
the same routing decisions that they would for the uniserver system having a
partitioned permanent state. Eventually lock requests would largely stop occur-
ring as each server obtained all the locks it needed. The steady state would be
characterized by a background level of lock renewals without contention. The
performance concerns surrounding contention in a multiserver system would not
surface with this scheme.

But have we gained any of the advantages of multiservers? I think we have.
Repartitioning, scaling, and failover can happen faster and with less management
intervention or service disruption in a multiserver system. Consider each in turn.

Repartitioning

As with a uniserver system, monitoring tools watch for signs that repartitioning
is needed. In addition to server load, lock contention is a good telltale. For the
multiserver, however, repartitioning is accomplished by changing only the rout-
ing pattern implemented by the top-layer director computers. No changes in the
organization of the storage subsystem are required. As the middle-layer servers
start seeing requests that require access to new parts of the permanent state they
obtain the corresponding locks and fulfil the requests. The previous lock holders
release their claims because of these requests for contending locks from other
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servers. After some interval, locking service activity would drop to a background
level again. The system continues offering service while the reconfiguration is
stabilizing, perhaps with some small loss of performance due to increased lock-
ing traffic.

Scaling

An added middle-layer server attaches itself to the permanent storage of the sys-
tem and internalizes the meta-data it needs to commence operation. All of the
state needed is available to the new server either in the shared storage subsystem
or in the membership list and locking service. The membership list for the sys-
tem is updated to record the new server and the distributors adjust the routing
algorithm to allow the new server to operate on a virtual partition of the perma-
nent state. Again, no management intervention is required other than policy di-
rection as appropriate. The system continues to provide service during scaling.

Failover

A failure of a middle-layer server is detected by monitoring mechanisms that are
largely similar in the uniserver and multiserver cases. Once detected, the multis-
erver system adjusts the routing decisions made by the top-layer distributor com-
puters to effectively assign the portion of the permanent data associated with the
failed application server to one or more other servers. In the multiserver case, as
with the uniserver case, there can be standby servers waiting to receive the load.
Lock redistribution follows until the locking service activity quiesces in the new
state. When acquiring broken locks abandoned by a failed server, a new server
inspects the operations log of the failed server, available from the storage sub-
system, to determine the cleanup actions required.

In summary, use of the multiserver organization, but with directors that minimize
or eliminate actual sharing among active middle-layer servers, can substantially
reduce the cost of management for such systems without much impact on system
performance, reliability, or cost.

More on the storage subsystem

As described so far, the bottom-layer storage subsystem is a collection of disks,
controllers, and network components with the property that all middle-layer
servers can access all disks. Storage reliability is achieved by the use of redun-
dancy within the storage subsystem. This black-box model of the storage subsys-
tem is appropriate for discussing the distinction between uniserver and
multiserver systems. Achieving minimum-intervention management and good
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performance for the overall system, however, may demand additional functional-
ity from the storage subsystem. The extra features are equally useful in uniserver
and multiserver systems. In particular, it may be useful for the storage subsystem
to implement load balancing, incremental growth, and failover on its own. The
key technique for adding these features is storage virtualization, in which the
storage subsystem implements one or more virtual storage volumes that are ad-
dressed like very large disks. A mapping from the blocks of the virtual volume to
the physical storage hides the redundancy scheme and the distribution of the data
among controllers and disks.

With a volume virtualization scheme, failed disks and controllers can be re-
placed and new disks and controllers added on demand. The only change the
middle-layer servers see is that the virtual volumes can change size. Automatic
algorithms operating in the background copy data among the attached disks to
achieve capacity and load balance and to restore the desired level of data redun-
dancy. No management intervention is required. Operator intervention is re-
quired to replace or add hardware, but not to configure it. The Petal storage-
management system [3] is one example of this kind of storage virtualization.

A shared storage subsystem with volume virtualization clearly would be an
asset to a uniserver system as well as a multiserver system and would mitigate
some of the management burden associated with uniserver systems.

Discussion

The multiserver organization requires distributed systems software in addition to
shared physical access to the storage subsystem. Over the last ten years consider-
able progress has been made on this software technology. There now are good
algorithms for the global state management needed to maintain the system mem-
bership list. Perhaps the best algorithms are those in the Paxos family [2]. A
global locking service built using leases and depending on server operation logs
for lock recovery, as in the Frangipani example, can have good performance and
scaling characteristics. This design is a simplification of the traditional distrib-
uted lock manager [7]. Because a partitioned multiserver system operates in a
way that minimizes or eliminates dynamic sharing, the locking service and the
coordination mechanisms for the server data caches are not stressed.

The distinction between uniserver and multiserver systems focuses on two
ends of a spectrum of implementations. Many of the ideas I have associated with
multiservers can be applied in some form to uniservers. For example, in a uni-
server using standby servers for failover, the idea of hot standbys can be pushed
to the point where the standby server is tracking the active server, operation by
operation, so that its internal state is almost complete and up-to-date when the
failover occurs. This can make failover faster. In this case the experienced sys-
tem designer will be wary, however, since we would be adding a special purpose
mechanism used only to support the unusual case of failover, whereas the similar
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machinery in a multiserver would be part of the base functionality of the system
and thus more likely to be correct.

Summary

In this paper I have argued that sharing is a good organizational technique for a
multi-computer server system, especially if the system is configured so that shar-
ing is not on the critical path of high-volume operations. The sharing mecha-
nisms can make the inevitable system transitions caused by reconfiguration,
failure, and growth fit more seamlessly into system operation, minimizing the
management attention required to perform them. A system organization that
combines the good features of the uniserver and multiserver models has the po-
tential to realize this goal.
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An RSA-Related Number-Theoretic
Surprise

Gustavus J. Simmons

It is a folklore result that factoring an RSA modulus n = pq given the Euler func-
tion �(n) only requires the extraction of a single square root. There does not ap-
pear to be a correspondingly simple algebraic formula to factor n directly given
the universal exponent 
(n). If �(n) could be calculated from 
(n), then n could
be factored directly, but �(n), compared to 
(n), can be as small as 2
(n), or as
large as Int[√(n/2)]
(n), depending on the choice of the primes p and q. The sur-
prising result presented here is that in spite of this enormous range of possible
values for 
(n), only a single division is required to calculate �(n) from 
(n) for
any RSA modulus.

Introduction

In the first few years after the discovery of the RSA crypto algorithm, several
schemes were proposed that can best be described as common modulus protocols
in which a central keying authority (CKA) chose the primes p and q and then
calculated pairs of exponents ei and di for each of the subscribers/users to the
system. The reason for considering such schemes was that at the time it was very
difficult and very slow to carry out modular exponentiations with numbers of the
size required for the modulus to be infeasible to factor. By using a common
modulus, it was possible for the CKA to do pre-computations that could then be
used by all of the subscribers to speed up the encryption/decryption computa-
tions. Subsequent advances in both computational algorithms and VLSI chips
rendered these considerations moot. Before this happened, though, such systems
were shown to be cryptographically insecure by Simmons [1], who gave a prob-
abilistic algorithm that could almost certainly factor n given any multiple of 
(n),
and by DeLaurentis [1], who gave a deterministic algorithm (valid if the ex-
tended Riemann hypothesis holds) to calculate the matching secret key for any
public key under the same conditions. Since ei di ≡ 1 mod 
(n), these two results
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meant that any subscriber to a common modulus system could compute the se-
cret key for any other subscriber, making such a system totally insecure.

The problem of factoring n given a multiple of 
(n) led naturally to consider-
ing the special case of factoring n given 
(n) = [(p – 1) , (q – 1)], since it is a
folklore result that given the Euler function �(n) = (p – 1)(q – 1) = n – p – q + 1,
factoring n only requires the extraction of a single square root. If n = pq, p > q,
then

p = ½(S + √(S2 – 4n)) and q = ½(S – √(S2 – 4n))
where S is defined by S = n – �(n) + 1.


(n) = [(p –1) , (q – 1)] always divides �(n) = (p – 1)(q – 1),
but the quotient r = �(n)/
(n) can be as small as 2 or as large as Int[√(n/2)].
In fact, for appropriate choices of the primes p and q, r can be forced to assume
any even integer value in this range.

Consider a special case in which the extreme values of r are realized. Let p,
q1, and q2 be three primes of the form: p = 2m + 1, q1 = 4m + 1 and q2 = 4m – 1.
For a prime triple of this form:

n1 = 8m2 + 6m + 1, n2 = 8m2 + 2m – 1, �(n1) = 8m2

and �(n2) = 8m2 – 4m,
so that the two pairs of values are asymptotically the same size.

�(n2)/�(n1) = 1 – 1/2m and n2/n1 = 1 – 1/(2m + ½),
while r2 = �(n2) / 
(n2) = 2 and r1 = �(n1) / 
(n1) = 2m.

For example, let the prime triple be 331, 661, and 659,
then 
(n1) = 660, while 
(n2) = 108,570.

The problem is to compute the factors of n, one of which is common to both
n1 and n2 and the other pair of which differ only by 2, using values of 
(n) that
differ by a factor of m – ½. Unlike the case for �(n), no simple algebraic formula
is known to do this.

Observation
1

Given three integers 1 < a < b < c, where a | b and a ł c, define k to be the least
integer satisfying ka > c – b. Then b/a is one of the k integers in the interval

((c/a) – k, (c/a)).

Theorem

For any RSA modulus, �(n)/
(n) is the unique even integer in the interval
(n/
(n – 2, n/
(n))

1 This is a generalization of a special case first observed by Peter Landrock.
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Proof

We show that for an RSA modulus 
(n) = a, �(n) = b, n = c satisfy the conditions
of the observation and that k = 2 in this case.

Since [x,y]xy for all x and y, the first condition is trivially satisfied.

If 
(n) = [(p – 1), (q – 1)], with p > q, divides n = pq, then p – 1 must be q and
q – 1 must be 1, i.e., p = 3 and q = 2.

Since this is not a possible RSA modulus pair of primes, 
(n) ł n for any RSA
modulus and the second condition of the observation is satisfied.

To show that k = 2, first note that for the example given above,

(n1) = 4m < 6m + 1 = n – �(n1), so that k > 1.

We next show that for all n = pq,
2 
(n) > n – �(n)
2[(p – 1), (q – 1)] > n – �(n) = n – n + p + q – 1
[(p – 1), (q – 1)] > ½((p – 1) + (q – 1)) + ½

But for all x > y, [x,y] � ½(x + y) + ½, with equality only at x = 2, y = 1; the case
already dismissed in the consideration of 
(n) dividing n. Therefore, k = 2, as
was to be shown.

To complete the proof, we have only to observe that since p and q are both odd
primes, �(n)/
(n) is necessarily an even integer.
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40
Application-Private Networks

Jonathan M. Smith

Introduction

The design space for network architectures can be conveniently described as a 3-
tuple of <Application requirements, Protocol elements, Network conditions>.
Application requirements can range from reliability and small-message inter-
arrival delay to communications secrecy. Protocol elements include acknowl-
edgements and error-correcting codes, timers, and a variety of cryptographic
transformations. Network conditions include delay, delay variance, loss rates, bit
error rates (BERs), topology, and available bandwidths. For any given triple, and
in particular for a choice of application and requirements, we make assumptions
about operating conditions, and protocol elements selected to meet the applica-
tion requirements under these conditions.

Two examples, the telephone network and the Internet, are useful in under-
standing this architectural framework. The telephone network in its purest form
is engineered [1] to deliver a band-limited audio channel appropriate for interac-
tive voice telecommunications. The application requirements, then, include the
ability to deliver about 3000 Hz of audio, with some limits on delay and audible
impairments. These requirements have been met in the telephony architecture by
using a call set-up protocol of considerable complexity to establish a point-to-
point channel for carrying a voice stream. Link, multiplexing, switching, and
capacity engineering are voice-centric.

The Internet design, requiring interoperation across a variety of networks and
operating conditions, and intended to service many applications, must choose
protocols that can tolerate an extremely wide variety of network conditions.
Thus, the basic IP transport service is a minimal datagram service, response to
network dynamics such as topology changes is provided by dynamic routing, and
other application requirements (ordering, reliability, etc.) are provided by end-
to-end overlay protocols, such as the Transmission Control Protocol, TCP.

If we contrast the Internet architecture with the telephony network architec-
ture, TCP/IP is intended to be agnostic with respect to applications, and adapts
to a large (but not all-encompassing) range of network conditions with its choice
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of protocol elements. To optimize the placement of protocol functions in the
architecture (rather than for a specific requirement), the “end-to-end” design
notion pushes functions to the end-points, eliminating redundant implementation
and giving application designers the widest range of options for use of the basic
network service.

These two examples illustrate the design space and tradeoffs made amongst
its “dimensions.” Neither architecture is ideal. For example the attempt to re-
move many dynamics in network conditions within the call makes the telephony
architecture limited in its ability to efficiently handle applications with dynamics
very different than that of voice. Likewise, the approach to dealing with many
applications and network conditions in the IP architecture has forced engineering
tradeoffs, such as substantial over-provisioning (to control delay jitter) to sup-
port applications such as voice and video.

Automated optimal-network engineering

An ideal network architecture, within the constraints of our design space, would
have the property that at any given time, the application requirements and net-
work conditions would result in the best known selection and placement of pro-
tocol elements. For example, if network-condition dynamics result in a variable
BER, as in a mobile wireless context, the protocol architecture might be adjusted
to inject forward error correction (FEC) to move TCP/IP into an operating re-
gime where its protocol element selections result in meeting application re-
quirements. While limited instances of such techniques have been demonstrated
experimentally [4], the ideal system would automate [6] such responses, under
control of high-level models of application requirements.

A great deal of detail is masked by the design-space abstraction presented in
the Introduction, but the basic point is not to be lost: for any specified applica-
tion requirements (including preferences, weights, etc.) and network conditions
(we will discuss how information about such network conditions might be made
available using the “Knowledge Plane” proposed by David Clark [3] in the next
section), one or more equivalent selections of protocol elements can be made
which closely meet the application requirements. As this process is fundamen-
tally driven by application requirements, we call such networks Application-
Private Networks, or APNets. The basic design process for an APNet, for a par-
ticular application, would result in a protocol architecture optimized for that ap-
plication’s performance, with protocol elements selected in concert with any
techniques, such as time-division multiplexing, needed to limit the range of net-
work conditions for these selections. The resulting network architecture is collo-
quially called a “stovepipe.”

An excellent example design from the space-systems domain is the “Remote
Agent” [6] architecture used in NASA’s Deep Space One (DS1) mission, where
many of the challenges are similar to those of network engineering, such as mul-
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tiple timescales, unplanned events, and overall “mission goals.” In the NASA
system, very high-level models are used to drive a planning system; current con-
ditions are fed into a system with a limited time horizon to drive specific actions
such as recovery, reconfiguration, and reprogramming in the face of system con-
ditions such as failed sensors and actuators.

The challenge in the more general case is large-scale sharing. That is, stove-
pipe design is economically inefficient, inhibits adaptation and reuse, and makes
interoperability with other applications, as well as sharing of facilities, difficult.
Further, it makes unfounded assumptions for the general case, where conflicting
goals between users are common. The advent of programmability in many net-
work components, such as network processors, software radios, and extensible
routers, permits the configuration of such components to be virtualized. That is,
the component behaviour can support multiple application-driven specializa-
tions. The problem is not easy, but is conceptually within reach [6], as demon-
strated by the DS1 experiments we have discussed. An abstraction is given in
Figure 1a, where application requirements (specified, perhaps, as in the next
section) induce behaviors at various logical levels in a network, from host to
link.

This process will take place repeatedly according to changes in network con-
ditions. The reconfiguration process must be safe, network knowledge must be
available to both the protocol element selection and programmable component
configuration processes, and the network knowledge must be trusted, to deal
with accidental and malicious failures.

Reactive
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Reflective
A
P
N
e
t

IP Stack

Middleware
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Switches
Links
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Requirements

(a) APNet Configuration (b) Controlling APNet Dynamics

Figure 1: APNets

Among the interesting technical questions to be resolved are issues of secu-
rity, stability, and degree of extensibility for the architecture as a whole. To
touch just briefly on these issues, the degrees of extensibility might include those
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possible from a machine-learning algorithm in optimization of protocol selec-
tions, they might include addition of new protocol elements as they are discov-
ered, or they might include wholesale changes of the control architecture itself.
Stability issues include overreactions, damping, and convergence of distributed
control schemes. Prototyping and experiments can identify the appropriate adap-
tation rates for various timescales, ranging from the immediate to relatively long-
term, which some researchers have categorized as reactive, deliberative, and
reflective —Figure1b illustrates how these adaptation timescales might affect the
dynamics of APNet instances. Security concerns, in addition to the trust of net-
work condition data, include the risk of subtle denial-of-service attacks on a
complex infrastructure, data privacy, authorization for code loading, provenance
of aggregated data, and finally, the technically difficult issue of what the teleph-
ony industry politely refers to as “feature interaction.”

Trust architecture for network knowledge

The interaction between the knowledge plane and APNets is important, and if
network knowledge is to be widely used, it will be named. Much knowledge will
be represented syntactically as strings of the form <name>=<value>, e.g.,
“bandwidth=64K.” This scheme has been widely adopted, in contexts from
scripting languages to WWW “cookies,” and is readily translated to locally con-
venient representations. An example of such a use of a variable is the TERM vari-
able used to configure terminal handling in some operating systems in concert
with a database of information about terminal capabilities. In an APNet, the host
operating system might, using the variables specified by the application, config-
ure schedulers, networking stacks, and choose network adapters.

The string representation enables use of trust management technology [2]
such as the KeyNote system [5], which represents assertions as credentials with
authorizers, licensees, and conditions. Public-key technologies are used to build
the web of trust, and a compliance checking process is used to test requested
actions against the credentials. Consider public keys for rmn and jms77, where
jms77’s key is the licensee, rmn’s key is the authorizer, conditions are

$file_owner=”rmn” && $filename=”/home/rmn/[^/]*”

&& $hostname = ”ouse.cl.cam.ac.uk” -> ”true”

and the signature is with rmn’s key. Then jms77 is authorized by rmn to access
files in rmn’s home directory on a particular host at the University of Cambridge.

This architecture provides capability-like [8] control of resources and robust
delegation of authority in spite of distributed control through its use of cryptog-
raphy to authenticate and authorize remote operations [7], and has many other
desirable features. Complete explication would require more space, but among
the desirable properties of credentials and a trusted knowledge plane for ad-
vanced applications are data provenance, support for micro-payment systems of
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various flavors, authorization for network control, code-loading, resource alloca-
tion, and digital-rights management.

Conclusion

Application-Private Networks extend the range of dynamics for protocol archi-
tectures by dynamically selecting protocol elements to meet application require-
ments in the face of dynamic conditions. Such a network architecture is not only
desirable, it is technically achievable within the next decade. A broad range of
new network uses would thereby be enabled.
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Using the CORAL System to Discover
Attacks on Security Protocols

Graham Steel, Alan Bundy, Ewen Denney

Introduction

Inductive theorem provers are frequently employed in the verification of pro-
grams, algorithms, and protocols. Programs and algorithms often contain bugs,
and protocols may be flawed, causing the proof attempt to fail. However, it can
be hard to interpret a failed proof attempt: it may be that some additional lemmas
need to be proved or a generalisation made. In this situation, a tool which can
not only detect an incorrect conjecture, but also supply a counterexample in or-
der to allow the user to identify the bug or flaw, is potentially very valuable.
Here we describe such a tool, CORAL, based on a previously under-exploited
feature of proof by consistency. Proof by consistency is a technique for automat-
ing inductive proofs in first-order logic. Originally developed to prove correct
theorems, this technique has the property of being refutation complete, i.e., it is
able to refute in finite time conjectures which are inconsistent with the set of
hypotheses. Recently, Comon and Nieuwenhuis have drawn together and ex-
tended previous research to show how it may be more generally applied [4].
CORAL is the first full implementation of this method.

We have applied CORAL to the analysis of cryptographic security protocols.
Paulson has shown how these can be modelled inductively in higher-order logic
[16]. By devising a suitable first-order version of Paulson’s formalism, we are
able to automatically refute incorrect security conjectures and exhibit the corre-
sponding attacks. The flexibility of the inductive formalism allows us to analyse
group protocols, and we have discovered new attacks on such a protocol (the
Asokan-Ginzboorg protocol for ad-hoc Bluetooth networks [2]) using CORAL.

In the rest of the paper, we first briefly look at the background to the problem
of refuting incorrect conjectures and the formal analysis of security protocols.
Then we outline the Comon-Nieuwenhuis method. We describe the operation of
CORAL and then show how it can be applied to the problem of protocol analy-
sis. Finally, we describe some possible further work, including some other possi-
ble applications for CORAL, and draw some conclusions.
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Background

The refutation of incorrect inductive conjectures has been studied before, e.g., by
Protzen [17], Reif [18], and Ahrendt [1]. Ahrendt’s method works by construct-
ing a set of clauses to send to a model generation prover and is restricted to free
datatypes. Protzen’s technique progressively instantiates terms in the formula to
be checked, using the recursive definitions of the function symbols involved. It
finds many small counterexamples. Rief’s method instantiates the formula with
constructor terms and uses simplifier rules in the prover KIV to evaluate truth or
falsehood. His method is a marked improvement on Protzen’s, but is too naïve
for a situation like protocol checking, where it is not obvious what combination
of constructor terms constitutes a possible exchange of messages.

Proof by consistency

Proof by consistency was originally conceived by Musser [14] as a method for
proving inductive theorems by using a modified Knuth-Bendix completion pro-
cedure. It was developed by various authors, [8, 10, 6], for the next fifteen years
(see [20] for the story), but interest waned, as it seemed too hard to scale the
technique up to proving larger conjectures. However, later versions of the tech-
nique did have the property of being refutation complete, that is, able to spot
false conjectures in finite time.

The Comon-Nieuwenhuis method

Comon and Nieuwenhuis [4] have shown that the previous techniques for proof
by consistency can be generalised to the production of a first-order axiomatisa-
tion A of the minimal Herbrand model such that A � E � C is consistent if and
only if C is an inductive consequence of E. With A satisfying the properties they
define as a Normal I-Axiomatisation, inductive proofs can be reduced to first-
order consistency problems and so can be solved by any saturation based theo-
rem prover. There is not room here to give a full formal account of the theory,
but informally, a proof attempt involves two parts: in one, we pursue a fair in-
duction derivation. This is a restricted kind of saturation, where we need only
consider overlaps between axioms and conjectures. In the second part, every
clause in the induction derivation is checked for consistency against the I-
Axiomatisation. If any consistency check fails, then the conjecture is incorrect. If
they all succeed, and the induction derivation procedure terminates, the theorem
is proved. Comon and Nieuwenhuis have shown refutation completeness for this
system, i.e., any incorrect conjecture will be refuted in finite time, even if the
search for an induction derivation is non-terminating.
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Cryptographic security protocols

Cryptographic protocols are used in distributed systems to allow agents to com-
municate securely. They were first proposed by Needham and Schroeder [15].
Assumed to be present in the system is a spy, who can see all the traffic in the
network and may send malicious messages in order to try to impersonate users
and gain access to secrets.

Although security protocols are usually quite short, typically 2–5 messages,
they often have subtle flaws in them that may not be discovered for many years.
Researchers have applied various formal techniques to the problem to try to find
attacks on faulty protocols and to prove correct protocols secure. These ap-
proaches include belief logics such as the so-called BAN logic [3], state ma-
chines [5, 11], model checking [12], and inductive theorem proving [16]. Each
approach has its advantages and disadvantages. For example, the BAN logic is
attractively simple and has found some protocol flaws, though in other cases
found flawed protocols correct. The model-checking approach can find flaws
very quickly, but can only be applied to finite (and typically very small) in-
stances of the protocol. This means that if no attack is found, there may still be
an attack upon a larger instance. Modern state-machine approaches [13, 19] can
also find and exhibit attacks quickly, but require the user to choose and prove
lemmas in order to reduce the problem to a tractable finite search space. The
inductive method deals directly with the infinite-state problem and assumes an
arbitrary number of protocol participants, but proofs are tricky and require days
or weeks of expert effort. If a proof breaks down, there have previously been no
automated facilities for the detection of an attack.

Implementation

Figure 1 illustrates the operation of CORAL, built on the SPASS theorem prover
[23]. The induction derivation, using the Comon-Nieuwenhuis method as de-
scribed above, is pursued by the modified SPASS prover on the right of the dia-
gram. As each clause is derived, it is passed to the refutation control script on the
left, which launches a standard SPASS prover to do the check against the I-
Axiomatisation. The parallel architecture allows us to obtain a refutation in cases
where the induction derivation does not terminate, as well as allowing us to split
the process across multiple machines in the case of a large problem. Experiments
with the system show good performance on a variety of incorrect conjectures
from the literature and our on own examples [21].
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Figure 1: CORAL system operation

Application to cryptographic security protocols

Paulson’s inductive approach has been used to verify properties of several proto-
cols [16]. Protocols are formalised in typed higher-order logic as the set of all
possible traces. Properties of the security protocol can be proved by induction on
traces. However, as Paulson observed, a failed proof state can be difficult to in-
terpret. Even an expert user will be unsure as to whether it is the proof attempt or
the conjecture that is at fault. By applying our counterexample finder to these
problems, we can automatically detect and present attacks when they exist. The
use of an inductive model also allows us to consider protocols involving an arbi-
trary number of participants in a single round, e.g., conference-key protocols.
Paulson’s formalism is in higher-order logic. However, no ‘fundamentally’
higher-order concepts are used—in particular, there is no unification of func-
tional objects. Objects have types, and sets and lists are used. All this can be
modelled in first-order logic. The security protocol problem has been modelled
in first-order logic before, e.g., by Weidenbach [24]. He used a two-agent model,
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with fixed roles for participants, and just one available session key and nonce (a
nonce is a unique identifying number), and so could not detect certain kinds of
parallel session attacks described above. Like Paulson’s, our model allows an
indeterminate and unbounded number of agents to participate, playing either role
and using an arbitrary number of fresh nonces and keys. Details of the model are
in our earlier paper [21], but we will highlight now some recent developments.

We have modified our formalism slightly to make attacks easier to find. The
idea is to prune out branches of the search space that cannot lead to an attack, or
branches which represent a less succinct expression of a state already reached.
For example, we merged together the formulae allowing the spy to send a fake
message with those for the standard protocol, so that the spy can only send mes-
sages which look like a part of the real protocol. Sending anything else cannot
fool any honest participants, since they only respond to correctly formed mes-
sages. We also have a reduction rule which prunes out clauses which represent
states where the spy has sent two messages in a row. The spy can’t gain anything
from doing this, so by chopping off these branches we make the search problem
more tractable.

With these improvements CORAL has rediscovered a number of known at-
tacks, including the well known ones on the Needham-Schroeder public-key and
Neuman-Stubblebine shared-key protocols. It can also find the attack on the
simplified Otway-Rees protocol, an attack which requires an honest agent to
generate two fresh nonces and to play the role of both the initiator and the re-
sponder. Recently, CORAL found two new attacks on the Asokan-Ginzboorg
protocol for establishing a secure session key in an ad-hoc Bluetooth network
[2]. Details of the attacks and a description of how we modelled this group pro-
tocol in a general way without restricting to a small fixed instance are in a forth-
coming paper [22].

Further work

Future work will include testing the CORAL system on more group-key proto-
cols. As CORAL is built on SPASS, a theorem prover capable of equational rea-
soning, we should be able to reason about some simple algebraic properties of
the cryptosystems underlying protocols, such as Diffie-Helman type operations.
In particular, Asokan and Ginzboorg have proposed a second version of their
protocol that uses these kinds of operations, which would be an ideal candidate
for future investigation.

There has been a proliferation of protocol analysis tools in recent years, and
in the longer term we don’t intend to try and compete with others for speed of
attack finding or by analysing an enormous corpus of protocols. Rather, we in-
tend to try to exploit the flexibility of our system as a general tool for inductive
counterexample finding and apply it to some other security problems. One idea
is to use the system to model security problems at a higher level. We could
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model a company’s computer network as a system of local networks and servers,
firewalls, etc., all with formally defined behaviour, and examine how interactions
in the presence of intruders might lead to exploitable vulnerabilities. To deal
with larger problems like this, we might need to enhance SPASS to exploit do-
main knowledge a little more. Two possible ideas we intend to explore are a
user-defined strategy that can vary as the proof proceeds and a critics mechanism
[9] to suggest pruning lemmas. In theory, CORAL can also show security prop-
erties of protocols to be correct when there are no attacks to be found. However,
to make this work in practice would require some considerable work. The formu-
lae to be proved are significantly larger than the kinds of examples that have
been proved by proof by consistency in the past. The critics mechanism for sug-
gesting lemmas could help with this.

Conclusions

We have presented CORAL, our system for refuting incorrect inductive conjec-
tures, and have shown how it can be applied to the problem of finding attacks on
faulty security protocols. Our formalism is similar to Paulson’s, which allows us
to deal directly with protocols involving an arbitrary number of participants and
nonces, and with principals playing multiple roles. CORAL has discovered a
number of known attacks, and some new attacks on a group-key protocol. In the
longer term, we hope to apply the system to other, related security problems and
exploit its ability to do equational reasoning in order to analyse some crytpoana-
lytic properties of protocols. (This paper is a shortened and updated version of
[21]. )
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On the Role of Binding and Rate
Adaptation in Packet Networks

David Tennenhouse

An ongoing debate within the network research community concerns the degree
to which packet switching, especially that which is IP-based, can and should
subsume other types of networks, e.g., those based on circuit switching.

In this short paper, I discuss four aspects of this debate that have long been of
concern to me as a network researcher:

• The tendency of network architects to focus on the “core” of the net-
work, which is its least interesting architectural component.

• The common misconception that statistical multiplexing is the funda-
mental advantage of packet switching.

• The proposal that late binding and rate adaption are the essential archi-
tectural advantages of packet switching.

• The observation that it is the properties of key interfaces, rather than the
network internals, that are most deserving of our attention.

While much of what follows will be very familiar to software and systems re-
searchers, these concepts do not seem to be as well accepted within the network-
ing community.

The “core” is architecturally irrelevant

Much of the recent discussion has been focused on the degree to which IP, and
packet switching in general, will directly support the underlying transport infra-
structure, sometimes referred to as the “core,” or “cross-connect,” of national
scale multi-service networks. While some would argue that it can and should,
others conclude that “the core of the network will use optical circuit switching as
a platform for multiple services,” [1].

I find the question of packet vs. circuit operation of the underlying cross-
connect rather tedious for these reasons:
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• The topology of the physical media comprising the core is relatively
simple and rigid. For example, in the United States, the national scale
“core” has on the order of hundreds of nodes.

• The statistical properties of the highly aggregated, or “groomed,” cross-
connect channels will be relatively predictable and slow to evolve.
Since the time constants involved are quite lengthy, relative to the
round-trip times within the core, the choice of packet vs. circuit cross-
connect is a moot point.

But isn’t statistical multiplexing the essence of packet
switching?

The focus on the behavior of the core suggests that there is a deep misunder-
standing as to the essential merits of packet networks in general, and the Internet
in particular. Molinero-Fernandez et al. [1]—and many others in the network
research community—ground their reasoning in the following premise:

From the early days of computer networking, it has been well known that
packet switching makes efficient use of scarce link bandwidth. With packet
switching, statistical multiplexing allows link bandwidth to be shared…

While the above position is widely held, I find the frequent and very loose
generality with which it is applied disconcerting. In particular, the importance
and relationship of the words “scarce” and “statistical” are almost always disre-
garded—as are the time constants involved. Both circuit- and packet-switched
networks take advantage of statistical multiplexing, with the only real distinction
being the time constants.1 Per-packet statistical multiplexing is of marginal utility
if the traffic is steady over long periods and/or the bandwidth is continuously
exhausted. The same is true at the other extreme, i.e., when bandwidth is not
scarce as a consequence of over-provisioning.

Packet multiplexing is beneficial within a limited range of statistical patterns
and scarcities, typically observed near the edge of the network. It can be highly
advantageous at “early multiplexing” points, where modest numbers of relatively
dynamic flows are multiplexed into larger aggregates. At these points the band-
width available to the aggregate may well be scarce relative to the statistical
properties of the individual tributaries.

At switching points deep within the core of a national scale multi-service in-
frastructure, the traffic on each channel is derived from the aggregation of vast
numbers of flows. These highly aggregated cross-connect channels will be statis-
tically “smoother,” and this has a huge impact on the nature of bandwidth scarci-

1 Circuit switched telephony has long relied on statistical properties of call attempts,
call duration, etc. Interestingly enough, the signaling system used to setup calls is, it-
self, a packet-switched network.
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ties at the switching points and the potential of any architecture to respond to
them.

• Many types of core scarcities can be anticipated months in advance and
dealt with through provisioning.

• Large-scale unanticipated scarcities, such as those arising from simulta-
neous failures and/or coordinated surges in demand, will force any ar-
chitecture into a “degradation” mode, whose desired behavior will be
more a matter of public policy than architectural finesse.

• Most intermittent scarcities falling between the above extremes will
have sufficiently long time constants that the distinction between circuit
and packet switching may not be relevant. Although some have sug-
gested that IP traffic might be clumped or correlated, recent measure-
ments [2] suggest that channels within the core experience relatively
small and predictable delays over the time constants of interest.

Dynamic binding and rate adaptation: the real essence of
packet switching

So what, then, is the architectural advantage of packet switching? While I con-
cede the importance of statistical multiplexing at moderate aggregation levels, I
have never believed it to be the architectural imperative.2 I suggest that the real
“magic” of packet switching, especially with respect to the operation of multi-
service networks, lies in two properties: late binding and rate adaptation.

Binding

Packet-based interfaces multiplex a very large number of logical channels onto a
“bearer” channel. In the case of IP, there is a separate logical channel for each
unique <source address, source port, destination address, destination port, proto-
col type> tuple.3 On any given link, this IP channel space is very sparsely popu-
lated, i.e., the vast majority of the logical channels are unused. The bindings for
those that are used is highly dynamic: for the most part, the application(s)—and
therefore the properties of the traffic—associated with a logical channel are de-
termined at run time; and the bindings between a logical channel and the under-
lying capacity of the bearer channel are determined on a packet by packet basis.
The latter aspect by itself might be construed as “statistical multiplexing.” How-

2 On this specific issue, I must admit to having reached an impasse with many distin-
guished experts, most notably my friend and mentor Robert Kahn.

3 As evidenced by NAT, these tuples are only unique at the interface points. Also, there
is a slight simplification here, owing to the semantics associated with multicast ad-
dresses and some protocol types.
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ever, the combination of the two degrees of binding freedom, within the context
of a vast logical channel space, is a broader architectural feature that allows IP-
based interfaces to function as a “universal solvent”4 enabling multi-service in-
terfaces.

Rate adaption

This property of packet switching, typically realized through the use of elastic
buffers of some sort, allows applications at an endpoint, whose network point of
attachment operates at one rate, to communicate with peers whose points of at-
tachment may operate at arbitrarily different rates—many orders of magnitude
different in the case of a modem-attached client vs. a data center server. Rate
adaptation, over an enormous dynamic range, is one of the most significant ad-
vantages of packet switching and its key “trump card” with respect to both multi-
service networking and the Internet’s ability to absorb rapid innovation, e.g., by
ensuring that faster nodes and links seamlessly inter-operate with the embedded
base.

Rate adaptation is particularly advantageous in closed-loop scenarios where
the traffic patterns of individual packet flows can be dynamically shaped in re-
sponse to changing network and endpoint conditions. In the case of TCP/IP, rate
adaption is enhanced through the combination of lower-layer queues (the elastic
buffers) and the TCP layer end-to-end control mechanism, which ensures that the
long-term flow of packets is matched to the capacity of the endpoints and of all
of the intervening queues along the path. In the simple case of a human user ac-
cessing data via a Web browser, TCP feedback controls the flow of data during
each transaction, and an outer feedback loop, closed by the human user, governs
the overall rate of request submission, i.e., as response time deteriorates, the rate
at which new requests are submitted to the system declines.

Unfortunately, some types of “real-time” traffic, especially legacy sample
streams derived from the physical world around us,5 are not readily amenable to
feedback-based shaping. Nonetheless, these sources of traffic still benefit from
the architectural advantages of rate adaptation. Furthermore, the highly predict-
able statistical properties of the traffic in question (which are determined by the
sampling and compression mechanisms used) may amplify the task of dimen-
sioning the packet network appropriately.

4 I am indebted to my colleague Vint Cerf for this wonderful metaphor.
5 Which can not easily be “slowed down.”
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It’s the interfaces that count

Returning to the underlying question, the degree to which IP can be the basis of
national-scale multi-service networks, one must first identify the key points at
which this question should be considered. That is, if the “core” of a future multi-
service infrastructure isn’t of architectural interest, then what is? An important
step towards answering this question may be to view IP not so much as the basis
for a homogeneous soup-to-nuts6 infrastructure, but as the common protocol
“stack” used at a few key classes of interoperability points. Ethernet presents a
useful, though limited, analogy here. At one stage, the term Ethernet referred to
the design of an entire LAN. Today, what really matters is a few core architec-
tural concepts and their embodiment at the interoperability points. The fact that
many different technologies, including wireless, are now used to realize these
concepts is of little importance. All that matters at the individual endpoints is
that the NIC driver presents an interface that approximates that of the original
standard.

Given this perspective, there would appear to be three distinct classes of IP
interfaces to be considered:

• The interfaces to individual client nodes and the “early” multiplexing
points at which client traffic is multiplexed onto larger aggregates.

• Interfaces (at or near edges) that are very highly multiplexed, i.e., that
support large numbers of active logical channels. In contrast to its ini-
tial implementation, today’s Internet is highly asymmetric with a small
fraction of the nodes (e.g., Akamai sites, MSN, Google, etc.) terminat-
ing a large fraction of the flows.

• Interfaces that bridge peer Internet service providers. Although the ini-
tial architecture envisaged a “catanet,” formed through the concatena-
tion of independently operated networks, today’s Internet supports a
significant degree of service-provider diversity, i.e., core networks op-
erating in parallel with each other.

In a multi-service environment, is it feasible for all three types of interfaces
to be IP-based? Independent of whether or not IP is the best way to structure
those interfaces, do we see any fundamental limits to the “absorption” of new
types of traffic at those interface points? If there are merely impediments (vs.
fundamental limits), then are they of sufficient economic importance to fund the
emergence of an alternative interoperable stack in the near future?

Although IP may have some unsightly warts, I am hard pressed to find any of
them to be fundamental or even so serious as to create a high enough barrier to
offset the power of incremental refinement fuelled by the investment engine driv-
ing IP. The continued growth of Voice over IP, especially within increasingly
cost-conscious enterprises, is but one example of that engine at work.

6 More precisely, edge through core.
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The interesting question, then, may be not whether IP can continue to absorb
new classes of traffic, but how features “around” these three classes of interfaces,
and related aspects of the protocol suite, might evolve and/or become increas-
ingly specialized to improve the ability of IP-based networks to absorb new
types of services:

• Can the “early multiplexing points” of the Internet be engineered and/or
mutate sufficiently to absorb new types of traffic/media at the edges of
the network? My best guess is that it can and, for the most economically
relevant traffic, will. As an alternative to some of the complex QoS
schemes under consideration today, one could easily imagine all of the
traffic at these interfaces falling into one of two distinct classes, each of
whose handling could be independently provisioned and routed: traffic
that is amenable to shaping through feedback and traffic whose statist-
cal properties are highly predictable.7

• What opportunities for specialization exist at the heavily multiplexed
interfaces? This is an especially tantalizing question, since there may be
a considerable degree of homogeneity with respect to the types of ser-
vices carried on the logical channels of these interfaces.

• Are there obvious specializations that would simplify the implementa-
tion of peering interfaces, which are very high volume ingress/egress
points? What mechanisms can be introduced to support cross-provider
implementation of policy-based requirements, such as the prioritization
of traffic during civil emergencies? Can virtual circuit techniques, such
as MPLS, simplify the processing at these interfaces and/or improve
their robustness to failures, e.g., by making it easier to simultaneously
re-route large aggregates? Notwithstanding the feasibility of retaining
an IP-based approach, might the relatively small numbers and high
value of these interfaces be sufficient to support enhanced architectural
diversity at these points?

Summary

In this note I have attempted to identify some of the key architectural advantages
of packet-based network interfaces. Could we have arrived at a slightly better
architectural solution with a different packet-based protocol suite? Probably.
Does it matter? I think not. Does that mean IP is the end of the road for network
research? Of course not!

7 Additional distinctions may be useful within the endpoints, e.g., to distinguish fore-
ground and background activities.
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Technologies for Portable Computing:
Outlook and Limitations

Chuck Thacker

The last few years have produced a proliferation of new portable computing de-
vices. We now see a wide variety of personal digital assistants, digital cameras,
digital media players, tablet PCs, and wireless phones. Many of the technologies
employed in these devices have improved as predicted by Moore’s Law,1 but
some are more mature and improve much more slowly. In this paper, I will ex-
amine the current state of the art in power and cooling technology, processors,
displays, nonvolatile storage, and wireless networking in an attempt to under-
stand the possible directions for portable devices over the next few years. I also
discuss the characteristics of several devices that have employed leading-edge
technologies.

Power and cooling

Supplying the necessary power and removing the resulting heat has been the
largest problem in portable-device design. Currently, all portable computing
devices are operated from batteries, with the vast majority employing recharge-
able cells. Over the last decade, battery technology has improved somewhat,
from the early nickel cadmium cells to nickel metal hydride to lithium ion, but
the energy density available from a modern lithium ion battery is only about 120
watt-hours per kilogram, and this has not improved significantly in the past three
years. For low-duty cycle devices such as mobile phones or PDAs, which dissi-
pate only a few milliwatts when idle, lithium ion batteries provide several days
of use between charges at an acceptable weight. For more demanding applica-
tions such as laptops, battery life is typically much less than a working day,
which requires that the user carry a charger or extra batteries.

1 Gordon Moore, Intel chairman, said in 1965 that transistor densities would double
every 18 months for the foreseeable future. Thirty-five years later, this “law” still
holds, and is expected to do so until the end of the decade.
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The primary technology that may improve this situation is fuel cells. Hydro-
gen fuel cells have been used in military and space applications for decades, but
these devices are complex, expensive, and operate at high temperatures. Two
new variants, the proton exchange membrane (PEM) [1] and direct liquid-
methanol (DLM) cells, use methanol as the fuel and operate at room tempera-
ture. These devices provide energy densities somewhat higher than lithium-ion
cells and can be refueled from cartridges. A number of research laboratories and
companies are exploring this technology, but products are likely to be two to five
years away.

Practical cooling alternatives include passive techniques that distribute the
heat generated by the electronics to the device’s case and active cooling using
fans. The former solution is quite limited in the amount of heat that can be re-
moved successfully—the Microsoft tablet PC, for example, dissipates a peak
power of about 14 watts, and even though the heat is spread fairly uniformly
over the rear surface of the device, the case can become uncomfortably warm.
Fortunately, peak performance is rarely needed by today’s applications,2 so this
situation is infrequently encountered.

The use of fans is typical in both the largest and smallest portable computers.
Today’s large laptops make use of desktop-class x86 CPUs, which must be ac-
tively cooled. Although the smaller devices make use of lower-powered proces-
sors, their radically reduced surface area makes passive cooling impractical.

Processors

While “traditional” laptop computers have chosen to employ desktop-class x86
processors in spite of their high power and stringent cooling requirements, both
recent “thin and light” laptops and smaller devices with new form factors have
opted for lower powered but slower processors.

For devices that run Windows XP, x86 compatibility is mandatory. Until re-
cently, the primary sources for low-power x86 CPUs were Transmeta and Na-
tional Semiconductor. Transmeta uses a combination of interpretation and
dynamic compilation which they call “code morphing” to run x86 programs on a
VLIW core that is considerably simpler than a typical x86. The results of the
compilation are held in a region of the system’s RAM that the CPU reserves to
itself. While this technique works well for applications (e.g., audio and video
codecs) that contain loops, starting an application involves interpreting the code,
which makes the CPU appear slower than it actually is. Transmeta processors
draw between 1.5 and 8 watts, depending on load.

National Semiconductor has approached the low-power market with its Ge-
ode family of x86 processors. The Geode GX2 operates between 200 and 333

2 Although the use of speech recognition and other energy-intensive user-interface
techniques may worsen this situation in the future.
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MHz, and dissipates a maximum of 5 watts, with “typical” power between 0.8
and 1.4 watts. Intel has recently responded to competitive threats with its Banias
processor, but details of its power consumption are still sketchy.

For devices that do not need to run Windows XP, several energy-efficient op-
tions are available. Intel’s XScale processor (PXA 250), based on the DEC
StrongArm, operates at 400 MHz, while dissipating 750 mW. The AMD Al-
chemy Au1100, a MIPS-architecture machine, operates at 500 MHz and dissi-
pates 500 mW. These devices are considerably more energy-efficient than an
x86 of comparable performance because of their simpler structure and an em-
phasis on efficiency rather than maximum clock rate.

Dynamic voltage and frequency scaling have also proven valuable in reduc-
ing CPU power. These schemes3 reduce the clock rate and the supply voltage
during periods of light computational load. Since dynamic device power is linear
in clock frequency and quadratic in supply voltage, small changes can have dra-
matic effects (~3×) on device power.

One problem that may limit the achievable power reduction in future proces-
sors is leakage current. As device sizes become smaller and supply voltages de-
crease, static leakage current becomes an increasing fraction of the device
current. A substantial amount of architectural research is underway to mitigate
this problem by gating clocks and powering down entire functional units when
they are not needed.

Displays

Today, liquid crystals are the only choice for portable displays. LCDs have un-
dergone intense development to reduce their cost and increase their size, but
there has been little progress on increasing the robustness and brightness of LCD
panels. Display breakage is still an almost inevitable result of dropping a laptop,
and few laptops can be used outdoors due to their low brightness. Some pocket
PCs have employed transflective displays with front rather than back lights to
make outdoor use possible, but these devices suffer from extremely poor contrast
ratios, which makes reading quite difficult.

The display subsystem and its backlight consume about half the power drawn
by a modern “thin and light” laptop, or about 5 watts. This power is to a large
extent proportional to the area of the display, so it is much less in smaller de-
vices.

From a battery-life perspective, an unfortunate trend is that graphical user in-
terfaces are making increasing use of 3-D effects and animation. This increases

3 Called “speed step” by Intel and “long run” by Transmeta.
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the power consumed by the system’s graphics controller substantially, similar to
the way in which speech recognition and other real-time tasks increase the power
demands on the CPU.

The most likely replacement for LCDs is a display based on organic light-
emitting diodes (OLEDs). The necessary organic polymers have existed for sev-
eral years, but there has been relatively slow progress in turning these materials
into commercially viable displays. The leading manufacturers of these materials
are Cambridge Display Technologies (CDT) [2] and Kodak [3]. The latter has
recently entered a partnership with Sanyo to exploit their materials.

OLED panels are likely to be brighter and have a larger viewing angle than
LEDs for a given power level, and can potentially be much more robust, since
they do not need to be transparent and can be fabricated on a metal substrate.
Unfortunately, the electronics associated with each pixel are more complex than
in an LCD. In LCDs, a single transistor serves to set the voltage of each pixel,
which acts as a capacitor. This is similar to the arrangement in a single-transistor
DRAM cell. In an OLED, each pixel must include circuitry to provide a varying
level of current through each diode during the entire frame time. This requires at
least two transistors—one to do the multiplexing and one to do voltage-to-
current conversion. These devices, as in a thin-film-transistor LCD, must be fab-
ricated on a glass substrate, and doing it at acceptable yields has eluded manu-
facturers. Although CDT initially (1998) predicted commercial OLED panels in
2001, most manufacturers are now indicating that the devices will not be com-
petitive with LCDs until 2005.

Nonvolatile storage

Disk storage has exceeded Moore’s law in density increase for the past few
years. The current state-of-the-art disk for portable devices is a Toshiba 1.8"
drive that is the size of a credit card, has a capacity of 20 Gbytes, an areal den-
sity of 22.4 Gbits/in2, and consumes only 1.4 watts. These devices are intriguing,
as they enable portable devices that contain all of the digital state for a single
user. Allowing users to make their state available on any of the computers with
which they normally interact might be an attractive alternative to the complex
synchronization and copying that is the norm today.

Ultimately, experts believe that magnetic disk density will soon be limited by
the “super paramagnetic limit,” at which individual domains can be switched by
thermal noise. Current estimates for this density are on the order of 100
Gbits/in2, which corresponds to 80 × 80 nanometer bits.

A number of companies are exploring the use of microelectronic-mechanical
systems (MEMS) to overcome magnetic density limitations. Researchers at IBM
[4], for example, have demonstrated their ability to record and read data at a
terabyte per square inch, using a heated atomic-force microscopy (AFM) probe
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to melt nanometer-scale pits in a polymer medium. Hewlett-Packard and a small
startup company called Nanochip [5] are both building similar devices.

All of these devices are similar in that they move either the probes or the me-
dium in x and y using actuators that are fabricated using normal semiconductor
processing. IBM uses electromagnetic actuators, HP uses electrostatic motors,
and Nanochip uses a technique that exploits the thermal expansion of heated
wires. Because the devices have a large number of probes, the required motion is
small—on the order of 100 µm. The medium (in the IBM device) or the probe
array (in the Nanochip device) is supported by springs that are fabricated at the
same time as the actuators. The Nanochip device is shown in Figures 1 and 2. It
consists of sixteen independently moveable sub-arrays, each with sixteen probes.

Figure 1: One of the sixteen Nanochip sub-arrays, showing four actuators and sixteen
cantilevered probes.

The IBM device has a low read/write bandwidth (~20 kbits/second per
probe), so it must operate hundreds of probes in parallel to provide bandwidth
competitive to that of a magnetic disk. This led to their choice of a moving me-
dium and stationary probes. The large number of simultaneously-operating
probes also requires the fabrication of on-chip multiplexing electronics. The
Nanochip device, which uses a different recording medium that supports higher
bandwidth, does not require on-chip active devices.



300 Thacker

Figure 2: The Nanochip device in schematic form

While MEMS devices can be built in fabrication facilities that are well be-
hind the state of the art, they are still not expected to be competitive in per-bit
cost with magnetic disks. The primary competitor that most MEMS manufactur-
ers hope to displace initially is flash ROM. Flash ROM cells are intrinsically
smaller than DRAM cells, and since less stringent testing is required,4 the de-
vices should be cheaper than DRAM, which is now priced at about twenty cents
per megabyte. To date, these price levels have not been achieved, perhaps be-
cause of lower volumes and lack of sufficient fabrication capacity

Ultimately, MEMS storage devices might replace disks in applications that
do not require huge capacity, or in applications in which their low power and
complete silence are important. The companies developing MEMS storage an-
ticipate having products available in from two to four years.

Networking

For portable devices, there is an expectation (largely fueled by the popular press)
that wireless networking will improve at a pace similar to the improvement in
CPU performance. This seems implausible for several reasons. First, increased
transistor density in radios doesn’t translate into higher performance, as it does

4 Flash cells may be erased and rewritten a limited number of times, so error correction
is needed for reliability. Manufacturers exploit this by shipping parts with a small
fraction of bad bits.
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in a CPU, but only into reduced cost. Second, the available spectrum is finite,
and increased per-connection bandwidth uses more of it. Spectrum use is regu-
lated by local law and international treaty, and current users have resisted at-
tempts to displace their services.

Improvements in coding have improved the bandwidth efficiency of radio
channels, but these improvements are rapidly approaching their limit. One pro-
posal to mitigate these limits is to use the spectrum at ~50 GHz. These frequen-
cies are strongly absorbed by atmospheric oxygen, so very small cells will be
needed for ubiquitous coverage. Providing the necessary wired infrastructure
will be costly, and it is unclear that users will be willing to pay for it.

For a given cell size, there is also a direct trade-off between power and
bandwidth. Current 802.11b radio cards draw approximately 1 watt. Better pro-
tocols and better designs can improve this a bit, and the superior modulation
used by 802.11g promises a fourfold bandwidth improvement, but these im-
provements require a smaller cell size.

Example systems

Several companies are developing systems designed primarily for small size and
energy efficiency. Figures 3 and 4 show two recent examples, the Tiquit Eighty-
Three [6] and a wallet-sized system from OQO Corporation [7].

Figure 3: The Tiqit Eighty Three Computer. This device provides a keyboard, a joystick
and a stylus for user interaction.
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Both are full Windows XP machines, with 256 MB of DRAM, 20 Gbyte hard
disks, and color VGA (480 × 640) displays. The Tiqit device uses a 300 MHz
National Geode processor and is fanless. The somewhat smaller OQO device
uses a 1GHzTransmeta CPU and requires a fan.

Figure 4: The OQO Ultra Portable Computer.

A number of other devices that combine the functions of a PDA and mobile
phone are also appearing in the market. It will be interesting to see whether these
devices become popular, since the user interfaces needed for phones and PDAs
are quite different. Although carrying a single device is appealing, finding a sin-
gle form factor that can serve both purposes might be difficult.

Conclusions

The goal of providing a portable, truly personal computer that can provide all the
computing, communication, and storage needs of a single user has not yet been
achieved, although it seems clear that the underlying technologies needed are
very nearly adequate today.

The existence of such devices will pose new challenges for software devel-
opers: How can we build new user interfaces that provide acceptable levels of
interaction with a very small display? How can we provide an easy-to-use user
authentication system that protects the user’s data if the device is lost or stolen,
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or that makes a stolen device unusable? How should these devices interact with
the larger world of computing of which they are only a small part?

Providing software and services for these devices will provide new opportu-
nities for innovation in many areas of computing.
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Multiple Alternative Voting

David Wheeler

This paper was the result of discussions with Roger Needham in April 1983. The
University of Cambridge was intending to introduce single transferable voting
for official ballots, and did so, even though this method has the defects discussed
below. More generally, since then electronic voting has become a public policy
issue. It is evident that there are more complexities about this, both in principle
and in practice, than many may suppose (see, e.g., Mercuri [1]). What follows is
an early note on some pertinent problems. Voting is also widely used, for many
different technical purposes, in computing systems, and the note implicitly also
draws attention to the need for care in the choice of algorithms in these techno-
logical contexts.

STV and MAV in brief

The single-transferable-vote system (STV) suffers from one major fault. As it is
a single-vote system, it uses the second and remaining choices of a voter in an
algorithmic but arbitrary way when more than one vacancy is being filled. This
fault can be eliminated with an alternative strategy, multiple alternative voting
(MAV), while retaining the advantages of STV. (The two methods are identical
when there is a single vacancy.)

In MAV, each voter gives a preference list for the candidates, just as for
STV. If there are V vacancies, then one vote is counted for each of the first V
preferences of each elector. The candidate with the lowest vote is eliminated
from all the preferences and the count repeated until only V candidates remain.

The problems with single transferable voting

The major objection to the STV system is that the second and higher preferences
are used in an arbitrary way. That is to say, the voter does not know if or how his
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preferences are to be used. This arises because the method uses a quota, the
minimum number of votes needed to elect a candidate. If the first preference is
part of an exact quota, the voter’s later choices are unused. This is reasonable for
a single vacancy, but not for multiple vacancies, where surplus preferences are
reassigned without voter control.

Example

Assume 303 voters filling 3 vacancies from 5 candidates, namely A, B, C, D, E.
Assume the votes are cast as follows:

76 voters list A, D, E
76 voters list B, D, E, C
76 voters list C, D, E, B
75 voters list D, E, A

With STV, calculation of the quota = 303/4 + 1 = 76. Thus A, B, and C are
elected.

Multiple alternative voting

Now consider another strategy, multiple alternative voting. To calculate MAV,
suppose the votes cast are these:

A B C D E
vote sums 151 76 76 303 303

Use the tie rule and delete, say, B from the ballots. Thus 76 fourth preferences
for C are used, giving the following voter sums:

A B C D E
151 0 152 303 303

Thus D, E, and C are elected. If no one cast fourth preferences, then D, E, and A
are elected.

Given the illustrative voting figures and all the preferences, one would expect
D and E to be elected and an extra one from A, B or C. However, STV gives A,
B and C, and not D or E at all, because it only considers first preferences, with
its arbitrary quota. How does an STV voter indicate he wishes to select three
candidates with about the same weight? He cannot, because he is at the mercy of
the arbitrary quota.

The example just given shows how the MAV strategy is more nearly in ac-
cord with what the electors might expect, and how the information from them is
used more effectively.

The average elector would expect his first V preferences to be used if he
filled them in. He would expect that if a candidate of his were defeated, then his
next preference would be used. He would not expect that the use of his prefer-
ences would depend on the arbitrary quota.
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A few might expect that a single vote would carry more power than if it were
split among V candidates. However, this is really a matter of philosophy, and the
system is simpler if we arrange that when voters use less than V votes, their votes
do not carry greater than unit weight. This means also that when preferences run
out for a voter because his early preferences have been rejected, his residual
votes do not carry more than unit weight.

In no case yet found does the MAV result appear to be further from what can
be claimed to be the voters’ intentions and expectation than the STV system in
any of its forms. When there is a single candidate, the two systems will give
identical results unless the tie arrangements are different.

We now give a more detailed description of the MAV system.

MAV in detail

Voter’s ballot form

This consists of a list of candidates, preferably in random order. Each item in the
list consists of the candidate’s name followed by a box or space for an integer.

Voter’s instructions

Mark your first preference with 1 in the box of the candidate you prefer. Mark
your second preference with 2 in the box of your second choice. And so on. If
fewer than the number of vacancies are filled in, then the empties are taken as
abstentions and the effectiveness of the earlier votes is unchanged.

Counting rules

Assume there are V vacancies. The first V unrejected candidates on each voter’s
list are each given one vote. If V or fewer candidates have non-zero vote sums,
these are elected, otherwise the candidate with the least vote sum is rejected and
the count is repeated.

Ambiguities are resolved by rejecting the candidate with the least number of
first preference votes, then, if still unresolved, using the second, third, etc., pref-
erences. The ambiguities remaining are resolved by algorithmically tossing a
coin so that it cannot be “forced.” For example, one such rule is to divide the
total number of votes by the number of choices to be made and use the remain-
der to select the candidate to be rejected.
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Printed results

First give the sums for each candidate, i.e., the number of votes for candidate A
with mark 1, the number of votes for candidate A with mark 2, and so on. Then
add the number of votes transferred from the rejected candidate to each of these
sums. This is repeated until the final sums for the elected candidates can be
given. (One null candidate should be included to simplify the treatment of null
votes.)

The above suffices for the simple system. However a number of extra points
arise.

Printed list of voters

Should a list of those who have voted be published? It can help in detecting
fraud.

Printed lists of votes cast

This can be done anonymously if every ballot paper has a unique reference num-
ber by the side of each candidate. A list can be published for each candidate and
mark. The list contains the reference numbers of each vote cast for that candidate
and the mark. Only the user of the ballot paper and the central counting proce-
dure (probably a computer in this case) know the unique reference number. Thus
each voter can assure himself that his vote has finished in the correct count.

Secure counting can be done with separate authenticated programs and com-
puters. There exist a number of precautions to take, but these are known to many
people.

Remote voting

If ballot papers can be sent securely to the recipients, then it is easy for a com-
puter to arrange that the random candidate permutation is different for each bal-
lot paper or is uniformly distributed among the ballot papers. The list of contents
of the boxes on the paper, together with the voter identification number, is re-
turned as the vote. This also prevents alphabetical bias in the voting.

Li Gong has pointed out that if the identification number is wrong, it is pos-
sible to arrange the printing and response such that the vote has been apparently
cast but does not contribute to the totals. Thus the buyer of a vote has no guaran-
tee of his purchase, so that postal or online voting can be made about as secure
as a voting booth.
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Counting methods

If done by computer, there is little point in shortcuts, and a simple MAV pro-
gram can be verified and checked much more easily than an STV program. If the
number of votes is small, say less than 100, the work is relatively simple and
quick. Where the number of votes is large and manual methods are used, then
repeated scanning can be almost eliminated by having (C + 1)V separate piles
during the first scan. Each pile corresponds to one possible sequence of the first
V preferences. Then only the rejected candidates’ piles need to be referred to
again. Where C is large, this process can be modified easily. For example, if
some candidates are likely to attract few votes, their piles can be combined.

Compared with the counting required for STV, the counting at the first stage
for MAV is more onerous, as V times as many votes are handled. However, the
subsequent counting movements are likely to be fewer.

If all the intermediate sums are not printed, then some further shortcuts are
possible. For example, when the low counts cannot affect the result, there is no
point in transferring them.

Reference
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The Semiotics of Umbrellas

John Wilkes

It’s always more fun to tilt at an appropriately sized windmill—and agreeing on
which windmill to tilt at often makes the difference between success and failure
in research. What I offer here is a humble suggestion for some vocabulary with
which to discuss windmill tilting, in the hope that the endeavor will be more
productive for all concerned if the beast can better be identified, named, and
communicated about.

Once upon a time, I found myself engaged in a discussion with a colleague on
the relative merits of prototyping a piece of software. That conversation proved
unfruitful: as we later discovered, we had very different ideas about what was
meant by the term “prototype”. One of us was convinced that the only prototype
of value would have to be a first-cut of the software that could be shipped as a
product, after some engineering had been “applied” to it. The other was equally
adamant that prototypes were merely vehicles to get across an idea—a way to
sell a proposal, and perhaps either to demonstrate that it did something useful, or
to determine if it did. We parted company, each mystified at the other’s intransi-
gence.

Some time later, having become older, if not wiser, I and a new team of peo-
ple that I was privileged to work with decided that this was all simply a confu-
sion over vocabulary, and that banning the “p-word” would serve us all well.
Indeed it has, but we never really found a satisfactory replacement for it that we
could remember from one day to the next.

Then, a couple of years ago, something clicked after one of those intermina-
ble discussions about “what should we do next”. The images shown here
emerged (a little soggy) the following morning during my shower. Just for fun,

I’ve reproduced my first scribbles of them—
illegibilities and all, together with their defi-
nitions, and a few related thoughts.

Research nugget: a coherent unit of re-
search work, and typically the result of a
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small(ish) research project; maybe as little as a person-month’s work, maybe as
much as a dozen or so. Often achievable by a person or three. Good ones can
result in nice technical papers. Connotations of gold mining are not uninten-
tional.

Testbed: a vehicle for obtaining research re-
sults as rapidly and efficiently as possible. The
purpose of a testbed is to develop, nurture, and
support one or more research nuggets—nothing
more. Although a testbed may be (too often is)
pressed into service in other roles, such as
showing off the research work, this mixing of
purposes is best viewed for what it is: a distraction. The evaluation criterion for a
testbed is the ease with which research can be performed. (To help get this
across, in a UNIX-centric culture, we used to say, “If MS-DOS works better, use
it!”)

Vision: a description of some goal, a result that a project
is trying to achieve: an “end state” in the consultant’s jar-
gon. I’ve found it helpful to separate out the vision from
the research. The research (at least in my world) is best
thought of as supporting or enabling a vision. Indeed, it
often comes about by working backwards: “What in that
vision can’t we do today?”

Visions are helpful in justifying work:
explaining “what it all means” and why we
want to go there. Good visions seem to be
contentious and attractive; bad ones vacu-
ous, or simply dull. Visions are good vehi-
cles for teasing out subjective notions of
“value” from possible participants in, or
customers of, a piece of work: if a vision
doesn’t catch people’s imagination, the
work to achieve it is unlikely to be pursued
with enthusiasm.

It’s usually helpful if there is a common vision, since that means people who
subscribe to it agree on the goal. But associated with the one larger vision, it’s
also common to have multiple, smaller-scale or smaller-scope visions. Ideally (!)
the smaller visions complement one another, and can be seen as contributing to
the bigger one.

Showcase: a tool used to demonstrate some or all of (1) a vision, (2) research
work, and/or (3) that a team is making progress. A showcase that’s an executable
piece of code is sometimes called a demonstrator. Other forms include published
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papers, mocked-up user interfaces, storyboards, and presentations (preferably
with attractive animations) claiming magnificent things.

The test for a good showcase is that it makes visible what the excitement is all
about and focuses attention on the accomplishments, rather than on the effort
required to achieve them. Unfortunately, this seems to mean that it’s quite hard
to build good showcases for operating systems, middleware, or anything that
hides or reduces work.

In some cases, a testbed may be usable in (or even as) a showcase. But these
two roles are different, and suggestions to “economize” in this form should usu-
ally be treated with skepticism: it’s all too easy to end up with an unconvincing
showcase that is inconvenient to do research in.

Most research nuggets can fruitfully fit into one or more showcases. Indeed,
it’s often a useful idea to think through how the research will be demonstrated
before too much effort is put into doing it!

Showcases can readily complement one another: a larger vision may best be
described and demonstrated in pieces, especially early on, although it’s often
helpful if there’s a “core” showcase being aimed for, and some of my colleagues
have reported that mocking up such a showcase is often all that it takes to sell a
key idea.

Umbrella projects: a grouping or coalescing “wrapper” that ties together a set
of other activities into a common theme. Like the p-word, the “umbrella” con-
cept often seems to cause confusion. Indeed, I’ve heard it used to describe a vi-
sion, a single large project, and a politically correct shield for continuing
business as usual (especially after inputs of the form “It is now a corporate man-
date that all projects must …”). More useful, perhaps, are the relatively benign
forms described here.

Flying in formation: Here, there is a set
of research nuggets that share a common
vision, but the ties between the pieces of
work that go into the nuggets are rela-
tively weak, and it’s unlikely that a sin-
gle, coherent showcase can be put
together.
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Compared to the next
alternative, the lack of a single
showcase can greatly reduce
the amount of integration work
required, but it still may be
possible to spin (sorry:
present) all the research as
conforming to a single
coherent vision.

A unifying showcase: this is closer to the “single large project” model. A single
showcase is used to tie together the individual pieces of research and demon-
strate them and their inter-relationships.

A unifying showcase is usually significantly more work to get set up—
especially for the first few nuggets—but can present a correspondingly more
compelling façade. In my experience, getting one of these unifying showcases
agreed to is a black art. It requires somebody to have the courage of their convic-
tions (and a silver tongue) to persuade others of the viability, utility, and excite-
ment of the associated vision. It can be done. I wish it were done more often.
The (slightly) greater ability to pull this off is one of the few distinguishing fac-
tors associated with a top-notch industrial research establishment, as compared
to an academic one.

If effective, such a unifying showcase has the advantage of achieving higher
impact than a single research nugget can manage by itself. The obvious disad-
vantages are the relatively high risk (“What if we pick the wrong problem?”),
exacerbated by the fear of putting too many eggs in one basket; the difficulty of
reaching a common understanding of the goal (“What about this other interesting
side issue?”); and the potentially high integration cost of the showcase artifact,
which now becomes more of an industrial-strength vehicle than a research tool
per se.

In practice, of course, noth-
ing is as simple as this exposi-
tion suggests, as the
(deliberately rather muddled)
diagram to the left attempts to
illustrate. Real-life projects mix
and match approaches and tech-
niques, in response to all sorts of
outside and internal pressures,
requests, and ideas. Research
nuggets, testbeds, and show-
cases come and go—or morph
into new ones as understanding,
interest, and opportunity allow.
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Most projects end up with a mixed bag of assorted testbeds, supporting a set
of research nuggets that contribute to different showcases at different times. But
good projects seem to retain at least a thread of a common vision—even if parts
of it may be submerged temporarily and new elements appear.

I’ve found that attempting to tease out the different roles and assumptions of
each piece is still a beneficial activity. Recursion is often useful in this exercise:
what looks to be a research nugget (or vision, etc.) can often be sub-divided, and
the same analysis applied to each piece.

Over the past couple of years, these ideas have seemed to resonate with my
colleagues, and they have proven useful as a way to communicate ideas for struc-
turing and focusing some of our work. One day, perhaps, they might help us ap-
proach the scale of effects and impact achieved by the apparently effortless,
laissez faire project-management processes that the Computer Laboratory used
in the heyday of the Cambridge Distributed System. We can but dream.
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46
Computers for Specialized
Application Areas

Maurice Wilkes

With the end of CMOS looming ahead—although there is still a significant way
to go—it is natural that people should begin to search for innovative computing
devices that would be very fast on certain specific problems, even if they were
not capable of running a general work load. The economic viability of these de-
vices would depend on finding what is known as a “killer” application, that is, an
application of such importance that it would by itself justify the financial invest-
ment.

The first of these approaches that I heard about was DNA computing. In na-
ture, a DNA molecule has the role of storing genetic information. However, there
is no reason way an artificially synthesised DNA molecule should not be used to
represent information of a very different kind. In spite of long continued effort, it
was not found possible to identify a killer application, and in consequence, DNA
computing has dropped out of the picture as far as high-performance computing
is concerned.

Quantum computing is now attracting great interest. A form of universality
can be claimed for a quantum computer, but this is a theoretical claim only. Only
applications that could efficiently exploit the special quantum features would run
at super-speed. Others would run at a snail’s pace. A quantum computer would
not, therefore, be capable of running a general workload in the way that a PC or
a workstation can. For this reason, I am inclined to think that the old-fashioned
(analogue) computers, such as the differential analyser, provide a better opera-
tional model for quantum computing than the modern PC or workstation does.

The principal application being talked about as a killer application for a
quantum computer is the factorisation of large numbers, an operation of impor-
tance in code breaking. However, there may be others.

The physics behind the quantum computer is in the early stages of develop-
ment, and the practical problems of making a working quantum computer have
hardly been explored. In spite of the great public interest that has been aroused,
it is clear to me that practical applications in the computer field are so far away
that developments should be left for the time being exclusively in the hands of
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the physicists. It is hard to see any present justification for the computer industry
investing more than token sums in quantum computing.

However, it is interesting to speculate on what would happen if a quantum
computer that would enable very large numbers to be factorised easily were ever
developed. This is a subject on which I would much like to have heard Roger
Needham’s views. The use of encryption algorithms, based on numbers that are
hard to factorise, has become so pervasive throughout the computer field that an
“industry” may be said to have grown up around it. Would the effect of the quan-
tum computer be to destabilize that industry, with widespread repercussions?
What alternative means of encryption could be used instead?

In my view, it is through its impact on computer security that quantum com-
puting, if it ever comes, might have a major impact on the computing world.
Even if other killer applications were to emerge and were to become of great
importance in their respective specialized areas, they would be of small impor-
tance for the computer field as a whole.



Computer Security?

The Royal Society Clifford Paterson Lecture, 2002

Roger Needham1

Abstract

The technical aspects of computer security have fascinated researchers (includ-
ing the author) for decades. It is, however, beginning to appear that the challeng-
ing problems are to do with people, rather than with mathematics or electronics.

Historical development

Computer security as a topic is about forty years old. Before then computers
were used sequentially by different users, each user being presented with a
tabula rasa which was restored at the end of the user’s session. Computers did
not, in general, maintain on-line state in the form of files and other forms of per-
sistent data over long periods for many users.

When this changed security became an issue. Who or what could legitimately
access particular files? How could one be sure that the actions of a program run-
ning on behalf of one user did not alter or corrupt the behaviour of another user’s
program? Could a malicious user subvert the entire system so that it did nothing
useful for anyone? How did we know that a user was who he purported to be?
These were burning system design questions in the 1960s and into the 1970s.
Characteristically one was talking about a single computer with many users. It
was accordingly possible to incorporate protection mechanisms into the hard-
ware design of the machine, and to arrange that while a particular user’s program
was running the hardware could be so set up as to make it physically impossible
for unauthorized access from the user’s program to other programs and data to

1 This was Roger’s last public lecture, given on 14th November 2002. It was published
in the Philosophical Transactions of the Royal Society, Series A, vol. 361, 2003, pp.
1549–1555. The editors are grateful to the Royal Society for permission to reproduce
this paper.
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occur. Nevertheless the systems of that time were in fact not very secure. When
calls were made by a user program to the operating system the arguments pre-
sented to them often needed validation, but either the validation software was
incorrect, or, more insidiously, it proved possible to change the value of an ar-
gument after it had been checked but before it was used.

At about the time when single system security was such that one could say
with the classically cynical American engineer “That’s good enough for Gov-
ernment work” the rules suddenly changed. The invention of local area and wide
area networks in the 1970s meant that related computations did not always hap-
pen in the same machine or might be spread over several machines. It was no
longer possible to use physical means to prevent unauthorized access, since data
passed from one place to another on a typically broadcast medium to which nu-
merous other machines were attached. The exposed nature of communication
paths made it much harder to pass data designed to authenticate an individual,
such as a password.

By one of those coincidences that sometimes solves big problems, at the cru-
cial time cryptographic algorithms became generally available. Earlier cryptog-
raphy had been an arcane subject practiced by people you didn’t want to know
about; suddenly, and not entirely to the pleasure of governments, it became a
widely practiced and fascinating research topic. By the late 1970s cryptographic
techniques were sufficiently well established that it was possible to pass data
across a network from A to B in such a way that nobody but B could understand
it, and such that if it had been altered in any way B would know; all this without
A and B sharing a secret. Additionally these developments gave rise to a wave of
new activity in the area that borders between computer science and mathematics;
a wave that continues to this day. One can distinguish two strands in this activity.
One, in which I have myself worked quite a lot, is to do with protocols for carry-
ing out, in distributed systems, such tasks as user authentication, non-repudiable
transactions, program certification, and so on; in general to use known crypto-
graphic techniques correctly. Protocols of this sort are extremely easy to get
wrong in subtle ways, and this fact has given rise to a secondary industry of for-
mal methods for exploring protocol correctness. I was lucky enough to be in at
the beginning of both these activities.

The other major strand derives from the mathematics of public key cryptog-
raphy and the believed difficulty of factoring very large numbers and working
out some discrete logarithms. People of a much more mathematical turn than I
have become extraordinarily agile in putting together algorithms that seem to
have security relevance. Why do I say “seem to”? Because in essence what is
going on is that we have a set of conditions for some action to be proper, and the
mathematics is used to model a test for those conditions. The model may not
always be exact. Not only in security is it the case that an ordinary person has a
problem and a friendly mathematician solves a neighbouring problem. An exam-
ple that is of interest here is the electronic book. We have a pretty good idea of
the semantics of the paper book. We go and buy it, we can lend it to our spouse
or to a friend, we can sell it, we can legitimately copy small bits of it for our own
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use, and so on. The electronic book is different. It is a device that we own and is
convenient for reading text on (whether such things really exist is a different
issue). We pay for the digital representation of a book and download it into our
device. The publisher of the book has a legitimate interest in the preservation of
his intellectual property, and enlists the services of good mathematicians and
system designers to make measures to do so. Unfortunately these measures do
not have the same semantics as the paper book. I may not be able to lend the
electronic book to my spouse without lending her the device even if she has one
of her own. I may not be able to copy even small bits of it. The technical solution
has not matched the real world need.

Despite all the theoretical progress that has been made, and the very ingen-
ious papers that have been published, systems remain rather insecure. This is not
primarily because of bad algorithms or protocols. It is to a substantial extent be-
cause of ignoring the human element. Even in the mechanical aspects just out-
lined, the human element is sometimes crucial. An example is non-repudiation,
where the purpose of a protocol is to furnish evidence that will convince an arbi-
trator that a party attempting to repudiate a transaction did in fact commit to it.
The arbitrator is, and has to be, human.

People figure in security in a variety of ways. They may be the users of a sys-
tem, who need protecting from each other and from whom the system itself needs
to be protected. They may be the people who set up security systems; they may
be the people who specify lists of access permissions, they may be local security
administrators. We shall see how crucial all these people are.

Secrets

All the techniques for authentication depend on the physical inaccessibility of
something. People cannot remember elaborate encryption keys, or the codes that
characterize their irises, for example. These have to be stored in some object,
and the integrity of authentication depends on the integrity of this object. Many
objects are quite unsuitable for keeping serious material that should not be dis-
closed or altered. In particular PCs are unsuitable, and are getting more so as it
becomes more usual for home PCs to be connected to the internet all the time.
Smart cards are sometimes said be a panacea, with almost magical virtues. But
they aren’t all that secure, and their contents often get to be used outside the
card, where their security is at best problematic. In general it is extremely awk-
ward to run secure systems, and real people typically will not. This was cited, in
a recent public debate in the UK, as a reason for it being unnecessary for the
Government to take to itself the draconian powers it has to require production of
decryption keys in various circumstances. It was said that what the Government
needed was a Royal Corps of Hackers, not vast legal powers.
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Policies

The security policies of organizations are vast, informal, and incomprehensible.
There is no proper notation for saying what the policies are exactly, and they
grow up over time. The source of the policies is sometimes what is seen as
‘common sense’ and sometimes the end effect of legal requirements. As an ex-
ample of the latter, a corporation has to pay attention to the security of trade se-
cret material because, in the event that some such material is misappropriated, it
would be a valid defence in Anglo-Saxon law for the appropriators to say that
nothing wrong had happened since the corporation didn’t seem to care much
anyway. Another instance is the prohibition of certain employees from dealing in
a corporation’s shares during the period in advance of the announcement of
quarterly results. For this prohibition to be effective the results must be kept to as
few employees as possible as they are prepared. Then there are policies that
come from prudence. In companies that make computers it is, or at any rate was,
customary to go to great lengths to conceal future developments from the sales
and marketing people. This apparently paradoxical approach was so that the
sales folk would not sell things that did not yet exist, generating embarrassment
at best and antitrust problems at worst. If you’re a manager in Microsoft you
have access to salary, bonus, and performance details for those who report
through you, but not for those to whom you report (nor, incidentally, yourself).
When I was Head of the University Computer Laboratory I signed all purchase
orders except that when I was away someone else did, provided that the deputy
hadn’t raised the order in which case a second deputy was used for separation of
duty reasons.

I have given these examples as a miscellaneous collection to show what or-
ganizational security policies are really like. In enforcing them we depend on far
more than knowing who somebody is. An immediate question is whether, as
transactions become steadily more electronic, these rules and practices should be
technically enforced or organizationally enforced, as they often are in the paper
world. I get the impression that because it is possible to imagine the enforcement
being technical then that is often regarded as the ideal goal, and that security
engineers should go as far in that direction as they can. In this context I can tell a
cautionary tale. In the late 1970s a corporate research lab was experimenting
with the ‘paperless office’. They devised a system in which documents that
looked on screen like well-known company forms such as purchase orders, pay-
ment authorizations, expense reports and so forth were passed from one screen to
another for successive steps of authorization. Naturally when a manager had
signed off on a part of the form subsequent signers could not alter it. This ap-
peared to the researchers to be an obvious requirement. When the system was
complete it was tried out in an actual corporate office of the same company. It
produced real chaos; almost rigor mortis. In real life forms were altered after
signature all the time for entirely good reasons. In the Computer Laboratory, the
probability that purchase orders were altered after my signature was not all that
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high, but it happened often enough that it would be a real pain for me to have to
re-sign orders that had been changed from 2000 No. 8 screws to 2000 No. 10
screws, or where a part number had been corrected because the sender noticed it
was wrong while putting the order in the envelope.

If we look at my earlier security example, namely backup for me in signing
orders, we can glean useful insights. Suppose an order for 10,000 pounds (quite
large by the standards of a University Department) had been taken to my first
reserve for signature. He would quite probably know whether I was there or not.
If not, and if the order was handed to him personally, he would ask the hander
whether he’d looked for me. If the order just turned up in his in-tray he would
phone my secretary and ask if I was around. If it was a really large order, say for
100,000 pounds, and I had gone to London for the morning to be back by 1500
hours, which fact my secretary would be able to tell him, he would wait. If I was
away for a week he probably would not. To enforce all that electronically would
be a Big Deal. The reserve would of course have to be authenticated, as would
the identity of whoever sent him the order. He would need validated access to
my whereabouts and travel plans. Maybe some threshold numbers would have to
be incorporated in the program used. When pursuing this sort of line it is very
easy to finish up with a requirement to validate an instance of a whole operating
system. Indeed, this point is reached very quickly when one tries to protect intel-
lectual property in material to be displayed in an ordinary PC.

My purpose in going into all this is to stress that the more we mechanically
enforce rules of ordinary business practice the more metadata we generate, in
terms of rules of behaviour, methods of validating data of all sorts, in addition to
access control lists, role tables, security libraries, and all the rest of the clutter.

Metadata: the data that describes the data

In a complex set-up, for example a large corporation, someone will ask the ques-
tion ‘Does the ensemble of rules and other metadata actually give effect to the
security policy?’ A proper interpretation of this would require not only that those
actions forbidden by the policy cannot be done but that actions not forbidden by
the policy can be done. This soon becomes formidably difficult, and for some
access control systems can be mathematically undecidable. Such situations are
prone to bizarre errors, as in a case I heard of where the proprietors of a large
data system were very proud of their access controls, based on an elaborate secu-
rity library. It was only as part of an outside investigation that it was noticed that
the security library itself was open to write access by anyone! One is strongly
pressed to the conclusion that if something can sensibly be enforced by human
means it very probably should. Even deciding this is difficult. Essentially human
enforcement relies on integrity of people; it is more reasonable to rely on the
individual integrity of six senior people in the finance division who are paid a lot
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than on the individual integrity of five thousand counter clerks who are paid a
little.

If we contemplate this conclusion, heretical as it is for a computerist, we can
see other good reasons for it. Error in handling metadata is at least as likely to
forbid necessary actions as to permit unwanted ones. It is not unusual for a new
employee not to be able to do his or her job properly for several weeks because
permissions have not been set up. It has happened that the administration of my
research lab came to a halt because of an erroneous change to access controls in
Redmond, Washington, eight time zones away. Of course when we noticed the
problem the person responsible was asleep in bed, and we just had to wait until
the next day. This does not matter too much for a research lab, but it would be
very damaging for a supermarket or a stockbroker. An extreme case is a military
one, where more and more use of computers and data is being made in support of
deployed operations. You can’t stop a battle while access controls are fixed.

All our experience is that things that should not or even logically cannot hap-
pen sometimes do happen, and the more complex the web of technical restraints
the more difficult it is likely to be to recover effectively. To illustrate very sim-
ply the importance of recovery issues, there is a well-known attack on the
Needham-Schroeder authentication protocol [1]. The attack depends on some-
thing happening that in the proper course of the protocol should not be able to
happen; but the seriousness of the attack comes from the fact that there is no way
to recover at all when it has happened. The recovery issue is a very serious one,
and compounds the complexity discussed at length above. It is really hard to
catalogue, and to find out how to recover from, the things that should not happen
but will. If organizational authority can over-ride protocol, then recovery can
occur by use of human ingenuity. For example a high-ranking officer can say
‘Fire the goddam thing anyway!’

Logging

If we follow this line of thought we can go further. This is where it matters that
we are talking about security within an organisation rather than in the world in
general. In an organisation there are more ties among the individuals than there
are in the outside world; for example soldiers are subject to military discipline,
and there is an assumption that employees in general do not want to get fired. To
some extent we can exploit this to simplify security matters. Keeping a record of
what has been done can be a simple solution to otherwise difficult problems.
Here’s an example. Anyone can buy a copy of my bank statement from a dubious
enquiry agent for some 200 pounds. This is because any teller in the employ of
my bank can ask for it, and since the bank is a large one there are enough tellers
over all branches that some will be willing to earn a little money on the side. Yet
having all the tellers able to have access is in other ways a good thing. The secu-
rity would be much improved if the act of generating a copy of a statement were



Computer Security? 325

recorded in the statement itself, so that when I got my regular monthly printout I
could see that a statement was asked for by teller number 3 in the Penzance
branch, and I could raise a complaint if I was in Philadelphia at the relevant time.
It is not clear to me why banks do not do this, but that is another question. It is
worth noting that maintaining logs is often rejected as a security technique on the
bogus argument that there is too much log material for anyone to look at. The
present case is an example where parallel processing at the level of millions
makes light of the volume of stuff. After all, most of us give our bank statements
at least a cursory scan.

People

To compound the effects of complexity, humans involved in managing security
are fallible, lazy, and uncomprehending. The first applies to all of us, but the
other two may seem surprising. I shall now try to explain why they are men-
tioned here.

Security is a nuisance. It gets in the way, in the manner that a locked door
gets in the way even if you have a key to it. Even if you have brought the key
with you the door is an obstruction, and is even more so if you have to go back
to wherever you left the key. A local security officer has the duty of making sure
that the features that make for inconvenience are in place and effective. The life
of a local security administrator is much easier, and the administrator much less
unpopular with colleagues, if the administrator’s job is not done ‘properly’. The
incentives on the security administrator are thus not very appropriate. I am
credibly advised that units in the armed services are particularly adept at simpli-
fying their lives in this sort of way but so are bank branch managers, hospital
administrators, and so forth. Wherever there are devolved units that have a cer-
tain amount of discretion in the management of their internal affairs, burdensome
security will be circumvented.

As much damage cane be done because people are uncomprehending. A
well-known story describes two senior bank managers being sent two parts of a
cryptographic key to load into a security module. They were sufficiently senior
that they didn’t care to use keyboards, so they gave the two pieces of paper to the
same technician to enter, thus losing the entire purpose of the two parts. They
didn’t understand why it was supposed to be done the way it was supposed to be
done. Another tale, not directly connected with security, concerns a distributed
and devolved naming service, that replicated data widely for easy access. For
such a system to work it is clearly necessary to have a lot of discipline about the
processes of installing new instances so that update messages can be sent to the
required places. Local managers simply didn’t understand all this, and if one of
their instances misbehaved they would simply shoot it and make a new one. Up-
date messages would be directed to the instance that no longer existed, and
would be returned undelivered. They would not be delivered to the new instance
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which soon stopped being current. Confusion reigned. These examples show the
results of overestimating the understanding and probably even the intelligence of
the local agents. The system was designed by very well educated and well in-
formed people who simply did not think of the contrast between themselves and
the people on the ground.

An agenda for research

The conclusion I draw from this in some ways depressing tale is that there is a
great scope for research in a number of areas. First, can we find means of ex-
pressing security policies such that machine aids may be used to help check
whether available technical measures are capable of implementing the policies?
It may be impossible, but it would be nice to know. Note that I said ‘machine
aids.’ Researchers working on theorem proving spent a lot of time trying to get
fully automatic proof engines, and eventually realised that machine aided proof
was much more effective. Second, can we find tools to assist in auditing security
data to check for policy compliance? Third, can we find means to express local
operating rules so that their rationale is apparent to local operations people, who
might therefore take them more seriously? Alternatively, can we find ways to
simplify the task of local security administrators so that there is less encourage-
ment for circumvention?

These issues are partly technical and partly managerial. It is greatly to be
hoped that the managerial content does not deter computing researchers from
tackling them, for their importance is great.

Computing researchers need to climb down from their ivory towers to look at
the real world contexts in which their systems will be deployed.
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