
Developer to Designer:
GUI Design for the

Busy Developer

Mike Gunderloy

SYBEX®

I got a copy of Mike Gunderloy’s book

Coder to Developer

 yesterday and started looking at
it and then started reading it and then continued reading it in bed before I went to sleep. I
have been programming for 20 years, but it is still interesting for me to be reading this book
because it refreshes ideas about certain things and gives me new ideas.… Also, it is great
to see how other programmers (who have been at it for a long time and who I have a lot
of respect for) go about their development process. The book is geared at taking people who
know a lot about coding, but do not really know about the scope of developing a project.
These are skills that it takes years to evolve through experience, and it’s a perfect book for
someone like Mike to write.

—Julia Lerman
Julia Lerman Blog

As freshly minted computer science majors pick up their diplomas, they should buy, beg,
or borrow this book.

Coder to Developer

 will take them from the mindset of interesting but
academic code problems into the trenches of achieving professional success in this global-
ized world.

Coder to Developer

 pulls together all the aspects of being a successful programmer
who delivers solid code on time. Other reviewers have said this is only a .NET programmer
book. Not true. While .NET programmers will benefit the most from buying

Coder to
Developer

, Java, VB6, and even open-source diehards will find more than enough to be
worth their while.

—Bob from Sonoma, California
(Courtesy of Amazon.com)

After three days of reading and digesting the information in the book, I must say that it is one
of the best computer books I have ever read (and one of the very few that I have read cover-to-
cover, and not only cover-to-cover, but cover-to-cover to the exclusion of all else). After read-
ing the first couple of chapters, I decided to put aside the software application that I was working
on, and read the entire book. I will now go back to the start of my application and apply the les-
sons from the book to the project. I don’t feel that I have “lost” the time working on the software
project, because I think that what I learned in the book will more than pay for itself in saved
time during development.

—Eric Brunsen from Colorado Springs, Colorado
(Courtesy of Amazon.com)

Coder to Developer

 was a great read and a definite addition to my must-read list for others.

—Scott Watermasysk

4361FM.fm Page i Tuesday, November 23, 2004 9:21 AM

4361FM.fm Page ii Tuesday, November 23, 2004 9:21 AM

Developer to Designer:

GUI Design for the
Busy Developer

4361FM.fm Page iii Tuesday, November 23, 2004 9:21 AM

4361FM.fm Page iv Tuesday, November 23, 2004 9:21 AM

San Francisco • London

Developer to Designer:

GUI Design for the
Busy Developer

Mike Gunderloy

4361FM.fm Page v Tuesday, November 23, 2004 9:21 AM

Publisher: Joel Fugazzotto
Acquisitions Editor: Tom Cirtin
Developmental Editor: Tom Cirtin
Production Editor: Rachel Gunn
Technical Editor: John Mueller
Copyeditor: Nancy Sixsmith
Compositor: Laurie Stewart, Happenstance Type-O-Rama
Proofreaders: Jim Brook, Nancy Riddiough
Indexer: Nancy Guenther
Cover Designer: Ingalls + Associates
Cover Illustrator/Photographer: Rob Arkins, The Image Bank

Copyright © 2005 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2004109306

ISBN: 0-7821-4361-X

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever possible.
Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no liability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4361FM.fm Page vi Tuesday, November 23, 2004 9:21 AM

For Fru, who keeps calling me.

4361FM.fm Page vii Tuesday, November 23, 2004 9:21 AM

Acknowledgments

S

ome people finish a book and say “Never again.” After I finished this one, I said, “Let’s do
another one.” That’s because of the truly superb editorial team that helped me complete the

project. So I’d like to start by acknowledging Tom Cirtin, who signed me up for this project, as
well as Susan Berge, Rachel Gunn, Nancy Sixsmith, and John Mueller. After they were done
making me justify my stands and clarify places where I was unclear, this book was much better
than when I thought I was finished with it. And even after that, of course, the production team
at Happenstance took over and turned the manuscript into the final printed product that you’re
holding today.

My notions about user interface design have come mainly from designing user interfaces and
finding out what works and what doesn’t. Time and again, I’ve discovered that the interfaces
I thought were completely obvious were in fact opaque (by using the simple stratagem of send-
ing them out for testing). So thanks to all my customers for helping me improve my design
skills by refusing to pay for inferior work.

Thanks, too, to the Microsoft Office team, who hired me several times to work on obscure
corners of the product. Struggling to keep up with the Office quality bar is a great way to under-
stand just how difficult it is to write good applications in general, as well as a great way to learn
about interface design.

On the home front, my family has (as always) been very understanding of the long hours and
occasional fits of grumpy cursing that go into writing a book. Even as I finish this list of acknowl-
edgments, there are two kids sleeping on the couch behind me, having given up hope that dad
was going to find more play time tonight. But I do take time whenever I can; Adam, Kayla, and
Thomas are all much more fun to play with than any amount of software. And finally, Dana
Jones gives me the love and support that I need to keep going at all.

4361FM.fm Page viii Tuesday, November 23, 2004 9:21 AM

Contents at a Glance

Introduction xix

Chapter 1:

The Big Picture

1

Chapter 2:

Putting Words on the Screen

23

Chapter 3:

Managing Windows

39

Chapter 4:

Command Buttons

61

Chapter 5:

Using Text Input Controls

73

Chapter 6:

The Other Controls

87

Chapter 7:

Dialog Boxes

113

Chapter 8:

Common Windows User Interface Elements

137

Chapter 9:

User Input and Navigation

165

Chapter 10:

Common Interaction Patterns

185

Chapter 11:

User Choice, Customization, and Confusion

197

Chapter 12:

The Web Is Not Windows

215

Chapter 13:

Building a Web Page

239

Chapter 14:

Common Web Design Patterns

269

Chapter 15:

Common Web Interaction Patterns

293

Appendix:

Looking Forward to the Next Generation:
Designing User Interfaces for Avalon

307

Index 329

4361FM.fm Page ix Tuesday, November 23, 2004 9:21 AM

Contents

Introduction xix

Chapter 1 The Big Picture 1

User Interface Design for the Busy Developer 2
Thinking About Software 3

Software as a Conversation 3
Similes, Metaphors, and Software 3
Software as a Means 5

Finding a Few Guiding Lights 6
Concentrating on the Task 6
Using Common Idioms 8
Debunking the Myth of Intuition 10

Basics of a Good User Interface 11
Respect the User 11
Keep Things Simple 13
Be Direct 16
Be Forgiving 19
Be Consistent 20

Summary 21

Chapter 2 Putting Words on the Screen 23

Guidelines for Window Titles 24
Windows Without Documents 24
Single-Document Interface Windows 26
Multiple-Document Interface Windows 27

The Basics of User Interface Text 28
Thinking About Text 29
Identification Text 29
Instructional Text 30

Messages and More Messages 31

4361FM.fm Page x Tuesday, November 23, 2004 9:21 AM

xi

Contents

Using ToolTips and Other Instant Help 34
Using ToolTips 34
Supplying Context-Sensitive Help 35
Working with the Status Bar 36

Dealing with Multiple Languages 37
Text versus Images 37
Summary 38

Chapter 3 Managing Windows 39

Why Windows? 40
Types of Windows 41

Primary Windows 41
Secondary Windows 46
Irregular Windows 53

Arranging Windows 53
No-Document Interface 54
Single-Document Interface (SDI) 54
Multiple-Document Interface (MDI) 55
Workbook 56
Tabbed Documents 56
Local Web 57
Using Multiple Main Windows 58

Designing Your Window Strategy 58
Summary 60

Chapter 4 Command Buttons 61

The Look and Feel of Buttons 62
How Buttons Function 62
Laying Out Buttons 65

Labeling Buttons 68
Button Actions 70
Summary 72

Chapter 5 Using Text Input Controls 73

The Basics of Text Entry 74
Navigating Text Controls 74
Working with Text Boxes 76

4361FM.fm Page xi Tuesday, November 23, 2004 9:21 AM

xii

Contents

Supplying Default Values 78
Handling Passwords 79
Text Box Annoyances 80

Types of Text Controls 80
Single-Line Text Box 81
Multiline Text Box 81
Rich-Text Box 82
Masked Edit Control 83
Spin Box 83

Helping Users with Data Entry 85
Choosing the Right Control 85
Summary 86

Chapter 6 The Other Controls 87

Presenting Choices 88
Radio Buttons 88
Check Boxes 90
Toggle Buttons 92
Issues with Choice Controls 94

Handling Lists 96
List Boxes 96
Combo Boxes 98
General List Control Techniques 99

Space Management with Tabs 99
ListViews and TreeViews 103
Grid Controls 107
Miscellaneous Controls 109

ProgressBar 109
Outlook Bar 110
What’s Left? 111

Summary 112

Chapter 7 Dialog Boxes 113

Overview of Dialog Boxes 114
The Uses of Dialog Boxes 114
Modal and Modeless Dialog Boxes 116
Four Types of Dialog Boxes 118

4361FM.fm Page xii Tuesday, November 23, 2004 9:21 AM

xiii

Contents

Dialog Box Layout 120
Arranging Controls 120
Adding More Controls 121
Dealing with Buttons 124
Unfolding Dialog Boxes 126
Resizable Dialog Boxes 126

Cascading Dialog Boxes 127
Preventing Dialog Box Problems 128
Using the Common Dialog Boxes 129

Open Dialog Box 130
Save As Dialog Box 131
Browse for Folder Dialog Box 131
Find Dialog Box 132
Replace Dialog Box 132
Print Dialog Box 133
Page Setup Dialog Box 134
Font Dialog Box 134
Color Dialog Box 135

Summary 136

Chapter 8 Common Windows User Interface Elements 137

Toolbars 138
Floating Auxiliary Windows 141
Status Bars 143
Splitters 144
Menus 147

Menu Mechanics 147
Organizing and Naming Menu Commands 153
Shortcut Menus 156
Menu Styles 157

Wizards 160
Summary 163

Chapter 9 User Input and Navigation 165

Five Ways to Work 166
Keyboard Shortcuts 166
Toolbar 167

4361FM.fm Page xiii Tuesday, November 23, 2004 9:21 AM

xiv

Contents

Menus 167
Menu Shortcuts 168
Direct Action 168
A Final Way: The Hybrid Approach 168

Organizing an Application 169
Start with Functionality 169
Finding the Hierarchy 170
Refining the Menus 173
Assigning Menu Shortcut Keys 174
Assigning Direct Shortcut Keys 176
Choosing Toolbars 178
Finishing Touches 179

Under the Covers 180
Shared Code 181
Handling Undo 182

Summary 183

Chapter 10 Common Interaction Patterns 185

More Ways to Work with Windows 186
Always-on-Top Windows 186
Autohide Windows 190
Avoiding Modal Dialog Boxes 191

Handling Data Transfer 193
Cut, Copy, and Paste 193
Drag and Drop 195

Summary 196

Chapter 11 User Choice, Customization, and Confusion 197

Menu and Toolbar Customization 198
No Customization 198
Simple Customization 198
Complex Customization 199
Adaptive Menus 202

Docking and Anchoring 203
Color Choices and Skinning 208

4361FM.fm Page xiv Tuesday, November 23, 2004 9:21 AM

xv

Contents

Application-Specific Customization 210
The Computer Is Not a Puppy Dog 212
Summary 213

Chapter 12 The Web Is Not Windows 215

Expanding Your Skills to the Web 216
Pages, Sites, and Applications 217

Web Pages 217
Websites 218
Web Applications 218

New Rules and New Challenges 220
Limited Control Selection 221
Statelessness 222
Varying Browsers 225
Varying Standards 228
Unpredictable Infrastructure 232

Design Strategies 233
KISS Design 233
Bleeding-Edge Design 234
Extra Frosting Design 234
Single-Browser Design 236
Multiple-Browser Design 237
Tool-Driven Design 237

Summary 238

Chapter 13 Building a Web Page 239

The Elements of Page Design 240
Basic Elements 240
Forms 256

A Brief Look at Cascading Style Sheets 261
General Principles of Web Page Design 264

Web Page Design for Applications 264
Tips for Using Hyperlinks 266
Tips for Using Forms 267

Summary 268

4361FM.fm Page xv Tuesday, November 23, 2004 9:21 AM

xvi

Contents

Chapter 14 Common Web Design Patterns 269

Common Web Pages 270
Home Page 270
Site Map Page 273
Search Page 275
About and Contact Pages 276
Frequently Asked Questions 277
Legal Pages 279

Handling Site Navigation 282
Persistent Navigation 284
Hierarchical Navigation 286
Breadcrumb Navigation 288
What’s New Pages 288
Adaptive Websites 290

Creating Web Applications 290
Summary 292

Chapter 15 Common Web Interaction Patterns 293

Thinking More About Searching 294
Simple Search 294
Advanced Search 295
Outsourced Search 296

Handling Electronic Commerce 297
Form Annoyances and Fixes 299

Handling Required Fields 299
Handling Formatted Data 300
Limiting Data Entry 302
Handling International Input 303
Handling Large Forms and Slow Users 304
Handling Movement Issues 305
Avoid the Reset Button 306

Summary 306

4361FM.fm Page xvi Tuesday, November 23, 2004 3:27 PM

xvii

Contents

Appendix A Looking Forward to the Next Generation: Designing User Interfaces for Avalon 307

“Longhorn,” “Avalon,” and “Aero” 308
“Longhorn” 308
“Avalon” 310
“Aero” 319

Application Archetypes 323
Document Editor Applications 324
Database Applications 324
Production/Development Environment Applications 324
E-Commerce Applications 325
Information/Reference Applications 325
Entertainment Applications 325
Utility Applications 326

Inductive User Interfaces 326
Summary 328

Index 329

4361FM.fm Page xvii Tuesday, November 23, 2004 9:21 AM

4361FM.fm Page xviii Tuesday, November 23, 2004 9:21 AM

Introduction

W

hen I’m not writing books, I’m a software developer myself. In fact, I spend more time
writing code than I do writing books, though sometimes it’s a close thing. My hope with

this book is to fill a hole by writing about user interface issues that software developers care
about, based on real-world software (specifically, applications for Windows and the World
Wide Web). I’m not a graphics designer, usability specialist, or market researcher; I get right
down into the code and grub around. So although you won’t find many specific code snippets
in this book, you’ll find ideas that you should be able to implement without too much work.

To be clear, there are a few things that you

won’t

 find in this book, even if they’re almost a
tradition in user interface design books:

●

I’m not going to redesign Microsoft’s own applications to show how smart I am when not
faced with budgets, delivery dates, tradeoffs, and other constraints.

●

I’m not going to present “ivory tower” user interfaces built with nonexistent controls.

●

I’m not going to redesign Windows itself. Instead, I’ll show you how to work with what’s
already there.

My goal is to provide a mix of descriptive and prescriptive content that you can apply imme-
diately to building user interfaces for your own applications. I’ll describe how the standard
Windows and web user interfaces work, and then I’ll tell you which parts I think you need to
pay attention to. My advice, combined with your own common sense about how Windows
and web applications ought to behave, will help you create applications that end users can use
without confusion or anxiety.

How This Book Is Organized

This book contains 15 chapters (organized into three parts) plus an appendix. There’s no
particular need to read every chapter in order; for the most part, they stand alone. Feel free
to jump around or to dip in if you need a quick course on a particular topic.

The first part includes eight chapters that discuss the static design of user interfaces for
Windows applications. Chapter 1, “The Big Picture,” covers my basic philosophy of user
interface development, with some advice on general principles. This chapter is a good start-
ing point, no matter which other parts of the book you’re interested in. Chapter 2, “Putting
Words on the Screen,” is about labels, ToolTips, and other text that you display to the user.
Chapter 3, “Managing Windows,” discusses the mechanics of application windows, includ-
ing the management of multiple windows. Three chapters follow to discuss the individual

4361Intro.fm Page xix Tuesday, November 23, 2004 9:24 AM

xx

Introduction

controls that make up a Windows user interface: buttons (Chapter 4, “Command Buttons”),
text boxes (Chapter 5, “Using Text Input Controls”), and other controls (Chapter 6, “The Other
Controls”). Chapter 7, “Dialog Boxes,” offers general advice for assembling these individual con-
trols into task-focused sections of a user interface. Finally, Chapter 8, “Common Windows User
Interface Elements,” discusses some of the things that people expect in a Windows application,
including menus, toolbars, Wizards, and status bars.

The second part of the book has three chapters that discuss the interaction between users
and the user interface of a Windows application. Chapter 9, “User Input and Navigation,”
discusses keyboard, menu, and toolbar command techniques. Chapter 10, “Common Inter-
action Patterns,” covers such topics as drag and drop and cut and paste. Chapter 11, “User
Choice, Customization, and Confusion” reviews some of the ways in which many Windows
applications allow the user to customize the user interface.

The last part of the book turns from Windows applications to web applications. Chapter 12,
“The Web Is Not Windows,” is an overview of the changes that you need to make to your mind-
set as you move from Windows design to web design. Chapter 13, “Building a Web Page,”
includes the basics of HTML design and similar techniques for the developer who’s new to the
Web. Chapter 14, “Common Web Design Patterns,” discusses common web design patterns
including common page types such as home pages and search pages, which let you make your
web application seem more familiar to new users. Chapter 15, “Common Interaction Patterns”
gives advice on handling forms and search in your web applications.

Finally, there’s an appendix, “Looking Forward to the Next Generation: Designing User
Interfaces for Avalon.” This appendix goes over the information that we currently know about
Windows “Longhorn” and discusses how user interfaces will change when Microsoft releases
this version of the Windows operating system.

Staying in Touch

I welcome feedback from my readers. If you find any problems with this book, or have
any questions or suggestions, I’m happy to hear from you via email. You can reach me at

MikeG1@larkfarm.com

. Of course, I can’t guarantee an answer to every question, but I’ll
do my best.

4361Intro.fm Page xx Tuesday, November 23, 2004 9:24 AM

Chapter 1

The Big Picture

•

User Interface Design for the Busy Developer

•

Thinking About Software

•

Finding a Few Guiding Lights

•

Basics of a Good User Interface

4361Book.fm Page 1 Thursday, November 18, 2004 8:45 PM

2

Chapter 1 • The Big Picture

M

y goal with this book is simple: to help you design and improve user interfaces for your
Windows and web applications. By designing better user interfaces (UIs), you can improve

user satisfaction and make users more productive. Ultimately, this will make you more appre-
ciated and in demand as a developer. Along the way, I’ll pass on lots of little tips and drill into
many of the details that make for a good user interface. Most of the book will focus on little
things, from toolbar buttons to laying out a web application. But before getting into the details,
it will help to have an overall framework for thinking about user interface design. That’s where
this chapter comes in.

User Interface Design for the Busy Developer

Depending on the size of your development team and the workflow in your organization, several
people may be responsible for designing an application’s user interface:

●

If you have project managers whose responsibilities include writing software specifications,
they may include user interface mockups in the specification.

●

If you’re using extreme programming (XP) practices, you might have a customer represen-
tative dictating the design of the user interface.

●

If the organization is sufficiently large, you may have user interface design specialists who
do nothing but work on these issues.

●

If the user interface isn’t completely specified at the time that the code has to be written, it
falls on the developer to make the initial design decisions. This is not usually the best possible
situation. Without user feedback, it’s hard to come up with a good design. But the task still
needs to be done.

I’m primarily a developer myself, so if you’re in that last category, I empathize. Designing the
user interface is just one of the dozens of things that most developers have to do in the course
of their jobs. Even if it’s not your primary focus, you need to understand enough about user
interface design to get the job done.

But remember: Designing a good user interface does not relieve you of the responsibility to
develop a working application. You can’t afford to invest all your development time in making
the user interface pretty. That approach would sacrifice functionality. Instead, it’s your job to
strike a balance among all the competing demands on your time.

Take heart, however. Although you may never have thought about user interface design in
detail, the basics are fairly straightforward. And like any other skill, they can be learned. I offer
these words of comfort for the busy developer faced with user interface design:

TIP

If you can learn a computer language, you can learn to build a functional, usable, and reasonably
attractive user interface.

4361Book.fm Page 2 Thursday, November 18, 2004 8:45 PM

3

Thinking About Software

Thinking About Software

What do you think about when you think about software? Ones and zeroes? Loops and condi-
tional statements? Although these may be good ways to think about the internal construction of
computer programs, they don’t do much to illuminate the task of building a good user interface
for an application. In this section, I’ll guide you through some alternate ways of thinking about
your software. These ways have proven helpful to me in the past when I’ve had user interface
design work to do.

Software as a Conversation

One way to think of your software is as a conversation between the developer and the user. The
user starts the conversation by running your application. You return with an opening gambit
that lists the things you’re ready to talk about. The user selects one, and you respond. The inter-
change of the user taking an action and then you responding (through your software) continues
through the life of the application.

Thinking about software as a conversation makes it clear that you need to communicate with
the users of your application. It’s unrealistic to expect users to figure out what the application
does and how to make it work by guesswork alone. Fortunately, there are several ways to com-
municate with the user: help files, printed documentation, and the user interface all contribute
to your end of the conversation. Of these, the only one that you can depend on the user “hear-
ing” is the user interface itself. Help files can be closed, manuals can be left unread, but it’s the
rare user who can fire up the application and then ignore the user interface completely.

But don’t push this way of looking at things too far. Although you do communicate with users
through the user interface of your application, it’s a very limited kind of communication. You
don’t have any way to react to the user’s facial expression or body language. You can’t tell from
timing whether they’re understanding your intentions or missing them wildly. Despite these
limitations in the software-as-a-conversation model, there’s one big lesson to be learned here.
In a real-life conversation, you wouldn’t arbitrarily start speaking Esperanto or Hungarian
without some indication that listeners are expecting the switch. Similarly, in software it is very
dangerous to suddenly discard well-known user interface conventions without a good reason.
A confused user is an unhappy user.

Similes, Metaphors, and Software

Another way to think about software is to compare it to some real-world object. This is a familiar
tactic for making computer programs less scary—and their functions more obvious—to users.
For example, Windows was originally designed as a sort of electronic rendition of an office
worker’s desktop, with file folders and documents and a calculator and a clock. You can move
documents from one file folder to another, or discard them into a recycling bin. You can punch
buttons on the calculator to do simple math, or set the time on the clock.

4361Book.fm Page 3 Thursday, November 18, 2004 8:45 PM

4

Chapter 1 • The Big Picture

This may all seem quite obvious to you as a Windows user in the first decade of the 21st century.
But when Windows first came out in the early 1990s, it was a revolutionary way to interact with
computers. The similarities between the Windows desktop and a physical desktop helped many of
us figure out how to use this new breed of software.

Sometimes software developers speak of this sort of thing as coming up with a

metaphor

 for
their software. But they’re wrong: the relation between applications and the real world is one
of

simile

, not metaphor. Think back to your middle-school English classes, and you may recall
the difference between a metaphor and a simile:

●

A metaphor is a figure of speech in which one thing is equated to another, as in “Windows
is an office worker’s desktop.”

●

A simile is a figure of speech in which one thing is said to be like another, as in “Windows
is like an office worker’s desktop.”

The distinction is important, because these comparisons between applications and parts of the
real world inevitably break down at some point. For example, you can’t keep a pint of whiskey
in the bottom drawer of the Windows desktop or spill ink on the letter you’re writing. But the
Windows desktop lets you change the label on a file folder without needing an eraser or a type-
writer—something that would be quite a trick in the real world. The point is that the Windows
application is not identical to the real world. At best, it is similar to the real world.

Another way to think about this is to consider applications as analogies to the real world. One
dictionary definition of analogy is as a similarity in some respect between things that are other-
wise dissimilar. We know that computer applications and the real world are two different things,
and they are wildly dissimilar: The real world is made up of atoms, and applications are made up
of bits. But there are areas where the two are similar. Thus, the Windows desktop does have an
analogy to a real desktop, and by conjuring up the image of a real desktop in the user’s mind, it
suggests to the user how the Windows desktop can be manipulated.

Because applications are at best similar to the real world, users are forced to construct a map
(a set of correspondences) between the application and more familiar objects. That is, some
reasoning takes place of the sort “this application behaves like X, so I should be able to do Y,”
either consciously or unconsciously, as the user tries to figure out which parts of the real world
experience are applicable to the software at hand. Not all such mappings are created equal.
Figure 1.1 shows schematically how two different applications might compare to their real-
world counterparts.

The upper part of the diagram demonstrates an application that maps very closely to its real-
world model. There are a few things about the application that aren’t in the real world, and vice
versa, but the overlap between the two is substantial. The application behaves mainly as if it
were a part of the real world. In the lower part of the diagram, a second application is a much
less precise match to its real-world partner. Many things about the application can’t be under-
stood by reference to the real world.

4361Book.fm Page 4 Thursday, November 18, 2004 8:45 PM

5

Thinking About Software

F I G U R E 1 . 1

Similarities between
software and the
real world

It’s tempting to suppose that more an application will be better and easier to use if it is a more
precise match to its real-world model. This in turn implies that the user interface should mimic
some portion of the real world. But that is not necessarily true. Remember Microsoft Bob? That
was Microsoft’s most “realistic” user interface to date, and it was a resounding flop. Among
other problems, imposing too much of the real world on the way the system worked led to very
difficult navigation, with artificial constraints to traveling around from one part of the applica-
tion to another. That’s fine in a game, but not in an operating system.

Another reason to beware of software similes is that they can lead to tunnel vision. If you’re
trying to exactly mimic some piece of real-world hardware in a software application, you may
well miss opportunities to add and extend functionality that would benefit users. So if you start
with a simile in mind, make sure that you don’t stop there.

Software as a Means

As a final way to think about software, remember that software is a means rather than an end. The
chance that a user will be running your application just because they want to run your application
is almost zero. Instead, they will have some goal in mind, and your application is a way to reach
that goal. Even when a user launches your application to explore its capabilities, they usually have
a goal in mind, such as evaluating whether the application will meet their needs.

Keeping this principle in mind is a good way to avoid making your software overly cute at the
expense of usability. Spending effort to add a photorealistic three-dimensional user interface

Real World
Behavior

Application
Behavior

4361Book.fm Page 5 Thursday, November 18, 2004 8:45 PM

6

Chapter 1 • The Big Picture

inspired by your favorite movie may make you feel extremely clever, but if users can’t find the
menus among the clutter, it’s a step backward for your application. Users also don’t care about
how clever your code is, or how much work went into the program. They just want to reach
their goals. If your program is the best means to that end, great. If not, there are plenty of other
programs out there to try.

This is an area where a good user interface can give you a boost in the market. If your applica-
tion is easy to use, then it will be a more natural means. This can translate directly into happier
users and more sales.

Finding a Few Guiding Lights

The next step beyond thinking about applications is to thinking about user interfaces. Some
applications, of course, have no user interface (or so little user interface as to be practically none
at all): Windows services are a prime example of such applications. But most applications display
information to the user and allow the user to interact with the application in turn.

Before getting into specific guidelines for what constitutes a good user interface, there are
three overall principles that you ought to keep in mind:

●

Task orientation

●

Idiom reuse

●

Intuition isn’t

I’ll discuss each of these principles in turn.

Concentrating on the Task

Just as user has a long-term goal in mind for their overall use of your application, they have a
short-term goal to focus on at any given point. Writing a letter in a word processor, for example,
might be broken down into three steps:

1.

Choose an appropriate template to create the skeleton of the letter.

2.

Type the text of the letter.

3.

Print the letter.

Although the user wants to write a letter through this entire process, they need to perform
a number of tasks along the way. The user interface is their only way to convince the applica-
tion to perform these tasks in the right order. Making sure that the user can always perform
their next desired task is part of the job of building a user interface.

4361Book.fm Page 6 Thursday, November 18, 2004 8:45 PM

7

Finding a Few Guiding Lights

At any given point, a good user interface will offer ways for the user to perform the next task
that they have in mind. In most cases, though, you won’t know precisely what the user wants
to do next, so the user interface must offer choices. Even so, sometimes you can target your
choices. Figure 1.2 shows the task pane that Microsoft Excel 2003 displays when you first
launch the application. At this point, it’s a good bet that the user wants to either create a new
document or open an existing document, so the choices are focused in those directions.

F I G U R E 1 . 2

Excel 2003 attempts
to make likely tasks
easy to perform

Task panes like this strike a nice balance between making common tasks easy and making
uncommon tasks possible. Most users can probably get to their proper starting point by choos-
ing an option in this task pane, but the task pane doesn’t block access to the other menus and
icons within Excel. If you have some other starting point in mind, and you know what you’re
doing, the task pane won’t get in your way.

If you’re having trouble figuring out the tasks that a user might want to perform with your
software at any given time, try writing some scenarios. A

scenario

 is just an informal story about
what a user might want to do with your software. For example, if you’re writing the perfect
application for sending out spam, a couple of your scenarios might read this way:

“Judy is a new spammer who isn’t quite sure how to get the maximum returns from her ads
for dubious imported pharmaceuticals. She launches SpamOVator and tells it to create a new
spam e-mail. She then types in the text of her ad and presses the Analyze button. SpamOVator

4361Book.fm Page 7 Thursday, November 18, 2004 8:45 PM

8

Chapter 1 • The Big Picture

automatically inserts misspellings and obfuscates the URLs, while keeping the sense of the
message intact and suggesting some subject lines. Judy selects a subject line from the list,
presses the Send button, and spews out 100,000 copies of her ad.”

“Bob is an experienced spammer who has limited time to get things done. He starts SpamO-
Vator and imports his ad text from a Microsoft Word file. He’s already crafted his own keywords
to get past Bayesian filters, so he simply types in his subject line, hits Send, and goes on to his next
project.”

In a real product specification, each of these scenarios would be much longer, and there would
be others to supplement them. The key to writing a good scenario is to focus in on a particular
real-world user and describe their interaction with the software. From the scenarios, you can then
derive a list of tasks that might be performed at any given time. For example, it’s already clear that
SpamOVator must both allow creating new messages from scratch and importing messages cre-
ated in other applications, and that both of these tasks should be possible to perform as soon as
you launch the program.

Using Common Idioms

The dictionary offers several definitions of the word

idiom

; the one that concerns me here is
“The specific grammatical, syntactic, and structural character of a given language.” (Thanks to
the fourth edition of the

American Heritage Dictionary of the English Language

for that wording.)
When pressed into service for user interface design, idioms are those broad patterns of behav-
ior that persist across many programs. Take a look at Figure 1.3. If you’ve had any substantial
experience with Windows at all, you’re likely to agree that one of these applications looks right
and the other looks wrong.

The word processor at the top of the figure has its menu at the very top of the window, with
toolbars directly beneath that. The one on the bottom has these parts of the interface scattered
around willy-nilly. Although both applications have the same functionality, users are likely to
be much happier with the one on the top because it uses the idioms with which they are already
familiar.

NOTE

Ironically, both of these word processors are really Microsoft Word 2003. A few versions
ago Microsoft went somewhat crazy with customization, and ever since then the Office
applications have allowed you to move the menus to any place you might want them. I’ll dis-
cuss this aspect of user interface design in Chapter 11, “User Choice, Customization, and
Confusion.”

Any given operating system is full of common idioms, from the arrangement of menu items
(you’re expecting New to be above Open on the File menu, right?) to toolbar button images,
to the way drag-and-drop operations work. The more that your application can take advantage
of these common idioms, the more comfortable your users will be. A large part of this book will

4361Book.fm Page 8 Thursday, November 18, 2004 8:45 PM

9

Finding a Few Guiding Lights

go toward teasing out the ways that Microsoft Windows applications work in the Windows XP
and Windows 2003 era.

Another way to think of a language idiom is as an expression in which the meaning isn’t derived
from the literal meaning of the words themselves, but from a cultural understanding of the aggre-
gate expression; for example, “She heard it straight from the horse’s mouth.” This is useful in talk-
ing about software design because much of what “makes sense” to us are simply conventions that
we’ve learned to understand and use. For example, it makes no literal sense to have a trashcan on a
desk (unless you’re a night janitor), but we’ve come to accept it and find it useful. The literal mean-
ing of the trash can on screen is pretty silly, but so is the literal meaning of a language idiom. Sim-
ilarly, why would a user have a menu, unless he works in a restaurant? It doesn’t make a lot of sense,
but because everyone has gotten used to the convention and finds it very useful, software designers
keep it. A designer could change the convention to something that made more literal sense, but that
would probably be a lot more trouble than it’s worth—and it would confuse users to boot.

F I G U R E 1 . 3

Common idioms used
and abused

4361Book.fm Page 9 Thursday, November 18, 2004 8:45 PM

10

Chapter 1 • The Big Picture

Debunking the Myth of Intuition

A lot has been made of the supposedly intuitive nature of various computer operating systems
and applications. I won’t say that this is all nonsense because I haven’t tried out every applica-
tion under the sun. So to be charitable, I’ll simply quote Sturgeon’s Law:

Sure, 90 percent of science fiction is crud. That’s because 90 percent of everything is crud.

I could tell you a lot of stories to illustrate my point, but I’ll start with one from the earliest
days of Windows. Back in the prehistoric era (around the release of Windows 2.0), I spent part
of my time teaching 3-hour night school classes in Windows Basics. We got a wide variety of
computer users, from hobbyists to business users. Many of them had never worked with a com-
puter mouse. Perhaps you think the mouse is an intuitive device. It probably is, for you, right
now. But then why did so many of my students attempt to move the cursor by waving the
mouse in the air?

As another example, Figure 1.4 shows a new toolbar button that showed up in the Office 2003
user interface. Does your intuition help you guess what this button does?

F I G U R E 1 . 4

A mystery toolbar
button

The icon is a combination of the New Document icon and the international Stop symbol.
Don’t allow new documents? Stop others from making new documents? Insert a new stop sign
icon in the document? Take a break from word processing? When faced with a new icon like
this, intuition is pretty worthless, no matter how obvious things might have seemed to the
developer.

That’s why a good user interface offers hints. Things can be “intuitive” the second time you
see them as long as they’re explained the first time that you see them. Microsoft invented the
ToolTip as a way to provide user interface hints. Hover your mouse pointer over the mystery
icon, and you’ll see the ToolTip shown in Figure 1.5.

In fact, this icon opens the Permission dialog box, which allows you to set rights management
properties for the document. A few years from now, the icon will be intuitive—but only
because you had a chance to learn what it does.

F I G U R E 1 . 5

The mystery
explained

4361Book.fm Page 10 Thursday, November 18, 2004 8:45 PM

11

Basics of a Good User Interface

The bottom line is this: Nothing is intuitive unless you’re a wild beast; for humans, every-
thing is learned. Therefore, one of the differences between good and bad GUI design is simply
how easy the software is to learn for the targeted user.

Basics of a Good User Interface

There are many ways to define “good” when it comes to user interfaces. Is it one that is esthet-
ically pleasing? Is it one the works like a Microsoft application? As an overall rule, I’m happy
with this definition:

RULE

A good user interface is one that lets the user accomplish the task that they want to accom-
plish, without putting obstacles in their way.

In this book, I’ll teach you to construct user interfaces that meet that definition of “good.” As
a starting point, here are my guidelines for what goes into a good user interface:

●

Respect the User

●

Keep Things Simple

●

Be Direct

●

Be Forgiving

●

Be Consistent

Respect the User

Without the user, your application is useless. That’s why I put respecting the user at the top
of my list. You need to obtain the user’s cooperation to get them to continue using your appli-
cation. The application’s user interface can play an important part in obtaining this coopera-
tion. If users have a positive experience with an application (it does what they want, it’s easy to
use, and so on), they’re more likely to use it again in the future.

In some rare cases, you may have a captive audience and be able to ignore this precept. For
example, if you’re building internal applications in a Fortune 500 corporation, and your boss
is experienced at corporate politics, it’s quite likely that people will be told to use the applica-
tions whether they’re any good or not. But even if you can get by with not respecting the user,
you ignore this guideline at your own peril. It’s entirely possible that you won’t have that luxury
at your next job, and it’s hard enough to write software without having to unlearn bad habits.

One element of respecting the user is to leave the user in control as much as possible. Remem-
ber the task pane that you saw in Figure 1.2? The task pane makes it easy to perform common
tasks, but it does not limit the user to performing only common tasks. The rest of the Excel user
interface is still available in case the user should feel the urge to perform an uncommon task.

4361Book.fm Page 11 Thursday, November 18, 2004 8:45 PM

12

Chapter 1 • The Big Picture

One way to keep the user in control is to make your application modeless (as opposed to
modal). In a

modeless

 application, the user has access to the full range of program functionality
no matter what’s going on. In a

modal

 application, what the user can do is determined by the
mode that the program is in.

Although you’ll sometimes see modeless applications recommended as an absolute good
thing, reality is a bit more complex. As a trivial example, some modes are mutually exclusive.
For example, when you’re working with many Windows applications, the Insert key toggles
data entry between insert and overwrite modes. If you’re inserting characters, you can’t over-
write characters without switching to the other mode. Well, you could define some strange
keystroke combination to insert characters while in overwrite mode or vice versa, but then
you’d be ignoring a common Windows idiom.

On a less trivial level, modes can be useful in limiting the complexity of your application when
the user is focused on performing a particular task. For example, most wizards (and similar inter-
faces, whatever their names) are modal. When the user is working through the steps in a wizard,
it’s a good bet that they’re trying to perform a specific task through following the steps that you
lay out in code. In that case, it’s only a distraction to make the rest of the application’s function-
ality available while the wizard is on the screen.

NOTE

I’ll discuss wizards in Chapter 8, “Common Windows User Interface Elements.”

Finally, modes can reflect underlying limitations in your code. For example, you might simply
not be able to show changes to the underlying document while a print preview window is open
on screen because your preview rendering code doesn’t get called correctly. In such cases, modal
behavior is far preferable to wrong or crashing behavior.

The other important element of putting the user in control is to assume that the user is intelligent
(if perhaps not experienced). It’s up to you not to waste the user’s time with unnecessary steps and
wasteful dialog boxes. The key is to come up with a user interface that works for both inexperienced
and experienced users. In general, you can achieve this through careful hinting. (You already saw
one example of this in Figure 1.5 earlier in the chapter.) ToolTips act as hints for less experienced
users while remaining invisible (and therefore unobtrusive) for more experienced users.

Another area in which hinting works well is with explanatory dialog boxes. You can’t depend
on users to read the help file before using your application, but sometimes there is extremely
important information that you want like to convey. For example, consider the status message
shown in Figure 1.6.

The problem with status messages like this is that they age quickly. If the user hasn’t looked
at the manual, this is useful information the first time that the message pops up. If they have,
it might be a slight annoyance. If it keeps popping up, the message rapidly escalates into a major
annoyance, with users shouting at the screen, “I know that, you stupid program!”

4361Book.fm Page 12 Thursday, November 18, 2004 8:45 PM

13

Basics of a Good User Interface

You can remove most of the annoyance potential with one simple change, shown in Figure 1.7.

This change puts the user back in control. With a single mouse click, they can decide
that they know enough about this aspect of the application and have it stop bothering
them. Now the original message is a piece of information rather than an insult to their
intelligence.

TIP

You could improve this piece of the user interface even more by rewriting the text to use
normal English instead of computer jargon.

This example illustrates another aspect of user interface design as well: Design decisions
have consequences. What if the user accidentally turns off the notification? You should pro-
vide some way to turn these messages back on (short of removing and reinstalling the entire
application). One way to handle this is to add a check box labeled “Show all warning and
informational messages” to your application’s customize dialog box. Thus, you could turn off
each message individually, but if you ever went too far in disabling all messages, you could
get them all back together.

Keep Things Simple

Some applications are overwhelmingly complex. Figure 1.8, for example, shows a portion of
the options settings dialog boxes for Microsoft Outlook 2003. By clicking a few buttons, I’ve
gotten modal dialog boxes stacked five deep, and this is just a small part of the hundreds of
options that Outlook offers its users.

F I G U R E 1 . 6

A potentially
annoying
message

F I G U R E 1 . 7

The annoyance
defanged

4361Book.fm Page 13 Thursday, November 18, 2004 8:45 PM

14

Chapter 1 • The Big Picture

F I G U R E 1 . 8

Outlook offers too
much complexity for
most users

4361Book.fm Page 14 Thursday, November 18, 2004 8:45 PM

15

Basics of a Good User Interface

The designers and developers of Outlook would probably defend this interface by saying that
every option in it is useful to some of their target audience, and that if they remove any control,
users complain. And, of course, I did just recommend leaving the user in control. But the expe-
rience I have with Outlook users is rather telling. There are quite a few people who know that
I’ve been using Outlook since the very first release, and I get instant messages and phone calls
whose general subject is “how the heck do I do X with Outlook?”

Now, I’m not going to pretend that I have the solution to reorganizing Outlook’s rat’s nest of
options into a more manageable format. But I do think that users are not given any meaningful
measure of control by being presented with hundreds of options that they do not understand
and cannot find. Part of what’s going on here, I think, is a confusion of two different dimensions
of user interface design. If you think of control as requiring complexity, your mental map of
these factors looks like Figure 1.9.

F I G U R E 1 . 9

Two dimensions
collapsed into one

If you think that simplicity and lack of control are the same thing, it’s going to be hard to keep
the user in control and have a simple application. But thinking a bit deeper, you’ll probably
agree with me that the situation is better represented by Figure 1.10, in which simplicity and
control are two distinct dimensions that can be independently varied.

As Figure 1.10 suggests, you can have a simple system in which the user has a high level
of control (for example, the Segway human transporter) or a complex system that offers little
control (for example, the stock market). For software, the sweet spot is to have a simple system
that still offers the user enough control to perform all the tasks that they have in mind for your
software. You’re unlikely to design the perfectly simple application that keeps the user per-
fectly in control, but it’s a goal worth striving for.

To make life even more confusing, simplicity itself is not a simple concept. When you try to
make an application simpler, you might be doing any of these things:

●

Removing extra controls from the user interface

●

Minimizing the lines of code in the application

●

Removing functionality from the application

●

Adding hints or help to make the application easier to use

●

Organizing controls into logical groups

●

Hiding controls until they’re needed

Lack of
Control

Simple

Plenty of
Control

Complex

4361Book.fm Page 15 Thursday, November 18, 2004 8:45 PM

16

Chapter 1 • The Big Picture

●

Adding wizards to step the user through tasks

●

Breaking up large dialog boxes into smaller ones

Any of these activities is a reasonable way to decrease the complexity of an application. But
remember, the goal isn’t just to make the program simpler: it’s to make the user’s interaction
with the program simpler. One way to test whether you’re moving in the right direction is to
go back to the scenarios you’ve constructed for using the application. Imagine that you’ve built
the application, and now you need to explain to one of your prototypical users how to use it to
accomplish their tasks. Given two choices of user interface, the one that’s easier to explain is
almost certainly the simpler one.

There’s one other test you should perform when using scenarios to test simplicity. Print out
the user interface on paper, and work through your scenarios. As you use each piece of the
interface in carrying out the users’ tasks, cross that control out on the printout. When you’re
all done with scenarios, inspect the printout. If any controls are not crossed out, there are two
possibilities. Either they’re superfluous and your application’s user interface can be simplified
further, or you’ve missed an important scenario and should write it up for your master list.

F I G U R E 1 . 1 0

A better way to think
about simplicity and
control

Be Direct

Consider the problem of applying formatting to text in a word processing application. What
would you think if the user interface shown in Figure 1.11 were the only way to format text?

Certainly you

could

 format a document this way—but it would be exceedingly tedious and
painful. You’d need to count character positions, then open the modal dialog box and fill it in,
and then hit OK. If you made any mistakes, it would be back to the dialog box. Each time you
had to make a change it would require the same process, interrupting your train of thought.

Lack of
Control

Simple

Plenty of
Control

Complex

4361Book.fm Page 16 Thursday, November 18, 2004 8:45 PM

17

Basics of a Good User Interface

Now compare this with the way that Microsoft Word actually handles this task, as shown in
Figure 1.12.

Word’s approach to the formatting problem is much more

direct

 than the modal dialog box.
You select the text that you want to format, and then click controls to dictate the formatting.
Feedback is instantaneous, and you’re not prevented from working on other tasks while you’re
deciding on formatting (this is an example of a modeless approach, as discussed earlier in the
chapter).

In general, indirect user interfaces seem to appeal more to developers, whereas direct user
interfaces are better for end users. As coders, we’re used to writing instructions to tell the
computer what to do. But for people who live a bit closer to the physical world than we do,
it’s more natural to pick an object and apply a tool to it. Most people would rather grab a
hammer and take a whack at a nail than write detailed instructions telling someone else how
to do it.

Directness in user interfaces comes into play any time there is some object that can be selected
within the application. Note that I’m using “object” here in a rather naïve end-user sense, rather
than in the technical sense of object-oriented programming. From the user’s point of view, an
object is anything (a database row, a cell in a spreadsheet, a paragraph of text, a rectangle on a
drawing) that they can select. If it can also be dragged around the screen with the mouse, the
illusion of objecthood is enhanced.

Given a set of end-user objects within an application, a direct user interface allows the user
to select an object, and then choose a tool or operation to apply to that object. For example:

●

Select a database row and click the Delete toolbar button to remove the row.

●

Select a cell in a spreadsheet and use the Format menu to change the cell’s background color.

●

Select a paragraph of text and choose a font for the text from a drop-down menu.

●

Select a rectangle and pour a new color into its interior with a paint bucket tool.

F I G U R E 1 . 1 1

Indirect text formatting

4361Book.fm Page 17 Thursday, November 18, 2004 8:45 PM

18

Chapter 1 • The Big Picture

F I G U R E 1 . 1 2

Direct text formatting

There’s a common noun-verb pattern here. More informally, you might call this idiom “grab-
this-do-that.” My experience has been that this idiom is easy to explain, easy to remember, and
a good fit for the way in which most users work with the computer.

WARNING

Remember, though: No matter how direct you make your interface, the computer is not the real
world. Don’t be afraid to abandon directness if an indirect interface makes more sense.

Another approach to directness is illustrated by many of the Windows Control Panel applets,
such as the Power Options dialog box shown in Figure 1.13. When you make a change in
options here, the Apply button is available to save the changes.

The three buttons at the bottom of this dialog box have three distinct functions:

●

OK saves the changes and closes the dialog box.

●

Apply saves the changes and leaves the dialog box open.

●

Cancel discards the changes and closes the dialog box.

F I G U R E 1 . 1 3

Direct application of
new options

4361Book.fm Page 18 Thursday, November 18, 2004 8:45 PM

19

Basics of a Good User Interface

Although this is by now a well-established Windows idiom, and it fits the “grab-this-do-that”
pattern, it tends to be confusing to new users. If you choose to use this idiom in your own appli-
cations, you’ll want to make sure you explain the difference between Apply and OK somewhere
in the application’s help file.

Be Forgiving

As Alexander Pope reminds us, to forgive is divine. Although your application probably doesn’t
aspire to divinity, forgiveness is still a virtue well worth keeping in mind. Users will rapidly
develop a dislike for your application if it seems to be unforgiving of mistakes. This is an area
that deserves particular attention because developers tend to develop blind spots to the unfor-
giving parts of their own applications. When you’ve written all of the code, it’s quite easy to run
through a usage scenario without making any missteps. But if you do this, you’ll miss the places
where one bad menu choice or errant toolbar button click can wipe out substantial work.

There are three main strategies that you can use to make applications more forgiving. The
first is to make sure, as best you can, that users want to perform potentially destructive actions.
Figure 1.14 shows the prompt that Windows XP displays when you tell it to delete a file.

Such prompts help make sure that a user actually intends to delete a file, but they can get
annoying after a while. If you do opt to use confirmation prompts, you should provide a way
to suppress or sidestep the prompts. This might involve a check box to suppress prompts in the
future or a special key combination such as Alt+Delete to delete without prompting.

The second way to make your application more forgiving is to move rather than destroy
information. Even if you tell Windows to go ahead and delete a file, it doesn’t

really delete the
file. Instead, it moves the file to the Recycle Bin, from which you can recover it later if you
change your mind. As with confirmation prompts, there are potential problems with this
approach. In particular, you need to be sure that the user understands the consequences of
their actions with respect to confidential information. You need to provide a way to do a real,
permanent deletion of sensitive material. In fact, Microsoft does provide a way to really delete
a file: Press Shift+Delete instead of Delete. But there isn’t any easy way for most users to dis-
cover this shortcut.

F I G U R E 1 . 1 4
Confirming a
destructive action

4361Book.fm Page 19 Thursday, November 18, 2004 8:45 PM

20 Chapter 1 • The Big Picture

The final step toward application forgiveness is to implement some sort of undo facility.
Most experienced Windows users have the Ctrl+Z keyboard combination wired into their fin-
gertips because it’s the most common shortcut for undo. Building undo into your applications
allows users to recover quickly from mistakes by reversing the mistaken actions.

Some applications supply more sophisticated undo facilities than a simple reversal of the
most recent action. For example, the Windows Recycle Bin preserves everything that you
delete until you decide to empty it. As another example, Figure 1.15 shows the Undo drop-
down list in Microsoft Word, which lets you reverse a whole set of actions at once.

F I G U R E 1 . 1 5
Multiple undo in
Microsoft Word

Be Consistent
If I had to choose just one guideline for good user interface design, it would be this one: Be con-
sistent. I briefly mentioned this earlier in the chapter when discussing common idioms, but it’s
a topic worth a more extended discussion.

Consistency in software programs comes in at three different levels:

● Internal consistency

● Suite consistency

● Platform consistency

Internal consistency refers to an application’s consistency with itself. If you implement ToolTips
for toolbar buttons in the application, you should implement them for every toolbar button in the
application. If you use pale yellow to indicate missing information on one dialog box, use that
same color for the same purpose throughout the application. The goal of internal consistency is
to establish a set of standards for the application that your users can depend on. This helps them
build up their knowledge of how the application works more quickly and contributes to reaching
a comfort level with your program.

Depending on the application, suite consistency may or may not come into play. If you’re
producing more than one program, and if they’re meant to work together, you need to consider
suite consistency. Microsoft Office is the prime example of how suite consistency works. If you
know how an operation (such as multiple-level undo) works in one of the Office applications,
you likely know how it works in all the rest. Office’s suite consistency isn’t perfect, but it is way

4361Book.fm Page 20 Thursday, November 18, 2004 8:45 PM

21Summary

ahead of that found in most groups of applications. By developing your own set of standards,
you can make it easier for users of one of your applications to pick up on others. That tends to
translate to increased sales, which is always a good thing.

Finally, platform consistency is concerned with making sure that your applications feel like
they belong on the operating system (Microsoft Windows in the case of this book). To take a
trivial example, Windows uses Ctrl+C for copy, Ctrl+X for cut, and Ctrl+V for paste. Your
application should implement those same key combinations for those operations. To do oth-
erwise is to leave users baffled and angry.

TIP Microsoft has published an entire online book, The Windows User Experience, which discusses
the standards for Windows applications. This book is available online (http://msdn
.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/welcome
.asp) and on the MSDN Library CD-ROMs, and should be required reading for anyone building
Windows user interfaces.

Why is consistency so important? Because it cuts the learning curve for applications substan-
tially. Whether they’ve been using Word and Excel or Notepad and Calculator, the chance is
that users know something about the Windows standards. Any part of those standards that they
can apply to your program is one less thing to learn. Similarly, suite consistency and internal
consistency make it easier for people to figure out how your application works in the context
of your other applications, or as a stand-alone program.

Summary
In this chapter, I tried to give you a broad overview of user interface design as it’s practiced by
developers. You learned some ways to think about software, some overall principles, and some
basic guidelines. The rest of the book will show you how to apply these principles and guide-
lines to user interface construction in more detail. I’ll start the process in the next chapter by
looking at some of the issues surrounding the simple display of text on the user’s computer
monitor.

4361Book.fm Page 21 Thursday, November 18, 2004 8:45 PM

4361Book.fm Page 22 Thursday, November 18, 2004 8:45 PM

Chapter 2

Putting Words on the Screen

•

Guidelines for Window Titles

•

The Basics of User Interface Text

•

Messages and More Messages

•

Using ToolTips and Other Instant Help

•

Dealing with Multiple Languages

•

Text versus Images

4361Book.fm Page 23 Thursday, November 18, 2004 8:45 PM

24

Chapter 2 • Putting Words on the Screen

I

’ll start my tour of detailed design issues with a look at one of the simplest (yet most often
overlooked) parts of user interface design: dealing with words on the screen. Between window

titles, labels, ToolTips, and other controls, the average application has plenty to say to the user.
This is a great place to start thinking about adhering to conventions and making the most of the
available screen real estate.

Guidelines for Window Titles

For the most part, applications with a user interface display information in one or more windows
(there are other possibilities, such as an application that runs only in the notification area of the
Taskbar, but I’m not concerned with them right now; you’ll learn more about using the notifi-
cation area in Chapter 3, “Managing Windows”). Each of these windows is identified by some
text in the title bar of the window, between the icon at the upper left and the system buttons
at the upper right. Choosing the right text for this purpose is surprisingly tricky if you want to
adhere to all the Windows guidelines. It turns out that the rules change depending on the type
of window:

●

Windows without documents

●

Windows containing a single document

●

Windows containing multiple documents

WARNING

Keep in mind that although there are rules for designing title text, it’s depressingly easy to
find applications—even Microsoft applications—that ignore these rules. For example, if
you compare the title bars of Microsoft Word and Microsoft Excel, you’ll see that they dis-
agree on whether the application name (in Excel) or the open file name (in Word) should
come first. According to the standards, Word does the right thing and Excel does the wrong
thing.

Windows Without Documents

For applications that don’t create or edit data files, the rule is simple: Display the name of the
application in the title bar. For example, the Windows Character Map application, shown in
Figure 2.1, places its own name and icon in the title bar.

But this rule, although simple, isn’t universal because many applications use the title bar to
indicate the current

context

 of the application—an indication of what the user is doing or using
right now. The Windows guidelines allow this when the title bar can convey useful informa-
tion. An obvious example of this is Windows Explorer. Although Explorer doesn’t create or
edit files, it displays the name of the current folder in the title bar, as shown in Figure 2.2.

4361Book.fm Page 24 Thursday, November 18, 2004 8:45 PM

25

Guidelines for Window Titles

F I G U R E 2 . 1

Title bar for an
application without
data files

F I G U R E 2 . 2

Title bar in Windows
Explorer

Because Windows also displays the title bar text on the Taskbar, using the folder name as the
title bar text makes it easy for the user to select the Explorer window that they want from the
Taskbar if they have more than one such window open.

4361Book.fm Page 25 Thursday, November 18, 2004 8:45 PM

26

Chapter 2 • Putting Words on the Screen

NOTE

Explorer is a fertile source of incompatibilities between versions of Windows. If you open Explorer
windows on Windows 2000 or Windows Server 2003, you’ll discover that the title bar includes the
full path to the selected folder. On Windows XP, the Explorer title bar includes only the name of
the selected folder. The best advice I can give you is to think about the context (if any) that’s
important for your users and to standardize one title bar text across all operating systems.

WARNING

Think carefully before you adapt the practice of using the title bar to convey application con-
text. Doing so means that minimized windows change title depending on what you were
doing in the application, and you must recognize the application icon to select the correct
window. This can be troubling for users with visual disabilities and confusing to everyone.

Single-Document Interface Windows

Applications designed to edit only one file at a time are referred to as single-document interface
(SDI) applications. Notepad is a simple example of an SDI application. For an SDI application,
the rule is to display the name of the data file, followed by a dash and the name of the application,
as shown in Figure 2.3.

There are some additional rules that you should follow when constructing title bar text for
SDI applications:

●

If the user hasn’t yet saved the document, use a default name in the title bar. For example,
Microsoft Word uses

Document1

, whereas Notepad uses

(Untitled)

 as its default.

●

Display the filename exactly as it appears in the file system, including upper- and lowercase
letters.

●

Don’t display the file extension unless the user has chosen to display file extensions in
Windows Explorer.

It’s easy to comply with the last two rules, because Windows supplies the GetFileTitle appli-
cation programming interface (API) call. Calling this API with a filename shows you the title
that Windows itself will use for the file, which is also the title that you should use in your own
applications.

F I G U R E 2 . 3

SDI application with
an open file

4361Book.fm Page 26 Thursday, November 18, 2004 8:45 PM

27

Guidelines for Window Titles

Multiple-Document Interface Windows

Some applications support viewing or editing more than one file at the same time by using
multiple child windows within a single parent window. These applications are called multiple-
document interface (MDI) applications. With MDI applications, there are two rules:

●

If a single document is maximized in the workspace, the title bar text should consist of that
document’s name, followed by a dash and then the application name.

●

If no document is maximized in the workspace, the title bar text should consist only of the
application’s name.

Microsoft Visio is a good example of an application that takes this approach. Figure 2.4 shows
Visio with a document maximized in the work area. In this configuration, the document name
is on the title bar. Figure 2.5 shows the same Visio session with the document restored to its
smaller size within the Visio workspace.

Classic MDI applications have been declining in popularity over the last few years, led by
Microsoft’s movement of its Office suite away from MDI. Some Microsoft applications such
as Excel still use a traditional MDI interface, but others, such as Word, have a separate window
and taskbar for each open document. This has led to a variety of ways to handle multiple win-
dows. Many applications use a tabbed user interface to display multiple windows within a single
workspace. There don’t seem to be any real standards for what to display on the title bar in this
case. Microsoft Visual Studio .NET, for example, displays both the name of the loaded project
and the name of the active window, as shown in Figure 2.6. In general, I’d suggest you treat
separate windows as though they were MDI windows with maximized documents.

F I G U R E 2 . 4

MDI application with
a maximized file

4361Book.fm Page 27 Thursday, November 18, 2004 8:45 PM

28

Chapter 2 • Putting Words on the Screen

F I G U R E 2 . 5

MDI application with-
out a maximized file

F I G U R E 2 . 6

A non-standard MDI
title bar

The main purpose of the title bar is to help users find your application if they have many
windows open at the same time. This means that you should consider what’s needed to identify
the application (and to distinguish between multiple instances of the application) and then use
that information on the title bar.

TIP

Don’t place extraneous information, such as status messages, in the title bar. There are
other places (such as the status bar at the bottom of your application) for such information.
You’ll learn more about using the status bar in Chapter 8, “Common Windows User Inter-
face Elements.”

The Basics of User Interface Text

Moving down from the title bar, you come to the text in the application’s windows and dialog
boxes. Broadly speaking, there are two purposes for user interface text: identification and

4361Book.fm Page 28 Thursday, November 18, 2004 8:45 PM

29

The Basics of User Interface Text

instruction. Some text serves to identify the purpose of other controls. Other text serves to help
the user carry out a task. Of course, there are standards that apply to both of these areas.

Thinking About Text

There are many different genres of writing in the world, each with its own conventions. A
classical Greek tragedy, the official rules for the game of basketball, and a romance novel each
have certain standards that help identify their intended purpose and audience. So too with
user interface writing. Placing text on the user interface tends to be guided by constraints on
time and space. Computer users tend to be rushed for time; they don’t want to read long
chunks of text on screen. And in any case, most users don’t have sufficient screen resolution
for extensive paragraphs of text to be visible at the same time. These limitations of writing for
user interfaces lead to some rules that you should keep in mind.

First, it’s incredibly important to keep your text short, simple, and direct. Every word that you
place on the user interface should have a reason for being there. You should also strive to make
the text instantly understandable to any user of the application. Remember that you’re distribut-
ing your application in a global market. Particularly if you don’t make localized versions available,
the application can be used by people whose English skills are not perfect. Avoid uncommon con-
tractions and unusual terms unless they’re absolutely necessary.

Because space is limited, you should avoid duplicating text. If the labels on buttons and other
controls already explain what’s going on, there’s no need to add additional text confirming
their use. An exception to this comes when you’re designing a wizard or other task-based user
interface that’s designed to walk the beginning user slowly through a process.

Use standard verbs when writing about user actions:

●

Click

 for the act of clicking the mouse, or to describe any other way of selecting a command
button, hyperlink, menu, or similar control.

●

Select

 for the act of selecting an item in a list box, combo box, or listview; or for checking
a check box.

●

Clear

 for the act of removing the check from a check box.

●

Press

 for the act of pressing a key on the keyboard.

●

Choose

 for the act of selecting one item on a menu.

Identification Text

Figure 2.7 shows some of the common standards for identification text.

If you inspect this figure carefully, you can see several different standards in use:

●

Labels for text boxes (and other controls that are identified by text to their left) use sentence
case with a colon at the end.

4361Book.fm Page 29 Thursday, November 18, 2004 8:45 PM

30

Chapter 2 • Putting Words on the Screen

●

Labels for combo boxes and option buttons (that is, controls that are identified by text to
their right) use sentence case with no colon or other punctuation. This standard also applies
to the text of list box and combo box items.

●

Text on command buttons use title case. This standard also applies to ToolTips, column
headings, toolbar buttons, and window titles.

F I G U R E 2 . 7

Identification text
on a form

TIP

When using sentence case, you capitalize the first letter of each sentence. When using title
case, you capitalize the first letter of each word except for prepositions of four letters or fewer.

Will your application function any differently if you ignore these rules? No. But your users
might end up thinking that it looks funny or be confused by your non-standard ways of doing
things. Computer software is hard enough to use without putting this sort of artificial barrier
in the way of your users.

Instructional Text

Figure 2.8 shows a bit of user interface with some instructional text. In this case, the text is
displayed while the user is working with a wizard, and it describes the actions to be performed
in this step of the wizard.

F I G U R E 2 . 8

Instructional text
on a wizard

4361Book.fm Page 30 Thursday, November 18, 2004 8:45 PM

31

Messages and More Messages

Generally, you’ll see instructional text on parts of the user interface that are geared to less-
experienced users: wizards, task panes, and the like. You should use full sentences and regular
punctuation here. In addition, it’s a good idea to keep your instructional text task-based. This
is the place where you want to tell users how to perform the particular task that they’re trying
to carry out. Background information or notes on how your product stores data should be rel-
egated to the help file and other reference documentation, not imposed on the user interface.

Messages and More Messages

Of course, words displayed as a regular part of your user interface are not the only text that
you’ll need to share with users. Most applications end up needing to display transient infor-
mation, such as warnings or questions, during the course of their work. Figure 2.9 shows the
four standard types of message box built into Windows to handle these needs.

Each of these types of message box is intended for a specific purpose:

●

Information message boxes contain information that the user should acknowledge to
confirm that they understand what’s going on with the application.

●

Warning message boxes contain information about unexpected results or problems that
do not prevent the application from continuing.

●

Question message boxes are used to elicit short input from the user.

●

Error message boxes contain information on problems that (at least potentially) prevent the
application from continuing.

WARNING

Microsoft recommends that you avoid the question icon type entirely, and instead use one
of the other types of message boxes (depending on severity) for questions. I don’t happen
to agree with this recommendation myself; I’ve seen too many users confused by a warning
or error that asks them a question.

F I G U R E 2 . 9

Information, warning,
question, and error
message boxes

4361Book.fm Page 31 Thursday, November 18, 2004 8:45 PM

32

Chapter 2 • Putting Words on the Screen

NOTE

The icons shown in Figure 2.9 are the most recent versions supplied by Windows XP. Older ver-
sions of Windows use different icons for the same concepts, such as a stop sign for errors.

Message boxes are provided by Windows itself, and most programming languages supply a
way to invoke them. For example, in the .NET languages you can use the Show method of the

System.Windows.Forms.MessageBox

 class to display a message box. Windows also supplies a
standard selection of sets of buttons that you can show in a message box:

●

Abort, Retry, Ignore

●

OK

●

OK, Cancel

●

Retry, Cancel

●

Yes, No

●

Yes, No, Cancel

It’s important to keep message box use to a minimum. If a program is too “chatty,” it will be
perceived as interrupting the user’s work. For example, successful operations generally do

not

require an information message box. Figure 2.10 shows an example of a message box that’s not
needed.

F I G U R E 2 . 1 0

An annoying and
superfluous
message box

Users have a justified expectation that your program is functioning properly unless you go
out of your way to tell them otherwise. Confirming that all systems are operating correctly
quickly gets to be a nuisance. The problem is that message boxes interrupt the smooth flow of
the application; no matter what users were doing before you decided to display a message box,
they have to stop and deal with your information or question.

In some cases, you’ll want to present information geared to new users while not bothering
experienced users with the same information. This requirement can be handled with an inter-
face similar to that shown in Figure 2.11.

Unfortunately, adding a check box to a message box isn’t a part of the standard system message
box, so you’ll have to create your own form if you want to follow this path. Also, if you provide
a way to suppress messages, you should provide a way to turn them back on (perhaps in the
Options dialog box for your application) just in case the user has second thoughts about turning
the messages off.

4361Book.fm Page 32 Thursday, November 18, 2004 8:45 PM

33

Messages and More Messages

F I G U R E 2 . 1 1

A message that can
be suppressed

Another source of annoyance is the infamous “Are you sure?” message boxes that some appli-
cations like to present to the user. If there’s no other way to handle potentially destructive
actions, you might be forced to such confirming message boxes. The problem is that it’s diffi-
cult to get users to actually read “Are you sure?” messages. After just a bit of exposure to your
application, most users will just automatically click Yes when such a message box appears, rob-
bing it of its hoped-for effect of inducing thought. A better path is to add an Undo capability
to your program that lets the user back out of destructive changes if they decide they’ve made
a mistake. That way, you don’t annoy the experienced user and you still protect the novice.

Some other guidelines for message box use:

●

Always include the application name in the message box title. If they have multiple appli-
cations running, users might not immediately realize which application displayed a message
without this help.

●

Use complete sentences in the message itself.

●

If you’re warning the user of a non-fatal problem, give them as much information as
you can about correcting the error.

●

As with other user interface text, keep message boxes concise and free of extraneous
information.

●

If you can automatically fix a problem, give the user the opportunity to do so. Figure 2.12
shows two versions of a message box; the second is preferable to the first because it offers
to fix the problem.

F I G U R E 2 . 1 2

The message box on
the bottom is better
than the one on top

4361Book.fm Page 33 Thursday, November 18, 2004 8:45 PM

34

Chapter 2 • Putting Words on the Screen

Using ToolTips and Other Instant Help

Some bits of text are short and transient—but that doesn’t mean that you can ignore them. In
this category, I put ToolTips, context-sensitive help, and text on the status bar.

Using ToolTips

ToolTips exist because of one simple problem: toolbar buttons are simply not large enough to
tell every user what they do. Some buttons (for example, those for common functions such as
cut, copy, or paste) are familiar to almost every user. But others, particularly those that lead to
new features, might be completely opaque. Consider Figure 2.13, which shows a portion of the
Microsoft InfoPath 2003 user interface. Without the ToolTip, would you know what the high-
lighted button does?

F I G U R E 2 . 1 3

ToolTip as a source of
identification text

By now, ToolTips are so common that users expect them to go with any toolbar button. You
should consider them a required part of the user interface if your application includes toolbars.
The text in a ToolTip should be in title case with no punctuation.

Some development environments let you add ToolTips to other controls, as shown in
Figure 2.14. This is generally not a good idea. The ToolTip in this figure doesn’t add any
information. It’s just a redundant nuisance that gets in the way of other controls.

F I G U R E 2 . 1 4

A pointless ToolTip

You might be tempted to use a ToolTip like the one shown in Figure 2.14 to provide addi-
tional instructions and explanations for the user. But remember, a ToolTip pops up whenever
the user hovers the mouse for a while. You’re better off using a less-intrusive mechanism, such
as context-sensitive help (discussed next) for this purpose.

Also keep in mind that ToolTips are essential to most accessibility aids such as screen readers.
Though I’m not focusing on accessibility in this book, it’s worth keeping in mind that many

4361c02.fm Page 34 Thursday, November 18, 2004 10:04 PM

35

Using ToolTips and Other Instant Help

users may not be seeing the interface the same way that you do. Screen readers, for example, will
identify controls by reading their ToolTips. If you neglect to set a ToolTip for a particular con-
trol, the screen reader won’t be able to “see” that control, and the user won’t be able to interact
with it. This is another good reason to keep ToolTip text succinct. If you were using a screen
reader, you’d much rather wait for “Display options” than “Click here to display options for the
current application.”

Supplying Context-Sensitive Help

Context-sensitive help is sometimes called “What’s This?” help. Windows applications can
enable context-sensitive help in any or all of these ways:

●

Through Help �

 What’s This?

●

Through a What’s This? toolbar button

●

Through a What’s This? button on the title bar of a dialog box

●

Through a What’s This? shortcut menu item

●

Through the What’s This? shortcut key, Shift+F1

In most cases, these actions will change the cursor to the help cursor, which is a combination
of the regular pointer and a question mark (the exception is the shortcut menu item, which
immediately displays the message for the control whose shortcut menu is being shown). Click-
ing the help cursor on a control displays the help for that control, as shown in Figure 2.15.

Keep these points in mind when using context-sensitive help:

●

Use complete sentences with punctuation in the help messages.

●

Keep help messages concise because they block the user’s view of other parts of the interface.

●

Supply messages for every control on the form. It’s frustrating to click the help cursor on
a control and have nothing happen.

●

Try to answer the questions “What is this?” and “Why should I use this control?” for the user.

●

Don’t supply help for portions of the user interface that don’t do anything (such as labels).

F I G U R E 2 . 1 5

Using context-
sensitive help
to provide extra
information

4361Book.fm Page 35 Thursday, November 18, 2004 8:45 PM

36

Chapter 2 • Putting Words on the Screen

Working with the Status Bar

A third way to supply bits of information to the user is through the status bar at the bottom of the
application’s main window. Not every application has a status bar, but many do. Figure 2.16
shows a typical status bar in Internet Explorer 6.0.

The experienced user can tell several things from this status bar:

●

IE is currently displaying a web page.

● The cursor is hovering over a hyperlink, and the destination address is shown.

● The current page is secured by SSL.

● The current site is in the Internet zone.

The status bar is a good place for non-critical information that the user might or might not
want to know. It is not a good place for critical messages and notifications that the user must
acknowledge. That’s because text in this area can be very easy for users to overlook. The status
bar is also a good place for text and indicators that should not interrupt the user’s work. For
example, Word uses the status bar to display the current page number and the total number of
pages in the document. It can update this information without interrupting whatever the user
happens to be typing.

F I G U R E 2 . 1 6
An application with
a status bar
(Image copyright
1999–2004
QuiltIndex.com,
used by permission)

4361Book.fm Page 36 Thursday, November 18, 2004 8:45 PM

37Text versus Images

Dealing with Multiple Languages
When you’re designing a user interface, you need to be aware of the possibility that it will
someday be translated into another human language, even if you plan to produce only an
English-language version to start. Although I won’t cover localization in any depth in this
book, there are some things that you can do to make it easier to localize an application.

The key to easy localization is to set things up so that translating the user interface text does
not require any other changes to the application. That way, you can send out the translation
job to some company that specializes in such things and not have to rearrange controls to hold
the translated text when they’re done. The first thing to realize in this regard is that translated
text will often be as much as 30 percent larger than the English version, so you need to leave
room for the expansion. When placing labels and other controls containing text on the user
interface, make sure that you allow for this growth.

Keep in mind, too, that word order might be different in other languages. Figure 2.17 shows
two possible ways to prompt for a number in an application. The second of these ways is pre-
ferred because it won’t require moving the text box control around to accommodate different
word orders and sentence lengths.

Planning for localization is another good reason to keep your user interface text simple and
direct. To make life easier for the translator, you should avoid idioms that might not translate
well. For example, “You have completed the process!” is more easily localized than “That’s the
cat’s pajamas!” No matter how direct your language, though, you should make yourself avail-
able to help sort out difficult translation issues.

Text versus Images
Designers sometimes try to replace the text in a user interface with images. For example, the
toolbar in Internet Explorer uses large flashy icons to indicate major functions within the appli-
cation (Figure 2.18).

F I G U R E 2 . 1 7
The lower set of
controls is more easily
localized than the
upper set of controls

4361Book.fm Page 37 Thursday, November 18, 2004 8:45 PM

38 Chapter 2 • Putting Words on the Screen

F I G U R E 2 . 1 8
The Internet
Explorer toolbar

Notice that Internet Explorer doesn’t depend solely on images, however; it defaults to showing
text with some of the buttons. You can turn this off in the application’s options, but Microsoft
made a wise decision to make text the default; otherwise, no one would figure out what the star
icon was for (and the clock icon is still opaque).

Even this limited use of images in place of text doesn’t move well from the toolbar to the rest
of the application window. This is a good example of the failings of the supposedly intuitive
user interface that I discussed in Chapter 1, “The Big Picture.” Images alone don’t convey the
same thing to every user, even in the developer’s home country, let alone around the world.
And if you will add text to explain the images, what’s the point of the images?

My advice is to leave the images for decoration. Images serve a purpose on some parts of the
user interface. For example, the wizard screen that you saw in Figure 2.8 is made easier on the
eyes by the inclusion of a relatively large graphic. But in general, you should make sure that the
text of the user interface tells users what to do and how to do it, rather than trying to depend
on images.

Summary
In this chapter, you learned the basics of working with text on the user interface. Whether
you’re assigning a title to a window, presenting labels to identify part of the user interface, or
popping up messages or ToolTips, there are standards that all Windows applications share.
Remember that text exists to identify parts of the user interface or to instruct the user. You
should ruthlessly prune all other text from your application’s interface to make it as easy to use
as possible.

I briefly touched on the issue of window management in this chapter (in the discussion of
SDI and MDI applications). But there’s a lot more to know on that topic, which is the subject
of the next chapter.

4361Book.fm Page 38 Thursday, November 18, 2004 8:45 PM

Chapter 3

Managing Windows

•

Why Windows?

•

Types of Windows

•

Arranging Windows

•

Working with Windows

4361Book.fm Page 39 Thursday, November 18, 2004 8:45 PM

40

Chapter 3 • Managing Windows

W

indows provide the fundamental way in which a user views and interacts with data.
Consistency in window design is particularly important because it enables users to easily

transfer their learning skills and to focus on completing their tasks rather than on learning
new conventions. To a large extent, Microsoft Windows itself will take care of managing your
application’s windows. For example, you don’t need to write any code to handle the mechan-
ics of turning a full-sized window into a minimized icon, or to display the window contents
while it’s being dragged around the screen. But you still need to decide which windows your
application needs to work effectively for your users.

Why Windows?

Back in the dark ages (that is, a bit over a decade ago), those of us using Microsoft software used
DOS as our operating system. Over the years, DOS evolved in sophistication, but for the most
part it was a single-task operating system. We ran one application, worked with it for a while,
and then shut it down to use another application. But we programmers (being the sneaky people
that we are) gradually worked out ways to run more than one application at a time. One popular
dodge was the terminate-and-stay-resident (TSR) program. TSR programs pretended to DOS
that they were done, but they really lurked in memory, waiting for the press of a key to pop up
on screen and do something useful.

The experience of working with TSR programs convinced many of us that using more than
one application concurrently made good sense. But it was pretty obvious that you couldn’t just
jumble the information from all of those applications together on screen in one untidy heap.
The answer was (and has remained) the window: a rectangular area on screen that is owned
by a particular application. With an operating system (such as Windows) that supports win-
dows, you can run as many applications as you like, each with its own window on the screen.
Of course, Microsoft wasn’t the only company to come up with this idea. You can trace the
history of windowing systems back to places like Xerox’s Palo Alto Research Center, and into
consumer product like DesqView that provided windowing environments on the PC before
Microsoft did.

Most Windows applications with a user interface will display at least one window on screen (the
exception being applications that run entirely as an icon in the notification area of the Taskbar
and full screen applications such as screen savers). This is the application’s

primary window

, which
delimits the application’s area on screen. A primary window might contain controls that the user
directly interacts with, or it might be home to

secondary windows

 (such as document windows if
your application allows users to open more than one document at a time).

4361Book.fm Page 40 Thursday, November 18, 2004 8:45 PM

41

Types of Windows

NOTE

The notification area is a region at the end of the Taskbar opposite the Start button in which
various icons for running applications are displayed. You’ll often find the notification area
referred to as the

tray

 or the

system tray

, but those names are wrong according to the offi-
cial Windows documentation. They’re in widespread use, though, wrong or not. For a dis-
cussion of this terminology issue, see

http://blogs.msdn.com/oldnewthing/archive/
2003/09/10/54831.aspx

.

Windows come in a variety of forms. In addition to displaying information and documents
to the user, a window might be used to

●

Accept input and parameters necessary to complete a particular action such as opening a file.

●

Display the properties of an object.

●

Supply a palette of options or tools.

●

Warn the user of an error or other problem.

In many of these cases, you don’t need to worry about the look of the window at all. Warnings,
for example, are normally shown in a message box window, so although you need to choose an
appropriate icon, message, and buttons, Windows takes care of formatting the window for you.

Types of Windows

Ordinarily, most of a user’s interaction with an application is with the primary window of the
applications. But any application might also include a variety of secondary windows. In this
section, I’ll present a selection of window types and discuss the ways that they ordinarily
function.

Primary Windows

There are some features you (and your users) should expect to see as a part of any primary
window. These include the following:

●

Window frame

●

Title bar

●

Title bar icon

●

Title bar text

●

Title bar buttons

●

Scroll bars

4361Book.fm Page 41 Thursday, November 18, 2004 8:45 PM

42

Chapter 3 • Managing Windows

NOTE

Of course, a window with just these listed features is essentially useless. In any real appli-
cation, you’ll have some combination of text and images to communicate with the user, and
controls to let the user interact with the application. Chapters 4 through 8 cover the things
that you can put inside of windows.

You’re undoubtedly familiar with these elements simply from working with Windows, but
let’s take a closer look. Knowing how the standard elements work keeps you from wasting time
by duplicating features elsewhere in your application.

When there was only a single version of Windows in use (for example, when Windows 3.1
had the bulk of the market share), it was possible to give strict guidance about how these various
elements should be drawn. If you wanted to create your own window, for whatever reason, you
would draw a rectangle of a specific color and thickness. Now, things are not so simple because
windows appearance changes with different versions of the operating system. Figure 3.1, for
example, shows a portion of a Notepad window (greatly enlarged) on a Windows Server 2003
system.

Figure 3.2 shows the same portion of the same application on a Windows XP system. The
shading is different, the title bar font is different, and the corner of the primary window is
curved (to name the more obvious changes).

To make things even more complex, all current versions of Windows leave the details of
window styling—such as fonts and colors—up to the user. One user with visual disabilities
might prefer 36-point type in the title bar; another with a particular sense of style might like
lime-green text on a fuchsia background. The practical outcome of this state of affairs is that
you should just let the operating system format the windows, and you can concentrate on the
content, such as the particular text and controls inside of each window. If your application’s
design calls for “fake” windows (for example, showing a bitmap picture of a window in place
of the actual window), you should seriously rethink the design.

F I G U R E 3 . 1

Notepad on Windows
Server 2003

F I G U R E 3 . 2

Notepad on
Windows XP

4361c03.fm Page 42 Thursday, November 18, 2004 10:30 PM

43

Types of Windows

The top portion of the application’s primary window is reserved for the title bar. This bar
serves to identify the window, as well as to support standard functionality that should be
present for every primary window. Figure 3.3 shows a typical title bar.

F I G U R E 3 . 3

Title bar for Notepad

At the far left of the title bar is the window’s icon. If the application is not structured around
document management, this should be the icon of the application itself. If the application is
structured around document management, the window’s icon should be the application’s icon
if no document is loaded or a document icon if any documents are loaded.

Clicking the primary mouse button on the window’s icon, clicking the secondary mouse button
on the title bar, or pressing Alt+Space opens the system menu for the application. As the name
implies, the system menu (which is the same for every primary window) contains these commands:

●

Restore

●

Move

●

Size

●

Minimize

●

Maximize

●

Close

To the right of the icon, you’ll find the title bar text. I discussed choosing the proper title bar
text in Chapter 2, “Putting Words on the Screen.”

The title bar buttons are located at the far right of the title bar. There are always three of
these buttons grouped together. The first and second buttons are right next to each other, and
there’s a small gap before the third button:

●

If the window is maximized, the buttons are Minimize, Restore, and Close.

●

If the window is minimized, the buttons are Restore, Maximize, and Close.

●

If the window is neither maximized nor minimized, the buttons are Minimize, Maximize,
and Close.

Under most circumstances, you can’t see the buttons when the window is minimized because
under current versions of Windows, all minimized windows are automatically relocated to the
Taskbar as buttons. But theoretically they’re still there, and in future versions of Windows,
they could be visible again, as they were in versions of Windows before Windows 95.

4361Book.fm Page 43 Thursday, November 18, 2004 8:45 PM

44

Chapter 3 • Managing Windows

The functions of these buttons are ordinarily quite standard. The maximize button expands
the primary window to occupy the entire screen (and, in so doing, hides the window frame).
The minimize button minimizes the window to its smallest possible size. The restore button
reverses the effect of a maximize or minimize operation to return the window to an inter-
mediate size. However, there is one special case that you’ll encounter fairly frequently for
the minimize button. Rather than minimizing to the Taskbar, some applications minimize
to an icon in the notification area of the Taskbar.

This behavior is typical of utilities that run in the background but still need to present both
status information and a full user interface. For example, consider Hardware Sensors Monitor
(

http://www.hmonitor.com/

). This utility monitors CPU temperatures and other important
hardware information. During ordinary operation, Hardware Sensors Monitor provides feed-
back via a notification area icon that changes color when a sensor is out of its optimal range, as
shown in Figure 3.4.

F I G U R E 3 . 4

Hardware Sensors
Monitor in the
notification area

When the icon changes color, Hardware Sensors Monitor has more information to display.
In this case, double-clicking the notification area icon will show the full user interface, which
you can see in Figure 3.5.

When you’re done inspecting the actual values, you can hit the minimize button, and Hard-
ware Sensors monitor minimizes back to the notification area.

F I G U R E 3 . 5

Hardware Sensors
Monitor expanded
to the screen

Hardware
Sensors
Monitor

4361Book.fm Page 44 Thursday, November 18, 2004 8:45 PM

45

Types of Windows

Although this behavior is useful in a utility whose user interface you want to see only occa-
sionally, it’s certainly non-standard. There are two guidelines you should follow if you decide
that this (or any other non-standard use of the title bar buttons) is right for your application:

●

Make sure that the user understands that your application behaves in this non-standard way
by explicitly documenting the behavior somewhere obvious (such as in the readme file, the
application’s splash screen, the help file, the written documentation, or all of these).

●

Make the behavior optional. For example, provide a check box on your Tools �

 Options
dialog box to enable or disable the “minimize to Taskbar tray” behavior.

The last piece of the standard primary window interface that deserves a mention is the
scroll bar. A window might have no scroll bars (or one, or two, depending on whether
it allows horizontal or vertical scrolling). Like the other standard widgets, Windows
draws scroll bars differently depending on the version of the operating system. Figure 3.6
shows scroll bars under Windows XP, and Figure 3.7 shows the same scroll bars under
Windows Server 2003.

F I G U R E 3 . 6

Windows XP–style
scroll bars

F I G U R E 3 . 7

Windows 2003–style
scroll bars

4361Book.fm Page 45 Thursday, November 18, 2004 8:45 PM

46

Chapter 3 • Managing Windows

If a primary window will contain more information than can fit on the screen at one time,
scroll bars provide the standard way to display the additional information. The same is true of
secondary document windows. In addition to giving the user a way to get to the additional
information, the scroll bars provide an important clue that the additional information exists.

Scroll bars are not the only way to display additional information. Dialog boxes in particular
are not normally drawn with scroll bars. Instead, these windows can use an unfolding mecha-
nism (as I’ll discuss in the “Dialog Boxes” section later in this chapter).

Secondary Windows

Almost any application has one or more secondary windows to support the operations of the
main window. Secondary windows come in many varieties. In this section, I’ll discuss the ones
that you should be familiar with when designing your own applications:

●

Document windows

●

Dialog boxes

●

Task panes

●

Property sheets and property inspectors

●

Floating auxiliary windows

In addition to these windows, which are usually long-lived parts of the user interface, most
applications make use of message boxes to communicate important information to users. (For
more information on message box design, refer to Chapter 2.)

Document Windows

Document windows are used by applications that allow editing more than one document at the
same time (see “Multiple Document Interface” later in this chapter). Figure 3.8 shows a user
interface with one primary window and two secondary document windows (in this case, the
application is Paint Shop Pro,

http://www.jasc.com

).

For the most part, document windows behave just like primary windows—with a few differences:

●

Document windows use an icon indicating the document, rather than one indicating the
application. Usually the two are similar but distinct, as shown in Figure 3.8.

●

Right-clicking on the title bar of a document window usually reveals a more extensive
shortcut menu than right-clicking on a primary window.

●

Document windows get

clipped

 (cut off) by the edge of the primary window. You can’t drag
a document window out of the primary window.

●

Document windows minimize and maximize within the boundaries of their parent primary
window.

4361Book.fm Page 46 Thursday, November 18, 2004 8:45 PM

47

Types of Windows

F I G U R E 3 . 8

Document windows in
a parent application

In document-oriented applications that allow editing multiple documents at the same
time, users typically do all or most of their work in document windows. Menu items and tool-
bar buttons in the primary window apply to the contents of the active document window in
this case.

Dialog Boxes

Another form of secondary window that you’ll encounter frequently is the dialog box. Figure 3.9
shows a typical dialog box.

F I G U R E 3 . 9

Using a dialog box to
collect user input

4361Book.fm Page 47 Thursday, November 18, 2004 8:45 PM

48

Chapter 3 • Managing Windows

By convention, dialog boxes have a distinct look and feel:

●

The border of a dialog box is not resizable.

●

The title bar of a dialog box contains only the title text, the close button, and an optional
“What’s This?” help button. The title text is usually the name of the command that opened
the dialog box.

●

A dialog box should contain a single button to commit the changes shown and to close the
dialog box. The caption of this button is

OK

 and it is the default control (so that it responds
to the Enter key).

●

A dialog box might contain a button to discard the changes shown and to close the dialog
box. If it contains this button, it should be labeled

Cancel

 and respond to the Escape key.

Although dialog boxes do not have a resizable border, they can sometimes be resized. This is
accomplished through a process known as

unfolding

. Consider the standard color picker dialog
box shown in Figure 3.10. By default, it lets you pick from one of 48 basic colors.

But Windows is capable of displaying far more than 48 colors. When you click the Define
Custom Colors button in the dialog box, it unfolds to display the additional controls shown in
Figure 3.11.

Note the visual cue offered by the chevrons (>>) on the Define Custom Colors button. In
many cases, you can use one button to both unfold and refold a dialog box by adjusting the
caption. For example, when the dialog box is in its folded state, the button could read

Show

Advanced Properties >>

; and when the dialog box is in its unfolded state, the same button
would read

Hide Advanced Properties <<

.

F I G U R E 3 . 1 0

The Edit Colors
dialog box

4361Book.fm Page 48 Thursday, November 18, 2004 8:45 PM

49

Types of Windows

F I G U R E 3 . 1 1

The Edit Colors dialog
box after unfolding

Dialog boxes are

modal

 (while a dialog box is displayed on screen, the user cannot interact
with other parts of the application). This capability makes dialog boxes most suitable for tasks
that must be completed without interruption by other activities in the same application.

Task Panes

Microsoft introduced task panes as a new type of secondary window in Office 2000. Figure 3.12
shows a typical task pane (in this case, from Microsoft PowerPoint 2003).

F I G U R E 3 . 1 2

A typical task pane

4361Book.fm Page 49 Thursday, November 18, 2004 8:45 PM

50

Chapter 3 • Managing Windows

Task panes are designed to provide help and controls necessary to accomplish a particular
task. For example, the task pane in Figure 3.12 helps a user apply animation schemes to one or
more PowerPoint slides. Unlike dialog boxes, task panes are non-modal, so you can continue
to work with the rest of the application’s user interface while a task pane is open.

Conventions for task panes include the following:

●

A task pane appears as a separate window within the application’s main window. This sec-
ondary window is normally docked to one side of the application’s workspace, but (like
toolbars and other docking windows) it can be undocked and moved around.

●

The Ctrl+F1 key combination opens the task pane window.

●

All task panes use the same secondary window. A drop-down list at the top of the task pane
lets you choose which task pane to display.

●

Task panes include hyperlinks to other task panes (for example, the Design Templates and
Color Schemes links shown in Figure 3.12) and sometimes to other resources on the Internet.

●

Task panes include forward, back, and home buttons to navigate between the task panes
that you have displayed during a work session.

Task panes are especially useful for applications with many features and options. They help
a user find ways to carry out particular tasks without needing to learn everything about the
application or to explore the entire user interface.

Property Sheets and Property Inspectors

Property sheets and property inspectors provide ways to view and manipulate the properties of
an object. Many applications expose objects from code more-or-less directly to end users;
spreadsheet cells, document paragraphs, or table rows might all be considered objects, depend-
ing on the application. It’s often useful to give users a way to set the properties of these objects
directly.

Figure 3.13 shows a property sheet from Internet Services Manager, which allows the user to
manage websites based on Microsoft Internet Information Services (IIS).

Like many objects, IIS web applications have more properties than can conveniently be
exposed in a single window. The tabbed interface provides a relatively natural way for users to
select groups of related properties to work with. The buttons at the bottom of the property
sheet stay active regardless of which tab is selected.

Property sheet conventions include the following:

●

The border of a property sheet is not resizable.

●

The property sheet is not modal.

4361Book.fm Page 50 Thursday, November 18, 2004 8:45 PM

51

Types of Windows

●

The title text of the property sheet is the name of the object plus the word “Properties.” In
some cases, you may choose to use the name of the object type instead of the specific object,
such as “Form Properties” rather than the name of a particular form.

●

If the user switches from one object to another within the application, the property sheet
continues to show the properties of the original object.

●

The OK button applies any changes to the object and then closes the property sheet. This
is the default button on the property sheet and responds to the Enter key.

●

The Cancel button discards any changes and then closes the property sheet. This button
responds to the Escape key.

●

The Apply button is disabled until the user has changed at least one property. When it is
enabled, the Apply button applies any changes to the selected object, but does not close the
property sheet. The Apply button disables itself until more changes are made.

●

Property sheets almost always include What’s This? help.

F I G U R E 3 . 1 3

Property sheet for a
web application

Most applications that implement property sheets allow you to have more than one property
sheet open at the same time. This is useful when the user wants to compare the properties of
multiple items.

Property inspectors also show the properties of an object, but there are some major differ-
ences between property inspectors and property sheets:

●

Property inspectors always show the properties of the active object; if you switch objects,
the inspector updates to show the properties of the new object.

4361Book.fm Page 51 Thursday, November 18, 2004 8:45 PM

52

Chapter 3 • Managing Windows

●

Property inspectors are typically implemented as toolbars or other dockable controls,
rather than as separate windows.

●

Changes made in a property inspector are applied to the selected object immediately.

Figure 3.14 shows some controls from the Formatting toolbar in Microsoft Excel, which act
as a property inspector. When you change the selection, these controls update to show the font
properties of the selection. If you change the controls, Excel updates the selection to match.

F I G U R E 3 . 1 4

Property inspector in
Microsoft Excel

Floating Auxiliary Windows

The final common type of secondary window is the floating auxiliary window. These windows
are sometimes called

toolboxes

 or

palettes

. Figure 3.15 shows a typical example: the form design
toolbox from Microsoft Access.

Floating auxiliary windows share these conventions:

●

The title bar is only half the height of a normal title bar.

●

The only title bar button is the close button.

●

The window can be floating or docked. Some applications may allow the user to turn off
docking, or disable docking entirely, for floating windows.

●

Accessory windows can be resizable or fixed size. If they’re resizable, the controls normally
rearrange so as to remain visible as the window is resized.

●

Accessory windows usually contain little if any text and many controls that perform actions.

●

The size and position of the accessory window is preserved from one appearance to the
next, even if the application is closed and reopened.

NOTE

Toolbars are a special case of floating auxiliary window. You’ll learn more about toolbars
in Chapter 8, “Common Windows UI Elements.”

F I G U R E 3 . 1 5

The Access form
design toolbox

4361c03.fm Page 52 Sunday, November 21, 2004 12:32 PM

53Arranging Windows

Irregular Windows
I said earlier that a window was a rectangular area on screen. In the last few years, there have
been an increasing number of applications that violate that rule by using windows that are not
rectangular. One good example is Windows Media Player, which can be customized with a
variety of different skins. Figure 3.16 shows one of the ways Windows Media Player can look.

F I G U R E 3 . 1 6
Windows Media Player
“Claw” skin

Although irregular windows have become more common, and tools for creating them have
become more available, I have one simple piece of advice for most user interface designers
when it comes to this trend: don’t. All too often, developers seem to want their applications to
look cool and modern without considering that this results in truly horrible usability.

Arranging Windows
Application developers have come up with a variety of ways to organize information. You can
think of these concepts as visual patterns that your own application might be able to follow:

● No Document Interface

● Single-Document Interface

● Multiple-Document Interface

● Workbook

● Tabbed Documents

● Local Web

When developing an application, it’s worth considering these patterns as starting points. You
might well be able to develop an application that strikes users as instantly familiar by fitting into
a category that they already understand.

4361Book.fm Page 53 Thursday, November 18, 2004 8:45 PM

54 Chapter 3 • Managing Windows

No-Document Interface
Some applications (typically utilities) do not work with data files or allow the user to create new
data. These applications typically implement a single window that contains controls for interact-
ing with the application. For example, the Faber Toys (http://www.faberbox.com/fabertoys
.asp) AutoRun application, shown in Figure 3.17, exists to display a list of the applications that
Windows runs at startup.

F I G U R E 3 . 1 7
An application with no
document windows

Single-Document Interface (SDI)
Applications designed to edit only one file at a time are referred to as single-document interface
(SDI) applications. Notepad is a simple example of an SDI application. In an SDI application, the
single document fills the entire primary window, as shown in Figure 3.18.

F I G U R E 3 . 1 8
An application with
a single document
window

4361Book.fm Page 54 Thursday, November 18, 2004 8:45 PM

55Arranging Windows

In Figure 3.18, I’m using Microsoft WordPad to edit a document. WordPad supplies the
menu, toolbars, and ruler, as well as the status bar. The rest of the space is filled with the doc-
ument, which can be saved as a separate data file. When you open a new file in WordPad, it
automatically closes the one you’re working on.

Multiple-Document Interface (MDI)
Some applications support viewing or editing more than one file at the same time, using
multiple child windows within a single parent window. These are called multiple-document
interface (MDI) applications. Figure 3.19 shows Microsoft Access, which uses a multiple-
document interface.

As you can see from Figure 3.19, there’s no requirement that every document within an MDI
application must look the same. An application can choose to display different information and
to use different styles for the various secondary document windows that it contains.

F I G U R E 3 . 1 9
An application with
multiple document
windows

4361Book.fm Page 55 Thursday, November 18, 2004 8:45 PM

56 Chapter 3 • Managing Windows

Workbook
In some cases, an application might let the user edit a series of closely interconnected
documents. In this situation, a workbook user interface is appropriate. Figure 3.20 shows
a workbook open in Microsoft Excel.

In this case, the workbook is divided into three worksheets (Sheet1, Sheet2, and Sheet3).
Tabs at the bottom of the workbook provide a way for the user to switch between different
worksheets in the same workbook. The entire workbook is saved as a single file.

TIP Excel is both an MDI application and a workbook-based application. A single instance of Excel
can load multiple workbooks at the same time.

The workbook interface is a solution to two problems. First, it allows storing and manipulat-
ing a group of documents as a single entity. Second, it provides a way to cram more information
into the available real estate on the user’s screen. Though you can see the contents of only one
tab at a time, the workbook makes it easy to switch back and forth between tabs.

Tabbed Documents
Another way to deal with multiple documents within a single application that has become
popular in recent years is the tabbed interface. Figure 3.21 shows a typical tabbed document
interface (in this case, the CodeWright text editor).

F I G U R E 3 . 2 0
A workbook with three
tabs open in Excel

4361Book.fm Page 56 Thursday, November 18, 2004 8:45 PM

57Arranging Windows

Tabbed interfaces are a variant of MDI, with an important difference. When you’re using an
MDI application, you need to click on the Window menu to see the names of all open docu-
ments if you have one of them minimized. When you’re using a tabbed interface, you can just
scan the tabs to see which documents are open. The gain in document visibility is normally
worth the loss of a little working area.

Local Web
Some applications bring an interface from the World Wide Web to your local computer.
Consider the Microsoft SQL Server Best Practices Analyzer (www.microsoft.com/downloads/
details.aspx?FamilyID=b352eb1f-d3ca-44ee-893e-9e07339c1f22&DisplayLang=en), shown
in Figure 3.22.

Although the Best Practices Analyzer is a Windows application, the designers have used inter-
face standards from the Web as their reference. For instance, you move through the application
by single-clicking on hyperlinks that are highlighted when the mouse passes over them.

If you’re going to use Web interface standards in your Windows applications, I urge you to
be restrained about it. Many web controls are more limited than their Windows counterparts,
and you can end up constraining your users unnecessarily if you simply create HTML pages to
use on their local computer. But careful use of web design can result in a more attractive appli-
cation, and these days everyone understands Web conventions such as hyperlinks.

F I G U R E 3 . 2 1
Using tabs to load
multiple documents

4361Book.fm Page 57 Thursday, November 18, 2004 8:45 PM

58 Chapter 3 • Managing Windows

F I G U R E 3 . 2 2
A Windows application
with a Web interface

Using Multiple Main Windows
One more way of arranging Windows ought to be mentioned, although it’s not one that I rec-
ommend. Figure 3.23 shows Visual Basic 6.0 running in its classic interface mode.

Yes, all those windows are part of a single application. Visual Basic was one of the handful of
applications to take this approach of scattering multiple windows across the screen without
providing an overall workspace to contain them. Although this does allow end users to arrange
the windows just as they like, it ends up being terribly confusing. Imagine that you have four
or five applications that use this approach all open at the same time—how can you ever tell
which window belongs to which application?

Designing Your Window Strategy
One of the key decisions to make when you are developing an application is how to split up the
application into multiple windows. Just about any Windows application involves more than
one window. Here are some guidelines to help you structure your own applications:

● For a utility that runs in the background, consider minimizing it to a notification area icon.

● Implement a workbook or tabbed document interface if the user is expected to manage
many documents at one time.

4361Book.fm Page 58 Thursday, November 18, 2004 8:45 PM

59Designing Your Window Strategy

● Use the simplest set of windows that will possibly work for your application. There’s no
need to develop an MDI interface if the user never needs to work with more than one
document at a time.

● Follow the Windows user interface guidelines closely. Dialog boxes, for example, should
always be modal.

● Use modal dialog boxes for tasks that must be completed before the user can proceed with
the application. For example, a modal dialog box is appropriate for selecting the name of a
file after the user clicks the Save button.

● Use non-modal secondary windows such as task panes, property sheets, or property inspectors
to prompt for information that does not need to be supplied immediately. For example, a task
pane is appropriate for selecting fonts to apply to parts of a document.

● Use floating auxiliary windows to make selections of tools available to the user.

● Avoid irregular windows unless you’re presenting an interface whose goal is to look different
instead of one whose goal is to be usable.

● Use a web-like interface when you require more an innovative visual presentation.

F I G U R E 3 . 2 3
Application without a
containing window

4361Book.fm Page 59 Thursday, November 18, 2004 8:45 PM

60 Chapter 3 • Managing Windows

Summary
This chapter gave you a broad overview of Windows applications. You learned about the
distinctions between primary and secondary windows, and about the user interface conventions
that apply to both types. You also saw that secondary windows come in a variety of formats.
Finally, you learned about various strategies for organizing the windows in your applications.

Now it’s time to drill further into the details of a Windows application by understanding the
details of individual controls. I’ll start in the next chapter by examining button controls.

4361Book.fm Page 60 Thursday, November 18, 2004 8:45 PM

Chapter 4

Command Buttons

•

The Look and Feel of Buttons

•

Labeling Buttons

•

Button Actions

4361Book.fm Page 61 Thursday, November 18, 2004 8:45 PM

62

Chapter 4 • Command Buttons

I

’ll start my examination of the common Windows control types with the common command
button, usually just called a

button

 (or sometimes, in older documentation, a

push button

).
Buttons are controls that start actions or change properties. For example, a button might move
the user from one panel of a wizard to the next, save a change to network properties, or close
a dialog box.

NOTE

Not every button is a command button. See Chapter 6, “The Other Controls,” for coverage
of toggle buttons, and Chapter 8, “Common Windows User Interface Elements,” for a dis-
cussion of toolbar buttons.

The Look and Feel of Buttons

You may think you already understand everything there is to know about command buttons:
Click the left mouse button on them, and stuff happens. As it turns out, life isn’t quite that simple
under Windows. In this section, I’ll review the finer points of button behavior under Windows
and show you some of the applicable design standards.

How Buttons Function

A command button performs its associated action when it is pressed. Buttons can be pressed by
either the mouse or the keyboard. I’ll start with the mouse. Clicking the mouse’s primary but-
ton anywhere on the command button and releasing it while it is still over the command button
presses the command button.

Figure 4.1 shows a pair of buttons, with neither button having the input focus. The Cancel
button has a normal button appearance, and the OK button has the default button appearance.
The default button is the one that responds to the Enter key even if it doesn’t have the focus.
Any window can have at most one default button.

F I G U R E 4 . 1

Normal and
default buttons

In Figure 4.2, I clicked the primary mouse button on the Cancel button, but haven’t yet
released it. The button takes on a pressed appearance, with the border redrawn to indicate that
the button is sunken, and a dotted inner border indicating that this button has the focus. Note
that the OK button is no longer drawn with the default button appearance as soon as I click the
Cancel button.

4361Book.fm Page 62 Thursday, November 18, 2004 8:45 PM

63

The Look and Feel of Buttons

F I G U R E 4 . 2

Pressed button

Letting the mouse button up performs the button’s action, and leaves the button with the
input focus, as shown in Figure 4.3. However, just seeing a button drawn this way is no guar-
antee that it was pressed. If you click the mouse button on a button, move the cursor outside
of the button’s border, and then let go of the mouse button, the button will return to the input
focus appearance, but its action will not be performed.

F I G U R E 4 . 3

Button with the
input focus

As always, things look a bit different under the Microsoft Windows XP user interface. Figure 4.4
shows the normal and default button appearances, Figure 4.5 shows the pressed appearance, and
Figure 4.6 shows a button with the input focus. Note that the pressed appearance is more subtle,
and that the input focus and default appearances are identical for applications running under Win-
dows XP.

F I G U R E 4 . 4

Normal and default
buttons under
Windows XP

F I G U R E 4 . 5

Pressed button
under Windows XP

F I G U R E 4 . 6

Button with the
input focus under
Windows XP

4361Book.fm Page 63 Thursday, November 18, 2004 8:45 PM

64

Chapter 4 • Command Buttons

In addition to using the mouse, you can also press a button with the keyboard. To do so, move
the input focus to the button by using the Tab or Shift+Tab keys. Then press the spacebar.
When you release the spacebar, the button’s action will execute.

TIP

It’s a general principle of Windows that every mouse action should have a keyboard alter-
native. If you ever find some functionality that requires a mouse, you should report it as a
bug. Remember: Some people find using a mouse or other pointing device difficult or
impossible.

Distinguishing the Primary and Secondary Mouse Buttons

The primary mouse button is not necessarily the left mouse button. You can use the Mouse
applet in Control Panel to switch the functions of the right and left mouse buttons, as shown
in the following illustration:

Although swapping mouse buttons doesn’t affect the functionality available from your appli-
cation, it does change the way that documentation should be written. Referring to the

primary

and

secondary

 mouse buttons is universal; referring to the

left

 and

right

 mouse buttons may
be wrong depending on the user’s preferences. In practice, though, this rule is often ignored
in writing documentation because the precise terms are more cumbersome.

If you choose to experiment with the Mouse applet, remember that you need to use the right
mouse button to uncheck the Switch Primary and Secondary Mouse Buttons check box if you
use the left mouse button to check it.

4361Book.fm Page 64 Thursday, November 18, 2004 8:45 PM

65

The Look and Feel of Buttons

Pressing a button with the spacebar can be cancelled, just as pressing a button with the mouse
can. If you tab to a button, press the spacebar, and then (without letting go of the spacebar)
press and release the Escape key, the button will return to its input focus appearance without
carrying out its action.

There are three other ways for a button to be pressed with the keyboard:

●

If a button is specified as the default button, pressing the Enter key presses the button if no
other control is currently responding to the Enter key.

●

If a button is specified as the cancel button, pressing the Escape key presses the button if no
other control is currently responding to the Escape key.

●

If a button has an accelerator key, pressing Alt together with that key presses the button.
Accelerator keys are indicated with underline characters in most versions of the Windows
user interface. For example, Alt+S presses the Select button, and Alt+H presses the Help
button in the Character Map application shown in Figure 4.7.

TIP

Windows does not require you to assign every button an accelerator key. However, whether
it’s required or not, you should always do so. Leaving out accelerator keys makes your
application much more difficult for users with special needs.

F I G U R E 4 . 7

Buttons with
accelerator keys

Laying Out Buttons

Although the functioning of buttons, such as the details of sensing mouse clicks and initiating
button events in response, normally isn’t under your direct control (most development tools
these days make use of the underlying Windows controls, which behave in the proper way

4361Book.fm Page 65 Thursday, November 18, 2004 8:45 PM

66

Chapter 4 • Command Buttons

automatically), their arrangement is something that you can and should pay attention to. Plac-
ing buttons where the user expects to find them and laying them out neatly can make the dif-
ference between a professional user interface and one that looks slapdash.

When people in most locales scan a window, they tend to do so in the same way that they read
a printed page: left to right and top to bottom, as shown in Figure 4.8. This is why it makes
sense to put OK and Cancel buttons in the lower-right corner of the window, particularly when
you are developing a dialog box. As the user moves through the controls of the window, making
decisions and filling in information, she will naturally end up at these controls when she’s ready
to commit the information.

NOTE

There are exceptions to the left to right rule. For example, users of Hebrew or Arabic software
scan right to left. If your software will be localized, you need to consider dynamically rearrang-
ing the user interface for these right to left locales. This is what Windows itself does.

But this doesn’t mean that you should put all the buttons in a dialog box in a clump at the
lower-right corner. In general, buttons should be closely associated with the controls that they
operate on. Consider the Add and Remove buttons shown in Figure 4.9.

The Add button moves items from the Available Languages list box to the Enabled Languages
list box. The Remove button moves items from the Enabled Languages list box to the Available
Languages list box. That’s why it makes sense to locate these two buttons between the list boxes.

F I G U R E 4 . 8

Reading pattern
for a window

4361Book.fm Page 66 Thursday, November 18, 2004 8:45 PM

67

The Look and Feel of Buttons

F I G U R E 4 . 9

Buttons that act on a
pair of list boxes

The design of these buttons does not end with their location. The chevrons in the buttons’
captions indicate the direction of movement. In addition, this particular dialog box selectively
enables and disables the two buttons. The Add button is enabled only when the user has selected
an item in the Available Languages list box. The Remove button is enabled only when the user
has selected an item in the Enabled Languages list box. This provides an additional cue to the
user as to which action makes sense at any given time.

When a window has multiple buttons that apply to the entire window, they should be arranged
in a row along the bottom of the window. By convention, the OK button comes first, then the
Cancel button (if there is one), and then any other buttons (as shown in Figure 4.10). If there is
no OK button, place action-oriented buttons before the Cancel button. If there is a Help button,
it normally comes last in the row.

Figure 4.11 shows another use for buttons: as a way to open further secondary windows. Each
of the buttons whose name ends with an ellipsis opens another window that contains further
options. In this case, buttons are serving as a way to pack more choices into a secondary window
without increasing the size of the window.

NOTE

Between tabs and additional secondary windows—some up to four levels deep—the Out-
look options dialog box probably holds a record for the number of choices that can be
reached from a single menu item. Although providing flexibility for users is generally a good
thing, a dialog box this complex can represent a substantial hurdle for users trying to find
a particular setting.

4361Book.fm Page 67 Thursday, November 18, 2004 8:45 PM

68

Chapter 4 • Command Buttons

F I G U R E 4 . 1 0

Options dialog box
from Microsoft
Outlook 2003

Figure 4.11 also shows the general rule for lining up buttons: They should be sized and
arranged in neat rows and columns. The three buttons at the bottom of the dialog box are
all the same size and are spaced evenly. The other buttons in the body of the dialog box are
similarly a uniform size are and are laid out on a regular grid (along with several combo box
controls that also fit the grid). Uniform sizing should take precedence over sizing buttons to
fit their text.

Labeling Buttons

Nearly every button requires a text caption, but there are exceptions. Figure 4.11 shows some
of the exceptions in standard Windows controls.

As you can see, there are no text captions for the button that shows the drop-down list of the
combo box, the two buttons that change the value in the spin control, or the buttons that move
to the previous and next months in the calendar control. There are two reasons for this. First,
the presumption is that the user understands what these buttons do intuitively (though as you’ll
recall from Chapter 1, “The Big Picture,” it’s dangerous to depend on intuition in user inter-
faces). Second, there just isn’t room for captions on these buttons. Despite the lack of text, they
all have triangular bitmaps to give some hint of their functions.

TIP

Buttons with no caption text should still have a ToolTip to provide accessibility for screen readers.

4361Book.fm Page 68 Thursday, November 18, 2004 8:45 PM

69

Labeling Buttons

F I G U R E 4 . 1 1

Some buttons do not
require a caption

Most buttons, though, will require text. But what text? Here are some guidelines to follow
when adding text to buttons:

●

Use the shortest possible text that gets the point across. A single word is best.

●

Because buttons normally trigger actions, verbs make the best captions. For example, Add,
Move, Go, Remove, and Store are typical button captions.

●

Use text that makes sense with as little context as possible. Some users (for example, those
with visual disabilities) might read or hear only a single button’s text or ToolTip at a time.

●

Except for the OK and Cancel buttons, every button should have an appropriate shortcut
key defined. Double-check the window to make sure that you haven’t accidentally dupli-
cated any shortcuts. By default, the OK key will respond to the Enter key and the Cancel
button to the Escape key, which is why these buttons don’t need shortcut keys.

●

Use title-style capitalization for button text. That is, capitalize all words except for con-
junctions of four letters or fewer.

●

If the button will open an additional secondary window, add an ellipsis at the end of the text.

●

Buttons that move or resize items generally benefit from having chevrons added to make
text arrows. (You saw some buttons using this technique in Figure 4.10.)

It’s also possible to label buttons with images instead of (or in addition to) text. You already
saw some trivial examples in Figure 4.11, in which small bitmaps are used to make arrows on
tiny buttons. But it’s possible to go far beyond that when using images on buttons. For
instance, Figure 4.12 shows a wizard from Microsoft MapPoint 2004.

Generally, buttons with images are found in two situations. First, they are used in applica-
tions in which the image makes up for a lack of space to display many words. For users who
don’t know what a sized pie chart looks like, Figure 4.13 provides a fast point of reference.

4361Book.fm Page 69 Thursday, November 18, 2004 8:45 PM

70

Chapter 4 • Command Buttons

F I G U R E 4 . 1 2

Buttons with images
and text

The other circumstance in which buttons with images can be useful is in consumer-oriented
applications or those for inexperienced users. For example, Figure 4.13 shows the Backup Util-
ity from Windows XP. The graphics on the buttons are apparently meant to indicate that the
choices take users to easy wizards rather than to complex software that only an expert can under-
stand. Although the buttons have only images on them, there is explanatory text next to each
one. Text remains necessary in almost all cases because you can’t expect users to guess what the
images signify.

A few pictures can make an application seem friendlier or less threatening. Even here, but-
tons with pictures are much less common than they were a few years ago. There seems to have
been a long-range trend toward using only text on buttons, and I recommend that you keep
buttons with images to a minimum.

TIP

One place where buttons with images are still the norm is on toolbars. I’ll discuss toolbar
buttons in Chapter 8.

Button Actions

The basic rule of thumb when it comes to making buttons actually do things is to adhere to what
is sometimes called the

Principle of Least Surprise

: the result of doing something (whether in a
user interface, a programming language, or the real world) should be unsurprising to the user.
For instance, consider the five buttons on the Microsoft Utility Manager, shown in Figure 4.14.

4361Book.fm Page 70 Thursday, November 18, 2004 8:45 PM

71

Button Actions

F I G U R E 4 . 1 3

Image-only buttons

F I G U R E 4 . 1 4

Microsoft Utility
Manager

Utility Manager is designed to help users turn on and off the various accessibility features of
Windows. As you select different utilities in the list box, the label of the group just below the
list box changes. In the figure, the label is Options for Narrator, making it clear that the Start
and Stop buttons directly control the Narrator utility.

What about the OK button? If they have any experience with the various control panel
applets, users will be expecting the OK button to commit changes made elsewhere in the dialog
box—but not to make any changes itself. So, in line with the Principle of Least Surprise, the
OK button should not change the state of the Narrator service (as indeed it does not).

4361Book.fm Page 71 Thursday, November 18, 2004 8:45 PM

72

Chapter 4 • Command Buttons

NOTE

You might notice that the OK, Cancel, and Help buttons are not in the standard order in this
dialog box. That just goes to show that not even Microsoft always applies the Windows
design guidelines consistently.

As I mentioned earlier in this chapter, any dialog box can have at most one default button and
at most one cancel button. But you shouldn’t assume that you always need a default button and a
cancel button. Here are some guidelines for deciding when it makes sense to set up these buttons:

●

Include a Cancel button only if the actions of the rest of the window can be cancelled
entirely, with no side effects. A Property Inspector that makes changes as you select
options, for example, should not have a Cancel button.

●

Include a default button when there is some overall action that the user expects the window
to take. For example, it makes sense for the Save button to be the default button in a Save
File dialog box.

●

An OK button should almost always be the default button, if it exists at all. But if the
changes made by the window are dangerous or difficult to undo, you might want to not
make the OK button the default button (to make it more difficult to click by accident).

In addition to choosing whether to make a particular button the default button or cancel but-
ton, most development environments give you a choice of events for the button that you can
respond to. Typically, buttons support at least three events:

●

MouseDown

 when the primary mouse button is clicked on a command button.

●

MouseUp

 when the primary mouse button is released over the command button.

●

Click

 when Windows thinks the button has been clicked.

It should be clear from the discussion of standard button behavior at the start of the chapter
that your code to perform an action when the button is clicked should almost always be attached
to the

Click

 event of the button. Using the

MouseDown

 or

MouseUp

 events lead to actions being
out of synch with the rest of the Windows user interface, which is not a good idea.

Summary

Although they are generally straightforward controls, command buttons still have a few subtle-
ties. When you’re adding buttons to your application, you need to keep in mind basic principles
of good design. These include respecting the user interface conventions for buttons, choosing
appropriate text and images, and lining buttons up in standardized rows and columns.

In the next chapter, I’ll tackle design issues for a slightly more complex control: the text box.
When you let users type in whatever they like (instead of just clicking), things get more interesting.

4361Book.fm Page 72 Thursday, November 18, 2004 8:45 PM

Chapter 5

Using Text Input Controls

•

The Basics of Text Entry

•

Types of Text Controls

•

Helping Users with Data Entry

•

Choosing the Right Control

4361Book.fm Page 73 Thursday, November 18, 2004 8:45 PM

74

Chapter 5 • Using Text Input Controls

E

ntering text is the core part of many applications. Depending on the way the application’s
user interface was designed, this can be an easy task or one that aggravates users. Allowing

the user to tab into a disabled control, or setting the same accelerator key for multiple controls,
can be annoying. A little care with the use of text input controls can go a long way in making
your application’s users happy.

The Basics of Text Entry

The absolute basic of text entry, of course, is simple: set the focus to a text control and start typ-
ing. As you do this, the characters you type will appear in the text control. But just as with other
Windows controls, there is a lot of complexity lurking behind this simple story. I’ll dig into
these topics to start:

●

Navigation between controls

●

Working with text boxes

●

Handling default values and passwords

●

Problems with text boxes

Navigating Text Controls

From time to time, some company will decide that it needs to “modernize” its old mainframe
applications. Generally speaking, this consists of bringing in a whole batch of consultants to
rewrite everything from scratch using Windows on the client instead of old green-screen ter-
minals. The new application usually looks much better, taking advantage of the Windows user
interface. But, if it’s not done right, the people who actually have to

use

 the application end up
fighting desperately to keep the old way—not because they can’t stand change, but because the
Windows version fails to meet their needs.

The problem, in the cases that I’ve witnessed, is that the whizbang new Windows version doesn’t
allow people to enter data as they did using the old mainframe version. When people have been
doing data entry with a single application for a long time, they get it down to a science: type cus-
tomer name, tab tab tab, type address, click spacebar, press down arrow, type account number, and
so on. Watch a good data entry person some time—you’ll see that their hands never leave the key-
board while they work (and they can converse with the person at the next terminal at the same time).

Can you imagine the effect on productivity when you replace this application with one that
requires a mix of tabs, mouse clicks, and menu selections? It’s not good. If you want to encour-
age people to use your Windows applications, you need to observe this rule:

RULE

Make sure that your applications are keyboard-friendly, even if your own style of working
involves heavy use of the mouse.

4361Book.fm Page 74 Thursday, November 18, 2004 8:45 PM

75

The Basics of Text Entry

To make data entry in your application keyboard-friendly, you need to take two steps.
First, you need to make sure that the Tab key works to move from control to control in a
sensible manner. Second, you need to define access keys for each control where the user can
enter data.

The tab order for a dialog box or other window defines the order in which the Tab key moves
the user between the various controls in the window. Figure 5.1 shows a Windows form devel-
oped in Visual Studio .NET. The top portion of the figure shows the form as the user works
with it, whereas the bottom portion shows the tab order as the form is being designed.

When setting the tab order for the controls in a window, keep these points in mind:

●

The tab order should proceed in “book order”: left to right, top to bottom. If you’re con-
verting an existing application to Windows, though, you should consider maintaining the
current tab order even if it’s theoretically wrong to make migration easier.

●

Every control that can receive the focus should be in the tab order.

●

The only controls that cannot receive the focus that should be in the tab order are labels
that directly precede controls that can get the focus.

●

If a control is temporarily disabled, the tab order should skip that control.

Why include labels in the tab order at all, if they can’t receive the focus? That has to do with
the second part of making your application keyboard-friendly: access keys. An

access key

 is a letter
or number that can be used in conjunction with the Alt key to open a drop-down menu or to
move the focus to a control. In most versions of Windows, access keys are indicated by under-
lined letters on the user interface. In Windows XP, the underlines are hidden until the user
presses the Alt key, but the access keys still work.

F I G U R E 5 . 1

Defining the tab
order for a form

4361Book.fm Page 75 Thursday, November 18, 2004 8:45 PM

76

Chapter 5 • Using Text Input Controls

TIP

You can change the way that Windows XP behaves in this regard through the Display control
panel applet. Select the Appearance tab and click the Effects button; then uncheck the
Hide Underlined Letters for Keyboard Navigation Until I Press the Alt Key check box.

Figure 5.2 shows a dialog box (in this case, the Add Criteria dialog box from Microsoft
Query) displaying a number of access keys: A for And, O for Or, T for Total, and so on.

F I G U R E 5 . 2

A dialog box with
access keys

Some controls include their own text, so defining access keys for these controls is part of set-
ting the properties for the controls. For instance, the radio buttons at the top of the Add Criteria
dialog box and the buttons on the right side of the same dialog box all include their own text. But
text box controls do not have their own text, which is where the associated labels come back into
the picture. If you define an access control for a label and include that label in the tab order just
before a text box control, Windows will use that access key as the access key for the text box con-
trol rather than for the label.

TIP

Some screen readers look for a colon at the end of a label control’s text to confirm that it
is meant as the label for another control, so you should always include a colon when using
this technique.

WARNING

Be careful that you don’t use the same letter for an access key on two different controls
in the same dialog box. If you accidentally do this, the user will need to press the access
key combination twice to get to the second of the controls.

Working with Text Boxes

Text boxes behave much the same across all Windows applications because the text box control
itself is provided by the Windows Shell libraries, and most development environments just use
this standard control. This is another area where standardization benefits users: After you learn
how a text box works, you can depend on it to work that way everywhere.

4361Book.fm Page 76 Thursday, November 18, 2004 8:45 PM

77

The Basics of Text Entry

You should be aware of the built-in text box features for two reasons. First, knowing what the
control brings to your application will save you from reinventing the wheel. Second, you should
avoid doing anything to disable or degrade the built-in features. For example, adding your own
shortcut menu to a text box (and losing the standard shortcut menu) is usually a bad idea.

Built-in features of the standard text box control include the following:

●

Selecting text with the mouse by clicking and dragging across the text that you want to
select.

●

Selecting text with the keyboard using the Shift and arrow keys.

●

If you type when no text is selected, new characters are inserted at the cursor position.

●

If you type when there is text selected, new characters overwrite the selection.

●

A standard shortcut menu includes Undo, Cut, Copy, Paste, Delete, and Select All.

●

Single-level undo (reversing the most recent operation).

The standard text box also supports the set of editing keys shown in Table 5.1.

TIP

The default text box doesn’t support multiple fonts or text sizes. If you need these features,
though, you can use a rich-text box, which I’ll cover later in the chapter.

TABLE 5.1

Default editing keys for the text box control

Key or Combination

Effect

Home Moves the cursor to the beginning of the line

End Moves the cursor to the end of the line

Ctrl+A Selects all text in the control

Ctrl+Right arrow Moves the cursor to the start of the next word

Ctrl+Left arrow Moves the cursor to the start of the previous word

Ctrl+Down arrow Moves the cursor to the start of the next paragraph

Ctrl+Up arrow Moves the cursor to the start of the previous paragraph

Ctrl+Home Moves the cursor to the start of the text box

Ctrl+End Moves the cursor to the end of the text box

Shift+Right arrow Selects a character to the right

Shift+Left arrow Selects a character to the left

Shift+Ctrl+Right arrow Selects a full word to the right

Shift+Ctrl+Left arrow Selects a full word to the left

Insert Toggles between Insert mode and Overwrite mode

4361Book.fm Page 77 Thursday, November 18, 2004 8:45 PM

78

Chapter 5 • Using Text Input Controls

Supplying Default Values

One of your goals in text handling should be to make life as easy as possible for the users of your
application. Carefully supplying default values for various controls can go a long way in this
direction.

A

default value

 is the value that a control has before the user interacts with the control. In
the case of a text control, the default value might be no value at all, or it might be your best
guess as to what the user would want to enter in that control. In general, you should only supply
a non-blank default value if there is a good chance that the default will be correct. Otherwise,
the user will have to replace the default with their own value, which can be distracting (and
if the user prefers the mouse to the keyboard, she’ll need to highlight the default value to
replace it).

You can use several strategies to choose default values:

Fixed

The application always shows the same default value every time it is run.

Adaptive

The application attempts to adjust the default value to conform to the user’s needs.
For example, consider the Send In Batches Of text box shown in Figure 5.3. If the user replaces
the original default of 500 with 200, an adaptive application would use 200 as the new default
value. You can limit adaptation to a single session (in this case, it means starting over with 500
the next time the user runs the application) or store it across sessions (perhaps in the registry or
.NET isolated storage) so that the application “remembers” the user’s chosen defaults.

Derived

The default value of one control can be derived from the user’s entry in another
control. In Figure 5.3, the application updates the Last Mailing Date control to a value two
weeks after the value of the First Mailing Date control when the user enters a first mailing
date. If you take this strategy, be sure not to overwrite data that the user has actually entered.
For example, if the user changed the last mailing date and then went back to change the first
mailing date again, you shouldn’t overwrite their choice for last mailing date.

User-Selected

Finally, you can allow the user to explicitly choose default values for him-
self. Consider the File Locations tab of the Options dialog box from Microsoft Word, shown
in Figure 5.4. Here, the user can specify a location as the default for storing documents. That
location is used as a starting value whenever Word displays a File Save dialog box.

F I G U R E 5 . 3

Default values in
a dialog box

4361Book.fm Page 78 Thursday, November 18, 2004 8:45 PM

79

The Basics of Text Entry

F I G U R E 5 . 4

Setting default file
locations in Word

Handling Passwords

In these security-conscious times, you need to pay special attention to controls where
you ask the user to type in a password. Figure 5.5 shows a typical dialog box to prompt for
a password.

You need to ensure two things when prompting the user for a password. First, you need
to hide the password by masking the actual characters that the user types. In Figure 5.5, the
application does this by displaying an asterisk character for each character that the user types.
Second, you need to hide the password from other malicious applications. One way to do this
is by disabling cut and copy functionality on the text box.

Fortunately, Windows gives you both of these features “for free” by supplying an underly-
ing password style for the text box control. Most development environments today expose this
functionality directly. If yours does not, you’ll need to intercept keystrokes in the password
text box and filter them accordingly.

F I G U R E 5 . 5

Prompting for a
password

4361Book.fm Page 79 Thursday, November 18, 2004 8:45 PM

80

Chapter 5 • Using Text Input Controls

TIP

Because you should not display passwords, even to the user who types them, changing a
password requires special care. Typically, you should require a user to type any new password
twice into two different controls. This protects them against accidentally making a typing mis-
take when entering a new password.

WARNING

Preventing copying is not enough to protect passwords against all malicious code. For example,
some Trojan horse applications install software that allows them to monitor keystrokes straight
from the keyboard. You should consider password-hiding as part of an overall security strategy,
not as an ultimate protection.

Text Box Annoyances

There are some things that you can do with text boxes in your application—but shouldn’t. Here
are some things to watch out for when designing this portion of your application’s user interface:

●

Data should not disappear when you switch to another application. Users expect the state
of an application to remain unchanged when they are not looking at it. This seems obvious,
but it’s a surprisingly common problem. Internet Explorer is the biggest culprit. If you’re
typing in a URL and switch to another application, the portion of the URL that you already
typed will be selected when you switch back. This means that your next keystroke over-
writes what you already typed.

●

Text boxes should all be in the tab order, and should all be available via access keys. If you
mess up on this rule, the application will work fine for mouse-centric users but will upset
keyboard-centric users.

●

Don’t override the default editing behavior of text box controls without a very good reason
and an explanation to your application’s users.

Types of Text Controls

So far I’ve been concentrating on the classic text box control. But in fact there are five text input
controls in common use:

●

Single-line text box

●

Multiline text box

●

Rich-text box

●

Masked edit control

●

Spin box

4361Book.fm Page 80 Thursday, November 18, 2004 8:45 PM

81

Types of Text Controls

Single-Line Text Box

As the name implies, a single-line text box is a text box that can hold a single line of characters.
All the text boxes you’ve seen so far in this chapter (for example, the ones in Figure 5.1) are single-
line text boxes. Although the single-line text box will not display multiple lines of text, it can still
hold more text than it can display at one time. If there are more characters in the text box than
will fit on the screen, the text automatically scrolls left and right as you reach the end of the avail-
able space. However, the single-line text box does not display a scroll bar.

Every text box you’ve seen in this chapter so far accepts input. But you can set a text box con-
trol to be disabled, as shown in Figure 5.6.

F I G U R E 5 . 6

Enabled and disabled
text boxes and label

When a text box is disabled, it can’t get the focus, and the user cannot interact with its con-
tents. In other words, it behaves very much like a label control, but its appearance is close to that
of a text box (it has the same sunken look but a different default background color). In general,
a disabled text box control is appropriate for a control that sometimes interacts with the user,
whereas a label control is more useful if the control never interacts with the user.

Multiline Text Box

As you can probably guess from the name, a multiline text box can hold more than one line of
text. Such a text box can also be adorned with scroll bars, as shown in Figure 5.7, to allow you
to read more text than can be displayed at one time.

A multiline text box can have a vertical scroll bar, a horizontal scroll bar, or both. In any case,
you can use the standard movement keys to navigate the text within a multiline text box.

F I G U R E 5 . 7

Multiline text boxes

4361Book.fm Page 81 Thursday, November 18, 2004 8:45 PM

82

Chapter 5 • Using Text Input Controls

TIP

In single-line text boxes, the Enter key normally moves the user to the next control in the
tab order. In a multiline text box, the Enter key should start a new line in the text box.

Rich-Text Box

If the user needs to enter formatting information as well as text, the rich-text box is usually the
best control to use on your user interface. Figure 5.8 shows WordPad in action. The entire area
in which the user can edit text in WordPad is a single rich-text box.

The rich-text box supports a wide variety of operations, including the following:

●

Text formatting

●

Variable line spacing

●

Paragraph formatting

●

Bidirectional data entry

●

Printing

Although not as full-featured as a dedicated word processor, the rich-text box can handle
text-entry chores for most applications that require formatted text. The rich-text box can save
its contents using Rich Text Format (RTF), a Microsoft standard for including formatting
information with text.

NOTE

Microsoft has published the RTF standard at

http://msdn.microsoft.com/library/en-us/
dnrtfspec/html/rtfspec.asp

. Many word processors, including Microsoft Word and Word-
Pad, can import and edit RTF files.

F I G U R E 5 . 8

Editing rich text
in WordPad

4361Book.fm Page 82 Thursday, November 18, 2004 8:45 PM

83

Types of Text Controls

Masked Edit Control

A

masked edit control

 is one in which the characters that the user can enter are constrained by
position. For example, Figure 5.9 shows a masked edit control in Microsoft Access.

F I G U R E 5 . 9

Data entry into a
masked edit control

When the user tabs into the masked edit control, it displays the slashes (which it automati-
cally adds to the data) and a set of underscore characters that the user will replace by typing.
Although there is no visible clue as to the allowed values, in this case only numbers will be
accepted to replace each underscore.

Typically, masked edit controls can specify one of the following for each character in the
control:

●

Literal character that the user doesn’t type (such as the slashes in a date)

●

Any alphabetic character

●

Lower-case alphabetic character

●

Upper-case alphabetic character

●

Any digit

Characters in a masked edit control can be required or optional.

Masked edit controls are not widely used because they do not offer good cues for the user
who doesn’t know what you’re expecting them to type. If the control is expecting an uppercase
alphabetic character, and the user types anything else, nothing happens. The user must notice
that the character wasn’t accepted by the control and hunt around for some other character
that it’s happier with. This can be a frustrating experience. For anything other than standard
formats such as dates and times, you’re better off letting the user fill in the entire control and
then displaying a friendly error message if necessary.

Spin Box

A final text entry control is the

spin box

 which is a text box coupled with a pair of buttons known
as an up-down control, as shown in Figure 5.10.

4361Book.fm Page 83 Thursday, November 18, 2004 8:45 PM

84

Chapter 5 • Using Text Input Controls

F I G U R E 5 . 1 0

Dialog box including
two spin boxes

Spin boxes are useful when you’re expecting the user to enter a value from an ordered set of
numbers: quantities, times, dates, and so on. With a spin box, the user can either type in a value
or use the up-down control to move to adjacent values. That is, if the box currently displays the
value 80, clicking the up button changes the value to 81, whereas clicking the down button
changes the value to 79. If the user holds one of the buttons down, the value continues to change,
and the rate of change accelerates.

When designing a spin box, you should attempt to set a default value close to the value that
the user will most likely want. That minimizes the number of clicks on the up-down control
that will be required to set the user’s preferred value.

Figure 5.11 shows another dialog box with spin box controls: the Date and Time Properties
dialog box from Windows Server 2003. There are two spin box controls in this dialog box, one
for the year and one for the time. The one for the time is actually a sort of three-in-one con-
trol, with the up-down control applying only to the currently selected portion of the time. For
example, when the focus is on the minutes section of the time, the associated up-down control
changes only the minutes—not the hours or seconds.

NOTE

In addition to the text controls that I introduced in this chapter, other controls can include
a text box portion. The most important of these, the combo box, is covered in Chapter 6,
“The Other Controls.”

F I G U R E 5 . 1 1

Date and Time
Properties dialog box

4361Book.fm Page 84 Thursday, November 18, 2004 8:45 PM

85

Choosing the Right Control

Helping Users with Data Entry

One of the goals of a good user interface is to make it easy for the user to interact with the
application. This involves more than just making the application look pretty or making sure
that everything on the screen is laid out in a sensible and straightforward manner. The best
applications go further to actually help the user do things correctly. Here are some things that
you can do to help the user enter data in your application:

●

Check data entry immediately and provide feedback close to the location of any error.
Feedback should be close in both physical location and time. If there’s a mistake in a text
box, the time to notify the user is as soon as he leaves that text box—not later, when he clicks
the OK button. The feedback should also make it clear exactly what data is incorrect and
how it can be corrected. This feedback might involve displaying a balloon tip with an error
message, or changing the color of the text box containing bad data, as well as playing the
system error beep to alert the user to the problem.

●

If a text box can accept input from only a restricted set of possible values (for example, if
only numerals are appropriate), you should refuse to accept invalid characters at all, and
play the system error beep if the user types an invalid character.

●

When there is more than one way to enter correct data, be forgiving. For example, a credit
card number can contain dashes to separate parts of the overall number, but the dashes are
not required. In such a case, you should accept input with or without the dashes.

●

If you can’t be forgiving, be clear. For example, instead of using the label “Credit Card
Number:” use the label “Credit Card Number (without dashes or spaces)” if your appli-
cation expects the user to type only numbers in a text box.

Choosing the Right Control

There are quite a few different controls that allow the user to enter text. Each one has its own
strengths and weaknesses in particular situations. Here are some guidelines for choosing
between them:

●

For short pieces of text that are not constrained in any way, use a single-line text box.

●

For longer pieces of text that won’t fit across the dialog box, use a multiline text box, which
allows the user to see the entire piece of text at one time, without having to scroll from side
to side.

●

For short or long pieces of text that require fonts, alignment, or other formatting, use a
rich-text box.

4361Book.fm Page 85 Thursday, November 18, 2004 8:45 PM

86

Chapter 5 • Using Text Input Controls

●

For numeric values that may need a slight adjustment, use a spin box.

●

For values constrained according to a well-known scheme (such as dates or times) use a
masked edit control.

There’s one case in which text controls are sometimes inappropriately used: when the data
comes from a fixed set of choices. For example, you might expect the user to choose one of the
values

red

,

green, or blue to set a color. Or an address input might expect the user to input one
of the valid two-letter state abbreviations.

In these cases, you’re better off not using a text control because there are too many possibilities
for errors. Instead, use a control that explicitly limits the user’s choices. For a small number of
choices, radio buttons or toggle buttons are usually appropriate. For a larger number of choices,
a list box or combo box works well. You’ll read about all of these controls in Chapter 6.

Summary
Text controls are one of the most important tools to allow users to interact with your applica-
tion. In this chapter, you learned many of the conventions that surround these controls, includ-
ing standard navigation and editing procedures, and were introduced to a variety of different
text controls. By using these controls properly, you can make it easy for users to enter data in
your application.

But there are many other controls besides text controls available for specialized situations. In
the next chapter, I’ll survey some of these other controls to show you the possibilities.

4361Book.fm Page 86 Thursday, November 18, 2004 8:45 PM

Chapter 6

The Other Controls

•

Presenting Choices

•

Handling Lists

•

Space Management with Tabs

•

ListViews and TreeViews

•

Grid Controls

•

Miscellaneous Controls

4361Book.fm Page 87 Thursday, November 18, 2004 8:45 PM

88

Chapter 6 • The Other Controls

L

abels, buttons, and text controls make up a large part of the user interface of most applications.
But there are dozens of other controls available to user interface designers. Some of these

controls are a standard part of Windows, whereas others are supplied by special libraries from
independent software vendors (ISVs) such as ComponentOne (

www.componentone.com/

)
and Developer Express (

www.devexpress.com

). In this chapter, you’ll learn about some of
these other controls and see how to use them effectively.

Presenting Choices

Sometimes you’ll need to have the user choose one or more of a small set of alternatives. For
example, you might be accepting data from a COM port and need the user to select one of the
COM ports that actually exists on the computer. In such a situation, you should present the
users with only the acceptable choices. Windows includes several controls for this purpose:

●

Radio buttons (also called option buttons)

●

Check boxes

●

Toggle buttons

These controls can be grouped together to make their relationship clear by using the stan-
dard group box control.

Radio Buttons

Radio buttons are the best way to let the user select from a group of two or more mutually
exclusive choices. How many more? There’s no fixed upper limit, but if you need to present
more than seven or eight choices, you should consider a list control instead (see “Handling
Lists” later in this chapter).

Figure 6.1 shows a typical use of radio buttons.

Here, the Windows XP System control panel applet presents the user with three choices for
handling user notification of automatic updates. These three choices are mutually exclusive;
that is, only one of them can be active at a time. This makes radio buttons a good choice. The
radio buttons themselves are the three circles in the Notification Settings area of the user inter-
face. The current setting is indicated by a dot in one of the circles; the other two circles are
empty. If you click a radio button, that button becomes the current setting, and the other radio
buttons in the group are cleared.

TIP

Radio buttons do not toggle. That is, if you click a radio button that is already set as the
current setting, it is not cleared. It remains set until you click another radio button in the
same group of buttons.

4361Book.fm Page 88 Thursday, November 18, 2004 8:45 PM

89

Presenting Choices

F I G U R E 6 . 1

Selecting notification
settings with radio
buttons

Radio buttons come with an associated label that represents the value or effect of this par-
ticular button. These labels should include shortcut keys to support using the keyboard to
choose an option. If you can describe the choices with only short bits of text, you should use
phrases with sentence-style capitalization. If more text is needed to make the option clear,
use full sentences, as shown in Figure 6.1. Ideally, the length of the descriptive text for each
option within a group should be about the same.

Sometimes a radio button leads to further choices when it is selected. For example, consider
the dialog box shown in Figure 6.2. When the user selects Other, the combo box that lists
countries becomes available. In such a case, the label for the appropriate radio button should
end in a colon to indicate that the user can make a further selection.

F I G U R E 6 . 2

Radio button
leading to
additional
information

4361Book.fm Page 89 Thursday, November 18, 2004 8:45 PM

90

Chapter 6 • The Other Controls

NOTE

Radio buttons always use text labels. If you want to use graphic labels for a group of mutually
exclusive choices, you should use toggle buttons, which I’ll cover a bit later in this chapter.

If you use the Tab key to move to a radio button, the button’s state is not changed, but it will
be highlighted as the control that has the focus. In this case, pressing the spacebar sets that par-
ticular radio button and clears all other radio buttons in the group.

Avoid repeating words in radio button labels. This can make it difficult for the user to quickly
scan the option and pick out the one that they want to select. Figure 6.3 shows a dialog box that
has this problem.

Normally, you can fix this problem by rewording the dialog box to pull out the common text.
Figure 6.4 shows a rewrite of the same dialog box designed to make it easier for users to choose
the option that they like.

F I G U R E 6 . 3

Poorly labeled
radio buttons

F I G U R E 6 . 4

A revised dialog box

Check Boxes

Occasionally, new developers confuse check boxes with radio buttons, but there’s an impor-
tant difference in their usage. Check boxes are used for options that are

not

 mutually exclusive.
Figure 6.5 shows a good example of check box use, from the Edit tab of the Options dialog box
in Microsoft Excel 2003.

This particular dialog box lets you choose numerous options related to editing. You can turn
these options on or off, independently of one another. For example, Allow Cell Drag and Drop can
be either on or off, regardless of the setting for Extend List Formats and Formulas. Radio buttons
don’t work for lists like this because they allow only a single option to be selected at a time.

4361Book.fm Page 90 Thursday, November 18, 2004 8:45 PM

91

Presenting Choices

F I G U R E 6 . 5

Use of check boxes to
specify options

Check boxes should be used only for settings that are either distinctly on or off. For example, a
reasonable check box label could be “Save backup files” if the application offers a choice between
saving backup files or not saving any backup files at all. But “Save backup files to C:” would not be
a good check box label because it’s not clear what it would mean to leave the box unchecked.

A check box is displayed as a square with an accompanying label. If the option represented
by the check box is set, Windows displays an X in the check box. Otherwise, the check box will
be empty.

NOTE

Some applications also support a third, indeterminate setting for check boxes. In this case,
the indeterminate setting is represented by a gray square. This is often used when a check
box shows the state of a selection. If the check box option is set for some but not all of
the selection, the check box will be displayed with the indeterminate appearance.

A user can toggle the state of a check box in three different ways:

1.

Click the primary mouse button on the check box itself.

2.

Click the primary mouse button on the label that accompanies the check box.

3.

Press the spacebar when the check box has the focus.

The label for a check box should include an access key to allow keyboard access to the check
box. Pressing the access key moves the focus to the check box, but it does not toggle the state
of the check box.

Generally, check boxes toggle from checked to unchecked. But this behavior changes when
the check box starts in its indeterminate state. For example, consider the check box shown in
Figure 6.6.

4361Book.fm Page 91 Thursday, November 18, 2004 8:45 PM

92

Chapter 6 • The Other Controls

F I G U R E 6 . 6

A check box in the
indeterminate state

In this user interface, the check box indicates whether the selected items in the list should be
sent. When the user has selected a mix of items, some of which are currently set to be sent and
some of which are not, the check box has the indeterminate appearance. In this case, toggling
the check box (whether with the mouse or with the spacebar) cycles through three states:

1.

The first click sets the check box to the selected state and sets the property for every
selected item.

2.

The second click sets the check box to the unselected state and removes the property for
every selected item.

3.

The third click sets the check box to the indeterminate state and returns all selected items
to their original state.

Each check box includes an associated label that represents the value or effect of this partic-
ular button. These labels should include shortcut keys to support using the keyboard to choose
an option. If you can describe the choices with only short bits of text, you should use phrases
with sentence-style capitalization. If more text is needed to make the option clear, use full sen-
tences. Ideally, the length of the descriptive text for each option within a group should be about
the same.

Sometimes a check box leads to further choices when it is selected. For example, consider the
Options dialog box from Microsoft Word 2003, shown in Figure 6.7. The Recently Used File List
and Measurement Units check boxes enable other controls for more detailed information. The
labels for these check boxes end in a colon to indicate that the user can make a further selection.

Toggle Buttons

Toggle buttons are a less common (but still useful) way to handle choices. In functionality, they
are very similar to radio buttons: A group of toggle buttons should be used for a set of mutually
exclusive choices. But visually, toggle buttons are very different from radio buttons. Figure 6.8
shows a typical set of toggle buttons.

4361Book.fm Page 92 Thursday, November 18, 2004 8:45 PM

93

Presenting Choices

F I G U R E 6 . 7

Check boxes leading
to other controls

F I G U R E 6 . 8

Using toggle buttons
for exclusive choices

Toggle buttons function like the tuning buttons on older car radios: When you press one
toggle button in, all the other buttons in the group “pop out.” Thus, at most one toggle button
in a group will have the depressed look at any time. In Figure 6.8, the 4–6 years option is
selected, so that particular button is depressed.

Within a group of toggle buttons, you can move the focus with the arrow keys. As you
move the focus, the button that has the focus is always the selected one. Alternatively, you
can select a toggle button by clicking it. If you click a toggle button that’s already selected,
nothing happens.

One advantage of toggle buttons over radio buttons in some situations is that you can display
images on toggle buttons, either in conjunction with text or instead of text. This lets you design
more flexible and attractive user interfaces in some cases. Figure 6.9 shows a set of graphical
toggle buttons.

4361Book.fm Page 93 Thursday, November 18, 2004 8:45 PM

94

Chapter 6 • The Other Controls

F I G U R E 6 . 9

Toggle buttons with
graphics

WARNING

Depending on your users, toggle buttons might represent a training issue. If users have
been exposed only to regular command buttons, they’ll be expecting a button to do some-
thing when clicked and to release after it’s clicked. You need to provide help and guidance
so new users will understand this interface.

Issues with Choice Controls

You’ll usually need to group multiple choice controls (radio buttons, check boxes, or toggle
buttons) together on a single dialog box. There are several tools that you can use to provide this
grouping.

The first and most obvious way to group these controls is to line them up with one another
and to space them evenly. Not only does this help the user tell which controls are associated with
one another, but it also makes your user interface more pleasant. Compare the two versions of
the dialog box shown in Figures 6.10 and 6.11. They might have the same functionality, but the
second version will be much easier to work with than the first.

F I G U R E 6 . 1 0

Dialog box with
haphazard control
grouping

4361Book.fm Page 94 Thursday, November 18, 2004 8:45 PM

95

Presenting Choices

F I G U R E 6 . 1 1

Dialog box with careful
control grouping

Windows also provides the group box control specifically to group choice controls together.
The group box is a frame with its own label that can hold radio buttons, check boxes, or toggle but-
tons. If you have more than one set of radio buttons on the same dialog box, group boxes are the
best way to keep them from interfering with one another. Otherwise, selecting an option in one
group would deselect all options in the other groups. Figure 6.12 shows group boxes in action.

In some cases, you may want to use an invisible group box to get the grouping effect and
develop your own user interface to indicate which choice controls are part of a group. The Excel
options dialog box, shown in Figure 6.13, is a good example of this technique. The Comments
and Objects section of the View tab are two distinct sets of radio buttons, even if the correspond-
ing group boxes are invisible.

As Figure 6.13 shows, you can also use grouping with check boxes. But in this case, the
grouping is purely for visual effect. The check boxes remain independent, and you can check
or uncheck any one of them without affecting the others.

F I G U R E 6 . 1 2

A dialog box with
two group boxes

4361Book.fm Page 95 Thursday, November 18, 2004 8:45 PM

96

Chapter 6 • The Other Controls

F I G U R E 6 . 1 3

Options dialog box
from Microsoft Excel

The biggest problem to watch out for with choice controls is simply to make sure that you
select the appropriate control for the situation. In general, you can rely on these rules of thumb:

RULE

(1) If you are presenting a set of mutually exclusive choices with text labels, use

radio but-
tons

. (2) If you are presenting a set of mutually exclusive choices with graphical labels, use

toggle buttons

. (3) If you are presenting a set of independent choices, use

check boxes

.

Handling Lists

Choice controls are useful as long as you don’t have too many choices. After you get more than
five to seven choices, radio buttons or check boxes start to become cumbersome. In these cases,
you should move to a list-based control such as the list box or combo box. Both of these con-
trols are suited for choosing among lists of dozens or even hundreds of items.

List Boxes

The purpose of a list box is to allow the user to select one or more items from a list of choices.
Figure 6.14, for example, shows part of the interface for setting network card properties under
Windows 2003. The list of properties for the current network card is presented in a list box.

This particular example demonstrates two of the strengths of the list box control. First, it can
comfortably display more options that you can provide radio buttons for in the same space.
Second, it’s not limited to a fixed list of options. For network card configuration, Windows
builds the list of properties dynamically. Although the list may change, the same control can
always be used to select an item from it.

4361Book.fm Page 96 Thursday, November 18, 2004 8:45 PM

97

Handling Lists

F I G U R E 6 . 1 4

Selecting from a
list box

The entries in this particular list box are arranged in alphabetical order. You should generally
order the entries to make it easy for the user to browse them. For numeric items, this means
increasing or decreasing order; for dates, you’d use chronological order. Alphabetical order is
a good default when there’s no other natural order to use for a particular list. But don’t feel that
you always have to employ one of these lexical orders. For example, if you’re offering a choice
of countries for the user, and most of your users reside in the United States, you should make
it the first entry so that it’s easy for them to find without scrolling through the entire list.

Most list boxes are

simple list boxes

. User interaction with a simple list box is straightforward:

●

Clicking a list entry selects that entry and deselects any currently selected entry.

●

The arrow keys move the selection up or down in the list one entry at a time.

●

The Page Up and Page Down keys move the selection up or down an entire page at a time.

●

The Home and End keys move the selection to the start or end of the list.

●

Typing a letter or number selects the next item beginning with that letter or number.

The simple list box supports only a single selected item at a time. Two other list box styles
allow the user to select multiple items: the

multiselection list box

 and the

extended-selection list box

.

A multiselection list box works like a simple list box with one exception: Selecting an item
does not automatically deselect the currently selected item. Instead, to deselect an item that’s
already selected, you click it again. Thus, you can select as many items as you like in a multi-
selection list box by running down the list and clicking each one.

4361Book.fm Page 97 Thursday, November 18, 2004 8:45 PM

98

Chapter 6 • The Other Controls

An extended-selection list box returns to the behavior of the simple list box for single clicks.
However, it also implements two additional selection tools:

●

Ctrl+Click selects an item without deselecting any other item.

●

Shift+Click selects all items from the currently selected item to the item just clicked in the list.

Multiselection list boxes are well-suited for scrolling down a list and picking individual items.
Extended-selection list boxes are well-suited for selecting a range of items from a list.

Combo Boxes

A

combo box

 is a control that is a combination of a text control and a list control. The list control
is normally hidden, but it drops down from the text control when the user clicks an arrow at the
end of the text control. Figure 6.15 shows the Task Information dialog box from Microsoft
Project 2003, which displays several combo box controls.

F I G U R E 6 . 1 5

A dialog box with
several combo
box controls

In the figure, the Task Type combo box list has been dropped down by clicking the arrow.
As you can see, moving the cursor over an item in the list selects that item. If the user clicks on
an item in the list, that item becomes the new value for the text portion of the combo box, and
the list vanishes.

The combo box control also supports selecting items with the keyboard. To do so, you can
type Alt+Down Arrow to display the list, and then type characters to march items on the list.

Combo boxes might or might not allow the user to enter items in the text portion that do not
appear on the list. Whether you should allow this depends on what you’re doing with the con-
trol. For example, a combo box that displays the states of the United States generally should
not allow arbitrary entries; the list in the combo box is complete. But a combo box used for

4361Book.fm Page 98 Thursday, November 18, 2004 8:45 PM

99

Space Management with Tabs

selecting a sales tax rate might need to allow arbitrary data entry for cases in which the developer
did not anticipate a particular rate. In such a case, you can make the combo box more useful by
making it adaptive. When the user enters a value that isn’t in the list, persist that value so that
it can be added to the list the next time that particular combo box is used.

NOTE

Combo boxes that do not allow arbitrary text entry are sometimes called

drop-down list boxes

.

General List Control Techniques

List boxes and combo boxes do not include a label control by default. But as with other controls
that lack built-in labels, you should add a label to provide keyboard access to the control. Use
sentence capitalization and an access key in the label, and end the label with a colon.

Ideally, a list box or the list portion of a combo box should display somewhere between three
and eight items, and be wide enough to display all of the entries in the list. If it’s not feasible
to make the list wide enough for the text that it has to hold, consider these options:

●

Make sure that the list is wide enough that the visible portions of the items are distinct.

●

Use an ellipsis to remove common parts of the items to compress them. For example, if all
the items are files on the user’s computer, you might be able to replace part of the path with
an ellipsis.

●

Add a horizontal scroll bar to the list.

●

Add a tooltip to the list, so that when the user hovers the mouse over an entry, all of the text
displays in the tooltip, possibly spread over several lines.

Depending on your development environment, you may be able to add check boxes, icons, or
multiple columns to your list box or combo box controls. However, if you need this level of com-
plexity, you should consider using a ListView control (discussed later in this chapter) instead.
The ListView is more flexible and offers a more modern-looking appearance.

Space Management with Tabs

The tab control will be familiar to most users of Windows from many Control Panel applets,
such as the Power Options Properties dialog box shown in Figure 6.16.

The tabs at the top of the dialog box are meant to resemble those on dividers in a physical file
cabinet. At any given time, one tab is selected, and the rest of the dialog box displays controls
that are associated with that tab. If the user clicks a different tab, that tab is selected and the
constituent controls change correspondingly.

4361c06.fm Page 99 Thursday, November 18, 2004 10:09 PM

100

Chapter 6 • The Other Controls

F I G U R E 6 . 1 6

A tabbed dialog box

In addition to the mouse, the user can navigate between tabs using the Ctrl key plus appropriate
other keys. Ctrl+Tab and Ctrl+Shift+Tab move to the next tab and previous tab, respectively.
Ctrl+Page Up and Ctrl+Page Down move in larger increments. If the dialog box displays only a
single row of tabs, these keys move to the first or last tab. But if a control has more than a single
row of tabs, these keys move the next or previous row.

It’s easy to go overboard with tabs. Figure 6.17 shows the properties of a Windows user on
a network using Active Directory and Exchange. As you can see, there are four rows of tabs at
the top of this dialog box. Really, this is 17 dialog boxes condensed into one, which makes it
hard for anyone to remember where everything is.

The behavior of multiple rows of tabs is also confusing to some users. Figure 6.18 shows what
happens when you click the COM+ tab in the dialog box shown in Figure 6.17. The act of
bringing the tab to the fore also rearranges the rows of tabs, destroying any spatial memory of
their location.

Another way to handle more tabs than can fit in a single row is to use a scrolling row of tabs.
Figure 6.19 shows the Options dialog box from eMbedded Visual C++ 4.0.

See the two small arrows to the right of the tabs? Those indicate that there are more tabs to
the left and right of those that you can see. Clicking the small arrows causes the entire set of
tabs to shift to the left or right. This style of tab control has largely fallen out of fashion now,
primarily because it is far too easy for the user to not even notice the extra tabs.

4361Book.fm Page 100 Thursday, November 18, 2004 8:45 PM

101

Space Management with Tabs

F I G U R E 6 . 1 7

Multiplying tabs

F I G U R E 6 . 1 8

Rearranging tabs

4361Book.fm Page 101 Thursday, November 18, 2004 8:45 PM

102

Chapter 6 • The Other Controls

F I G U R E 6 . 1 9

Options dialog box
with scrollable tabs

Generally, you should keep the text on tabs short, so that tabs will fit without scrolling or
multiple rows. Keeping the text about the same length on each tab helps make the control look
more balanced as well. Sometimes you’ll see tabs to the left, right, or bottom of a dialog box;
but for the most part Windows developers seem to have standardized on tabs at the top.

Tabbed dialog boxes necessarily hide controls from the user, so you need to work extra hard
to make all the controls in such a dialog box easy to find. The best way to ensure this is to take
the time to think about a logical division of controls into tabs. For example, consider the
Options dialog box from Microsoft FrontPage 2003, shown in Figure 6.20.

Note that the tab labels are selected to as to be quite distinct; if you’re looking for a .NET-
related setting, it’s clear that the ASP.NET tab is the place to go. This dialog box uses a
General tab to hold options that don’t fit elsewhere; some dialog boxes have a Miscellaneous
tab for that purpose. The important thing is to make sure that the different tabs give the user
a good idea of what they’ll find.

F I G U R E 6 . 2 0

Tabbed dialog box
from FrontPage

4361Book.fm Page 102 Thursday, November 18, 2004 8:45 PM

103

ListViews and TreeViews

Figure 6.20 also shows a strategy for keeping the number of tabs to a minimum. The
FrontPage developers apparently decided that proxy settings and service options would not
need to be changed often, so those settings are removed to their own dialog boxes (accessible
via command buttons) rather than having their own tabs in the main dialog box.

If at all possible, try to avoid making the user visit all the tabs in a dialog box. The user should
be able to navigate to the particular tab that they care about, make their changes, and get out.
This means that the other tabs in the dialog box should have sensible defaults, and that your
code should be designed to only apply changes from controls that the user actually visited.

ListViews and TreeViews

Microsoft introduced the ListView and TreeView controls in Windows 95; in the decade since
then, these two controls have become staples of Windows user interfaces. Figure 6.21 shows
them in their original habitat: Windows Explorer.

The left panel of Explorer is a TreeView control that displays hierarchical information (in
this case, the folders of the Windows file system). The TreeView indicates the levels of the
hierarchy by indentation and (optionally) by drawing lines between nodes and their siblings.
The + and – signs to the left of nodes allow the user to expand and contract the hierarchy by
clicking with the mouse.

F I G U R E 6 . 2 1

ListView and Tree-
View in Windows
Explorer

TreeView

ListView

4361Book.fm Page 103 Thursday, November 18, 2004 8:45 PM

104

Chapter 6 • The Other Controls

Each node in the TreeView has a text label and an optional icon. As you can see in Figure 6.21,
different nodes can have different icons. A node can also have different icons depending on its
state. For example, the open folder icon for the selected folder is subtly different from the closed
folder icon used for other folders in the Explorer hierarchy.

As with other standard Windows controls, the TreeView can be manipulated with the keyboard:

●

The up arrow moves to the next visible node above the currently selected node. It won’t
expand nodes.

●

The down arrow moves to the next visible node below the currently selected node. It won’t
expand nodes.

●

The right arrow moves along a particular branch of the hierarchy to the right. If a branch
is not currently expanded, the right arrow will expand it.

●

The left arrow moves along a particular branch of the hierarchy to the left. If a branch is
currently expanded, the left arrow will collapse it.

● The * on the numeric keyboard expands the current node and all of its subbranches.

● Typing a letter or a number will move the focus to the next node in the TreeView that starts
with the character typed.

The right pane of the Explorer window is a ListView control. The ListView provides a
flexible way to display a list of items. By default, the ListView enables four different ways to
view the list: small icons, large icons, list, and details. Figure 6.21 shows the small icon view.
Figure 6.22 shows the same ListView in large icon view. There are fewer icons visible at a
time, but Windows uses the higher-resolution icons to draw them. There’s also room for
additional information with each icon.

F I G U R E 6 . 2 2
ListView in large
icon view

4361Book.fm Page 104 Thursday, November 18, 2004 8:45 PM

105ListViews and TreeViews

In list view, the list is shown as a simple, multiple-column list of items. Figure 6.23 shows the
ListView in list view.

Finally, details view lets you define additional columns of information to be displayed for
each item in the list. A ListView in details view, as shown in Figure 6.24, is ideal when you need
to display multiple pieces of information for many objects simultaneously.

The most recent versions of Windows add a fifth view: thumbnail view. Thumbnail view is
designed to be used with folders containing images. In thumbnail view, each image file is dis-
played as a reduced version, as shown in Figure 6.25.

ListView controls normally display the same selection behavior as extended-selection list box
controls. You can use the Ctrl+Click and Shift+Click shortcuts to select multiple items in a
ListView. You can also select multiple items by drawing a bounding box with the mouse: Click
the primary mouse button, drag a rectangle that encloses the items that you want to select, and
release the button to select them all.

You can also use the keyboard to perform selection operations in the ListView. First, use the
navigation keys (up and down arrows, Page Up, Page Down, Home, or End) to navigate to an
item that you want to select. Then, press the spacebar to select the item. To select a range of
contiguous items, hold down the Shift key and use the navigation keys; all items from the initial
selection to the final selection will end up selected. To select noncontiguous items, first select
one item, and then hold down the Ctrl key and use the navigation keys to move to the next item
that you want to select. Press the spacebar to select the second item, and repeat for as many
items as you like.

F I G U R E 6 . 2 3
ListView in list view

4361Book.fm Page 105 Thursday, November 18, 2004 8:45 PM

106 Chapter 6 • The Other Controls

F I G U R E 6 . 2 4
ListView in details view

F I G U R E 6 . 2 5
ListView in
thumbnail view

4361Book.fm Page 106 Thursday, November 18, 2004 8:45 PM

107Grid Controls

ListViews support column operations when in details view:

● To sort by a column, click the header at the top of the column. To sort the column in the
opposite direction, click the header a second time.

● To resize a column, grab the right side of the column header with the mouse and drag it to
the left or right.

● To move a column, grab the middle of the column header with the mouse and drag it to its
new position.

TIP Pressing Ctrl plus the + key on the numeric keyboard adjusts the width of all columns in
the ListView to fit their contents.

RULE For consistency with the way that most ListView controls work, you should define context
menus (shortcut menus) for each item in the ListView. Different items can have different
context menus.

Grid Controls
A grid control displays information in rows and columns. Windows itself does not supply a stan-
dard grid control, which seems odd considering how frequently such controls are useful. But
most development environments contain a grid control. For example, Visual Studio .NET
supplies the flexible DataGrid control. Figure 6.26 shows a DataGrid control in action.

As Figure 6.26 suggests, grid controls are well-suited to displaying information from a data-
base. The rows and columns of a grid control map well to the rows and columns of a database
table or view.

Because grids are so useful for displaying database information, and because Microsoft
doesn’t have one built into the operating system, they have been an especially attractive target
for independent software vendors (ISVs). Figure 6.27 shows one of the many such grid con-
trols, in this case the XtraGrid control from Developer Express (http://www.devexpress.com).

The features of commercial grid controls vary widely. If you’re considering buying such a
control for your own applications, here are some things to keep in mind:

● Is the price in line with your budget? Be sure to check both the price for developers and the
cost to redistribute copies of the control in your application.

● Does the control offer connectivity to the source of data that you’re planning to use?

4361Book.fm Page 107 Thursday, November 18, 2004 8:45 PM

108 Chapter 6 • The Other Controls

● Does the control offer the display options you require? For example, can it handle graphics,
Unicode characters, or alpha blending?

● Does the control support the operations you need for end users? Check out the navigation,
editing, filtering, resizing, and export capabilities.

● Can the control be customized to fit in with the look and feel of your application?

F I G U R E 6 . 2 6
SQL Server data
displayed on a grid

F I G U R E 6 . 2 7
A commercial grid
control in action

4361Book.fm Page 108 Thursday, November 18, 2004 8:45 PM

109Miscellaneous Controls

Miscellaneous Controls
In addition to the major classes of controls that I covered previously, there are some that don’t
fit in elsewhere. In this section, I demonstrate two of these miscellaneous controls that I con-
sider important for good user interfaces:

● ProgressBar

● Outlook Bar

ProgressBar
Figure 6.28 shows a typical ProgressBar control in action. The ProgressBar is the sunken con-
trol in the middle of the dialog box containing the filled-in rectangles.

The ProgressBar is used as an indicator to the user that their computer hasn’t frozen, crashed,
or otherwise become nonfunctional during a lengthy operation. As a first step, of course, you can
change the cursor to the hourglass if the application is busy. But over the course of their Win-
dows experience, most users have become accustomed to applications getting stuck in this state
and appearing to be busy when they’re actually crashed.

The ProgressBar gets around this problem by combining a visual indication that the appli-
cation is busy with a visual indication that it hasn’t died completely. As the application carries
out a time-consuming operation, it periodically updates the ProgressBar control, adding addi-
tional filled-in blocks to the hollow rectangle.

For a ProgressBar to be effective, it must behave in a predictable manner:

● The control should start with no blocks displayed when the operation begins, but it should
quickly display the first block.

● The control should display the final block just as the operation ends.

● The control should never go in the wrong direction—that is, you should never remove a
block that’s already been drawn (unless of course the process is really moving in reverse).

● The progress should be uniform—that is, the blocks should appear at roughly equal time
intervals.

F I G U R E 6 . 2 8
Using a ProgressBar
control to indicate
progress

4361Book.fm Page 109 Thursday, November 18, 2004 8:45 PM

110 Chapter 6 • The Other Controls

The last point is perhaps the most important and the most difficult to achieve. Depending on
your application’s architecture, it may be difficult to estimate how long a lengthy operation will
take or to come up with a way to send regular updates to the ProgressBar control. In this case,
you should remember that users would rather have a pleasant surprise than an unpleasant one.
It’s much better to have a ProgressBar that takes forever to get through the first half and then
rushes through the rest (because you overestimated the time for the operation) than to have
one that gets to 95 percent complete and stays there for an agonizingly long time.

Outlook Bar
Microsoft introduced the Outlook Bar control with Outlook 97, and although it’s no longer
used in the Outlook user interface as of Outlook 2003, the name stuck. Figure 6.29 shows an
Outlook Bar in an open file dialog box.

Usually Outlook Bar controls are used to provide gross navigation features. In the case of the
open file dialog box, for example, the icons on the Outlook Bar allow the user to quickly jump
to particular folders. In other cases, an Outlook Bar control might be used to move the user
between functional areas of an application.

For the most part, Outlook Bar controls are “eye candy”: nice to look at, but not offering
a great deal of functionality. The shortcut menu on the control allows the user to choose
between large and small icons, and to reorder the icons on the bar. Although Microsoft does
not provide a standard Outlook Bar control for applications to use, such controls are avail-
able from many independent software vendors.

F I G U R E 6 . 2 9
Using an Outlook Bar
as a navigation aid

Outlook Bar
Control

4361Book.fm Page 110 Thursday, November 18, 2004 8:45 PM

111Miscellaneous Controls

What’s Left?
There are many other controls available for specific purposes. For example, choosing a calendar
date is a common operation; most data-input applications need this functionality. Surprisingly
enough, Windows doesn’t include a standard date-picking control. But most development envi-
ronments have remedied this lack by now. Figure 6.30 shows a form created with Visual Studio
.NET that contains two DateTimePicker controls.

The DateTimePicker control shown here functions similarly to a combo box. Normally, it
displays a date in the text portion of the control, but the user can click the drop-down arrow
at the end of the control to display a pageable calendar. Selecting a date from the calendar
places that date into the text portion of the control and hides the calendar again.

The DateTimePicker is only one of many, many custom controls that are available, either as
part of development tools or as separate controls. You can find controls designed to display
Gantt charts (similar to Microsoft Project), charting controls, controls that bring a Web look
to the desktop, and many more. In general, you should reserve these exotic controls for cases
in which they actually add value to your application. It’s all too common to see an application
dressed up with the latest and most innovative controls just so that it will look modern. The key
question is whether these controls actually make things any easier for the user. Remember, any
extra power that they bring to your application is balanced by the additional training that users
need to go through to use the controls effectively. When in doubt, err on the side of the simple
and boring user interface that uses only standard controls.

F I G U R E 6 . 3 0
Choosing dates with
a DateTimePicker
control

4361Book.fm Page 111 Thursday, November 18, 2004 8:45 PM

112 Chapter 6 • The Other Controls

Summary
In this chapter, you learned about the uses and capabilities of many of the common Windows
controls. These controls include choice controls (radio buttons, check boxes, and toggle but-
tons) for choosing between a small number of alternatives, and list controls (list boxes and
combo boxes) for selecting items from longer lists. You also saw tab controls, ListViews, and
TreeViews, as well as other miscellaneous controls that are useful in specific situations.

By now, you’ve seen most of the pieces that go into building the user interface for a Windows
application. Now it’s time to take a more holistic view of the world: How do these pieces fit
together in an actual user interface? I’ll start answering that question in the next chapter, which
deals with the basic design and use of dialog boxes.

4361Book.fm Page 112 Thursday, November 18, 2004 8:45 PM

Chapter 7

Dialog Boxes

•

Overview of Dialog Boxes

•

Dialog Box Layout

•

Cascading Dialog Boxes

•

Preventing Dialog Box Problems

•

Using the Common Dialog Boxes

4361Book.fm Page 113 Thursday, November 18, 2004 8:45 PM

114

Chapter 7 • Dialog Boxes

D

ialog boxes—secondary windows with which the user can interact to perform a function,
or which deliver information to the user—are an important part of many applications.

Indeed, some applications feature so many dialog boxes that it seems as if the entire application
consists of dialog boxes. In this chapter, I’ll discuss some of the variations of dialog boxes and
show you how to construct effective and useful dialog boxes.

Overview of Dialog Boxes

I’ll start with a few overarching issues. When designing an application’s user interface, it helps
to have some sense of what dialog boxes are good for (and what they’re not good for). In this
section, I’ll present several different ways to think about the taxonomy of dialog boxes.

The Uses of Dialog Boxes

Dialog boxes interrupt the flow of an application to a greater or lesser extent. Most dialog boxes
require you to deal with them before you can resume interacting with the rest of the application
(but see the discussion of modeless dialog boxes later in this chapter for an exception to that rule).
As a result, the best uses of dialog boxes are for tasks that interrupt your normal flow in the first
place.

One good use for a dialog box is to hide some of the complexity of a complex application.
An application that has been extended and refined over several versions often contains many
functions that the casual or everyday user won’t need to access. Figure 7.1 shows the Resource
Leveling dialog box from Microsoft Project 2003. Resource leveling is an important capabil-
ity of the program, but it’s not one that novice users are likely to need. Even advanced users
use resource leveling infrequently. Thus, it makes sense to push these controls off to a dialog
box instead of cluttering the main user interface with them.

Another good use of a dialog box is to manage an operation that requires the user’s full atten-
tion or that cannot be performed while the application is doing some other task. A good example
is the ubiquitous File Save dialog box. Most applications require their internal files to be in some
sort of consistent state before they can be saved. If the user could change things while the save was
going on, the most likely result would be a corrupted (and useless) file. By placing the Save func-
tion into a separate dialog box, developers can ensure that no changes are being made to the file
at the same time that it’s being saved.

Sometimes a dialog box is an organizational device, pulling together information that is other-
wise scattered across an application. For example, an accounting application could use a dialog
box to show all the information about a customer: address, current account balance, past orders,
and so on. Even if all this information might be available elsewhere in the application, it can be
useful to have a single place to visit to retrieve it from.

4361Book.fm Page 114 Thursday, November 18, 2004 8:45 PM

115

Overview of Dialog Boxes

F I G U R E 7 . 1

Dialog box for
uncommon use

Finally, some things just plain take up too much space to be included on an application’s
main user interface. Consider the dialog box from Microsoft Office InfoPath 2003 shown in
Figure 7.2.

If the controls on this dialog box were part of the application’s main user interface, there
would be little room left over to edit anything else on a screen with an 800

×

600 resolution.
Thus, pulling the controls off to a dialog box is a reasonable solution. An alternative solution
is to try to redesign your controls so that they take up less screen real estate.

Given those reasons for putting things into dialog boxes, it’s worth asking what

doesn’t

belong in a dialog box. The easiest rule of thumb is to avoid interrupting the user unneces-
sarily. Figure 7.3 shows a portion of the Microsoft Excel user interface.

F I G U R E 7 . 2

InfoPath Data
Validation
dialog box

4361Book.fm Page 115 Thursday, November 18, 2004 8:45 PM

116

Chapter 7 • Dialog Boxes

F I G U R E 7 . 3

Entering a formula
in Excel

With the Excel formula bar, a user can enter a formula simply by selecting a cell on the
spreadsheet and typing. Thus, entering a formula doesn’t require any interruption to the user’s
workflow at all. Imagine how distracting it would be to have to open a separate dialog box to
enter every formula in a complex worksheet!

It’s worth mentioning, though, that even in this case Excel offers a dialog box-based alternative
for entering formulas. Figure 7.4 shows the Excel Insert Function dialog box.

The Insert Function dialog box provides an alternative user interface for less-experienced
users to build formulas. The Excel developers opted to cater to different users with different
interfaces. Novices can use the Insert Function dialog box, whereas experienced users might
prefer to type formulas directly into the formula bar.

F I G U R E 7 . 4

Inserting a function
in Excel

Modal and Modeless Dialog Boxes

It’s important to understand the difference between a

modal

 dialog box and a

modeless

 dialog box:

●

A modal dialog box is one that demands the focus; in fact, it doesn’t let you work with any
other part of the application while the dialog box is on screen.

●

In contrast, a modeless dialog box lets you continue interacting with the rest of the appli-
cation while it’s displayed.

4361Book.fm Page 116 Thursday, November 18, 2004 8:45 PM

117

Overview of Dialog Boxes

Most dialog boxes are modal, probably because the underlying Windows API makes it easy
to create modal dialog boxes, and because the original Windows user interface design guide-
lines called for modal dialog boxes. It’s also undeniably easier for developers to work with a
modal dialog box. If the dialog box is modal, you can be sure that the selection or other state
within the rest of the application isn’t changing while the user is working in the dialog box.

Modeless dialog boxes are typically used to bring in chunks of functionality to an application.
Figure 7.5 shows a good example of this technique: the Sorting and Grouping dialog box from
Microsoft Access 2002.

The Sorting and Grouping dialog box works in conjunction with other features of the Access
report designer to determine how records will be ordered and grouped on the final report. Typ-
ically, a user needs to adjust settings in this dialog box while also working with controls on the
report. Thus, making it a modal dialog box would be a nuisance; making it a modeless dialog box
allows the user full access to the report even while the dialog box is open. The tradeoff is that
the Access developers needed to write code to hide the dialog box if the user moves to some
other Access object where sorting and grouping doesn’t make sense.

Modeless dialog boxes seem to be largely out of fashion, though. Often, it’s difficult to tell
visually whether a particular dialog box is modeless (although the dialog box shown in Figure 7.5
offers a clue: It doesn’t include OK or Cancel buttons). In many cases, toolbars and floating
accessory windows are used instead of modeless dialog boxes. They have the same advantage
of being modeless, but are also clearly visually distinct from modal dialog boxes. My advice is
to stick to modal dialog boxes, and to use these other user interface elements when you need
modeless functionality.

NOTE

You can read more about floating accessory windows in Chapter 3, “Managing Windows,”
and more about toolbars in Chapter 8, “Common Windows UI Elements.”

F I G U R E 7 . 5

Sorting and Grouping
in Access

4361Book.fm Page 117 Thursday, November 18, 2004 8:45 PM

118

Chapter 7 • Dialog Boxes

Four Types of Dialog Boxes

Alan Cooper, in his book

About Face 2.0

 (Wiley, 2003) offers another way to think about dialog
boxes, classifying them into four types according to their goals:

●

Property

●

Function

●

Process

●

Bulletin

Splitting your own application’s dialog boxes into these categories can help you confirm that
each dialog box has a distinct function to benefit the user. The first two of these categories
are user-initiated dialog boxes; the last two are application-initiated dialog boxes. After briefly
describing all four types, I’ll focus on user-initiated dialog boxes for the remainder of this chapter.

Property Dialog Boxes

A

property

dialog box is used to set the properties of an object or of the application itself. With
most property dialog boxes, the user selects an object within the application and then uses a
menu item, toolbar button, or shortcut key to open a dialog box that affects the properties of
the selected object. For example, Figure 7.6 shows the Virtual Machine Control Panel from
VMware.

F I G U R E 7 . 6

Setting properties
of a VMware virtual
machine

4361Book.fm Page 118 Thursday, November 18, 2004 8:45 PM

119

Overview of Dialog Boxes

VMware allows the user to load more than one virtual machine at the same time. After select-
ing a virtual machine to work with, the user can open the Virtual Machine Control Panel to
fine-tune the settings for the selected virtual machine. The OK button closes the dialog box
and applies any changes to the settings.

Function Dialog Boxes

Most

function

 dialog boxes do two things: they allow the user to configure the parameters for
a function and then invoke that function. A good example is the Print dialog box (Figure 7.7
shows the Microsoft Word version of this dialog box).

The Print dialog box is pretty complicated, especially when you realize that several of the
buttons on it open subsidiary dialog boxes (I’ll discuss this technique of cascading dialog boxes
later in this chapter). But it fits clearly into the three-step pattern of the function dialog box:

1.

The user chooses a function to perform, which opens the dialog box.

2.

The user uses the controls in the dialog box to configure the function.

3.

The user clicks OK to perform the function, which closes the dialog box.

Function dialog boxes are useful, but you should keep two points in mind. First, if at all pos-
sible, the default choices should all be correct for the user when they invoke the dialog box.
This simplifies their job by removing step 2 from the process. Second, provide a shortcut to
perform the function with no configuration at all. In Word, for example, there’s a Print toolbar
button that prints the current document using the current defaults without requiring any fur-
ther user interaction.

F I G U R E 7 . 7

The Print dialog box

4361Book.fm Page 119 Thursday, November 18, 2004 8:45 PM

120

Chapter 7 • Dialog Boxes

Process Dialog Boxes

Process dialog boxes are those that the application displays to indicate to the user that some
long-running operation is in progress. I discussed these dialog boxes in the “Progress Bar” sec-
tion of Chapter 6, “The Other Controls.” I won’t be further concerned with such dialog boxes
in this chapter.

Bulletin Dialog Boxes

Cooper’s classification of bulletin dialog boxes refers to what are usually called message
boxes: modal dialog boxes used by the application to present a specific message to the user.
See Chapter 2, “Putting Words on the Screen,” for a discussion of this type of dialog box.

Dialog Box Layout

When you’re designing a dialog box, you need to keep the user in mind. It’s not enough to just
get the necessary controls onto the dialog box; you need to arrange them in some sort of logical
order and make their use apparent. I offered advice on individual controls in the last several
chapters. Now it’s time to look at how all these controls can be put together to build coherent
dialog boxes.

Arranging Controls

People tend to appreciate order. Take a look at the Paragraph dialog box from Microsoft Pub-
lisher 2003, shown in Figure 7.8.

You can see several techniques used here to keep the controls on the dialog box orderly:

●

The developer split the dialog box into two tabs, each with a specific function.

●

Group boxes are used to further clarify which controls work with each other.

●

Controls are arranged in neat rows and columns.

●

The command buttons are at the very bottom of the dialog box.

The natural order of reading this dialog box is from left to right and top to bottom, and the
controls are arranged to take advantage of that order. The first choice the user needs to make
is whether to use the Indents and Spacing tab or the Line and Paragraph Breaks tab, and the
tabs are the first controls that the user will encounter. They can then move down through the
dialog box, choosing settings from each control in turn. After making all their choices, they can
look at the Sample control to get a sense of how the selection will change if they click OK. The
final controls at the very bottom of the dialog box let the user choose whether to apply or dis-
card these changes.

4361Book.fm Page 120 Thursday, November 18, 2004 8:45 PM

121

Dialog Box Layout

F I G U R E 7 . 8

A moderately complex
dialog box

Adding More Controls

It seems to be nearly inevitable that dialog boxes gain more controls and options with each new
release of an application. This can present a problem because there’s a limit (set by the mini-
mum screen resolution that you care to support) to how large you can make a dialog box. At
some point, making controls smaller and setting them closer together will no longer do the job.
Designers have come up with several solutions to this problem.

NOTE

I’m not necessarily recommending feature bloat, just trying to point out ways to deal with
it. If you can improve your application without adding new controls, by all means do so.

One possibility is to add tabs to the dialog box, with each tab holding additional controls.
This metaphor is readily understandable to most users, and works well up to a point. Figure 7.9
shows the Microsoft Excel Options dialog box, which probably goes beyond that point.

The problem with dialog boxes such as this one is that some actions can produce results
that the user doesn’t expect. Clicking on any tab in the second row brings that entire row of
tabs to the front. The problem gets worse when there are three or four rows of tabs. Users
tend to feel that things are moving around at random in such a dialog box.

4361Book.fm Page 121 Thursday, November 18, 2004 8:45 PM

122

Chapter 7 • Dialog Boxes

F I G U R E 7 . 9

Dialog box with two
rows of tabs

RULE

Limit tabbed dialog boxes to one row of tabs.

Another strategy is to design dialog boxes that mutate depending on user selections. For
example, Figure 7.10 shows the initial state of the standard Insert Object dialog box.

If the user selects the Create From File radio button, though, the other controls in the dialog
box change, as shown in Figure 7.11.

Although this technique does allow you to put more controls into a dialog box without
using more space, it can also be confusing to the user because there’s no clue in the initial
state of the dialog box that the other controls are lurking there. A better way to handle this
might be to have all the controls visible, but to have them enabled by the radio buttons, as
shown in Figure 7.12.

F I G U R E 7 . 1 0

The Insert Object
dialog box

4361Book.fm Page 122 Thursday, November 18, 2004 8:45 PM

123

Dialog Box Layout

F I G U R E 7 . 1 1

The Insert Object
dialog box revisited

F I G U R E 7 . 1 2

The Insert Object
dialog box redesigned

Some applications play games with using non-standard controls (or by using standard controls
in non-standard ways) to cram more functionality into a limited space. For instance, Microsoft
invented the drop-down command button, shown in Figure 7.13, for Office applications.

By now, you should be able to guess that I’m no great fan of this particular piece of innova-
tion. As with the mutating dialog box, this command button does not give the user any good
hint of the particular extra functionality that it hides (although the arrow does at least imply the
presence of extra functionality). With a little redesign, this dialog box could host a set of radio
buttons to pick the open mode, which would be much easier for novice users to understand.

Finally, don’t overlook the obvious way to handle a dialog box that’s getting too unwieldy:
break it up into two or more dialog boxes. Often, this is the best choice. If you can find a natural
way to split the functionality that you’re trying to put into a single dialog box, users will appre-
ciate two simple dialog boxes in place of one overly complex one.

4361Book.fm Page 123 Thursday, November 18, 2004 8:45 PM

124

Chapter 7 • Dialog Boxes

F I G U R E 7 . 1 3

A dialog box with a
drop-down command
button

Dealing with Buttons

Buttons on dialog boxes should serve one of two distinct functions:

●

To dismiss the dialog box

●

To open another dialog box

I’ll discuss the second type of button in the section “Cascading Dialog Boxes,” later in this
chapter. But first, a few rules of thumb for dealing with the other type of button, which I refer
to as an

action button

.

Every dialog box needs at least one action button; otherwise it may not be clear to the user
how to get rid of the dialog box. The close button (in the upper-right corner of the dialog box)
closes the dialog box, but it’s unfortunately ambiguous: does just closing a function dialog box
execute the function or not?

Typically, a property dialog box has two action buttons:

●

OK commits any changes to properties made within the dialog box and closes the dialog box.

●

Cancel discards any changes to properties made within the dialog box and closes the
dialog box.

The typical function dialog box also has two action buttons:

●

OK performs the function and closes the dialog box.

●

Cancel closes the dialog box without performing any function.

4361Book.fm Page 124 Thursday, November 18, 2004 8:45 PM

125

Dialog Box Layout

The pattern here is that action buttons close the dialog box. By convention, such buttons
provide the user with a way out of the dialog box. There are two exceptions to this rule:

●

If the dialog box has an Apply button (see Figure 7.14), this button commits any changes
to properties made within the dialog box without closing the dialog box.

●

If the dialog box has a Help button, this button opens a help window without closing the
dialog box.

F I G U R E 7 . 1 4

Dialog box with an
Apply button

If there is only one action button that actually performs the function or commits changes, it
should be labeled OK for consistency with other dialog boxes—even if another verb seems to
make more sense. For example, refer to the Print dialog box shown in Figure 7.7. Even if Print
would make sense as a caption for the action button that prints the object of the dialog box, it’s
labeled OK. The title bar of the dialog box is where the more specific verb, Print, appears.

On some occasions, a dialog box might have more than one action button. Figure 7.15 shows
an example.

F I G U R E 7 . 1 5

Find and Replace
dialog box

4361Book.fm Page 125 Thursday, November 18, 2004 8:45 PM

126

Chapter 7 • Dialog Boxes

This figure shows the Find and Replace dialog box from Microsoft Word. This dialog box
offers three distinct actions (Replace, Replace All, and Find Next), each with its own action
button. If your dialog box can perform multiple actions, make sure that you also include a Can-
cel action button for times when the user decides that they’d rather back out of the dialog box
without doing anything.

Unfolding Dialog Boxes

Figure 7.15 also shows another technique for hiding some complexity in dialog boxes: the

unfolding dialog box

. Clicking the More button in the Find and Replace dialog box transforms
it, as shown in Figure 7.16.

F I G U R E 7 . 1 6

Find and Replace
dialog box expanded

There are a few things to note about this unfolding technique. First, the control that actually
does the unfolding has a visual cue in the form of a tiny double arrowhead (which you can create
with a graphics program; it’s not part of any of the standard fonts). Second, the control changes
its caption, and the arrowhead is reversed when the dialog box has been unfolded. The same
control can then hide the additional controls.

If you choose to implement this technique, do so carefully. You need to strike a balance
between hiding unnecessary complexity and burying controls that the user would use if only
they knew that they were there. When in doubt, it’s probably better not to hide the advanced
controls. Discoverability is usually a worse problem than confusion.

Resizable Dialog Boxes

In some rare cases, you may want to make a dialog box resizable to help deal with a cluttered lay-
out. For example, if the dialog box includes a listview control with several columns, you can start

4361Book.fm Page 126 Thursday, November 18, 2004 8:45 PM

127

Cascading Dialog Boxes

out with a size that will fit on any screen and let the user make the dialog box (and therefore the
listview) wider to see more information. This isn’t a good technique for revealing extra controls,
though, because there’s no visual cue to tell the user that more controls are available.

In general, I recommend trying other solutions before moving to a resizable dialog box.
Having the dialog box look cramped by default isn’t very attractive, and if there’s room for all
the controls you need not make it resizable in the first place. If you do allow the user to resize
a dialog box, you should store the new size so that you can display it at their preferred size the
next time they display the same dialog box.

Cascading Dialog Boxes

Sometimes a single dialog box leads to a whole tree of choices. That is, the user might open
a dialog box that offers a button for additional customization, and the button in turn opens
another dialog box. This progression can continue, with the second dialog box opening a third,
the third dialog box opening a fourth, and so on. Figure 7.17 shows a three-level example from
Microsoft Office InfoPath 2003.

F I G U R E 7 . 1 7

Cascading dialog
boxes

4361Book.fm Page 127 Thursday, November 18, 2004 8:45 PM

128

Chapter 7 • Dialog Boxes

In this case, the user started by right-clicking on a control and selecting Properties from the
shortcut menu to display the Text Box Properties dialog box. Then they clicked on Data Vali-
dation to display the Data Validation dialog box. Then they clicked on Add to display the second
Data Validation dialog box. The result is a stack of three dialog boxes on top of the application.
At any given time, the user can interact only with the dialog box on top of the stack; its modality
prevents changing anything further down.

Cascading dialog boxes provide an excellent way to allow users to do as much or as little cus-
tomization as they require. By using the initial dialog box for the most commonly adjusted
options, and pushing less frequent options off to later dialog boxes in the series, you can help
control the complexity of the situation.

The major problem I’ve seen with cascading dialog boxes is that users can get confused about
just which dialog box is active. With a three-box cascade on screen, there are three different
OK buttons and three different Cancel buttons. Even if only one set is active, people will still
attempt to click the wrong ones and get frustrated. The user can also get frustrated trying to
remember how to get back to a particular option if they have to drill down three or four levels
to find it.

Preventing Dialog Box Problems

Software developers are often tempted to be innovative or even cute when they should be fol-
lowing standards and doing what the user expects. In general, applications should adhere to
what has been called the Principle of Least Surprise:

RULE

The result of performing some operation should be obvious, consistent, and predictable.

To put it less formally, users don’t like it when developers appear to be practical jokers.

Violating this principle can lead to all sorts of user interface issues. I already mentioned some
things to watch out for in dialog boxes, but here are some others to be aware of:

●

It’s tempting to help the user by automatically moving the cursor when they fill an edit con-
trol. For example, after a user types all of a Zip code or a phone number, some applications
help out by moving the cursor to the next data entry control in the tab order. Unfortunately,
this doesn’t really help the user. First, they might not be done with the edit control, even if
they typed the right number of characters. What if the last character they typed was a mis-
take? Second, unless you can apply this rule to every edit control on a dialog box, you’re ask-
ing the user to remember when they must press Tab and when they must not—a maddening
situation.

4361Book.fm Page 128 Thursday, November 18, 2004 8:45 PM

129

Using the Common Dialog Boxes

●

Sometimes developers omit the OK and Cancel action buttons on a property dialog box,
reasoning that nothing can be changed in the dialog box and that the Close button will suf-
fice. Although that’s technically true, the result is that the user must figure out what’s going
on instead of following a common idiom. Making the user figure out what your application
is doing is usually a bad idea.

●

Don’t assume that the user can see their application behind the dialog box, particularly if
the dialog box is large. They may be running on a small screen (such as on a laptop) or have
arranged their open windows in some fashion that you did not anticipate. The most impor-
tant consequence is that dialog boxes should provide the user with context, either through
their title bar or through some other text control. For example, instead of titling a dialog
box “Customer Properties,” you should title it “Customer 1278 Properties,” so that the
user will know which customer they’re working with, even if they get interrupted and need
to come back to your application later.

Using the Common Dialog Boxes

You don’t need to build every dialog box from scratch. In fact, you should not do so. Windows
provides a set of common dialog boxes built right into the system that you can use from your
applications. Using these dialog boxes has several advantages:

●

They are already familiar to the user.

●

They’re designed to fit in with the way that Windows does things.

●

They have the benefit of Microsoft’s own large-scale usability studies behind them.

In the remainder of this chapter, I’ll show you the common dialog boxes that Windows supplies:

●

Open dialog box

●

Save As dialog box

●

Browse for Folder dialog box

●

Find dialog box

●

Replace dialog box

●

Print dialog box

●

Page Setup dialog box

●

Font dialog box

● Color dialog box

4361Book.fm Page 129 Thursday, November 18, 2004 8:45 PM

130 Chapter 7 • Dialog Boxes

NOTE You should not feel compelled to use the common dialog boxes if you need additional func-
tionality. For example, Word uses its own Print dialog box rather than the common Print dia-
log box because Word’s version supplies additional customization choices for the user.
Even in these cases, though, the common dialog boxes supply a good starting point for
designing your own alternatives.

Open Dialog Box
The Open dialog box allows the user to select a file for the application to open. Figure 7.18
shows this dialog box.

The Open dialog box packs in quite a bit of functionality that you might find hard to dupli-
cate if you were coding a similar interface from scratch:

● It properly handles both long and short filenames.

● Icons within the dialog box have the same shortcut menus that they would in Windows
Explorer.

● The file area acts as both a drag-and-drop source and a drag-and-drop target.

● Double-clicking a file opens the file (although clicking twice slowly puts the file into
rename mode, just as it does in Explorer).

● Shortcuts are automatically dereferenced to the files that they refer to.

● The File Name text box supports directly entering HTTP or FTP addresses for files.

● It supports selecting multiple files.

F I G U R E 7 . 1 8
The Open dialog box

4361Book.fm Page 130 Thursday, November 18, 2004 8:45 PM

131Using the Common Dialog Boxes

The Open dialog box returns the name of a file (or of multiple files, if you choose to enable
that capability) to your application. It’s up to your own code to act on that filename.

Save As Dialog Box
The Save As dialog box, shown in Figure 7.19, is the preferred interface for an application that
needs to prompt the user for a filename and then save a file to that name.

The Save As dialog box is very similar to the Open dialog box. But it does supply some addi-
tional functionality. First, it will automatically add the extension to the filename if the user
supplies a filename with no extension. Second, it will warn the user if the name they’re trying
to use is already in use.

The end result of the Save As dialog box is to inform your application of the filename that
should be used for the save. It’s up to your code to do the saving.

Browse for Folder Dialog Box
The Browse for Folder dialog box, shown in Figure 7.20, is the standard way for the user to
locate a folder (rather than a file) on their computer.

The Browse for Folder dialog box displays a TreeView with all the folders that the user has
access to, including special folders (such as the desktop or My Documents) and network drives.
It can also be used to create new folders by directing the dialog box to display the New Folder
button, which is built in to the dialog box but normally hidden.

F I G U R E 7 . 1 9
The Save As dialog box

4361Book.fm Page 131 Thursday, November 18, 2004 8:45 PM

132 Chapter 7 • Dialog Boxes

F I G U R E 7 . 2 0
The Browse for Folder
dialog box

NOTE The Browse for Folder dialog box seems to be falling out of fashion. It is often replaced by
the Open dialog box running in its no-files mode, which displays only folders.

Find Dialog Box
Figure 7.21 displays the system standard Find dialog box.

The Find dialog box supports the bare minimum functionality that you’d expect to find here:
searching up or down in a file, matching or ignoring case, and finding the next match. If you
need something more advanced, you’ll need to code it yourself.

F I G U R E 7 . 2 1
Find dialog box

Replace Dialog Box
The Replace dialog box is a companion to the Find dialog box. Figure 7.22 shows the Replace
dialog box.

The Replace dialog box supports replacing a single instance, replacing all instances in the file,
or skipping an instance and finding the next one. It does not, however, let you choose the direc-
tion of search.

4361Book.fm Page 132 Thursday, November 18, 2004 8:45 PM

133Using the Common Dialog Boxes

F I G U R E 7 . 2 2
The Replace dialog box

NOTE The Find and Replace dialog boxes are simple enough that you should code your own rather
than use the common dialog boxes, especially if you don’t make use of any other function-
ality from the common dialog box library.

Print Dialog Box
The Print dialog box, shown in Figure 7.23, provides the user with an interface to the system’s
printing services.

F I G U R E 7 . 2 3
The Print dialog box

4361Book.fm Page 133 Thursday, November 18, 2004 8:45 PM

134 Chapter 7 • Dialog Boxes

The Print dialog box packs in quite a bit of functionality:

● You can define new printers.

● You can select any existing printer.

● You can use the Preferences button to configure a printer.

● You can print to a file instead of directly to the printer.

● You can choose which portion of the document to print.

● You can choose how many copies to print and whether the copies should be collated.

Most applications will probably find this dialog box adequate for their printing needs.

Page Setup Dialog Box
The Page Setup dialog box works in conjunction with the Print dialog box to let the user dictate
the formatting for your document. Figure 7.24 shows this dialog box.

F I G U R E 7 . 2 4
The Page Setup
dialog box

The goal of the Page Setup dialog box is to let users set the details of the way their files should
print. These details include the margins, orientation, and paper size and source.

Font Dialog Box
The Font dialog box, shown in Figure 7.25, is the easiest interface to use when you need to let
a user select a font for use in your application.

4361Book.fm Page 134 Thursday, November 18, 2004 8:45 PM

135Using the Common Dialog Boxes

F I G U R E 7 . 2 5
The Font dialog box

The Font dialog box shows all the fonts on the system and lets the user specify other param-
eters such as style and size. It also displays a preview sample of the font, which helps the user
pick an appropriate font without false starts. When the user clicks OK, the Font dialog box
makes the properties of the selected font available to your application. You’ll typically use these
properties to set the properties of a selection.

Color Dialog Box
Finally, the system provides the Color dialog box, as shown in Figure 7.26.

The Color dialog box lets the user pick from a predefined set of basic colors or use a set of
extended controls to define custom colors. It can save custom colors for the future so that the
user can easily refer to them after defining them once.

F I G U R E 7 . 2 6
The Color dialog box

4361Book.fm Page 135 Thursday, November 18, 2004 8:45 PM

136 Chapter 7 • Dialog Boxes

Summary
Dialog boxes are one of the most important means of communication between your applica-
tion and your users. In this chapter, I provided several different ways to classify dialog boxes,
and showed you some tips for creating and using effective dialog boxes. I also discussed topics
such as unfolding dialog boxes and cascading dialog boxes, as well as the importance of not
surprising your users. One good way to avoid surprises is to use the common dialog boxes for
common tasks.

Besides dialog boxes, Windows applications have many other elements in common, includ-
ing splitter bars, toolbars, menus, and so on. I’ll discuss a number of these common elements
in the next chapter.

4361Book.fm Page 136 Thursday, November 18, 2004 8:45 PM

Chapter 8

Common Windows User
Interface Elements

•

Toolbars

•

Floating Auxiliary Windows

•

Status Bars

•

Splitters

•

Menus

•

Wizards

4361Book.fm Page 137 Thursday, November 18, 2004 8:45 PM

138

Chapter 8 • Common Windows User Interface Elements

I

n this chapter, I’ll continue digging into some of the common interface elements that users
have come to expect from Windows applications. Most of these—toolbars, floating accessory

windows, status bars, splitters, and menus—are used as parts of an application’s primary win-
dow. As you build up applications from these pieces, you’ll also find yourself needing specialized
secondary windows. I’ll also look at the design and use of one type of secondary window, the
wizard, in this chapter. Wizards are specialized secondary windows that help a user perform a
particular task.

Toolbars

If we all had computer monitors of unlimited size, toolbars might never have been invented.
Like many other parts of the user interface, toolbars are designed to help with a compromise:
They pack a lot of functionality into a limited amount of space. Figure 8.1 shows a typical tool-
bar from a recent application; in this case, Microsoft Outlook 2003.

F I G U R E 8 . 1

The parts of a
toolbar

A toolbar is more than just a collection of buttons. As the figure shows, a modern toolbar can
have these components:

Drag handle

The drag handle allows users to move the toolbar around from one position
on screen to another.

Drop-down button

Drop-down buttons provide access to a menu of additional functionality.

Toolbar button

Toolbar buttons enable the toolbar’s functionality. Clicking a button
normally performs some action.

Button with text

Originally, toolbar buttons displayed only an icon. These days, most
development environments let you put an icon, text, or both on a toolbar button.

Divider

Dividers are small vertical lines on the toolbar that are used to group buttons
together.

Other control

Controls such as combo boxes and toggle buttons can also be placed on tool-
bars, as well as on toolbar buttons. In Figure 8.1, the toolbar includes a combo box control.

Drag
handle

Button
with text Other control

Toolbar
options

Drop-down
button

Toolbar
button

Divider

4361Book.fm Page 138 Thursday, November 18, 2004 8:45 PM

139

Toolbars

Toolbar options

The right end of many toolbars has a toolbar options control, which
provides a shortcut to customization functions for the toolbar. When a toolbar doesn’t have
enough room to display all its controls (due to being too close to the edge of the screen), the
options control also provides access to hidden buttons).

Not every toolbar has all these components, of course.

Almost every application now lets you pull toolbars loose and lets them float, as shown in
Figure 8.2. You can tell this toolbar is independent of the menu area because it has its own
border and title bar.

F I G U R E 8 . 2

A toolbar in floating
mode

NOTE

I’ll discuss docking and floating toolbars in Chapter 11, “User Choice, Customization, and
Confusion.”

Broadly speaking, toolbar buttons provide one of three types of functionality:

●

Triggering actions

●

Setting modes

●

Displaying further options

Most toolbar buttons trigger an action. When the user clicks the primary mouse button on
such a button, the application performs the requested action. If possible, this should be done
without further user interaction. For example, clicking the Save toolbar button in Microsoft
Word saves the current document. If the document has never been saved (and so does not have
a filename), clicking the Save toolbar button opens the Save As dialog box to collect the nec-
essary information, but otherwise it simply saves the document quietly.

Some toolbar buttons are used to display and set modes. For example, the bold, underline,
and italic toolbar buttons in Microsoft Word fit into this category. Figure 8.3 shows how these
toolbar buttons react to the selected text.

In Figure 8.3, the entire selection is in italics, so Word displays the italics toolbar button in
its pushed state. Contrast this with Figure 8.4.

F I G U R E 8 . 3

Mode-setting toolbar
buttons

4361Book.fm Page 139 Thursday, November 18, 2004 8:45 PM

140

Chapter 8 • Common Windows User Interface Elements

F I G U R E 8 . 4

Mode-setting toolbar
buttons

In Figure 8.4, only part of the selection is in bold, so Word does not display the bold toolbar
button in its pushed state.

Mode-setting toolbar buttons also act to affect the selection. If the mode does not already
apply to the selection, clicking the button applies the mode. If the mode already applies to the
selection, clicking the button removes the mode. If the mode partially applies to the selection,
clicking the button applies the mode. For example, clicking the bold toolbar button shown in
Figure 8.4 would make the entire selection bold.

Drop-down buttons have two different modes of operation. If you click the main part of the
button, it performs the default action for the button. But if you click the drop-down arrow
instead, the button displays a selection of alternative actions, as shown in Figure 8.5.

With the drop-down list of buttons displayed, you can select any action by moving the cursor
down to it and then releasing the primary mouse button.

There are two slightly different situations in which drop-down toolbar buttons are a good
solution. In the first, there is a set of closely related actions (such as the various new object
actions that Microsoft Outlook can perform) of which one is always the most likely action. In
this case, the default function of the drop-down toolbar button should remain the same, even
if another action is selected from the drop-down list.

F I G U R E 8 . 5

Drop-down toolbar
button in action

4361Book.fm Page 140 Thursday, November 18, 2004 8:45 PM

141

Floating Auxiliary Windows

In the second situation, the toolbar button is used for grouping a set of actions, but none of
those actions is clearly the most likely. In this case, selecting an action from the drop-down list
should make that action the default action for the toolbar button, changing the image on the
toolbar accordingly. This assumes, of course, that a user is most likely to repeat an action that
they’ve just performed, rather than wanting to perform a new action.

Even if toolbar buttons are only 16 pixels high in the most common format, the images on
these buttons can be quite complex. As Figure 8.6 shows, in many applications toolbar button
images use anti-aliasing (lighter color pixels designed to make lines less jagged) and 3D effects
for a professional look.

F I G U R E 8 . 6

Some toolbar buttons

Professional-looking toolbar buttons can make a big difference to the way your application
is viewed by users. Depending on the audience and your own artistic skills, you may want to
invest in buying toolbar images from a company such as glyFX (

http://www.glyfx.com/

).

Because toolbar buttons can be inscrutable for the user, you should take steps to make their
use more evident:

●

Use care in selecting icons. When there is a standard icon for an action (such as open or
save) you should use that icon.

●

Group related toolbar buttons together, using drop-down buttons or dividers.

●

Add a ToolTip to every toolbar button, so the user can get an additional hint by hovering
the cursor over the button. This will also make your application more accessible to dis-
abled users.

●

Disable toolbar buttons that are not currently applicable.

●

Use toolbars to display buttons for the most common operations by default, but allow users
to add other actions to reflect their own usage patterns.

Floating Auxiliary Windows

Another useful way of organizing the user interface for some applications is to create

floating
auxiliary windows

, sometimes called

palettes

. Figure 8.7 shows the drawing program Paint Shop
Pro with several palettes open.

4361c08.fm Page 141 Thursday, November 18, 2004 10:34 PM

142

Chapter 8 • Common Windows User Interface Elements

F I G U R E 8 . 7

Using palettes for
functionality

Palettes are frequently used in image-manipulation programs and integrated development
environments. In these types of applications, there are many functions available to users, but
groups of functions tend to be used together. For example, in an image-manipulation applica-
tion, the user might need to adjust the size, shape, color, and texture of a drawing tool to achieve
the desired effect. It makes sense to put the controls for those operations together into a palette
so that they can be hidden or shown as a unit.

Palettes are an excellent choice when your application’s functionality is “chunky”—that is,
when there are groups of related actions that are generally performed together. They also work
well when you can identify more advanced functions that can be hidden away on their own pal-
ette until the user is ready to learn about them.

Designers have tried a variety of visual approaches with palettes, including windows that
slide out from the edge of the screen, windows that drop down from toolbars, and windows
with half-height caption bars (like an undocked toolbar). The easiest and most standard way
to implement such windows is simply as an undocked toolbar. Indeed, in many applications,
there really isn’t a difference between a toolbar and a palette other than the fact that one is
docked and the other is not.

4361Book.fm Page 142 Thursday, November 18, 2004 8:45 PM

143

Status Bars

Status Bars

Another common user interface convention is the

status bar

. Figure 8.8 shows a typical status
bar, this one from Visual Studio .NET.

The status bar, which is always located at the bottom of the application’s primary window, con-
tains information that the user might want but does not warrant interrupting the user with a
modal message box. In this particular case, there’s a message about a recent system action, infor-
mation on the location of the cursor in the current code-editing window, and the status of the
Insert key.

F I G U R E 8 . 8

Visual Studio .NET
status bar

As the name suggests, status bars are best used for status information. This should be infor-
mation that the user might want to refer to, but is not readily available elsewhere in the user
interface and is not critical. Developers seem to feel the need to fill the status bar with infor-
mation, which leads to two distinct misuses of this tool:

●

Displaying excess information on the status bar

●

Displaying critical information on the status bar

As an example of the first problem, you’ll often find status bars displaying the system date
and time. In most cases, this is simply visual clutter. Do you really care what time it is when
you’re using a word processor? Even if you do, that information is already readily at hand on
the Windows Taskbar.

An example of the second problem is displaying error messages that prevent the application
from functioning properly on the status bar and nowhere else. Suppose that you’re writing an
XML editor that can save only well-formed XML files. If the user attempts to save a file that’s
not well formed, you should inform them of this error with a message box, not with a message
on the status bar. It’s easy to overlook information on the status bar, and the user might falsely
assume that the file had been saved.

On the other hand, you could enhance this hypothetical application by using both a mes-
sage box and the status bar by displaying an icon on the status bar whenever a file was not
well formed, and using the message box only when the user tries to save a file that is not well
formed. That way, the user could tell at a glance whether there was a problem, without try-
ing to actually save the file.

4361Book.fm Page 143 Thursday, November 18, 2004 8:45 PM

144

Chapter 8 • Common Windows User Interface Elements

RULE

Status bars are most useful as an outward reflection of an application’s inner state. If your
application uses modes that are not immediately obvious to the user (for example, Insert
versus Overwrite for text entry), showing the current mode on the status bar can be very
helpful to the user.

You can also use the status bar as a data entry device. For example, clicking the line number
on the Visual Studio .NET status bar opens a dialog box that lets you enter a different line
number to jump to.

Splitters

Splitters

 allow you to turn a window into multiple panes. Depending on the application, split-
ters are used in a variety of ways. Figure 8.9 shows a splitter in Windows Explorer, where it
divides the folder list from the file list.

The vertical splitter bar in this case provides a way for the user to adjust the relative amount
of space devoted to each of the two panes (the folder list and the file list). When the user
moves the cursor over the splitter bar, it displays a two-headed arrow as a visual cue that this
piece of the user interface can be dragged by holding down the primary mouse button and
moving the mouse. Dragging the splitter to the left gives the file list pane more space at the
expense of the folder list pane; dragging the splitter to the right gives more space to the folder
list pane at the expense of the file list pane. No matter how far you drag the splitter, the total
amount of space taken up on screen by the application never changes; the splitter just adjusts
space allocation within the application.

F I G U R E 8 . 9

A vertical splitter bar
in Explorer

Splitter bar

4361Book.fm Page 144 Thursday, November 18, 2004 8:45 PM

145

Splitters

Editing applications such as Word or Visual Studio use splitters in a different way. By default,
these applications do not display a splitter, but they provide a handle that allows you to create
one, as shown in Figure 8.10.

At any time, the user can grab the splitter handle with the mouse and drag it downward to
form a pair of panes separated by a splitter bar, as shown in Figure 8.11.

F I G U R E 8 . 1 0

Visual Studio .NET
editing window

F I G U R E 8 . 1 1

Visual Studio .NET
editing window with
split

Splitter
handle

Splitter
bar

4361Book.fm Page 145 Thursday, November 18, 2004 8:45 PM

146

Chapter 8 • Common Windows User Interface Elements

By using the splitter bar to split the single editing window into two panes, users can work in
two different parts of the same source file, even if they are separated by many lines of code. The
two panes can be scrolled independently, either horizontally or vertically. The splitter bar can
be dragged up and down to alter the relative screen real estate allocated to the two panes. If the
user drags the splitter bar all the way to the top of the window, Visual Studio .NET removes
the splitter bar and displays just the splitter handle again.

Microsoft Excel takes this convention one step further by placing two splitter handles in its
main window, as you can see in Figure 8.12.

By providing two different splitter handles, the Excel designers made it possible for the user
to split the window horizontally, vertically, or both. Figure 8.13 shows Excel with both hori-
zontal and vertical splitter bars displayed at the same time.

The user can move either splitter independently or both together (by grabbing the place
where the two splitters cross). Although there’s no reason why you couldn’t allow multiple
vertical or horizontal splitters in the same application, I recommend against it. The pair of
splitters in Excel is already confusing enough.

F I G U R E 8 . 1 2

Splitter handles in
Microsoft Excel

Splitter
handles

4361Book.fm Page 146 Thursday, November 18, 2004 8:45 PM

147

Menus

F I G U R E 8 . 1 3

Excel window split into
four panes

Menus

Many applications don’t have splitters or status bars, and even toolbars are not necessary for
simple applications. But just about every Windows application has one or more

menus

. In this
section, I’ll discuss some of the basic principles of organizing menus in Windows applications
and look at some of the design issues surrounding them.

Menu Mechanics

You’ve undoubtedly used menus in Windows applications. But you may not have consciously
absorbed all the fine points of menu operation, so I’ll review the subject here and offer some
tips along the way. As with standard window behavior (which I discussed in Chapter 3, “Man-
aging Windows”), these mechanics should be taken care of by any reasonable development
tool—but it doesn’t hurt to know what you should expect.

4361Book.fm Page 147 Thursday, November 18, 2004 8:45 PM

148

Chapter 8 • Common Windows User Interface Elements

Menus and Menu Items

Menus are available from the menu bar, which is an area directly beneath the caption bar of the
window. Each menu is identified by a menu title. Each menu title provides you with a way to
get to a drop-down menu composed of menu items.

NOTE

If an application allows a large amount of customization, the menu bar might be located
anywhere, rather than directly below the caption bar. I’ll discuss this further in Chapter 11.

A drop-down menu generally displays a list of menu items in a single column. There are three
ways in which applications handle menus with too many items to display at the current screen
resolution:

●

Display only as many items as will fit, and let the rest be cut off by the bottom of the screen.

●

Display the menu items in two or more columns.

●

Display the menu items in a scrolling column.

You can see the second and third of these choices in the behavior of the Windows Start menu
when you have many applications involved. For your own applications, though, there is a much
better solution: don’t place that many items on a single menu. Split the items between multiple
menus and, if necessary, use cascading menus (discussed later in this chapter) to add an addi-
tional level of hierarchy.

Using the Mouse with Menus

When you roll the mouse cursor over a menu title, that menu title is highlighted in some fashion.
Exactly how it’s highlighted depends on the operating system and the library used to construct
the application. Figure 8.14 shows some of the ways that a highlighted menu title can appear.

F I G U R E 8 . 1 4

Highlighted
menu titles

4361Book.fm Page 148 Thursday, November 18, 2004 8:45 PM

149

Menus

From top to bottom, Figure 8.14 shows these menu styles:

●

System standard on Windows 2003

●

Office 2003 on Windows 2003

●

System standard on Windows XP

●

Office 2003 on Windows XP

Regardless of the exact combination of software and operating system, the menu highlight-
ing is meant to indicate to users that this is a place that they can click. Clicking the menu title
displays the drop-down menu descending from that menu title, as shown in Figure 8.15.

With a drop-down menu displayed, the user has several options:

●

Moving the mouse from side to side opens each menu in turn as the cursor passes over its
menu title.

●

Moving the mouse down highlights each menu item in the current drop-down menu as the
cursor passes over it.

●

Moving the mouse entirely outside of the menu area leaves the most recent highlighting in
place.

To activate a menu item, the user points the cursor to that menu item and clicks the primary
mouse button. This triggers the menu item’s action without further confirmation (just as click-
ing a toolbar button does).There’s also a shortcut method for triggering a menu action: Click
the menu title, and without releasing the mouse button, move the mouse down to the desired
menu item. Then release the mouse button to trigger the action. In either case, after the user
triggers a menu action, Windows closes the menu.

F I G U R E 8 . 1 5

Drop-down menu
in action

4361Book.fm Page 149 Thursday, November 18, 2004 8:45 PM

150

Chapter 8 • Common Windows User Interface Elements

If you click a menu item and move the mouse off the menu before releasing the button, the
menu will vanish but the associated action will not be triggered. If you click a menu item and
move the mouse to a different menu item before releasing the mouse button, the last menu
item will be the one that is executed.

Using the Keyboard with Menus

Of course, there’s also a complete interface for using menus with the keyboard rather than the
mouse. To start with, pressing and releasing either the Alt key or the F10 key will activate the
first menu, just as if you had passed the mouse cursor over it. From here, you can move between
menus by using the left and right arrow keys, or by pressing the alphanumeric key that corre-
sponds to the accelerator key of the menu title.

With a menu highlighted, press either the up arrow or the down arrow to display the associated
drop-down menu. You can at this point still navigate between menus with the left and right arrow
keys, or between menu items using the up and down arrows. With a particular menu item high-
lighted, the Enter key will activate the menu item to trigger the corresponding action.

With a drop-down menu open, the user can press the Esc key to close the menu. This will
leave the menu title highlighted. To completely deactivate the menus, click Esc a second time.

There are also two different ways to speed up keyboard access to menu commands. The first
is through the use of

accelerator keys

. For example, the File menu is generally assigned F as an
accelerator key and contains an Exit menu item that is assigned X as an accelerator key. With
these assignments, a user can trigger the Exit menu item by pressing Alt+F and then X; or by
pressing Alt+F,X (that is, holding down the Alt key and pressing F, followed by X without
releasing the Alt key).

F I G U R E 8 . 1 6

Menu items with direct
shortcut keys

4361Book.fm Page 150 Thursday, November 18, 2004 8:45 PM

151

Menus

The second way to speed up keyboard access is to assign shortcuts directly to menu items.
For example, the Open menu item on the File menu is often assigned Ctrl+O as a shortcut key.
In this case, pressing Ctrl+O triggers the same action as selecting Open from the File menu,
without actually displaying the menu. By convention, these direct shortcut keys should be dis-
played directly to the right of the corresponding menu item, as shown in Figure 8.16.

Although some shortcut keys are quite common (for example, Ctrl+O for open or Ctrl+F for
find), they are by no means standard across every application ever written. They can’t be, of
course, because every application has its own functionality. That’s why it’s so useful to display
the direct shortcuts on your application’s menus: It provides an easy way for users to learn how
to most efficiently use your application.

Types of Menu Items

Menu items perform one of three distinct operations:

●

Triggering actions

●

Setting modes

●

Opening further menus

Most menu items trigger an action. When the user selects the menu item, the application
performs the requested action. If possible, this should be done without further user interaction.
For example, selecting the Save menu item on the File menu in Microsoft Word saves the cur-
rent document. If the document has never been saved (and so does not have a filename), select-
ing the Save menu item will open the Save As dialog box to collect the necessary information,
but otherwise it simply saves the document quietly.

Some menu items, though, always require user input. A good example is the AutoFormat
menu item in Microsoft Excel. The user can select this menu item to apply an AutoFormat, but
they’ll always need to select the actual AutoFormat from the AutoFormat dialog box. To indi-
cate this on the menu, follow the menu item with

ellipsis points

 (…), as shown in Figure 8.17.

F I G U R E 8 . 1 7

Indicating that a
menu item requires
more input

4361Book.fm Page 151 Thursday, November 18, 2004 8:45 PM

152

Chapter 8 • Common Windows User Interface Elements

Most applications have some limit on the particular actions that are allowed at any given time.
You should be sure to give visual cues on menus by disabling menu items that are not currently
allowed.

Some menu items are used to set modes in an application. These menu items operate similarly
to check box controls, and the application can display a check to the left of them. Figure 8.18
shows the View menu of WordPad, which has four such menu items. This menu lets you turn
various parts of the user interface on or off. If a particular part is currently displayed, the menu
item is displayed with a check to the left; if the menu item has no check, that piece of user inter-
face is currently hidden. Selecting one of these menu items toggles the state from displayed to
hidden or back.

F I G U R E 8 . 1 8

Menu items with
checkmarks

Checked menu items have the same semantics as check box controls: any number can be
checked or unchecked independently. In some cases, you might also see menu items that are
the equivalent of radio buttons, so that selecting one deselects any others. Figure 8.19 shows
that such items are rendered with a dot to the left if they are selected.

Finally, menu items can open additional menus that are subsidiary to the main menu. I’ll dis-
cuss these

cascading menus

 later in the chapter.

F I G U R E 8 . 1 9

Menu items acting as
radio buttons

4361Book.fm Page 152 Thursday, November 18, 2004 8:45 PM

153

Menus

Organizing and Naming Menu Commands

With so many menu commands in the average application, it pays to put some thought into
their organization. Ideally, you want users to find your menu arrangement so obvious that they
can go straight to the functionality they want without any thought. Although you’re unlikely
to reach that ideal, there are some things that you can do to make life easier. I’ll discuss four
topics in this section:

●

Common menus

●

Naming menu items

●

Cascading menus

●

Using dividers

Common Menus
If your application uses functionality that is the same as (or very similar to) that used by other
applications, you can benefit by using the common menu structures that many applications
agree on.

File menu The File menu is generally the first menu on the menu bar. It contains com-
mands that operate directly on a file (assuming that your application is file-based). Typical
menu items for the File menu include New, Open, Save, Save As, Send To, Print, and
Properties. The File menu also often contains a most-recently used (MRU) list of files that
you have worked with in the application. The final item in the File menu should be the Exit
menu item.

Edit menu The Edit menu provides a home for general-purpose editing commands,
which include Cut, Copy, Paste, Undo, Redo, Find, Replace, Select All, Go To, and Delete.

View menu The View menu is a place for commands that change the user’s view of data.
Typical commands for the View menu include Full Screen and Zoom. If you allow showing
or hiding particular parts of the user interface, these menu items should also be placed on the
View menu.

Tools menu The Tools menu provides access to actions that open up additional function-
ality. Typical entries here include Options, Customize, Add-Ins, and Macros. Any large
chunk of functionality is a candidate for the Tools menu. For example, launching wizards or
processes such as a spell-check is usually done from this menu.

Window menu If your application allows multiple child windows, the Window menu pro-
vides access to functions for managing these windows. These entries include Arrange All, Next
Window, Previous Window, Hide, Unhide, and any commands relating to panes. You should
also provide dynamic menu items on this menu for each currently open window.

4361Book.fm Page 153 Thursday, November 18, 2004 8:45 PM

154 Chapter 8 • Common Windows User Interface Elements

Help menu The Help menu is the main interface to your application’s help system. The
menu items on this menu can include Contents, Index, About, and Online Feedback.

In addition to these standard menus, you should also feel free to commandeer any other
menu that matches your own application’s functionality. For example, if you allow the user to
insert a variety of different objects into documents, you’ll probably want to include an Insert
menu modeled after Excel’s Insert menu.

Naming Menu Items
Naming menu items is mainly a matter of common sense. But common sense is often quite
uncommon, especially when you’ve been writing code for 22 hours straight. In that light, here are
some guidelines to help you choose effective and useful names for menu titles and menu items.

● Every menu title (and its accelerator key) should be unique in the application. That is, you
can’t have two Format menus in the same application.

● Every menu item on a single menu (and its accelerator key) should be unique on that menu.
Menu items can, however, repeat across menus. For example, both the Edit and Format
menus could include a Picture menu item without causing confusion.

● Every menu title and menu item should have an accelerator key.

● Commonly used menu items should have direct shortcut keys.

● Menu title names should be a single word.

● Both menu title names and item names should be brief and clear. Strive for the shortest text
that captures the functionality.

● Use only real words, or terms that your application uses consistently, in menu text. Don’t
use made-up words such as HomeRow unless those terms are used elsewhere in your
application.

● If a menu item consists of more than one word (such as Task Pane or Reveal Formatting)
use book title capitalization.

● Don’t format menu items with fonts, bold, italics, or other non-standard formatting. Use
the system menu font.

● Use verbs or phrases consisting of a verb and a noun for action-oriented menu items. Use
nouns for state-oriented menu items. For example, a menu item to set the background
color should be Set Background, not Background Set. A checked menu item that controls
whether a selection is in italics should be captioned Italics.

● If a common application (such as Internet Explorer or one of the Microsoft Office pro-
grams) provides similar functionality to your application, use the same menu items that
that application does for the similar functionality.

4361Book.fm Page 154 Thursday, November 18, 2004 8:45 PM

155Menus

Using Cascading Menus
Cascading menus (also called submenus) are a way of adding additional functionality to a menu
without merely adding more menu items to the menu. Figure 8.20 shows a cascading menu in
action.

F I G U R E 8 . 2 0
Cascading menu in
Microsoft Excel

In this particular case, the Picture menu item on the Insert menu in turn leads to an entire
menu of different types of pictures that the user can insert in a spreadsheet. Rather than includ-
ing each of these menu items individually in the main Insert menu, the Excel developers chose
to use a cascading menu to group them together.

Cascading menus are distinguished visually by the small triangle at the right side of the menu.
In Figure 8.20, the Name menu item also leads to a cascading menu.

If you’re using the mouse to navigate menus, there is a small delay before the cascading menu
is delayed. To avoid this delay, you can click the cascading menu item. When navigating with
the keyboard, there’s no delay; selecting the cascading menu item immediately displays the
submenu.

Cascading menus are a useful device for hiding complexity and grouping functionality. But
there’s a trade-off here: The more functionality you place on a cascading menu, the more time
users will spend navigating to get to those menu items. You can also place cascading menus on
cascading menus, but you should use this technique sparingly, if at all. Such sub-submenus are
very hard for the user to discover.

Using Dividers
Menu dividers provide a device for grouping menu items together. Figure 8.21 shows a menu
with several dividers.

4361Book.fm Page 155 Thursday, November 18, 2004 8:45 PM

156 Chapter 8 • Common Windows User Interface Elements

F I G U R E 8 . 2 1
Dividers on a menu

Dividers themselves have no direct functionality in the application. You can’t highlight or
click on a menu divider. But they provide a useful visual cue for the user in a hurry who’s scan-
ning the menu, looking for desired functionality. In Figure 8.21, for example, all the menu items
having to do with Clipboard operations are in one section of the menu, and those having to do
with deletions are in another section, walled off from one another by dividers.

RULE Dividers don’t take up much space, and they enhance the look of most menus by introduc-
ing some much-needed empty space into the menu. You use them whenever you have a
group of related menu items that you can group using this technique.

Shortcut Menus
Shortcut menus (also called context menus or pop-up menus) are a way to attach a menu directly to
an object or a portion of the user interface of your application, rather than having the menu be
a part of the main menu bar. Shortcut menus provide a useful place to show frequently used
actions.

WARNING Sometimes you’ll see shortcut menus referred to as right-click menus, but this is not tech-
nically correct because they are left-click menus if the user chooses to swap their mouse
buttons.

Shortcut menus have several advantages in most applications:

● Because they include only functions that apply to the current object, they are typically
shorter and easier to navigate than regular menus.

Dividers

4361Book.fm Page 156 Thursday, November 18, 2004 8:45 PM

157Menus

● Because they’re displayed at the point where the user clicks the mouse, they remove the
need for the user to move the mouse across the screen to select a menu item.

● Because they’re displayed only on demand, they don’t take up screen real estate or contrib-
ute to visual busyness in your application.

Shortcut menus are displayed when the user clicks the secondary mouse button somewhere
in the application, or when they click Shift+F10 or the Application key (on keyboards that are
equipped with such a key). The user can then select an item on the shortcut menu with the
primary mouse button. Alternatively, they can click outside of the menu with either mouse
button (clicking elsewhere with the secondary mouse button displays the shortcut menu
appropriate to the new location) or press the Esc key to dismiss the shortcut menu without
selecting an item.

Follow these guidelines when designing shortcut menus:

● Keep shortcut menus short. As a rule of thumb, limit them to a dozen items or fewer.

● Make shortcut menus as sensitive to context as possible. If the user clicks part of the user
interface (such as a toolbar or status bar), the shortcut menu should contain commands that
act on that piece of the user interface. If they click on an object, include actions that can be
performed on that object.

● Place the most important and common actions at the top of the shortcut menu to further
minimize mouse movement.

● Don’t display direct shortcut keys on shortcut menus. You know the user already has
their hand on the mouse when they see a shortcut menu, so you don’t need to provide
keyboard cues.

● The shortcut menu shouldn’t contain any surprises. That is, every action on the shortcut
menu should also be available elsewhere in the user interface, so that the user is never
forced to use a shortcut menu.

● By convention, the Properties command should be the last command on a shortcut menu
(when it is present at all).

Menu Styles
Most of the menus that you’ve seen in this chapter (and indeed, most of the menus that you’ll
see on screen) are simple gray panels with black text. But there are applications that do fancier
things with menus, and you should be aware of those style innovations. Microsoft Office appears
to be the leading source of such innovations, and I’ll admit that I’m not at all sure that they’re
a good thing. On the one hand, Microsoft invests a lot of time and money in usability testing,
which means they should know something about what works. On the other, it seems like many

4361Book.fm Page 157 Thursday, November 18, 2004 8:45 PM

158 Chapter 8 • Common Windows User Interface Elements

of these innovations are just a way to make Microsoft’s own applications look different and
memorable. My advice is to adapt these new styles if you can do so easily, but don’t waste an
enormous amount of time trying to mimic Microsoft (especially considering that they’ll change
things again with their next release).

One such innovation is the menu icon. Figure 8.22 shows the Edit menu from Excel 2003.

The menu items with icons are those that match toolbar buttons with the same icon. If the
user knows their toolbars well, this can provide a visual cue for quickly finding an item on the
menu. On the other hand, I also suspect that this was done mainly to fill up unused space (which
needed to be reserved for check marks on menu items that reflect state). There’s nothing wrong
with this from the standpoint of eye candy, but I doubt that it really helps anyone very much.

Something that I’m sure doesn’t help is the continuing search for new visual styles for menus.
Figure 8.23 shows the same menu in two different versions of Office.

The menu on the left comes from Excel 2002, and the menu on the right comes from Excel
2003. In the intervening year, the Excel designers opted for a more shaded approach to the left
margin of the menu and different default colors. To me, this change is in the same category as
slapping “New and Improved” on the front of a box of laundry detergent.

Finally, Office is the original home of the adaptive menu, sometimes called the IntelliMenu.
Adaptive menus have a small downward-pointing arrow at the bottom. When you hover over
this arrow with the mouse cursor for a moment, the menu expands to show additional items,
as shown in Figure 8.24.

F I G U R E 8 . 2 2
A menu with icons

4361Book.fm Page 158 Thursday, November 18, 2004 8:45 PM

159Menus

F I G U R E 8 . 2 3
Menu changes
from Office XP to
Office 2003

F I G U R E 8 . 2 4
Adaptive menu in
action

Adaptive menus are designed to help make life easier for new users by showing only the most
common menu items by default. Unfortunately, new users are also the ones least likely to under-
stand that there are more menu items lurking, whereas advanced users tend to get annoyed by
having to go hunting for the advanced menu items. I suggest you avoid this technique unless you
have a truly overwhelming number of menu items in your application. Even then, you should
provide users with a way to turn off the adaptive behavior and simply display all of the menu
items at all times.

TIP If you do decide that you want to adapt one of the fancy menu styles, several ISVs sell com-
plete menu design packages for popular development environments. A good place to start
is with a component reseller such as Xtras.NET (http://xtras.net/).

4361Book.fm Page 159 Thursday, November 18, 2004 8:45 PM

160 Chapter 8 • Common Windows User Interface Elements

Wizards
The user interface pieces I’ve looked at so far in this chapter are all designed to be a part of your
application’s primary window (though they also apply to some secondary windows). Wizards,
in contrast, are always secondary windows. A wizard offers a step-by-step interface to help a
user perform a particular task. Wizards don’t replace other ways to perform tasks, but they’re
often the most accessible way for a new user to get started with an application.

Wizards vary a good deal in design, but the most common way to build a wizard is as a sec-
ondary window (usually modal) that displays a series of pages. The first page provides an intro-
duction to the wizard, explaining its purpose. After that comes one or more pages in which the
user interacts with the wizard. Finally, there’s a completion page that confirms the user’s
choices and tells the wizard to actually perform its work.

If you have a computer science background, you may recognize a wizard as a state machine. In
a state machine, work is divided into a series of states that are connected by transitions. In a wiz-
ard, each button click serves as a transition. Figure 8.25 shows a state machine diagram of a
hypothetical wizard.

F I G U R E 8 . 2 5
State machine dia-
gram of a wizard WelcomeStart Next

Enter
Message

Back Next

Choose
Recipients

Back Next

ConfirmationBack Finish

4361Book.fm Page 160 Thursday, November 18, 2004 8:45 PM

161Wizards

This particular wizard starts with a welcome page. It then contains two functional pages, fol-
lowed by a confirmation page. Each page has Next and Back buttons to allow the user to move
through the wizard. You should design wizards so that the user can move back and change their
mind at any time; a wizard should not make any permanent changes before the user confirms
their choices on the final page of the wizard. In addition to Back and Next, there are three other
standard buttons that you may find in a wizard:

● The Cancel button discards all the user’s choices and closes the wizard without performing
any actions.

● The Finish button completes the wizard and performs the specified actions. You can
include the Finish button on pages before the confirmation page if it makes sense to finish
the wizard with default choices for the other pages.

● The Help button opens context-sensitive help specific to the wizard.

Figure 8.26 shows a typical wizard welcome page.

F I G U R E 8 . 2 6
First page of a
wizard

The welcome page contains a graphic identifying the theme of the wizard, a title, and some
explanatory text. It also has all the buttons that will be used throughout the wizard, even if some
of them don’t apply on this page. The buttons that do not apply are disabled. This way, the but-
tons won’t appear to change or jump around as the user moves from page to page. It’s also use-
ful to include a check box that allows experienced users to suppress the welcome message after
they’ve read it a few times.

Figure 8.27 shows an interior page from the wizard.

4361Book.fm Page 161 Thursday, November 18, 2004 8:45 PM

162 Chapter 8 • Common Windows User Interface Elements

F I G U R E 8 . 2 7
An interior page
of a wizard

The interior pages of a wizard should repeat the thematic graphic from the welcome page.
If you need additional space for other controls, consider using a reduced-size or cropped ver-
sion of the graphic. Group controls together into pages with cohesive functionality, and pro-
vide the user with an explanation of the page. Each page should also contain a title indicating
where the user is in the process.

Figure 8.28 shows the confirmation page of a wizard.

Once again, the confirmation page repeats the visual theme of the rest of the wizard. The text
on this page should make it clear to the user exactly what will happen when they click the Finish
button. You might also want to provide ways to help the user proceed with likely next steps,
which can take the form of offering to open a help page or giving the user a choice of modes
in which to open a newly created object.

In general, user interface text on a wizard should be friendly and informal. This part of your
application’s user interface will be most useful for novice users; advanced users should be able
to work with objects and perform tasks directly, without the handholding.

F I G U R E 8 . 2 8
Confirmation page
of a wizard

4361Book.fm Page 162 Thursday, November 18, 2004 8:45 PM

163Summary

Summary
In this chapter, you learned about many of the tools and techniques that you can use to make
your applications more attractive and usable. Toolbars and menus provide the user with ways
to interact with your application. Status bars can give back essential information when the user
needs it, whereas splitters allow you to make good use of screen real estate. Wizards are an
essential device for helping less-experienced users.

Now we need to look outward from the application to the user for a few chapters. I’ll start
by examining how users enter data and navigate through an application, and consider what this
means to your application’s design.

4361Book.fm Page 163 Thursday, November 18, 2004 8:45 PM

4361Book.fm Page 164 Thursday, November 18, 2004 8:45 PM

Chapter 9

User Input and Navigation

•

Five Ways to Work

•

Organizing an Application

•

Under the Covers

4361Book.fm Page 165 Thursday, November 18, 2004 8:45 PM

166

Chapter 9 • User Input and Navigation

I

t’s easy to think about the typical user when you’re writing software. With some more or less
vague idea in mind, you can target your software for this typical user. But, of course, there

is no typical user; there are only particular users. In this chapter, I’ll discuss some of the things
you can do to make your software’s user interface work well for all of the particular users who
want to use it, regardless of their own preferences.

Five Ways to Work

Suppose that you want to perform a simple operation, such as moving a piece of text from one
location to another in a Microsoft Word document. Although one way to do this probably
comes to your mind first, there are five distinct methods you can use to perform the actual
move operation:

●

Keyboard Shortcuts

●

Toolbar

●

Menus

●

Menu Shortcuts

●

Direct Action

Although you can’t perform every action in every application in all five of these ways, it’s
worth keeping them in mind. Let’s take a closer look at the way these methods might apply to
the problem of moving text in Word.

Keyboard Shortcuts

Some users prefer to work without ever lifting their fingers from the keyboard. One of the basic
foundations of Windows is to accommodate these users with keyboard shortcuts. That’s not
just to cater to people’s prejudices. Some people (those who can’t manipulate a mouse) might
have no choice but to use the keyboard or an alternative input device that the system treats as
a keyboard.

To move a piece of text using only keyboard shortcuts, you could proceed as follows:

1.

Move the cursor to the start of the text to be moved by using the standard cursor-
movement keys.

2.

Hold down the Shift key and move the cursor to highlight the text to be moved.

3.

Click Ctrl+X to cut the selected text.

4.

Move the cursor to the new location for the text.

5.

Click Ctrl+V to paste the selected text.

4361Book.fm Page 166 Thursday, November 18, 2004 8:45 PM

167

Five Ways to Work

Although using only the keyboard in any major application requires learning many arbitrary
key sequences, it can be a very fast way for an experienced user to interact with an application.
Many of the fastest developers and writers use the keyboard almost exclusively for their work.

Toolbar

The toolbar-oriented user might prefer this approach to moving a piece of text:

1.

Highlight the test to be moved by holding down the primary mouse button and dragging
across the text.

2.

Click the Cut toolbar button on the Standard toolbar.

3.

Click the mouse at the new location for the text.

4.

Click the Paste toolbar button on the Standard toolbar.

Here I’ve shown how to combine toolbar actions with mouse selection, but of course you
could equally well select text with the keyboard and still use the toolbar for actions. The toolbar
buttons don’t care how the user selects the text.

Menus

Menus are pervasive in Windows, and are generally the definitive list of what an application
can do. That is, the menus usually expose all the commands in an application, whereas key-
board shortcuts and toolbar buttons cover only a subset of the most important functionality.
With the menus, text-moving looks like this:

1.

Highlight the text to be moved by holding down the primary mouse button and dragging
across the text.

2.

Select Cut from the Edit menu.

3.

Click the mouse at the new location for the text.

4.

Select Paste from the Edit menu.

Combining the mouse with the menus allows you to perform many operations without
touching the keyboard at all. Although not generally as fast as using the keyboard for every-
thing, this process might work out better for those concerned about the health aspects of exces-
sive keyboard use.

TIP

One case where a mouse makes for fast work is browsing for information on the Internet.
If you get a mouse equipped with a wheel, as well as forward and back buttons, you can
review large quantities of data without ever touching the keyboard.

4361Book.fm Page 167 Thursday, November 18, 2004 8:45 PM

168

Chapter 9 • User Input and Navigation

Menu Shortcuts

Of course, you can activate the menus by using the keyboard instead of the mouse:

1.

Move the cursor to the start of the text to be moved by using the standard cursor-
movement keys.

2.

Hold down the Shift key and move the cursor to highlight the text to be moved.

3.

Click Alt+E,T to cut the selected text.

4.

Move the cursor to the new location for the text.

5.

Click Alt+E,P to paste the selected text.

As with using keyboard shortcuts, using menu shortcuts lets you operate without having to
remove your hands from the keyboard.

Direct Action

There are no real-world objects in your computer. If you open the case, you won’t find little
customers or calendars inside. But sometimes it’s useful to pretend that there are. That’s the
point of direct actions: They provide an analog to real-world activities but carried out on the
digital stage.

Word encourages this view by treating text as something that you can pick up and drag with
the mouse. To move a piece of text, you can follow these steps:

1.

Highlight the text that you want to move by using either the keyboard or mouse methods
discussed earlier.

2.

Click the primary mouse button anywhere in the highlighted text. While holding the but-
ton down, drag the text to the desired new location.

3.

Release the mouse button.

Although direct action provides an easy way to perform some tasks, it’s inherently limited in
most applications. With dozens of operations and only a limited number of basic ways to use
the mouse and keyboard, the developer needs to choose carefully which tasks should map to
direct actions.

A Final Way: The Hybrid Approach

It’s tempting to suppose that you can use these varied ways of working to come up with a sort of
taxonomy of users, and then put in functionality for each kind of user. For example, thinking
of some of your users as keyboard-only will encourage you to make every part of the application
accessible through the keyboard. Although this is a useful thing to do, it’s also far too simplistic
a view of users.

4361Book.fm Page 168 Thursday, November 18, 2004 8:45 PM

169

Organizing an Application

The truth is that users vary in their approaches—depending on the application, the task
they’re performing, or even their mood. Even the most committed keyboard-only user touches
the mouse once in a while, and even the user who relies on menus for most of his work sooner
or later picks up a shortcut key or two.

As a developer, one of your jobs is to provide the flexibility for users to make their own deci-
sions about how to perform any particular task. It’s a mistake, for example, to build in a config-
uration dialog box that forces the user to choose between keyboard-centric and mouse-centric
ways to perform operations in your application. Instead, you should make both modes of oper-
ation freely available and let users shift back and forth as they please.

Organizing an Application

The user interface for many applications seems to just grow organically. As developers imple-
ment new functionality, they stick on menu items, toolbar buttons, and keyboard shortcuts
wherever they can find room. The result is often confusing. The lack of upfront planning can
result in keyboard shortcuts being assigned in uncommon ways because the common shortcut
was already used, or in toolbar buttons being left off because less-useful buttons are already
occupying all the available space.

If you want to develop a good user interface, you should allocate time for planning the user
interface when you design the application. In this section, I’ll work through a structured
approach to organizing the user interface for the (fictitious) SpamOVator application that
I used for some other examples.

Start with Functionality

A good starting point for the process is a simple list of the functions that you expect the appli-
cation to perform. For SpamOVator, such a list might look like this:

Create a new message Font and size

Import a message from another application Spell check

Obfuscate a message Find proxy servers

Set the number of copies Evaluate subject line for avoiding filters

Suggest a subject line Report on results of a mailing

Exit the application About the application

Set the return address Properties

Send the message Set up Internet account

4361Book.fm Page 169 Thursday, November 18, 2004 8:45 PM

170

Chapter 9 • User Input and Navigation

This list isn’t in any particular order; it’s the sort of thing that might arise from a brainstorm-
ing meeting, or from going through a set of product specifications to extract functionality.

Finding the Hierarchy

Faced with a heap of functionality, your first job is to put it into some sort of order. I like to start
by planning menus. That’s because the menu system forms a natural hierarchy, which means
that I can focus on one small portion of the problem at a time.

You can create your hierarchy with just about any outlining tool. At this point, I recommend
not actually working with a programming language, not even with one as easy to prototype with
as Visual Basic. Instead, use a business application so that you can focus on the organization and
are not tempted to start writing code.

One possible approach is to use the outlining feature of Microsoft Word. Figure 9.1 shows
the list of SpamOVator features converted to a Word outline.

With Word’s outlining features, it’s easy to move things around, and easy to expand and con-
tract individual menus to focus on. Word also has the advantage of being widely familiar to
most computer users.

Note that I identified some of the actions as not actually being on menus. Although making
text bold, italic, or underlined is an important action in most text-processing applications, these
operations are not normally placed on any menu. Instead, they’re accessible only through
shortcut keys and toolbar buttons.

Another possibility is Microsoft Excel. Figure 9.2 shows the SpamOVator menu hierarchy
rendered as an Excel spreadsheet.

Set a time for delay sending Cut

Convert to HTML Copy

Convert to plain text Paste

Save Delete

Save As Find

Open saved message Options

Insert picture in HTML Next window

Insert tracking GIF in HTML Previous window

Bold Arrange all windows

Italic Help contents

Underline Help index

4361Book.fm Page 170 Thursday, November 18, 2004 8:45 PM

171

Organizing an Application

F I G U R E 9 . 1

Working out the menu
hierarchy in Word

Excel also makes it easy to move around blocks of text by dragging them. There are outlining
features available in Excel, but I didn’t use them in this example. Excel’s outlining is a bit clunky,
displaying nesting with lines in the margin rather than traditional indentation. As you’ll see a bit
later, Excel can be exceptionally handy if you want to record additional information for each
menu item.

4361Book.fm Page 171 Thursday, November 18, 2004 8:45 PM

172

Chapter 9 • User Input and Navigation

F I G U R E 9 . 2

Working out the menu
hierarchy in Excel

A final possibility is to use one of the more or less flexible pieces of outlining software on the
market. Figure 9.3 shows one alternative that I like: MindManager (

http://www.mindjet.com

).

The main benefit of outlining software is that it usually contains features to make it easy to
rearrange items, which is useful when you’re trying to settle on a menu hierarchy. Such soft-
ware often contains other features designed to encourage brainstorming as well—for example,
the ability to add fancy fonts, colors, or pictures to the diagram. Although these features may
not benefit you in designing menus, they can have other uses.

4361Book.fm Page 172 Thursday, November 18, 2004 8:45 PM

173

Organizing an Application

F I G U R E 9 . 3

Working out the
menu hierarchy in
MindManager

Refining the Menus

Having identified which menus and menu items your application will support, your next task
is to place these items in a reasonable order. Start by ordering the menus themselves, following
these rules:

●

The File menu should always come first.

●

If there is an Edit menu, it should come directly after the File menu.

●

The Help menu should always come last.

●

If there is a Window menu, it should come directly before the Help menu.

●

If your other menus resemble those of a major application, use the order of that application.
For example, Format should follow Insert because both Word and Excel use that ordering.

●

Place the most frequently used menus closer to the start of the menu bar.

4361Book.fm Page 173 Thursday, November 18, 2004 8:45 PM

174

Chapter 9 • User Input and Navigation

By using these rules, I was able to settle on an order for the top-level menu items for
SpamOVator quickly:

1.

File

2.

Edit

3.

Message

4.

Format

5.

Tools

6.

Window

7.

Help

The next step is to order the items within each menu. There are some rules for this as well:

●

Group related items together.

●

Use separators between groups.

●

Place the most frequently used menu items closer to the top of the menu.

●

If there’s an implied ordering between menu items, keep them in that order. For example,
if a menu has separate items to set starting and ending dates for a process, the starting item
should come before the ending item.

●

If your menu items resemble those of a major application, use the order from that applica-
tion. For example, Cut, Copy, and Paste always go in that order.

Figure 9.4 shows my Excel spreadsheet of menus after applying these rules to order the items
on each menu.

The menu separators are each indicated by a single dash on the worksheet. If you look
closely, you’ll see that I actually inserted some new menu items in this step of the process.
When working through the design of your user interface this way, it’s not unusual to need to
reconsider previous decisions or to discover that you left something out.

Assigning Menu Shortcut Keys

Remember, every menu item should have a corresponding shortcut key. This is where working
in Excel starts to become useful. I like to make a second copy of my menu structure and then
remove everything but the shortcut key for each menu and menu item. This makes it easy to
scan down each column and make sure that there are no conflicts in shortcut keys.

4361Book.fm Page 174 Thursday, November 18, 2004 8:45 PM

175

Organizing an Application

F I G U R E 9 . 4

The SpamOVator
menu structure refined

4361Book.fm Page 175 Thursday, November 18, 2004 8:45 PM

176

Chapter 9 • User Input and Navigation

Of course, there are some guidelines for selecting good menu shortcut keys. These rules
include the following:

●

Do not duplicate shortcut keys at any given level. For example, no two menus should have
the same shortcut key, and no two menu items on the same menu should have the same
shortcut key. It’s OK for menu items on two different menus to share a shortcut key.

●

Use the first letter of the text of the menu or menu item whenever possible.

●

As a second choice, use the first letter of the second word of a longer menu item.

●

As a third choice, use a distinctive consonant or vowel in the text.

●

As a fourth choice, use wide letters such as w, m, or capital letters.

●

Avoid using letters with descenders (g, j, p, q, or y), letters next to letters with descenders,
or single-pixel-wide letters (I, i, or l). It’s difficult to see the underline for a shortcut key on
these letters.

●

Use the shortcut keys used by other applications whenever possible. In common cases, this
overrides the other rules. For example, the Exit menu item on the File menu should always
use x for its menu shortcut key.

Figure 9.5 shows my Excel worksheet for SpamOVator with the addition of menu shortcut keys.

Assigning Direct Shortcut Keys

This is a good time to assign direct shortcut keys (such as Ctrl+X for cut) to the application. If
you’re using a spreadsheet, you can add one new column to keep track of this information.
Here are some guidelines to follow:

●

Use common shortcuts, such as Ctrl+X for cut and Ctrl+F for find, whenever possible.

●

Use Ctrl+key combinations or the F1 through F12 special function keys for most direct
shortcuts.

●

If a shortcut reverses the effect of another shortcut, you can add the Shift key to signify the
reversal. For example, Ctrl+F6 is the standard shortcut for Next Window, which is why
Shift+Ctrl+F6 is the standard for Previous Window.

●

Avoid using special characters, such as $ or ̂ . These characters might not be present on all
keyboards.

●

Avoid using Alt+letter combinations because these combinations are reserved for menu
shortcut keys.

●

Avoid using Ctrl+Alt combinations because some language keyboards use these keys as a
way to generate alternative characters.

4361Book.fm Page 176 Thursday, November 18, 2004 8:45 PM

177

Organizing an Application

F I G U R E 9 . 5

Coming up with menu
shortcut keys

Figure 9.6 shows the plan for SpamOVator with the addition of direct shortcut keys.

RULE

Remember, a direct shortcut saves only a single keystroke over menu shortcuts in most
cases. You should define direct shortcuts for only the most common actions.

4361Book.fm Page 177 Thursday, November 18, 2004 8:45 PM

178

Chapter 9 • User Input and Navigation

F I G U R E 9 . 6

Assigning direct short-
cut keys

Choosing Toolbars

It remains to decide which actions should be presented on the application’s default toolbars. In
general, every action from the menus should be available when the user is customizing the
application’s toolbars, but it would be overwhelming to include all these choices by default. So
you need to think about which actions to show the new user.

4361Book.fm Page 178 Thursday, November 18, 2004 8:45 PM

179

Organizing an Application

TIP

You’ll learn more about toolbar customization in Chapter 11, “User Choice, Customization,
and Confusion.”

When selecting actions to include on toolbars, consider these factors:

●

The most common operations for your application should be readily available through
toolbar buttons.

●

You should include no more than about 20 items on a toolbar by default, to make sure that
it will entirely fit on a low-resolution screen. Remember, if you include controls such as a
font selection combo box, the toolbar will hold fewer controls.

●

Use different toolbars to hold broad categories of commands. Use separators on a single
toolbar to further group commands.

Figure 9.7 shows the tracking spreadsheet for SpamOVator with toolbar information added.

Finishing Touches

The end result of this design process is a document that you can use when implementing a
major part of your application’s user interface. It doesn’t tell you how to hook anything up, but
it lets you see at a glance which keystrokes, toolbar buttons, and menu items should be imple-
mented.

But you shouldn’t use this document just once and then set it aside. Instead, it can become a
continuing adjunct to your iterative design process. To start, you should place the document
under some sort of source code control. You can either put the document into your formal
source code control system with the other artifacts of your application or simply add a section
to note revisions (tracking who made each revision, what the revision was, and the reasoning
behind the revision). Either approach lets you trace back the history of design changes if this
ever becomes important.

Next, keep the document up to date. Developers should be required to modify the document
whenever they add new menu items, toolbar buttons, or shortcut keys. But you also shouldn’t
depend on every developer to remember to do this. You should review the document at major
milestones to make sure that it is still current and correct.

In addition to tracking plans, you can also use this document to track implementation. Make
a copy and color-code it to indicate which features have been completed and hooked up to the
user interface, which are partially completed, and which haven’t been started.

Pass both the full document and the color-coded version to the quality assurance team as well
as the development team. They provide a blueprint for testing by indicating both the function-
ality that will need testing and the functionality that is ready for testing today.

4361Book.fm Page 179 Thursday, November 18, 2004 8:45 PM

180

Chapter 9 • User Input and Navigation

F I G U R E 9 . 7
Planning for toolbars

Under the Covers
Although this book is almost free of source code, this is an appropriate place to mention two
source code issues that come up when you’re writing code to handle user interface interactions.

4361Book.fm Page 180 Thursday, November 18, 2004 8:45 PM

181Under the Covers

Shared Code
The first principle should be obvious, but I’ve seen it overlooked too often when doing code
reviews: You should write code only once. Here’s a pseudocode view of a bad pattern for user
interaction code:

Sub Process_Menu_Click (Item)
 If Item = Item1 Then
 Action1a
 Action1b
 Action1c
 ElseIf Item = Item2 Then
 Action2a
 Action2b
 Action2c
 End If
End Sub

Sub Process_Toolbar_Click (Button)
 If Button = Button1 Then
 Action1a
 Action1b
 Action1c
 ElseIf Button = Button2 Then
 Action2a
 Action2b
 Action2c
 End If
End Sub

If you’re an experienced developer, warning bells should be going off over all the duplicate
code in this sample. Yet developers who would consider this pattern unacceptable anywhere
else will somehow happily put it into their user interface code. The problem, of course, is that
if the implementation of some action changes, you need to update it in two different places.
Fortunately, there’s an easy fix. You can refactor out the common code, leading to this much
superior way to handle the same tasks:

Sub Process_Menu_Click (Item)
 If Item = Item1 Then
 Action1
 ElseIf Item = Item2 Then
 Action2
 End If
End Sub

Sub Process_Toolbar_Click (Button)
 If Button = Button1 Then

4361Book.fm Page 181 Thursday, November 18, 2004 8:45 PM

182 Chapter 9 • User Input and Navigation

 Action1
 ElseIf Button = Button2 Then
 Action2
 End If
End Sub

Sub Action1
 Action1a
 Action1b
 Action1c
End Sub

Sub Action2
 Action2a
 Action2b
 Action2c
End Sub

In almost all cases, the event handlers that are called by operations such as keystroke presses
or toolbar button clicks should be simple dispatch routines that call common subroutines to do
the actual work.

Handling Undo
A related topic is that of handling undo operations. Many applications these days allow the user
to recover from an “oops” moment by undoing their most recent operation. Some applications
go even further by allowing multilevel undo: keeping track of the last several operations (or in
extreme cases, every operation since the application was launched) and letting the user choose
to undo some or all of them.

The key issue to remember when coding an undo facility is that tracking menu selections,
toolbar button presses, shortcut key invocations, and other forms of direct interaction is not
enough. You also need to keep track of the context of the user’s actions. Mouse movements or
keystrokes such as Tab or End can change the context, and if you don’t include this informa-
tion in your undo tracking, you may severely damage documents when the user invokes your
undo facility.

As a simple example, consider the user who decides to type 10 characters. If they move the
cursor after the typing and try to undo, you must return to the scene of the insertion before
deleting 10 characters. Otherwise, your undo operation won’t delete the right characters!

Programming an undo facility can quickly become arduous thanks to this and similar com-
plications. But it’s one of those features that can actually make a lot of difference to end users.
When considering which features to keep or cut for an application, undo should be on the short
list to keep unless development time is exceptionally short.

4361Book.fm Page 182 Thursday, November 18, 2004 8:45 PM

183Summary

Summary
In this chapter, I focused on the ways that the user can interact with your application. After
looking at the basic styles of user interaction, I concentrated on a process to organize the user
interface so that it all makes sense. By using this process, you can help make sure that users are
comfortable with the arrangement of the user interface.

In the next chapter, I’ll look at some other common interaction patterns between your users
and your application, including cut-and-paste operations and drag-and-drop actions.

4361Book.fm Page 183 Thursday, November 18, 2004 8:45 PM

4361Book.fm Page 184 Thursday, November 18, 2004 8:45 PM

Chapter 10

Common Interaction Patterns

•

More Ways to Work with Windows

•

Handling Data Transfer

4361Book.fm Page 185 Thursday, November 18, 2004 8:45 PM

186

Chapter 10 • Common Interaction Patterns

T

he whole point of a user interface is to let the user interact with the application, and vice
versa. Well, not the

whole

 point; in many cases, there are aspects of the user interface that are
purely decorative. But most developers will leave the decorative aspects to graphic designers and
concentrate on the functional aspects of their application’s user interface. In this chapter, I’ll
look at a few interaction patterns that don’t fit anywhere else, including various uses of windows
and ways to move data around from one place to another.

More Ways to Work with Windows

In a windowing operating system, windows are of prime importance. That’s why I’ve spent
much of this book already discussing things that you can do with windows. But I’m not out of
topics in that area yet. In addition to the features that I covered in previous chapters, you should
know about several other topics when planning your windows strategy:

●

Always-on-top windows

●

Autohide windows

●

Efficient use of dialog boxes

Always-on-Top Windows

The computer screen is two-dimensional, but that doesn’t stop it from being used in a three-
dimensional fashion. Applications that implement multiple windows generally keep an internal
record of the

z-order

 of those windows. The z-order determines which windows will be drawn “in
front” of other windows on the screen. A window is said to have a lower z-order value if it will be
drawn on top of another window. Figure 10.1 gives you a schematic look at this idea.

Most applications with multiple windows manage the z-order of their windows according to
a simple rule: Any time you click on a window, it comes to the top of the stack, pushing other
windows down beneath it. This is the way that Windows itself works, so it feels natural to most
users. Figure 10.2 provides a sketch of the way this algorithm works.

However, it’s possible for applications to define other rules when it comes to rearranging
windows in the z-order. In particular, an individual window can be marked as an

always-on-top

window, so that it persists at the top of the z-order—no matter what order the other windows
are in. Figure 10.3 shows how having an always-on-top window can change the behavior of
clicking on windows in an application.

Always-on-top behavior can be applied to windows both within an application and between
applications. In the first case, a window stays on top of all the other windows within an appli-
cation. In the second case, an application itself stays on top of all other windows on the screen.

4361Book.fm Page 186 Thursday, November 18, 2004 8:45 PM

187

More Ways to Work with Windows

F I G U R E 1 0 . 1

Z-order as applied to
multiple windows

F I G U R E 1 0 . 2

Rearranging the
z-order in response
to mouse clicks

As an example of always-on-top behavior within an application, consider the Find and
Replace dialog box from Microsoft Word, shown in Figure 10.4.

When you enter some search text and click Find Next, Word highlights and displays the
next instance of the text. It also keeps the Find and Replace dialog box visible on top of the
Word document, even if you click on the document and reformat or edit the text. This lets
you switch back and forth from working on the document to finding more instances of the
specified text. This technique works because the Find and Replace dialog box is both modeless
and always-on-top.

Low z-order

High z-order

4361Book.fm Page 187 Thursday, November 18, 2004 8:45 PM

188

Chapter 10 • Common Interaction Patterns

F I G U R E 1 0 . 3

Rearranging the
z-order with an
always-on-top
window

F I G U R E 1 0 . 4

Using Find in
Microsoft Word

NOTE

Modal dialog boxes are automatically always-on-top with respect to other windows in their
own application because you can’t even activate the other windows.

Figure 10.5 shows another example of an always-on-top window within an application. The
various tool windows in Visual Studio .NET all float on top of editing windows.

The tool windows in VS .NET (such as the Solution Explorer shown here) contain information
that might be of interest to the user, but which normally won’t be the focus of their actions. When
editing code, it’s sometimes useful to see a list of the other source code files that are available. If the
Solution Explorer were not set to be always-on-top, it would vanish while the user was editing code.

4361Book.fm Page 188 Thursday, November 18, 2004 8:45 PM

189

More Ways to Work with Windows

F I G U R E 1 0 . 5

An always-on-top
window in Visual
Studio .NET

Here is a checklist of things to think about when considering whether to make a particular
window within your application always-on-top:

●

You need to worry about the decision only for non-modal windows. That is, modal windows
will automatically be always-on-top, and you can’t change this.

●

An always-on-top window should offer information or controls that the user will need
frequently in conjunction with other application windows.

●

An always-on-top window should be small enough not to block the view of other applica-
tion windows.

●

You should offer an easy way for the user to disable the always-on-top property or to hide
the window in case it becomes too obtrusive for them.

●

Consider alternative ways to convey essential information that leaves the user interface free
of always-on-top windows. For example, ToolTips or status bars do not interfere with the
user’s other work as much as extra windows.

A second form of always-on-top window is the always-on-top application. Such an appli-
cation covers up other applications on the user’s screen, whether it has the focus or not. In
Windows, for example, the Task Manager application is always-on-top, as Figure 10.6
shows.

In Figure 10.6, the Task Manager application is on top, even if the Explorer window
has the focus. This behavior is extremely rare among Windows applications, and rightfully
so. When you force an application to the top, you’re saying that the application is so impor-
tant that no other application should be allowed to be in its way, no matter what the user
thinks.

4361Book.fm Page 189 Thursday, November 18, 2004 8:45 PM

190

Chapter 10 • Common Interaction Patterns

F I G U R E 1 0 . 6

An always-on-top
application

In general, ordinary applications should not have this behavior. I’d make an exception for
debugging applications that you expect advanced users to work with under exceptional circum-
stances. Even then, you should offer a way to revert to normal window behavior.

Autohide Windows

Another unusual option that some applications can take good advantage of is

autohide

. You may
be familiar with autohide from the Windows Taskbar, which offers it as an option, as shown
in Figure 10.7.

In the upper part of Figure 10.7, the Taskbar is reduced to a single row of dark pixels at the bot-
tom of the screen. Moving the mouse pointer to this row causes the Taskbar window to unhide
itself, resulting in the appearance shown in the lower part of Figure 10.7. The Taskbar window
slides out to position itself normally, allowing the user to work with the controls that it contains.
When the user moves the cursor outside of the Taskbar area, it slides back off the screen. There’s
a built-in delay to keep it from vanishing too quickly if you move the cursor by mistake.

Autohide windows are almost always set to be always-on-top windows as well. It’s possible to
have an autohide window that is not always-on-top, but it often isn’t useful. The problem is
that the autohide window slides out behind other windows on the screen, making it difficult or
impossible to find.

4361Book.fm Page 190 Thursday, November 18, 2004 8:45 PM

191

More Ways to Work with Windows

F I G U R E 1 0 . 7

Displaying an autohide
window

Windows supports up to four autohide windows at the same time, one for each edge of the
screen. The user can choose the edge of the screen for such a window by dragging the window
and dropping it to that edge.

Autohide windows are useful for functionality that the user may require at any time, but that
doesn’t need to be permanently displayed on screen. But you need to balance this usefulness
against the fact that many users aren’t familiar with this behavior (the Windows Taskbar is not
set to autohide by default), that hitting a one-pixel-wide target may be difficult for some users,
and that there are only four available screen edges for such windows. Follow these guidelines
when deciding whether to make a window autohide:

●

An autohide window should offer information or controls that the user will need on an
unpredictable schedule. It should be important enough that the user won’t want to wait for
an application to load.

●

An autohide window should be small enough not to block the view of other application
windows.

●

You should offer an easy way for the user to disable the autohide feature, in case it becomes
too obtrusive or when there are no free screen edges.

●

Consider alternative ways to convey essential information that leaves the user interface free
of autohide windows. For example, you may be able to place an icon in the tray area of the
Taskbar and attach information to it with a ToolTip or shortcut menu.

Avoiding Modal Dialog Boxes

After so much information in previous chapters on how to design dialog boxes, it might seem
a bit strange to devote a section to avoiding their use. But as convenient as they are for the
application designer, dialog boxes can offer serious problems for the user.

To be precise, modal dialog boxes can trouble users for a number of reasons:

●

They prevent working with other parts of the application’s user interface while they’re
displayed.

4361Book.fm Page 191 Thursday, November 18, 2004 8:45 PM

192

Chapter 10 • Common Interaction Patterns

●

They vanish after the user clicks an action button, making it difficult for the user to remember
what they just did.

●

They interrupt a smooth flow of work.

●

Functionality hidden in dialog boxes can be hard to discover.

Although modal dialog boxes are undeniably useful, it’s worth taking a few moments to think
about alternatives as you design and build your applications. Otherwise, you might end up with
a morass of dialog boxes and no easy way for the user to find the features that they’re looking for.

Fortunately, you have lots of other choices for handling bits of user interaction functionality.
The long-term trend in Windows applications has been to make more functionality available
in modeless form. This doesn’t mean just moving from modal to modeless dialog boxes. In
addition to using modeless dialog boxes, you should consider whether you can provide tools for
the user in one of these ways:

●

Through a simple menu item

●

Through controls on a toolbar

●

Through a palette window

●

Through direct functionality, such as mouse selection and dragging

Even in cases where you can’t move the entire complexity of a particular function to one of
these simpler interfaces, you can use a modeless interface as the jumping-off point for a modal
one. Consider configuration management within Visual Studio .NET. A configuration con-
trols various factors about the program that the user is running within the application, such as
whether it should run in release or debug mode. At any given time, a user might want to select
a particular configuration to test with. Less frequently, the user may want to create an entirely
new configuration.

To handle these requirements, the Visual Studio .NET designers came up with a two-step
user interface. The first step is shown in Figure 10.8.

The Solution Configurations combo box on the Standard toolbar includes one entry for each
existing configuration. It also includes a final entry for the Configuration Manager. Most of the
time, the user can just select an existing configuration and proceed with their work. To define
a new configuration or modify an existing one, they select the Configuration Manager entry to
open the modal dialog box shown in Figure 10.9.

F I G U R E 1 0 . 8

Selecting an existing
configuration

4361Book.fm Page 192 Thursday, November 18, 2004 8:45 PM

193

Handling Data Transfer

F I G U R E 1 0 . 9

The Configuration
Manager dialog box

Handling Data Transfer

It’s a rare application that doesn’t exchange data with other applications. In the pre-Windows
days, this was usually accomplished with some indirect mechanism. For example, a DOS appli-
cation might save a data file to disk, and a second application could open that same data file later.

Windows, however, lets you short-circuit this process by providing several different mech-
anisms for direct data transfer. You should support these mechanisms in your own applications
wherever the user might expect them to work:

●

Cut, copy, and paste

●

Drag and drop

Cut, Copy, and Paste

Windows maintains an invisible holding pen for data known as the Clipboard. Users can inter-
act with the Clipboard by using the Cut, Copy, and Paste commands (as well as some special
variants that I’ll discuss later). The basic function of these commands is as follows:

Cut

Cut removes the currently selected information from an application and places it on
the Clipboard.

Copy

Copy makes a copy of the currently selected information from the application and
places it on the Clipboard.

Paste

Paste takes the contents of the Clipboard and replaces the current selection in the
application with it.

A cut operation followed by a paste operation effectively moves information from one appli-
cation to another; a copy operation followed by a paste operation copies information from one

4361Book.fm Page 193 Thursday, November 18, 2004 8:45 PM

194

Chapter 10 • Common Interaction Patterns

application to another. The Clipboard maintains its contents until another cut or copy oper-
ation is performed. Pasting does not empty the Clipboard, so that you can paste the same infor-
mation multiple times.

You might think that what gets pasted from the Clipboard is exactly what the original applica-
tion placed on the Clipboard, but things are much more complicated than that—for two reasons.
First, the originating application can decide which format to place on the Clipboard. It can even
choose to place multiple formats of the same data on the Clipboard as the result of a single cut
or copy operation. Second, the target application can decide which format to use and how to
transform it when the user performs a paste operation.

Consider one of the more complex cases, copying data from Microsoft Excel to Microsoft
Word. If you select a rectangular area of cells in Excel, press Ctrl+C to copy it, activate Word,
and press Ctrl+V to paste the contents of the Clipboard, the result is a Word table that is for-
matted to look like the original Excel region. But that’s far from the only way that you can choose
to paste the data into Word. If you select Paste Special from the Edit menu, Word will open the
Paste Special dialog box, shown in Figure 10.10.

As you can see, there are many choices in this Paste Special dialog box. You can choose from
numerous different formats to paste the information. You can also choose to paste a link to the
original information, so that it gets updated when the original Excel document is updated.
Finally, you can choose to display an icon instead of the full information from Excel.

Although your application is unlikely to offer as many paste choices as this, you should still
consider whether you need to offer choices to the user. In addition to the options shown in
Figure 10.10, you might also want to offer a Paste as Hyperlink or Paste Shortcut option, for
times when you can help the user navigate to the original source document instead of dis-
playing its information.

F I G U R E 1 0 . 1 0

Paste Special
dialog box

4361Book.fm Page 194 Thursday, November 18, 2004 8:45 PM

195

Handling Data Transfer

There have been many attempts to extend the Windows copying system to support more than
one piece of information on the Clipboard at one time. It’s common for programmer’s editors,
for example, to support more than one paste buffer. As another example, Microsoft Office now
implements its own Clipboard to collect items that are copied among the various Office applica-
tions. You can also download utilities such as Yankee Clipper (

http://www.yankee-clipper.net/

)
to help you manage information placed on the Clipboard. Rather than attempting to build non-
standard Clipboard functionality into your own applications, you should let the user decide
whether they want to install such a utility.

Drag and Drop

Although cut, copy, and paste operations work well (for one thing, they’re familiar to nearly
every Windows user), there’s a second alternative that is often more natural: drag and drop.
With drag and drop, you simply select something in one application, then use the mouse to
drag the selection to another application (or to another location). When you release the mouse
button, the dragged information is “dropped” at its new location.

RULE

Don’t rely on drag and drop as the sole means to move information around. Some users
might lack the motor skills to reliably carry out drag-and-drop operations.

There are two different forms of drag-and-drop operations available in most applications:
default and non-default. To launch a default drag-and-drop operation, the user holds down the
primary mouse button and drags the selection. When the user releases the selection, the des-
tination application performs whatever it considers the default operation. This may be a copy,
a move, or even some other operation such as printing the dragged object. In a default drag-
and-drop operation, there’s no user interaction beyond deciding where to release the mouse
button.

To launch a non-default drag-and-drop operation, the user holds down the secondary mouse
button and drags the selection. When the user releases the selection, the destination applica-
tion displays a shortcut menu, as shown in Figure 10.11.

F I G U R E 1 0 . 1 1

Performing a non-
default drag and drop

4361Book.fm Page 195 Thursday, November 18, 2004 8:45 PM

196

Chapter 10 • Common Interaction Patterns

Figure 10.11 shows the shortcut menu produced by performing a non-default drag-and-drop
operation from Excel to Word. The first option on the shortcut menu should be the default
drag-and-drop operation. The application can also decide to add as many other options as it
likes to the menu. Note that in this case, the menu for the non-default drag-and-drop operation
doesn’t include all the choices that you saw for cut and paste between the same two applications.
In cases where paste functionality is exceptionally rich, you should choose the most common
options for the non-default drag-and-drop shortcut menu.

If the user presses the Esc key while performing a drag-and-drop operation, you should cancel
the operation.

Summary

In this chapter, you learned about some additional techniques to help users tap the power of
your applications. You saw how always-on-top and autohide windows can help in specific sit-
uations. I also introduced the basics of data-transfer operations, including cut and paste and
drag and drop.

In the chapters to this point I’ve been assuming that you set up your application and the user
makes use of it, just as you set it up. But that’s not always the case. In the next chapter, I’ll look
at the sometimes-thorny questions of user customization.

4361Book.fm Page 196 Thursday, November 18, 2004 8:45 PM

Chapter 11

User Choice, Customization,
and Confusion

•

Menu and Toolbar Customization

•

Docking and Anchoring

•

Color Choices and Skinning

•

Application-Specific Customization

•

The Computer Is Not a Puppy Dog

4361Book.fm Page 197 Thursday, November 18, 2004 8:45 PM

198

Chapter 11 • User Choice, Customization, and Confusion

A

lmost every Windows application offers the user some choice in the way that it works.
Whether it’s a matter of adding buttons to toolbars, selecting options from a menu, or picking

an entire “skin” to change the look of the application, users have grown to expect customization.
In this chapter, I’ll discuss some of the ways that you might offer customization, as well as some
of the pitfalls to avoid.

Menu and Toolbar Customization

Menus and toolbars in Windows applications didn’t start out being customizable. But over time,
applications have introduced ways to customize almost every aspect of these tools. You need to
consider carefully which level of customization is appropriate for your own application. In general,
there are three levels of customization used in Windows applications for toolbars and menus:

●

No customization

●

Simple customization

●

Complex customization

No Customization

If your application is relatively simple, with only a few menu items and toolbar buttons, you
should consider simply not allowing customization at all. This is the approach taken by Microsoft
Paint, Microsoft Notepad, and many utilities from both Microsoft and other vendors. For
example, Paint does not allow the user any control over the contents of its menus, and it
doesn’t display a toolbar. By not allowing menu customization, Paint can keep its interface
standardized, no matter what the user does.

There’s one big advantage to not allowing customization: This approach lowers support
costs. If you allow the user to customize the user interface, you must check during any support
communication to see whether they’re using the stock user interface or not. This leads to addi-
tional time spent doing support, and additional confusion on both sides of the conversation.

On the other hand, if you don’t allow any customization, users may feel that you’ve left some-
thing out. Even if you don’t believe the customization will add anything to the application’s
functionality, users may feel cheated if they can’t customize toolbars in your application just
like they can in other applications.

Simple Customization

Applications that support a single toolbar often use a simple customization dialog box like the
one shown in Figure 11.1.

4361Book.fm Page 198 Thursday, November 18, 2004 8:45 PM

199

Menu and Toolbar Customization

F I G U R E 1 1 . 1

Simple toolbar
customization

Figure 11.1 shows the Customize Toolbar dialog box from the Windows Server 2003 version
of Windows Explorer. To display this dialog box, right-click the toolbar and select Customize.
The Customize Toolbar dialog box provides the following functionality:

●

Add new buttons to the toolbar

●

Remove existing buttons from the toolbar

●

Rearrange buttons on the toolbar

●

Toggle between large and small icons

●

Decide whether to show text with icons

●

Reset the toolbar to its original state

The list of potential toolbar buttons is a subset of the menu items for the application. Most
applications with simple customization work this way: The menus are comprehensive, and the
toolbars offer at most a subset of the menu functionality.

Simple customization is appropriate when your application has a single toolbar, and you want
to allow users to exercise some control without doing an overwhelming amount of support. It
does not offer users the chance to precisely choose every detail of the user interface, but it also
steers clear of the dangers of allowing them to customize everything.

Complex Customization

Complex customization has been brought to a high art by Microsoft Office. In recent versions
of Office, practically every aspect of the menus and the toolbars can be customized. In fact, the
menu is treated as just another toolbar that happens to display its options as text rather than as
icons. Right-clicking on any menu or toolbar within an Office 2003 application and selecting
Customize will display the dialog box shown in Figures 11.2, 11.3, and 11.4.

4361Book.fm Page 199 Thursday, November 18, 2004 8:45 PM

200

Chapter 11 • User Choice, Customization, and Confusion

F I G U R E 1 1 . 2

Complex toolbar
customization
Toolbars tab

NOTE

Older versions of Office also allow complex customization, though the dialog boxes and par-
ticular choices may be different than those I’ve shown here.

The Toolbars tab of the Customize dialog box exists primarily so that you can decide which
toolbars should be displayed by default. It lists all the toolbars; checking a toolbar puts it on
screen. If you scroll down the list, you’ll find the menu bar listed as an available toolbar. Other
functionality available from this tab include the following:

●

Create a new toolbar

●

Rename a toolbar

●

Delete a toolbar

●

Reset toolbars to their original state

●

Customize keyboard shortcuts

The Options tab of the Customize dialog box offers some miscellaneous options that don’t
fit anywhere else. Depending on your own application, you may or may not need such a tab.
In the Office applications, it includes these capabilities (among others that apply to individual
applications):

●

Display important toolbars spread across two rows of buttons

●

Disable or reset adaptive menus

●

Use large icons

●

Use screen tips

●

Animate menus

4361Book.fm Page 200 Thursday, November 18, 2004 8:45 PM

201

Menu and Toolbar Customization

F I G U R E 1 1 . 3

Complex toolbar
customization
Options tab

Finally, Figure 11.4 shows the Commands tab of the Customize dialog box, which offers the
user almost unlimited options for customizing menus and toolbars. The two list boxes of cat-
egories and commands between them offer every option that’s on the menus of the application
by default, and some that aren’t. You can add any of these commands to an existing menu or
toolbar by dragging it from the Customize dialog box and dropping it on the toolbar. You can
also remove an existing command while this dialog box is visible by dragging it from a menu
or toolbar and dropping it anywhere else. The Customize dialog box also lets you rearrange the
commands on an existing menu or toolbar.

While the Customize dialog box is open, you can also right-click on any existing toolbar
button or menu item to pop up a customization menu that applies to that item, as shown in
Figure 11.5.

F I G U R E 1 1 . 4

Complex toolbar
customization
Commands tab

4361Book.fm Page 201 Thursday, November 18, 2004 8:45 PM

202

Chapter 11 • User Choice, Customization, and Confusion

F I G U R E 1 1 . 5

Customizing a toolbar
button

The options on the customization menu include renaming the button; changing the image
it displays; and changing whether it displays text (as on a menu), an image (as on a toolbar), or
both. With enough time and patience, you can use this menu to change a toolbar into a menu
or vice versa.

Should you implement this level of customization for your own applications? Unless your appli-
cation has the complexity and depth of Office, you probably don’t need to offer quite as much cus-
tomization as Microsoft does. With millions of users, Office needs to do everything that it can to
cater to individual tastes. Your user base will almost certainly be smaller, meaning that you need
to balance that sort of catering off against increased programming and support costs.

TIP

If you do allow complex customization, consider providing a means for resetting everything
to its default setting. That provides a safety net for users who get lost in the choices and
end up with a less-functional application as a result. Microsoft does this with a Reset but-
ton in the Customize dialog box.

Still, users expect customization.

RULE

At a minimum, you should implement the sort of simple customization interface that will
allow users to add, rearrange, and remove toolbar buttons from a predetermined list.

Adaptive Menus

While I’m discussing the menu and toolbar customization system in Office, I must mention the

adaptive menu

, which is a Microsoft innovation designed to make it easier for users to find the
menu commands that they need without being overwhelmed by complexity.

The initial state of an adaptive menu displays a few commands, along with a chevron button
at the bottom of the menu, as shown in Figure 11.6.

4361Book.fm Page 202 Thursday, November 18, 2004 8:45 PM

203

Docking and Anchoring

F I G U R E 1 1 . 6

An adaptive menu
before expansion

If you move the cursor to the chevron and click, the menu expands to display all its com-
mands, as shown in Figure 11.7. The menu also expands if you just hover the cursor over it
for a few seconds.

But there’s more to adaptive menus than just hiding and showing commands. The Office
application keeps track of which commands you actually use. Commands that you haven’t used
are gradually demoted until they do not show on the short form of the menu. Commands that
you use frequently are promoted so that they are always displayed, even before the menu is
expanded.

Some users find this useful, but so many found it maddening that Microsoft has been forced
to include an option to completely disable both the promotion and demotion behavior and the
menu expansion itself. Other software manufacturers (and even other groups within Microsoft)
have not followed the lead of the Office team here. My own view is that adaptive menus cause
more confusion than they are worth.

F I G U R E 1 1 . 7

An adaptive menu
after expansion

Docking and Anchoring

Another area in which many applications offer user choices is window arrangement. Specifi-
cally, it’s possible to dock windows to each other or to the parent window, or to anchor them
in various places. Another Microsoft application, Visual Studio .NET, offers the most over-
whelming array of choices, so I’ll use it for my examples.

4361Book.fm Page 203 Thursday, November 18, 2004 8:45 PM

204

Chapter 11 • User Choice, Customization, and Confusion

To begin with, every toolbar in VS .NET has a handle at its left end. You can drag the toolbar
by this handle to a new location. Toolbars can be docked (that is, attached) to any edge of the
main VS .NET window. They can also be dragged free entirely to float in the middle of the
work area, in which case they are displayed with a half-height caption bar. A floating toolbar
can be dragged back to a docking position, or you can double-click the caption bar of a floating
toolbar to automatically dock it in its most recently docked position.

Visual Studio also contains more than a dozen tool windows of various sorts. You can change
the appearance of these windows in many ways. In Figure 11.8, I simplified things by closing
all but two of these windows: the Solution Explorer and Properties windows. They’re both
docked at the right side of the workspace.

F I G U R E 1 1 . 8

VS .NET with two
docked windows

4361Book.fm Page 204 Thursday, November 18, 2004 8:45 PM

205

Docking and Anchoring

F I G U R E 1 1 . 9

VS .NET with one
docked window

Tool windows can be docked on any side of the workspace or dragged to float free, just like
toolbars. In Figure 11.9, I redocked the Properties window to the bottom border of the main
window, and left the Solution Explorer window to float.

If you have multiple floating windows, you can stick them together. Figure 11.10 shows the
Solution Explorer and Properties windows docked to one another, with both floating free.

Windows can be docked together side by side (as in Figure 11.10) or top-and-bottom.
There’s also a third style, which you can see in Figure 11.11. In this style, the different
tool windows are presented as tabs in a single larger window. The tabs at the bottom of
the tool window switch between the Solution Explorer and the Properties windows.

You can also dock tabbed windows, as shown in Figure 11.12.

4361Book.fm Page 205 Thursday, November 18, 2004 8:45 PM

206

Chapter 11 • User Choice, Customization, and Confusion

F I G U R E 1 1 . 1 0

VS .NET with two float-
ing windows

F I G U R E 1 1 . 1 1

VS .NET with floating
tabbed windows

4361Book.fm Page 206 Thursday, November 18, 2004 8:45 PM

207

Docking and Anchoring

F I G U R E 1 1 . 1 2

VS .NET with docked
tabbed windows

When a tool window is docked, it gains a pushpin icon in its caption bar. Clicking this
pushpin turns the tool window into an autohide window. Like autohide applications (which
I discussed in Chapter 10, “Common Interaction Patterns”), these tool windows are tucked
away at the side of the application. However, the appearance is a bit different, as you can see
in Figure 11.13. Here, the Properties window has been set as an autohide window and dis-
plays as a single tab.

As with menu and toolbar customization, it’s easy to go overboard with window custom-
ization. But if your application does depend heavily on tool windows, you should probably
implement most or all of these features. Because they’re controlled with the mouse, with
immediate visual feedback, window customization features are not too confusing to the
user. The good news is that you can buy an off-the-shelf windowing package that allows you
to add these features to any application with little or no additional development work on
your part.

4361Book.fm Page 207 Thursday, November 18, 2004 8:45 PM

208

Chapter 11 • User Choice, Customization, and Confusion

F I G U R E 1 1 . 1 3

VS .NET with an
autohide window

Color Choices and Skinning

Every application should allow the user to customize the colors for its display—even though
they should not provide a dialog box to perform this customization. How is this apparent par-
adox resolved? The answer is that Windows offers its own facility for color customization, as
shown in Figure 11.14.

The Display Properties dialog box lets the user specify system-wide colors. They can do this
either by selecting a predefined set of colors collected into a color scheme, or by customizing
the color of individual elements such as ToolTips or command buttons. As long as your appli-
cation uses system colors in its construction, it automatically picks up color changes made by
the user in this dialog box.

In fact, this dialog box goes beyond color customization to allow the user to select standard
fonts and other user interface features such as the spacing of icons. A well-designed applica-
tion will respond to changes in these factors by customizing its own interface. That way, your

4361Book.fm Page 208 Thursday, November 18, 2004 8:45 PM

209

Color Choices and Skinning

application will automatically fit in with the way that the user likes their desktop to look. This
is especially important for users with visual disabilities, who may need particular color com-
binations or large fonts to make applications usable at all.

There are a few cases for which you’ll still want to use custom colors instead of system colors
within an application:

●

For branding, as on a corporate logo

●

To display photos or other realistic images

●

When the color conveys particular information

WARNING

Be sure that you don’t use color as the only means to convey some piece of information.
Remember that a relatively large proportion of the population has some form of color-blindness.
Always supply alternative interfaces, such as ToolTips or reports, to duplicate information that
you convey with color. You also need to be sure that at least one of your alternatives is acces-
sible to screen readers for users with severe vision problems.

At the far end of the customization spectrum from using system colors is the increasingly
common use of “skinning” to customize applications. Some applications, such as the popular
Winamp music player, let you change every aspect of their interface. This applies not just to
the colors used, but also to the location of controls, shape used for the main window, size and
position of the Windows controls such as the minimize button, and so on. Skinning lets artistic
designers rearrange an application to look like anything from a block of wood to a futuristic
toaster.

F I G U R E 1 1 . 1 4

The Appearance tab of
the Display Properties
applet

4361Book.fm Page 209 Thursday, November 18, 2004 8:45 PM

210

Chapter 11 • User Choice, Customization, and Confusion

Figure 11.15 shows a typical Winamp skin. If you didn’t know in advance, you’d be hard-
pressed to identify this as a Windows application.

Although you can buy frameworks that enable skinning for your application with little or no
work on your part, I believe that you should think long and hard before doing so. On the plus
side, a skinned application undoubtedly gives the user the feeling of being in complete control,
and lets them make their system look “cool.” But on the minus side, such applications fly in the
face of all the conventions that make using Windows easier. Your application may look more
futuristic when skinned, but it will be harder for most users to use. In almost every case, that’s
a bad trade-off to make.

F I G U R E 1 1 . 1 5

A skinned application

Application-Specific Customization

All the customizations that I discussed so far in this chapter have been very generic—they apply
equally well to a great many applications. Beyond that, of course, your application may require its
own customizations. For example, there may be a default directory where you look for templates,
or perhaps a set of colors that you use when portraying new objects on a drawing canvas. Such
choices are typically wrapped up in an Options dialog box such as the one shown in Figure 11.16.

Many applications today expose dozens or even hundreds of customization options in this
way. With software being as large and complex as it is, it’s easy to understand where these
choices come from. Developers look at their work and realize that they’re about to hard-code
something: a number of files, a path, a display status. Rather than placing a constant in the code
(which we’re all trained to think of as somehow inelegant), they decide that this is something
that could be put under user control. And presto! Another user customization option is born.

4361Book.fm Page 210 Thursday, November 18, 2004 8:45 PM

211

Application-Specific Customization

F I G U R E 1 1 . 1 6

Options from Microsoft
PowerPoint

The fallacy here lies in the assumption that just because something

can

 be placed under
the user’s control it

should

 be placed under the user’s control. When faced with the oppor-
tunity to add another customization option to your application, you should consider several
questions:

●

Is there a single best setting for this option that will be optimal for every user of the application?

 If
so, you should code that setting and eliminate the option.

●

Is the option setting something that will need to be updated only occasionally by power users, perhaps
with the aid of technical support?

 If so, you should consider exposing it via a Registry setting
rather than in the user interface. Alternatively, you can ship a separate utility application
that performs the customizations, but which won’t be obvious to the casual user.

●

Is the option setting something that the user will choose only once?

 If so, prompt for it during
installation rather than exposing it in the user interface.

As with many other choices in user interface design, there are trade-offs here. The more users
you have, the more likely it is that someone will appreciate the ability to change some setting
that you thought should be fixed. But the more settings you expose, the higher your support
costs will be, and the more confusing your application will be. Most users seem to feel that dialog
boxes like the one shown in Figure 11.16, which spread dozens of option settings over several
rows of tabs, go too far.

It’s all too easy to say “Oh, add an option” when you’re developing an application. But keep
the end user in mind before you do so, and try to decide whether there’s another approach that
makes better sense. That will help both you and your users in the long run.

4361Book.fm Page 211 Thursday, November 18, 2004 8:45 PM

212

Chapter 11 • User Choice, Customization, and Confusion

The Computer Is Not a Puppy Dog

The anthropomorphization of applications may not quite be a matter of customization, but it fits
in as well here as anywhere else. Anthropomorphizing is the process of ascribing human charac-
teristics to non-human things. In a more informal sense, I’d also include ascribing animal char-
acteristics to computer programs. Microsoft has been one of the pioneers here, as Figure 11.17
will remind you.

F I G U R E 1 1 . 1 7

Search window in
Windows XP

Perhaps I’m simply unable to see the wonder of this user interface, but if so, I’m in good com-
pany; it’s descended from the almost universally detested “Clippy” character who offers not-so-
helpful help in Office. Presumably the motivation behind slapping an organic interface on a
computer program is to make the program seem less threatening and more friendly. The main
problem is that (to stretch the dog metaphor just a bit) it can turn around and bite the user.

What is the user to think when they ask the cute little puppy to fetch a file, and the puppy
comes back empty-mouthed? Has the puppy not been properly fed? Is it distracted by needing
to go out to the lawn? Is it, perhaps, just being mean to the user on purpose because it’s tired
of being shut up in the little box? Maybe its feelings are hurt.

Although humanized computers might be cute and friendly in Disney movies, in real life this
theory doesn’t seem to work out so well. If the illusion is not well done, it just ends up annoying
users, who don’t know why this stupid program looks like a dog when it won’t act like one. If the
illusion is well done, the user starts to think of the application as having feelings, and starts to
interact with their perception of a real dog instead of the reality of the application underneath.

4361Book.fm Page 212 Thursday, November 18, 2004 8:45 PM

213

Summary

Either way, there’s a mismatch between what the application is doing and what the user is trying
to make it do, which makes the user less efficient at getting any actual work done.

Like skins, I think that animated characters should be left off any user interface that’s actually
intended to let people get some work done.

Summary

This chapter drew together some thoughts on customization in a wide variety of contexts. I
looked at how menu and toolbar customization works, and at the various options that current
applications offer for window management. I also talked about color choices, skinning, appli-
cation customization, and animated characters.

Now it’s time to turn our attention outside the individual computer and on to the World
Wide Web. In the rest of the book, I’ll look at web applications, which in some areas play by
a different set of rules than Windows applications. To begin with, I’ll develop a framework for
thinking about web applications in general.

4361Book.fm Page 213 Thursday, November 18, 2004 8:45 PM

4361Book.fm Page 214 Thursday, November 18, 2004 8:45 PM

Chapter 12

The Web Is Not Windows

•

Expanding Your Skills to the Web

•

Pages, Sites, and Applications

•

New Rules and New Challenges

4361Book.fm Page 215 Thursday, November 18, 2004 8:45 PM

216

Chapter 12 • The Web Is Not Windows

I

n the old days (say, before 1995), most developers could just ignore the entire Internet and
all that it entailed. Now most developers need to pay attention to web design as much as to

designing applications for their own individual platforms. Even if you’re not involved in building
a public Internet site, most companies have at least experimented with delivering applications
over an

intranet

. In the remainder of the book, I’ll talk about design techniques for web applica-
tions and the skills that you need to cultivate to produce such applications.

Expanding Your Skills to the Web

If you’re a long-time Windows developer, you might be wondering why you should even con-
sider writing web applications. Aren’t there enough opportunities for work in the environment
you already know? Well, right now there probably are enough opportunities. But there are good
reasons why you should learn about web design even if you feel secure in your present niche.

First, although Windows has had a good long run, it won’t last forever. Already a new version
of Windows, code-named Longhorn, is on the horizon. Although it’s still similar in many respects
to current versions of Windows, Longhorn will have rather different user interface conventions.
When it starts to dominate the market (probably around the end of the decade), your existing
Windows design skills will start to become obsolete.

Meanwhile, the technologies behind the World Wide Web have spread to the inside of many
corporations. By now, most companies have their own intranets: private networks that use the
same communication protocols as the larger Internet. A web page or a web application can be
designed for use solely on an intranet; anything from a Customer Relations Management (CRM)
system to an accounting entry system might be implemented using these technologies.

Finally, it’s worth noting that the worlds of the Web and the Windows desktop application are
converging. Longhorn (the next version of Windows) uses markup languages, similar to HTML
or XML, to define its user interface. Learning these technologies now will position you for the
future of the Windows platform if you choose to remain a Windows developer, as well as for the
continuing use of the Internet or intranets as a way to deliver applications to users.

NOTE

A second type of convergence is provided by

smart client

 technologies, which allow you to
deliver a Windows application through a web browser. I won’t cover these technologies spe-
cifically because the user interface of a smart client application is the same as the user
interface of any other Windows application.

Fortunately, although the Web offers different ways to do things (and different limitations)
than Windows does, the basic principles of user interface design remain the same. It’s still your
job to create applications that let users do their job with a minimum of confusion and chaos.
You need to make allowances for the way the Web works, but if you keep the user in mind you
won’t go far wrong.

4361Book.fm Page 216 Thursday, November 18, 2004 8:45 PM

217

Pages, Sites, and Applications

Pages, Sites, and Applications

I like to think about web design for application developers on three different levels:

●

The web page

●

The website

●

The web application

Each of these is a distinct realm of design. You need to understand which realm you’re work-
ing in before you can do any effective design work.

Web Pages

The basic unit of work on the Web (whether the World Wide Web or a smaller, private intra-
net), is the

web page

. A web page is the response returned by a web server when it receives a single
request from a browser. Figure 12.1 shows this interaction schematically.

As a developer, you generally control only the web server side of the equation. People view-
ing the pages that you design might do so in a variety of web browsers. As you’ll see later in this
chapter, this fact leads to some serious challenges in application design. When requests come
in, you send responses back, but you can never be quite positive what’s happening at the other
end of the pipeline.

A single web page might be

static

 or

dynamic

. These terms refer to the way in which the page
is constructed at the server side of the conversation. A static page is one that contains only con-
tent determined in advance. A dynamic page contains content that is generated at the time that
the page is delivered to the client.

For example, consider a web page that contains a customer contact list on your corporate
intranet. If the customer list does not change frequently, you might choose to create a static
page and to edit it by hand when a customer is added, removed, or updated. But normally
you create such a page as a dynamic page so that it will be up-to-date whenever it’s requested.
In such a case, you can use a technology such as Microsoft’s ASP.NET to let the web server get
the current customer list from a database and build the corresponding web page when it’s
needed.

F I G U R E 1 2 . 1

Lifecycle of a web page
Web

Browser
Web

Server

Request

Response

4361Book.fm Page 217 Thursday, November 18, 2004 8:45 PM

218

Chapter 12 • The Web Is Not Windows

When you’re designing a single static web page, the design is mostly limited to esthetics. Such
pages are usually designed by people whose entire job is web page design, rather than by devel-
opers. Of course, there are plenty of cases in which a developer might put together a single static
web page for one reason or another. In such a case, you’ll need to grasp the relevant web stan-
dards and potential problems that I’ll discuss later in this chapter.

With a single dynamic web page, things get a bit more interesting (more interesting from
a developer’s point of view, at least). In most cases, dynamic pages will require some user
input. This requires you to design the user input controls as well as the display of the requested
information.

Websites

A

website

 is an interconnected collection of web pages delivered (usually) by a single web
server. Websites range from simple sites containing half a dozen pages to huge sprawling
monsters such as the Microsoft or IBM websites, which might contain hundreds of thou-
sands of web pages.

Designing a website offers the challenge of designing all the individual web pages, but it also
adds the new dimension of coordinating them. Site designers need to worry about issues that
apply to multiple web pages:

●

Providing consistent navigation from page to page

●

Providing a consistent look and feel for all pages in the site

●

Tracking user actions and identity as they move through the site

Visual design for a website is normally the job of a professional designer. But as a developer,
you’re more likely to get involved with a website than with a web page. Things like navigation,
identity, and data entry all require developer participation in the site design. Even if you’re not
responsible for the user interface design, your decisions affect the user interface. For example,
if you’re prompting the user to enter a date, it’s up to you to figure out how (or whether) to
limit the data entry to legitimate dates.

Web Applications

At the top of the web food chain (at least for now) is the

web application

, which is an intercon-
nected collection of dynamic web pages designed to perform some function for the user. As an
example, Figure 12.2 shows Microsoft Outlook Web Access.

4361Book.fm Page 218 Thursday, November 18, 2004 8:45 PM

219

Pages, Sites, and Applications

Outlook Web Access is a particularly complex example of a web application. The developers
at Microsoft went to great lengths to duplicate much of the user interface of the stand-alone
version of Outlook, but hosted in a web browser. Most web applications are less elaborate than
this, but they still allow the user to interact with the web server by working with controls, just
as if they were dealing with a Windows user interface.

Web applications are often written with an application platform such as Microsoft’s ASP.NET,
which is designed to help work around the limitations that otherwise apply to websites. Such plat-
forms make it easier for the developer to manage problems like authentication or identity track-
ing within an application. They also provide standard controls that a developer can use to put
together a user interface. Figure 12.3 shows a page from a fictional ASP.NET application open
in a web browser.

With a web application, the application developer’s design skills come to the fore. It’s still
helpful to have input and help from a professional web designer (if you can afford one), but
often the development platform limits what can be done. For small web applications, or those
with a limited budget, the reality of the situation is often that the developer has to do all the
user interface design as well.

F I G U R E 1 2 . 2

Outlook Web Access

4361Book.fm Page 219 Thursday, November 18, 2004 8:45 PM

220

Chapter 12 • The Web Is Not Windows

F I G U R E 1 2 . 3

A web application in
action

New Rules and New Challenges

You’re undoubtedly already aware that there are many differences between Windows applica-
tions and web applications. It’s hard to use the Web (as we practically all do) and not be aware
of the differences. Still, it’s good to know in detail what you’re dealing with. Here are some of
the things that make designing for the Web a challenge for Windows developers trying to
make the transition:

●

Limited control selection

●

Statelessness

●

Varying browsers

●

Varying standards

●

Unpredictable infrastructure

I’ll consider each of these issues in turn.

4361Book.fm Page 220 Thursday, November 18, 2004 8:45 PM

221

New Rules and New Challenges

Limited Control Selection

In Chapters 4, 5, and 6 you learned about the rich variety of controls that are available for build-
ing Windows application user interfaces. Sadly, web applications are much more limited on this
front. Figure 12.4 shows the standard user interface controls that are part of the HTML 4.0
specification.

However, the picture isn’t as bleak as Figure 12.4 perhaps makes it out to be. With clever use
of images, fonts, and colors, you can use simple HTML to build a reasonably attractive user
interface, even without introducing additional controls. Figure 12.5, for example, shows
Microsoft’s Hotmail user interface. Even though it’s built from the same basic pieces as any
other HTML page, Hotmail manages to look attractive and be reasonably functional.

WARNING

Unfortunately, you’re not guaranteed that your beautiful and innovative use of HTML will
display properly on an arbitrary user’s computer. See the section “Varying Browsers” later
in this chapter for more details.

The distributed nature of the Internet makes it unlikely that we’ll see new standard controls any
time soon. HTML works largely because a wide variety of browsers and servers agree on how it
is structured and what it means. Forcing the adoption of changes or extensions to HTML is a
long and arduous process, overseen by the World Wide Web Consortium (

http://w3c.org

).
Although there is continuing progress on defining new web standards, the overall state of HTML
(the core technology for designing web pages) has been mostly unchanged for years now.

F I G U R E 1 2 . 4

HTML controls

4361Book.fm Page 221 Thursday, November 18, 2004 8:45 PM

222

Chapter 12 • The Web Is Not Windows

F I G U R E 1 2 . 5

Microsoft HotMail

WARNING

There are several vendor-specific technologies that let you use a greater variety of controls
in a web application than HTML supplies. For example, Microsoft Internet Explorer supports
embedding ActiveX controls on a web page. The problem with such technologies is that they
limit you to customers using a particular web browser. In general, such extensions are not
feasible unless you control the browser choice, as might be possible on an intranet.

Statelessness

One of the biggest differences between working with a Windows application and working with
web pages is that web pages are

stateless

 (by default, the server does not remember anything
about the user between interactions). To see what this means, consider designing a very simple
program to handle loan applications, following these requirements:

1.

Prompt the user for their name and address, and the amount of the loan.

2.

Display the terms of the loan and require the user to click OK.

3.

Determine whether to grant the loan.

4361Book.fm Page 222 Thursday, November 18, 2004 8:45 PM

223

New Rules and New Challenges

A Windows application could handle these requirements by creating a wizard interface, as
shown in Figure 12.6. The user would first fill in their information and click next on this form.

With a web application, it’s easy to start out creating the user interface the same way, as
shown in Figure 12.7.

But after this first page, there’s a problem. When the user clicks Submit, the web page sends
its data to the web server and receives a new page in return. Then the web server forgets all
about the interaction. There’s no continuing connection between the browser and the server.
So at the end of the process, when it’s time to determine whether the user qualifies for a loan,
the server no longer knows who applied or how much money they wanted.

F I G U R E 1 2 . 6

Designing a Windows
loan application

F I G U R E 1 2 . 7

Designing a web
loan application

4361Book.fm Page 223 Thursday, November 18, 2004 8:45 PM

224

Chapter 12 • The Web Is Not Windows

The difference here is between an application that runs as a single process on a single machine
(the Windows application) and a conversation between two separate processes: the web browser
and the web server. In the original design of the Internet, the web server was a provider of static
information. Sitting somewhere on the Internet, a server is bombarded by hundreds or thou-
sands of requests for pages. Each time it gets a request, it satisfies the request by returning the
appropriate HTML page, and then forgets about the whole transaction. There’s nothing in this
design that ties two different page requests together into an application.

The fundamental problem is that there’s no easy, foolproof way for the server to tell that two
requests belong to the same session. You might think that the server could track the Internet Pro-
tocol (IP) address of the requesting computer to know whether two requests belong together, but
that doesn’t work. Network Address Translation (NAT), a common technology for using one
computer to forward requests from many computers to the Internet, means that two requests
might appear to the server to come from the same computer, even though they don’t.

Of course, faced with this situation, developers have come up with a number of workarounds.
All are based on a simple notion: If the server can’t tell when it’s already heard from a particular
client, the client must remind the server. Starting with this premise, information can be stored
on either the client or on the server between page requests.

There are three general approaches to creating

stateful

 (the opposite of stateless) web appli-
cations in wide use:

●

Cookies

●

Hidden fields

●

Data in URLs

A

cookie

 is a collection of data stored on the client computer, either temporarily for the time that
the browser is open or permanently as a disk file. A cookie can contain any information that the
web server chooses to transmit and direct to be saved there. Each time the browser makes a
new request to the server, it also sends the cookie along. In the hypothetical loan application,
you might use cookies in one of two ways. The first way is to save the name, address, and other
information in the cookie; then this information is passed back and forth between browser and
server with each request. The second way is to save the information on the server, perhaps in
a database, and to put a unique key in the cookie. With this approach, the cookie is smaller,
but the web server has to do more to look up the information when the cookie arrives.

Although the use of cookies is reasonably elegant, it suffers in practice from sometimes justi-
fiable fear and suspicion on the part of computer users. Cookies have been used in some dubious
and unethical ways. For example, some providers of banner advertisements have used cookies to

4361Book.fm Page 224 Thursday, November 18, 2004 8:45 PM

225

New Rules and New Challenges

build up dossiers on particular customers, tracking their interests for more targeted ads in the
future. Because some people object to this as an invasion of privacy, most web browsers now
include facilities for blocking cookies. If the user blocks the cookies that your web application
depends on, the application will break.

A second approach to creating stateful applications is to use

hidden fields

 on the web page
itself. A hidden field is similar to a text box, but it isn’t displayed by the web browser. When the
user sends the next request to the server, the hidden field is packaged up and sent along. Hid-
den fields are a good alternative to cookies in many circumstances because they’re difficult to
block (although not impossible, if the user cares to handcraft a copycat page without the hidden
field to pass back).

A final alternative is to store data directly in the URL sent to the server for a request. For
example, suppose that the second page of the loan application were located at

http://example.com/LoanWiz2.html

In this case, the browser could place extra information in the URL to represent the user’s
choices on the page:

http://example.com/LoanWiz2.html?Name=Mike&Address=PO%20Box%2057&Amount=35000

Storing data in the URL is fast and easy, but it’s subject to limits on the maximum length of
a URL, which can be as small as 256 characters for some web servers.

Even if these approaches help turn a stateless application into a stateful one, none of them is
perfect. Users can click the Back button or close the web browser entirely, for example, and
confuse or completely disconnect their web application session. Overall, the best approach is
probably to choose an approach to maintaining state but also to accept (and allow for) user ses-
sions that simply vanish without ever being completed.

Varying Browsers

Another big challenge in writing web applications is that you generally don’t know for sure
what’s on the other end of the communications link. As the web developer and designer,
you’re working with the web server—but the web browser isn’t under your control. This
means that it’s very hard to be sure how your carefully crafted site design will look when it
ends up in front of the user. For example, Figure 12.8 shows a website in Mozilla Firefox, an
up-to-date graphical web browser.

TIP

An excellent reference when you’re trying to figure out what will work in various browsers is
the Webmonkey browser chart at

http://webmonkey.wired.com/webmonkey/reference/
browser_chart/index.html

.

4361Book.fm Page 225 Thursday, November 18, 2004 8:45 PM

226

Chapter 12 • The Web Is Not Windows

F I G U R E 1 2 . 8

A website in Firefox

But Firefox isn’t the only browser out there. The most common browser in use these days is
Microsoft Internet Explorer, but even with IE any given user might be browsing with one of
a dozen or more different versions. There are also other choices in the graphical browser mar-
ket, notably Opera and Netscape. With all these choices, you can expect subtle display differ-
ences between computers.

NOTE

For a few years it looked as if Internet Explorer would become so dominant in the browser
market that there was little or no point in designing pages that worked well in other brows-
ers. Recently, though, other browsers—such as Opera, Mozilla, and Firefox—have started
making inroads into Internet Explorer’s market share, thanks to the perceived feature stag-
nation and security risks of continuing to use Internet Explorer. It’s impossible to know just
how much market share the various browsers have, but on some sites non-IE browsers are
accounting for as much as 30 percent or more of visitors in late 2004.

4361Book.fm Page 226 Thursday, November 18, 2004 8:45 PM

227

New Rules and New Challenges

NOTE

In addition to varying browsers, users can affect the appearance of your site by changing
the settings in their browser. For example, some users choose to browse with graphics
turned off, so pages will download more quickly. These users will never see your website’s
pretty graphics. Other users disable scripting or cookies, which might affect any program-
ming you’ve done.

Sometimes, though, the differences are less subtle. What if someone gets to your website
with a wireless connection from a PDA? Figure 12.9 shows what the result might be.

F I G U R E 1 2 . 9

A website on the
PocketPC

Different sizes are not the only changes your site might hit with different browsers, though.
Lynx is a browser that’s still popular in some circles, where people are used to command-line
tools and speed takes precedence over flashiness. As Figure 12.10 shows, any site is reduced to
text when viewed in Lynx.

F I G U R E 1 2 . 1 0

A website in Lynx

4361Book.fm Page 227 Thursday, November 18, 2004 8:45 PM

228

Chapter 12 • The Web Is Not Windows

There’s more to these display differences than you might think at first sight. Although you
might design a dialog box with a particular size in mind, the user is always free to resize their
browser window. In some cases, this will cause the controls you’ve designed on the web page
to rearrange themselves. For example, Figure 12.11 shows the same web page that you saw in
Figure 12.7.

F I G U R E 1 2 . 1 1

A resized browser
window

As you can see, the heading of the page and the instructional text have been rewrapped to fit
the new window. On the other hand, the data entry controls, being located in an HTML table,
are cut off by the window’s borders. Comparing Figure 12.11 with Figure 12.8 will give you
some notion of the control that you do and don’t have when building user interfaces in HTML.

Varying Standards

Another problem that you’ll run into with browsers is that they all support standards just a little
bit differently. The Web is governed by standards, of which HTML is only one. You’ll learn

4361Book.fm Page 228 Thursday, November 18, 2004 8:45 PM

229

New Rules and New Challenges

more about these standards in Chapter 13, “Building a Web Page.” You should be aware,
though, of the major standards that play a part in web design:

HTML (Hypertext Markup Language)

 continues to be the most common language for
authoring Web pages.

DHTML (Dynamic HTML)

 is a specification for making things change dynamically after
a page has been rendered. For example, DHTML can change the fonts or colors of part of a
page in response to a mouse action.

ECMAScript

 is a standardized version of the JavaScript language, which can also be used for
programming on the web browser.

CSS (Cascading Style Sheets)

 is a specification for adding styles (such as fonts and colors)
to web pages.

XML (Extensible Markup Language)

 is a general-purpose language to adding metadata
to data through markup tags.

XHTML (Extensible Hypertext Markup Language)

 is the next-generation successor
to HTML.

XForms

 is the next-generation successor to the part of HTML that deals with forms and
controls.

There are many other Web specifications, most of which are managed by the Worldwide
Web Consortium (

http://w3c.org

), but these are the chief ones that you’ll need to know to
design web pages. Of these, HTML and CSS are the most important for visual design today,
with XML playing the part of a general-purpose data transport mechanism. ECMAScript
probably has an edge over DHTML for client-side programming because it’s supported more
consistently by a wider variety of browsers. XHTML and XForms are not widely supported by
the current generation of browsers.

Even when a browser supports a particular standard, it’s important to ask what “supports”
means. These web standards are complex, and browsers often don’t render the same page the
same way for a variety of reasons:

●

The browser vendor might choose to leave out support for parts of the standard that it con-
siders unimportant or too hard to implement.

●

The browser’s implementation of a particular part of the standard might be incomplete or
buggy.

4361Book.fm Page 229 Thursday, November 18, 2004 8:45 PM

230

Chapter 12 • The Web Is Not Windows

●

The standard might have been revised after the browser was developed. For example, some
browsers have shipped with preliminary implementations of standards such as XML that
were rendered partially incorrect when the final standard was released.

●

The browser vendor might choose to ship its own proprietary technology rather than an
equivalent standard. Thankfully, this sort of “extension” of web standards is becoming less
and less common.

As an example of the sort of difficulty that you can run into when dealing with browsers and
standards, consider Figures 12.12 and 12.13, which show the same page rendered in two different
browsers.

F I G U R E 1 2 . 1 2

Experimental list in
Firefox

4361Book.fm Page 230 Thursday, November 18, 2004 8:45 PM

231

New Rules and New Challenges

F I G U R E 1 2 . 1 3

Experimental list in
Internet Explorer

The difference between these two figures is that Firefox supports a relatively unusual part of the
CSS standard, whereas Internet Explorer does not. As a result, Firefox renders the page correctly;
Internet Explorer does not render it correctly. From a developer’s point of view, it’s tempting to
say that you’re writing CSS to the standard, and that some browsers render it correctly, so this
is Internet Explorer’s problem. Unfortunately, that statement ignores the reality that 90 percent
or so of all users are browsing with Internet Explorer.

Although you’re not likely to hit such discrepancies in the most common core parts of the
standards, they’re inevitable as you venture into the more advanced (and obscure) corners of
those same standards. In some cases, you can work around this issue by detecting the browser

4361Book.fm Page 231 Thursday, November 18, 2004 8:45 PM

232

Chapter 12 • The Web Is Not Windows

that the user is accessing your web server with and delivering different HTML to a different
browser. But there are several problems with this approach:

●

Detecting the exact browser isn’t always possible. Browser detection depends on an iden-
tifying string that the browser sends to the server, and some people suppress or alter this
string for reasons of their own.

●

Maintaining multiple versions of HTML is more work than maintaining a single version.

●

When you customize your site to different browsers, you take on the added work of checking
each new feature to see how (or whether) it works in each browser that you want to support.

All in all, I think you’re better off just avoiding problematic parts of the standards.

TIP

Some tools do part of the work for you. For instance, Microsoft’s ASP.NET uses the browser
string to automatically adjust the HTML that it delivers on the fly. Although its browser
detection is far from perfect (for example, by default ASP.NET thinks that Firefox does not
understand CSS at all), having this support as part of the tool frees the developer from
some of the work of supporting different browsers.

From the developer’s point of view, the ideal solution is to be able to control the browser that
is used to access your web server. Although this is not possible on the public Internet, it might
be a possibility on a corporate intranet, depending on company politics. If your corporation
standardizes on Mozilla as a browser, for example, you can design and test your web applications
in that browser and not worry about any other—as long as you’re sure that the applications will
remain confined to the intranet.

Unpredictable Infrastructure
A final factor that can make designing web applications difficult is that the Internet itself is
unpredictable. Factors utterly out of your control can have a major impact on your website and
applications:

● Users connect to the Internet through a variety of hardware, ranging from dial-up modems
to fast cable modems and even faster dedicated lines. You can’t be sure how long any par-
ticular web page will take to load, or what delay there will be between the user sending a
request to your server and getting back a response.

● The infrastructure of the Internet itself is subject to attack. Major network worms or
denial-of-service attacks can have a major effect on website performance.

● Keeping websites secure is an increasingly difficult task. One missed patch can leave your
server vulnerable to spoiled children who will break in and deface your web pages for no
reason except to say that they did it.

● Websites come and go. If you depend on links to or resources from another site, you might
wake up some morning to discover that the other site is no longer available.

4361Book.fm Page 232 Thursday, November 18, 2004 8:45 PM

233Design Strategies

Of course, there are some strategies that you can use to mitigate these problems. Keeping
your individual web pages small means that they will load reasonably quickly—even on slow
connections (and nearly instantaneously on fast ones). Paying attention to your network and
server security, and applying patches from vendors in a timely fashion, will help protect you
from attackers. You should also test all the links on your website on a regular basis and include
some way (normally on your feedback form) for users to report broken links.

TIP There are many applications that you can use to check all the links on a website to see
whether any are broken. One free application to do this is Xenu’s Link Sleuth: http://
home.snafu.de/tilman/xenulink.html.

Design Strategies
Given the potential difficulties and pitfalls of moving from Windows user interface design to
web interface design, how should you proceed? There’s no hard-and-fast answer to that ques-
tion. Rather, you can select from a variety of different design strategies based on your needs
and preferences:

● KISS design

● Bleeding-edge design

● Extra frosting design

● Single-browser design

● Multiple-browser design

● Tool-driven design

In the rest of this chapter, I’ll discuss these various different approaches.

KISS Design
KISS, of course, is the time-honored acronym for “Keep It Simple, Stupid.” One easy way to
get started in the Web world is to limit yourself to the simplest technologies that can possibly
work. That generally means using the tags from HTML 3.2 (some older browsers still in use
don’t support some of the tags that were introduced in HTML 4.0) and nothing else: no CSS,
no XML, and certainly nothing like Flash or DHTML.

This approach has at least three substantial benefits:

● A lower learning curve makes it easier to get started.

● Using lowest–common-denominator standards means that your pages should render in any
browser.

● Simple pages tend to be smaller and load more quickly.

4361Book.fm Page 233 Thursday, November 18, 2004 8:45 PM

234 Chapter 12 • The Web Is Not Windows

The major drawback to KISS design is that by limiting yourself to a small number of tools
you also limit yourself to relatively simple page designs. In an age where people have learned
to expect “flashy” websites, this might put you at a disadvantage. Even so, if you’re new to web
design, this is an excellent place to start. You can always expand your toolset and repertoire of
design techniques later.

Bleeding-Edge Design
Other developers argue that there is little or no point to learning outmoded technologies. From
this point of view, you should immerse yourself in web technologies, read the latest articles, and
see if you can create a site that is attractive, flashy, and functional.

This strategy tends not to be a great idea for the novice web designer because there’s simply too
much to learn all at once. But experienced designers can use all the tools of the trade to do some
pretty amazing things. Often, you can incrementally arrive at this design strategy by starting with
simpler designs and then gradually learning new tools and techniques.

There’s a danger here, though. As you use more and more complex designs, you’re more
and more likely to cut yourself off from users who are equipped with older web browsers.
Come up with a stunning way to use DHTML to implement dynamic menus, for example,
and users browsing from version 3.0 browsers will simply be out of luck. Although it’s easy to
say that those users should upgrade, in some cases users can’t upgrade. For example, there
might be a corporate IT department that doesn’t allow unauthorized browsers on the net-
work. Even worse, users might have devices (such as PDAs or cell phones) that make upgrad-
ing browsers difficult or impossible.

Extra Frosting Design
Rather than use the cutting-edge tools to come up with sites that demand users with the latest
browser, you can spread those technologies on top of an otherwise-functional site as “extra
frosting.” As a simple example, consider the case of constructing a page that contains an image.
You can do this with very simple HTML:

<html>
<head>
<title>Image demo 1</title>
</head>
<body>

</body>
</html>

Figure 12.14 shows this web page in Internet Explorer. As you expect, it displays the spec-
ified image.

4361Book.fm Page 234 Thursday, November 18, 2004 8:45 PM

235Design Strategies

F I G U R E 1 2 . 1 4
A web page with an
image

Figure 12.15 shows the same page in Lynx. Being a text-mode browser, Lynx doesn’t have
any way to display the picture, so all it can do is put up the filename. This isn’t very user-
friendly.

A simple change to the HTML can make the page friendlier to Lynx:
<html>
<head>
 <title>Image demo 2</title>
</head>
<body>
<img src="winter_small.jpg" alt="Photo of leafless tree in
front of backlit clouds on a winter morning">
</body>
</html>

F I G U R E 1 2 . 1 5
A web page with an
image in Lynx

4361Book.fm Page 235 Thursday, November 18, 2004 8:45 PM

236 Chapter 12 • The Web Is Not Windows

The alt attribute of the image tag supplies alternative text to be used by browsers that can’t
display the actual image. This inability to display images doesn’t apply just to text browsers;
people with graphical browsers sometimes choose to turn image display off to speed page load-
ing. Figure 12.16 shows how the revised page looks in Lynx.

Similar tricks can be used to make other advanced technologies friendlier to older browsers.
Whether it’s CSS, DHTML, or ECMAScript, it’s possible to design pages so that the more
complex technologies are simply invisible to less-capable browsers. There’s a subtle trap lurk-
ing here, though: You need to make sure that the essential parts of your site don’t depend on
the spiffy new technologies. It doesn’t help to hide the scripting from old browsers if users of
those browsers are suddenly unable to get off the home page of your site.

F I G U R E 1 2 . 1 6
A web page with
alternative text
in Lynx

Single-Browser Design
If you’re fortunate enough to have control over which browser people use with your web appli-
cation (which is normally only the case for intranet applications), then you’re in luck. You can
design pages specifically to take advantage of the features and foibles of that browser, without
worrying about how they’ll look in any other browser.

If you’re in this situation, you can use the browser vendor’s documentation as your primary
technology guide, rather than relying on the standards and testing to see what actually works.
But you need to be aware of two potential downsides to this tightly constrained design strat-
egy. First, you might be in for rough sailing if the approved browser is ever changed and you
took advantage of quirks that no longer exist in the new version. Second, you need to be care-
ful of linking your own skills too tightly to a particular browser. If you ever want to change
jobs, you’ll want to be able to present yourself as a web designer rather than just an Internet
Explorer 5.01 designer.

4361Book.fm Page 236 Thursday, November 18, 2004 8:45 PM

237Design Strategies

Multiple-Browser Design
At the far end of the spectrum from designing for a single browser is a technique that I men-
tioned earlier: designing multiple versions of a website for multiple browsers. You might, for
example, have different versions for each of these potential clients:

● Text-only browsers

● Older graphical browsers

● Current graphical browsers

● Small-screen browsers

You can also add user choice into the mix. For example, some people like the animated
graphics that can be produced with Macromedia’s Flash, whereas others detest them. That’s
why you’ll sometimes see sites offering a Flash version and a non-Flash version that let users
choose which version of the site to view. You can also try to detect which browser is being used
to view the site and serve the appropriate version of the pages (although there are potential
problems with this approach, as I discussed earlier in the chapter).

On the plus side, a multiple-browser approach can leave all or most of your visitors very
satisfied with the site by making good use of the features that their browsers support. On the
minus side, maintaining more than one version of a site introduces a lot of extra work into the
equation. Not only do you need to keep each version working, you need to make sure that
changes are made consistently across all the versions.

Tool-Driven Design
Finally, you can choose to abdicate all responsibility for underlying technology choices and
instead rely on a tool to help you write web pages. Although this approach seems like a cop-
out, it’s actually consistent with the way in which almost everyone develops Windows appli-
cations. It’s a very rare developer who writes Windows applications using assembly language,
or even C++ and the Windows API. Instead, most of us rely on tools such as Visual Studio
.NET to abstract away the routine details. We write code using high-level objects, design the
user interface with forms and controls, and let the compiler worry about translating every-
thing to compiled code.

Similarly, rather than building web pages and sites in HTML, you can use a visual design
tool such as Macromedia Dreamweaver, Microsoft FrontPage, or Visual Studio .NET to
design pages graphically. Your designs are then converted into HTML and other web stan-
dards behind the scenes. When the process is complete, the server is still sending HTML,
but you never have to look at it if you don’t want to.

4361Book.fm Page 237 Thursday, November 18, 2004 8:45 PM

238 Chapter 12 • The Web Is Not Windows

Tool-driven design can be the fastest way to move from Windows interface design to web
interface design. These modern integrated environments make it very easy to create and cus-
tomize web pages while hiding complexity from the user. But it helps to have some understand-
ing of what you’re creating. For example, with Visual Studio .NET, you can choose which of
several browsers to target with your HTML. The choices you make affect both the capabilities
of the tool and the ultimate generated HTML. If you treat the system as a completely black
box, you might be powerless to understand or fix any problems that users report.

Summary
In this chapter, you learned a little bit about moving user interface design skills from Windows
applications to web applications. You saw why you might want to make the transition. I then
discussed some of the problems that await you in trying to be a web designer with a Windows
outlook, and offered some potential design strategies to help you deal with this new world.

Now it’s time to look at some of the web technologies in more detail. The next chapter looks
at the pieces of a web page in more depth, and I discuss the capabilities of the standard HTML
controls and tags that you can use to build a user interface for a web application.

4361Book.fm Page 238 Thursday, November 18, 2004 8:45 PM

Chapter 13

Building a Web Page

•

The Elements of Page Design

•

A Brief Look at Cascading Style Sheets

•

General Principles of Web Page Design

4361Book.fm Page 239 Thursday, November 18, 2004 8:45 PM

240

Chapter 13 • Building a Web Page

T

o design a user interface for a web application, you need to be familiar with the basic tools
at your disposal. This means understanding the basic elements of HTML, even if you will use

a graphical design tool that does the heavy lifting for you. Even the best of tools occasionally
needs a bit of help in the form of hand-editing of the generated HTML, and if you don’t know
what you’re looking at, you’ll be out of luck. In this chapter, I’ll show you what HTML provides
as building blocks for your web user interfaces and go over some general principles of good web
page design. If you already know the basics of HTML and web page design, you might like to just
skim this chapter for suggestions on how to most effectively use the standard tags and controls.

The Elements of Page Design

Web pages are built of HTML tags. These tags specify the content and layout of the page (within
limits) to the web browser. In this section of the chapter, I’ll go over the most common and useful
HTML tags, and show how they fit together to build a user interface. It’s convenient to divide these
tags into two groups: basic tags that support the non-interactive features of a web page, and forms
that supply an interface somewhat similar to dialog boxes with controls in a Windows application.

NOTE

The picture gets more complex when you add in other web standards such as CSS. CSS is a non-
HTML language that modifies the presentation of HTML pages. Even in this case the page itself
will still be HTML.

TIP

For more details on any of the web standards discussed in this chapter visit the World Wide
Web Consortium site at

www.w3c.org

.

Basic Elements

In this section, you’ll learn how to put together a web page, including the most common non-
interactive elements:

●

Text

●

Lists

●

Hyperlinks

●

Images

●

Tables

TIP

There’s a lot more to HTML than I’m going to show you in this chapter. If you’d like an
exhaustive reference, try

HTML Complete

 (Sybex, 2003).

The Structure of an HTML Page

I’ll start with an extremely simple web page that will show you the general structure that all
HTML pages should follow:

4361c13.fm Page 240 Tuesday, November 23, 2004 5:02 PM

241

The Elements of Page Design

<html>
<head>
<title>First Web Page</title>
</head>
<body>
<!-- A sample web page -->
Some text
</body>

</html>

The first thing to note here is the selection of

tags

 sprinkled through the file. A tag is delim-
ited by angle brackets (< and >), and it’s not meant to be displayed to the user. Rather, a tag is
an instruction to tell the web browser what’s going on. Tags come in pairs; each opening tag
has a closing tag that is the same as the opening tag with a slash character; for example,

</body>

is the closing tag for the opening tag

<body>

. Opening tags can contain

attributes

 that further
specify their purpose (although none of them do in this particular example).

TIP

Strictly speaking, HTML does not require every opening tag to have a corresponding closing tag.
But some of the other web standards, such as XML, do impose this requirement, and HTML
doesn’t object to closing tags. It’s good practice to always include explicit closing tags.

Tags can be nested. That is, there can be tags within the opening and closing pair for
other tags. Looking at just the structure of the first example with some indentation makes
this clear:

<html>
 <head>
 <title>
 </title>
 </head>
 <body>
 </body>

</html>

The

<head>

 and

<body>

 tags in this example are nested inside of the

<html>

 tag; the

<title>

tag is further nested inside of the

<head>

 tag. You can’t overlap tags; the inner tag must be
closed before the outer tag is closed. Thus, HTML with this structure would be illegal:

<html>
 <head>
 <title>
 </head>
 </title>
 <body>
 </body>

</html>

4361Book.fm Page 241 Thursday, November 18, 2004 8:45 PM

242

Chapter 13 • Building a Web Page

WARNING

Some web browsers make an attempt to interpret illegal HTML, but it’s best not to depend
on any such behavior.

Every HTML document should contain these three tags:

●

<html>

 identifies the document as being HTML.

●

<head>

 contains information about the document.

●

<body>

 contains information to be displayed in the browser.

In the

<head>

 section, you’ll almost always want to include a

<title>

 tag. As you can guess
from the name, this tag specifies the caption text to be shown at the top of the web browser.

The sample document includes two things inside of the

<body>

 tag. The first line is an
HTML comment:

<!-- A sample web page -->

HTML comments are introduced by the special characters

<!--

 and terminated by the special
characters

-->

. As in any other programming language, you can use comments to make the intent
of your HTML clear, to keep notes for future implementation, and so on. Finally, anything that’s
not a tag or a comment is text to be displayed:

Some text

Figure 13.1 shows this document in a browser.

Text

Anything outside of tags is treated as text to be displayed in the browser. One thing to note is
that white space in the HTML source is generally

not

 significant to web browsers. Consider
this source file:

<html>
<head>
<title>Unbroken text</title>
</head>
<body>
 Text with leading spaces.
And another paragraph with some more text.
Even more text on this line, with a big gap in it.

Text after a blank line.
</body>

</html>

You might expect this file to display in the browser much as it looks here. If so, you’d be sur-
prised, as Figure 13.2 shows.

4361Book.fm Page 242 Thursday, November 18, 2004 8:45 PM

243

The Elements of Page Design

F I G U R E 1 3 . 1

A very simple HTML
document

F I G U R E 1 3 . 2

HTML without white
space markup

Most browsers just don’t consider spaces and carriage returns to be significant. They ignore
these things and pour the text into the browser window as one long chunk. This can get pretty
hard to read, which is why HTML provides some ways to lay out the display of the text:

 is a non-breaking space character that displays an explicit space in the browser.

<p>

 indicates a paragraph of text that most browsers render with surrounding blank lines.

<div>

 indicates a division of text that can be aligned within the browser.

 indicates a line break.

Here’s an HTML document that uses these tags:

<html>
<head>
<title>Layout tags</title>
</head>
<body>
<p>
This text will be indented four spaces</p>

4361Book.fm Page 243 Thursday, November 18, 2004 8:45 PM

244

Chapter 13 • Building a Web Page

<div align="left">The text in this section of the document
will be left-aligned.</div>
<div align="right">And the text in this section of the
document will be right-aligned</div>
<p>Here's a short paragraph of text.</p>
<p>And here's another, slightly longer, paragraph of
text to round out the document. This particular paragraph
includes
 a line break embedded in it.</p>
</body>

</html>

There are a couple of things to note about this document. First, because the layout and line
breaks are controlled by the markup and browser, you’re free to wrap text however you like
in the HTML source. You can also insert tabs and blank lines for readability if you like. Sec-
ond, the

<div>

 tag here shows how to use HTML attributes. The

<div>

 tag supports a number
of attributes, including the

align

 attribute to specify the alignment of text in the section. To
use an attribute, you include the attribute name, an equal sign, and a quoted value inside the
opening tag. In addition to the left and right values shown in this sample, you can also use the
align tag to center text with

align="center"

. Figure 13.3 shows this file in the web browser.

TIP

The

<p>

 tag also supports the

align

 attribute.

NOTE

CSS provides alternative ways to align text and other parts of a web page. Many developers
prefer to use CSS for this purpose, and to limit HTML to holding content. Splitting design
from content often makes it easier to fine-tune each.

The bulk of your web page work is likely to be text. Web pages would be pretty dull if all the
text on the page looked the same—although there are some pretty severe limitations to what
you can specify about the appearance of the text. For example, you can’t specify a font or an
absolute text size in HTML (although CSS eases this restriction a bit; see the section “A Look
at Web Page Standards” later in this chapter). But HTML does supply a variety of tags that you
can use to alter the appearance of text. Here are just a few of them:

●

<h1>

 through

<h6>

 tags for headings.

●

 or

 for bold text.

●

<i>

 or

 for italic text.

●

<u>

 for underlined text.

●

<code>

 for source code.

●

<pre>

 for preformatted text.

4361Book.fm Page 244 Thursday, November 18, 2004 8:45 PM

245

The Elements of Page Design

F I G U R E 1 3 . 3

Laying out HTML
with tags

Here’s a sample document that uses these tags:

<html>
<head>
<title>Formatting text</title>
</head>
<body>
<h1>Heading 1</h1>
<h2>Heading 2</h2>
<h3>Heading 3</h3>
<h4>Heading 4</h4>
<h5>Heading 5</h5>
<h6>Heading 6</h6>
<p>A paragraph with bold and strong text.</p>
<p>A paragraph with <i>italic</i> and emphasized text.</p>
<p>A paragraph with <u>underlined</u> text.</p>
<p>This paragraph includes some embedded source code:
<code>For i = 1 to 10</code>.</p>
<pre><code>
' Preformatted source code
For i = 1 to 10
 Debug.Print i
Next i
</code></pre>
</body>

</html>

Figure 13.4 shows this page in the browser.

4361Book.fm Page 245 Thursday, November 18, 2004 8:45 PM

246

Chapter 13 • Building a Web Page

F I G U R E 1 3 . 4

Formatting text
with HTML

The heading tags

<h1>

 through

<h6>

 provide six different styles that can be used for outline-
style heads within a document, from largest to smallest. There’s no particular requirement as
to how the browser renders these headings, although usually

<h4> is the same font size as nor-
mal paragraph text.

Why two sets of tags for bold and italic text? The answer is that and <i> are physical style
tags, which dictate to the browser exactly what it should do: display text as bold or italic. The
other two tags, and , are content-based tags. These tags tell the browser to empha-
size the text, but don’t specify how the emphasis should be done. In practice, though, every
modern browser uses bold and italic text for these tags.

The <code> tag tells the browser to use a monospaced font; it’s usually used for computer
programming source code. Often, you’ll see this tag nested in the <pre> tag, as shown in the
final part of this sample. The <pre> tag indicates that text is preformatted; that is, the browser
should not change the spacing or word wrap within this text. Although this is really a layout tag,
it’s most often used with the <code> tag, which is why I saved it for this example.

4361Book.fm Page 246 Thursday, November 18, 2004 8:45 PM

247The Elements of Page Design

The formatting tags, such as and <i>, date back to very early versions of the HTML
standard. In fact, these tags are currently deprecated. That is, the applicable standards bodies
recommend you use CSS instead of these HTML tags. While avoiding the HTML format-
ting tags will keep you on the cutting edge, the plain fact is that there will never be a browser
that doesn’t understand these tags; they’re just used on far too many web pages already. My
advice is to use the tags that you’re comfortable with and that suit your needs, and not to
worry too much about whether a standards body says you’re doing it right.

NOTE If you’d like to check your work to see whether it conforms to the standards, you can use
one of the online validation services: Bobby (http://bobby.watchfire.com/bobby/html/en/
index.jsp), Vischeck (www.vischeck.com/vischeck/vischeckImage.php), or the W3C valida-
tor (http://validator.w3.org/). But use your judgment when deciding which recommenda-
tions to accept.

Lists
Another variation of plain text in HTML is the list. HTML supports two types of lists: ordered
lists and unordered lists. This sample shows both types in action:

<html>
<head>
<title>Lists</title>
</head>
<body>
<p>Ordered list:</p>

First item
Second item
Third item

<p>Unordered list:</p>

First item
Second item
Third item

</body>
</html>

Lists such as these always involve nested tags. The outer tag specifies the type of list: for
an ordered list and for an unordered list. The inner tag is always (for list item); there
are as many of these tags as there are items on the list. As you can see in Figure 13.5, ordered
lists are numbered, and unordered lists are bulleted.

4361Book.fm Page 247 Thursday, November 18, 2004 8:45 PM

248 Chapter 13 • Building a Web Page

F I G U R E 1 3 . 5
Ordered and
unordered lists

Lists can also be nested. This is most useful with unordered lists, which create additional levels
of indentation and distinctive bulleting. For example, here’s a page with a nested unordered list:

<html>
<head>
<title>Nested List</title>
</head>
<body>

First item

 First nested item
 Second nested item
 Third nested item

Second item

 First nested item
 Second nested item
 Third nested item

Third item

 First nested item
 Second nested item
 Third nested item

</body>
</html>

4361Book.fm Page 248 Thursday, November 18, 2004 8:45 PM

249The Elements of Page Design

F I G U R E 1 3 . 6
Nested list

Figure 13.6 shows this file in Internet Explorer.

Images
Any modern web browser can display images in three common formats: GIF, JPG, and PNG.
To insert an image in your document, use the tag, which supports many attributes
including the following:

src for the source (image file) location.

alt for text to be displayed when the browser can’t display the image or when the user has
images disabled.

align to specify the alignment of the image with the surrounding text.

height to specify the image height in pixels.

width to specify the image width in pixels.

Here’s a document that includes two images:
<html>
<head>
<title>Images</title>
</head>
<body>
<img src="happy.png" alt="Happy face" align="left"
height=100 width=100>
<p>The happy face graphic is aligned to the
left side of the browser window,
and the text flows around it on the right.</p>
<img src="sad.png" alt="Sad face" align="right"

4361Book.fm Page 249 Thursday, November 18, 2004 8:45 PM

250 Chapter 13 • Building a Web Page

height=100 width=100>
<p>The sad face graphic is aligned to the
right side of the browser window,
and the text flows around it on the left.</p>
</body>
</html>

Figure 13.7 shows this document in the browser.

The src attribute of the tag specifies a file relative to the HTML page on the server.
In this case, with no folder listed, the web server looks for the images in the same folder as the
HTML file itself.

F I G U R E 1 3 . 7
Images in HTML

Hyperlinks
You’re aware, of course, that web pages are connected to other web pages by hyperlinks. In
HTML, hyperlinks are indicated by the <a> tag. The general form of the <a> tag, when used
for hyperlinks, is:

Link text

For example, here’s a page that links to several well-known locations on the Web:
<html>
<head>
<title>Hyperlinks</title>
</head>
<body>

4361Book.fm Page 250 Thursday, November 18, 2004 8:45 PM

251The Elements of Page Design

<a href="http://www.microsoft.com"
 title="Microsoft home page">Microsoft
<a href="http://www.yahoo.com"
 title="Yahoo home page">Yahoo
<a href="http://www.google.com"
 title="Google home page">Google

</body>
</html>

Figure 13.8 shows the page generated by this HTML, which wraps three hyperlinks in a list.

To be useful, hyperlinks need to include the href attribute, which specifies the target page
that the jump will take the user to. You should also include the title attribute, which specifies
a title for the target page. This is usually the same as the page’s title, though it can be different.
This attribute is used by screen readers to give users a hint as to where the hyperlink will take
them. Another common attribute is target, which dictates which window a hyperlink will open
in. You can use target="_blank" to cause a hyperlink to open in a new window.

There are quite a few different possibilities for the link URL, but you’re most likely to see
five of these:

http://www.example.com/test.htm HTTP URL pointing to a page on another site.

https://www.example.com/test.htm Secure HTTP URL pointing to a page on
another site.

Page2.html Relative URL pointing to the same site. In this case, the link would be to
Page2.html stored by the web server in the same directory as the current page.

ftp://example.com/test.zip FTP URL for downloading a file from an external site.

mailto:MikeG1@example.com E-mail URL for sending mail to the specified user.

F I G U R E 1 3 . 8
Hyperlinks

4361Book.fm Page 251 Thursday, November 18, 2004 8:45 PM

252 Chapter 13 • Building a Web Page

You can enclose just about any other tag inside of the <a> tag. For example, it’s quite common
to hyperlink images. Here’s a page that uses a graphical button instead of a text link:

<html>
<head>
<title>Linked graphic</title>
</head>
<body>
<p>Click the arrow to go to the Microsoft Website.</p>

</body>
</html>

Figure 13.9 shows the result. Note the hand cursor over the graphic, which shows that it’s a
hyperlink. This figure also shows how Internet Explorer handles the alt attribute of the
tag, by displaying a ToolTip with the text of the attribute. The alt attribute is also used by
screen readers to describe an image that they can’t see, so you should strive to make the
description stand by itself.

WARNING Beware of hyperlinking images without making it very clear to the user that that’s what you
are doing. It’s okay to create a menu in graphics, for example, as long as there is text that
cues the user to click. But creating a menu purely out of graphics with no text leads to what
is sometimes called “mystery meat” navigation, where it’s impossible to find the hyper-
links without madly waving your cursor around the web page. This is a bad idea that only
annoys users.

Tables
The last of the major basic tools is the table. Tables are the most complex part of basic HTML,
and I’m going to show you only the most common of the table tags here. In almost every case,
you’ll be using a graphical tool to define tables, rather than writing raw HTML.

F I G U R E 1 3 . 9
A hyperlinked image

4361Book.fm Page 252 Thursday, November 18, 2004 8:45 PM

253The Elements of Page Design

In HTML, tables are created as cells within rows within the table itself. Here’s a first simple
example of defining a table:

<html>
<head>
<title>Table #1</title>
</head>
<body>
<table>
 <tr>
 <th>State</th>
 <th>Capital</th>
 </tr>
 <tr>
 <td>Alabama</td>
 <td>Montgomery</td>
 </tr>
 <tr>
 <td>Alaska</td>
 <td>Juneau</td>
 </tr>
 <tr>
 <td>Arizona</td>
 <td>Phoenix</td>
 </tr>
</table>
</body>
</html>

Figure 13.10 shows the table defined by this structure. The <table> tag marks the overall
table. Each row is defined by the <tr> tag. Individual cells are within <th> or <td> tags—the
difference being that the browser renders the former with more emphasis so that they can be
used as headers.

F I G U R E 1 3 . 1 0
Simple HTML table

4361Book.fm Page 253 Thursday, November 18, 2004 8:45 PM

254 Chapter 13 • Building a Web Page

The <table> tag has a set of attributes that let you draw borders around the cells, as in this
example:

<html>
<head>
<title>Table #1</title>
</head>
<body>
<table border=2 cellspacing=2 cellpadding=2>
 <tr>
 <th>State</th>
 <th>Capital</th>
 </tr>
 <tr>
 <td>Alabama</td>
 <td>Montgomery</td>
 </tr>
 <tr>
 <td>Alaska</td>
 <td>Juneau</td>
 </tr>
 <tr>
 <td>Arizona</td>
 <td>Phoenix</td>
 </tr>
</table>
</body>
</html>

Figure 13.11 shows the result. Now each cell in the table is surrounded by a chiseled border.

F I G U R E 1 3 . 1 1
HTML table with
borders

4361Book.fm Page 254 Thursday, November 18, 2004 8:45 PM

255The Elements of Page Design

The three attributes that control the borders are as follows:

border The width of the border around the table, in pixels. By default, this is zero.

cellspacing The amount of space placed between adjacent cells in a table and along the
outer edges of cells along the edges of a table, in pixels.

cellpadding The amount of space between the edge of a cell and the text or image that it
contains.

Two other attributes that are worth knowing about are colspan and rowspan. These attributes
allow you to create irregular tables. Here’s an example:

<html>
<head>
<title>Table #1</title>
</head>
<body>
<table border=2 cellspacing=2 cellpadding=2>
 <tr>
 <td></td>
 <td colspan=2 align="center">Details</td>
 </tr>
 <tr>
 <td></td>
 <th>State</th>
 <th>Capital</th>
 </tr>
 <tr>
 <td rowspan=3>States</td>
 <td>Alabama</td>
 <td>Montgomery</td>
 </tr>
 <tr>
 <td>Alaska</td>
 <td>Juneau</td>
 </tr>
 <tr>
 <td>Arizona</td>
 <td>Phoenix</td>
 </tr>
</table>
</body>
</html>

In this case, the colspan attribute indicates a cell that spans two columns; the rowspan
attribute later on dictates that a cell is spread across three rows. Figure 13.12 shows the result.

4361Book.fm Page 255 Thursday, November 18, 2004 8:45 PM

256 Chapter 13 • Building a Web Page

F I G U R E 1 3 . 1 2
An irregular HTML
table

Forms
So far, all the HTML elements that you’ve seen in this chapter are static. They can be used to
display data (perhaps quite complex data) to the user, but they don’t allow the user to interact
with the server beyond clicking a hyperlink to load another page. As such, they don’t allow the
richness that’s needed for an interactive application.

The <form> tag, and the tags that it contains, fills this gap in classic HTML. An HTML form,
like a Windows dialog box, is a collection of controls that the user can interact with. When the
user has entered or selected values, they can click a button to send the information they chose
back to the server for further processing. It’s important to understand that this model is inde-
pendent of the particular web server or the software on the server side. HTML forms provide
a mechanism for packaging up data into standardized messages; these messages can be handled
by a variety of server applications.

For starters, here’s a very simple HTML form:
<html>
<head>
<title>Simple form</title>
</head>
<body>
<form action="http://www.example.com/testform" method="post">
What's your name?
<input type="text" name="UserName" size="40">

<input type="submit" value="Log In">
</form>
</body>
</html>

Figure 13.13 shows this form in the browser.

4361Book.fm Page 256 Thursday, November 18, 2004 8:45 PM

257The Elements of Page Design

F I G U R E 1 3 . 1 3
A very simple
HTML form

When the user types in their name and clicks the Submit button, the browser sends the infor-
mation on the form to the server. This information is sent in the HTTP headers for the request,
where it’s available for any server software that cares to make use of it. Data from the form is sent
as name-value pairs. For example, if you type Horace Horsley into the form in Figure 13.13 and
click Submit, the data sent to the server includes

UserName=Horace+Horsley

Note that the space in the user input is automatically replaced by a plus sign.

The <form> tag requires both the action and method attributes. The action attribute spec-
ifies the target URL for the data sent by the form. Depending on your server software, this
could be the same HTML page that contains the form, a different HTML page, or something
else entirely. The method attribute can be either post or get. Which one you use depends on
the server software that’s dealing with the form; they refer to two slightly different standards
for uploading the data.

Figure 13.14 shows the standard controls that you can use on HTML forms:

● Text box

● Text area

● Radio button

● Check box

● Drop-down List

● Listbox

● File Upload

● Buttons

4361Book.fm Page 257 Thursday, November 18, 2004 8:45 PM

258 Chapter 13 • Building a Web Page

F I G U R E 1 3 . 1 4
HTML form controls

Text Box
The text box control provides a single-line input area where the user can type whatever they
like. The text box in Figure 13.14 was produced by this code:

<input type="text" name="txt1">

As you can see, a text box is actually part of the more generic <input> tag. In fact, most of the
controls in Figure 13.14 are created by the <input> tag. The type attribute specifies the type
of control to create, and the name attribute (which is also required) is sent back to the server
with the form’s data to identify the particular control. Other useful attributes for text boxes
include:

size The size of the text box, taken as the number of characters to display.

maxlength The maximum number of characters that the text box will accept.

As on Windows dialog boxes, text boxes are useful when you need to allow completely free-
form input. For cases where the user should select from a small number of alternatives, other
controls offer a better user interface.

4361Book.fm Page 258 Thursday, November 18, 2004 8:45 PM

259The Elements of Page Design

Text Area
The text area control allows you to define a multiple-line input area on an HTML form:

<textarea cols="40" rows="8" name="area1">

The cols attribute specifies the number of columns to display, and the rows attribute specifies
the number of rows to display. Normally, the control displays text exactly as the user types it and
sends exactly that text to the server; to go to a new line, the user must press Enter. You can adjust
this behavior with the wrap attribute. If you set wrap=virtual, the text will be wrapped on screen,
but not when transmitted to the server. If you set wrap=physical, the text will be wrapped on
screen and sent to the server with line breaks as well.

Radio Button
Radio buttons are also created by the <input> tag:

<input type="radio" name="r1" value="1">
<input type="radio" name="r1" value="2">

Note that the name attribute is the same for both of these radio buttons. That’s what tells the
browser to use the standard radio button behavior of allowing only one to be marked at any
given time. Each radio button has an associated value, and when the user submits the form to
the browser, the value of the checked radio button is sent back as the value of the entire group.
If you want to display the form with one of the buttons preselected, include the checked
attribute in its tag:

<input type="radio" checked name="r1" value="1">

Check Box
Check boxes, too, are created by the <input> tag:

<input type="checkbox" name="c1" value="1">
<input type="checkbox" name="c1" value="2">

The only major difference between radio buttons and check boxes is that even if two check
boxes have the same name attribute, the browser allows the user to check both of them. The val-
ues of all checked check boxes are sent back to the server when the user submits the form.

Drop-Down List
To create a drop-down list of choices on an HTML form, you use the <select> and <option> tags:

<select name="ddl1">
<option>Choose one</option>
<option>News</option>
<option>Sports</option>
<option>Talk</option>
</select>

4361Book.fm Page 259 Thursday, November 18, 2004 8:45 PM

260 Chapter 13 • Building a Web Page

The <select> tag itself specifies that there will be a list of items here. By default, this tag creates
a drop-down list. Each option within the list is represented by an instance of the <option> tag.
The browser displays the first option in the list as the default value of the drop-down list when
the user first loads the page.

The value of the drop-down list is the text of the selected option. If you prefer to somehow
encode values, you can use the value attribute of the <option> tag:

<select name="ddl1">
<option value=0>Choose one</option>
<option value=1>News</option>
<option value=2>Sports</option>
<option value=3>Talk</option>
</select>

In this case, the browser will send the server 0, 1, 2, or 3 as the value of ddl1.

List Box
You can also create a list box by using the <select> tag:

<select name="s1" size="4" multiple="multiple">
 <option>Appetizer</option>
 <option>Soup</option>
 <option>Meat</option>
 <option>Dessert</option>
 </select>

The size attribute of the <select> tag controls how many rows will be displayed in the list
box at one time. To allow multiple selection, include the multiple attribute.

File Upload
HTML includes a variation of the <input> tag to make it easy for the user to select and upload
a file:

<input type="file" name="f1">

This tag is actually rendered as two different controls: a text box and a button labeled Browse.
Clicking the Browse button opens a File Open dialog box provided by the operating system to
allow the user to choose a file.

For the file upload control to work properly, you must use the post method for the form and
set the enctype attribute of the <form> tag:

<form enctype="multipart/form-data"
method=post action="process_file.html">

4361Book.fm Page 260 Thursday, November 18, 2004 8:45 PM

261A Brief Look at Cascading Style Sheets

Buttons
Finally, HTML forms contain buttons. There are two standard button types—submit and reset:

<input type="submit">
<input type="reset">

The submit button sends the current contents of the form to the server; the reset button
clears the form so that the user can start over. You can also create as many custom buttons on
the form as you want by supplying values for the name and value attributes:

<input type=submit name=action value="Add">
<input type=submit name=action value="Update">
<input type=submit name=action value="Delete">

In this case, the form will have three different submit buttons, labeled Add, Update, and
Delete. When the user clicks one of these buttons, the form’s data is sent back to the server
along with a parameter named action that contains the value of the button that the user
clicked.

A Brief Look at Cascading Style Sheets
There are attributes to set display preferences such as fonts and colors in HTML, but I haven’t
shown you any of them. That’s because most web designers these days agree that Cascading
Style Sheets (CSS) are a better choice for dictating these visual aspects of your web page. CSS
is more flexible than HTML formatting attributes, and it also encourages a separation of con-
tent and design that makes it easier to focus on each piece of the process individually.

In addition to the benefits they offer to developers, Cascading Style Sheets can also be a boon
for users. That’s because the major web browsers allow the user to substitute their own CSS for
the one supplied by the website. If you’re using Internet Explorer, for example, select Tools �
Internet Options. On the General tab of the Internet Options dialog box click Accessibility. In
the Accessibility dialog box, check the Format Documents Using My Style Sheet option and
fill in the name of a CSS file on your own computer. Using your own style sheet lets you alter
fonts, colors, alignment, and just about anything else about a web page. For example, you can
make the default font of a site larger if you have trouble reading it, or get rid of a background
image that you find difficult to live with.

CSS styles can be included as part of an HTML page or collected into an external file called
a style sheet. Usually, the external style sheet is a better choice. By collecting styles in an exter-
nal style sheet, you can reuse them across many web pages. This gives you benefits analogous
to those derived from reusing library code across many applications.

4361Book.fm Page 261 Thursday, November 18, 2004 8:45 PM

262 Chapter 13 • Building a Web Page

To demonstrate styles in action, I’ll start with a very simple HTML document:
<html>
<head>
<title>CSS demo</title>
<link rel=stylesheet type="text/css"
 href="Sheet1.css">
</head>
<body>
<h1>Heading</h1>
<p>Some text in the document.</p>
</body>
</html>

Note that there’s a new tag in the <head> section of this file. The <link> tag in question spec-
ifies an external style sheet, and gives the name of the style sheet in the href attribute. In this
case, the style sheet is in the same folder as the web page. Here are the contents of the style
sheet Sheet1.css:

h1 {font-size: 120pt}
p {font-style: italic}

Figure 13.15 shows the result of displaying the indicated web page with this style sheet. Note
that the <h1> and <p> text looks very different than it would with the default style for these sections.

A style sheet is a collection of styles. Each style consists of a selector, plus one or more property-
value pairs, enclosed in curly braces. The selector matches the HTML tag to which the style will
be applied. The property is separated from its value by a colon. So, you might read the Sheet1.css
file as “make the font in all <h1> tags 120 point, and make the style in all <p> tags italic.”

F I G U R E 1 3 . 1 5
Using a Style Sheet

4361Book.fm Page 262 Thursday, November 18, 2004 8:45 PM

263A Brief Look at Cascading Style Sheets

You can also apply a style to just part of a tag. The trick is to use the tag to delimit
the text whose style you want to change. The tag is an HTML tag that has no effect by
itself, but it can be used in conjunction with CSS to apply formatting wherever you’d like it.
Consider this HTML file:

<html>
<head>
<title>CSS demo</title>
<link rel=stylesheet type="text/css"
 href="Sheet2.css">
</head>
<body>
<h1>Heading</h1>
<p>Some text in the document.</p>
</body>
</html>

And here are the contents of the Sheet2.css file that goes with the HTML:
span.bigtext {font-size: large}

Figure 13.16 shows the results. As you can see, the span.bigtext style is applied only to the
text within the and tags. You can define as many classes of tag as you
like, and apply individual styles to each of them.

F I G U R E 1 3 . 1 6
Using CSS for part of
a paragraph

TIP You can also use the class attribute for other tags. For example, if you start a paragraph with
<p class=bold>, it is formatted according to a p.bold style in the associated style sheet.

Table 13.1 lists some of the properties that you can set with CSS. There are many more than
this available; for a full listing, see the CSS pages at the Worldwide Web Consortium site
(http://www.w3c.org/Style/CSS/).

4361Book.fm Page 263 Thursday, November 18, 2004 8:45 PM

264 Chapter 13 • Building a Web Page

TIP For some stunning examples of CSS design, visit the CSS Zen Garden (http://www.csszen-
garden.com/). This site uses a single HTML file with dozens of different CSS files to show you
what a wide variety of effects CSS can achieve. Even better, you can download all of the files
to use as learning aids.

General Principles of Web Page Design
To conclude this chapter, I’ll give you some general guidance on designing web pages that will
be a part of a web application. Of course if you’ve spent time on the Internet (and who hasn’t?),
you know that web pages come in an overwhelming variety of designs. Unlike Windows, which
has some history of standards that constrain graphic design, the Web has been wide open to inno-
vation. It’s also traditionally been the territory of graphic artists rather than application designers.

However, you don’t have to put all of your time and energy into artistic work to design usable
web applications. Paying attention to page design, the use of links, and the way that you set up
forms can help your application’s usability, even if it doesn’t end up being flashy.

Web Page Design for Applications
Many of the general principles that you learned in Chapter 7, “Dialog Boxes,” apply equally
well to web page design:

● Use borders and boxes to clarify which controls work with each other.

TABLE 13.1 Selected CSS Properties

Property Description

background-color Background color of an element

background-image Image file to use as the background of an element

border-color Border color of an element

border-style Style of the border of an element

border-width Width of the border of an element

color Foreground color of an element

font-family List of font names to use for an element

font-size Font size for an element

font-style Control normal versus italic for text

font-weight Control amount of boldness for text

margin Margin of an element

text-align Text alignment for an element

vertical-align Vertical alignment for an element

4361Book.fm Page 264 Thursday, November 18, 2004 8:45 PM

265General Principles of Web Page Design

● Keep controls arranged in neat rows and columns. On a web page, the easiest way to do this
is with a table whose border width is set to zero.

● Place command buttons after other controls, where the user will naturally find them after
working through the rest of the form.

● Arrange controls left to right and top to bottom, to take advantage of the user’s natural
reading order.

● Use tabs to break up large pages into smaller subpages.

The last point deserves some further explanation. Although HTML doesn’t include a native
tab control, it’s easy enough to fake it with a proper use of images and hyperlinks. For instance,
consider the well-known tabbed interface used by Amazon.com, as shown in Figure 13.17.

F I G U R E 1 3 . 1 7
Tabbed user interface
in HTML

Here’s the HTML that produces the portion of the page shown in Figure 13.17, somewhat
simplified (I removed long paths and shortened filenames):

4361Book.fm Page 265 Thursday, November 18, 2004 8:45 PM

266 Chapter 13 • Building a Web Page

You get the idea. On other pages in the tab set, the HTML is almost identical, except that a
different graphic is darker than the rest to indicate the active tab.

There are some other principles that are more applicable to web pages than to Windows dialog
boxes. Chief among these principles is the notion that important content should be “above the
fold,” a term borrowed from newspaper publishing. This is an extension of the notion that read-
ing order starts at the top left of the page, coupled with the fact that web pages render progres-
sively: In most browsers, you’ll see the content at the top of the page before the content at the
bottom of the page is written to the screen. To keep the user’s interest, the most important con-
tent should be in this area. Thus, on web pages you should always keep menus at the top, where
they’ll quickly be available for users to choose from.

You should also make sure that the web page looks good on more than just your computer
with your preferred browser. At the very least, I suggest checking any page with the current
versions of Internet Explorer, Mozilla/Netscape/Firefox (all of which use the same core ren-
dering engine), and Opera. Depending on your target audience, you might wish to include less-
common browsers on the list as well. If you’re designing many web pages, you’ll find it useful
to set up test machines or virtual machines with a variety of browsers installed.

Tips for Using Hyperlinks
There’s an art to finding the right level of hyperlinking for a web document. If you’re designing
a web application where you expect the user to stay within a set of pages that link to each other,
it’s relatively easy. In this case, you’ll use links to move the user through a data entry process
or to different areas of the application, and links will be relatively rare.

But you may also be designing other web pages, such as portal pages or training pages, which
work in conjunction with your application. In this case, things get a bit trickier. One of the nice
things about hyperlinking is that it provides a way for users to get more information on
demand. Sometimes developers go a bit overboard with this, as shown in Figure 13.18.

In this style, developers seem to mistake their web page for an encyclopedia, adding a hyperlink
to every noun on the grounds that the user might want to go look up more information. This is
generally pretty overwhelming for users. It’s better to limit yourself to links that are relevant to
the user’s current needs. These links usually include the following:

● Links to terms that are specific to your application

● Links to other pages in the application

● Links to generic pages such as help or the company home page

4361Book.fm Page 266 Thursday, November 18, 2004 8:45 PM

267General Principles of Web Page Design

F I G U R E 1 3 . 1 8
Overlinked page

Remember, the user can always open another browser window and search if they feel in need
of the definition for a generic term.

Try not to place two links next to one another. Most browsers make it impossible for the user
to tell where one link stops and the other begins, and they may not even realize that there are
two links there. Put a non-breaking space between the links, put them in a list, or find some
other wording to separate the adjacent links.

Avoid using graphics for links unless it’s crystal-clear that the graphic will be a link. Don’t fall
prey to the mystery-meat navigation problem where the user has to get lucky with the mouse
to find out where the hyperlinks on a page are located.

Tips for Using Forms
Good HTML form design takes practice. But you can keep some basics in mind as you get started:

● Help the user with input whenever possible. Use drop-down lists, list boxes, radio buttons,
or check boxes for constrained input. If the user must type free-form input into a text box,
try to size the text box to indicate the amount of input that you’re expecting.

● Use tables to lay out the form so that controls line up neatly.

● Make use of CSS to indicate important information on the form.

● Always indicate which fields on the form are required. Remember, when the user clicks the
submit button, they have to wait for the server to respond. Don’t make them do this only
to find out that they left out some required information.

4361Book.fm Page 267 Thursday, November 18, 2004 8:45 PM

268 Chapter 13 • Building a Web Page

Summary
This chapter covered quite a bit of ground, especially if you’ve never looked at the nuts and bolts
of web page design in the past. You learned about basic HTML, and how HTML tags are put
together to form a page. I also introduced CSS, which provides the most widespread standard for
adding display formatting to web content. Finally, I offered a few hints for effective web page
design.

Now we’ll take these basic building blocks and see how they can be used to create a variety of
standard web pages. Even if the Web displays a near-infinite variety, there are common metaphors
that users are accustomed to seeing, and they’re the subject of the next chapter.

4361Book.fm Page 268 Thursday, November 18, 2004 8:45 PM

Chapter 14

Common Web
Design Patterns

•

Common Web Pages

•

Handling Site Navigation

•

Creating Web Applications

4361Book.fm Page 269 Thursday, November 18, 2004 8:45 PM

270

Chapter 14 • Common Web Design Patterns

N

ow that you know about the basic pieces of a web page, it’s time to start putting them
together into larger groups. Although the Web is much less constrained than Windows

in its user interface or application flow, users are still accustomed to some common sorts of
pages. In this chapter, I’ll offer advice on those common pages, discuss website navigation, and
close with some thoughts about creating web applications.

Common Web Pages

As you learned in the first part of this book, Windows applications share a more-or-less uni-
form look and feel. Web pages (and by extension, web applications) are much less constrained.
But although the look of web pages varies widely, there are still similarities that you’ll run into
as you navigate between websites. For example, just about every website has a home page—the
page where most visitors will start their browsing experience on that site. By using standard
pages, you can help the first-time visitor find their way around your site. Common web pages
include these:

●

Home

●

Site Map

●

Search

●

About

●

Contact

●

Frequently Asked Questions

●

Privacy Policy

●

Trademarks

●

Terms and Conditions

Home Page

If you’re only going to spend time designing one web page for your site, make it the home page.
The

home page

 is the page—usually with a name such as default, index, or welcome—where you
expect most users to start their interaction with your website.

Because outside sites can link to anywhere, or users can send links in e-mail, there’s no way
to guarantee that everyone starts at the home page. You can do a couple of things to make it
easier for people to find the home page, though:

●

Provide a prominent link to the home page on every other page of the site. You might simply
use the text “Home” for this, although many websites use the site name, company name, or
site logo as a link to their home page. For example, on the Microsoft home page shown in

4361Book.fm Page 270 Thursday, November 18, 2004 8:45 PM

271

Common Web Pages

Figure 14.1, the Microsoft logo in the upper-left corner is a link to the home page, and this
design element is repeated on every page in the site.

●

Set your website’s properties to specify the site’s home page as the default page for the site.
How you do this depends on which web server you’re using. What this procedure does is
direct people who type just the site URL to a particular page on the site. If you’re running

example.com

, setting the default page to

index.html

 would have the effect of directing
people who type

www.example.com

to

http://www.example.com/index.html

. If you’re
using IIS 6.0 to serve your website, for example, you can do this by launching Internet
Information Services Manager and opening the Properties dialog box for your site. Click
the Documents tab and check the Enable Default Content Page check box. You can supply
a list of possible names for the default page in the list box, as shown in Figure 14.2. IIS will
return the first of these pages that actually exists in the site’s folder on the hard drive.

F I G U R E 1 4 . 1

Microsoft home page
in fall 2004

4361Book.fm Page 271 Thursday, November 18, 2004 8:45 PM

272

Chapter 14 • Common Web Design Patterns

F I G U R E 1 4 . 2

Setting the default
page in IIS 6.0

●

It’s also possible to redirect from one page to another by including a meta refresh tag in the
HTML of the first page. Such a tag looks like this:

<META http-equiv="REFRESH" content="0;

 url=http://www.example.com/welcome.htm">

Including such a tag in the HTML for

default.htm

 would cause the user to get

welcome.htm

in its place. The problem with this scheme is that there’s no way to use the meta refresh tag to
provide a default page for the entire site; you have to guess which pages the user might try and
then redirect all of them.

The home page normally serves several purposes:

●

It introduces your company, organization, or website to the new visitor.

●

It provides a way to navigate to the other parts of your website. You’ll learn more about
menus and navigation later in this chapter.

●

It gives the user some idea of what else they’ll find on the website. Although it’s not a good
idea to place detailed content on the home page, an overview helps the user decide whether
to proceed to more specific pages.

The home page might be your only chance to convince a user to spend more time with your
website (which is something that most website developers want to do). It’s important to con-
sider what you want to emphasize. Typically, the goal of the home page is to tell users what sort
of information they can find on your website as well as what they can do there. Take another

4361Book.fm Page 272 Thursday, November 18, 2004 8:45 PM

273

Common Web Pages

look at the Microsoft home page in Figure 14.1. There’s a lot going on here (not surprising
because the Microsoft website itself is huge, with more than a hundred thousand pages); but
size, graphics, and placement are used to make some parts of the page stand out:

●

The upper-left part of the page (where most people automatically start reading) contains
jumps to Microsoft’s product families. This is appropriate because Microsoft is a software
product company.

●

The main area of the page contains three large graphics that advertise the content
Microsoft was trying to promote the week that I took this screenshot.

●

Other links are grouped by their purpose or intended audience to make them easier to find.

You probably won’t have as much content on your website as Microsoft does on its site, but
you should still carefully construct your home page to act as a showcase and a launching pad
for the rest of the site.

TIP

One thing that Microsoft does not have on its home page or elsewhere is a cute little ani-
mated “under construction” icon. The Web is always under construction, and most users
are just annoyed by those icons. Users expect web pages to be dynamic and to evolve. If
you’re using one of those icons, I urge you to get rid of it.

Site Map Page

Most websites are not as large as Microsoft’s or IBM’s, but they can still be confusing. As the site
designer, you know exactly which pages exist on the site and how they’re arranged, but visitors
don’t have that luxury. To deal with this problem, a convention called the

site map

 has evolved.
A site map lists pages or groups of pages on a site, and usually consists almost entirely of hyper-
links. Figure 14.3 shows a partial site map for a fictional software company.

The key to an effective site map is to keep it simple and well-organized. Usually a hierarchical
organization will work. That is, identify groups of similar pages (in Figure 14.2, they include
“Products” and “Services”) and then list individual pages underneath them, with each individ-
ual page name hyperlinked to the actual page. In some cases, you may also want to provide links
for the groups themselves, if the groups have their own home pages on your site. You should
generally avoid graphics and flashy content on the site map page. Users typically visit this page
only if they’re trying to find something quickly, so it’s paramount that the page load quickly
and be easy to scan.

If you’re maintaining a huge site, you can’t list every single page on the site map. In this case,
the main site map page should list the major sections of your website. For example, Figure 14.4
shows the site map for the Microsoft website. Each of the links on this page takes the user to
an area of the site with its own navigation aids for drilling in to more detailed content.

4361Book.fm Page 273 Thursday, November 18, 2004 8:45 PM

274

Chapter 14 • Common Web Design Patterns

F I G U R E 1 4 . 3

A typical site map

F I G U R E 1 4 . 4

Site map for a
large site

4361Book.fm Page 274 Thursday, November 18, 2004 8:45 PM

275

Common Web Pages

Search Page

Some people prefer to search for the content they desire, rather than browsing through a list
of links. For those people, it’s important to have a

search page

 on your website. Figure 14.5
shows a search page from the Microsoft website.

This particular search page caters to people with differing levels of search skills, which is a
good idea. To just search the entire site for a word, you can type the word into the text box at
the top of the page and click Go. Otherwise, you can use the advanced search section to set
additional options. Note that there’s also a link to Search Help, in case the user needs further
guidance.

You might think that the search page is superfluous because users can use a search engine
such as Google to locate pages on your site. Although that’s at least partially true, it doesn’t
take into account users who might not know the syntax for making Google do a site-specific
search (include

site:example.com

in the search terms to return only results from the

example.com

 site).

F I G U R E 1 4 . 5

A search page

4361Book.fm Page 275 Thursday, November 18, 2004 8:45 PM

276

Chapter 14 • Common Web Design Patterns

About and Contact Pages

Most sites also contain an

about page

 and a

contact page

. Both of these pages pertain to the company
or organization behind the website, instead of to the site itself, but they have slightly different
purposes. The about page is designed to give the user basic information about the company at
greater length than the home page can accommodate, whereas the contact page tells the user how
to get in touch for more information.

Figure 14.6 shows a portion of the about page from the John Deere website, cropped to show
only the content area. John Deere is a major manufacturer of agricultural equipment, and the
about page explains this quite clearly.

Note that the about page presents the company in a positive light, explains what it does, and
provides hyperlinks for more information. The about page is usually very information-ori-
ented; it explains things without offering any action items to the user.

By contrast, the contact page is very task-oriented. Figure 14.7 shows a portion of the contact
page from Borland’s website.

F I G U R E 1 4 . 6

An about page (Copy-
right © 1996–2004
Deere & Company;
used by permission)

4361Book.fm Page 276 Thursday, November 18, 2004 8:45 PM

277

Common Web Pages

F I G U R E 1 4 . 7

A contact page

When someone visits the contact page, you can assume that they want to contact the company
somehow. Your goal here should be to provide as many alternatives as possible for making that
contact. Note that the Borland page offers addresses, phone numbers, fax numbers, and e-mail
links for a variety of units within the company.

TIP

In some cases, you might not want to publish phone numbers or e-mail addresses on the
Web. In that case, your contact page should contain a web form that allows users to submit
questions or suggestions to the company. Make sure that someone reads and responds
to these messages on a regular basis!

Frequently Asked Questions

Many sites include a frequently asked questions, or FAQ, page. Figure 14.8 shows the FAQ
page from the popular technical discussion site SlashDot.

4361Book.fm Page 277 Thursday, November 18, 2004 8:45 PM

278

Chapter 14 • Common Web Design Patterns

F I G U R E 1 4 . 8

An FAQ page

Like an About page, an FAQ page gives visitors a place to go for more information. Often this
information is categorized, with sections devoted to the company, its products, the site itself,
and so on. For a small FAQ, you might choose to present the questions and answers as one long
page. For larger FAQ pages, it’s generally useful to create a single page listing all of the ques-
tions with hyperlinks to the individual answers so that the page will load more quickly.

A properly designed FAQ page can also have a benefit for your organization by providing a
first line of support for visitors. When visitors can answer questions in this self-serve fashion,
they don’t have to phone or e-mail you for answers. That cuts down on your support and cus-
tomer service expenses.

WARNING

The key to making an FAQ page useful to visitors is to make sure it really does answer the
most frequently asked questions. Sometimes FAQ pages are just disguised marketing
material designed to explain how great your company is, regardless of what people ask.
Such pages might make the marketing department feel good, but in the long run they’re of
little use to visitors.

4361Book.fm Page 278 Thursday, November 18, 2004 8:45 PM

279

Common Web Pages

Legal Pages

Finally, when you’re designing a website, don’t neglect the legal aspects. That’s good advice
when it comes to almost any activity in our modern world, of course. But there are three areas
in particular that most sites spell out, which makes many users expect them:

●

Privacy policy

●

Trademark claims

●

Terms and Conditions

Privacy Pages

Rightly or wrongly, web surfers are extremely concerned about their privacy online. Some users
of the Web have this feeling that their every action is being watched, recorded, and correlated
for later nefarious use. Although this is almost entirely a paranoid fantasy, some practices on the
Web go beyond what some users are comfortable with. For example, sites that deliver advertis-
ing banners can set cookies on the user’s computer and later use those cookies to correlate visits
to different sites with the same banner.

Some sites also collect personal information on users. For example, if you’re sending an e-mail
newsletter out, you’ll need e-mail addresses. Beyond that, though, many sites collect demographic
information such as name and address, or even income and interests. Users are sometimes con-
fused about what this information will be used for and who will have access to it.

To allay these fears, your site should have an explicit privacy policy that’s easy for users to find
(linking it from the home page is a good idea). Figure 14.9 shows a small portion of the privacy
page for Microsoft’s website.

There are four essential parts to a privacy policy:

●

A list of the information collected by the website

●

A list of the purposes that the information will be used for

●

Information on who can access the information

●

A warning that use of the site implies acceptance of the policy

There have been several efforts to formalize standards for privacy on websites. The most
important of these are TRUSTe and P3P.

TRUSTe (

http://www.truste.org

) is an independent nonprofit organization that exists as
a central review authority for privacy policies. It works with your site to make sure that your
privacy policy is acceptable under its standards, which are designed to strike a balance between
the needs of businesses and the rights of consumers. TRUSTe certification is not free; charges
are on a sliding scale based on your annual revenue (they start at about $600 per year).

4361Book.fm Page 279 Thursday, November 18, 2004 8:45 PM

280

Chapter 14 • Common Web Design Patterns

F I G U R E 1 4 . 9

A privacy page

P3P stands for Platform for Privacy Preferences, a project sponsored by the Worldwide Web
Consortium. P3P provides a standard file format for privacy policies, with the goal of enabling
automatic privacy policy management by various tools. For example, a user of a P3P-enabled
web browser can specify their own privacy requirements as part of setting up the browser, and
the browser will warn them whenever they visit a site without a proper P3P file. You can find
more information about P3P at

http://www.w3c.org/P3P/

.

You probably won’t need TRUSTe certification unless you’re running a large commercial
site, but you should consider P3P for any website that collects personal information or uses
cookies.

The actual format of a P3P file is fairly complex. It’s worth investigating tools such as the free
IBM P3P Policy Editor (

http://www.alphaworks.ibm.com/tech/p3peditor

) or the commer-
cial P3Pwriter (

http://www.p3pwriter.com/

) when you’re ready to create a P3P file for your
own website. Figure 14.10 shows the IBM P3P Policy Editor in action.

4361Book.fm Page 280 Thursday, November 18, 2004 8:45 PM

281

Common Web Pages

To use the P3P Policy Editor, you select pieces of information and associate them with
groups of possible uses. The tool automatically generates a list of the privacy implications, as
well as policy files in both human-readable (HTML) and machine-readable (XML) formats.

Trademark Pages

If you own a trademark, it’s your duty to protect that trademark. Part of this duty involves noti-
fying people that something

is

 a trademark. If you’re selling a single software product, it might
make sense to simply include the appropriate trademark symbol after every reference to that
product on your website. But once you’re dealing with more than a couple of products, that
approach can be cumbersome. That’s why most large sites include a trademark page similar to
the one shown in Figure 14.11, which is taken from Microsoft’s website.

Of course, if your site doesn’t involve any trademarks or other intellectual property that
you’re required to protect, you can safely skip creating a trademark page.

Terms and Conditions Pages

To be honest, most users pay no attention at all to the Terms and Conditions of use (sometimes
called Terms of Use, Terms of Service, or some other similar name) for a website. However,
if you have lawyers, they will pay attention. Most such pages have language to the effect that
using the website indicates agreement to the listed conditions. Although there’s some contro-
versy as to whether this is in fact a legally binding contract, it’s certain that not listing any terms
is even less binding.

F I G U R E 1 4 . 1 0

Editing a P3P policy

4361Book.fm Page 281 Thursday, November 18, 2004 8:45 PM

282

Chapter 14 • Common Web Design Patterns

F I G U R E 1 4 . 1 1

Trademark page

Figure 14.12 shows the start of Microsoft’s Terms of Use page.

Because the Terms and Conditions are intended to be a legal contract between the website oper-
ator and the user, it’s impossible to give any general guidance as to their content. You should con-
sult your own lawyer about whether you need such a page, and what its contents should be. I’ll
limit my advice to noting that it’s not worth spending too much effort on a pretty design for this
page because the number of users visiting it will probably be quite low. Concentrate on a readable
presentation of information and move on.

Handling Site Navigation

You can spend all the time in the world creating interesting and useful content for a website,
and then not have visitors go anywhere besides the home page. If you don’t provide clear, con-
sistent, and easy-to-use navigation around the site, that’s what will happen. Remember, you
know what pages are on the site and how they’re related to one another. Your visitors do not,
at least not when they first come to the site. If you want repeat traffic and happy users, it’s up
to you to provide a workable navigation system.

4361Book.fm Page 282 Thursday, November 18, 2004 8:45 PM

283

Handling Site Navigation

F I G U R E 1 4 . 1 2

Terms of Use page

Fortunately, a number of navigation conventions have grown up over the lifetime of the
Web. If you use these conventions, users are likely to think “Ah, I know how to get around this
site.” I already mentioned three of these conventions:

●

The home page provides a fixed reference point for the site, reachable by a single click from
anywhere within the site. If the user feels completely lost and wants to start over, a click on
your site logo should take her back to the beginning (unless, of course, she’s so frustrated
that she just gives up and goes somewhere else).

4361Book.fm Page 283 Thursday, November 18, 2004 8:45 PM

284

Chapter 14 • Common Web Design Patterns

●

The site map provides a quick way to locate major chunks of the site by browsing through
a list of links.

●

The search page provides a way to locate information of interest by searching the entire site
or some subset of the site.

But there are many other navigation conventions to consider using, including the following:

●

Persistent navigation

●

Hierarchical navigation

●

Breadcrumb navigation

●

What’s New pages

●

Adaptive websites

I’ll discuss these techniques in the following sections.

Persistent Navigation

The idea of

persistent navigation

 is simple: Keep the navigation controls visible and obvious at
all times. The easiest way to do this is to make sure that the main navigation controls are the
same—and in the same location—on every page. This might be at the top of the page or in a
column to the left of the page, depending on your design preference. Figure 14.13 shows how
persistent navigation works on the SlashDot website.

As you move through the SlashDot site, the content of the pages change (of course). But
whether you’re looking at the home page, at a particular story, or at your user preferences page,
the navigation links down the left side of the page remain constant. After only a short while of
using the site, the user will develop a sense of “Oh, to go to user preferences I always click

here

.”
This makes the site easier to use.

Almost every large website uses some form of persistent navigation, from drop-down menus
created with DHTML to the tabs at the top of Amazon’s shopping pages. The persistent nav-
igation controls don’t take to you every page of a large site, but they do provide a consistent and
reliable way for users to jump to major areas. As a side benefit, they also indicate what those
major areas are, letting users know what’s on the site that they might like to explore.

4361Book.fm Page 284 Thursday, November 18, 2004 8:45 PM

285Handling Site Navigation

F I G U R E 1 4 . 1 3
Persistent navigation
in action

4361Book.fm Page 285 Thursday, November 18, 2004 8:45 PM

286 Chapter 14 • Common Web Design Patterns

Hierarchical Navigation
Hierarchical navigation is also very common on the Web, and it’s often combined with persistent
navigation to good effect. With hierarchical navigation, the user follows links down a logically
organized hierarchy until they find what they’re looking for. This approach often works well
with sites that have many detailed pages that can be grouped into sections and subsections. This
might be a knowledge base with information about many products, a zoology site that lets you
view information on various animals, or (as in Figures 14.14 through 14.17) a shopping site.

F I G U R E 1 4 . 1 4
Hierarchical naviga-
tion: top level

F I G U R E 1 4 . 1 5
Hierarchical naviga-
tion: second level

4361Book.fm Page 286 Thursday, November 18, 2004 8:45 PM

287Handling Site Navigation

F I G U R E 1 4 . 1 6
Hierarchical naviga-
tion: third level

F I G U R E 1 4 . 1 7
Hierarchical naviga-
tion: products

4361Book.fm Page 287 Thursday, November 18, 2004 8:45 PM

288 Chapter 14 • Common Web Design Patterns

You can see in this series of figures how this hypothetical store handles navigation for its web-
site, which contains thousands of products. Across the top of each page there’s a persistent nav-
igation section with tabs for the major departments, the company logo to jump back to the
home page, and utility links (such as help and shopping cart links). Down the left side of the
page you’ll find the hierarchical navigation links. As you click each link, you’re presented with
further choices to narrow down your selection until ultimately you arrive at a page containing
products. Note that each page also has clear text telling you exactly where you are; if you click
on a Meat Gravies link, the next page is clearly marked as being Meat Gravies. Thus at any time
the user can see where they are, how to get back to the top level of the site, or what their choices
are for drilling down further.

Breadcrumb Navigation
Another navigation aid found on many web pages goes by the rather informal name of “bread-
crumbs.” Figure 14.18 shows some breadcrumbs (in fact, these breadcrumbs are also visible in
Figure 14.17).

F I G U R E 1 4 . 1 8
Breadcrumb
navigation

Breadcrumb navigation shows where you are and how you got there. In the case of Figure 14.15,
it’s clear to most web users that they’re on a page devoted to Yak Gravies, and that they got there
from the home page through three intermediate pages. Breadcrumbs don’t give you a sense of
how to move forward; you can’t tell from this portion of the interface what your choices are for
continuing with your drilldown. But they do provide you with an easy way to move back as many
levels as you want. If the user realizes that Yak Gravies are not what they want, they can back up
directly to the Meat Gravies page and start over.

Breadcrumbs are lightweight, unobtrusive, and don’t take up much space. If your site includes
a hierarchical navigation system with more than two levels, it’s worth including breadcrumb nav-
igation as well.

What’s New Pages
Most of the navigation tools I’ve discussed thus far are aimed at both new visitors to your site
and repeat customers. What’s New pages are different; they’re almost entirely for people who
have been to your website before. A well-designed What’s New page will answer the question
“What’s changed since the last time that I was here?” Figure 14.19 shows a typical What’s New
page, this one from the U.S. Environmental Protection Agency’s website.

4361Book.fm Page 288 Thursday, November 18, 2004 8:45 PM

289Handling Site Navigation

F I G U R E 1 4 . 1 9
What’s New page

What’s New pages are generally arranged with the newest items at the top. That way, users
can read in a natural order until they get to things they recognize, rather than scrolling to the
end of the page and reading up. Most What’s New pages are simply links, possibly with short
explanatory text.

Not every site needs such a page. On a news site, where there is new content on a fixed sched-
ule that’s always in the same place, such a page would be superfluous. Sites that are unchanging
obviously don’t need such a page either, although this is rare on the Internet.

NOTE Many weblogs are nothing but a single page with a What’s New arrangement: short items
in reverse chronological order.

4361Book.fm Page 289 Thursday, November 18, 2004 8:45 PM

290 Chapter 14 • Common Web Design Patterns

Adaptive Websites
Developers sometimes realize that a website does not have to be the same for every visitor. There
are two ways to personalize a website for each visitor. The first is to depend on information that
the visitor enters himself. For example, a news site could provide a registration form that collects
information including which categories of news the visitor is interested in. When that person vis-
its the home page of the website, it would display news only from the selected categories.

A more sophisticated approach is to depend on what the user does, rather than what he says, in
customizing the website. This leads to an adaptive website, which learns from the user’s actions.
For example, Amazon.com keeps track of each user’s purchases. When you visit the Amazon site
and sign in, you’ll be greeted with customized sales and suggestions based on what you’ve pur-
chased in the past as well as what Amazon’s computers have deduced about your tastes.

WARNING Be careful about making personalization too aggressive. If you let people turn off the dis-
play of some content or turn it off automatically, make sure that there’s a way to turn it
back on. Otherwise, you’ll be locking users out of some part of your website that they might
later change their mind and want to see.

Creating Web Applications
It’s relatively easy to offer advice for traditional websites. They’ve been around long enough to
build up a body of knowledge and convention. Web applications are a different matter. The
migration of desktop applications to the browser has really gotten underway only in the last
several years, and developers are still struggling with how best to make the transition.

Web applications can replace almost any activity that the user might perform on their desk-
top computer: putting together an HTML page, balancing a checkbook, registering for classes,
or cataloging books, for example. Web applications are often more complex than websites, and
they usually involve interacting with a database on the server side of the connection. Though
websites require upfront planning (how else, for example, would you get a consistent naviga-
tion structure?), web applications typically require even more design. It’s not unusual for a web
application to go through the same formal design process as a desktop application.

The actual mechanics of creating a web application depend heavily on which tools you use:
ASP.NET, Java, or other alternatives. But some general guidelines can help get you thinking
in the right direction:

● Don’t try to mimic the design of a complex desktop application exactly in a web application.
Multiple open windows might work well in a desktop application, but are normally just
confusing in a web application. Complex custom controls often do not translate well to the
Web, either.

4361Book.fm Page 290 Thursday, November 18, 2004 8:45 PM

291Creating Web Applications

● Keep the individual pages of the web application as simple and lightweight as possible.
Remember that users might have limited bandwidth or browser limitations that prevent
complex pages from working properly.

● Code defensively in the database layer because you don’t get any explicit notification if the
user abandons the application in midstream. Always allow for and clean up any lingering
stale connections.

● Make sure that any requirements, such as accepting cookies or using a browser that can
handle CSS, are made clear to users before they get deeply into the application.

● Keep the web application flow simple, with as few branches as possible (ideally none).

● Keep track of the application’s state in a persistent location such as a cookie so that it does
not become confused if the user clicks the Back button to revisit a page.

Although these guidelines make sense for most Web applications, you need to use your
judgment when applying them. If you’re in a position to control the user’s browser (as you
may be for intranet applications), and the application requires a complex user interface, by all
means create one. For example, Figure 14.20 shows the user interface of Microsoft Outlook
Web Access, a Web application that can retrieve e-mail from Exchange Server and perform
other tasks similar to those built into regular Outlook.

F I G U R E 1 4 . 2 0
Outlook Web Access

4361Book.fm Page 291 Thursday, November 18, 2004 8:45 PM

292 Chapter 14 • Common Web Design Patterns

Microsoft went to a lot of trouble to make Outlook Web Access look and feel like the desktop
version of Outlook. But there are several tradeoffs to this approach. First, the application only
runs well in a current version of Internet Explorer. Second, it requires considerable bandwidth
compared to simple pages. Finally, it’s nearly as complex as the desktop version, requiring
training for new users. But as a way to get your e-mail remotely when you’re already committed
to Microsoft technologies, it works well.

Summary
Although the Web is a blank canvas, and HTML is reasonably flexible, you can’t do whatever you
want and still have a successful user interface. By sticking to web conventions as far as possible,
you can ensure that users have a productive and enjoyable experience with your website or web
application. Using standard pages and navigational techniques help make the user feel at home
and get them over the confusion (and sometimes fear) of using an unfamiliar application.

Most of the pages that I’ve discussed so far have been static, concerned with presenting infor-
mation but not collecting it. In the next chapter I’ll focus a bit more on interaction patterns
between users and dynamic web pages.

4361Book.fm Page 292 Thursday, November 18, 2004 8:45 PM

Chapter 15

Common Web
Interaction Patterns

•

Thinking More About Search

•

Handling Electronic Commerce

•

Form Annoyances and Fixes

4361Book.fm Page 293 Thursday, November 18, 2004 8:45 PM

294

Chapter 15 • Common Web Interaction Patterns

W

hen you move beyond static web pages, you need to spend time thinking about how users
will interact with the pages. Although the Web is more flexible than Windows, there are

still general principles that you can learn to guide you to more effective pages. In this chapter, I’ll
discuss some of the alternatives that you can use when setting up search on a website, consider the
design of effective e-commerce sites, and then dive into some of the pitfalls and techniques for
setting up usable web forms.

Thinking More About Searching

In Chapter 14, “Common Web Design Patterns,” I talked about the importance of having a
search feature on your website. Now I’ll take a closer look at the actual design of search. There
are three basic ways that you can implement searching for a website:

●

Simple search

●

Advanced search

●

Outsourced search

Let’s look at each of these in turn.

Simple Search

Most users don’t want to be bothered with options when they’re searching (or else they’re not
prepared to deal with search options). For these users, a simple search interface is best. In fact,
a standard interface has evolved for this purpose, as shown in Figure 15.1.

Because this interface is so standard, you should resist the temptation to dress it up or alter
it. Don’t use any term other than “Search” to label it; even though “Find” is a reasonable syn-
onym and might fit in with your own design ideas, it’s not what people will be looking for.

A simple search box is often part of the persistent navigation for a site. As such, you should
keep it near the top of the page, and in the same relative position on every page. Many sites
seem to use the right edge of the persistent navigation controls for this purpose, so if you do
the same, your search interface will be even easier for people to find.

One thing you do need to consider is just how much of your site the simple search box will
actually search. What most users are most likely expecting is full-word search with stemming
(matching other forms of the search term). That is, entering “pose” should match “poser” and
“posing,” but not “adipose.” Depending on your tools, you might find this difficult to set up, in
which case I’d suggest a simple search that matches the term—no matter where it’s found in a
word. If the user enters multiple terms in a simple search box, treat them as being separated by
OR. If they enter multiple terms surrounded by quotation marks, treat them as a phrase search.

4361Book.fm Page 294 Thursday, November 18, 2004 8:45 PM

295

Thinking More About Searching

F I G U R E 1 5 . 1

Standard forms for
simple search

Simple search should generally search the entire site. But there are exceptions to this rule.
For example, on a shopping site you should probably just search product pages, not things such
as shipping instructions or terms and conditions.

Advanced Search

In some cases, simple search won’t do the job. This generally happens when the number of results
returned by the simple search is overwhelming. In such cases, you need to offer the user tools for
finding what they want within the simple search results. The normal way to offer such tools is
through an advanced search page. Here are some of the options you can offer on an advanced
search page:

Search in results

Perform another simple search, but this time only search the pages
returned by the first search instead of the entire website.

Limit results by date

This is usually implemented by allowing users to specify that a page
must have been added or changed in the last

n

 days.

Limit results by category

This provides the user with subsets of the website to search. For
example, Amazon lets you decide to search only books, only software, and so on. A university
site might allow searching by department.

4361Book.fm Page 295 Thursday, November 18, 2004 8:45 PM

296

Chapter 15 • Common Web Interaction Patterns

Easy Boolean search

You can implement the basics of Boolean search by providing four
data entry boxes, as shown in Figure 15.2. Users don’t need to know that these generate
search expressions “behind the scenes.”

Full Boolean search

Allow users to enter complex search expressions such as

(lion or

tiger) and not grass

. This allows the user to construct very powerful searches, but might
be difficult for many visitors to grasp and use effectively.

TIP

You might want to include a link to the advanced search page from your persistent naviga-
tion area, but there’s an even better place to put such a link: on the search results page.
After all, when does a user know better that they need to limit their search than right after
a simple search has returned too many results?

Outsourced Search

A third search option is to let someone else do it. For example, Google offers its SiteSearch ser-
vice, which lets you add HTML to your own pages to display a Google search box, as shown
in Figure 15.3.

Details on Google’s free search services are available at

www.google.com/searchcode.html

.
In addition to the site search, you can also set up a plain Google web search from your page,
either with or without their “SafeSearch” filter (which removes adult-oriented content from
the results).

F I G U R E 1 5 . 2

Easy Boolean search

4361Book.fm Page 296 Thursday, November 18, 2004 8:45 PM

297

Handling Electronic Commerce

F I G U R E 1 5 . 3

Outsourced search

Using a major search engine to search your site has pros and cons. On the plus side, users are
likely to recognize the search box more quickly if it’s associated with the logo of a major search
engine, and might have more faith in the results. On the minus side, you have no control over
the format of the results, or even which of your site’s pages will be indexed. On the whole, I
suggest avoiding the outsourced search alternatives unless you have no means to program a
customized search.

If you are planning to program a custom search, you can still consider an outsourced solution
by using a programmatic interface to one of the major search engines. Google, for example,
offers the Google Web API (

www.google.com/apis/

) in beta as I write this. If you can make
a web services call from your software, you can use this API for free to perform up to 1,000
searches per day.

NOTE

For more details on using Google programmatically, see

Mining Google Web Services: Build-
ing Applications with the Google API

 by John Mueller (Sybex, 2004).

Handling Electronic Commerce

Some of the largest and most successful websites, such as Amazon, are built on the notion of
electronic commerce, or

e-commerce

: buying and selling things over the Internet. No matter
what product you’re interested in, chances are that you can order it online these days. But that
doesn’t mean that there’s no more room for new e-commerce sites. As time goes on, more and
more existing businesses are opening storefronts on the Internet, so the need to design new
e-commerce sites is likely to remain with us for some time.

Good design for a web storefront can mean the difference between happy customers who
come back for repeat visits and dissatisfied customers who go elsewhere. In the real world, it
can be inconvenient or impossible to drive to a competitor’s place of business when you’re an
upset customer; the nearest competitor might be 50 or 500 miles away. But on the web, the
competition is a single search and a mouse click away. That makes the creation of effective
e-commerce sites an important skill for the web designer. Here are some factors to take into
account when building such a site:

4361Book.fm Page 297 Thursday, November 18, 2004 8:45 PM

298

Chapter 15 • Common Web Interaction Patterns

●

Keep easy navigation in mind. At any time, the user should be able to figure out how to get
more details on a product, to back up to a more general category, or to get help. The use
of breadcrumb navigation (discussed in Chapter 14) is ideal for any e-commerce site with
a complex hierarchy of products.

●

Make it easy to find products. This means not just including top-down navigation, but
including an effective search mechanism. Ideally, you should include a search box on every
page of the site, so there’s never a need to back up and start over if the user decides that they
want a different product.

●

Keep pages small and quick to load. Though this is important for any site, it’s especially
important if you want people to stick around and spend money. If you’re using product
images, include a low-resolution image on the main product page and let users click on it
if they want to see a more detailed image.

●

You can also keep pages small by presenting a variable level of detail. Start by showing just
a product’s name, image, price, and a brief description. Then include a prominent link that
the user can click to get more detailed information.

●

If you carry alternative products (for example, more than one type of left-handed monkey
wrench) make it easy for the user to compare the alternatives. One way to do this is by
allowing the user to pick a selection of products from a search page, and using that selection
to build a comparison page on the fly.

●

Don’t force the user through the checkout process. At any point they should be able to
inspect the contents of their shopping cart, and even begin the checkout process, without
being locked out of the rest of the site. Even if they’ve done everything except click the Save
Order button, you want it to be easy for them to go back and add more items to their order.

●

Do save unfinished shopping carts. People may navigate away from your site for a variety
of reasons. Perhaps they want to check on deals elsewhere, or perhaps their boss just walked
into the office. Either way, when they come back to your site, you have a better chance of
making a sale if you didn’t throw away the results of their previous visit. One way to do this
is by saving a unique shopping cart ID in a cookie (but remember to mention this in your
site’s privacy policy).

●

Give users reasons to come back to your site. The more time they spend there, the more
likely they are to buy something. Two tools that you can use for this are a newsletter to
announce new products and a page of unannounced special pricing.

As an e-commerce site grows in complexity, there are many other features that you can add.
For example, personalization is an increasingly important force in e-commerce. When you
revisit a site that you’ve previously purchased from, you may be offered special prices or featured

4361Book.fm Page 298 Thursday, November 18, 2004 8:45 PM

299

Form Annoyances and Fixes

items that are intended to appeal to you, based on your past purchases. When you’re ready to
add this level of sophistication, you should consider buying an off-the-shelf solution such as
Microsoft Commerce Server (

www.microsoft.com/commerceserver/

) rather than building
everything from scratch yourself.

Form Annoyances and Fixes

Web forms are relatively simple things. As you’ve seen in earlier chapters, you only have a lim-
ited number of components to work with when defining a web form. Despite this simplicity,
web forms can be very challenging from a design standpoint. Several factors combine to make
it hard to come up with really usable web forms:

●

Users typically approach web forms and web applications with little or no training and few
expectations.

●

Users must figure out what the web form does and how they’re supposed to fill it out without
any prior knowledge.

●

Users typically fill out a web form once and then move on, so there’s no opportunity to ben-
efit from experience.

But there’s one more factor that contributes heavily to the difficulties that users have with
web forms: Many web forms are designed exceedingly poorly. This factor, fortunately, is under
your control. In this section, I’ll offer some notes on what you should do—and avoid—when
building forms for the Web.

Handling Required Fields

Most web forms have at least one required field. Leave that field blank, and at best you’ll get
a polite reminder on the page to fill it in; at worst you’ll get an ugly error message. Why, then,
do some web forms not notify the user in advance which fields they must fill in? There’s really
no excuse for this.

There are two standard ways to mark the required fields on a form. The first is to add some
sort of text message, as shown in Figure 15.4. The other is to use a marker (typically an asterisk
or bullet) next to the required fields, as shown in Figure 15.5.

TIP

If you use markers to indicate required fields, be sure to include an explanation of
the marker somewhere on the form. Don’t assume that people will deduce the meaning
of the marker symbol on their own.

4361Book.fm Page 299 Thursday, November 18, 2004 8:45 PM

300

Chapter 15 • Common Web Interaction Patterns

F I G U R E 1 5 . 4

Indicating required
fields with text

F I G U R E 1 5 . 5

Indicating required
fields with markers

Handling Formatted Data

You’ll often want to collect data in a particular format—for example, Social Security numbers
or credit card numbers. In these cases, it’s important to make data entry as easy as possible. You
can do two things to help the user: Be explicit about what you’ll accept and be forgiving about
the way it’s entered.

4361Book.fm Page 300 Thursday, November 18, 2004 8:45 PM

301

Form Annoyances and Fixes

F I G U R E 1 5 . 6

A poor phone number
entry control

Consider phone numbers, for example. Figure 15.6 shows a first attempt at collecting phone
numbers.

Without any guidance, a user might choose to enter their phone number in any of these for-
mats, among others:

●

555-1212

●

206-555-1212

●

206.555.1212

●

(206) 555-1212

●

(206)-555-1212

●

1-206-555-1212

●

+1 206 555-1212

If your backend application is expecting only one of these formats, and the user chooses
another format, unpleasantness will result. The first step of dealing with this issue is to tell the
user what you’re expecting, as shown in Figure 15.7.

F I G U R E 1 5 . 7

Improved phone
number entry control

But you can do better than this. As long as the user enters both the area code and phone number,
a little programming on the server can convert any of these formats to the one that you want to
store. So why make the user do extra work? Figure 15.8 shows a user interface design for a more
forgiving phone number entry control.

The same technique can be applied to other data with variable formatting. For example, you
should allow users to enter credit card numbers with any combination of spaces and dashes, and
just strip out the extraneous information when you store the data that was entered.

F I G U R E 1 5 . 8

Even more improved
phone number entry
control

4361Book.fm Page 301 Thursday, November 18, 2004 8:45 PM

302

Chapter 15 • Common Web Interaction Patterns

Limiting Data Entry

A lot of the data that gets input through forms ends up in databases, which means that it’s sub-
ject to various limits: limits on length or on acceptable values are the most common. You need
to take these limits into account when designing your forms, preferably in a way that makes
them clear to users.

The easiest fields to handle are those that accept only one of a fixed range of values. For these
fields, you should use a choice control such as radio buttons (for a small number of possible
answers) or drop-down lists, as shown in Figure 15.9. Either of these alternatives prevents the
user from entering an unacceptable value.

F I G U R E 1 5 . 9

Limiting data entry
with choice controls

In some cases, you might choose to populate drop-down lists dynamically from a database. This
is a good technique to prevent having to change pages frequently. But if you do so, you need to
make sure that the dynamic content still matches up with the static content. Figure 15.10 shows
an example of what

not

 to do.

F I G U R E 1 5 . 1 0

Mismatch between
dynamic and static
content

Apparently the list box included the choice “Employee referral” at some point, and the text
box beneath it made sense at that time. Now it doesn’t. The best solution to this problem is not
to combine dynamic form content with static content; either generate everything from the
database, or make everything static and modify it by hand as needed.

When data is free-form, limiting the data entry is a bit trickier. Often the only limitation is
on the length of the data that you can store in the database. That’s fine; no one expects to be

4361Book.fm Page 302 Thursday, November 18, 2004 8:45 PM

303

Form Annoyances and Fixes

able to enter a whole novel when asked for the name. But as with other limits on web forms,
you should make this limit clear to the user right on the form.

Suppose that you’re prompting for the user’s name for your records, and your database
accepts 30 characters in this field. If you just drop a text box on the form and let it go at that,
all will be well until some user enters 31 characters. At that point, you’ll be stuck trapping an
error message again.

One thing you can do is notify the user after they post the form, as shown in Figure 15.11.

F I G U R E 1 5 . 1 1

Violation of length
limits

But there’s no need to make the user wait for a round-trip to the server in this simple case.
HTML text boxes support a

maxlength

 attribute that dictates the number of characters that
they will accept. If your database takes only 30 characters from a particular text box, set the

maxlength

 for that text box to

30

.

But that’s still not quite enough for a good user interface. If the user is typing quickly, they
might not notice that their entry in a text box is truncated. Or, worse, they might notice and
spend a while banging on the keyboard trying to figure out why they can’t enter what they want
to. The solution is to make the limit explicit, as shown in Figure 15.12.

F I G U R E 1 5 . 1 2

A well-designed limited
text box

NOTE

As a general rule, you should validate as much data as you can before a form is posted
back to the server. Even if you can’t validate with attributes, you can use client-side script-
ing for validation, which lets validation occur practically immediately as the user is typing,
rather than making them wait for the server to process the request and send back the
response.

Handling International Input

Limiting the width of fields (in your database or on your web pages) can get you into hot water
in other ways as well. Suppose that you put in a five-digit Zip code field. The first time you get
a potential Canadian customer, you have a mess because they use six-character postal codes in
Canada.

4361Book.fm Page 303 Thursday, November 18, 2004 8:45 PM

304

Chapter 15 • Common Web Interaction Patterns

The Web being what it is, just about any page will eventually be used by people from countries
other than your own. You can approach this issue in three basic ways:

●

Just flat-out refuse to deal with it, perhaps with a note at the top of the form saying “U.S.
Residents Only.”

●

Attempt to determine the user’s location and present appropriate data-entry controls.

●

Develop a “one-size-fits-all” form.

Unless you’re absolutely sure that you don’t have, never will have, and never will want any
international customers, the first of these alternatives is pretty unappealing. The second is
feasible, although it’s nearly impossible to determine automatically where a particular user is
browsing from. Still, you can prompt them to select their country from a list and jump to an
appropriate customized form when they do.

However, developing one form per country will increase your costs substantially over devel-
oping a single standardized form. Most organizations will find the third option here the most
palatable. To properly handle international input, no matter where the user is located, requires
you to consider several different factors:

●

Addresses are a huge source of confusion. In addition to the different sizes of postal codes,
there are differing standards for how many lines an address should take up, which state
abbreviations are appropriate, and the use of punctuation, among other things. Generally,
you’ll need to provide people a way to enter two address lines, plus a city, state or province,
postal code, and country. You might find Frank’s Compulsive Guide to Postal Addresses
(

www.columbia.edu/kermit/postal.html

) useful in showing you how postal addresses are
treated worldwide. Some fields that you think of as required probably aren’t. Not every
country uses postal codes or Zip codes, for example.

●

Telephone numbers, too, vary in both their formatting and the number of digits. As I dis-
cussed previously, you can deal with some of this on the server. The best bet might be to
have one box for the country code and another for the phone number, where people can use
whichever format they prefer.

●

People’s names can also be a source of confusion. If you’re a developer in the United States
you’re used to thinking of people as having first, middle, and last names—but this is not a
universal convention. There are areas where middle names are uncommon. There are areas
where a patronymic is inserted between the first and last names. Unless you really need to
sort and search by the various parts of the name, you should provide just a single text box
when you need to prompt for someone’s name.

Handling Large Forms and Slow Users

Although keeping forms short and simple is a worthwhile goal, it’s not always a practical one. A
shopping site, for example, needs to confirm quantities and products, allow the user to choose

4361Book.fm Page 304 Thursday, November 18, 2004 8:45 PM

305

Form Annoyances and Fixes

a shipping method, collect a shipping address and a billing address, and prompt for payment
information as part of the checkout process. Putting this all into a single huge form makes the
process daunting for many users.

Instead, you should break large forms up into several smaller forms, with each form displaying
the next when the user clicks the Submit button. Try to choose logical subsets of information for
each form in the series.

There’s another problem lurking here, though. When you break a single form into multiple
forms, you need to track the user’s state between forms. Otherwise, you can’t (for example)
match up the shipping and billing information. The usual solution for this is to use a temporary
cookie on the user’s computer. If you do this, be sure to not set the timeout of the cookie too
low. For example, if your cookie times out in 30 minutes, and the user takes a lunch break in
the process of filling out the series of forms, they’ll have to start all over.

In many cases, you’ll want to save some of the user’s information permanently for future
entry. If you can stash a customer number in a permanent cookie, for example, you can auto-
matically fill in the last known shipping and billing addresses the next time that the customer
visits your site. In the user interface, this is generally implemented with a check box, as shown
in Figure 15.13.

F I G U R E 1 5 . 1 3

Asking permission to
set a cookie

Handling Movement Issues

You might think that moving around a web page would be so simple as to be foolproof, but that’s
not the case. There are several things to keep in mind when designing web pages for navigation:

●

HTML controls that can receive the focus have a

TabIndex

 property. You need to make
sure that this is set for every control and that the numbers go in a sensible order. If you
neglect to do this, users can’t navigate with the Tab key.

●

Sometimes sites use client-side scripting to automatically advance the cursor when a field
is completely filled-in. I’m not a fan of this technique, for the same reason that I don’t like
it in Windows applications: Users find it disconcerting to have the focus move around when
they didn’t explicitly tell it to do so.

●

Any user who can manage to load a web page is comfortable with the Next and Back buttons
on the browser, so there’s no need to provide your own implementation of these tools. On
multipage applications, however, you might still want to provide a way for users to tell where

4361Book.fm Page 305 Thursday, November 18, 2004 8:45 PM

306

Chapter 15 • Common Web Interaction Patterns

they are in the process, and to jump forward and backward. For example, Amtrak’s ordering
process, shown in Figure 15.14, shows clearly where you are at any given time, and offers an
easy way to go back and review previous steps by clicking the step number.

F I G U R E 1 5 . 1 4

Navigation for a
multistep process

Avoid the Reset Button

The HTML specification provides two standard buttons for forms, Submit and Reset (although
they might have different captions, of course). The Submit button is the one that sends your data
to the web server, where it can be processed. The Reset button clears the contents of every con-
trol on the form, placing the form back in its initial configuration.

I’m sure that the Reset button seemed like a good idea at the time, but it’s not the sort of idea
that I want to present to most users. The problem is that the Reset button is potentially devas-
tating and irreversible. When you’ve just spent 20 minutes filling out a complex web form, the
last thing you want to do is click in the wrong place and have all of your precious data erased.

You can mitigate the danger of the Reset button somewhat with a few extra steps:

●

Locate the Reset button after the Submit button in the tab order.

●

Locate the Reset button physically far away from the Submit button, so it’s harder to click
by accident.

●

Use client-side scripting to confirm Reset button clicks before processing them.

But why bother? Users these days know that they can clear a web form by closing and reloading
it, or they can simply type over the data that they want to replace. The Reset button has very little
function and a big downside, so it’s best to just dispense with it entirely.

Summary

In this chapter, you learned about good HTML form design. The Web presents challenges (and
solutions) that differ from those of Windows applications. But keeping the user in mind and mak-
ing the best use that you can of the available tools will result in usable Web applications.

For the final chapter of the book, I’ll look at a new user interface paradigm that combines
some of the features of the Web and Windows: the user interface that’s coming with Windows
“Longhorn” and other Windows versions over the next several years.

4361Book.fm Page 306 Thursday, November 18, 2004 8:45 PM

Appendix

Looking Forward to the
Next Generation: Designing
User Interfaces for Avalon

4361Book.fm Page 307 Thursday, November 18, 2004 8:45 PM

308

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

T

hings never stand still in the world of computer programming. Although it’s been tweaked
and adjusted since then, Microsoft most recently did a complete overhaul of the Windows

user interface with the release of Windows 95 a decade ago. But that will change in the next
year or two, when Windows “Longhorn” is scheduled to ship. In this survey, I’ll discuss what
we know (or think we know) about user interface design for the next generation of Microsoft
Windows.

“Longhorn,” “Avalon,” and “Aero”

Microsoft has been working on the replacement for Windows XP for a long while now. In fact,
some parts of the project appear to have been underway for at least a decade, although publicly
released details are sketchy. The first public demonstrations of the new operating system, code-
named “Longhorn,” were made at the Microsoft Professional Developers Conference in the fall
of 2003.

Since then, Microsoft has opened the floodgates for information, and there is quite a large sec-
tion of the Microsoft Developers Network website devoted to Longhorn. This makes it possible
to discuss the new operating system with some hope of getting the broad picture correct, although
inevitably details will change between the time that I write this in late 2004 and the time that
Longhorn ships (estimated to be some time in 2006).

For developers, Longhorn offers quite a few advances over the current generation of Win-
dows operating systems. Although many of these improvements have no direct impact on user
interface design, it’s worth having some idea what’s coming, so I’ll briefly review them. Then
I’ll discuss the parts of Longhorn that most directly affect user interface design, code-named
“Avalon” and “Aero.”

WARNING

Screenshots and most of the information on Longhorn in this appendix are based on build
4074, which was released as a preview in mid-2004. This release, sometimes called
M7.2, is pre-alpha and not feature complete. I can’t emphasize strongly enough that
details will change before the product actually ships.

“Longhorn”

Microsoft Windows “Longhorn” (Microsoft typically uses code names for its products until their
release is imminent) is the successor to Windows XP as a client operating system. Key features
for developers in this next-generation version of Windows include:

●

A new programming model known as WinFX. WinFX, a superset of the .NET Framework,
is built entirely of managed code. In Longhorn, WinFX replaces Win32 as the fundamental
interface for programming the operating system.

4361Book.fm Page 308 Thursday, November 18, 2004 8:45 PM

309

“Longhorn,” “Avalon,” and “Aero”

●

A new presentation subsystem, code-named “Avalon.”

●

A new user experience paradigm code-named “Aero.” Aero, which is built using the Avalon
APIs, determines the look-and-feel of the operating system.

●

A new communications subsystem code-named “Indigo.” Indigo will bring together Web
Services, Microsoft Message Queuing (MSMQ), and COM+ into a unified way to expose
functionality remotely. Indigo is the successor to the Web service and remoting commu-
nication APIs introduced with Microsoft .NET.

●

A new command shell code-named “Monad.” Monad offers an object-oriented way to add
functionality to the command line.

●

A new way to create user interfaces, by writing declarative code in an extensible markup
language (XML) dialect known as extensible application markup language (XAML).

WARNING

If you hunt around the Web, you’ll also see references to an object-oriented file system
named WinFS being part of Longhorn. Although WinFS was in the first Longhorn betas,
Microsoft has now announced that it will not ship as part of Longhorn; it will be a separate
add-on to be delivered later.

NOTE

There will also be a server version of the Longhorn operating system, but Microsoft has
released very few details and no code for that version. In this chapter, I’ll be dealing strictly
with the Longhorn client alpha code.

All in all, Longhorn is shaping up to be an extremely significant operating system release for
Microsoft. For developers, Longhorn represents both an opportunity and a threat. The new
application programming interfaces (APIs) and interfaces offer the opportunity of building
cutting-edge applications with features that are simply impossible under the current versions
of Windows. But the sweeping changes in the programming model mean that developers need
to invest considerable time in learning before they can be productive writing code for Longhorn.

NOTE

Microsoft revealed in mid-2004 that Avalon, Indigo, and WinFX would all be available for
Windows XP and Windows 2003. We don’t yet know the timing of these releases or whether
they will differ in details from the versions that ship with Longhorn.

TIP

Microsoft Developer Network members have access to preliminary Longhorn builds and
documentation today. If you’re at all interested in the next decade of Windows develop-
ment, it’s worth being signed up. Details are at

http://msdn.microsoft.com

.

4361Book.fm Page 309 Thursday, November 18, 2004 8:45 PM

310

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

“Avalon”

Avalon blurs the boundaries between desktop programming and web programming by using a
markup language (XAML) for defining user interfaces. XAML offers new ways to perform old
tasks, as well as new capabilities. In this section, I’ll show you some of the basics of XAML, so
you can get a flavor of what writing user interfaces may be like under Longhorn.

NOTE

Although XAML is raw XML, you shouldn’t assume that you’ll need to write XML files by
hand to create applications that use Avalon. Expect to see development tools such as
Visual Studio automate XML creation, hiding the complexity of the XAML behind friendly
visual designers.

Avalon Overview

Avalon applications typically combine two pieces: a declarative user interface piece written with
XAML, and a procedural code piece written with a .NET language such as C# or Visual Basic.

NOTE

Declarative languages specify what you want to create, rather than how it should be created.
Hypertext markup language (HTML), for example, is a declarative language; you write tags to
define what should be displayed, but it’s up to the web browser to decide how best to display
the results.

When you compile an Avalon application, the XAML and procedural pieces are compiled
together. The XAML parser creates a partial class from the markup, with each tag mapping to
a class, and each attribute mapping to a property. This partial class is combined with the partial
class defined by the procedural code to create the complete application.

If your application is pure XAML (markup only, with no procedural code or events), it can
be displayed in the web browser on Longhorn. If there is any code, the application needs to be
compiled, after which you can run it from Windows Explorer. But any compiled Avalon appli-
cation can be hosted in the browser by setting a single attribute. Switching back and forth is
trivial.

In addition to the new model for creating applications, Avalon brings in new capabilities. For
example, 3D graphics and multimedia interfaces are native parts of Avalon.

TIP

If you want to experiment with XAML today, you don’t have to install the Longhorn alpha code.
Because Microsoft has released a fairly complete XAML specification, others can try to beat
them to market. You can choose from an open-source implementation named MyXaml
(

www.myxaml.com/

) or a commercial implementation named Xamlon (

www.xamlon.com/

) to
build and deploy XAML interfaces today. There’s no guarantee that either will precisely match
the final Microsoft release, but they should be close enough for most purposes.

4361Book.fm Page 310 Thursday, November 18, 2004 8:45 PM

311

“Longhorn,” “Avalon,” and “Aero”

Hello XAML

The source code for the simplest Avalon application looks like this:

<DockPanel xmlns="http://schemas.microsoft.com/2003/xaml">
 <Text>Hello XAML</Text>

</DockPanel>

Not much to it, is there? But

DockPanel

 and

Text

 are special tags that have significance to the
XAML parser in Avalon. Save this file with an .XAML extension and double-click it. You see
the display shown in Figure A.1.

F I G U R E A . 1

Simple XAML file dis-
played by Longhorn

Using XAML Panels

The basic device for layout in XAML is the

panel

. A panel is a container that can hold controls.
There are five built-in panel classes in Avalon:

●

Canvas

●

DockPanel

●

FlowPanel

●

GridPanel

●

TextPanel

The

Canvas

 allows you to position elements absolutely. A

Canvas

 element can be positioned
with x and y coordinates relative to its parent, so if you nest other elements within the

Canvas

,
you can control their location as well. If you overlap elements, the z-order is controlled by the
order the elements specified, with the last element being drawn on top of all the others. For
example, this XAML file positions some text and two filled squares:

<Canvas ID="root"
 xmlns="http://schemas.microsoft.com/2003/xaml"
 Height="300"
 Width="400">

4361Book.fm Page 311 Thursday, November 18, 2004 8:45 PM

312

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

 <Canvas Height="100" Width="100" Top="0" Left="0">
 <Text>This is some text</Text>
 </Canvas>
 <Canvas Height="100" Width="100" Top="100" Left="100">
 <Rectangle Width="100" Height="100" Fill="black"/>
 </Canvas>
 <Canvas Height="100" Width="100" Top="50" Left="50">
 <Rectangle Width="100" Height="100" Fill="gray"/>
 </Canvas>

</Canvas>

Figure A.2 shows this file open in the Longhorn browser.

Note that the

Canvas

 elements themselves are invisible, but that their attributes control the
placement of their child controls.

The

DockPanel

 allows you to dock child controls to its edges. When you place a control
within a

DockPanel

, you can set its

DockPanel.Dock

 attribute, as shown here:

<DockPanel ID="root"
 xmlns="http://schemas.microsoft.com/2003/xaml"
 Height="100%"
 Width="100%">
 <Text DockPanel.Dock="Top" FontSize="24">Top</Text>
 <Text DockPanel.Dock="Bottom" FontSize="24">Bottom</Text>
 <Text DockPanel.Dock="Left" FontSize="24">Left</Text>
 <Text DockPanel.Dock="Right" FontSize="24">Right</Text>

</DockPanel>

Figure A.3 shows the result.

F I G U R E A . 2

Using a Canvas ele-
ment for positioning

4361Book.fm Page 312 Thursday, November 18, 2004 8:45 PM

313

“Longhorn,” “Avalon,” and “Aero”

F I G U R E A . 3

Using the DockPanel

Use the

FlowPanel

 when you want child elements to “flow,” rearranging themselves to fit the
available space (similar to the way that controls are laid out in a web browser). Here’s an example
of the

FlowPanel

 in use:

<Canvas ID="root"
 xmlns="http://schemas.microsoft.com/2003/xaml"
 Width="200"
 Height="300">
 <FlowPanel Width="200" Height="300">
 <Rectangle Fill="gray" Width="75" Height="75" />
 <Rectangle Fill="black" Width="75" Height="75" />
 <Rectangle Fill="white" Width="75" Height="75" />
 <Rectangle Fill="gray" Width="75" Height="75" />
 </FlowPanel>

</Canvas>

In this example, the

FlowPanel

 is defined to be 200 pixels wide. Longhorn starts laying out
the child elements left-to-right, but it runs out of room after two of the rectangles have been
created, so it wraps the other two rectangles to another row as shown in Figure A.4.

The

GridPanel

, as you can guess from its name, is used to arrange controls on a grid. When
you create a

GridPanel

, you specify how many columns it should have; the child controls are
arranged in that many columns within the grid:

<GridPanel ID="root"
 xmlns="http://schemas.microsoft.com/2003/xaml"
 Columns="3">
 <Text FontWeight="Bold">Column 1</Text>
 <Text FontWeight="Bold">Column 2</Text>

4361Book.fm Page 313 Thursday, November 18, 2004 8:45 PM

314

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

 <Text FontWeight="Bold">Column 3</Text>
 <Button>Button 1</Button>
 <Button>Button 2</Button>
 <Button>Button 3</Button>
 <Rectangle Fill="gray" Width="75" Height="75" />
 <Rectangle Fill="black" Width="75" Height="75" />
 <Rectangle Fill="gray" Width="75" Height="75" />

</GridPanel>

Note that you can put any control you like in the grid. Figure A.5 shows this example open
in the browser.

Finally, the

TextPanel

 exists to hold text. However, unlike the simple

Text

 element that
you’ve already seen, the

TextPanel

 supports a variety of sophisticated layout properties that let
you control such things as the number of columns, the direction of flow, the minimum number
of lines of a paragraph, and so on. Here’s a small sample using the TextPanel:

<TextPanel ID="root"
 xmlns="http://schemas.microsoft.com/2003/xaml"
 Width="400" ColumnCount="2" ColumnGap="5">
This is some lengthy text to be displayed within a TextPanel
in two columns. The TextPanel takes care of all the layout
chores. You can use the attributes of the TextPanel element
to achieve a variety of complex text layouts.

</TextPanel>

Figure A.6 shows how this sample is rendered.

F I G U R E A . 4

Layout using the
FlowPanel

4361Book.fm Page 314 Thursday, November 18, 2004 8:45 PM

315

“Longhorn,” “Avalon,” and “Aero”

F I G U R E A . 5

Controls in a GridPanel

F I G U R E A . 6

Complex text layout
with a TextPanel

Complex Layout in XAML

Just like HTML, you can use XAML to create almost arbitrarily complex layouts. By employ-
ing a variety of tags and nesting them, you can cause Longhorn to display areas, text, controls,
and so on. For just a small taste, consider this example file:

<DockPanel xmlns="http://schemas.microsoft.com/2003/xaml"
 xmlns:def="Definition" >
 <DockPanel.Resources>

4361Book.fm Page 315 Thursday, November 18, 2004 8:45 PM

316

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

 <Style>
 <Text Foreground="Black"/>
 </Style>
 <Style def:Name="WhiteText">
 <Text Foreground="White"/>
 </Style>
 </DockPanel.Resources>

 <Border DockPanel.Dock="Top">
 <Text>Some Text across the top of the window</Text>
 </Border>

 <Border DockPanel.Dock="Bottom">
 <Text>Some text across the bottom of the window</Text>
 </Border>

 <Border DockPanel.Dock="Left"
 Background="Black">
 <Text Style="{WhiteText}">Text in the left column in white</Text>
 </Border>

 <Border DockPanel.Dock="Fill">
 <DockPanel>
 <Button DockPanel.Dock="Top"
 Height="30px"
 Width="100px"
 Margin="10,10,10,10">Button1</Button>
 <Button DockPanel.Dock="Top"
 Height="30px"
 Width="100px"
 Margin="10,10,10,10">Button2</Button>
 <Border DockPanel.Dock="Fill">
 <Text >Some Text Below the Buttons</Text>
 </Border>
 </DockPanel>
 </Border>

</DockPanel>

This code produces the user interface shown in Figure A.7.

Linking UI to Code

Although development is beyond the scope of this book, it’s worth looking at a single sample
of hooking XAML up to procedural code. The Longhorn SDK includes a sample called Word-
game that presents a simple version of the classic Hangman game. Figure A.8 shows this game
in action.

4361Book.fm Page 316 Thursday, November 18, 2004 8:45 PM

317

“Longhorn,” “Avalon,” and “Aero”

F I G U R E A . 7

More-complex
XAML layout

F I G U R E A . 8

Playing Wordgame

Here’s a small portion of the XAML that defines the Wordgame user interface:

<Window xmlns="http://schemas.microsoft.com/2003/xaml"
 xmlns:def="Definition"
 def:Class="WordGame1_vb.Pane1"
 def:CodeBehind="Pane1.xaml.vb"
 Text="WordGame"
 UIReady="UI_Ready">
…
 <Button DockPanel.Dock="Left"
 Margin="10,0,10,0"

4361Book.fm Page 317 Thursday, November 18, 2004 8:45 PM

318

Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

 Click="btnGo"
 ID="goButton"
 Height="25"
 Width="35">Go</Button>
…

</Window>

The Window element for the user interface (UI) defines a class and a code-behind file for the
UI. This element is what tells Avalon that there is code associated with this user interface. Any
individual element, such as the Button element shown here, can use its attributes to specify par-
ticular events to hook up. If you look in the corresponding Visual Basic source file, you’ll find
the code that this button calls:

Sub btnGo(ByVal Sender As Object, ByVal e As ClickEventArgs)
 Dim selectedLetter As Char
 Dim goodGuess As Boolean
 Dim i As Integer

 If guessedChar.Text = "" Then 'Check for empty text box
 Return
 End If

 selectedLetter = guessedChar.Text(0)
 _lettersUsed = _lettersUsed & selectedLetter
…

End Sub

The appropriate parsers and compilers take care of hooking everything up behind the scenes.

Avalon Controls

By the time it ships, Avalon should contain versions of all the familiar controls (such as the but-
tons and text boxes you saw in Figure A.8). In Build 4074, Avalon includes implementations of
these controls:

Button RadioButton

CheckBox RadioButtonList

ComboBox RepeatButton

ContextMenu ScrollViewer

HorizontalScrollBar TextBox

HorizontalSlider Thumb

HyperLink ToolTip

ListBox VerticalScrollbar

Menu

4361Book.fm Page 318 Thursday, November 18, 2004 8:45 PM

319

“Longhorn,” “Avalon,” and “Aero”

Most of these controls are familiar from previous versions of Windows. RadioButtonList
offers a way to create an entire series of radio buttons as a single control. RepeatButton is a but-
ton that autorepeats, firing its associated event multiple times if the user holds down the button.
ScrollViewer is a horizontal scroll bar coupled with a vertical scroll bar, providing a container
for other controls that can be scrolled in two dimensions. Thumb is a small draggable control
that’s used to build up other controls such as scroll bars.

Avalon also includes several panel types other than the DockPanel that you saw previously. For
example, Figure A.9 shows a simple use of the GridPanel control, which allows laying out of two-
dimensional grids. You can expect to see it show up in many database-backed applications.

Properly speaking GridPanel isn’t a control; it is a container for controls.

F I G U R E A . 9

Layout with GridPanel

“Aero”

If you think of Avalon as providing the basic ingredients for cooking dinner, Aero is a specific
style of cooking that Microsoft is defining as the native look and feel for Longhorn. You could
build many other user interfaces from the Avalon components (just as you can cook a French
meal or a German meal from the same basic foodstuffs), but following the Aero guidelines will
make your Longhorn applications behave in ways that are consistent with the things that
Microsoft plans to ship in the box.

Visual Changes
For starters, Aero includes the new styling for controls, borders, and so on. Your applications
will get this “for free” when they’re run on Longhorn, just as they look different depending on
whether they’re run on Windows XP or Windows 2000. Figure A.10 shows a representative
Longhorn application: Windows Explorer.

You can see quite a few of the Aero enhancements in this figure:

● More-rounded and softer edges to various screen elements

● Crisper anti-aliased fonts

● Increased use of soft colors and gradients

● Larger and more-detailed icons

4361Book.fm Page 319 Thursday, November 18, 2004 8:45 PM

320 Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

● Web-style navigation, with forward and back buttons on the upper left

● A “glassy” semi-transparent look

What you can’t see in Figure A.10 is that many of these screen elements are animated, changing
their appearance as you move the cursor over them. Aero will make good use of next-generation
video cards (and you’ll probably want to disable some of these features when working with older
systems).

Longhorn also introduces the Sidebar to Windows. Figure A.11 shows the Sidebar, which is
a permanent area to the right side of the screen.

The Sidebar is home to tiles, each of which is a small package of functionality. In Figure A.11,
the tiles include a slide show of images, a feed of news headlines, search, system messages, and
an analog clock. You can use the Longhorn programming tools to create more tiles as well.
The Sidebar provides you with a place to host applications that’s intermediate—between a full
Windows application and a notification area icon. Tiles can contain controls, and the user can
interact with those controls, just as in any other application.

Because tiles are limited in size, they’re best suited for applications that don’t require many
controls, and that provide functionality the user is likely to need frequently regardless of what
else they might be doing.

F I G U R E A . 1 0
Windows Explorer

4361Book.fm Page 320 Thursday, November 18, 2004 8:45 PM

321“Longhorn,” “Avalon,” and “Aero”

F I G U R E A . 1 1
The Sidebar

New Help System
There’s more to Aero than just new visual styles. One of the other important pieces is a new
help system designed to make it easier for users to find high-quality assistance when they run
into a problem, or when they just want to know more about your application. Figure A.12
shows a sample of Longhorn help in action.

You create help for Longhorn using Microsoft Assistance Markup Language (MAML), which
is yet another XML dialect. At runtime, Longhorn uses CSS stylesheets and other transforma-
tions to display MAML in a user-friendly form. One advantage of an XML authoring format is
that Longhorn can change help delivery by changing style sheets—for example, any native Long-
horn help file can be transformed to DHTML for browser-based delivery.

TIP As with XAML, you shouldn’t plan on writing MAML by hand. Help-authoring vendors will
undoubtedly produce tools that put a friendlier face on the MAML authoring process.

4361Book.fm Page 321 Thursday, November 18, 2004 8:45 PM

322 Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

F I G U R E A . 1 2
Longhorn help system

In Longhorn, all help is displayed by a single Help Pane application, rather than each appli-
cation having its own separate help window. As the user navigates between applications, the
Help Pane keeps in sync, showing the help for the current application. The Help Pane can float
free or it can be docked to the side of the screen. When it’s docked, the Help Pane reduces the
working area for applications, so the user can automatically see both the application that they
are working with and the help at the same time.

TIP Of course, you can ship old help files with Longhorn applications. But if you do, you won’t get
the benefits of the new help system. Considering the importance of help in making applications
usable, it’s likely to be worth the effort to use the new technologies in this case.

Longhorn help also emphasizes several other cutting-edge features:

Task-based help The user works from a list of potential tasks rather than the traditional
index and table of contents.

4361Book.fm Page 322 Thursday, November 18, 2004 8:45 PM

323Application Archetypes

Active help content Allows help authors to script help behaviors so that the help context
changes based on the user or current state of the machine.

Online updates Continuously download new or improved content when the user is con-
nected to the Internet.

Privacy and Security
Given the state of the computer industry, it’s no surprise that Microsoft is also emphasizing
user privacy and security for Longhorn and applications that are designed for it. If your appli-
cation collects any user data, Microsoft recommends explicit attention to privacy and security.
In particular, your application should follow these rules:

● Include an explicit privacy policy written in clear, non-technical language.

● Keep the user’s data private by default. For example, if your application has the ability to log
the user’s actions, don’t turn this feature on unless the user explicitly requests you to do so.

● Keep the application secure by default. Any settings that might compromise the security of
the user’s data should be kept locked down unless the user requests otherwise.

● Provide a way for the user to contact your organization for more information on privacy
and security policies.

Application Archetypes
Longhorn introduces the concept of application archetypes. You can think of an application
archetype as a pattern for an application’s user experience. Each archetype identifies a class of
applications and specifies guidelines for those applications:

● Document editor applications

● Database applications

● Production/development environment applications

● E-commerce applications

● Information/reference applications

● Entertainment applications

● Utility applications

Bear in mind that this list might change before Longhorn ships, and even some of the sug-
gestions for working with Longhorn might change. But because many applications fit into
these categories, it’s worth looking at them in a bit more detail.

4361Book.fm Page 323 Thursday, November 18, 2004 8:45 PM

324 Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

Document Editor Applications
Many applications exist to edit particular documents. For example, Microsoft Word and Excel
fall into the category of document editor applications. For these applications, Longhorn sug-
gests the following:

● Supplying thumbnail images for documents that Explorer can display

● Supporting live collaboration over the network

● Using the Longhorn versions of the File Open and File Save dialog boxes

● Using a task pane for user assistance

Database Applications
Database applications are rife in business today. With so much data stored in databases, it’s
natural that there are many applications to work with the data. Such applications often need
to display a range of records, and then allow the user to edit, delete, and add single records.

Longhorn recommendations for this archetype include the following:

● Including ways to filter and sort records

● Using web-style navigation for browsing

● Using task-based data entry for inexperienced users

● Storing and transmitting information securely

● Linking any people stored in the database to Windows contacts

● Offering a built-in search tool

● Linking the database to Longhorn’s own search

● Enabling offline use

Production/Development Environment Applications
Production/development environment applications handle the most demanding tasks that users
perform. Examples of such applications include video manipulation applications and integrated
development environments such as Visual Studio. For these applications, the Longhorn guide-
lines include the following:

● Use tabbed child windows instead of old-style MDI windows

● Build up projects from multiple documents rather than storing disparate data in a single
document

4361Book.fm Page 324 Thursday, November 18, 2004 8:45 PM

325Application Archetypes

● Enable collaborative editing

● Provide tools on dockable palettes

E-Commerce Applications
We’ve all used e-commerce applications by now. Microsoft is encouraging vendors to inte-
grate e-commerce tightly with Longhorn. For example, in addition to a traditional website for
e-commerce, a vendor could supply a rich client application that runs on Longhorn and that
uses the Internet to communicate with the vendor’s website.

Guidelines for such e-commerce applications include the following:

● Allow users to sort and filter lists of products

● Create shopping carts with standard functionality

● Ensure that user data remains private and secure

● Add user ratings to products

● Provide a way for users to get immediate online assistance

Information/Reference Applications
Information and reference applications include encyclopedias, magazine archives, reference
databases, and so on. These applications allow the user to navigate through large amounts of
information, typically in a browser-like application. For this archetype, Microsoft recommends
the following:

● Use a navigation bar to provide the user information about where they are in the hierarchy

● Integrate web-hosted and local content

● Include search tools

● Include multimedia content in the data

● Use group discussion tools to enhance the information

Entertainment Applications
Entertainment applications such as games and interactive books are unique in Windows in that
they usually take over the entire computer. When playing a modern computer game, users are
not usually multitasking. Indeed, the standard Windows interface (such as the Taskbar and
Sidebar) is usually not even visible while the game is running.

4361Book.fm Page 325 Thursday, November 18, 2004 8:45 PM

326 Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

In the Longhorn timeframe, Microsoft recommends these features for entertainment
applications:

● Allow users to find other users online

● Include text, audio, or video chat features

● Allow upgrades from a demo version to a full version

● Provide the ability to manage multiple saved games

Utility Applications
Utility applications perform one focused task. For example, Windows itself includes the
Character Map tool and the Disk Defragmenter. Such applications are typically very simple,
and the guidelines are simple as well:

● Don’t require any installation beyond copying files to the hard drive

● Provide user assistance that helps the user remember how to perform infrequent tasks

Inductive User Interfaces
Microsoft is also promoting a user interface model that it calls the inductive user interface for
Longhorn applications. Inductive user interfaces (IUIs) are designed to make it easier for users to
understand and navigate through functionality in large applications. The name is chosen to
contrast with the common style of presenting a user with a single application full of controls,
and requiring the user to deduce the use of the different controls. In an IUI, the user is presented
with only a few controls at a time, with the application’s functionality broken up into screens
and explicit navigation between screens.

Inductive User Interfaces are very similar to wizards (recall the discussion of wizards in
Chapter 8, “Common Windows User Interface Elements”).The main difference is that wizards
generally assume a linear set of steps that should be followed from start to finish, whereas an
inductive user interface might include the ability to perform a task multiple times or to navigate
in both directions among multiple tasks.

The key task of an inductive user interface is to answer two questions at all times:

● What am I supposed to do now?

● What can I do next?

4361Book.fm Page 326 Thursday, November 18, 2004 8:45 PM

327Inductive User Interfaces

To answer the first question, an inductive user interface generally includes a carefully chosen
title for each page and some short explanatory text. To answer the second question, the interface
provides navigation hyperlinks and web-style forward and back buttons instead of (or possibly
in addition to) menu-based navigation.

For example, Figure A.13 shows ExpenseIt, one of the sample applications from the Long-
horn software development kit. Note that the screen is uncluttered, that it’s focused on a single
task, and that there are hyperlinks to proceed to another task. A new user faced with this inter-
face can probably figure out what to do, even without any assistance.

TIP Inductive user interfaces represent a tradeoff. Although an application with such an inter-
face might be easier for novices to use, it can be annoyingly tedious for more experienced
users. If you create an application with such an interface, consider including an expert
mode with a more traditional user interface. As an alternative, limit the inductive user inter-
face to portions of the application that are less frequently used.

F I G U R E A . 1 3
Inductive user
interface

4361Book.fm Page 327 Thursday, November 18, 2004 8:45 PM

328 Appendix • Looking Forward to the Next Generation: Designing User Interfaces for Avalon

Summary
In this survey, I introduced you to some of the user interface changes that we can expect to see
with the release of Windows Longhorn in the 2006 timeframe. Although many of these changes
will have a significant impact on application design, one fact remains constant: Building an
application that conforms to the design guidelines will result in more satisfied users than going
off in your own idiosyncratic direction. For Longhorn, this means paying attention to the Aero
guidelines, using application archetypes to help guide feature sets, and considering an inductive
user interface where it’s appropriate.

4361Book.fm Page 328 Thursday, November 18, 2004 8:45 PM

Index

Note to the reader:

 Throughout this index

boldfaced

page numbers indicate primary discussions of a
topic.

Italicized

 page numbers indicate illustrations.

SYMBOLS

 (non-breaking space character), 243
< and > (angle brackets) for HTML tags, 241
<!-- and --> for HTML comment, 242

A

<a> tag (HTML), 250–252
about page on website,

276

,

276–277

accelerator keys, 65, 150–151.

See also

 shortcut
keys

for menu items, 154
access keys, 75.

See also

 shortcut keys
action attribute of <form> tag (HTML), 257
action button for dialog box, 124
actions, menu item to trigger, 151
adaptive menu, 158–159,

159

,

202–203

,

203

adaptive strategy for default value, 78
adaptive websites,

290

addresses, data entry in web forms, 304
“Aero,” 309,

319–323

help system, 321–323,

322

privacy and security, 323
visual changes, 319–320

align attribute (HTML), 244
of tag, 249

alt attribute of tag (HTML), 235–236,
249,

252

always-on-top windows,

186–190

analogy for software, 4
anchoring windows,

203–207

angle brackets (< and >) for HTML tags, 241
animated characters,

212

,

212–213

anthropomorphization,

212

,

212–213

application archetypes in Longhorn,

323–326

application name in title bar, 24,

25

applications
data transfer between,

193–196

cut, copy and paste,

193–195

drag and drop,

195–196

guidelines for non-standard operation, 45
keyboard-friendly, 74
organization,

169–179

functionality, 169–170
hierarchy development, 170–172,

171

,

172

system menu, 43
Apply button

for dialog box, 125,

125

for property sheet, 51
arranging windows,

53–58

local web,

57

,

58

multiple-document interface windows,

27

,

27–28

,

28

,

55

,

55

multiple main windows,

58

,

59

4361Book.fm Page 329 Thursday, November 18, 2004 8:45 PM

330

ASP.NET—check boxes

no-document interface,

54

,

54

single-document interface windows,

26

,

26

,

54

,

54–55

tabbed documents, 50,

56–57

,

57

workbook,

56

,

56

ASP.NET, 217, 219, 232
attributes of HTML tags, 241, 244
autohide windows,

190–191

,

191

in Visual Studio, 207,

208

“Avalon,” 309,

310–319

complex layout in XAML, 315–316
controls,

318–319

“Hello XAML” application,

311

, 311
linking UI to code, 316–318
overview, 310
XAML panels, 311–314

B

 tag (HTML), 244, 246
deprecation, 247

background-color property (CSS), 264
background-image property (CSS), 264
bleeding edge design for web applications, 234
Bobby, 247
<body> tag (HTML), 241, 242
Boolean search, 296,

296

border
of dialog box, 48
of HTML table,

254

, 254–255
of property sheet, 50

border-color property (CSS), 264
border-style property (CSS), 264
border-width property (CSS), 264

 tag (HTML), 243
breadcrumb navigation for websites,

288

, 288
Browser for Folder dialog box,

131–132

,

132

browsers
checking web pages on different, 266
varied, and web applications, 225–228,

230

,

231

bulletin dialog box, 120
buttons.

See also

 command buttons
default and normal,

62

,

63

in dialog boxes,

18

, 18, 48, 124–126
with input focus,

63

in message boxes, 32
pressed, 62–63,

63

in task panes, 50
on toolbars, 138, 139–140

images on,

141

, 141
in web page form,

261

on window title bar, 43–44
in wizard, 161

C

Cancel button
for dialog box, 124
need for, 72
for property sheet, 51
in wizard, 161

Canvas class (XAML), 311–312,

312

capitalization of labels, 29–30
cascading dialog boxes,

127

,

127–128

cascading menus,

155

, 155
Cascading Style Sheets (CSS), 229, 244,

261–264

selected properties, 264
case of labels, 29–30
cellpadding attribute of <table> tag (HTML),

255
cellspacing attribute of <table> tag (HTML), 255
check boxes,

90–92

,

91

in web page form,

259

4361Book.fm Page 330 Thursday, November 18, 2004 8:45 PM

331

checkout process in electronic commerce—ListView and TreeView controls

checkout process in electronic commerce, 298
chevrons (>>), as visual cue for unfolding dialog

box,

48

child windows in MDI applications, 27
choices, controls for presenting,

88–96

check boxes,

90–92

,

91

issues,

94–96

radio buttons,

88–90

,

89

toggle buttons,

92–94

,

93

,

94

clarity of text, 29
class attribute, 263
Click event, 72
Clipboard, 193–195
clipped windows, 46
closing tags in HTML, 241
<code> tag (HTML), 244
CodeWright text editor, 56,

57

color
information from, 209
user customization,

208–210

color-blindness, 209
Color dialog box,

135

, 135
color property (CSS), 264
cols attribute of <textarea> tag (HTML), 259
colspan attribute of <td> tag (HTML), 255,

256

columns in ListView control, 106
combo boxes,

98

,

98–99

command buttons
actions,

70–72

functioning,

62–65

images on, 69,

70

,

71

labeling,

68–70

laying out,

65–68

sizing, 68
support for events, 72

comments in HTML, 242
common dialog boxes,

129–135

advantages, 129

Browser for Folder,

131–132

,

132

Color,

135

, 135
Find,

132

,

132

Font,

134–135

,

135

Open,

130

, 130–131
Page Setup, 134, 134
Print, 133, 133–134
Replace, 132–133, 133
Save As, 131, 131

complexity
in customization, 199–202
and good interface design, 13–16, 14
vs. user control, 15

ComponentOne, 88
consistency

in good interface design, 20–21
in website navigation, 284, 285

contact page on website, 276–277, 277
content-based tags (HTML), 244
context menu (shortcut menu), 156–157
context of application in title bar, 24, 25
context-sensitive help, 35, 35
control by user, 11–12

vs. simplicity, 15
controls. See also buttons

in dialog boxes, 120–123
grid controls, 107–108, 108
group box control, 95
for handling lists, 96–99

combo boxes, 98, 98–99
general techniques, 99
list boxes, 96–98, 97

limited selection for web applications, 221,
221–222

ListView and TreeView controls, 103,
103–107

details view, 105, 106
in large icon view, 104, 104

4361Book.fm Page 331 Thursday, November 18, 2004 8:45 PM

332 conversation—dialog boxes

list view, 105
thumbnail view, 105, 106

Outlook Bar, 110, 110
for presenting choices, 88–96

check boxes, 90–92, 91
issues, 94–96
radio buttons, 88–90, 89
toggle buttons, 92–94, 93, 94

ProgressBar, 109, 109–110
space management with tabs, 99–103, 100,

101
for text entry, 80–84

masked edit control, 83, 83
multiline text box, 81, 81–82
rich-text box, 82, 82
single-line text box, 81, 81
spin box, 83–84, 84
text boxes, 76–77

conversation, software as, 3
cookies, 224–225

for multi-form process, 304–305
copy and paste, 193–195

platform consistency for, 21
CSS (Cascading Style Sheets), 229, 244,

261–264
CSS Zen Garden, 264
cursor automatic movement

in dialog boxes, 128
in web forms, 305

customization of software, 8, 9
application-specific, 210–211
color and skinning, 208–210
docking and anchoring windows, 203–207
menus and toolbars, 198–203
support costs and, 198

Customize dialog box (Office)
Commands tab, 201, 201
Options tab, 200, 201
Toolbars tab, 200, 200

Customize Toolbar dialog box, 199, 199
cut and paste, 193–195

D
data entry. See text entry
data transfer between applications, 193–196

cut, copy and paste, 193–195
drag and drop, 195–196

database
application archetype in Longhorn, 324
for dynamic web pages, 217

Date and Time Properties dialog box, spin box,
84, 84

DateTimePicker control, 111
declarative languages, 310
default button, 62, 62

need for, 72
default values in text box, 78
deleting files, prompt before, 19, 19
derived strategy for default value, 78
design decisions, consequences, 13
design strategy

for web applications, 233–238
for windows, 58–59

desktop, software as, 3–4
DesqView, 40
Developer Express, 88

XtraGrid control, 107
developer, software as conversation with user, 3
DHTML (Dynamic HTML), 229
dialog boxes, 47, 47–49

cascading, 127, 127–128
common, 129–135

Browser for Folder, 131–132, 132
Color, 135, 135
Find, 132, 132
Font, 134–135, 135

4361Book.fm Page 332 Thursday, November 18, 2004 8:45 PM

333direct action—extended-selection list box

Open, 130, 130–131
Page Setup, 134, 134
Print, 133, 133–134
Replace, 132–133, 133
Save As, 131, 131

design strategy, 59
hinting in, 12
layout, 120–127

buttons, 124–126
controls, 120–123
resizable, 126–127
unfolding dialog boxes, 126

modal, 116–117
avoiding, 191–192

modeless, 116–117
overview, 114–120

uses, 114–116
preventing problems, 128–129
tab order, 75
types, 118–120

bulletin dialog box, 120
function dialog box, 119, 119
process dialog box, 120
property dialog box, 118, 118–119

direct action, user interaction with, 168
direct approach, in good interface design, 16–19
Display control panel applet, Appearance tab, 76
Display Properties dialog box, color

customization, 208–209, 209
<div> (division) tag (HTML), 243, 244
dividers

in menus, 155–156, 156
in toolbars, 138

docking
floating accessory windows, 52
toolbars, 142
windows, 203–207

DockPanel class (XAML), 312, 313

document editor applications, archetype in
Longhorn, 324

document windows, 46–47, 47
documentation, for interface design process, 179
documents, windows without, 24–26
DOS operating system, 40
drag and drop, 195–196
drag handle, on toolbars, 138
drop-down button on toolbars, 140
drop-down button, on toolbars, 140
drop-down list boxes, 99
drop-down list in web page form, 259–260

populating from database, 302
drop-down menu, 149
dynamic web page, 217

E
e-commerce, 297–299

application archetype in Longhorn, 325
ECMAScript, 229
Edit Colors dialog box, 48, 48, 49
Edit menu, 153, 173
editing keys for text box control, 77
electronic commerce. See e-commerce
ellipsis (...)

on button, 67
in menu items, 151, 151

 tag (HTML), 244, 246
Enter key, single-line text box vs. multiline, 82
entering text. See text entry
entertainment applications, archetype in

Longhorn, 325–326
error message boxes, 31, 31
errors, application forgiveness for, 19–20
experience level of users, design for varied, 12
extended-selection list box, 97–98

4361Book.fm Page 333 Thursday, November 18, 2004 8:45 PM

334 extensible application markup language (XAML)—Hardware Sensors Monitor

extensible application markup language
(XAML), 309, 310

complex layout in, 315–316, 317
linking user interface to code, 316–318
panel classes, 311–314

external style sheet, 261
extra frosting design for web applications,

234–236
“eye candy,” 110

F
Faber Toys, 54, 54
File menu, 153, 173
file uploads with web page form, 260
filename in single-document interface window

title bar, 26
Find and Replace dialog box

action buttons, 125, 126
expanded, 126, 126

Find dialog box, 132, 132
Finish button in wizard, 161
fixed strategy for default value, 78
Flash, 237
floating auxiliary windows, 52, 52, 141–142, 142
floating toolbars, 139, 139
FlowPanel class (XAML), 313, 314
Font dialog box, 134–135, 135
font-family property (CSS), 264
font-size property (CSS), 264
font-style property (CSS), 264
font-weight property (CSS), 264
forgiveness, in good interface design, 19–20
<form> tag (HTML), 256
formatted text

rich-text box for, 82
on web forms, 300–301, 301

forms in web pages

annoyances and fixes, 299–306
form length and slow users, 304–305
formatted data, 300–301, 301
international input, 303–304
limiting data entry, 302, 302–303
required fields, 299, 300

controls, 256–261, 257
buttons, 261
check boxes, 259
drop-down list, 259–260
file uploads, 260
list boxes, 260
radio buttons, 259
text area, 259
text box, 258

design tips, 267
reset button, 306

frequently asked questions on website, 277–278,
278

function dialog box, 119, 119
functionality, in application organization,

169–170

G
GetFileTitle application programming interface

(API) call, 26
glyFX, 141
Google, SiteSearch service, 275, 296–297, 297
grid controls, 107–108, 108
GridPanel class (XAML), 313–314, 315
group box control, 95
grouping controls, 94, 94–95, 95

H
Hardware Sensors Monitor, 44, 44

4361Book.fm Page 334 Thursday, November 18, 2004 8:45 PM

335<head> tag (HTML)—Internet

<head> tag (HTML), 241, 242
height attribute of tag (HTML), 249
help

in Aero, 321–323, 322
context-sensitive, 35, 35
status bar, 36
ToolTips, 34, 34–36

Help button
for dialog box, 125
in wizard, 161

Help menu, 154, 173
hidden fields for stateful web applications, 225
hierarchy

for application functions, 170–172, 171, 172
in website navigation, 284, 285

<hn> tags (HTML), 244, 246
home page on website, 270–273, 271

one-click navigation to, 283
href attribute

of <a> tag (HTML), 251
of <link> tag (HTML), 262

HTML (Hypertext Markup Language), 221, 229
<html> tag (HTML), 241, 242
hybrid approach by user to interface, 168–169
hyperlinks

checking for broken, 233
between task panes, 50
tips for web design, 266–267
in web pages, 250–252

I
<i> tag (HTML), 244, 246

deprecation, 247
IBM P3P Policy Editor, 280, 281
icons

for menus, 158, 158
in message boxes, 32

ToolTips for, 10, 10
for TreeView control nodes, 104

identification text, 29–30
idioms, 8–9, 9

avoiding in user interface, 37
image tag (HTML), alt attribute of, 235–236
images

buying for toolbar buttons, 141
on command buttons, 69, 70, 71
in web pages, 249–250
vs. words on screen, 37–38

 tag (HTML), 249–250
including in <a> tag, 252

independent software vendors, purchasing
control from, 107–108

indeterminate setting for check boxes, 91, 92
“Indigo,” 309
inductive user interfaces, 326–327, 327
information message boxes, 31, 31
information/reference applications, archetype in

Longhorn, 325
infrastructure, and web applications, 232–233
input focus

button with, 63
changing, 64

<input> tag (HTML)
for buttons, 261
for check box, 259
for file upload, 260
for radio button, 259
for text box, 258

Insert Object dialog box, 122, 123
instructional text, 30–31
IntelliMenu, 158, 159
internal consistency, 20
international input to web form, 303–304
Internet. See also websites

electronic commerce, 297–299
infrastructure, 232

4361Book.fm Page 335 Thursday, November 18, 2004 8:45 PM

336 Internet Explorer—means to end

Internet Explorer, 80, 226, 231, 231
status bar, 36, 36
substituting web stylesheet in, 261

Internet Information Services Manager, 271
Internet Options dialog box, 261
Internet Services Manager, property sheets, 50,

51
interruptions, message boxes as, 32
intranet, 216
intuition, debunking myth, 10–11
irregular windows, 53, 53

J
JavaScript, 229

K
keyboard-friendly applications, 74
keystrokes. See also shortcut keys

editing keys for text box, 77
for menu, 150–151
to press command button, 65
Tab key to shift input focus, 64
for TreeView control manipulation, 104

KISS design for web applications, 233–234

L
labeling

colon at end of text, 76
command buttons, 68–70
list boxes, 99
for radio button, 89, 90, 90
tab control, 102, 102

languages, multiple, words on screen, 37

legal pages on website, 279–282, 280
 tag (HTML), 247–248
line break in HTML, 243
<link> tag (HTML), 262
links on website. See hyperlinks
list boxes, 96–98, 97

in web page form, 260
list management controls, 96–99

combo boxes, 98, 98–99
general techniques, 99
list boxes, 96–98, 97

lists in web pages, 247–248
ListView control, 103, 103–107

details view, 106
large icon view, 104
list view, 105
thumbnail view, 106

local web, 57, 58
localization, 37
“Longhorn,” 216, 308–309

application archetypes, 323–326
inductive user interfaces, 326–327
server version, 309

Lynx browser, 227, 227, 235

M
Macromedia Dreamweaver, 237
MAML (Microsoft Assistance Markup

Language), 321
margin property (CSS), 264
masked edit control, 83, 83, 86
maximize button, 44
maxlength attribute, of <input> tag, for text box,

258, 303
MDI (multiple-document interface) windows,

27, 27–28, 28, 55, 55
means to end, software as, 5–6

4361Book.fm Page 336 Thursday, November 18, 2004 8:45 PM

337menu shortcuts—Microsoft Word 2003

menu shortcuts, 168. See also shortcut keys
key assignment, 174, 176, 177

menus, 147–159
adaptive, 158–159, 159, 202–203, 203
application hierarchy in planning, 170–172

refining, 173–174
keyboard use, 150–151
menu bar, 148
menu items, 148

customization, 201–202, 202
types, 151–152

mouse use, 148–150
organizing and naming commands, 153–156

cascading menus, 155, 155
common menus, 153–154
dividers, 155–156, 156
naming menu items, 154

shortcut menus, 156–157
styles, 157–159, 159

icons, 158, 158
user customization, 198–203
user interaction with, 167

message boxes, option for suppressing, 32, 33
messages, 31, 31–33, 33
metaphor for software, 4
metatags (HTML), refresh, 272
method attribute, of <form> tag (HTML), 257
Microsoft Access 2002, Sorting and Grouping

dialog box, 117, 117
Microsoft Assistance Markup Language

(MAML), 321
Microsoft Bob, 5
Microsoft Commerce Server, 299
Microsoft Developer Network, 309
Microsoft Excel 2003

Edit menu, 158, 158
formula bar, 116, 116
Insert Function dialog box, 116

Options dialog box, 121, 122
Edit tab, 90, 91

for planning application hierarchy, 170–171,
172

property inspectors, 52
splitters, 146, 147
task pane, 7, 7
workbook tabs, 56, 56

Microsoft FrontPage, 237
Microsoft Hotmail, 221, 222
Microsoft InfoPath 2003, ToolTips, 34, 34
Microsoft, innovations, 157–158
Microsoft Office

customization, 199–202
InfoPath 2003, Data Validation dialog box,

115, 115
suite consistency, 20

Microsoft Outlook 2003
Options dialog box, 68
options settings dialog boxes, 13, 14, 15

Microsoft PowerPoint 2003, task pane, 49
Microsoft Professional Developers Conference

(2003), 308
Microsoft Project 2003

Resource Leveling dialog box, 114, 115
Task Information dialog box, 98, 98

Microsoft Publisher 2003, Paragraph dialog box,
120, 121

Microsoft SQL Server Best Practices Analyzer,
57, 58

Microsoft Utility Manager, 70–71, 71
Microsoft Visio, 27, 27
Microsoft Windows XP, button appearance, 63
Microsoft Word 2003

customization, 8, 9
for planning application hierarchy, 170, 171
text formatting, 17, 18

4361Book.fm Page 337 Thursday, November 18, 2004 8:45 PM

338 MindManager— tag (HTML)

MindManager, for planning application
hierarchy, 172, 173

minimize button, 44
mistakes, application forgiveness for, 19–20
modal application, 12

design strategy, 59
modal dialog boxes, 49, 116–117

avoiding, 191–192
modeless application, 12
modeless dialog boxes, 116–117
modes for application, menu items to set, 152,

152
“Monad,” 309
monospace font, HTML tag for, 246
mouse

for clicking command button, 62
drag and drop, 195–196
as intuitive device, 10
keyboard alternatives, 64
for menu use, 148–150
primary and secondary buttons, 64

Mouse Properties dialog box, 64
MouseDown event, 72
MouseUp event, 72
moving ListView control column, 106
Mozilla Firefox, 225, 226, 230, 231
multiline text box, 81, 81–82, 85
multiple attribute for <select> tag (HTML), 260
multiple-browser design for web applications,

237
multiple-document interface windows, 27,

27–28, 28, 55, 55
multiple main windows, 58, 59
multiselection list box, 97
mutually exclusive choices

radio buttons for, 88
toggle buttons for, 92–93

myth of intuition, debunking, 10–11
MyXaml, 310

N
name attribute of <input> tag, for radio button,

259
name-value pairs for web form data, 257
names for menu items, 154
NAT (Network Address Translation), 224
navigating

ListView and TreeView controls, 104, 105
between tabs, 100
between text controls, 74–76
websites, 282–290

breadcrumb aid, 288, 288
design issues, 305–306
hierarchy, 286, 286, 287, 288
one-click navigation to home page, 283
persistence, 284, 285
with site map, 273, 274
What’s New pages, 288–289, 289

nesting in HTML
lists, 248, 249
tags, 241

Network Address Translation (NAT), 224
no-document interface, 54, 54
node in TreeView control, 104
non-breaking space character (), 243
Notepad, 26, 42, 42
notification area of Taskbar, 41

minimized application as icon, 44

O
object, 17
OK button

as default, 72
for dialog box, 124
of property sheet, 51

 tag (HTML), 247–248

4361Book.fm Page 338 Thursday, November 18, 2004 8:45 PM

339Open dialog box—rowspan attribute of <td> tag (HTML)

Open dialog box, 130, 130–131
opening tags in HTML, 241
operating system, window formatting by, 42
<option> tag (HTML), for drop-down list,

259–260
Options dialog box (PowerPoint), 211
order for list box entries, 97
ordered lists in HTML, 247, 248
outlining software, for planning application

hierarchy, 172, 173
Outlook Bar, 110, 110
Outlook Web Access, 219, 219, 291
outsourced searches on website, 296–297, 297

P
<p> (paragraph) tag (HTML), 243
P3P (Platform for Privacy Preferences), 280
Page Setup dialog box, 134, 134
Paint Shop Pro, 46, 47
palettes, 52, 52, 141, 142
panes for windows, splitters to create, 144–146
parent window in MDI applications, 27
passwords in text box, 79, 79–80
Paste command, 193
Paste Special dialog box, 194, 194
PDAs, website appearance on, 227
Permission dialog box, 10
personalization in e-commerce, 298–299
physical style tags (HTML), 244
platform consistency, 21
Platform for Privacy Preferences (P3P), 280
pop-up menu, 156
Power Options dialog box, buttons, 18, 18
<pre> tag (HTML), 244
pressed button, 62–63, 63
primary mouse button, 64

primary windows, 40, 41–46
Principle of Least Surprise, 70–71, 128
Print dialog box, 119, 119, 133, 133–134
privacy

in Longhorn, 323
policy on website, 279–281, 280

process dialog box, 120
production/development environment

applications, archetype in Longhorn,
324–325

ProgressBar, 109, 109–110
prompts, before destructive actions, 19
property dialog box, 118, 118–119
property inspectors, 51–52, 52
property sheets, 50–52, 51

Q
question message boxes, 31, 31

R
radio buttons, 88–90, 89

in web page form, 259
Recycle Bin, 19
Registry, 211
Replace dialog box, 132–133, 133
required fields on web forms, 299, 300
Reset button on web forms, 306
resizable dialog boxes, 126–127
respect for user, in good interface design, 11–13
restore button, 44
rich-text box, 82, 82, 85
Rich Text Format (RTF), 82
right-click menu, 156
rows attribute of <textarea> tag (HTML), 259
rowspan attribute of <td> tag (HTML), 255, 256

4361Book.fm Page 339 Thursday, November 18, 2004 8:45 PM

340 Save As dialog box— tag (HTML)

S
Save As dialog box, 131, 131
scenarios, 7–8

to test simplicity, 16
screen readers, ToolTips for, 35
scroll bar, 45, 45–46
scrolling row of tabs, 100, 102
SDI (single-document interface) windows, 26,

26, 54, 54–55
searches on website, 294–297

advanced search, 295–296
outsourced, 296–297, 297
search page, 275, 275
simple interface, 294–295, 295

secondary mouse button, 64
for shortcut menu, 157

secondary windows, 40, 46–52
dialog boxes, 47, 47–49
document windows, 46–47, 47
floating auxiliary windows, 52, 52, 141–142,

142
irregular windows, 53
property sheets and property inspectors,

50–52, 51
task panes, 49, 49–50

security
in Longhorn, 323
for websites, 232

<select> tag (HTML)
for drop-down list, 259–260
for list box, 260

selecting in ListView, 105
sentence case, 29–30
shortcut keys, 69, 75, 150–151

Alt+Space for application system menu, 43
Ctrl+F1 to open task pane, 50
displaying underlined letter, 75, 76

for menu items, 154
assigning, 174, 176, 177

for radio button, 89
Shift+Tab key to shift input focus, 64
user interaction with, 166–167

shortcut menus, 156–157
Sidebar (Longhorn), 320, 321
simile for software, 4
simple list boxes, 97
simplicity

in good interface design, 13–16, 14
vs. user control, 15

single-browser design for web applications, 236
single-document interface windows, 26, 26, 54,

54–55
single-line text box, 81, 81, 85
single-task operating system, 40
site map on website, 273, 274
size attribute of <input> tag, for text box, 258
sizing

browser window, 228, 228
buttons, 68
ListView control column, 106

skinning, 209–210, 210
Slashdot, persistent navigation in, 285
smart client technologies, 216
software

considerations, 3–6
similarities with real world, 4, 5

software vendors, independent, purchasing
controls from, 107–108

sorting ListView control column, 106
source code, 180–182

to handle undo, 182
shared code, 181–182

space character (), non-breaking, 243
space management with Tabs, 99–103, 100, 101
 tag (HTML), 263

4361Book.fm Page 340 Thursday, November 18, 2004 8:45 PM

341spin box—<th> tag (HTML)

spin box, 83–84, 84, 86
splitters, 144–146
src attribute of tag (HTML), 249
standards, varied, and web applications, 228–232
state machine, 160, 160
stateful web applications, 224–225
statelessness of web applications, 222–225
static web page, 217
status bar, 143, 143–144

information on, 36
status message, 12–13, 13
 tag (HTML), 244, 246
style sheets, 262
styles for menus, 157–159, 159

icons, 158, 158
suite consistency, 20
support costs, customization and, 198
suppressing message boxes, option for, 32, 33
system menu for application, 43
system tray, 41
System.Windows.Forms.MessageBox class,

Show method, 32

T
tab control, 121

space management with, 99–103, 100, 101
multiple rows, 100, 101

Tab key
to navigate text entry controls, 75
to shift input focus, 64

tabbed documents, 56–57, 57
property sheets as, 50

tabbed web page interface, 265, 265
TabIndex property of web form controls, 305
<table> tag (HTML), 253, 254
tables in web pages, 252–255, 253, 254

to arrange form controls, 265

tags in HTML, 241
target attribute of <a> tag (HTML), 251
task-based help, 322
task, concentration on, 6–8
Task Manager, always-on-top, 189, 190
task panes, 7, 7, 49, 49–50
Taskbar

autohide, 190, 191
notification area, 41

minimized application as icon, 44
<td> tag (HTML), 253
telephone numbers, data entry in web forms, 304
terminate-and-stay-resident (TSR) programs, 40
terms and conditions on website, 281–282, 283
text. See also words on screen

in web pages, 242–247
text-align property (CSS), 264
text area in web page form, 259
text box in web page form, 258
text entry

basics, 74–80
default values, 78
navigating text controls, 74–76
passwords, 79, 79–80
text box annoyances, 80

control selection, 85–86
control types, 80–84

masked edit control, 83, 83
multiline text box, 81, 81–82
rich-text box, 82, 82
single-line text box, 81, 81
spin box, 83–84, 84
text boxes, 76–77

helping users with data entry, 85
in web forms, limiting, 302, 302–303

<textarea> tag (HTML), 259
TextPanel class (XAML), 314, 315
<th> tag (HTML), 253

4361Book.fm Page 341 Thursday, November 18, 2004 8:45 PM

342 tiles in Sidebar—users

tiles in Sidebar, 320, 321
title. See also window title guidelines

of menu, 148
of property sheet, 51

title attribute of <a> tag (HTML), 251
title bar

of accessory window, 52
of dialog box, 48, 129
of window, 43, 43

buttons, 43–44
title case, 29–30
<title> tag (HTML), 241
toggle buttons, 92–94, 93, 94
tool-driven design for web applications, 237–238
toolbars, 138, 138–141

buttons, 139–140
customization, 201–202, 202
images on, 141, 141

drop-down button, 140, 140
floating, 139, 139, 204
planning, 178–179, 180
user customization, 198–203
user interaction with, 167

toolboxes, 52, 52
Tools menu, 153
ToolTips, 10, 12, 34, 34–36

for list boxes, 99
<tr> tag (HTML), 253
trademark pages on website, 281, 282
translated text, 37
tray, 41
TreeView control, 103, 103–107

details view, 106
Trojan horse applications, and password

collection, 80
TRUSTe, 279, 280
TSR (terminate-and-stay-resident) programs, 40

U
<u> tag (HTML), 244
 tag (HTML), 247–248
“under construction” web icon, 273
undo facility, 20

code to handle, 182
unfolding dialog boxes, 48, 126
unordered lists in HTML, 247, 248
URL (Uniform Resource Locator)

adding information for user choices, 225
for web page hyperlinks, 251

user interface
inductive, 326–327, 327
linking XAML to code, 316–318

user interface design
basics of good, 11–21

consistency, 20–21
direct approach, 16–19
forgiving, 19–20
respect for user, 11–13
simplicity, 13–16

documentation of process, 179
responsibility for, 2

user-selected strategy for default value, 78
users

and application organization, 169–179
functionality, 169–170
hierarchy development, 170–172, 171, 172

browser customization, 227
control by, 11–12
customization options

application-specific, 210–211
color and skinning, 208–210
docking and anchoring windows, 203–207
menus and toolbars, 198–203

goals, 6

4361Book.fm Page 342 Thursday, November 18, 2004 8:45 PM

343utility applications—web page design

help with data entry, 85
reaction to animated characters, 212,

212–213
reading pattern for window, 66, 66
software as conversation with developer, 3
substitution of web stylesheet, 261
ways of working, 166–169

direct action, 168
hybrid approach, 168–169
keyboard shortcuts, 166–167
menu shortcuts, 168
menus, 167
toolbars, 167

utility applications, archetype in
Longhorn, 326

V
validation

of HTML, 247
of user data entry to web form, 303

vertical-align property (CSS), 264
View menu, 153
Virtual Machine Control Panel, 118, 119
Vischeck, 247
Visual Studio .NET, 237

Configuration Manager, 192, 193
DataGrid control, 106, 107
docking and anchoring windows, 203–207,

204, 205, 206
editing window with splitter, 145
status bar, 143
tab order definition, 75, 75
tool windows, always-on-top, 188, 189

W
W3C validator, 247
warning message boxes, 31, 31
web applications, 216

creating, 290–292
design, 218–219, 264–266
design strategy, 233–238

bleeding edge, 234
extra frosting, 234–236
KISS design, 233–234
multiple-browser, 237
single-browser, 236
tool-driven, 237–238

new rules and challenges, 220–233
limited control selection, 221, 221–222
statelessness, 222–225
unpredictable infrastructure, 232–233
varying browsers, 225–228
varying standards, 228–232

web page design, 240–261
Cascading Style Sheets (CSS), 261–264
forms, 256–261, 257

buttons, 261
check boxes, 259
drop-down list, 259–260
file uploads, 260
list boxes, 260
radio buttons, 259
text area, 259
text box, 258

general principles, 264–267
tips for forms, 267
tips for hyperlinks, 266–267

hyperlinks, 250–252
images, 249–250

4361Book.fm Page 343 Thursday, November 18, 2004 8:45 PM

344 web pages—windows

levels, 217–219
lists, 247–248
structure, 240–242
tabbed interface, 265, 265
tables, 252–255, 253, 254
tags, 241
text, 242–247

web pages, 217–218
common types, 270–282

about page, 276, 276–277
contact page, 276–277, 277
frequently asked questions, 277–278, 278
home page, 270–273, 271
legal pages, 279–282, 280
search page, 275, 275
site map, 273, 274

web resources
on browser features, 225
on CSS design, 264
HTML validators, 247
Microsoft Developer Network, 309
on privacy issues, 280
RTF standard, 82
terminology, 41
XAML (extensible application markup lan-

guage), 310
weblogs, 289
Webmonkey browser chart, 225
websites

adaptive, 290
design, 218
navigating, 282–290

breadcrumb aid, 288, 288
hierarchy, 286, 286, 287, 288
one-click navigation to home page, 283
persistence, 284, 285
with site map, 273, 274

What’s New pages, 288–289, 289
searches, 294–297

advanced search, 295–296
simple interface, 294–295, 295

security for, 232
setting default home page, 271

What’s New pages on websites, 288–289, 289
“What’s This?” help, 35
white space in HTML code, 242, 243
width attribute of tag (HTML), 249
Win32, WinFX as replacement, 308
Winamp music player, 209, 210
Window menu, 153, 173
window title guidelines, 24–28

multiple-document interface windows, 27,
27–28, 28

single-document interface windows, 26, 26
windows without documents, 24–26, 25

windows
always-on-top, 186–190
arranging, 53–58

local web, 57, 58
multiple-document interface windows, 27,

27–28, 28, 55, 55
multiple main windows, 58, 59
no-document interface, 54, 54
single-document interface windows, 26,

26, 54, 54–55
tabbed documents, 56–57, 57
workbook, 56, 56

autohide, 190–191, 191
basics, 40–41
docking and anchoring, 203–207
opening hyperlink in new, 251
reading pattern, 66, 66
splitters, 144–146
strategy, 58–59

4361Book.fm Page 344 Thursday, November 18, 2004 8:45 PM

345Windows applications—XForms

types, 41–53
dialog boxes, 47, 47–49
document windows, 46–47, 47
floating auxiliary windows, 52, 52,

141–142, 142
irregular windows, 53, 53
primary windows, 41–46
property sheets and property inspectors,

50–52, 51
task panes, 49, 49–50

Windows applications, standards, 21
Windows Control Panel, 18
Windows Explorer

Aero enhancements, 319–320, 320
ListView and TreeView controls, 103, 103
title bar, 24–26, 25

Windows Media Player, irregular window for,
53, 53

Windows XP
Display Properties dialog box, color

customization, 208–209, 209
replacement. See “Longhorn”

WinFS, 309
WinFX, 308
wizards, 160–162

confirmation page, 162, 162
interior page, 162, 162
as modal application, 12
state machine diagram, 160
welcome page, 161, 161

Wordpad, 54, 54
words on screen

vs. images, 37–38
instant help

context-sensitive, 35, 35
status bar, 36
ToolTips, 34, 34–36

labeling
colon at end of text, 76
command buttons, 68–70
list boxes, 99
for radio button, 89, 90, 90
tab control, 102, 102

messages, 31, 31–33, 33
multiple languages, 37
user interface text, 28–31

identification text, 29–30
instructional text, 30–31

window title guidelines, 24–28
multiple-document interface windows, 27,

27–28, 28
single-document interface windows, 26, 26
windows without documents, 24–26, 25

workbook, 56, 56
World Wide Web Consortium, 221, 229

Cascading Style Sheets (CSS) information,
263

validator, 247
wrap attribute of <textarea> tag (HTML), 259

X
XAML (extensible application markup

language), 309, 310
complex layout in, 315–316, 317
linking user interface to code, 316–318
panel classes, 311–314

.XAML file extension, 311
Xamlon, 310
Xenu’s Link Sleuth, 233
Xerox, Palo Alto Research Center, 40
XForms, 229

4361Book.fm Page 345 Thursday, November 18, 2004 8:45 PM

346 XHTML (Extensible Hypertext Markup Language)—z-order of windows

XHTML (Extensible Hypertext Markup
Language), 229

XML (Extensible Markup Language), 229
for user interface creation, 309

XtraGrid control (Developer Express), 107
Xtras.NET, 159

Y
Yankee Clipper, 195

Z
z-order of windows, 186, 187

4361Book.fm Page 346 Thursday, November 18, 2004 8:45 PM

	Developer to Designer: GUI Design for the Busy Developer
	Cover

	Contents
	Introduction
	Chapter 1: The Big Picture
	Chapter 2: Putting Words on the Screen
	Chapter 3: Managing Windows
	Chapter 4: Command Buttons
	Chapter 5: Using Text Input Controls
	Chapter 6: The Other Controls
	Chapter 7: Dialog Boxes
	Chapter 8: Common Windows User Interface Elements
	Chapter 9: User Input and Navigation
	Chapter 10: Common Interaction Patterns
	Chapter 11: User Choice, Customization, and Confusion
	Chapter 12: The Web Is Not Windows
	Chapter 13: Building a Web Page
	Chapter 14: Common Web Design Patterns
	Chapter 15: Common Web Interaction Patterns
	Appendix: Looking Forward to the Next Generation: Designing User Interfaces for Avalon
	Index

