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FOREWORD

I see what you mean. This common expression illustrates the deeply-held intuition that vision
and artful images are an alternate and seemingly direct route to insight, which is itself another
of the many words or phrases relating to vision and understanding. A picture is worth 10,000
words, to quote another example. Over history, visual abstractions have been developed to aid
thinking: pictures from antiquity, maps from ancient Egypt, the geometry diagrams of Euclid,
and the statistical diagrams of Playfair. In fact, disciplines of practice have grown up around how
to do these: cartography; mechanical drawing; electrical schematics; information design for signs,
labeling, and books; and statistical data graphics.

Information visualization, which is the use of interactive visual representations of abstract
data to amplify cognition, is the latest of these disciplines. Because of the computer, information
diagrams or visualizations can be prepared automatically at time of use, can be made dynamic
and interactive, and can be integrated into a larger process of sensemaking and creation. The
potential for information visualization is vast. Staggering advances in interactive computer
graphics over the last two decades potentially enable building systems that give rapid insight
into information-intensive problems in medicine, finance, business, and scholarship. But the
design of information visualization systems is also very subtle, and there needs to be a support-
ing science for how to do it.

New disciplines or areas tend to go through phases. First there is the phase of exploratory
design—point designs that explore the space of what can be done with the new capabilities. This
has already been completed for information visualization. Then there is the characterization
phase, taxonomizing or otherwise organizing the methods that have been developed and devel-
oping theories of what works. This is the current frontier of information visualization and the
one most directly attacked in this book. It is necessary to progress to the future stages of vali-
dating that the theories can be used to form new designs and, finally, the codification into hand-
books of engineering principles.

What information visualization is really about is external cognition, that is, how resources
outside the mind can be used to boost the cognitive capabilities of the mind. Hence the study of
information visualization involves analysis of both the machine side and the human side. Almost
any interesting task is too difficult to be done purely mentally. Information visualization enables
mental operations with rapid access to large amounts of data outside the mind, enables substi-
tuting of perceptual relation detection for some cognitive inferencing, reduces demands on user
working memory, and enables the machine to become a co-participant in a joint task, changing
the visualizations dynamically as the work proceeds.

XVii
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Successful design of information visualization systems depends on adequately characterizing
the task, the human visual system, visual displays, and the dynamic interaction among all of
these. The apparent simplicity of seeing belies the complex mechanisms to achieve it. Colin Ware
has written a book that brings together what is know about information visualization and its
connection to vision, perception, and visual cognition. He is the perfect person to do it, with a
long history of prominent contributions to the visual interaction with machines and to informa-
tion visualization directly. This book starts with the visual system and moves out to its interac-
tion with displays, visual forms, and tasks. It fills in and makes accessible much of the supporting
science needed for the progress of this field beyond intuitions of what makes a useful picture.
tithes book goes a long way toward joining science to the practical design of information visu-
alization systems.

Stuart Card



PREFACE

The problem of visual thinking provided the motivation for another edition of this book. From
the moment 1 finished the first edition, I felt the need to explore further the broader issues of
how we use visualizations as cognitive tools in problem solving. The initial inspiration for the
account that has emerged came from an essay by Kevin O’Regan (1992), wherein he argued that
we do not have a detailed image of the world in our heads. As he put it, the world is “its own
memory.” He maintained that the reason we see a coherent world is that we can sample it any
time we need to with a rapid eye movement or a redirection of attention within a single fixation.
O’Regan was not the first to make this point, and I had already argued something similar with
respect to space perception in the first edition. However, after reading O’Regan’s eloquent essay
I started to think more seriously about the implications of the detailed representations of the
visual world.

This fact—that most of what we see is actually “out there,” not in our heads—has profound
implications. It explains why one’s ability to think is extremely limited without external
props and tools. Most cognition can be regarded as a distributed process that includes cognitive
components, such as the visual system, verbal processing systems, and memory structures
traditionally studied by psychologists, plus cognitive tools such as paper and pencil, diagrams,
books, and the manipulation of external symbols on paper. Very rapid problem solving can be
done with the right interactive display, as we pull out patterns through rapid visual searches.
Increasingly, cognitive tools are computer-based, and an interactive visualization is a critical inter-
face between the human and machine. The much-debated issue of whether or not computers can
be intelligent is beside the point—people are not very intelligent without external cognitive tools.
Intellectual products, such as books, pictures, theories, designs, and plans are, with few excep-
tions, the products of cognitive systems made up of human brains acting in concert with cogni-
tive tools. Thus, productive intelligence can be said to reside in the system as a whole.

The process of visual thinking is the subject of an entirely new final chapter. This provides
an account of visual thinking that has visual queries as a central component. Visual queries are
acts of attention, pulling out patterns from the display, to meet the requirements of the task at
hand. The other key components of this account of visual thinking are the data representation
and the cost of acquiring knowledge—a function of both the cognitive overhead of using the
computer interface and various navigation costs. Eye movements, zooming, and hyperlinks can
all be treated as navigation devices whose various tradeoffs must be considered carefully in
cognitive systems design.

In addition to the new chapter on visual thinking, this edition is expanded and updated
throughout. It contains new sections on topics including color sequences, flow visualization, and

Xix
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face perception. It has many new references and figures. A new appendix deals with how to eval-
uate visualization techniques.

I wish to acknowledge two individuals for their contributions to the visual thinking chapter.
The work of my graduate student, Matt Plumlee, has been especially helpful in showing how
useful, practical guidelines for interface design can come from a relatively simple cognitive
systems model. Conversations with Ron Rensink, of the University of British Columbia, also sub-
stantially influenced my thinking.

I very much appreciate the continuing support of Diane Cerra and Mona Buehler at Morgan
Kaufmann. Credit for improved grammar and many corrections in references is due to the patient
and polite assistance of production editor Denise Delancey and her team. Also, my wife Dianne
Ramey read the whole manuscript once again and made countless suggestions for improvement,
most of which I adopted. The remaining errors, both grammatical and factual, are all mine.



PREFACE TO THE FIRST EDITION

In 1973, after I had completed my master’s degree in the psychology of vision, I was frustrated
with the overly focused academic way of studying perception. Inspired by the legacy of freedom
that seemed to be in the air in the late sixties and early seventies, I decided to become an artist
and explore perception in a different way. But after three years with only small success, I returned,
chastened, to the academic fold, though with a broader outlook, a great respect for artists, and
a growing interest in the relationship between the way we present information and the way we
see. After obtaining a Ph.D. in the psychology of perception at the University of Toronto, I took
a position at the National Research Council of Canada to work on color perception. Three years
later I moved on to computer science, via the University of Waterloo and another degree, and
have been working on data visualization, in one way or another, ever since. In a way, this book
is a direct result of my ongoing attempt to reconcile the scientific study of perception with the
need to convey meaningful information. It is about art in the sense that “form should follow
function,” and it is about science because the science of perception can tell us what kinds of
patterns are most readily perceived.

Why should we be interested in visualization? Because the human visual system is a pattern
seeker of enormous power and subtlety. The eye and the visual cortex of the brain form a
massively parallel processor that provides the highest-bandwidth channel into human cognitive
centers. At higher levels of processing, perception and cognition are closely interrelated, which
is why the words understanding and seeing are synonymous. We know that the visual system has
its own rules. We can easily see patterns presented in certain ways, but if they are presented in
other ways, they become invisible. Thus, for example, the word DATA, shown in Figure 1, is
much more visible in the bottom version than in the one at the top. This is despite the fact that
identical parts of the letters are visible in each case and in the lower figure there is more irrele-
vant “noise” than in the upper figure. The rule that applies here, apparently, is that when the
missing pieces are interpreted as foreground objects, continuity between the background letter
fragments is easier to infer. The more general point is that when data is presented in certain ways,
the patterns can be readily perceived. If we can understand how perception works, our knowl-
edge can be translated into rules for displaying information. Following perception-based rules,
we can present data in such a way that the important and informative patterns stand out. If we
disobey these rules, our data will be incomprehensible or misleading.

This is a book about what the science of perception can tell us about visualization. There is
a gold mine of information about how we see, to be found in more than a century of work by
vision researchers. The purpose of this book is to extract from that large body of research liter-
ature those design principles that apply to displaying information effectively.

XXi
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Figure 1 The word DATA is easier to read when the overlapping bars are visible. Adapted from Nakayama et al.
(1989).

Visualization can be approached in many ways. It can be studied in the art-school tradition
of graphic design. It can be studied within computer graphics as an area concerned with the algo-
rithms needed to display data. It can be studied as part of semiotics, the constructivist approach
to symbol systems. These are valid approaches, but a scientific approach based on perception
uniquely promises design rules that transcend the vagaries of design fashion, being based on the
relatively stable structure of the human visual system.

The study of perception by psychologists and neuroscientists has advanced enormously over
the past three decades, and it is possible to say a great deal about how we see that is relevant to
data visualization. Unfortunately, much of this information is stored in highly specialized jour-
nals and couched in language that is accessible only to the specialist. The research literature con-
cerning human perception is voluminous. Several hundred new papers are published every month,
and a surprising number of them have some application in information display. This informa-
tion can be extremely useful in helping us design better displays, both by avoiding mistakes and
by coming up with original solutions. Information Visualization: Perception for Design is
intended to make this science and its applications available to the nonspecialist. It should be of
interest to anyone concerned with displaying data effectively. It is designed with a number of
audiences in mind: multimedia designers specializing in visualization, researchers in both indus-
try and academia, and anyone who has a deep interest in effective information display. The book
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presents extensive technical information about various visual acuities, thresholds, and other
basic properties of human vision. It also contains, where possible, specific guidelines and
recommendations.

The book is organized according to bottom-up perceptual principles. The first chapter
provides a general conceptual framework and discusses the theoretical context for a vision
science-based approach. The next four chapters discuss what can be considered the low-level
perceptual elements of vision, color, texture, motion, and elements of form. These primitives of
vision tell us about the design of attention-grabbing features and the best ways of coding data
so that one object will be distinct from another. The later chapters move on to discussing what
it takes to perceive patterns in data: first 2D pattern perception and later 3D space perception.
Visualization design, data space navigation, interaction techniques, and visual problem solving
are all discussed.

Here is a road map to the book: the pattern for each chapter is first to describe some aspect
of human vision and then to apply this information to some problem in visualization. The first
chapters provide a foundation of knowledge on which the later chapters are built. Nevertheless,
it is perfectly reasonable to access the book randomly to learn about specific topics. When it is
needed, missing background information can be obtained by consulting the index.

Chapter 1: Foundation for a Science of Data Visualization A conceptual framework for visu-
alization design is based on human perception. The nature of claims about sensory representa-
tions is articulated, with special attention paid to the work of perception theorist ].J. Gibson.
This analysis is used to define the differences between a design-based approach and a science of
perception—based approach. A classification of abstract data classes is provided as the basis for
mapping data to visual representations.

Chapter 2: The Environment, Optics, Resolution, and the Display This chapter deals with the
basic inputs to perception. It begins with the physics of light and the way light interacts with
objects in the environment. Central concepts include the structure of light as it arrives at a view-
point and the information carried by that light array about surfaces and objects available for
interaction. The chapter goes on to discuss the basics of visual optics and issues, such as how
much detail we can resolve. Human acuity measurements are described and applied to display
design.

The applications discussed include design of 3D environments, how many pixels are needed
for visual display systems and how fast they should be updated, requirements for virtual-reality
display systems, how much detail can be displayed using graphics and text, and detection of faint
targets.

Chapter 3: Lightness, Brightness, Contrast, and Constancy The visual system does
not measure the amount of light in the environment; instead, it measures changes in light and
color. The way the brain uses this information to discover properties of the surfaces of objects
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in the environment is presented. This is related to issues in data coding and setting up display
systems.

The applications discussed include integrating the display into a viewing environment,
minimal conditions under which targets will be detected, methods for creating gray scales to code
data, and errors that occur because of contrast effects.

Chapter 4: Color This chapter introduces the science of color vision, starting with receptors
and trichromacy theory. Color measurement systems and color standards are presented. The stan-
dard equations for the CIE standard and the CIEluv uniform color space are given. Opponent
process theory is introduced and related to the way data should be displayed using luminance
and chrominance.

The applications discussed include color measurement and specification, color selection
interfaces, color coding, pseudocolor sequences for mapping, color reproduction, and color for
multidimensional discrete data.

Chapter 5: Visual Attention and Information That Pops Out A “searchlight” model of visual
attention is introduced to describe the way eye movements are used to sweep for information.
The bulk of the chapter is taken up with a description of the massively parallel processes whereby
the visual image is broken into elements of color, form, and motion. Preattentive processing
theory is applied to critical issues of making one data object distinct from another. Methods for
coding data so that it can be perceptually integrated or separated are discussed.

The applications discussed include display for rapid comprehension, information coding, the
use of texture for data coding, the design of symbology, and multidimensional discrete data
display.

Chapter 6: Static and Moving Patterns This chapter looks at the process whereby the brain seg-
ments the world into regions and finds links, structure, and prototypical objects. These are con-
verted into a set of design guidelines for information display.

The applications discussed include display of data so that patterns can be perceived, infor-
mation layout, node-link diagrams, and layered displays.

Chapter 7: Visual Objects and Data Objects Both image-based and 3D structure-based
theories of object perception are reviewed. The concept of the object display is introduced as a
method for using visual objects to organize information.

The applications discussed include presenting image data, using 3D structures to organize
information, and the object display.

Chapter 8: Space Perception and the Display of Data in Space Increasingly, information display
is being done in 3D virtual spaces as opposed to 2D, screen-based layouts. The different kinds
of spatial cues and the ways we perceive them are introduced. The latter half of the chapter is
taken up with a set of seven spatial tasks and the perceptual issues associated with each.
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The applications discussed include 3D information displays, stereo displays, the choice of
2D vs. 3D visualization, 3D graph viewing, and virtual environments.

Chapter 9: Images, Words, and Gestures Visual information and verbal information are
processed in different ways and by different parts of the brain. Each has its own strengths, and
often both should be combined in a presentation. This chapter addresses when visual and verbal
presentation should be used and how the two kinds of information should be linked.

The applications discussed include integrating images and words, visual programming
languages, and effective diagrams.

Chapter 10: Interacting with Visualizations Major interaction cycles are defined. Within this
framework, low-level data manipulation, dynamic control over data views, and navigation
through data spaces are discussed.

The applications discussed include interacting with data, selection, scrolling, zooming inter-
faces, and navigation.

Chapter 11: Thinking with Visualization The process whereby a visualization is used as part
of a decision-making process is outlined. Central to this is a description of how visual queries
are formed to guide attention and determine what is loaded into visual working memory. This
model provides insights into how to balance the tradeoffs between navigation costs and screen
layout in the design of visual information systems.

The applications discussed include problem solving with visualization, design of interactive
systems, and creativity.

These are exciting times for visualization design. The computer technology used to produce
visualizations has reached a stage at which sophisticated, interactive 3D views of data can be
produced on ordinary desktop computers. The trend toward more and more visual information
is accelerating, and there is an explosion of new visualization techniques being invented to help
us cope with our need to analyze huge and complex bodies of information. This creative phase
will not last long. With the dawn of a new technology, there is often only a short burst of cre-
ative design before the forces of standardization make what is new into what is conventional.
Undoubtedly, many of the visualization techniques that are now emerging will become routine
tools in the near future. Even badly designed things can become industry standards. Designing
for perception can help us to avoid such mistakes. If we can harness the knowledge that has been
accumulated about how perception works, we can make visualizations into more transparent
windows into the world of information.

I wish to thank the many people who have helped me with this book. The people who most
influenced the way I think about perception and visualization are Donald Mitchell, John Kennedy,
and William Cowan. I have gained enormously by working with Larry Mayer in developing new
tools to map the oceans, as well as with colleagues Kelly Booth, Dave Wells, Tim Dudely, Scott
Mackenzie, and Eric Neufeld. It has been my good fortune to work with many talented gradu-
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ate students and research assistants on visualization-related projects: Daniel Jessome, Richard
Guitard, Timothy Lethbridge, Siew Hong Yang, Sean Riley, Serge Limoges, David Fowler, Stephen
Osborne, K. Wing Wong, Dale Chapman, Pat Cavanaugh, Ravin Balakrishnan, Mark Paton,
Monica Sardesai, Cyril Gobrecht, Suryan Stalin, Justine Hickey, Yanchao Li, Rohan Parkhi,
Kathy Lowther, Li Wang, Greg Parker, Daniel Fleet, Jun Yang, Graham Sweet, Roland Arsenault,
Natalie Webber, Poorang Irani, Jordan Lutes, Nhu Le, Irina Padioukova, Glenn Franck, Lyn
Bartram, and Matthew Plumlee. Many of the ideas presented here have been refined through
their efforts.

Peter Pirolli, Doug Gillan, and Nahum Gershon made numerous suggestions that helped me
improve the manuscript. As a result, the last two chapters, especially, underwent radical revision.
I also wish to thank the editorial staff at Morgan Kaufmann: Diane Cerra, Belinda Breyer, and
Heather Collins. Finally, my wife, Dianne Ramey, read every word, made it readable, and kept
me going.



CHAPTER "

Foundation for a Science
of Data Visualization

In his book The End of Science, science writer John Horgan (1997) argues that science is
finished except for the mopping up of details. He makes a good case where physics is con-
cerned. In that discipline, the remaining deep problems may involve generating so much energy
as to require the harnessing of entire stars. Similarly, biology has its foundations in DNA and
genetics and is now faced with the infinite but often tedious complexity of mapping genes into
proteins through intricate pathways.

What Horgan fails to recognize is that cognitive science has fundamental problems that are
still to be solved. In particular, the mechanisms of the construction and storage of knowledge
remain open questions. He implicitly adopts the physics-centric view of science, which holds that
physics is the queen of sciences, and in descending order come chemistry, then biology, with
psychology barely acknowledged as a science at all. In this pantheon, sociology is regarded as
somewhere on a par with astrology. This attitude is short-sighted. Chemistry builds on physics,
enabling our understanding of materials; biology builds on chemistry, enabling us to understand
the much greater complexity of living organisms; and psychology builds on neurophysiology,
enabling us to understand the processes of cognition. At each level is a separate discipline greater
in complexity and level of difficulty than those beneath. It is difficult to conceive of a value scale
for which the mechanisms of thought are not of fundamentally greater interest and importance
than the interaction of subatomic particles.

Those who dismiss psychology as a pseudo-science have not being paying attention. Over
the past few decades, enormous strides have been made in identifying the brain structures and
cognitive mechanisms that have enabled humans to create the huge body of knowledge that now
exists. But we need to go one step further and recognize that people with machines, and in groups,
are much more cognitively powerful than a single person alone with his or her thoughts. This
has been true for a long time. Artifacts such as paper, writing, and geometry instruments have
been cognitive tools for centuries. It is not necessary to take the cultural relativists’ view to see
that sciences are built using socially constructed symbol systems. The review process employed
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by scientific journals is an obvious example of a social process critical to the construction of
knowledge.

As Hutchins (1995) so effectively pointed out, thinking is not something that goes on entirely,
or even mostly, inside people’s heads. Little intellectual work is accomplished with our eyes
and ears closed. Most cognition is done as a kind of interaction with cognitive tools, pencils
and paper, calculators, and increasingly, computer-based intellectual supports and information
systems. Neither is cognition mostly accomplished alone with a computer. It occurs as a process
in systems containing many people and many cognitive tools. Since the beginning of science, dia-
grams, mathematical notations, and writing have been essential tools of the scientist. Now we
have powerful interactive analytic tools, such as MATLAB, Maple, Mathematica, and S-PLUS,
together with databases. The entire fields of genomics and proteomics are built on computer
storage and analytic tools. The social apparatus of the school system, the university, the acade-
mic journal, and the conference are obviously designed to support cognitive activity.

But we should not consider classical science only. Cognition in engineering, banking, busi-
ness, and the arts is similarly carried out through distributed cognitive systems. In each case,
“thinking” occurs through interaction between individuals, using cognitive tools, and operating
within social networks. Hence, cognitive systems theory is a much broader discipline than psy-
chology. This is emerging as the most interesting, difficult, complex, yet fundamentally the most
important, of sciences.

Visualizations have a small but crucial and expanding role in cognitive systems. Visual dis-
plays provide the highest bandwidth channel from the computer to the human. We acquire more
information through vision than through all of the other senses combined. The 20 billion or so
neurons of the brain devoted to analyzing visual information provide a pattern-finding mecha-
nism that is a fundamental component in much of our cognitive activity. Improving cognitive
systems often means tightening the loop between a person, computer-based tools, and other indi-
viduals. On the one hand, we have the human visual system, a flexible pattern finder, coupled
with an adaptive decision-making mechanism. On the other hand are the computational power
and vast information resources of the computer and the World Wide Web. Interactive visualiza-
tions are increasingly the interface between the two. Improving these interfaces can substantially
improve the performance of the entire system.

Until recently, the term visualization meant constructing a visual image in the mind (Shorter
Oxford English Dictionary, 1972) It has now come to mean something more like a graphical
representation of data or concepts. Thus, from being an internal construct of the mind, a visu-
alization has become an external artifact supporting decision making. The way visualization func-
tions as cognitive tools is the subject of this book.

One of the greatest benefits of data visualization is the sheer quantity of information that
can be rapidly interpreted if it is presented well. Figure 1.1 shows a visualization derived from
a multibeam echo sounder scanning part of Passamoquoddy Bay, between Maine, in the United
States, and New Brunswick, Canada, where the tides are the highest in the world. Approximately
one million measurements were made. Traditionally, this kind of data is presented in the form
of a nautical chart with contours and spot soundings. However, when the data is converted to a
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Figure 1.1 Passamoquoddy Bay visualization. Data courtesy of the Canadian Hydrographic Service.

height field and displayed using standard computer graphics techniques, many things become
visible that were previously invisible on the chart. A pattern of features called pockmarks can
immediately be seen, and it is easy to see how they form lines. Also visible are various problems
with the data. The linear ripples (not aligned with the pockmarks) are errors in the data because
the roll of the ship that took the measurements was not properly taken into account.

The Passamoquoddy Bay image highlights a number of the advantages of visualization:

®  Visualization provides an ability to comprehend huge amounts of data. The important
information from more than a million measurements is immediately available.

®  Visualization allows the perception of emergent properties that were not anticipated. In
this visualization, the fact that the pockmarks appear in lines is immediately evident. The
perception of a pattern can often be the basis of a new insight. In this case, the
pockmarks align with the direction of geological faults, suggesting a cause. They may be
due to the release of gas.

®  Visualization often enables problems with the data itself to become immediately apparent.
A visualization commonly reveals things not only about the data itself, but about the way
it is collected. With an appropriate visualization, errors and artifacts in the data often
jump out at you. For this reason, visualizations can be invaluable in quality control.

®  Visualization facilitates understanding of both large-scale and small-scale features of the
data. It can be especially valuable in allowing the perception of patterns linking local
features.
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®  Visualization facilitates hypothesis formation. For example, the visualization in Figure 1.1
was directly responsible for a research paper concerning the geological significance of the
pockmark features (Gray et al., 1997).

This first chapter has the general goal of defining the scope of a science of visualization based
on perceptual principles. Much of it is devoted to outlining the intellectual basis of the endeavor
and providing an overview of the kinds of experimental techniques appropriate to visualization
research. In the latter half of the chapter, a brief overview of human visual processing is intro-
duced to provide a kind of road map to the more detailed analysis of later chapters. The chapter
concludes with a categorization of data. It is important to have a conception of the kinds of data
we may wish to visualize so that we can talk in general terms about the ways in which whole
classes of data should be represented.

Visualization Stages

The process of data visualization includes four basic stages, combined in a number of feedback
loops. These are illustrated in Figure 1.2.

/ Data exploration

Preprocessing
and transformation

Human
Information
Analyst
visual and
cognitive
processing

l”( >

Graphics engine

hysical environment

Figure 1.2 A schematic diagram of the visualization process.
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The four stages consist of:
®  The collection and storage of data itself
®  The preprocessing designed to transform the data into something we can understand
® The display hardware and the graphics algorithms that produce an image on the screen
®  The human perceptual and cognitive system (the perceiver)

The longest feedback loop involves gathering data. A data seeker, such as a scientist or a
stock-market analyst, may choose to gather more data to follow up on an interesting lead.
Another loop controls the computational preprocessing that takes place prior to visualization.
The analyst may feel that if the data is subjected to a certain transformation prior to visualiza-
tion, it can be persuaded to give up its meaning. Finally, the visualization process itself may be
highly interactive. For example, in 3D data visualization, the scientist may fly to a different
vantage point to better understand the emerging structures. Alternatively, a computer mouse may
be used interactively, to select the parameter ranges that are most interesting. Both the physical
environment and the social environment are involved in the data-gathering loop. The physical
environment is a source of data, while the social environment determines in subtle and complex
ways what is collected and how it is interpreted.

In this book, the emphasis is on data, perception, and the various tasks to which visualiza-
tion may be applied. In general, algorithms are discussed only insofar as they are related to
perception. The computer is treated, with some reservations, as a universal tool for producing
interactive graphics. This means that once we figure out the best way to visualize data for a
particular task, we assume that we can construct algorithms to create the appropriate images.
The critical question is how best to transform the data into something that people can
understand for optimal decision making. Before plunging into a detailed analysis of human per-
ception and how it applies in practice, however, we must establish the conceptual basis for the
endeavor.

The purpose of this discussion is to stake out a theoretical framework wherein claims about
visualizations being “visually efficient” or “natural” can be pinned down in the form of testable
predictions.

Experimental Semiotics Based on Perception

This book is about the science of visualization, as opposed to the craft or art of visualization.
But the claim that visualization can be treated as a science may be disputed. Let’s look at the
alternative view. Some scholars argue that visualization is best understood as a kind of learned
language and not as a science at all. In essence, their argument is that visualization is about dia-
grams and how they can convey meaning. Generally, diagrams are held to be made up of symbols,
and symbols are based on social interaction. The meaning of a symbol is normally understood
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to be created by convention, which is established in the course of person-to-person communica-
tion. Diagrams are arbitrary and are effective in much the same way as the written words on
this page are effective—we must learn the conventions of the language, and the better we learn
them, the clearer that language will be. Thus, one diagram may ultimately be as good as another;
it is just a matter of learning the code, and the laws of perception are largely irrelevant. This
view has strong philosophical proponents from the field of semiotics. Although it is not the posi-
tion adopted here, the debate can help us define where vision research can assist us in designing
better visualizations, and where we would be wise to consult a graphic designer trained in an art
college.

Semiotics of Graphics

The study of symbols and how they convey meaning is called semiotics. This discipline was orig-
inated in the United States by C.S. Peirce and later developed in Europe by the French philoso-
pher and linguist Ferdinand de Saussure (1959). Semiotics has been dominated mostly by
philosophers and by those who construct arguments based on example rather than on formal
experiment. In his great masterwork, Semiology of Graphics, Jacques Bertin (1983) attempted
to classify all graphic marks in terms of how they could express data. For the most part, this
work is based on his own judgment, although it is a highly trained and sensitive judgment. There
are few, if any, references to theories of perception or scientific studies.

It is often claimed that visual languages are easy to learn and use. But what do we mean by
the term visual language—clearly not the writing on this page. Reading and writing take years
of education to master, and it can take almost as long to master some diagrams. Figure 1.3 shows
three examples of languages that have some claim to being visual. The first example of visual
language is based on a cave painting. We can readily interpret human figures and infer that the
people are using bows and arrows to hunt deer. The second example is a schematic diagram
showing the interaction between a person and a computer in a virtual environment system; the
brain in the diagram is a simplified picture, but it is a part of the anatomy that few have directly
perceived. The arrows show data flows and are arbitrary conventions, as are the printed words.
The third example is the expression of a mathematical equation that is utterly obscure to all but
the initiated. These examples clearly show that some visual languages are easier to “read” than
others. But why? Perhaps it is simply that we have more experience with the kind of pictorial
image shown in the cave painting and less with the mathematical notation. Perhaps the concepts
expressed in the cave painting are more familiar than those in the equation.

The most profound threat to the idea that there can be a science of visualization originates
with Saussure. He defined a principle of arbitrariness as applying to the relationship between the
symbol and the thing that is signified. Saussure was also a founding member of a group of struc-
turalist philosophers and anthropologists who, although they disagreed on many fundamental
issues, were unified in their general insistence that truth is relative to its social context. Meaning
in one culture may be nonsense in another. A trash can as a visual symbol for deletion is mean-
ingful only to those who know how trash cans are used. Thinkers such as Lévi-Strauss, Barthes,
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Figure 1.3 Three graphics. Each could be said to be a visualization.



8 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

and Lacan have condemned the cultural imperialism and intellectual arrogance implicit in apply-
ing our intellects to characterizing other cultures as “primitive.” As a result, they have developed
the theory that all meaning is relative to the culture. Indeed, meaning is created by society. They
claim that we can interpret another culture only in the context of our own culture and using
the tools of our own language. Languages are conventional means of communication in which
the meanings of symbols are established through custom. Their point is that no one representa-
tion is “better” than another. All representations have value. All are meaningful to those who
understand them and agree to their meanings. Because it seems entirely reasonable to consider
visualizations as communications, their argument strikes at the root of the idea that there can
be a natural science of visualization with the goal of establishing specific guidelines for better
representations.

Pictures as Sensory Languages

The question of whether pictures and diagrams are purely conventional, or are perceptual
symbols with special properties, has been the subject of considerable scientific investigation. A
good place to begin reviewing the evidence is the perception of pictures. There has been a debate
over the last century between those who claim that pictures are every bit as arbitrary as words
and those who believe that there may be a measure of similarity between pictures and the things
that they represent. This debate is crucial to the theory presented here; if even “realistic” pic-
tures do not embody a sensory language, it will be impossible to make claims that certain dia-
grams and other visualizations are better designed perceptually.

The nominalist philosopher Nelson Goodman has delivered some of the more forceful attacks
on the notion of similarity in pictures (1968):

Realistic representation, in brief, depends not upon imitation or illusion or information
but upon inculcation. Almost any picture may represent almost anything; that is, given
picture and object there is usually a system of representation—a plan of correlation—
under which the picture represents the object.

For Goodman, realistic representation is a matter of convention; it “depends on how stereotyped
the model of representation is, how commonplace the labels and their uses have become.”
Bieusheuvel (1947) expresses the same opinion: “The picture, particularly one printed on paper,
is a highly conventional symbol, which the child reared in Western culture has learned to inter-
pret.” These statements, taken at face value, invalidate any meaningful basis for saying that a
certain visualization is fundamentally better or more natural than another. This would mean that
all languages are equally valid and that all are learned. If we accept this position, the best
approach to designing visual languages would be to establish graphical conventions early and
stick to them. It would not matter what the conventions were, only that we adhered to them in
order to reduce the labor of learning new conventions.

In support of the nominalist argument, a number of anthropologists have reported expres-
sions of puzzlement from people who encounter pictures for the first time. “A Bush Negro woman
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turned a photograph this way and that, in attempting to make sense out of the shadings of
gray on the piece of paper she held” (Herskovits, 1948). The evidence related to whether or
not we must learn to see pictures has been carefully reviewed and analyzed by Kennedy
(1974). He rejects the strong position that pictures and other visual representations are entirely
arbitrary. In the case of the reported puzzlement of people who are seeing pictures for the
first time, Kennedy argues that these people are amazed by the technology rather than unable
to interpret the picture. After all, a photograph is a remarkable artifact. What curious person
would not turn it over to see if, perhaps, the reverse side contains some additional interesting
information?

Here are two of the many studies that contradict the nominalist position and suggest that
people can interpret pictures without training. Deregowski (1968) reported studies of adults and
children, in a remote area of Zambia, who had very little graphic art. Despite this, these people
could easily match photographs of toy animals with the actual toys. In an extraordinary but very
different kind of experiment, Hochberg and Brooks (1962) raised their daughter nearly to the
age of two in a house with no pictures. She was never read to from a picture book and there
were no pictures on the walls in the house. Although her parents could not completely block the
child’s exposure to pictures on trips outside the house, they were careful never to indicate a
picture and tell the child that it was a representation of something. Thus, she had no social input
telling her that pictures had any kind of meaning. When the child was finally tested, she had a
reasonably large vocabulary, and she was asked to identify objects in line drawings and in black-
and-white photographs. Despite her lack of instruction in the interpretation of pictures, she was
almost always correct in her answers.

However, the issue of how pictures, and especially line drawings, are able to unambiguously
represent things is still not fully understood. Clearly, a portrait is a pattern of marks on a page;
in a physical sense, it is utterly unlike the flesh-and-blood person it depicts. The most probable
explanation is that at some stage in visual processing, the pictorial outline of an object and the
object itself excite similar neural processes (Pearson et al., 1990). This view is made plausible by
the ample evidence that one of the most important products of early visual processing is the
extraction of linear features in the visual array. These may be either the visual boundaries of
objects or the lines in a line drawing. The nature of these mechanisms is discussed further in
Chapter 6.

Although we may be able to understand certain pictures without learning, it would be a
mistake to underestimate the role of convention in representation. Even with the most realistic
picture or sculpture, it is very rare for the artifact to be mistaken for the thing that is represented.
Trompe 'oeil art is designed to “fool the eye” into the illusion that a painting is real. Artists are
paid to paint pictures of niches containing statues that look real, and sometimes, for an instant,
the viewer will be fooled. On a more mundane level, a plastic laminate on furniture may contain
a photograph of wood grain that is very difficult to tell from the real thing. But in general, a
picture is intended to represent an object or a scene; it is not intended to be mistaken for it. Many
pictures are highly stylized—they violate the laws of perspective and develop particular methods
of representation that no one would call realistic.
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Figure 1.4 Two different graphical methods for showing relationships between entities.

When we turn to diagrams and nonpictorial visualizations, it is clear that convention must
play a greater role. Figure 1.3(b) is not remotely “like” any scene in the real world under any
system of measurement. Nevertheless, we can argue that many elements in it are constructed in
ways that for perceptual reasons make the diagram easy to interpret. The lines that connect the
various components, for example, are a notation that is easy to read, because the visual cortex
of the brain contains mechanisms specifically designed to seek out continuous contours. Other
possible graphical notations for showing connectivity would be far less effective. Figure 1.4 shows
two different conventions for demonstrating relationships between entities. The connecting lines
on the left are much more effective than the symbols on the right.

Sensory versus Arbitrary Symbols

In this book, the word sensory is used to refer to symbols and aspects of visualizations that derive
their expressive power from their ability to use the perceptual processing power of the brain
without learning. The word arbitrary is used to define aspects of representation that must be
learned, because the representations have no perceptual basis. For example, the written word
dog bears no perceptual relationship to any actual animal. Probably very few graphical languages
consist of entirely arbitrary conventions, and probably none is entirely sensory. However, the
sensory-versus-arbitrary distinction is important. Sensory representations are effective (or mis-
leading) because they are well matched to the early stages of neural processing. They tend to be
stable across individuals, cultures, and time. A cave drawing of a hunt still conveys much of its
meaning across several millennia. Conversely, arbitrary conventions derive their power from
culture and are therefore dependent on the particular cultural milieu of an individual.

The theory of sensory languages is based on the idea that the human visual system has
evolved as an instrument to perceive the physical world. It rejects the idea that the visual system
is a truly universal machine. It was once widely held that the brain at birth was an undifferen-
tiated neural net, capable of configuring itself to perceive in any world, no matter how strange.
According to this theory, if a newborn human infant were to be born into a world with entirely
different rules for the propagation of light, that infant would nevertheless learn to see. Partly,
this view came from the fact that all cortical brain tissue looks more or less the same, a uniform
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pinkish gray, so it was thought to be functionally undifferentiated. This tabula rasa view has
been overthrown as neurologists have come to understand that the brain has a great many spe-
cialized regions. Figure 1.5 shows the major neural pathways between different parts of the brain
involved in visual processing (Distler et al., 1993). Although much of the functionality remains
unclear, this diagram represents an amazing achievement and summarizes the work of dozens
of researchers. These structures are present both in higher primates and in humans. The brain
is clearly not an undifferentiated mass; it is more like a collection of highly specialized parallel-
processing machines with high-bandwidth interconnections. The entire system is designed to
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The major visual pathways of the Macaque monkey. This diagram is included to illustrate the structural
complexity of the visual system and because a number of these areas are referenced in different
sections of this book. Adapted from Distler et al. (1993); notes added. V1-V4, visual areas 1-4; PO,
parieto-occipital area; MT, middle temporal area (also called V5); DF, dorsal prestiate area; PP, posterior
parietal complex; STS, superiotemporal sulcus complex; IT, inferotemporal cortex.
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extract information from the world in which we live, not from some other environment with
entirely different physical properties.

Certain basic elements are necessary for the visual system to develop normally. For example,
cats reared in a world consisting only of vertical stripes develop distorted visual cortices, with
an unusual preponderance of vertical-edge detectors. Nevertheless, the basic elements for the
development of normal vision are present in all but the most abnormal circumstances. The inter-
action of the growing nervous system with everyday reality leads to a more or less standard visual
system. This should not surprise us; the everyday world has ubiquitous properties that are
common to all environments. All earthly environments consist of objects with well-defined sur-
faces, surface textures, surface colors, and a variety of shapes. Objects exhibit temporal persis-
tence—they do not randomly appear and vanish, except when there are specific causes. At a more
fundamental level, light travels in straight lines and reflects off surfaces in certain ways. The law
of gravity continues to operate. Given these ubiquitous properties of the everyday world, the evi-
dence suggests that we all develop essentially the same visual systems, irrespective of cultural
milieu. Monkeys and even cats have visual structures very similar to those of humans.

For example, although Figure 1.5 is based on the visual pathways of the Macaque monkey,
a number of lines of evidence show that the same structures exist in humans. First, the same
areas can be identified anatomically in humans and animals. Second, specific patterns of blind-
ness occur that point to the same areas having the same functions in humans and animals. For
example, if the brain is injured in area V4, patients suffer from achromatopsia (Zeki, 1992;
Milner and Goodale, 1995). These patients perceive only shades of gray. Also, they cannot recall
colors from times before the lesion was formed. Color processing occurs in the same region of
the monkey cortex. Third, new research imaging technologies, such as positron emission tomog-
raphy (PET) and functional magnetic resonance imaging (fMRI), show that in response to colored
or moving patterns, the same areas are active in people as in the Macaque monkey (Zeki, 1992;
Beardsley, 1997). The key implication of this is that because we all have the same visual system,
it is likely that we all see in the same way, at least as a first approximation. Hence, the same
visual designs will be effective for all of us.

Sensory aspects of visualizations derive their expressive power from being well designed to
stimulate the visual sensory system. In contrast, arbitrary, conventional aspects of visualizations
derive their power from how well they are learned. Sensory and arbitrary representations
differ radically in the ways they should be studied. In the former case, we can apply the full
rigor of the experimental techniques developed by sensory neuroscience, while in the latter case
visualizations and visual symbols can best be studied with the very different interpretive method-
ology, derived from the structuralist social sciences. With sensory representations, we can
also make claims that transcend cultural and racial boundaries. Claims based on a generalized
perceptual processing system will apply to all humans, with obvious exceptions such as color
blindness.

This distinction between the sensory and social aspects of the symbols used in visualization
also has practical consequences for research methodology. It is not worth expending a huge effort
carrying out intricate and highly focused experiments to study something that is only this year’s
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fashion. However, if we can develop generalizations that apply to large classes of visual repre-
sentations, and for a long time, the effort is worthwhile.

If we accept the distinction between sensory and arbitrary codes, we nevertheless must rec-
ognize that most visualizations are hybrids. In the obvious case, they may contain both pictures
and words. But in many cases, the sensory and arbitrary aspects of a representation are much
more difficult to tease apart. There is an intricate interweaving of learned conventions and hard-
wired processing. The distinction is not as clean as we would like, but there are ways of distin-
guishing the different kinds of codes.

Properties of Sensory and Arbitrary Representation
The following paragraphs summarize some of the important properties of sensory representations.

Understanding without training: A sensory code is one for which the meaning is perceived
without additional training. Usually, all that is necessary is for the audience to understand
that some communication is intended. For example, it is immediately clear that the image
in Figure 1.6 has an unusual spiral structure. Even though this visually represents a
physical process that cannot actually be seen, the detailed shape can be understood
because it has been expressed using an artificial shading technique to make it look like a
3D solid object. Our visual systems are built to perceive the shapes of 3D surfaces.

Figure 1.6 The expanding wavefront of a chemical reaction is visualized (Cross et al., 1997). Even though this
process is alien to most of us, the shape of the structure can be readily perceived.
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Figure 1.7 In the Muller-Lyer illusion, on the left, the horizontal line in the upper figure appears longer than the same
line in the lower figure. On the right, the rectangle is distorted into a “pincushion” shape.

Resistance to instructional bias: Many sensory phenomena, such as the illusions shown in
Figure 1.7, persist despite the knowledge that they are illusory. When such illusions occur
in diagrams, they are likely to be misleading. But what is important to the present
argument is that some aspects of perception can be taken as bottom-line facts that we
ignore at our peril. In general, perceptual phenomena that persist and are highly resistant
to change are likely to be hard-wired into the brain.

Sensory immediacy: The processing of certain kinds of sensory information is hard-wired and
fast. We can represent information in certain ways that are neurally processed in parallel.
This point is illustrated in Figure 1.8, which shows five different textured regions. The
two regions on the left are almost impossible to separate. The upright Ts and inverted Ts
appear to be a single patch. The region of oblique Ts is easy to differentiate from the
neighboring region of inverted Ts. The circles are the easiest to distinguish (Beck, 1966).
The way in which the visual system divides the visual world into regions is called
segmentation. The evidence suggests that this is a function of early rapid-processing
systems. (Chapter 5 presents a theory of texture discrimination.)

Cross-cultural validity: A sensory code will, in general, be understood across cultural
boundaries. These may be national boundaries or the boundaries between different user
groups. Instances in which a sensory code is misunderstood occur when some group has
dictated that a sensory code be used arbitrarily in contradiction to the natural
interpretation. In this case, the natural response to a particular pattern will, in fact, be
wrong.
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Figure 1.8 Five regions of texture. Some are easier to distinguish visually than others. Adapted from Beck (1966).

Testing Claims about Sensory Representations

Entirely different methodologies are appropriate to the study of representations of the sensory
and arbitrary types. In general, the study of sensory representations can employ the scientific
methods of vision researchers and biologists. The study of arbitrary conventional representations
is best done using the techniques of the social sciences, such as sociology and anthropology;
philosophers and cultural critics have much to contribute. Appendix C provides a brief summary
of the research methodologies that apply to the study of sensory representations. All are based
on the concept of the controlled experiment. For more detailed information on techniques used
in vision research and human-factors engineering, see Sekuler and Blake (1990) and Wickens

(1992).

Arbitrary Conventional Representations

Arbitrary codes are by definition socially constructed. The word dog is meaningful because we
all agree on its meaning and we teach our children the meaning. The word carrot would do
just as well, except we have already agreed on a different meaning for that word. In this sense,
words are arbitrary; they could be swapped and it would make no difference, so long as they
are used consistently from the first time we encounter them. Arbitrary visual codes are
often adopted when groups of scientists and engineers construct diagramming conventions for
new problems that arise. Examples include circuit diagrams used in electronics, diagrams used
to represent molecules in chemistry, and the unified modeling language used in software engi-
neering. Of course, many designers will intuitively use perceptually valid forms in the codes, but
many aspects of these diagrams are entirely conventional. Arbitrary codes have the following
characteristics:

Hard to learn: It takes a child hundreds of hours to learn to read and write, even if the child
has already acquired spoken language. The graphical codes of the alphabet and their rules
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of combination must be laboriously learned. The Chinese character set is reputed to be
even harder to work with than the Roman.

Easy to forget: Arbitrary conventional information that is not overlearned can easily be
forgotten. It is also the case that arbitrary codes can interfere with each other. In contrast,
sensory codes cannot be forgotten. Sensory codes are hard-wired; forgetting them would
be like learning not to see. Still, some arbitrary codes, such as written numbers, are
overlearned to the extent that they will never be forgotten. We are stuck with them
because the social upheaval involved in replacing them is too great.

Embedded in culture and applications: An Asian student in my laboratory was working on an
application to visualize changes in computer software. She chose to represent deleted
entities with the color green and new entities with red. I suggested to her that red is
normally used for a warning, while green symbolizes renewal, so perhaps the reverse
coding would be more appropriate. She protested, explaining that green symbolizes death
in China, while red symbolizes luck and good fortune. The use of color codes to indicate
meaning is highly culture-specific.

Many graphical symbols are transient and tied to a local culture or application. Think of the
graffiti of street culture, or the hundreds of new graphical icons that are being created on
the Internet. These tend to stand alone, conveying meaning; there is little or no syntax to bind
the symbols into a formal structure. On the other hand, in some cases, arbitrary representations
can be almost universal. The Arabic numerals shown in Figure 1.9 are used widely throughout
the world. Even if a more perceptually valid code could be constructed, the effort would be
wasted. The designer of a new symbology for Air Force or Navy charts must live within the con-
fines of existing symbols because of the huge amount of effort invested in the standards. We have
many standardized visualization techniques that work well and are solidly embedded in work
practices, and attempts to change them would be foolish. In many applications, good design is
standardized design.

Culturally embedded aspects of visualizations persist because they have become embedded
in ways in which we think about problems. For many geologists, the topographic contour map
is the ideal way to understand relevant features of the earth’s surface. They often resist shaded
computer graphics representations, even though these appear to be much more intuitively under-
standable to most people. Contour maps are embedded in cartographic culture and training.

1 2 3 4 5
Figure 1.9 Two methods for representing the first five digits. The code given below is probably easier to learn.
However, it is not easily extended.
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Formally powerful: Arbitrary graphical notations can be constructed that embody formally
defined, powerful languages. Mathematicians have created hundreds of graphical
languages to express and communicate their concepts. The expressive power of
mathematics to convey abstract concepts in a formal, rigorous way is unparalleled.
However, the languages of mathematics are extremely hard to learn (at least for most
people). Clearly, the fact that something is expressed in a visual code does not mean that
it is easy to understand.

Capable of rapid change: One way of looking at the sensory/arbitrary distinction is in terms of
the time the two modes have taken to develop. Sensory codes are the products of the
millions of years it has taken for our visual systems to evolve. Although the time frames
for the evolution of arbitrary conventional representations are much shorter, they can still
have lasted for thousands of years (e.g., the number system). But many more have had
only a few decades of development. High-performance interactive computer graphics have
greatly enhanced our capability to create new codes. We can now control motion and
color with great flexibility and precision. For this reason, we are currently witnessing an
explosive growth in the invention of new graphical codes.

The Study of Arbitrary Conventional Symbols

The appropriate methodology for studying arbitrary symbols is very different from that used to
study sensory symbols. The tightly focused, narrow questions addressed by psychophysics are
wholly inappropriate to investigating visualization in a cultural context. A more appropriate
methodology for the researcher of arbitrary symbols may derive from the work of anthropolo-
gists such as Clifford Geertz (1973), who advocated “thick description.” This approach is based
on careful observation, immersion in culture, and an effort to keep “the analysis of social forms
closely tied . . . to concrete social events and occasions.” Also borrowing from the social sciences,
Carroll and coworkers have developed an approach to understanding complex user interfaces
that they call artifact analysis (Carroll, 1989). In this approach, user interfaces (and presumably
visualization techniques) are best viewed as artifacts and studied much as an anthropologist
studies cultural artifacts of a religious or practical nature. Formal experiments are out of the
question in such circumstances, and if they were actually carried out, they would undoubtedly
change the very symbols being studied.

Unfortunately for researchers, sensory and arbitrary aspects of symbols are closely inter-
twined in many representations, and although they have been presented here as distinct cate-
gories, the boundary between them is very fuzzy. There is no doubt that culture influences
cognition; it is also true that the more we know, the more we may perceive. Pure instances of
sensory or arbitrary coding may not exist, but this does not mean that the analysis is invalid. It
simply means that for any given example we must be careful to determine which aspects of the
visual coding belong in each category.

In general, the science of visualization is still in its infancy. There is much about visualiza-
tion and visual communication that is more craft than science. For the visualization designer,
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training in art and design is at least as useful as training in perceptual psychology. For those who
wish to do good design, the study of design by example is generally most appropriate. But the
science of visualization can inform the process by providing a scientific basis for design rules,
and it can suggest entirely new design ideas and methods for displaying data that have not been
thought of before. Ultimately, our goal should be to create a new set of conventions for infor-
mation visualization, based on sound perceptual principles.

Gibson’s Affordance Theory

The great perception theorist J.J. Gibson brought about radical changes in how we think about
perception with his theories of ecological optics, affordances, and direct perception. Aspects of
each of these theoretical concepts are discussed throughout this book. We begin with affordance
theory (Gibson, 1979).

Gibson assumed that we perceive in order to operate on the environment. Perception is
designed for action. Gibson called the perceivable possibilities for action affordances; he claimed
that we perceive these properties of the environment in a direct and immediate way. This theory
is clearly attractive from the perspective of visualization, because the goal of most visualization
is decision making. Thinking about perception in terms of action is likely to be much more useful
than thinking about how two adjacent spots of light influence each other’s appearance (which is
the typical approach of classical psychophysicists).

Much of Gibson’s work was in direct opposition to the approach of theorists who reasoned
that we must deal with perception from the bottom up, as with geometry. The pre-Gibsonian
theorists tended to have an atomistic view of the world. They thought we should first understand
how single points of light were perceived, and then we could work on understanding how pairs
of lights interacted and gradually build up to understanding the vibrant, dynamic visual world
in which we live.

Gibson took a radically different, top-down approach. He claimed that we do not perceive
points of light; rather, we perceive possibilities for action. We perceive surfaces for walking,
handles for pulling, space for navigating, tools for manipulating, and so on. In general, our whole
evolution has been geared toward perceiving useful possibilities for action. In an experiment that
supports this view, Warren (1984) showed that subjects were capable of accurate judgments of
the “climbability” of staircases. These judgments depended on their own leg lengths. Gibson’s
affordance theory is tied to a theory of direct perception. He claimed that we perceive affor-
dances of the environment directly, not indirectly by piecing together evidence from our senses.

Translating the affordance concept into the interface domain, we might construct the fol-
lowing principle: to create a good interface, we must create it with the appropriate affordances
to make the user’s task easy. Thus, if we have a task of moving an object in 3D space, it should
have clear handles to use in rotating and lifting the object. Figure 1.10 shows a design for a 3D
object-manipulation interface from Houde (1992). When an object is selected, “handles” appear
that allow the object to be lifted or rotated. The function of these handles is made more explicit
by illustrations of gripping hands that show the affordances.
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Figure 1.10 Small drawings of hands pop up to show the user what interactions are possible in the prototype
interface. Reproduced, with permission, from Houde (1992).

However, Gibson’s theory presents problems if it is taken literally. According to Gibson, affor-
dances are physical properties of the environment that we directly perceive. Many theorists, unlike
Gibson, think of perception as a very active process: the brain deduces certain things about the
environment based on the available sensory evidence. Gibson rejected this view in favor of the idea
that our visual system is tuned to perceiving the visual world and that we perceive it accurately
except under extraordinary circumstances. He preferred to concentrate on the visual system as a
whole and not to break perceptual processing down into components and operations. He used the
term resonating to describe the way the visual system responds to properties of the environment.
This view has been remarkably influential and has radically changed the way vision researchers
think about perception. Nevertheless, few would accept it today in its pure form.

There are three problems with Gibson’s direct perception in developing a theory of visual-
ization. The first problem is that even if perception of the environment is direct, it is clear that
visualization of data through computer graphics is very indirect. Typically, there are many layers
of processing between the data and its representation. In some cases, the source of the data may
be microscopic or otherwise invisible. The source of the data may be quite abstract, such as
company statistics in a stock-market database. Direct perception is not a meaningful concept in
these cases.

Second, there are no clear physical affordances in any graphical user interface. To say that
a screen button “affords” pressing in the same way as a flat surface affords walking is to stretch
the theory beyond reasonable limits. In the first place, it is not even clear that a real-world button
affords pressing. In another culture, these little bumps might be perceived as rather dull archi-
tectural decorations. Clearly, the use of buttons is arbitrary; we must learn that buttons, when
pressed, do interesting things in the real world. Things are even more indirect in the computer
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world; we must learn that a picture of a button can be “pressed” using a mouse, a cursor, or yet
another button. This is hardly a direct interaction with the physical world.

Third, Gibson’s rejection of visual mechanisms is a problem. To take but one example, much
that we know about color is based on years of experimentation, analysis, and modeling of the
perceptual mechanisms. Color television and many other display technologies are based on an
understanding of these mechanisms. To reject the importance of understanding visual mecha-
nisms would be to reject a tremendous proportion of vision research as irrelevant. This entire
book is based on the premise that an understanding of perceptual mechanisms is basic to a science
of visualization.

Despite these reservations, Gibson’s theories color much of this book. The concept of affor-
dances, loosely construed, can be extremely useful from a design perspective. The idea suggests
that we build interfaces that beg to be operated in appropriate and useful ways. We should make
virtual handles for turning, virtual buttons for pressing. If components are designed to work
together, this should be made perceptually evident, perhaps by creating shaped sockets that afford
the attachment of one object to another. This is the kind of design approach advocated by
Norman in his famous book, The Psychology of Everyday Things (1988). Nevertheless, on-screen
widgets present affordances only in an indirect sense. They borrow their power from our ability
to represent pictorially, or otherwise, the affordances of the everyday world. Therefore, we can
be inspired by affordance theory to produce good designs, but we cannot expect much help from
that theory in building a science of visualization.

A Model of Perceptual Processing

In this section, we introduce a simplified information-processing model of human visual percep-
tion. As Figure 1.5 shows, there are many subsystems in vision and we should always be wary
of overgeneralization. Still, an overall conceptual framework is often useful in providing a start-
ing point for more detailed analysis. Figure 1.11 gives a broad schematic overview of a three-
stage model of perception. In Stage 1, information is processed in parallel to extract basic features
of the environment. In Stage 2, active processes of pattern perception pull out structures and
segment the visual scene into regions of different color, texture, and motion patterns. In Stage 3,
the information is reduced to only a few objects held in visual working memory by active mech-
anisms of attention to form the basis of visual thinking.

Stage 1: Parallel Processing to Extract Low-Level Properties
of the Visual Scene

Visual information is first processed by large arrays of neurons in the eye and in the primary
visual cortex at the back of the brain. Individual neurons are selectively tuned to certain kinds
of information, such as the orientation of edges or the color of a patch of light. In Stage 1 pro-
cessing, billions of neurons work in parallel, extracting features from every part of the visual
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Figure 1.11 A three-stage model of human visual information processing.

field simultaneously. This parallel processing proceeds whether we like it or not, and it is largely
independent of what we choose to attend to (although not of where we look). It is also rapid. If
we want people to understand information quickly, we should present it in such a way that it
could easily be detected by these large, fast computational systems in the brain.

Important characteristics of Stage 1 processing include:

® Rapid parallel processing

® Extraction of features, orientation, color, texture, and movement patterns

® Transitory nature of information, which is briefly held in an iconic store

®  Bottom-up, data-driven model of processing

Stage 2: Pattern Perception

At the second stage, rapid active processes divide the visual field into regions and simple pat-
terns, such as continuous contours, regions of the same color, and regions of the same texture.
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Patterns of motion are also extremely important, although the use of motion as an information
code is relatively neglected in visualization. The pattern-finding stage of visual processing is
extremely flexible, influenced both by the massive amount of information available from Stage
1 parallel processing and by the top-down action of attention driven by visual queries. Marr
(1982) called this stage of processing the 2-1/2D sketch. Triesman (1985) called it a feature map.
Rensink (2002) called it a proto-object flux to emphasize its dynamic nature.

There is increasing evidence that tasks involving eye-hand coordination and locomotion may
be processed in pathways distinct from those involved in object recognition. This is the two—visual
system hypothesis: one system for locomotion and action, called the “action system,” and another
for symbolic object manipulation, called the “what system.” A detailed and convincing account
of it can be found in Milner and Goodale (19953).

Important characteristics of Stage 2 processing include:

®  Slow serial processing
® Involvement of both working memory and long-term memory
®  More emphasis on arbitrary aspects of symbols

® In a state of flux, a combination of bottom-up feature processing and top-down
attentional mechanisms

* Different pathways for object recognition and visually guided motion

Stage 3: Sequential Goal-Directed Processing

At the highest level of perception are the objects held in visual working memory by the demands
of active attention. In order to use an external visualization, we construct a sequence of visual
queries that are answered through visual search strategies. At this level, only a few objects can
be held at a time; they are constructed from the available patterns providing answers to the visual
queries. For example, if we use a road map to look for a route, the visual query will trigger a
search for connected red contours (representing major highways) between two visual symbols
(representing cities).

Beyond the visual processing stages shown in Figure 1.11 are interfaces to other subsystems.
The visual object identification process interfaces with the verbal linguistic subsystems of the
brain so that words can be connected to images. The perception-for-action subsystem interfaces
with the motor systems that control muscle movements.

The three-stage model of perceptions is the basis for the structure of this book. Chapters 2,
3, 4, and some of 5 deal mainly with Stage 1 issues. Chapters 3, 6, 7, and 8 deal mainly with
Stage 2 issues. Chapters 9, 10, and 11 deal with Stage 3 issues. The final three chapters also
discuss the interfaces between perceptual and other cognitive processes, such as those involved
in language and decision making.
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Types of Data

If the goal of visualization research is to transform data into a perceptually efficient visual format,
and if we are to make statements with some generality, we must be able to say something about
the types of data that can exist for us to visualize. It is useful, but less than satisfying, to be able
to say that color coding is good for stock-market symbols but texture coding is good for geo-
logical maps. It is far more useful to be able to define broader categories of information, such
as continuous-height maps (scalar fields), continuous-flow fields (vector maps), and category data,
and then to make general statements such as “Color coding is good for category information”
and “Motion coding is good for highlighting selected data.” If we can give perceptual reasons
for these generalities, we have a true science of visualization.

Unfortunately, the classification of data is a big issue. It is closely related to the classification
of knowledge, and it is with great trepidation that we approach the subject. What follows is
an informal classification of data classes using a number of concepts that we will find helpful
in later chapters. We make no claims that this classification is especially profound or
all-encompassing.

Bertin (1977) has suggested that there are two fundamental forms of data: data values and
data structures. A similar idea is to divide data into entities and relationships (often called rela-
tions). Entities are the objects we wish to visualize; relations define the structures and patterns that
relate entities to one another. Sometimes the relationships are provided explicitly; sometimes dis-
covering relationships is the very purpose of visualization. We also can talk about the attributes
of an entity or a relationship. Thus, for example, an apple can have color as one of its attributes.
The concepts of entity, relationship, and attribute have a long history in database design and have
been adopted more recently in systems modeling. However, we shall extend these concepts beyond
the kinds of data that are traditionally stored in a relational database. In visualization, it is neces-
sary to deal with entities that are more complex and we are also interested in seeing complex struc-
tured relationships—data structures—not captured by the entity relationship model.

Entities

Entities are generally the objects of interest. People can be entities; hurricanes can be entities.
Both fish and fishponds can be entities. A group of things can be considered a single entity if it
is convenient—for example, a school of fish.

Relationships

Relationships form the structures that relate entities. There can be many kinds of relationships.
A wheel has a “part-of” relationship to a car. One employee of a firm may have a supervisory
relationship to another. Relationships can be structural and physical, as in defining the way a
house is made of its many component parts, or they can be conceptual, as in defining the rela-
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tionship between a store and its customers. Relationships can be causal, as when one event causes
another, and they can be purely temporal, defining an interval between two events.

Attributes of Entities or Relationships

Both entities and relationships can have attributes. In general, something should be called an
attribute (as opposed to an entity itself) when it is a property of some entity and cannot be
thought of independently. Thus, the color of an apple is an attribute of the apple. The tempera-
ture of water is an attribute of the water. Duration is an attribute of a journey. However, defin-
ing what should be an entity and what should be an attribute is not always straightforward. For
example, the salary of an employee could be thought of as an attribute of the employee, but we
can also think of an amount of money as an entity unto itself, in which case we would have to
define a relationship between the employee entity and the sum-of-money entity.

Attribute Quality

It is often desirable to describe data visualization methods in light of the quality of attributes
they are capable of conveying. A useful way to consider the quality of data is the taxonomy of
number scales defined by the statistician S.S. Stevens (1946). According to Stevens, there are four
levels of measurement: nominal, ordinal, interval, and ratio scales.

1. Nominal: This is the labeling function. Fruit can be classified into apples, oranges,
bananas, and so on. There is no sense in which the fruit can be placed in an ordered
sequence. Sometimes numbers are used in this way. Thus, the number on the front of a
bus generally has a purely nominal value. It identifies the route on which the bus travels.

2. Ordinal: The ordinal category encompasses numbers used for ordering things in a
sequence. It is possible to say that a certain item comes before or after another item. The
position of an item in a queue or list is an ordinal quality. When we ask people to rank
some group of things (films, political candidates, computers) in order of preference, we are
requiring them to create an ordinal scale.

3. Interval: When we have an interval scale of measurement, it becomes possible to derive
the gap between data values. The time of departure and the time of arrival of an aircraft
are defined on an interval scale.

4. Ratio: With a ratio scale, we have the full expressive power of a real number. We can
make statements such as “Object A is twice as large as object B.” The mass of an object is
defined on a ratio scale. Money is defined on a ratio scale. The use of a ratio scale implies
a zero value used as a reference.

In practice, only three of Stevens’s levels of measurement are widely used, and these in somewhat
different form. The typical basic data classes most often considered in visualization have been
greatly influenced by the demands of computer programming. They are the following:
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Category data: This is like Stevens’s nominal class.
Integer data: This is like his ordinal class in that it is discrete and ordered.
Real-number data: This combines the properties of interval and ratio scales.

These classes of data can be very useful in discussing visualization techniques. For example, here
are two generalizations: (1) Using graphic size (as in a bar chart) to display category informa-
tion is likely to be misleading, because we tend to interpret size as representing quantity. (2) If
we map measurements to color, we can perceive nominal or, at best, ordinal values, with a few
discrete steps. Perceiving metric intervals using color is not very effective. Many visualization
techniques are capable of conveying only nominal or ordinal data qualities.

Attribute Dimensions: 1D, 2D, 3D, . ..

An attribute of an entity can have multiple dimensions. We can have a single scalar quantity,
such as the weight of a person. We can have a vector quantity, such as the direction in which
that person is traveling. Tensors are higher-order quantities that describe both direction and shear
forces, such as occur in materials that are being stressed.

We can have a field of scalars, vectors, or tensors. The gravitational field of the earth is a
three-dimensional attribute of the earth. In fact, it is a three-dimensional vector field attribute.
If we are interested only in the strength of gravity at the earth’s surface, it is a two-dimensional
scalar attribute. Often the term map is used to describe this kind of field. Thus, we talk about a
gravity map or a temperature map.

Operations Considered as Data

An entity relationship model can be used to describe most kinds of data. However, it does not
capture the operations that may be performed on entities and relationships. We tend to think of
operations as somehow different from the data itself, neither entities nor relationships nor attrib-
utes. The following are but a few common operations:

®  Mathematical operations on numbers—multiplication, division, and so on

®  Merging two lists to create a longer list

® Inverting a value to create its opposite

® Bringing an entity or relationship into existence (such as the mean of a set of numbers)
® Deleting an entity or relationship (a marriage breaks up)

®  Transforming an entity in some way (the chrysalis turns into a butterfly)

* Forming a new object out of other objects (a pie is baked from apples and pastry)

®  Splitting a single entity into its component parts (a machine is disassembled)
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In some cases, these operations can themselves form a kind of data that we may wish to capture.
Chemistry contains a huge catalog of the compounds that result when certain operations are
applied to combinations of other compounds. These operations may form part of the data that
is stored. Certain operations are easy to visualize: For example, the merging of two entities can
easily be represented by showing two visual objects that combine (visually merge) into a single
entity. Other operations are not at all easy to represent in any visualization. For example, the
detailed logical structure of a computer program may be better represented using a written code
that has its basis in natural language than using any kind of diagram. What should and should
not be visualized is a major topic in Chapter 9.

Operations and procedures often present a particularly difficult challenge for visualization.
It is difficult to express operations effectively in a static diagram, and this is especially a problem
in the creation of visual languages. On the other hand, the use of animation opens up the pos-
sibility of expressing at least certain operations in an immediately accessible visual manner. We
shall deal with the issue of animation and visual languages in Chapter 9.

Metadata

When we are striving to understand data, certain products are sure to emerge as we proceed. We
may discover correlations between variables or clusters of data values. We may postulate certain
underlying mechanisms that are not immediately visible. The result is that theoretical entities
come into being. Atoms, photons, black holes, and all the basic constructs of physics are like
this. As more evidence accumulates, the theoretical entities seem more and more real, but they
are nonetheless only observable in the most indirect ways. These theoretical constructs that
emerge from data analysis have sometimes been called metadata (Tweedie, 1997). They are gen-
erally called derived data in the database modeling community. Metadata can be of any kind. It
can consist of new entities, such as identified classes of objects, or new relationships, such as pos-
tulated interactions between different entities, or new rules. We may impose complex structural
relationships on the data, such as tree structures or directed acyclic graphs, or we may find that
they already exist in the data.

The problem with the view that metadata and primary data are somehow essentially differ-
ent is that all data is interpreted to some extent—there is no such thing as raw data. Every data-
gathering instrument embodies some particular interpretation in the way it is built. Also, from
the practical viewpoint of the visualization designer, the problems of representation are the same
for metadata as for primary data. In both cases, there are entities, relationships, and their attrib-
utes to be represented, although some are more abstract than others. Thus the metadata concept
is not discussed further in this book.
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Conclusion

Visualization applies vision research to practical problems of data analysis in much the same way
as engineering applies physics to practical problems of building manufacturing plants. Just as
engineering has influenced physicists to become more concerned with areas such as semicon-
ductor technology, so we may hope that the development of an applied science of data visual-
ization can encourage vision researchers to intensify their efforts in addressing such problems as
3D space and task-oriented perception. There is considerable practical benefit in understanding
these things. As the importance of visualization grows, so do the benefits of a scientific approach.
But there is no time left to lose. New symbol systems are being developed constantly to meet the
needs of a society increasingly dependent on data. Once developed, they may stay with us for a
very long time, so we should try to get them right.

We have introduced a key distinction between the ideas of sensory and arbitrary conven-
tional symbols. This is a difficult and sometimes artificial distinction. Readers can doubtless come
up with counterexamples and reasons why it is impossible to separate the two. Nonetheless, the
distinction is essential. With no basic model of visual processing on which we can support the
idea of a good data representation, ultimately the problem of visualization comes down to estab-
lishing a consistent notation. If the best representation is simply the one we know best because
it is embedded in our culture, then standardization is everything—there is no good representa-
tion, only widely shared conventions.

In opposition to the view that everything is arbitrary, this book takes the view that all humans
do have more or less the same visual system. This visual system has evolved over tens of millions
of years to enable creatures to perceive and act within the natural environment. Although very
flexible, the visual system is tuned to receiving data presented in certain ways, but not in others.
If we can understand how the mechanism works, we can produce better displays and better think-
ing tools.
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CHAPTER 2

The Environment, Optics,
Resolution, and the Display

We can think of the world itself as an information display. Objects may be used as tools or as
construction materials, or they may be obstacles to be avoided. Every intricate surface reveals
the properties of the material from which it is made. Creatures signal their intentions inadver-
tently or deliberately through movement. There are almost infinite levels of detail in nature, and
we must be responsive to both small and large things, but in different ways: large things, such
as boulders, are obstacles; smaller things, such as rocks, can be used as tools; still smaller things,
such as grains of sand, are useful by the handful. If our extraordinary skill in perceiving the infor-
mation inherent in the environment can be applied to data visualization, we will have gained a
truly powerful tool.

The visual display of a computer is only a single rectangular planar surface, divided into a
regular grid of small colored dots. It is astonishing how successful it is as an information display,
given how little it resembles the world we live in. This chapter concerns the lessons we can learn
about information display by appreciating the environment in broad terms and how the same
kind of information can be picked up from a flat screen. It begins with a discussion of the most
general properties of the visual environment, then considers the lens-and-receptor system of the
eye as the principal instrument of vision. The basic abilities of the eye are related to the problem
of creating an optimal display device.

This level of analysis bears on a number of display problems. If we want to make
virtual objects seem real, how should we simulate the interaction of light with their surfaces?
What is the optimal display device, and how do current display devices measure up? How
much detail can we see? How faint a target can we see? How good is the lens system of the
human eye? This is a foundation chapter, introducing much of the basic vocabulary of vision
research.

29
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The Environment

A strategy for designing a visualization is to transform the data so that it appears like a common
environment—a kind of data landscape. We should then be able to transfer skills obtained in inter-
preting the real environment to understanding our data. This is not to say that we should repre-
sent data by means of synthetic trees, flowers, and undulating lawns—that would be quaint and
ludicrous. It seems less ludicrous to create synthetic offices, with desks, filing cabinets, phones,
books, and Rolodexes, and this is already being done in a number of computer interfaces.

Understanding the general properties of the environment is important for a more basic
reason. When trying to understand perception, it is always useful to think about what percep-
tion is for. The theory of evolution tells us that the visual system must have survival value, and
adopting this perspective allows us to understand visual mechanisms in the broader context of
useful skills, such as navigation, food seeking (which is like information seeking), and tool use
(which depends on object-shape perception).

What follows is a short tour of the visual environment, beginning with light.

Visible Light

Perception is about understanding patterns of light. Visible light constitutes a very small part of
the electromagnetic spectrum, as is shown in Figure 2.1. Some animals, such as snakes, can see
in the infrared, while certain insects can see in the ultraviolet. Humans can perceive light only
in the range of 400 to 700 nanometers. (In vision research, wavelength is generally expressed in
units of 10~ meters, called nanometers). At wavelengths shorter than 400 nm are ultraviolet light
and X-rays. At wavelengths longer than 700 nm are infrared light, microwaves, and radio waves.

Ecological Optics

The most useful broad framework for describing the visual environment is given by ecological
optics, a discipline developed by J.J. Gibson. Gibson radically changed the way we think about
perception of the visual world. Instead of concentrating on the image on the retina, as did other
vision researchers, Gibson emphasized perception of surfaces in the environment. The following
quotations strikingly illustrate how he broke with a traditional approach to space perception that
was grounded in the classical geometry of points, lines, and planes (Gibson, 1979):

A surface is substantial; a plane is not. A surface is textured; a plane is not. A surface is never
perfectly transparent; a plane is. A surface can be seen; a plane can only be visualized.

A fiber is an elongated object of small diameter, such as a wire or thread. A fiber should not
be confused with a geometrical line.

In surface geometry the junction of two flat surfaces is either an edge or a corner; in abstract
geometry the intersection of two planes is a line.
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Figure 2.1 The visible light spectrum is a tiny part of a much larger spectrum of electromagnetic radiation.

Much of human visual processing becomes more understandable if we assume that a key func-
tion of the visual system is to extract properties of surfaces. As our primary interface with objects,
surfaces are essential to understanding the potential for interaction and manipulation in the envi-
ronment that Gibson called affordances.

A second key concept in Gibson’s ecological optics is the ambient optical array (Gibson,
1986). To understand the ambient optical array, consider what happens to light entering the envi-
ronment from some source such as the sun. It is absorbed, reflected, refracted, and diffracted as
it interacts with various objects such as stones, grass, trees, and water. The environment, con-
sidered in this way, is a hugely complex matrix with photons traveling in all directions, consist-
ing of different mixtures of wavelengths and polarized in various ways. This complexity is quite
impossible to simulate. However, from any particular stationary point in the environment, crit-
ical information is contained in the structure of the light arriving at that point. This vast sim-
plification is what Gibson called the ambient optical array. This array encompasses all the rays
arriving at a particular point as they are structured in both space and time. Figure 2.2 is intended
to capture the flavor of the concept.

Much of the effort of computer graphics can be characterized as an attempt to model the
ambient optical array. Because the interactions of light with surfaces are vastly complex, it is
not possible to directly model entire environments. But the ambient array provides the basis
for simplifications such as those used in ray tracing, so that approximations can be computed.
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Figure 2.2 Ambient optical array is a term that describes the array of light that arrives from all directions at some
designated point in the environment. Simulating the appearance of the bundle of rays that would pass
through a glass rectangle is one of the goals of computer graphics.

If we can capture the structure of a bundle of rays passing through a glass rectangle on their way
to the stationary point, we have something that we may be able to reproduce on a screen (see
Figure 2.2).

Optical Flow

The ambient optical array is dynamic, changing over time both as the viewpoint moves and
as objects move. As we advance into a static environment, a characteristic visual flow field
develops. Figure 2.3 illustrates the visual field expanding outward as a result of forward motion.
There is evidence that the visual system contains processes to interpret such flow patterns and
that they are important in understanding how animals (including humans) navigate through
space, avoid obstacles, and generally perceive the layout of objects in the world. The flow pattern
in Figure 2.3 is only a very simple case; if we follow something with our eyes while we move
forward, the pattern becomes more complex. The perceptual mechanisms to interpret flow pat-
terns must therefore be sophisticated. The key point here is that visual images of the world are
dynamic, so that the perception of motion patterns may be as important as the perception of the
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Figure 2.3 An expanding flow pattern of visual information is created as an observer moves forward through
the environment.

static world, albeit less well understood. Chapter 8 deals with motion perception in the context
of space perception and 3D information display.

Textured Surfaces and Texture Gradients

Gibson pointed out that surface texture is one of the fundamental visual properties of an object.
In visual terms, a surface is merely an unformed patch of light unless it is textured. Texture is
critical to perception in a number of ways. The texture of an object helps us see where an object
is and what shape it has. On a larger scale, the texture of the ground plane on which we walk,
run, and crawl is important in judging distances and other aspects of space. Figure 2.4 shows
that the texture of the ground plane produces a characteristic texture gradient that is important
in space perception. Of course, surfaces themselves are infinitely varied. The surface of a wooden
table is very different from the surface of an ocelot. Generally speaking, most surfaces have clearly
defined boundaries; diffuse, cloudlike objects are exceptional. Perhaps because of this, we have
great difficulty in visualizing uncertain data as fuzzy clouds of points.

At present, most computerized visualizations present objects as smooth and untextured. This
may be partly because texturing is not yet easy to do in most visualization software packages.
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Figure 2.4 An undulating surface with and without surface texture.

Perhaps visualization designers have avoided texturing surfaces by applying the general esthetic
principle that we should avoid irrelevant decoration in displays—*“chart junk,” to use Tufte’s
memorable phrase (Tufte, 1983). But texturing surfaces is not chart junk, especially in 3D visu-
alizations. Even if we texture all objects in exactly the same way, this can help us perceive the
orientation, shape, and spatial layout of a surface. Textures need not be garish or obtrusive, but
when we want something to appear to be a 3D surface, it should have at least a subtle texture.
As we shall see in Chapter 3, texture can also be used to code information, but using unobtru-
sive textures will require better pixel resolution than is available on most displays.
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The Paint Model of Surfaces

Surfaces in nature are endlessly varied and complex. Microtextures give irregular patterns of
reflection, so the amount and color of reflected light can vary with both the illumination angle
and the viewing angle. However, there is a simple model that approximates many common mate-
rials. This model can be understood by considering a glossy paint. The paint has pigment parti-
cles embedded in a more or less clear medium, as shown in Figure 2.5. Some of the light is
reflected from the surface of the glossy medium and is unchanged in color. Most of the light pen-
etrates the medium and is selectively absorbed by the pigment particles, altering its color. Accord-
ing to this model, there are three important direct interactions of light with surfaces, as described
in the following paragraphs. An additional fourth property is related to the fact that parts of
objects cast shadows, revealing more information about their shapes. (See Figure 2.6.)

®  Lambertian shading. With most materials, light penetrates the surface and interacts with
the pigment in the medium. This light is selectively absorbed and reflected depending on
the color of the pigment, and some of it is scattered back through the surface out into the
environment. If we have a perfectly matte surface, how bright the surface appears depends
only on the cosine of the angle between the incident light and the surface normal. This is
called the Lambertian model, and although few real-world materials have exactly this
property it is computationally very simple. A patch of a Lambertian surface can be viewed
from any angle and the surface color will seem the same. Figure 2.6(a) shows a surface
with only Lambertian shading. Lambertian shading is the simplest method for representing
surface shape from shading. It can also be highly effective.

Lambertian scattering
from pigment

7 .
Specular scattering

Light interacts with pigment

Figure 2.5 This simplified model of light interacting with surfaces is used in most computer graphics. Specular
reflection is light that is reflected directly from the surface without penetrating to the underlying pigment.
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Figure 2.6 (a) Lambertian shading only. (b) Lambertian shading with specular and ambient shading. (c) Lambertian
shading with specular, ambient, and cast shadows.

®  Specular shading. The light that is reflected directly from a surface is called specular light.
This is what we see as the highlights on glossy objects. Specular reflection obeys the
optical principle of mirror reflection: the angle of reflection equals the angle of incidence.
It is possible to simulate high-gloss, semigloss, or eggshell finishes by causing the specular
light to spread out somewhat, simulating different degrees of roughness at a microscopic
level. Specular light reflected from a surface retains the color of the illuminant; it is not
affected by the color of the underlying pigment. Hence, we see white highlights gleaming
from the surface of a red automobile. Both the viewing direction and the positions of the
light sources affect the locations where highlights appear. Figure 2.6(b) shows a surface
with both Lambertian and specular shading.

®  Ambient shading. Ambient light is the light that illuminates a surface from everywhere in
the environment, except for the actual light sources. In reality, ambient light is as complex
as the scene itself. However, in computer graphics, ambient light is often grossly simplified
by treating it as a constant, which is like assuming that an object is situated in a
uniformly gray room. The radiosity technique (Cohen and Greenberg, 1985) properly
models the complexity of ambient light, but it is rarely used for visualization. One of the
consequences of modeling ambient light as a constant is that no shape-from-shading
information is available in areas of cast shadow. In Figures 2.6(b) and 2.6(c), ambient
light is simulated by the assumption that a constant amount of light is reflected from all
points on the surface. Ambient light is reflected both specularly and nonspecularly.

®  Cast shadows. An object can cast shadows either on itself or on other objects. As
shown in Figure 2.6(c), cast shadows can greatly influence the perceived height of an
object.

The mathematical expression for the amount of light reflected, R, according to this simplified
model, is as follows:
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R =a+bcos® +ccos’ () (2.1)

where 0 is the angle between the incident ray and the surface normal and o is the angle between
the reflected ray and the view vector. a, b, and ¢ represent the relative amounts of ambient, Lam-
bertian, and specular light, respectively. The exponent & is used to control the degree of glossi-
ness. A high value of k, such as 50, models a very shiny surface, while a lower value, such as 6,
results in a semigloss appearance. Note that this is a simplified treatment, providing only the
crudest approximation of the way light interacts with surfaces, but nevertheless it is so effective
in creating real-looking scenes that it is widely used in computer graphics with only a small mod-
ification to simulate color. It is sufficient for most visualization purposes. This surface/light inter-
action model and others are covered extensively by computer graphics texts concerned with
realistic image synthesis. The reader is referred to Foley et al. (1990) for more information.

What is interesting is that these simplifying assumptions may, in effect, be embedded in our
visual systems. The brain may assume a model similar to this when we estimate the shape of a
surface defined by shading information. Arguably, using more sophisticated modeling of light in
the environment might actually be detrimental to our understanding of the shapes of surfaces.
Chapter 7 discusses the way we perceive this shape-from-shading information.

Figures 2.7 and 2.8 illustrate some consequences of the simplified lighting model. Figure 2.7
shows glossy leaves to make the point that the simplified model is representative of at least some
nonsynthetic objects. In this picture, the specular highlights from the shiny surface are white
because the illuminant is white. The nonspecular light from the leaf pigmentation is green. As a

Figure 2.7 Glossy leaves. Note that the highlights are the color of the illuminant.
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Figure 2.8 Specular light reveals fine details of surface structure. However, it depends on the viewpoint.

tool in data visualization, specular reflection is useful in visualization of fine surface features,
such as scratches on glass. The effect is illustrated in Figure 2.8, in which the line grid lines are
most distant in the region of specular reflection. Specular highlights can be similarly useful in
revealing subtle differences in surface microroughness. The nonspecular Lambertian reflection is
more effective in giving an overall impression of the shape of the surface.

To summarize this brief introduction to the visual environment, we have seen that much of
what is useful to organisms is related to objects, to their layout in space, and to the properties
of their surfaces. As Gibson so effectively argued, in understanding how surfaces are perceived,
we must understand how light becomes structured when it arrives at the eye. We have covered
two important kinds of structuring thus far. One is the structure that is present in the ambient
array of light that arrives at a viewpoint. This structure has both static pattern components and
dynamic pattern flows as we move through the world. The second is the more detailed struc-
turing of light that results from the interaction of light with surfaces.

The Eye

We now consider the instrument of sight. The human eye, like a camera, contains the equiva-
lents of a lens, an aperture (the pupil), and a film (the retina). Figure 2.9 illustrates these parts.
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Figure 2.9 The human eye. Important features include the fovea, where vision is sharpest; the iris, which determines

the amount of light that enters the eye; and the large eye muscles that enable eye movements. The blind
spot is caused by the absence of receptors where the retinal arteries enter the eyeball and in the two
principal optical elements, the lens and the cornea.

The lens focuses a small, inverted picture of the world onto the retina. The iris performs the func-
tion of a variable aperture, helping the eye to adjust to different lighting conditions. Some people
find it difficult to understand how we can see the world properly when the image is upside down.
The right way to think about this is to adopt a computational perspective. We do not perceive
what is on the retina; instead, our brains compute a percept based on sensory information. Inver-
sion of the images is the least of the brain’s computational problems.

We should not take the eye/camera analogy too far. If seeing were like photography, you
would only have to copy the image on the back of the eye to produce a perfect likeness of a
friend; anyone could be a great portrait painter. Yet artists spend years studying perspective geom-
etry and anatomy, and constantly practicing their skills. Early cave artists represented human
figures with spindly lines for arms and legs. Children still do this. It took thousands of years,
culminating in the golden age of Greek art, for artists to develop the skills to draw natural figures,
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properly shaded and foreshortened. Following this, the skill was largely lost again until the
Renaissance, in the fifteenth century. Yet in the image on the back of the eye, everything is in
perfect proportion and in perspective. Clearly, we do not “see” what is on the retina. The locus
of conscious perception is farther up the chain of processing, and at this later stage most of the
simple properties of the retinal image have been lost. The world that we perceive is not at all
what is imaged on the retina.

The Visual Angle Defined

The visual angle is a key concept in defining the properties of the eye and early vision. As Figure
2.10 illustrates, a visual angle is the angle subtended by an object at the eye of an observer. Visual
angles are generally defined in degrees, minutes, and seconds of arc. (A minute is 1/60 degree
and a second is 1/60 minute). As a general rule, a thumbnail held at arm’s length subtends about
1 degree of visual angle. Another useful fact is that a 1-cm object viewed at 57cm has a visual
angle of approximately 1 degree. This is useful because 57cm is a reasonable approximation to
the distance at which we view a computer monitor.
To calculate visual angle, use this equation:

tan(g) _

(2.2)

[NSRIN

or

)
0 = 2arctan| — 23
arc an(zdj (2.3)

Figure 2.10 The visual angle of an object is measured from the optical center of the eye.
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The Lens

The human eye contains a compound lens. This lens has two key elements: the curved front
surface of the cornea and the crystalline lens. The nodal point is the optical center of the com-
pound lens; it is positioned approximately 17mm from the retina. The distance from the eye to
an object is usually measured from the cornea, but in terms of optics it is better to estimate the
distance from the first nodal point. (See Figure 2.10.)

The following equation describes the imaging properties of a simple lens:

(2.4)

N =

N =
U=

where f is the focal length of the lens, d is the distance to the object that is imaged, and 7 is the
distance to the image that is formed. If the units are meters, the power of a lens is given by the
reciprocal of the focal length (1/f) in units of diopters. Thus, a 1-diopter lens has a focal length
of 1m. The 17 mm focal length of the human lens system corresponds to a power of 59 diopters.
To get this from Equation 2.3, consider viewing an object at infinity (d = o).

To a first approximation the power of a compound lens can be computed by adding the
powers of the components. We obtain the focal length of a two-part compound lens by using the
following equation:

1 1.1 (2.5)

fs hof

f3 is the result of combining lenses f; and f,.

In the compound lens of the human eye, most of this power, about 40 diopters, comes from
the front surface of the cornea; the remainder comes from the variable-focus lens. When the
cillary muscle that surrounds the lens contracts, the lens assumes a more convex and more pow-
erful shape, and nearby objects come into focus. Young children have very flexible lenses, capable
of adjusting over a range of 12 diopters or more, which means that they can focus on an object
as close as 8 cm. However, the eye becomes less flexible with age, at roughly the rate of 2 diopters
per decade, so that by the age of 60, the lens is almost completely rigid (Sun et al., 1988). Hence
the need for reading glasses at about the age of 48, when only a few diopters of accommoda-
tion are left.

The depth of focus of a lens is the range over which objects are in focus when the eye is
adjusted for a particular distance. The depth of focus of the human eye varies with the size of
the pupil (Smith and Atchison, 1997), but assuming a 3-mm pupil and a human eye focused at



42 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

infinity, objects between about 3m and infinity are in focus. Depth of focus can usefully be
described in terms of the power change that takes place without the image becoming significantly
blurred. This is about 1/3 diopter, assuming a 3-mm pupil.

Assuming the 1/3-diopter depth-of-focus value and an eye focused at distance d (in meters),
objects in the range

[i,ﬁ} (2.6)
d+3'd-3

will be in focus.

To illustrate, for an observer focusing at 50cm, roughly the normal monitor-viewing dis-
tance, an object can be about 7cm in front of the screen or 10cm behind the screen before it
appears to be out of focus. In helmet-mounted displays, it is common to use lenses that set the
screen at a virtual focal distance of 2m. This means that in the range 1.2m to 6.0m, it is not
necessary to worry about simulating depth-of-focus effects, something that is difficult and com-
putationally expensive to do. However, the large pixels in typical virtual-reality displays prevent
us from modeling image blur to anywhere near this resolution.

Table 2.1 gives the range that is in focus for a number of viewing distances, given a 3-mm
pupil. For more detailed modeling of depth of focus as it varies with pupil diameter, consult
Smith and Atchison (1997).

Optics and Augmented-Reality Systems

Augmented-reality systems involve superimposing visual imagery on the real world so that people
can see a computer graphics—enhanced view of the world. For this blending of real and virtual
imagery to be achieved, the viewpoint of the observer must be accurately known and the objects’
positions and shapes in the local environment must also be stored in the controlling computer.
With this information, it is a straightforward application of standard computer graphics tech-
niques to draw 3D images that are superimposed on the real-world images. However, the tech-

Viewing Distance Near Far
S0cm 43 cm 60cm
Im 7S5 cm 1.5m
2m 1.2m 6.0m
3m 1.5m infinity

Table 2.1 Depth of Focus at Various Viewing Distances
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nical difficulties in getting precise registration information and in designing optical systems that
are light and portable should not be underestimated.

Figure 2.11 illustrates an experimental augmented-reality system in which a radiologist can
see within a woman’s breast to guide a biopsy needle in taking a tissue sample (from State et al.,
1996). Given how difficult it is for the surgeon to accomplish this task with a gland that is easily
deformed, such a development would have very large benefits. Other applications for augmented
displays include automobile servicing machines in which the mechanic sees instructions and struc-
tural diagrams superimposed on the actual machinery; tactical military displays in which the pilot
or tank driver sees indicators of friendly or hostile targets superimposed on a view of the land-
scape; and medical technology in which the surgeon sees an internal object, such as a brain tumor,
highlighted within the brain during surgical planning or actual surgery. In each case, visual data
is superimposed on real objects to supplement the information available to the user and enable
better or more rapid decision making. This data may take the form of written text labels or
sophisticated symbology.

In many augmented-reality systems, computer graphics imagery is superimposed on the envi-
ronment using a device called a beam-splitter. The splitter is actually used not to split but to
combine the images coming from the real world with those presented on a small computer
monitor. The result is like a double-exposed photograph. A typical beam-splitter allows approx-
imately half the light to pass through and half the light to be reflected. Figure 2.12 illustrates the
essential optical components of this type of augmented-reality display.

Because the optics are typically fixed in augmented-reality systems, there is only one depth
at which both the computer-generated imagery and the real-world imagery are in focus. This can
be both good and bad. If both real-world and virtual-world scenes are simultaneously in focus,
it will be easier to perceive them together. If this is desirable, care should be taken to set the focal
plane of the virtual imagery at the typical depth of the real imagery. However, it is sometimes
desirable that the computer imagery remain perceptually distinct from the real-world image.
For example, a transparent layer of text from an instruction manual might be presented on a

Right eye

Left eye Left eye

™ Fuse wall-eyed -~ ™ Fuse cross-eyed -~

Figure 2.11 Augmented system for assisting in breast biopsies. This is a simulation of a system that is under
development. The inside of the breast has been imaged using ultrasound, allowing the surgeon to guide
the biopsy needle to the suspicious-looking tissue. Reprinted with permission (State et al., 1996).
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Figure 2.12 In augmented-reality displays, computer graphics imagery is superimposed on the real-world
environment using a beam-splitter. The effect is like a transparent overlay on the environment. The focal
distance of the computer imagery depends on the power of the lenses used.

see-through display (Feiner et al., 1993). If the focal distances are different, the user can choose
to focus either on the text or on the imagery, and in this way selectively attend to one or the
other.

There is evidence that focus can cause problems with distance estimation in aircraft heads-
up displays (HUDs). In these displays, the virtual image is set at optical infinity, because only
distant objects are normally seen through a cockpit screen. Despite this, experiments have shown
that observers tend to focus at a distance closer than infinity with HUDs, and this can cause over-
estimation of distances to objects in the environment (Roscoe, 1991). This may be a serious
problem; according to Roscoe, it has been at least partially responsible for large numbers (one
per month) of generally fatal “controlled flight into the terrain” accidents in the United States
Air force.

Roscoe’s theory of what occurs is that the average apparent size of objects is almost per-
fectly correlated with the distance at which the eyes are focused (Iavecchia et al., 1988). But with
HUDs, the eyes are focused closer (for reasons that are not fully understood), leading to an under-
estimation of size and an overestimation of distance. Roscoe suggests that this can also partially
account for the fact that when virtual imaging is used, either in simulators or in real aircraft with
HUDs, pilots make fast approaches and land hard.

There are a number of other optical and perceptual problems with head-mounted displays
(HMDs). Progressive eyeglass lenses are not compatible with these displays because they require
a single focal distance. People use coordinated movements of both the eyes and the head to
conduct visual searches of the environment, and HMDs do not allow for the redirection of the
gaze with head movements. Ordinarily, when the angular movement of the eyes to the side is
large, head movements actually begin first. Peli (1999) suggested that looking sideways more
than 10 degrees off the center line is very uncomfortable to maintain. With an HMD the viewed
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image moves with the head, so compensatory head movements will fail to eliminate the dis-
comfort. Another problem is that see-through HMDs are typically only worn over one eye, and
the effect of binocular rivalry means that parts of the visual world and HMD imagery are likely
to spontaneously appear and disappear (Laramee and Ware, 2002). Thus, someone wearing such
a display while walking along a sidewalk would be likely to walk into lampposts!

Optics in Virtual-Reality Displays

Virtual-reality (VR) displays block out the real world, unlike the see-through augmented-reality
displays discussed previously. Thus the VR system designer need only be concerned with com-
puter-generated imagery. However, it is still highly desirable that correct depth-of-focus infor-
mation be presented to the user. Ideally, objects on which the user fixates should be in sharp
focus, while objects farther away or nearer should be blurred to the appropriate extents. Focus
is important in helping us to differentiate objects that we wish to attend to from other objects
in the environment.

Unfortunately, simulating depth of focus using a flat-screen display is a major technical
problem. It has two parts: simulating optical blur and simulating the optical distance of the virtual
object. There is also the problem of knowing what the user is looking at so that the object of
attention can be made sharp while other objects are displayed as though out of focus. Figure
2.13 illustrates one way that correct depth-of-focus information could be presented on a flat-
screen VR display. An eye tracker is used to determine where in the scene the eye is fixated. If
binocular eye trackers were used in a stereoscopic display, this information would be even more
accurate, because eye convergence information can be used to estimate the distance to the fixated
object. Once the object of attention is identified, an image is computed in such a way that the
fixated object is in sharp focus and other objects are appropriately out of focus. A sophisticated
system might measure pupil diameter and take this information into account. At the same time,
other system components change the focal lengths of the lenses in the display system so that the
attended virtual object is placed at the correct focal distance. All virtual objects are actually dis-
played on the screen in the conventional way, but with simulated depth of focus. Neveau and
Stark (1998) describe the optical and control requirements of such a system.

Chromatic Aberration

The human eye is not corrected for chromatic aberration. Chromatic aberration means that dif-
ferent wavelengths of light are focused at different distances within the eye. Short-wavelength
blue light is refracted more than long-wavelength red light. A typical monitor has a blue phos-
phor peak wavelength at about 480nm and a red peak at about 640nm, and a lens with a power
of 1.5 diopters is needed to make blue and red focus at the same depth. This is the kind of blur
that causes people to reach for their reading glasses. If we focus on a patch of light produced by
the red phosphor, an adjacent blue patch will be significantly out of focus. Because of chromatic
aberration, it is inadvisable to make fine patterns that use undiluted blue phosphor. Also, pure
blue text on a black background can be almost unreadable if there is white or red text nearby
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Screen

"

Use an eye tracker to
measure direction of gaze.

Change focal length of
lens so that fixated virtual
object is at correct focal distance.

Compute graphics imagery so that
objects at different focal distances
appear out of focus.

Attempt to determine
fixated object.

Ascertain distance
to object.

Figure 2.13 A possible solution to the problem of how correct depth-of-focus information might be displayed in a
virtual-reality (VR) display. The apple is the fixated object and is drawn in sharp focus. The other objects
are drawn out of focus, depending on their relative depths.

to attract the focusing mechanism. The addition of even a small amount of red and green will
alleviate the problem, because these colors will provide luminance edges to perceptually define
the color boundary.

The chromatic aberration of the eye can give rise to strong illusory depth effects (Jackson et
al., 1994). This is illustrated in Figure 2.14, where both blue text and red text are superimposed
on a black background. For about 60% of observers, the red appears closer. But 30% see the
reverse, and the remaining 10% see the colors lying in the same plane. It is common to take
advantage of this in slide presentations by making the background a deep blue, which makes
white or red lettering appear to stand out for most people.

Receptors

The lens focuses an image on a mosaic of photoreceptor cells that line the back of the eye in a
layer called the retina. There are two types of such cells: rods, which are extremely sensitive at



The Environment, Optics, Resolution, and the Display 41

Figure 2.14 Chromostereopsis. For most people, the red advances and the blue recedes.

low light levels, and cones, which are sensitive under normal working light levels. There are about
100 million rods and only 6 million cones. Rods contribute far less to normal daytime vision
than cones do. The input from rods is pooled over large areas, with thousands of rods con-
tributing to the signal that passes up through a single fiber in the optic nerve. Rods are so sen-
sitive that they are overloaded in daylight and effectively shut down; therefore, most vision
researchers ignore their very slight contribution to normal daylight vision.

The fovea is a small area in the center of the retina that is densely packed only with cones,
and it is here that vision is sharpest. Cones at the fovea are packed about 20-30sec of arc apart
(180 per degree). There are more than 100,000 cones packed into this central small area, sub-
tending a visual angle of 1.5 to 2 degrees. Although it is usual to speak of the fovea as a 2-degree
field, the greatest resolution of detail is obtained only in the central 1/2 degree of this region.
Remember that one degree is about the size of your thumbnail held at arm’s length. Figure 2.15
is an image of the receptor mosaic in the fovea. The receptors are arranged in an irregular but
roughly hexagonal pattern.

Simple Acuities

Visual acuities are measurements of our ability to see detail. Acuities are important in display
technologies because they give us an idea of the ultimate limits on the information densities that
we can perceive. Some of the basic acuities are summarized in Figure 2.16.

Most of the acuity measurements in Figure 2.16 suggest that we can resolve things, such as
the presence of two distinct lines, down to about 1 minute. This is in rough agreement with the
spacing of receptors in the center of the fovea. For us to see that two lines are distinct, the blank
space between them should lie on a receptor; therefore, we should only be able to perceive lines
separated by roughly twice the receptor spacing. However, there are a number of superacuities,
of which vernier acuity and stereo acuity are examples. A superacuity is the ability to perceive
visual properties of the world to a greater precision than could be achieved based on a simple
receptor model. Superacuities can be achieved only because postreceptor mechanisms are capable
of integrating the input from many receptors to obtain better than single-receptor resolution. A
good example of this is vernier acuity, the ability to judge the colinearity of two fine line
segments. This can be done with amazing accuracy to better than 10 seconds of arc. To give
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Figure 2.15 The receptor mosaic in the fovea. From Frisby (1979). Used by permission.

an idea of just how accurate this is, a normal computer monitor has about 40 pixels (picture ele-
ments) per centimeter. We can perform vernier acuity tasks that are accurate to about 1/10 of a
pixel.

Neural postprocessing can efficiently combine input from two eyes. Campbell and Green
(19635) found that binocular viewing improves acuity by 7% as compared with monocular
viewing. They also found a V2 improvement in contrast sensitivity. This latter finding is remark-
able because it supports the theory that the brain is able to perfectly pool information from the
two eyes, despite the three or four synaptic connections that lie between the receptors and the
first point at which the information from the two eyes can be combined.

Interestingly, Campbell and Green’s findings suggest that we should be able to use the
ability of the eye to integrate information over space and time to allow perception of higher-res-
olution information than is actually available on our display device. One technique for achiev-
ing higher-than-device resolution is antialiasing, which is discussed later in this chapter. There is
also an intriguing possibility that the temporal-integration capability of the human eye could be
used to advantage. This is why a sequence of video frames seems of higher quality than any single
frame.
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Point acuity (1 minute of arc):
The ability to resolve two distinct
point targets.

Grating acuity (1-2 minutes of arc):
The ability to distinguish a pattern
of bright and dark bars from a
uniform gray patch.

Letter acuity (5 minutes of arc):

The ability to resolve letters.

The Snellen eye chart is a standard
way of measuring this ability. 20/20
vision means that a 5-minute letter
target can be seen 90% of the time.

Stereo acuity (10 seconds of arc):
The ability to resolve objects in
depth. The acuity is measured

as the difference between two angles
(a and b) for a just-detectable

depth difference.

Vernier acuity (10 seconds of arc):
The ability to see if two line
segments are collinear.

Figure 2.16

The basic acuities.
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Acuity Distribution and the Visual Field

If we look directly ahead and hold our arms straight out to either side, then we can just see both
hands when we wiggle our fingers. This tells us that both eyes together provide a visual field of
a bit more than 180 degrees. The fact that we cannot see our fingers until they move also tells
us that motion sensitivity in the periphery is better than static sensitivity. Figure 2.17 illustrates
the visual field and shows the roughly triangular region of binocular overlap within which both
eyes receive input. The reason that there is not more overlap is that the nose blocks the view.
Visual acuity is distributed over this field in a very nonuniform manner. As shown in Figure 2.18,
acuity outside of the fovea drops rapidly, so that we can only resolve about one-tenth the detail
at 10 degrees from the fovea.

100

Figure 2.17 The visual field of view for a person gazing straight ahead. The irregular boundaries of the left and right
fields are caused by facial features such as the nose. The darker-gray area shows the region of
binocular overlap.
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Figure 2.18 The acuity of the eye falls off rapidly with distance from the fovea.

Normal acuity measures are one-dimensional; they measure our ability to resolve two points
or two parallel lines as a function of the distance between them. But if we consider the total
number of points that can be perceived per unit area, this measure falls according to an inverse
square law. We can actually only see one hundredth the number of points in an area at 10 degrees
of eccentricity from the fovea. To put it another way, in the middle of the visual field, at the
fovea, we can resolve about 100 points on the head of a pin. At the edge of the visual field, we
can only discriminate objects the size of a fist.

The variation in acuity has been vividly expressed in an eye chart developed by Stuart Anstis
(1974). The chart is shown in Figure 2.19. If you look at the center of the chart, each of the
characters is equally distinct. To make this chart Anstis took measurements of the smallest letter
that could be seen at many angles of eccentricity from the fovea. In this version, each letter is
about 5 times the smallest resolvable size for people with 20/20 vision. Anstis found that the size
of the smallest distinct characters could be approximated by the simple function

Character Size = 0.046¢ (2.7)

where e is the eccentricity from the fovea measured in degrees of visual angle.

This variation in processing power with eccentricity is revealed in the structure of the brain
at many levels of visual processing. For example, area V1 is the primary cortical reception area
for signals from the eye. Half of area V1 represents the central 10 degrees of vision and this, in
turn, represents only about 3% of the visual field.
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Figure 2.19 An eye chart developed by Anstis (1974). Each character is about five times the smallest perceivable size
when the center is fixated. This is the case for any viewing distance.

Since space in the brain is carved up very differently than the uniform pixels of a computer
screen, we need a new term to talk about the image units used by the brain to process space.
Let’s call them brain pixels. Although there are many areas in the brain with nonuniform image
maps, retinal ganglion cells best capture the brain pixel idea. Retinal ganglion cells are neurons
that send information from the eyeball up the optic nerve to the cortex. Each one pools infor-
mation from many rod and cone receptors, as illustrated in Figure 2.20. In the fovea, a single
ganglion cell may be devoted to a single cone; whereas in the far periphery each ganglion cell
receives information from thousands of rods and cones. There is one nerve fiber called an axon,
which carries the signal from each ganglion cell, and there are about a million axons in each
optic nerve. The visual area that feeds into a ganglion cell is called its receptive field. Drasdo
(1977) found that retinal ganglion cell size could be approximated by the function

Receptive Field Size = 0.0006(e +1.0) (2.8)

where e is the eccentricity from the fovea measured in degrees of visual angle.
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Figure 2.20 The retina is comprised of receptors and several layers of neurons. The big octopuslike neurons at the
top of this drawing are retinal ganglion cells. These transmit retinal information to the brain. /llustration
by Tartufieri.

Note that Equation 2.6 is very similar to Anstis’s equation (2.5) when we take into account
that many brain pixels are needed to resolve something as complex as a letter of the alphabet.
Assuming that a 7 X 7 matrix of brain pixels is needed to represent a character brings the two
functions into close agreement.

Brain Pixels and the Optimal Screen

In light of the extreme nonuniformity of brain pixels, we can talk about the visual efficiency of
a display screen by asking what screen size provides the best match of screen pixels to brain
pixels. What happens when we look at the very wide-angle screen provided by some head-
mounted virtual reality displays? Are we getting more information into the brain, or less? What
happens when we look at the small screen of a personal digital assistant, or even a wristwatch-
sized screen? One way to answer these questions is to model how many brain pixels are
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stimulated by different screens having different sizes but the same number of pixels. To make the
comparison fair, we should keep the viewing distance constant.

There are two types of inefficiency that occur when we view flat displays. These are illus-
trated in Figure 2.21. At the fovea there are many brain pixels for each screen pixel. To have
higher-resolution screens would definitely help foveal vision. However, off to the side, the situa-
tion is reversed; there are many more screen pixels than brain pixels. We are, in a sense, wasting
information, because the brain cannot appreciate the detail and we could easily get away with
fewer pixels.

In modeling the visual efficiency of different screen sizes, we can compute the total number
of brain pixels (TBP) stimulated by the display.

TPB = total number of brain pixels stimulated by a display (2.9)

We can also compute the number of uniquely stimulated brain pixels (USBP). Many brain pixels
get the same signal when we look at a low-resolution screen and are therefore redundant, pro-
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Figure 2.21 The acuity graph illustrates how computer screens of different sizes but the same number of pixels
match human visual acuity. Brain pixels are illustrated as circles, screen pixels as squares. (a) In the
center of vision, for the small screen, there are 10 or more brain pixels per screen pixel. (b) With the big
screen, there are over a hundred brain pixels getting information from the same screen pixel. (c) In the
periphery of the visual field, for the small screen, screen pixels are smaller than brain pixels. (d) In the
periphery of the visual field, there is a better match for the big screen.
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viding no extra information. Therefore, to count uniquely stimulated brain pixels, we use the
following formula:

USBP = TPB — redundant brain pixels (2.10)

To obtain a measure of how efficiently a display is being used, we take the ratio of USBP to
screen pixels (SP). This measure is called display efficiency (DE). Note that if there were a perfect
match, with one screen pixel for every brain pixel, we would have a display efficiency of 1.0 or
100%.

DE = USPB/SP (2.11)

Finally, we might be interested in the ratio between USBP and the brain pixels covered by a
display. This measure of visual efficiency (VE) tells us the proportion of brain pixels in the screen
area that are getting unique information.

VE = USPB/TBP (2.12)

Figure 2.22 illustrates a numerical simulation of what happens to TBP and USBP as we change
the size of the screen. It is based on Drasdo’s (1977) model and assumes a million square pixels
at a constant viewing distance of 50cm. It takes into account that pixels near the edge of a large
screen are both farther away and viewed obliquely—and are therefore visually smaller than pixels
in the center. In fact, their visual area declines by cos?(8) where 0 is the angle of eccentricity. For
illustrative purposes, the display widths equivalent to a conventional monitor and a single wall
of a Cave Automatic Virtual Environment (CAVE) display are shown. A CAVE is a virtual reality
display where the participant stands in the center of a cube, each wall of which is a display screen.
In Figure 2.22 the sizes have been normalized to a standard viewing distance by using equiva-
lent visual angles. Thus a CAVE wall of 2 meters at a viewing distance of 1 meter is equivalent
to a 1-meter display at 50 centimeters, given that both have the same number of pixels.

The simulation of the one-million pixel display reveals a number of interesting things. For
a start, even though a conventional monitor covers only about 5-10% of our visual field when
viewed normally, it stimulates almost 50% of brain pixels. Thus even if we could have very
high-resolution, large screens, we would not be getting very much more information into the
brain. Figure 2.22 shows that USBPs peak at a width close to the normal monitor viewing with
a display efficiency of 30% and declines somewhat as the screen gets larger. If we consider that
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Figure 2.22 Results from a numerical simulation with a one-million pixel screen to show how many brain pixels are
stimulated as a display increases in size. Display efficiency (right-hand scale) gives the percentage of
screen pixels that uniquely influence the visual system (unique brain pixels) and only applies to the lower
curve.

our visual field is a precious resource and there are other things besides computer graphics that
we may wish to see, this confirms that computer screens are currently about the right size for
most tasks. However, larger screens certainly have their uses in supporting many viewers.

There is an argument that the center of the visual field is even more important for many
tasks than its huge brain pixel concentration would suggest. A natural way of seeking informa-
tion (discussed in Chapter 11) is to use eye movements to bring the information to the fovea.
The parafovea may be optimal for pattern perception; it is an area that is about 6 degrees in
diameter, centered on the fovea. Most charts and diagrams in this book are presented to be
roughly parafoveal size. The periphery is undoubtedly important in situation awareness and alert-
ing, but when visual pattern finding for decision making is required, this relatively small region
may be the most critical.

Of course, one conclusion to be drawn from this analysis is that we need more pixels in our
displays. A display recently developed by IBM (T221) is only slightly larger than a normal desktop
monitor, but it has 3840 x 2600 pixels, providing a visual quality close to that of high-quality
printing. Large field displays become much more effective if they have a similarly large number
of pixels, so that when we move our eyes to a new spot we actually gain more information.
Another conclusion is that we should have small, high-resolution screens on devices such as per-
sonal digital assistants. In terms of the valuable real estate of the human visual field, a small,
high-resolution device uses a small part of visual space but does so very efficiently. Figure 2.23
shows that VE is greatest for small screens; a one-million pixel screen that is only 10cm wide,



The Environment, Optics, Resolution, and the Display 51

Monitor Wide screen

100
g
(V]
o
[
k=
o
g_J 50
S
&
Q
©
2
2

0 50 100

Display width (cm)

Figure 2.23 Visual efficiency is defined as the percentage of brain pixels that are uniquely stimulated within the
retinal image of the screen. This shows the results from a numerical simulation with one million pixels.

held at arm’s length, has a resolution equal to the resolution in the fovea and is therefore close
to 100% efficient by this measure.

One way to increase the visual efficiency of a display is to have more than one resolution.
The CAE fiber-optic helmet-mounted display (FOHMD) is one of the widest-field displays
made (Shenker, 1987). Designed for helicopter simulators, it has a 127 x 66—degree low-resolu-
tion field of view, with a high-resolution 25 x 19-degree insert that is coupled to the user’s
eye position via an eye-tracking system (see Figure 2.24). It has 5 arc minutes per pixel in the
background and 1.5 arc minutes per pixel in the insert. However, even this advanced system pro-
vides computer graphics imagery to less than half the total visual field. The region of binocular
overlap is even more impoverished—less than 15% of that available under real-world viewing
conditions.

Spatial Contrast Sensitivity Function

The rather simple pattern shown in Figure 2.25 has become one of the most useful tools in mea-
suring basic properties of the human visual system. This pattern is called a sine wave grating,
because its brightness varies sinusoidally in one direction. There are five ways in which this
pattern can be varied:

1. Spatial frequency (the number of bars of the grating per degree of visual angle)
2. Orientation

3. Contrast (the amplitude of the sine wave)
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Figure 2.24 The CAE FOHMD has a low-resolution background display for each eye and a high-resolution inset
slaved to the user’s direction of gaze. The gray region illustrates the human visual field of view for
comparison. The high-resolution inset is approximately the size of a computer monitor at a normal
viewing distance.

Figure 2.25 A sine wave grating.

4. Phase angle (the lateral displacement of the pattern)
5. Visual area covered by the grating pattern

The grating luminance is defined by the following equation:

L=05+ ‘-’sin(zﬂ+ 9) (2.13)
2 O o
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where a is the contrast (amplitude), w is the wavelength, ¢ is the phase angle, and x is the posi-
tion on the screen. L denotes the resulting output light level in the range [0, 1], assuming that
the monitor is linear (see the discussion of gamma correction in Chapter 3).
One way to use a sine wave grating is to measure the sensitivity of the eye/brain system to
the lowest contrast that can be detected and to see how this varies with spatial frequency.
Contrast is defined by

C — Lmax — Lmin (2.14)
L..+L

‘max ‘min

where Ly, is the peak luminance and L., is the minimum luminance.

The result is called a spatial modulation sensitivity function.

Figure 2.26 is a pattern designed to allow you to see directly the high-frequency fall-off in
the sensitivity of your own visual system. It is a sinusoidally modulated pattern of stripes that
varies from left to right in terms of spatial frequency and from top to bottom in terms of

[ I I I |
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Figure 2.26 This grating pattern changes frequency exponentially from left to right and varies in contrast in a vertical
direction. The highest frequency you can resolve depends on the distance from which you view the
pattern. The scale gives the spatial frequency if it is viewed from 2.3 m.
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contrast. If you view this from 2 m, you can see how your sensitivity to high-frequency patterns
is reduced.

The human spatial contrast sensitivity function varies dramatically with spatial frequency,
falling off at both high and low values. We are most sensitive to patterns of bright and dark bars
occurring at about 2 or 3 cycles per degree. Figure 2.27 shows typical functions for three dif-
ferent age groups. Sensitivity falls off to zero for fine gratings of about 60 cycles per degree for
younger people. As we age, we become less and less sensitive to higher spatial frequencies
(Owlsley et al., 1983). It is not just that the finest detail we can resolve declines with age. We
actually become less sensitive to any pattern components above 1 cycle per degree.

What is perhaps surprising about Figure 2.27 is that there is also a fall-off at low spatial fre-
quencies. We are insensitive both to gradual changes and very rapid changes in light patterns.
One of the practical implications of the low-frequency fall-off in sensitivity is that many
monitors are very nonuniform, yet this goes unremarked. A typical monitor or television display
may vary by as much as 30% or more over its face (it is usually brightest in the center), even if
it is displaying a supposedly uniform field. Because we are insensitive to this very gradual
(low-frequency) variation, however, we fail to notice the poor quality. Low spatial frequency
acuity may also be critical for our perception of large spatial patterns as they are presented in
large field displays.
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Figure 2.27 Contrast sensitivity varies with spatial frequency. The function is illustrated for three age groups. As we
age, our sensitivity to higher spatial frequencies is reduced. Redrawn from Owlsley et al. (1983).
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Figure 2.28 Contour map of the human spatiotemporal threshold surface (adapted from Kelly, 1979). Each contour
represents the contrast at which a particular combination of spatial and temporal frequencies can be
detected.

Most tests of visual acuity, such as letter or point acuity, are really tests of high-frequency
resolution, but this may not always be the most useful thing to measure. In tests of pilots’ per-
formance, it has been shown that low-frequency contrast sensitivity is actually more important
than simple acuity in measuring their performance in flight simulators (Ginsburg et al., 1982).

Visual images on the retina vary in time as well as in space. We can measure the temporal
sensitivity of the visual system in much the same way that we measure the spatial sensitivity. This
involves taking a pattern, such as that shown in Figure 2.25, and causing it to oscillate in con-
trast from high to low and back again over time. This oscillation in contrast is normally done
using a sinusoidal function. Over time, the dark bars become bright bars and then darken again.
When this technique is used, both the spatial and the temporal sensitivity of human vision can
be mapped out. Once this is done, it becomes evident that spatial-frequency sensitivity and
temporal-frequency sensitivity are interdependent.

Figure 2.28 shows the contrast threshold for a flickering grating as a function of its tempo-
ral frequency and its spatial frequency (Kelly, 1979). This shows that optimal sensitivity is
obtained for a grating flickering at between 2 and 10 cycles per second (Hz). It is interesting to
note that the low-frequency fall-off in sensitivity is much less when a pattern is flickering at
between 5 and 10Hz. If we were interested only in being able to detect the presence of patterns
in data, making those patterns flicker at 7 or 8 Hz would be the best way to present them. There
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are many other reasons, however, why this is not a good idea; in particular, it would undoubt-
edly be extremely irritating. The limit of human sensitivity to flicker is about 50Hz.

When the spatial- and temporal-frequency analysis of the visual system is extended to color,
we find that chromatic spatial sensitivity is much lower, especially for rapidly changing patterns.
In Chapter 4, the spatial and temporal characteristics of color vision are compared to those of
the black-and-white vision we have been discussing.

Visual Stress

On December 17, 1997, a Japanese television network canceled broadcasts of an action-packed
cartoon because its brightly flashing scenes caused convulsions, and even vomiting of blood, in
more than 700 children. The primary cause was determined to be the repetitive flashing lights
produced by the computer-generated graphics. The harmful effects were exacerbated by the
tendency of children to sit very close to the screen. Vivid, repetitive, large-field flashes are known
to be extremely stressful to some people.

The disorder known as pattern-induced epilepsy has been reported and investigated for
decades. Some of the earliest reported cases were caused by the flicker from helicopter rotor
blades; this resulted in prescreening of pilots for the disorder. In an extensive study of the
phenomenon, Wilkins (1995) concludes that a particular combination of spatial and temporal
frequencies is especially potent: striped patterns of about 3 cycles per degree and flicker rates of
about 20Hz are most likely to induce seizures in susceptible individuals. Figure 2.29 illustrates
a static pattern likely to cause visual stress. The ill effects also increase with the overall size of
the pattern. But visual stress may not be confined to individuals with a particular disorder. Wilkins
argues that striped patterns can cause visual stress in most people. He gives normal text as an
example of a pattern that may cause problems because it is laid out in horizontal stripes, and
shows that certain fonts may be worse than others.

The Optimal Display

Acuity information is useful in determining what is needed to produce an adequate or optimal
visual display. A modern high-resolution monitor has about 35 pixels per cm. This translates to
40 cycles per degree at normal viewing distances. Given that the human eye has receptors packed
into the fovea at roughly 180 per degree of visual angle, we can claim that in linear resolution, we
are about a factor of four from having monitors that match the resolving power of the human
retina in each direction. A 4000 x 4000—pixel resolution monitor should be adequate for any con-
ceivable visual task, leaving aside, for the moment, the problem of superacuities. Such a monitor
would require 16 million pixels. The highest-resolution monitor currently available is an IBM LCD
display with 3840 x 2400 pixels, more than nine million. However, at the time of writing there are
no consumer graphics cards capable of delivering smooth animation on this display.

We come to a similar conclusion about the ultimate display from the spatial modulation
transfer function. Humans can resolve a grating of approximately 50 cycles per degree. If we
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Warning! This pattern can cause seizures in some individuals.
If it causes you to feel ill effects, avoid looking at it.

Figure 2.29 A pattern that is designed to be visually stressful. If it is viewed from 40 cm, the spacing of the stripes is
about 3 cycles per degree.

take into account the sampling theory that states that we must sample at more than twice the
highest frequency we wish to detect, this suggests that we need more than 100 pixels per degree.
Perhaps 150 pixels per degree would be reasonable.

If 150 pixels per degree is sufficient, we must ask why manufacturers produce laser printers
capable of 1200 dots per inch (460 dots per centimeter). There are three reasons: aliasing, gray
levels, and superacuities. The first two of reasons are essentially technical, not perceptual, but
they are worth discussing because they have significant implications in perception. The problems
are significant for most display devices, not just for printers.

Aliasing

A fundamental theorem of signal transmission tells us that a signal can be reconstructed from
its samples only if the samples are obtained at a frequency at least twice the highest frequency
contained in the source. This is called the Nyquist limit (Gonzalez and Woods, 1993). Aliasing
effects occur when a regular pattern is sampled by another regular pattern at a different fre-
quency. Figure 2.30 illustrates what happens when a pattern of black and white stripes is sampled
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Figure 2.30 A striped pattern is sampled by pixels. The result is shown in the lower diagram.

Figure 2.31 Aliasing artifacts, with antialiasing as a solution.

by an array of pixels whose spacing is slightly greater than the wavelength. We assume that the
pattern of input stripes is sampled at the center of each pixel. The resulting pattern has a much
wider spacing.

Aliasing can cause all kinds of unwanted effects. Patterns that should be invisible because
they are beyond the resolving power of the human eye can become all too visible. Patterns that
are unrelated to the original data can occur in moiré fringes. Aliasing effects are especially bad
when some regular pattern is sampled by another regular pattern. This is surely the reason that
the retinal mosaic of receptor cells is not regular except in small patches (Figure 2.15).

Another aliasing effect is illustrated in Figure 2.31. The line shown in the top part of the figure
becomes a staircase pattern when it is drawn using large pixels. The problem is that each pixel
samples the line at a single point. Either the point is on the line, in which case the pixel is colored
black, or it is not, in which case the pixel is colored white. A set of techniques known as antialias-
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Figure 2.32  An aliased line that is not quite horizontal.

ing can help with this. Antialiasing consists of computing the average of the light pattern that is
represented by each pixel. The result is shown in the lower part of Figure 2.31. Proper antialias-
ing can be a more cost-effective solution than simply increasing the number of pixels in the display.
With it, a low-resolution display can be made as effective as a much higher-resolution display, but
it does require extra computation. In addition to antialiasing, a full-color image requires properly
averaging the three color components, not just the brightness levels.

In data visualization, aliasing effects can sometimes actually be useful. For example, it is
much easier to judge whether a line is perfectly horizontal on the screen with aliasing than without
(Figure 2.32). Because of our ability to see very small line displacements (vernier acuity), alias-
ing makes small misalignments completely obvious. It is also possible that the spatial-frequency
amplification illustrated in Figure 2.30 can be used as a deliberate technique to magnify certain
kinds of regular patterns, to make invisibly fine variations visible.

Number of Dots

The main reason we need 1200 dots per inch on a laser printer is that the dots of a laser printer
are either black or white; to represent gray, many dots must be used. Essentially, one pixel is
made up of many dots. Thus, for example, a 16 x 16 matrix of dots can be used to generate 257
levels of gray because from 0 to 256 of the dots can be colored black. In practice, square patches
are not used, because these cause aliasing problems. To correct aliasing effects, randomness is
used in distributing the dots, and errors are propagated from one patch to neighboring patches.
Most graphics textbooks provide an introduction to these techniques (e.g., Foley et al., 1990).
The fact that grays are made from patterns of black and white dots means that the resolution of
a laser printer actually is 1200 dots per inch only for black-and-white patterns. For gray pat-
terns, the resolution is at least ten times lower than this.

Superacuities and Displays

Superacuities provide a reason why we might wish to have very high-resolution monitors. As dis-
cussed earlier, superacuities occur because the human visual system can integrate information
from a number of receptors to give better-than-receptor resolution. For example, in vernier acuity,
better than 10-arc-second resolution is achievable.

However, in my laboratory, we have obtained experimental evidence that antialiasing can
result in superacuity performance on vernier acuity tasks. This involves making judgments to see
differences in the alignment of fine lines that are actually smaller than individual pixels. Figure
2.33 shows data from an experiment that my research assistant, Tim Millar, and I carried out to
determine whether vernier acuity performance can be achieved to higher-than-pixel resolution if
the lines are antialiased.
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Figure 2.33 Results from an experiment measuring vernier acuity. The threshold is defined as half the horizontal
difference between the 25% threshold and the 75% threshold.

In the standard vernier acuity task, subjects judge whether one vertical line is above or below
another (as in Figure 2.16). The lines are placed end to end with a small lateral displacement
between them. The purpose of the experiment is to determine how small a displacement can be
perceived more than 50% of the time (Berry, 1948). In our study, one line was displaced hori-
zontally by an amount that varied randomly in a range between 1 pixel and -1 pixel, corre-
sponding to £30 seconds of arc at the viewing distance we chose. The question asked was “Is
the lower line to the right of the upper line?” The percentage correct was computed based on
the answers given over a large number of trials. By convention, vernier acuity is defined as half
the difference between 25% correct performance and 75% correct performance. In Figure 2.33,
two of our results are shown for aliased and antialiased lines. The actual threshold is half of each
range on the x-axis. Thus, Figure 2.33 shows a 15-sec vernier acuity threshold (30sec x 0.5) for
aliased lines and a 7.5-sec threshold (15sec x 0.5) for antialiased lines. This data shows that
given proper antialiasing, superacuity performance to better-than-pixel resolution can be
achieved.

Temporal Requirements of the Perfect Display

Just as we can evaluate the spatial requirements for a perfect monitor, so can we evaluate the
temporal requirements. Fifty-Hz flicker is about the limit of resolution that most of us can per-
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ceive. Hence the 50-75-Hz refresh rate of the typical monitor would seem to be adequate.
However, temporal aliasing artifacts are common in computer graphics and movies. The “revers-
ing wagon wheel” effect is the one most often noticed (the wheel of a wagon in a western movie
appears to rotate in the wrong direction). Temporal aliasing effects are especially pronounced
when the image update rate is low, and it is common in data visualization systems to have ani-
mated images that are updated only about 10 times per second even though the screen is refreshed
at 60Hz or better. An obvious result is the breaking up of a moving object into a series of dis-
crete objects. If the data contains a repetitive temporal pattern, aliasing and sampling effects can
occur that are the analogs of the spatial-aliasing effects. Sometimes a single object can appear to
be multiple objects.

To correct these problems, temporal antialiasing can be employed. Part of a moving image
may pass through several pixels over the course of a single animation frame. The correct antialias-
ing solution is to color each pixel according to the percentage contributions of all the different
objects as they pass through it for the duration of the animation frame. Thus, if the refresh rate
is 60 Hz, a program must calculate the average color for each pixel that is affected by the moving
pattern for each 1/60-second interval. This technique is often called motion blur. It can be com-
putationally expensive in practice and is rarely done except in the case of high-quality anima-
tions created for the movie industry. As computers become faster, we can expect antialiasing to
be more widely used in data visualization, because there is no doubt that aliasing effects can be
visually disturbing and occasionally misleading.

Conclusion

In comparison with the richness of the visual world, the cathode ray tube (CRT) computer screen
is simple indeed. It is remarkable that we can achieve so much with such a limited device. In the
world, we perceive subtly textured, visually rich surfaces, differentiated by shading, depth-of-
focus effects, and texture gradients. The CRT screen merely produces a two-dimensional array
of colors. Gibson’s concept of the ambient optical array, introduced at the beginning of this
chapter, provides a context for understanding the success of this device, despite its shortcomings.
Given a particular direction and a viewing angle of 20 degrees or so, the CRT is capable of repro-
ducing many (but not all) of those aspects of the ambient array that are most important to per-
ception. As we shall see in Chapter 4, this is especially true in the realm of color, where a mere
three colors are used to effectively reproduce much of the gamut to which humans are sensitive.
Spatial information, in the form of texture gradients and other spatial cues, is also reproducible
to some extent on a CRT. However, there are problems in the reproduction of fine texture. The
actual pixel pattern, or phosphor-dot pattern, of a CRT may provide a texture that visually com-
petes with the texture designed for display.

A typical monitor only stimulates perhaps 5-10% of the visual field at normal viewing dis-
tances, as shown in Figure 2.24. However, this is not as serious a shortcoming as it might seem,
because the central field of view is heavily overweighted in human visual processing. In fact,
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looking at the center of a typical monitor screen from a normal viewing distance stimulates con-
siderably more than 50% of the visual processing mechanisms in the brain (Wilkins, 1995). A
monitor is also deficient in that it has limited dynamic range compared to the huge range of light
levels that can occur in the environment. But this is not so bad, because the eye neglects the
absolute light level and adapts to the prevailing conditions. At any given time, the range over
which the eye functions is no more than two orders of magnitude, and the dynamic range of a
CRT is not much worse than this.

Nevertheless, the CRT has some serious deficiencies as a device for presenting visual data.
One of these is its lack of ability to provide focal depth-of-focus information. In the real world,
the eye must refocus on objects at different distances. Because this is not the case for computer
graphics presented on the screen, it can confuse our spatial processing systems. This problem will
be discussed further in Chapter 8 under the heading “The Vergence-Focus Problem.”

A second major problem with the CRT is perhaps more profound. Although we may be able
to fool the eye into thinking that the abstractions displayed on a CRT are in some ways like
objects in the real world, the illusion becomes painfully evident when it comes to interacting with
these objects. To use Gibson’s terminology, we may be able to fool the eye into believing that a
certain set of affordances exists, but when users wish to take advantage of these affordances and
reach out and touch the artificial objects, the artifice is revealed. There are no haptic affordances
on a CRT screen, and interaction is necessarily indirect and more or less artificial.

The idea of virtual reality is to get around these problems by providing natural interaction.
With the addition of force feedback devices, it is now possible to simulate a sense of contact with
objects. Such haptic devices are now expensive, difficult to program, and have a limited range,
but we may hope that displays will eventually offer both high-quality visual information and
natural interaction with graphical objects.



CHAPTER 3

Lightness, Brightness,
Contrast, and Constancy

It would be dull to live in a gray world, but we would actually get along just fine 99% of the
time. Technically, we can divide color space into one luminance (gray scale) dimension and two
chromatic dimensions. It is the luminance dimension that is most basic to vision and under-
standing. It can help us answer practical questions: How do we map data to a gray scale? How
much information can we display per unit area? How much data can we display per unit time?
Can gray scales be misleading? (The answer is yes.)

However, to understand the applications of gray scales we need to address other, more fun-
damental questions: How bright is a patch of light? What is white? What is black? What is a
middle gray? These are simple-sounding questions, but the answers are complex and lead us to
many of the basic mechanisms of perception. The fact that we have light-sensing receptors in our
eyes might seem like a good starting point. But individual receptor signals tell us very little. The
nerves that transmit information from the eyes to the brain transmit nothing about the amount
of light falling on the retina. Instead, they signal the relative amount of light: how a particular
patch differs from a neighboring patch, or how a particular patch of light has changed in the
past instant. Neurons in the early stages of the visual system do not behave like light meters;
they behave like change meters.

The signaling of differences is not special to lightness and brightness. This is a general prop-
erty of many early sensory systems, and we will come across it again and again throughout this
book. The implications of this are fundamental to the way we perceive information. The fact
that differences, not absolute values, are transmitted to the brain accounts for contrast illusions
that can cause substantial errors in the way data is “read” from a visualization. The signaling
of differences also means that the perception of lightness is nonlinear, and this has implications
for the gray-scale coding of information. But to belabor the occasional inaccuracies of percep-
tion does not do justice to millions of years of evolution. The fact that the early stages of vision
are nonlinear does not mean that all perception is inaccurate. On the contrary, we usually can
make quite sophisticated judgments about the lightness of surfaces in our environments. This

69
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chapter shows how simple, early visual mechanisms can help our brains do sophisticated things,
such as see objects correctly no matter what the illumination level.

This chapter is also the first part of a presentation of color vision. Luminance can be regarded
as one of three color dimensions, albeit the most important one. Discussing this dimension in
isolation gives us an opportunity to examine many of the basic concepts of color with a simpler
model. (This is expanded, in Chapter 4, into a full three color—channel model.) We start by intro-
ducing neurons and the concept of the visual receptive field; a number of display distortion effects
that can be explained by these simple mechanisms. The bulk of this chapter is taken up with a
discussion of the concepts of luminance, lightness, and brightness and the implications of these
for data display.

The practical lessons of this chapter are related to the way data values can be mapped to
gray values using gray-scale coding. The kinds of perceptual errors that can occur owing to simul-
taneous contrast are discussed at length. More fundamentally, the reasons the visual system makes
these errors provide a general lesson. The nervous system works by computing difference signals
at almost every level. The lesson is that visualization is not good for representing precise absolute
numerical values, but rather for displaying patterns of differences or changes over time, to which
the eye and brain are extremely sensitive.

Neurons, Receptive Fields, and Brightness Hlusions

Neurons are the basic circuits of information processing in the brain. In some respects they are
like transistors, only much more complex. Like the digital circuits of a computer, neurons respond
with discrete pulses of electricity. However, unlike transistors, neurons are connected to hundreds
and sometimes thousands of other neurons. Much of our knowledge about the behavior of
neurons comes from single-cell recording techniques whereby a tiny microelectrode is actually
inserted into a cell and the cell’s electrical activity is monitored. Most neurons are constantly
active, emitting pulses of electricity through connections with other cells. Depending on the input,
the rate of firing can be increased or decreased as the neuron is excited or inhibited. Neuro-
scientists often set up amplifiers and loudspeakers in their laboratories so that they can hear the
activity of cells that are being probed. The result is like the clicking of a Geiger counter, becom-
ing rapid when the cell is excited and slowing when it is inhibited.

There is considerable neural processing of information in the eye itself. Several layers of cells
in the eye culminate in retinal ganglion cells. These ganglion cells send information through the
optic nerve via a way station called the lateral geniculate nucleus, on to the primary visual pro-
cessing areas at the back of the brain, as shown in Figure 3.1.

The receptive field of a cell is the visual area over which a cell responds to light. This means
that patterns of light falling on the retina influence the way the neuron responds, even though it
may be many synapses removed from receptors. Retinal ganglion cells are organized with circu-
lar receptive fields, and they can be either on-center or off-center. The activity of an on-center
cell is illustrated in Figure 3.2. When this cell is stimulated in the center of its receptive field, it
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Figure 3.1 Signals from the retina are transmitted along the optic nerve to the lateral geniculate nucleus. From

there, they are distributed to a number of areas, but mostly to Visual Area 1 of the cortex, located at the
back of the head.

emits pulses at a greater rate. When the cell is stimulated outside of the center of its field, it
emits pulses at a lower-than-normal rate and is said to be inhibited. Figure 3.2 also shows
the output of an array of such neurons being stimulated by a bright edge. The output of this
system is an enhanced response on the bright side of the edge and a depressed response on the
dark side of the edge, with an intermediate response to the uniform areas on either side. The cell
fires more on the bright side because there is less light in the inhibitory region; hence, it is less
inhibited.

A widely used mathematical description of the concentric receptive field is the Difference of
Gaussians model (often called the DOG function):

2 2

2 ) -

f(x)= 0Llf;

In this model, the firing rate of the cell is the difference between two Gaussians. One Gaussian
represents the center and the other represents the surround, as illustrated in Figure 3.3. The vari-
able x represents the distance from the center of the field, w, defines the width of the center, and
w, defines the width of the surround. The amount of excitation or inhibition is given by the
amplitude parameters o; and o,.

We can easily calculate the effect of the DOG-type receptor on various patterns. We can
either think of the pattern passing over the receptive field of the cell, or think of the output of a
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Figure 3.2 (a) The receptive field structure of an on-center simple lateral geniculate cell. (b) As the cell passes over

from a light region to a dark region, the rate of neural firing increases just to the bright side of the edge
and decreases on the dark side. (c) A smoothed plot of the cell activity level.
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Figure 3.3 Difference of Gaussians (D0G) model of a receptive field.

whole array of DOG cells arranged in a line across the pattern. When we use a computer to sim-
ulate either operation, we discover that the DOG receptive field can be used to explain a variety
of brightness contrast effects.

In the Hermann grid illusion, shown in Figure 3.4, black spots appear at the intersections
of the bright lines. The explanation is that there is more inhibition at the spaces between two
squares, so they seem brighter than the points at the intersections.

Simultaneous Brightness Contrast

The term simultaneous brightness contrast is used to explain the general effect whereby a gray
patch placed on a dark background looks lighter than the same gray patch on a light background.
Figure 3.5 illustrates this effect and the way it is predicted by the DOG model of concentric oppo-
nent receptive fields.
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Hermann grid illusion. The black spots that are seen at the intersections of the lines are thought to result
from the fact that there is less inhibition when a receptive field is at position (a) than at position (b).
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lllustration of simultaneous brightness contrast. The upper row contains rectangles of an identical gray.
The lower rectangles are a lighter gray, but are also all identical. The graph below illustrates the effect of
a DOG filter applied to this pattern.
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Mach Bands

Figure 3.6 shows a Mach band effect. At the point where a uniform area meets a luminance
ramp, a bright band is seen. In general, Mach bands appear where there is an abrupt change in
the first derivative of a brightness profile. The lower plot on the right shows how this is simu-
lated by the DOG model.

The Chevreul Illusion

When a sequence of gray bands is generated as shown in Figure 3.7, the bands appear darker at
one edge than at the other, even though they are uniform. The diagram to the right in Figure 3.7
shows that this visual illusion can be simulated by the application of a DOG model of the neural
receptive field.

Figure 3.6 lllustration of Mach banding. (a) Bright Mach bands are evident at the boundaries between the internal
triangles. (b) At the top, the actual brightness profile is shown between the two arrows. The curve below
shows how the application of a DOG filter models the bright bands that are seen.

Figure 3.7 The Chevreul illusion. The measured lightness pattern is shown by the staircase pattern on the right.
What is perceived can be closely approximated by a DOG model. The lower plot on the right shows the
application of a DOG filter to the staircase pattern shown above.
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Simultaneous Contrast and Errors in Reading Maps

Simultaneous contrast effects can result in large errors of judgment when reading quantitative
(value) information displayed using a gray scale (Cleveland and McGill, 1983). For example,
Figure 3.8 shows a gravity map of part of the North Atlantic where the local strength of the
gravitational field is encoded in shades of gray. In an experiment to measure the effects of con-
trast on data encoded in this way, we found substantial errors averaging 20% of the entire scale
(Ware, 1988). The contrast in this case comes from the background of the gray scale itself and
the regions surrounding any designated sampling point.

Contrast Effects and Artifacts in Computer Graphics

One of the consequences of Mach bands, and of contrast effects in general, is that they tend to
highlight the deficiencies in the common shading algorithms used in computer graphics. Smooth
surfaces are often displayed using polygons, both for simplicity and to speed the computer

graphics rendering process; this leads to visual artifacts because of the way the visual system
enhances the boundaries at the edges of polygons.

Figure 3.9 illustrates the effects of the DOG model on three surface-shading methods. In this
example, a cylinder has been broken into a series of rectangular facets.

ABCDEFGHIJKLHNOP

Figure 3.8 A gravity map of the North Atlantic (Ware, 1988). Large errors can occur when values are read using
the key.
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Figure 3.9 The contrast mechanisms of the early visual system enhance a number of artifacts that occur in

computer graphics shading algorithms. The illustration at the top shows a single line of pixels through a
rendering of a cylinder approximated by a set of rectangular panels. The plots in the left-hand column
illustrate the actual light-level distributions that result from three common techniques used in computer
graphics. The plots in the right-hand column show how the lack of smoothness in the result is increased
by the application of the DOG model.
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1. Uniform shading: The light reflected from each rectangular facet is computed by taking
into account the incident illumination and the orientation of the surface with respect to
the light. Then the entire facet is filled uniformly with the resulting color. Scanning across
an object modeled in this way reveals stepwise changes in color. The steps are
exaggerated, producing the Chevreul illusion. What was intended to be a smooth cylinder
may appear as a fluted column.

2. Gouraud shading: A shading value is calculated not for the facets, but for the edges
between the facets. This is done by averaging the surface normals at the boundaries where
facets meet. As each facet is painted during the rendering process, the color is linearly
interpolated between the facet boundaries. Scanning across the object, we see linear
changes in color across polygons, with abrupt transitions in gradient where the facets
meet. Mach banding occurs at these facet boundaries, enhancing the discontinuities.

3. Phong shading: As with Gouraud shading, surface normals are calculated at the facet
boundaries. However, in this case, the surface normal is interpolated between the edges.
The result is smooth changes in lightness with no appreciable Mach banding.

Edge Enhancement

Lateral inhibition can be considered the first stage of an edge detection process that signals the
positions and contrasts of edges in the environment. One of the consequences is that pseudo-
edges can be created; two areas that physically have the same lightness can be made to look dif-
ferent by having an edge between them that shades off gradually to the two sides (Figure 3.10).
The brain does perceptual interpolation so that the entire central region appears lighter than sur-
rounding regions. This is called the Cornsweet effect, after the researcher who first described it
(Cornsweet, 1970).

Figure 3.10 The Cornsweet effect. The areas in the centers of the circles tend to look lighter than the surrounding
area, even though they are actually the same shade. This provides evidence that the brain constructs
surface color based largely on edge contrast information.
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Figure 3.11 Seurat deliberately enhanced edge contrast to make his figures stand out.

The enhancement of edges is also an important part of some artists’ techniques. It is a way
to make objects more clearly distinct, given the limited dynamic range of paint. The example
given in Figure 3.11 is from Seurat’s painting of bathers. The same idea can be used in visual-
ization to make areas of interest stand out. Figure 3.12 is a representation of a flow field without
(Figure 3.12a) and with (Figure 3.12b) an adjustment of the background designed to make the
central region more clearly distinct.
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Figure 3.12 Low spatial frequency adjustment of the background luminance can be used to enhance a flow-field
visualization. (a) Shows a flow pattern without enhancement. (b) Shows the same pattern enhanced in
the central region.
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Luminance, Brightness, Lightness, and Gamma

Contrast effects may cause annoying problems in the presentation of data, but a deeper analy-
sis shows that they can also be used to reveal the mechanisms underlying normal perception.
How the contrast mechanism works to enable us to perceive our environment accurately, under
all but unusual circumstances, is the main subject of the discussion that follows. The severe illu-
sory contrast effects in computer displays are a consequence of the impoverished nature of those
displays, not of any inadequacy of the visual system.

It should now be evident that the perceived brightness of a particular patch of light has
almost nothing to do with the amount of light coming from that patch as we might measure it
with a photometer. Thus, what might seem like a simple question—How bright is that patch of
light?—is not at all straightforward. We start with an ecological perspective, then consider per-
ceptual mechanisms, and finally discuss applications in visualization.

In order to survive, we need to be able to manipulate objects in the environment and deter-
mine their properties. Generally, information about the quantity of illumination is of very little
use to us. [llumination is a prerequisite for sight, but otherwise we do not need to know whether
the light we are seeing by is dim because it is late on a cloudy day, or brilliant because of the
noonday sun. What we do need to know about are objects—food, tools, plants, animals, other
people, and so on—and we can find out a lot about objects from their surface properties. In par-
ticular, we can obtain knowledge of the spectral reflectance characteristics of objects—what we
call their color and lightness. The human vision system evolved to extract information about
surface properties of objects, often at the expense of losing information about the quality and
quantity of light entering the eye. This phenomenon, the fact that we experience colored surfaces
and not colored light, is called color constancy. When we are talking about the apparent overall
reflectance of a surface, it is called lightness constancy. Three terms are commonly used to
describe the general concept of quantity of light: luminance, brightness, and lightness. The fol-
lowing brief definitions precede more extensive descriptions.

Luminance is the easiest to define; it refers to the measured amount of light coming from some
region of space. It is measured in units such as candelas per square meter. Of the three
terms, only luminance refers to something that can be physically measured. The other two
terms refer to psychological variables.

Brightness generally refers to the perceived amount of light coming from a source. In the
following discussion, it is used to refer only to things that are perceived as self-
luminous. Sometimes people talk about bright colors, but vivid and saturated are better
terms.

Lightness generally refers to the perceived reflectance of a surface. A white surface is light. A
black surface is dark. The shade of paint is another concept of lightness.
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Luminance

Luminance is not a perceptual quantity at all. It is a physical measure used to define an amount
of light in the visible region of the electromagnetic spectrum. Unlike lightness and brightness,
luminance can be read out directly from a scientific measuring instrument. Luminance is a mea-
surement of light energy weighted by the spectral sensitivity function of the human visual system.
We are about 100 times less sensitive to light at 450 nanometers than we are to light at 510
nanometers, and it is clearly important to take this difference into account when we are mea-
suring light levels with human observers in mind. The human spectral sensitivity function is illus-
trated in Figure 3.13 and given at 10-nm intervals in Table 3.1. This function is called the V(i)
function. It is an international standard maintained by the Commission Internationale de I’E-
clairage (CIE). The V() function represents the spectral sensitivity curve of an ideal standard
human observer. To find the luminance of a light, we integrate the light distribution E(L) with
the CIE estimate of the human sensitivity function V(A). A represents wavelength.

700
L= j V, E, 8\ (3.2)

400

When multiplied by the appropriate constant, the result is luminance L in units of candelas per
square meter. Note that a great many technical issues must be considered when we are measur-
ing light, such as the configuration of the measuring instrument and the sample. Wyszecki and
Stiles (1982) have written an excellent reference.

It is directly relevant to data display that the blue phosphor of a monitor has a peak at
about 450nm. Table 3.1 shows that at this wavelength, human sensitivity is only 4% of the
maximum in the green range. In Chapter 2, we noted that the chromatic aberration of the human
eye means that a monitor’s blue light is typically out of focus. The fact that we are also insensi-
tive to this part of the spectrum is another reason why representing text and other detailed infor-
mation using the pure blue of a monitor is not a good idea, particularly against a black
background.

The V()) function is extremely useful because it provides a close match to the combined sen-
sitivities of the individual cone receptor sensitivity functions. It is reasonable to think of the V(\)
function as measuring the luminance efficiency of the first stage of an extended process that ulti-
mately allows us to perceive useful information such as surface lightness and the shapes of sur-
faces. Technically, it defines how the sensitivity of the so-called luminance channel varies with
wavelength. The luminance channel is an important theoretical concept in vision research; it is
held to be the basis for most pattern perception, depth perception, and motion perception. In
Chapter 4, the properties of the luminance channel are discussed in more detail in comparison
to the color-processing chrominance channels.
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Figure 3.13  The CIE V(A) function representing the relative sensitivity of the human eye to light of different
wavelengths.
Wavelength Relative Wavelength Relative Wavelength Relative
(nanometers) Sensitivity (nanometers) Sensitivity (nanometers) Sensitivity
400 .0004 510 .5030 620 3810
410 .0012 520 .7100 630 2650
420 .0040 530 .8620 640 1750
430 .0116 540 9540 650 .1070
440 .0230 550 9950 660 .0610
450 .0380 560 9950 670 .0320
460 .0600 570 9520 680 .0170
470 .0910 580 .8700 690 .0082
480 1390 590 7570 700 .0041
490 4652 600 .6310 710 .0010
500 3230 610 .5030 720 .0005
Table 3.1 Values Show the Sensitivity of the Eye to Light of Different Wavelengths Relative to the Maximum

Sensitivity at 555 Nanometers
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Text Contrast

For ease of reading, it is essential that text have a reasonable luminance difference from its back-
ground. The International Standards Organization (ISO 9241, part 3) recommends a minimum
3:1 luminance ratio of text and background; 10:1 is preferred. This recommendation can be
generalized to the display of any kind of information where fine-detail resolution is desirable. In
fact, as the spatial modulation sensitivity function shows (Figure 2.27, Chapter 2), the finer the
detail, the greater the contrast required.

Brightness

The term brightness usually refers to the perceived amount of light coming from self-luminous
sources. Thus, it is relevant to the perception of the brightness of indicator lights in an other-
wise darkened display—for example, nighttime instrument displays in the cockpits of aircraft
and on the darkened bridges of ships.

Perceived brightness is a very nonlinear function of the amount of light emitted by a
lamp. Stevens (1961) popularized a technique known as magnitude estimation to provide a way
of measuring the perceptual impact of simple sensations. In magnitude estimation, subjects
are given a stimulus, such as a patch of light viewed in isolation. They are told to assign this
stimulus a standard value—for example, 10, to denote its brightness. Subsequently, they are
shown other patches of light, also in isolation, and asked to assign them values relative to the
standard that they have set. If a patch seems twice as bright as the reference sample, it is assigned
the number 20; if it seems half as bright, it is assigned the number 5, and so on. Applying this
technique, Stevens discovered that a wide range of sensations could be described by a simple
power law:

S=al" (3.3)

This law states that perceived sensation S is proportional to the stimulus intensity I raised
to a power 7. The power law has been found to apply to many types of sensations, including
loudness, smell, taste, heaviness, force, and touch. The power law applies to the perceived bright-
ness of lights viewed in the dark.

Brightness = Luminance” (3.4)

However, the value of # depends on the size of the patch of light. For circular patches of
light subtending 5 degrees of visual angle, 7 is 0.333, whereas for point sources of light, 7 is
close to 0.5.
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These findings are really only applicable to lights viewed in relative isolation in the dark.
Thus, although they have some practical relevance to the design of control panels to be viewed
in dark rooms, many other factors must be taken into account in more complex displays. Before
we go on to consider these perceptual issues, it is useful to know something about the way com-
puter monitors are designed.

Monitor Gamma

Most visualizations are produced on monitor screens. Anyone who is serious about producing
such a thing as a uniform gray scale, or color reproductions in general, must come to grips with
the properties of computer monitors. The relationship of physical luminance to voltage on a
monitor is approximated by a gamma function:

L=Vv* (3.5)

V is the voltage driving one of the electron guns in the monitor, L is the luminance, and y
is an empirical constant that varies widely from monitor to monitor (values can range from 1.4
to 3.0). See Cowan (1983) for a thorough treatise on monitor calibration.

Monitor nonlinearity is not accidental; it was created by early television engineers to make
the most of the available signal bandwidth. They made television screens nonlinear precisely
because the human visual system is nonlinear in the opposite direction. For example, a gamma
value of 3 will exactly cancel a brightness power function exponent of 0.333, resulting in a display
that produces a linear relationship between voltage and perceived brightness. Most monitors have
a gamma value much less than 3.0, for reasons that will be explained later.

Adaptation, Contrast, and Lightness Constancy

A major task of the visual system is to extract information about the lightness and color and of
objects despite a great variation in illumination and viewing conditions. It cannot be emphasized
enough that luminance is completely unrelated to perceived lightness or brightness. If we lay out
a piece of black paper in full sunlight on a bright day and point a photometer at it, we may easily
measure a value of 1000 candelas per square meter. A typical “black” surface reflects about
10% of the available light, 100 candelas per square meter. If we now take our photometer
into a typical office and point it at a white piece of paper, we will probably measure a value of
about 50 candelas per square meter. Thus, a black object on a bright day in a beach environ-
ment may reflect 20 times more light than white paper in an office. Even in the same environ-
ment, white paper lying under the boardwalk may reflect less light (be darker) than black paper
lying in the sun. Nevertheless, we can distinguish black from white from gray (achieve lightness
constancy) with ease.
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Figure 3.14 The eye/brain system is capable of functioning over a huge range of light levels. The amount of light
available on a bright day at the beach is 10,000 times greater than the light available in a dimly lit room.

Figure 3.14 illustrates the range of light levels we encounter, from bright sunlight to starlight.
A normal interior will have an artificial illumination level of approximately 50lux. (Lux is a
measure of incident illumination that incorporates the V(A) function.) On a bright day in summer,
the light level can easily be 50,000 lux. Except for the brief period of adaptation that occurs when
we come indoors on a bright day, we are generally almost totally oblivious to this huge varia-
tion. A change in overall light level of a factor of 2 is barely noticed. Remarkably, our visual
systems can achieve lightness constancy over virtually this entire range; in bright sunlight or
moonlight, we can tell whether a surface is black, white, or gray.

The first-stage mechanism of lightness constancy is adaptation. The second stage of level
invariance is lateral inhibition. Both mechanisms help the visual system to factor out the effects
of the amount and color of the illumination.

The role of adaptation in lightness constancy is straightforward. The changing sensitivity of
the receptors and neurons in the eye helps factor out the overall level of illumination. One mech-
anism is the bleaching of photopigment in the receptors themselves. At high light levels, more
photopigment is bleached and the receptors become less sensitive. At low light levels, photopig-
ment is regenerated and the eyes regain their sensitivity. This regeneration can take some time,
and this is why we are briefly blinded when coming into a darkened room out of bright sunlight.
It can take up to half an hour to develop maximum sensitivity to very dim light, such as moon-
light. In addition to the change in receptor sensitivity, the iris of the eye opens and closes. This
modulates the amount of light entering the pupil, but is a much less significant factor than is the
change in receptor sensitivity. In general, adaptation allows the visual system to adjust overall
sensitivity to the ambient light level.
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Contrast and Constancy

Contrast mechanisms, such as the concentric opponent receptive fields discussed previously, help
us achieve constancy by signaling differences in light levels, especially at the edges of objects.
Consider the simple desktop environment illustrated in Figure 3.15. A desk lamp, just to the right
of the picture, has created nonuniform illumination over a wooden desk that has two pieces of
paper lying on it. The piece nearer the lamp is a medium gray. Because it is receiving more light,
it reflects about the same amount of light as the white paper, which is farther from the light. In
the original environment, it is easy for people to tell which piece of paper is gray and which is
white. Simultaneous contrast can help to explain this. Because the white paper is lighter relative
to its background than the gray paper is, relative to its background, the same mechanism that
caused contrast in Figure 3.5 is responsible for enabling an accurate judgment to be made here.
The illumination profile across the desk and the pieces of paper is similar to that illustrated in
Figure 3.5, except in this case, contrast does not result in an illusion; instead, it helps us to achieve
lightness constancy.

Contrast on Paper and on Screen

There is a subtlety here that is worth exploring. Paper reproductions of contrast and constancy
effects are often less convincing than these effects are in the laboratory. Looking at Figure 3.135,
the reader may well be excused for being less than convinced. The two pieces of paper may not

Figure 3.15 These two pieces of paper are illuminated by a desk lamp just to the right of the picture. This makes the
amount of light reflected roughly equal. But the brain achieves lightness constancy in allowing us to
differentiate the gray and the white paper.
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look very different. But try the experiment with your own desk lamp and paper. Two holes
punched in a piece of opaque cardboard can be used as a mask, enabling you to compare the
brightness of the gray and white pieces of paper. Under these real-world viewing conditions, it
is usually impossible to perceive the true relative brightness; instead, the surface lightness is per-
ceived. But take a photograph of the scene, like Figure 3.15, and the effect is less strong, although
we are better at perceiving the gray levels in the higher-quality color plate. Why is this? The
answer lies in the dual nature of pictures. The photograph itself has a surface, and to some extent
we perceive the actual gray levels of the photographic pigment, as opposed to the gray levels of
what is depicted. The poorer the reproduction, the more we see the actual color printed on the
paper. A related effect occurs with depth perception and perspective pictures; to some extent we
can see both the surface flatness and the 3D layout of a depicted environment.

Contrast illusions are generally much worse in CRT displays. On a CRT screen there is no
texture, except for the uniform pattern of pixels and phosphor dots. Moreover, the screen is self-
luminous, which may also confound our lightness constancy mechanisms. Scientists studying
simultaneous contrast in the laboratory generally use perfectly uniform textureless fields and
obtain extreme contrast effects—after all, under these circumstances, the only information is the
differences between patches of light. Computer-generated virtual-reality images lie somewhere
between real-world surfaces and the artificial featureless patches of light used in the laboratory.
How lightness is judged will depend on exactly how images are designed and presented. On the
one hand, a CRT can be set up in a dark room and made to display featureless gray patches of
light; in this case, simple contrast effects will dominate. However, if the CRT is used to simulate
a very realistic 3D model of the environment, surface lightness constancies can be obtained,
depending on the degree of realism, the quality of the display, and the overall setup. To obtain
true virtual reality, the screen surface should disappear; to this end some head-mounted displays
contain diffusing screens that blur out the pixels and the dot matrix of the screen.

Perception of Surface Lightness

Although both adaptation and contrast can be seen as mechanisms that act in the service of light-
ness constancy, they are not sufficient. Ultimately, the solution to this perceptual problem can
involve every level of perception. Three additional factors seem especially important. The first is
that the brain must somehow take the direction of illumination and surface orientation into
account in lightness judgments. A flat white surface turned away from the light will reflect less
light than one turned toward the light. Figure 3.16 illustrates two surfaces being viewed, one
turned away from the light and one turned toward it. Under these circumstances, people can still
make reasonably accurate lightness judgments, showing that our brains can take into account
both the direction of illumination and the spatial layout (Gilchrist, 1980).

The second important factor is that the brain seems to use the lightest object in the scene
as a kind of reference white to determine the gray values of all other objects (Cataliotti
and Gilchrist, 1995). This is discussed in the following section in the context of lightness-scaling
formulas.
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Figure 3.16 When making surface lightness judgments, the brain can take into account the fact that a surface turned
away from the light receives less light than a surface turned toward the light.

The third factor is that the ratio of specular and nonspecular reflection can be important
under certain circumstances. Figure 3.17(a) is a picture of a world where everything is black,
while Figure 3.17(b) shows a world in which everything is white. If we consider these images as
slides projected in a darkened room, it is obvious that every point on the black image is brighter
than the surroundings. How can we perceive something to be black when it is a bright image?
In this case, the most important factor differentiating black from white is the ratio between the
specular and the nonspecular reflected light. In the all-black world, the ratio between specular
and nonspecular is much larger than in the all-white world.

Lightness Differences and the Gray Scale

Suppose that we wish to display map information using a gray scale. We might, for example,
wish to illustrate the variability in population density within a geographical region, or a gravity
map as shown in Figure 3.8. For this kind of application, we ideally would like a gray scale such
that equal differences in data values are displayed as perceptually equally spaced gray steps (an
interval scale). Although the gray scale is probably not the best way of coding this kind of infor-
mation because of contrast effects (chromatic scales are generally better), the problem does merit
some attention because it allows us to discuss some fundamental and quite general issues related
to perceptual scales.

Leaving aside contrast effects, the perception of brightness differences depends on whether
those differences are small or large. At one extreme, we can consider the smallest difference that
can be distinguished between two gray values. In this case, one of the fundamental laws of psy-
chophysics applies. This is called Weber’s law, after the nineteenth-century physicist Max Weber
(Wyszecki and Stiles, 1982). Weber’s law states that if we have a background with luminance L,
and superimposed on it is a patch that is a little bit brighter (L ++ L), the value of § that makes
this small increment just visible is independent of the overall luminance. Thus, 8L/L is constant.
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Figure 3.17 These two photographs show scenes in which (a) everything is black and (b) everything is white.

Typically, under optimal viewing conditions, we can detect the brighter patch if 8 is greater than
about 0.005. In other words, we can just detect about a 0.5% change in brightness.

Weber’s law applies only to small differences. When large differences between gray samples
are judged, many other factors become significant, such as those listed in the previous section.
A typical experimental procedure used to study large differences involves asking subjects to select
a gray value midway between two other values. The CIE has produced a uniform gray-scale stan-
dard based on a synthesis of the results from large numbers of experiments of this kind. This
formula includes the concept of a reference white, although many other factors are still neglected.

1
Lx=116(Y/Y,)’ -16 Y/Y, >0.01 (3.6)

Y, is a reference white in the environment, normally the surface that reflects most light to the
eye. The result L* is a value in a uniform lightness scale. Equal measured differences on this scale
approximate equal perceptual differences. It is reasonable to assume that Y/Y, > 0.01 because
even the blackest inks and fabrics still reflect more than 1% of incident illumination. This
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standard is used by the paint and lighting industries to specify such things as color tolerances.
Equation 3.5 is part of the CIEluv uniform color space standard, which is described more fully
in Chapter 4.

Uniform lightness and color scales should always be regarded as providing only rough
approximations. Because the visual field is changed radically by many factors that are not taken
into account by formulas such as Equation 3.5—perceived illumination, specular reflection from
glossy surfaces, and local contrast effects—the goal of obtaining a perfect gray scale is not attain-
able. Such formulae should be taken as no more than useful approximations.

Contrast Crispening

Another perceptual factor that distorts gray values is called contrast crispening (see Wyszecki
and Stiles, 1982). Generally, differences are perceived as larger when samples are similar to the
background color. Figure 3.18 shows a set of identical gray scales on a range of different gray
backgrounds. Notice how the scales appear to divide perceptually at the value of the background.
The term crispening refers to the way more subtle gray values can be distinguished at the point
of crossover. Crispening is not taken into account by uniform gray-scale formulas.

Monitor Illumination and Monitor Surrounds

In some visualization applications, the accurate perception of surface lightness and color is crit-
ical. One example is the use of a computer monitor to display wallpaper or fabric samples for
customer selection. It is also important for graphic designers that colors be accurately perceived.

Figure 3.18 All the gray strips are the same. Perceived differences between gray-scale values are enhanced where
the values are close to the background gray value. The effect is known as crispening.
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In these cases, not only is it necessary to calibrate the monitor so that it actually displays the
specified color range, but other factors affecting the state of adaptation of the user’s eyes must
also be taken into account. The color and the brightness of the surround of the monitor can be
very important in determining how screen objects appear. The adaptation effect produced by
room lighting can be equally important.

How should the lighting surrounding a monitor be set up? A monitor used for visual dis-
plays engages only the central part of the visual field, so the overall state of adaptation of the
eye is maintained at least as much by the ambient room illumination. There are good reasons
for maintaining a reasonably high level of illumination in a viewing room, such as the ability to
take notes and see other people. However, a side effect of a high level of room illumination is
that some light falls on the monitor screen and is scattered back to the eye, degrading the image.
In fact, under normal office conditions, between 15% and 40% of the illumination coming to
the eye from the monitor screen will come indirectly from the room light, not from the luminous
phosphors. Figure 3.19 shows a monitor display with a shadow lying across its face. Although
this is a rather extreme example, the effects are clear. Overall contrast is much reduced where
the room light falls on the display.

We can model the effects of illumination on a monitor by adding a constant to
Equation 3.5.

L=V'+A (3.7)

where A is the ambient room illumination reflected from the screen, V is the voltage to the
monitor, and L is the luminance output for a given gamma.

Figure 3.19 A monitor with a shadow falling across its face. Under normal viewing conditions, a significant proportion
of the light coming from the screen is reflected ambient room illumination.
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If we wish to create a monitor for which equal voltage steps result in equal perceptual steps
under conditions where ambient light is reflected, a lower gamma value is needed. Figure 3.20
shows the effects of different gamma values, assuming that 15% of the light coming from the
screen is reflected ambient light. The CIE equation (3.5) has been used to model lightness scaling.
As you can see, under these assumptions, a monitor is a perceptually more linear device with a
gamma of only 1.5 than with a gamma of 2.5 (although under dark viewing conditions, a higher
gamma is needed).

If you cover part of your monitor screen with a sheet of white paper, under normal working
conditions (when there are lights on in the room), you will probably find that the white of the
paper is very different from the white of the monitor screen. The paper may look relatively blue,
or yellow, and it may appear darker or lighter. There are often large discrepancies between
monitor colors and colors of objects in the surrounding environment. For the creation of an envi-
ronment where computer-generated colors are comparable to colors in a room, the room should
have a standard light level and illuminant color. The monitor should be carefully calibrated and
balanced so that the monitor’s white matches that of a sheet of white paper held up beside the
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Figure 3.20 The three curves show how monitor gun voltage is transformed into lightness, according to the CIE
model, with different ambient light conditions and gamma values.
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Figure 3.21 A projector was set up containing a mask specially designed so that no light actually fell on the portion
of the monitor screen containing the image. In this way, the illumination in the virtual environment
displayed on the monitor was made to match closely the illumination falling on the monitor and
surrounding region.

screen. In addition, only a minimal amount of light should be allowed to fall on the monitor
screen.

Figure 3.21 shows a computer display set up so that the lighting in the virtual environment
shown on the monitor is matched with the lighting in the real environment surrounding the
monitor. This is achieved by illuminating the region surrounding the monitor with a projector
that contains a special mask. This mask was custom-designed so that light was cast on the
monitor casing and the desktop surrounding the computer, but no light at all fell on the part of
the screen containing the picture. In addition, the direction and color of the light in the virtual
environment were adjusted to exactly match the light from the projector. Simulated cast shadows
were also created to match the cast shadows from the projector. Using this setup, it is possible
to create a virtual environment whose simulated colors and other material properties can be
directly compared to the colors and material properties of objects in the room. (This work was
done by Justin Hickey and the author.)

Conclusion

As a general observation, the use of gray-scale colors is not a particularly good method for coding
data, and not just because contrast effects reduce accuracy. The luminance channel of the visual
system is fundamental to so much of perception; it is therefore generally a waste of perceptual
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resources to use gray-scale encoding. Nevertheless, it is important to understand the problems
of brightness and lightness perception because they point to issues that are fundamental to all
perceptual systems. One of these basic problems is how perception functions effectively in visual
environments where the light level can vary by six orders of magnitude. The solution, arrived at
over the course of evolution, is a system that essentially ignores the level of illumination. This
may seem like an exaggeration—after all, we can certainly tell the difference between bright sun-
light and dim room illumination—but we are barely aware of a change of light level on the order
of a factor of 2. For example, in a room lit with a two-bulb fixture, if one bulb burns out, it
often goes unnoticed, especially if the bulbs are hidden within a diffusing surround.

A fundamental point made in this chapter is the relative nature of low-level visual process-
ing. As a general rule, nerve cells situated early in the visual pathway do not respond to absolute
signals. Rather, they respond to differences in both space and time. At later stages in the visual
system, more stable percepts such as the perception of surface lightness can emerge, but this is
only because of sophisticated image analysis that takes into account such factors as the position
of the light, cast shadows, and the orientation of the object. The relative nature of lightness
perception sometimes causes errors. But these errors are due mostly to a simplified graphical
environment that confounds the brain’s attempt to achieve surface lightness constancy. The mech-
anism that causes contrast errors is also the reason that we can perceive subtle changes in data
values, and can pick out patterns despite changes in the background light level.

Luminance contrast is an especially important consideration for choosing backgrounds and
surrounds for a visualization. The way a background is chosen depends on what is important.
If the outline shapes of objects are critical, the background should be chosen for maximum lumi-
nance contrast with foreground objects. If it is important to see subtle gradations in gray level,
the crispening effect suggests that choosing a background in the midrange of gray levels will help
us to see more of the important details.

Figure 3.22 provides a summary of the contrast-related effects discussed in this chapter and
listed as follows.

®  The small two-tone gray squiggles appear lighter on a dark background than on a white
background. This is a simple contrast effect.

®  The fact that there are two different grays in each squiggle is most clear on the mid-gray
background. This is called sharpening.

®  Mach bands enhance abrupt changes in luminance gradients.

®  Gray scales are perceptually altered by background lightness. The light gray background
makes differences between light grays clearest. The dark gray background emphasizes
differences between dark grays. This is illustrated by the two gray step scales on the left
and is another instance of sharpening.

®  Text and other detailed visual information requires at least 3:1 luminance contrast for
clarity. More is better.

®  Gray scales are very unreliable as a method for conveying quantitative information.
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In any case

where it is necessary “
to reveal fine detail,

==
s

luminance contrast is
essential.

Figure 3.22 A summary of the most significant luminance contrast effects.

When people care about image quality on a computer display, they typically reduce the room
illumination as much as possible. The main reason for doing this is to reduce the amount of
ambient room light that falls on the viewing screen, degrading the image. But this can have unfor-
tunate side effects. Low room illumination causes a kind of visual shock in looking at the screen
and away from it. In addition, it is difficult for observers to take notes. When people spend lots
of time in dimly lit work environments, it can cause depression and reduced job satisfaction
(Rosenthal, 1993). For these reasons, the optimal visualization viewing environment is one that
is carefully engineered so that there is a high level of ambient light in the room, with the lights
arranged so that minimal illumination falls on the viewing screen.

Luminance is but one dimension of color space. In Chapter 4, this one-dimensional model
is expanded to a three-dimensional color perception model. The luminance channel, however, is
special. We could not get by without luminance perception, but we can certainly get by without
color perception. This is demonstrated by the historic success of black-and-white movies and
television. Later chapters describe how information encoded in the luminance channel is funda-
mental to perception of fine detail, discrimination of the shapes of objects through shading,
stereoscopic depth perception, motion perception, and many aspects of pattern perception.
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Color

In the summer of 1997, I designed an experiment to measure human ability to trace paths between
connected parts in a 3D diagram. Then, as is my normal practice, I ran a pilot study in order to
see whether the experiment was well constructed. By ill luck, the first person tested was a research
assistant who worked in my lab. He had far more difficulty with the task than anticipated—so
much so that I put the experiment back on the drawing board to reconsider, without trying any
more pilot subjects. Some months later, my assistant told me he had just had an eye test and the
optometrist had determined that he was color blind. This explained the problems with the exper-
iment. Although it was not about color perception, I had marked the targets red in my experi-
ment. He therefore had had great difficulty in finding them, which rendered the rest of the task
meaningless.

The remarkable aspect of this story is that my assistant had gone through 21 years of his
life without knowing that he was blind to many color differences. This is not uncommon, and
it strongly suggests that color vision cannot be all that important to everyday life. In fact, color
vision is irrelevant to much of normal vision. It does not help us determine the layout of objects
in space, how they are moving, or what their shapes are. It is not much of an overstatement to
say that color vision is largely superfluous in modern life. Nevertheless, color is extremely useful
in data visualization.

Color vision does have a critical function, which is hardly surprising because this sophisti-
cated ability must surely provide some evolutionary advantage. Color helps us break camouflage.
Some things differ visually from their surroundings only by their color. An especially important
example is illustrated in Figure 4.1. If we have color vision, we can easily see the cherries hidden
in the leaves. If we do not, this becomes much harder. Color also tells us much that is useful
about the material properties of objects. This is crucial in judging the condition of our food. Is
this fruit ripe or not? It this meat fresh or putrid? What kind of mushroom is this? It is also
useful if we are making tools. What kind of stone is this? Clearly, these can be life-or-death deci-
sions. In modern hunter—gatherer societies, men are the hunters and women are the gatherers.

97
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Figure 4.1 Finding the cherries among the leaves is much easier if we have color vision.

This may have been true for long periods of human evolution, which could explain why it is
mostly men who are color blind. If they had been gatherers, they would have been more
than likely to bring home poison berries—a selective disadvantage. In the modern age of super-
markets, these skills are much less valuable; this is perhaps why color deficiencies so often go
unnoticed.

The role that color plays ecologically suggests ways that it can be used in information display.
It is useful to think of color as an attribute of an object rather than as its primary characteris-
tic. It is excellent for labeling and categorization, but poor for displaying shape, detail, or space.
These points are elaborated in this chapter. We begin with an introduction to the basic theory of
color vision to provide a foundation for the applications. The latter half of the chapter consists
of a set of five visualization problems requiring the effective use of color; these have to do with
color selection interfaces, color labeling, pseudocolor sequences for mapping, color reproduction,
and color for multidimensional discrete data. Each has its own special set of requirements. Some
readers may wish to skip directly to the applications, sampling the more technical introduction
only as needed.

Trichromacy Theory

The most important fact about color vision is that we have three distinct color receptors, called
cones, in our retinas that are active at normal light levels—hence trichromacy. We also have rods,
sensitive at low light levels, but they are so overstimulated in all but the dimmest light that their
influence on color perception can be ignored. Thus, in order to understand color vision, we need
only consider the cones. The fact that there are only three receptors is the reason for the basic
three-dimensionality of human color vision.

The term color space means an arrangement of colors in a three-dimensional space. In this
chapter, a number of color spaces, designed for different purposes, are discussed. Complex trans-
formations are sometimes required to convert from one color space to another, but they are all
three-dimensional, and this three-dimensionality derives ultimately from the three cone types.
This is the reason that there are three differently colored phosphors in a television tube—red,
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Figure 4.2 Cone sensitivity functions.

green, and blue—and this is the reason that we learn in school that there are three primary paint
colors—red, yellow, and blue. It is also the reason that printers have a minimum of three colored
inks for color printing—cyan, magenta, and yellow. Engineers should be grateful that humans
have only three color receptors. Some birds, such as chickens, have as many as 12 different kinds
of color-sensitive cells. A television set for chickens would require 12 electron beams and 12
differently colored phosphors!

Figure 4.2 shows the human cone sensitivity functions. The plots show how light of differ-
ent wavelengths is absorbed by the different receptors. It is evident that two of the functions, L
and M, which peak at 540 nanometers and 580 nanometers, overlap considerably; the third, S,
is much more distinct, with peak sensitivity at 450 nanometers. The short-wavelength S recep-
tor absorbs light in the blue part of the spectrum and is much less sensitive, which is another
reason (besides chromatic aberration, discussed in Chapter 2) why we should not show detailed
information such as text in pure blue on a black background.

Because only three different receptor types are involved in color vision, it is possible to match
a particular patch of colored light with a mixture of just three colored lights, usually called pri-
maries. It does not matter that the target patch may have a completely different spectral com-
position. The only thing that matters is that the matching primaries are balanced to produce the
same response from the receptors as the patch of light to be matched. Figure 4.3(a) illustrates
the three-dimensional space formed by the responses of the three cones.

Color Blindness

About 10% of the male population and about 1% of the female population have some form
of color vision deficiency. The most common deficiencies are explained by lack of either the
long-wavelength-sensitive cones (protanopia) or the medium-wavelength-sensitive cones
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Figure 4.3 (a) Cone response space, defined by the response of each of the three cone types. (b) The space
becomes two-dimensional in the case of the common color deficiencies.

(deuteranopia). Both protanopia and deuteranopia result in an inability to distinguish red and
green, meaning that the cherries in Figure 4.1 are difficult for people with these deficiencies to
see. One way to describe color vision deficiency is by pointing out that the three-dimensional
color space of normal color vision collapses to a two-dimensional space, as shown in Figure
4.3(b). An unfortunate result of using color for information coding, is the creation of a new class
of people with a disability. Color blindness already disqualifies applicants for some jobs such as
those of telephone linespeople, because of the myriad colored wires, and pilots, because of the
need to distinguish color-coded lights.

Color Measurement

The fact that we can match any color with a mixture of no more than three primary lights is the
basis of colorimetry. An understanding of colorimetry is essential for anyone who wishes to
specify colors precisely for reproduction.

We can describe a color by the following equation:

C=rR+gG+bB (4.1)

where C is the color to be matched, R, G, and B are the primary light sources to be used to
create a match, and r, g, and b represent the amounts of each primary light. The f = symbol is
used to denote a perceptual match—the sample and the mixture of the red, green, and blue
(rR, gG, bB) primaries look identical. Figure 4.4 illustrates the concept. Three projectors are set
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Figure 4.4 A color-matching setup. (a) When the light from three projectors is combined, the results are as shown.
Yellow light is a mixture of red and green. Purple light is a mixture of red and blue. Cyan light is a mixture
of blue and green. White light is a mixture of red, green, and blue. (b) Any other color can be matched by
adjusting the proportions of red, green, and blue light.

up with overlapping beams. In the figure, the beams only partially overlap so that the mixing
effect can be illustrated, but in a color-matching experiment they would overlap completely.
To match the lilac-colored sample, the projectors are adjusted so that a large amount of light
comes from the red and blue projectors and only a small amount of light comes from the green
projector.

The RGB primaries form the coordinates of a color space, as illustrated in Figure 4.5. If
these primaries are physically formed by the phosphor colors of a color monitor, this space defines
the gamut of the monitor. In general, a gamut is the set of all colors that can be produced by a
device or sensed by a receptor system.

It seems obvious that restrictions must be placed on this formulation. So far, we have assumed
that the primaries are red, green and blue, but what if we were to choose other primary lights,
for example, yellow, blue, and purple? We have stated no rule saying they must be red, green,
and blue. How could we possibly reproduce a patch of red light out of combinations of yellow,
blue, and purple lights? In fact, we can only reproduce colors that lie within the gamut of the
three primaries. Yellow, blue, and purple would simply have a smaller gamut, meaning that if
we used them, a smaller range of colors could be reproduced.

The relationship defined in Equation 4.1 is a linear relationship. This has the consequence
that if we double the amount of light on the left, we can double the amount of light on each of
our primaries and the match will still hold. To make the math simpler, it is also useful to allow
the concept of negative light. Thus, we may allow expressions such as

=—-rR+gG+bB (4.2)
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Figure 4.5 The three-dimensional space formed by three primary lights. Any color can be created by varying the

amount of light produced by each of the primaries.

Although this concept may seem nonsensical, because negative light does not exist in nature,
it is, in fact, practically useful in the following situation. Suppose we have a colored light that
cannot be matched because it is outside the gamut of our three primary sources. We can still
achieve a match by adding part of one of the primaries to our sample. If the test samples and
the RGB primaries are all projected as shown in Figure 4.4, this can be achieved by swiveling
one of the projectors around and adding its light to the light of the sample.

If the red projector were redirected in this way, we would have

C+rR=gG+bB (4.3)
which can be rewritten
C=-rR+gG+bB (4.4)

Once we allow the concept of negative values for the primaries, it becomes possible to state that
any colored light can be matched by a weighted sum of any three distinct primaries.

Change of Primaries

Primaries are arbitrary from the point of view of color mixture—there is no special red, green,
or blue light that must be used. Fundamental to colorimetry is the ability to change from one set
of primaries to another. This gives us freedom to choose any set of primaries we want. We can
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choose as primaries the three phosphors of a monitor, three differently colored lasers, or some
hypothetical set of lamps. We can even choose to base our primaries on the sensitivities of the
human cone receptors. Given a standard way of specifying colors (using a standard set of pri-
maries), we can use a transformation to create that same color on any number of different output
devices. This transformation is described in Appendix A.

CIE System of Color Standards

We now have the foundations of a color measurement and specification system. We begin with
an easily understood, though impractical, solution based on standardized primary lamps. Red,
green, and blue lamps could be manufactured to precise specifications and set up in an instru-
ment so that the amounts of red, green, and blue light falling on a standard white surface could
be set by adjusting three calibrated dials, one for each lamp. Identical instruments, each
containing sets of colored lamps, would be sent around the world to color experts. They would
be very expensive. Then to give a precise color specification to someone with the standard instru-
ment, we would simply need to make a color match by adjusting the dials and sending that person
the dial settings. The recipient could then adjust his or her own standard lamps to reproduce
the color.

Of course, although this approach is theoretically sound, it is not very practical. Standard
primary lamps would be very difficult to maintain and calibrate. But we can apply the principle
by creating a set of abstract primary lamps defined on the basis of the human receptor charac-
teristics. This assumes that everyone has the same receptor functions. In fact, although humans
do not display exactly the same sensitivities to different colors, with the exception of the color
deficiencies, they come close. One of the basic concepts in any color standard is that of the stan-
dard observer. This is a hypothetical person whose color sensitivity functions are held to be
typical of all humans. Most serious color specification is done using the Commission Interna-
tionale de I’Eclairage (CIE) system of color standards. These are based on standard observer mea-
surements that were made prior to 1931. Color measuring instruments contain glass filters that
are derived from the specifications of the human standard observer. One advantage is that glass
filters are more stable than lamps.

The CIE system uses a set of abstract primaries called tristimulus values; these are labeled
XYZ. These primaries are chosen for their mathematical properties, not because they match any
set of actual lights. One important feature of the system is that the Y tristimulus value is the
same as luminance. More details of the way the system is derived are given in Appendix B.

Figure 4.6 illustrates the color volume created by the XYZ tristimulus primaries of the CIE
system. The colors that can actually be perceived are represented as a gray volume entirely con-
tained within the positive space defined by the axes. The colors that can be created by a set of
three colored lights, such as the red, green, and blue monitor phosphors, are defined by the
pyramid-shaped volume within the RGB axes as shown. This is the monitor gamut.

The CIE tristimulus system based on the standard observer is by far the most widely used
standard for measuring colored light. For this reason, it should always be used when precise color
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Figure 4.6 The X, Y, and Z axes represent the CIE standard virtual primaries. Within the positive space defined by
the axes, the gamut of perceivable colors is represented as a gray solid. The colors that can be created
by means of the red, green, and blue monitor primaries are also shown.

specification is required. Because a monitor is a light-emitting device with three primaries, it is
relatively straightforward to calibrate a monitor in terms of the CIE coordinates. If a color gen-
erated on one monitor is to be reproduced on another, for example, a liquid crystal display, the
best procedure is first to convert the colors into the CIE tristimulus values and then to convert
them into the primary space of the second monitor.

The specification of surface colors is far more difficult than the specification of lights, because
an illuminant must be taken into account and because, unlike lights, pigment colors are not addi-
tive. The color that results from mixing paints is difficult to predict. A treatment of surface color
measurement is beyond the scope of this book, although later we will deal with perceptual issues
related to color reproduction.

Chromaticity Coordinates

The three-dimensional abstract space represented by the XYZ coordinates is useful for specify-
ing colors, but it is difficult to understand. As discussed in Chapter 3, there are good reasons for
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treating lightness, or luminance, information as special. In everyday speech, we often refer to the
color of something and its lightness as different and independent properties. Thus, it is useful to
have a measure that defines the hue and vividness of a color while ignoring the amount of light.
Chromaticity coordinates have exactly this property through normalizing with respect to the
amount of light.

To transform tristimulus values to chromaticity coordinates, use

x=X/(X+Y+2Z)
y=Y/(X+Y+2Z)
2=Z/(X+Y+2Z) (4.5)

Because x + y + z = 1, it is sufficient to use x, y values only. It is common to specify a color by
its luminance, Y, and its x, y chromaticity coordinates (x, y, Y). The inverse transformation from
x, y, Y to tristimulus values is

X =Yx/y
Y=Y
Z=(1-x-y)Y/y (4.6)

Figure 4.7 shows a CIE x, y chromaticity diagram and graphically illustrates some of the

colorimetric concepts associated with it. Here are some of the useful and interesting properties
of the chromaticity diagram:

1.

If two colored lights are represented by two points in a chromaticity diagram, the
color of a mixture of those two lights will always lie on a straight line between those two
points.

Any set of three lights specifies a triangle in the chromaticity diagram. Its corners are
given by the chromaticity coordinates of the three lights. Any color within that triangle
can be created with a suitable mixture of the three lights. Figure 4.7 illustrates this with
typical monitor RGB primaries.

The spectrum locus is the set of chromaticity coordinates of pure monochromatic (single-
wavelength) lights. All realizable colors fall within the spectrum locus.

The purple boundary is the straight line connecting the chromaticity coordinates of the
longest visible wavelength of red light, about 700nm, to the chromaticity coordinates of
the shortest visible wavelength of blue, about 400 nm.



106 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

y 520
0.8

0.7

Gamut of all colors

0.6 Gamut of a monitor

0.5 580

Gamut of printing inks

0.4 600

0.3 700

0.2

0.1

0.0 I I I I I I I ] X
00 01 02 03 04 05 06 07 08

Figure 4.7 CIE chromaticity diagram with various interesting features added. The triangle represents the gamut of a
computer monitor with long-persistence phosphors.

5. The chromaticity coordinates of equal-energy white (light having an equal mixture of all
wavelengths) are 0.333, 0.333. But when a white light is specified for some application,
what is generally required is one of the CIE standard illuminants. The CIE specifies a
number that corresponds to different phases of daylight; of these, the most commonly
used is D65. D65 was made to be a careful approximation of daylight with an overcast
sky. It also happens to be very close to the mix of light that results when both direct
sunlight and light from the rest of the sky fall on a horizontal surface. D65 also
corresponds to a black-body radiator at 6500 degrees Kelvin. D65 has chromaticity
coordinates x = 0.313, y = 0.329. Another CIE standard illuminant corresponds to the
light produced by a typical incandescent tungsten source. This is illuminant A. Illuminant
A has chromaticity coordinates x = 0.448, y = 0.407. This is considerably more yellow
than normal daylight.

6. Excitation purity is a measure of the distance along a line between a particular pure
spectral wavelength and the white point. Specifically, it is the value given by dividing the
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distance between the sample and the white point by the distance between the white point
and the spectrum line (or purple boundary). This measure defines the vividness of a color.
A less technical, but commonly used, term for this quantity is saturation. More saturated
colors are more vivid.

7. The complementary wavelength of a color is produced by drawing a line between that
color and white and extrapolating to the opposite spectrum locus. Adding a color and its
complementary color produces white.

The sets of chromaticity coordinates for two sets of typical monitor phosphors follow:

Short-Persistence Phosphors Long-Persistence Phosphors

Red Green Blue Red Green Blue
X 0.61 0.29 0.15 0.62 0.21 0.15
y 0.35 0.59 0.063 0.33 0.685 0.063

The main difference between the two is that the long-persistence phosphor green (besides
the fact that it glows for longer after being bombarded with electrons) is closer to being a pure
spectral color than the short-persistence green. This makes the gamut larger. Short-persistence
phosphors are useful for frame sequential stereoscopic displays because they reduce the bleeding
of the image intended for one eye into the image intended for the other eye.

When a CRT display is used, the CIE tristimulus values of a color formed from some set of
red, green, and blue settings can be calculated by the following formula:

(4.7)

N < X
1]
2N 3
SN = 5
SN |22
5

where xg, Yk, and zy are the chromaticity coordinates of the particular monitor primaries and
Yz, Yz, and Y are the actual luminance values produced from each phosphor for the particular
color being converted. Notice that for a particular monitor the transformation matrix will be
constant; only the Y vector will change.

To generate a particular color on a monitor that has been defined by CIE tristimulus values,
it is only necessary to invert the matrix and create an appropriate voltage to each of the
red, green, and blue electron guns of the monitor. Naturally, to determine the actual value
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that must be specified, it is necessary to calibrate the monitor’s red, green, and blue outputs in
terms of luminance and apply gamma correction, as described in Chapter 3. Once this is
done, the monitor can be treated as a linear color creation device with a particular set of
primaries, depending on its phosphors. For more on monitor calibration, see Cowan (1983).
It is also possible to purchase self-calibrating monitors adequate for all but the most demanding
applications.

Color Differences and Uniform Color Spaces

Sometimes, it is useful to have a color space in which equal perceptual distances are equal dis-
tances in the space. Here are three applications:

Specification of color tolerances: When a manufacturer wishes to order a colored part from a
supplier, such as a plastic molding for an automobile, it is necessary to specify the color
tolerance within which the part will be accepted. It only makes sense for this tolerance to
be based on perception, because ultimately it is the customer who decides whether the
door trim matches the upholstery.

Specification of color codes: If we need a set of colors to code data, such as different wires in
a cable, we would normally like those colors to be as distinct as possible so that they will
not be confused.

Pseudocolor sequences for maps: Many scientific maps use sequences of colors to represent
ordered data values. This technique, called pseudocoloring, is widely used in astronomy,
physics, medical imaging, and geophysics.

The CIE XYZ color space is very far from being perceptually uniform. However, in 1978 the
CIE produced a set of recommendations on the use of two uniform color spaces that are trans-
formations of the XYZ color space. These are called the CIElab and the CIEluv uniform color
spaces. The reason that there are two, rather than one, has to do with the fact that different
industries, such as the paint industry, had already adopted one standard or the other. Also, the
two standards have somewhat different properties that make them useful for different tasks. Only
the CIEluv formula is described here. It is generally held to be better for specifying large color
differences. However, one measurement made using the CIElab color difference formula is worth
noting. Using CIElab, Hill et al. (1997) estimated that there are between two and six million dis-
criminable colors available within the gamut of a color monitor.
The CIEluv equations are:

L =116(Y/Y,)"” - 16
w*=13L"* (' —u))
v =13L* (' —1)) (4.8)
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where

o 4X o 4X,
X+15Y+3Z " X, +15Y,+3Z,

e %
X+15Y+3Z2 " X, +15Y,+3Z, (4.9)

u’ and V" are a projective transformation of the x, y chromaticity diagram, designed to produce
a perceptually more uniform color space. X,, Y,, and Z, are the tristimulus values of a reference
white. To measure the difference between colors AE*,,, the following formula is used:

AL = V(ALY +(Au)! + (a0 (410

The CIEluv system retains many of the useful properties of the XYZ tristimulus values and the
x, y chromaticity coordinates.

The #’v" diagram is shown in Figure 4.8. Its official name is the CIE 1976 uniform
chromaticity Scale diagram, or UCS diagram. Because #’, v" is a projective transformation, it
retains the useful property that blends of two colors will lie on a line between the #’, " chro-
maticity coordinates. (It is worth noting that this is not a property of the CIElab uniform color
space.)

The u*, v* values change the scale of #’, v" with respect to the distance from black to white
defined by the sample lightness L* (recall from Chapter 3 that L* requires Y, a reference white
in the application environment). The reason for this is straightforward: the darker the colors, the
fewer we can see. At the limit, there is only one color: black.

A value of 1 for AE*,, is an approximation to a just noticeable difference (JND).

Although they are useful, uniform color spaces provide, at best, only a rough first approxi-
mation. Perceived color differences are influenced by many factors. Contrast effects can radically
alter the shape of the color space. Small patches of light give different results than large patches.
In general, we are much more sensitive to differences between large patches of color. When the
patches are small, the perceived differences are smaller, and this is especially true in the
yellow—blue direction. Ultimately, with very small samples, small-field tritanopia occurs; this is
the inability to distinguish colors that are different in the yellow—blue direction. Figure 4.9 shows
two examples of small patches of color on a white background and the same set of colors in
larger patches on a black background. Both the white background and the small patches make
the colors harder to distinguish.
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Figure 4.8 CIE Lu’v” UCS diagram. The lines radiating from the lower part of the diagram are tritanopic confusion lines.
Colors that differ along these lines can still be distinguished by the great majority of color-blind individuals.

Opponent Process Theory

Late in the nineteenth century, German psychologist Ewald Hering proposed the theory that there
are six elementary colors and that these colors are arranged perceptually as opponent pairs along
three axes: black—white, red—green, and yellow—blue (Hering, 1920). In recent years, this princi-
ple has become a cornerstone of modern color theory, supported by a large variety of experi-
mental evidence (see Hurvich, 1981, for a review). Modern opponent process theory has a well
established physiological basis: input from the cones is processed into three distinct channels
immediately after the receptors. The luminance channel (black—white) is based on input from all
the cones. The red—green channel is based on the difference of long- and middle-wavelength cone
signals. The yellow=blue channel is based on the difference between the short-wavelength cones
and the sum of the other two. These basic connections are illustrated in Figure 4.10.

There are many lines of scientific evidence for the opponent process theory. These are worth
examining, because they illuminate a number of applications.

Naming

We often describe colors using combinations of color terms, such as “yellowish green” or “green-
ish blue.” However, certain combinations of terms never appear. People never use “reddish green”
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Figure 4.9 (a) Small samples of a yellow-to-blue sequence of colors on a white background. (b) The same yellow-

to-blue sequence with larger samples on a black background. (c) Small samples of a green-to-red
sequence on a white background. (d) The same green-to-red sequence with larger samples on a black
background.

Long (red)
Black-white

+ (luminance)

Med (green) - w

Short (blue) Yellow-blue

'

Figure 4.10 In the color opponent process model, cone signals are transformed into black—white (luminance),

red—green, and yellow-blue channels.
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or “yellowish blue,” for example. Because these colors are polar opposites in the opponent color
theory, these pairings should not occur (Hurvich, 1981).

Cross-Cultural Naming

In a remarkable study of more than 100 languages from many diverse cultures, anthropologists
Berlin and Kay (1969) showed that primary color terms are remarkably consistent across cul-
tures (Figure 4.11). In languages with only two basic color words, these are always black
and white; if a third color is present, it is always red; the fourth and fifth are either yellow and
then green, or green and then yellow; the sixth is always blue; the seventh is brown, followed
by pink, purple, orange, and gray in no particular order. The key point here is that the first six
terms define the primary axes of an opponent color model. This provides strong evidence that
the neural basis for these names is innate. Otherwise, we might expect to find cultures where
lime green or turquoise is a basic color term. The cross-cultural evidence strongly supports the
idea that certain colors, specifically, red, green, yellow, and blue, are far more valuable in coding
data than others.

Unique Hues

There is something special about yellow. If subjects are given control over a device that changes
the spectral hue of a patch of light, and are told to adjust it until the result is a pure yellow,
neither reddish nor greenish, they do so with remarkable accuracy. In fact, they are typically
accurate within 2nm (Hurvich, 1981).

Interestingly, there is good evidence for two unique greens. Most people set a pure green at
about 514nm, but about a third of the population sees pure green at about 525nm (Richards,
1967). This may be why some people argue about the color turquoise; some people consider it
to be a variety of green, whereas others consider it to be a kind of blue.

It is also significant that unique hues do not change a great deal when the overall luminance
level is changed (Hurvich, 1981). This supports the idea that chromatic perception and lumi-
nance perception really are independent.

green yellow pink
white purple
black red blue brown orange

yellow green gray

Figure 4.11 This is the order of appearance of color names in languages around the world, according to the research
of Berlin and Kay (1969). The order is fixed, with the exception that sometimes yellow is present before
green and sometimes the reverse is the case.
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Neurophysiology

Neurophysiological studies have isolated classes of cells in the primary visual cortexes of monkeys
that have exactly the properties of opponency required by the opponent process theory.
Red-green and yellow—blue opponent cells exist, and other configurations do not appear to exist
(de Valois and de Valois, 1975).

Categorical Colors

There is evidence that certain colors are canonical in a sense that is analogous to the philoso-
pher Plato’s theory of forms. Plato proposed that there are ideal objects, such as an ideal horse
or an ideal chair, and that real horses and chairs can be defined in terms of their differences from
the ideal. Something similar appears to operate in color naming. If a color is close to an ideal
red or an ideal green, it is easier to remember. Colors that are not basic, such as orange or lime
green, are not as easy to remember.

There is evidence that confusion between color codes is affected by color categories. Kawai
et al. (1995) asked subjects to identify the presence or absence of a chip of a particular color.
The subjects took much longer if the chip was surrounded by distracting elements that were
of a different color but belonged to the same color category than if the chip was surrounded by
distracting elements that were equally distinct according to the sense of a uniform color space
but crossed a color category boundary.

Post and Greene (1986) carried out an extensive experiment on the naming of colors pro-
duced on a computer monitor and shown in a darkened room. They generated 210 different
colors, each in a two-degree (of visual angle) patch with a black surround. Figure 4.12 illustrates
the color areas that were given a specific name with at least 75% reliability. A number of points
are worth noting:

®  The fact that only eight colors plus white were consistently named, even under these
highly standardized conditions, strongly suggests that only a very small number of colors
can be used effectively as category labels.

®  The pure monitor red was actually named orange most of the time. A true color red
required the addition of a small amount from the blue monitor primary.

®  The specific regions of color space occupied by particular colors should not be given much
weight. The data was obtained with a black background. Because of contrast effects,
different results are to be expected with white and colored backgrounds.

Properties of Color Channels

From the perspective of data visualization, the different properties of the color channels have profound
implications for the use of color. The most significant differences are between the two chromatic chan-
nels and the luminance channel, although the two color channels also differ from each other.
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Figure 4.12 The results of an experiment in which subjects were asked to name 210 colors produced on a computer
monitor. Qutlined regions show the colors that were given the same name with better than 75%
probability.

To display data on the luminance channel alone is easy; it is stimulated by patterns that vary
only from black to white through shades of gray. But with careful calibration (which must be
customized to individual subjects), patterns can be constructed that vary only for the red—green
or the yellow—blue channel. A key quality of such a pattern is that its component colors must
not differ in luminance. This is called an isoluminant or equiluminous pattern. In this way, the
different properties of the color channels can be explored and compared with the luminance
channel capacity.

Spatial Sensitivity

According to a study by Mullen (19835), the red—green and yellow-blue chromatic channels are
each only capable of carrying about one-third the amount of detail carried by the black—white
channel. Because of this, purely chromatic differences are not suitable for displaying any kind of
fine detail. Figure 4.13 illustrates this problem with colored text on an equiluminous background.
In the part of the figure where there is only a chromatic difference between the text and the back-
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It is very difficult to read text that is isoluminant
with its background color. If clear text material
is to be presented it is essential that there be

substantial luminance contrast with the
background color. Color contrast is not enough

Figure 4.13 Yellow text on a blue gradient. Note how difficult it is to read the text where luminance is equal, despite a
large chromatic difference.

ground, the text becomes very difficult to read. Generally, when detailed information of any kind
is presented with color coding, it is important that there be considerable luminance contrast in
addition to color contrast, especially if the colored patterns are small.

Stereoscopic Depth

It appears to be impossible, or at least very difficult, to see stereoscopic depth in stereo pairs that
differ only in terms of the color channels (Lu and Fender, 1972; Gregory, 1977). Thus, stereo
space perception is based primarily on information from the luminance channel.

Motion Sensitivity

If a pattern is created that is equiluminous with its background and contains only chromatic dif-
ferences, and that pattern is set in motion, something strange occurs. The moving pattern appears
to move much more slowly than a black-against-white pattern moving at the same speed (Anstis
and Cavanaugh, 1983). Thus, motion perception appears to be primarily based on information
from the luminance channel.

Form

We are very good at perceiving the shapes of surfaces based on their shading. However, when
the shading is transformed from a luminance gradient into a purely chromatic gradient, the
impression of surface shape is much reduced. Perception of shape and form appears to be
processed mainly through the luminance channel (Gregory, 1977).
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To summarize this set of properties, the red-green and yellow—blue channels are inferior to
the luminance channel in almost every respect. The general implications for data display are clear.
Purely chromatic differences should never be used for displaying object shape, object motion, or
detailed information such as text. From this perspective, color would seem almost irrelevant and
certainly a secondary method for information display. Nevertheless, when it comes to coding
information, using color to display data categories is usually the best choice. To see why, we need
to look beyond the basic processes that we have been considering thus far.

Color Appearance

The value of color (as opposed to luminance) processing, it would appear, is not in helping us
to understand the shape and layout of objects in the environment. Color does not help the hunter
aim an arrow accurately. Color does not help us see shape from shading and thereby plan a hike
through a valley, although it does help us distinguish vegetation types. Color does not help use
stereoscopic depth when we reach out to grasp a tool. But color is useful to the gatherer. Food,
in the forest or on the savannah, is often distinct because of its color. This is especially true of
fruits and berries. Color creates a kind of visual attribute of objects: this is a red berry. That is
a yellow door. Color names are used as adjectives because colors are perceived as attributes of
objects. This suggests a most important role for color in visualization—namely, the coding of
information. Visual objects can represent complex data entities, and colors can naturally code
attributes of those objects.

Color is normally a surface attribute of an object. The XYZ tristimulus values of a patch of
light physically define a color, but they do not tell us how it will look. Depending on the sur-
rounding colors in the environment and a whole host of spatial and temporal factors, the same
physical color can look very different. If it is desirable that color appearance be preserved, it is
important to pay close attention to surrounding conditions. In a monitor-based display, a large
patch of standardized reference white will help ensure that color appearance is preserved. When
colors are reproduced on paper, viewing them under a standard lamp will help preserve their
appearance. In the paint and fabric industries, where color appearance is critical, standard
viewing booths are used. These booths contain standard illumination systems that can be set to
approximate daylight or a standard indoor illuminant, such as a typical tungsten light bulb or
halogen lamp.

The mechanisms of surface lightness constancy, discussed at some length in Chapter 3, gen-
eralize to trichromatic color perception. Both chromatic adaptation and chromatic contrast occur
and play a role in color constancy. Differential adaptation in the cone receptors helps us to
discount the color of the illumination in the environment. When there is colored illumination,
different classes of cone receptors undergo independent changes in sensitivity. Thus, when the
illumination contains a lot of blue light, the short-wavelength cones become relatively less sen-
sitive than the others. The effect of this is to shift the neutral point at which the three receptor
types are in equilibrium, such that more blue light must be reflected from a surface for it to seem
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white. This, of course, is exactly what is necessary for color constancy. That adaptation is effec-
tive in maintaining constancy is evident from the fact that not many people are aware how much
yellower ordinary tungsten room lighting is than daylight.

Color Contrast

Chromatic contrast also occurs in a way that is similar to the lightness contrast effects discussed
and illustrated in Chapter 3. Figure 4.14 shows a color contrast illusion. It has been shown that
contrast effects can distort readings from color-coded maps (Cleveland and McGill, 1983; Ware,
1988). Contrast effects can be theoretically accounted for by activity in the color opponent chan-
nels (Ware and Cowan, 1982). However, as with lightness contrast, the ultimate purpose of the
contrast-causing mechanism is to help us see surface colors accurately by revealing differences
between colored patches and background regions.

From the point of view of the monitor engineer and the user of color displays, the fact that
colors are perceived relative to their overall context has the happy consequence of making the
eye relatively insensitive to poor color balance. A visit to a television store will reveal that when
television sets are viewed side by side, the overall color of the pictures can differ strikingly, yet
when they are viewed individually, they are all acceptable. Of course, because the state of adap-
tation is governed by the light of the entire visual field, and a television screen takes up only part
of the field, this adaptation will necessarily be incomplete.

Saturation

When describing color appearance in everyday language, people use many terms in rather impre-
cise ways. Besides using color names such as lime green, mauve, brown, baby blue, and so on,

Figure 4.14 A color contrast illusion. The X pattern is identical on both sides, but it seems bluer on the red
background and pinker on the blue background.
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Figure 4.15 (a) The triangle represents the gamut of colors obtained using a computer monitor plotted in CIE
chromaticity coordinates. The contours show perceptually determined equal-saturation contours.
(b) Equal-saturation contours created using the HSV color space, also plotted in chromaticity
coordinates.

people also use adjectives such as vivid, bright, and intense to describe colors that seem espe-
cially pure. Because these terms are used so variably, scientists use the technical term saturation
to denote how pure colors seem to the viewer. A high-saturation color is vivid and a low-
saturation color is close to black, white, or gray. In terms of the color opponent channels, high-
saturation colors are those that give a strong signal on one or both of the red-green and
yellow—blue channels.

Equal saturation contours have been derived from psychophysical experiments (Wyszecki
and Stiles, 1982). Figure 4.15(a) shows a plot of equal saturation values in a CIE chromaticity
diagram. It is clear that it is possible to obtain much more highly saturated red, green, and blue
colors on a monitor than yellow, cyan, or purple values.

Brown

Brown is one of the most mysterious colors. Brown is dark yellow. Whereas people talk about
a light green or a dark green, a light blue or a dark blue, yellow is different. When colors in
the vicinity of yellow and orange yellow are darkened, they turn to shades of brown and olive
green. Unlike red, blue, and green, brown requires that there be a reference white somewhere in
the vicinity for it to be perceived. Brown appears qualitatively different to orange yellow.
There is no such thing as an isolated brown light in a dark room, but when a yellow or yellow-
ish orange is presented with a bright white surround, brown appears. The relevance to visual-
ization is that if color sets are being devised for the purposes of color coding—for example, a
set of blues, a set of reds, and a set of greens—brown may not be recognized as belonging to the
set of yellows.



Color 119

Applications of Color in Visualization

So far, this chapter has been mainly a presentation of the basic theory underlying color vision
and color measurement. Now we shift the emphasis to applications of color, for which new theory
will be introduced only as needed. We will examine five different application areas: color selec-
tion interfaces, color labeling, color sequences for map coding, color reproduction, and color for
multidimensional discrete data display. Each of these presents a different set of problems, and
each benefits from an analysis in terms of the human perception of color.

Application 1: Color Specification Interfaces and Color Spaces

In data visualization programs, drawing applications, and CAD systems, it is often essential to
let users choose their own colors. There are a number of approaches to this user interface
problem. The user can be given a set of controls to specify a point in a three-dimensional color
space, a set of color names to choose from, or a palette of predefined color samples.

Color Spaces

The simplest color interface to implement on a computer involves giving someone controls to
adjust the amounts of red, green, and blue light that combine to make a patch of color on a
monitor. The controls can take the form of sliders, or the user can simply type in three numbers.
This provides access, in a straightforward way, to any point within the RGB color cube shown
in Figure 4.5. However, although it is simple, many people find this kind of control confusing.
For example, most people do not know that to get yellow you must add red and green. There
have been many attempts to make color interfaces easier to use.

One of the most widely used color interfaces in computer graphics is based on the HSV color
space (Smith, 1978). This is a simple transformation from hue, saturation, and value (HSV) coor-
dinates to RGB monitor coordinates. In Smith’s scheme, hue represents an approximation to the
visible spectrum by interpolating in sequence from red to yellow to green to blue and back to
red. Saturation is the distance from monitor white to the purest hue possible given the limits of
monitor phosphors. Figure 4.16 shows how hue and saturation can be laid out in two dimen-
sions, with hue on one axis and saturation on the other, based on the HSV transformation of
monitor primaries. As Figure 4.15(b) shows, HSV creates only the crudest approximation to per-
ceptually equal-saturation contours. Value is the name given to the black—white axis. Some color
specification interfaces based on HSV allow the user to control hue, saturation, and value vari-
ables with three sliders.

Color theory suggests that, in a computer interface for selecting colors, there are good reasons
for separating a luminance (or lightness) dimension from the chromatic dimensions. A common
method is to provide a single slider control for the black—white dimension and to lay out the two
opponent color dimensions on a chromatic plane. The idea of laying out colors on a plane has
a long history; for example, a color circle is a feature of a color textbook created for artists by
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Figure 4.16 This plot shows hue and saturation, based on Smith’s transformation (1978) of the monitor primaries.

Rood (1897). With the invention of computer graphics, it has become far simpler to create and
control colors, and many ways of laying out colors are now available. Figure 4.17 illustrates a
sampling of four different geometric color layouts, each of them embodying the idea of a chro-
matic plane.

Figure 4.17(a) shows a color circle with red, green, yellow, and blue defining opposing axes.
Many such color circles have been devised over the past century. They differ mainly in the spacing
of colors around the periphery.

Figure 4.17(b) shows a color triangle with the monitor primaries, red, green, and blue, at
the corners. This color layout is convenient because it has the property that mixtures of two
colors will lie on a line between them (assuming proper calibration).

Figure 4.17(c) shows a color square with the opponent color primaries, red, yellow, green,
and blue, at the corners (Ware and Cowan, 1990).

Figure 4.17(d) shows a color hexagon with the colors red, yellow, green, cyan, blue, and
magenta at the corners. This represents a plane through the single-hexcone color model (Smith,
1978). The hexagon representation has the advantage that it gives both the monitor primaries,
red, green, and blue, and the print primaries, cyan, magenta, and yellow, prominent positions
around the circumference.

To create a color interface using one of these color planes, it is necessary to allow the user
to pick a sample from the color plane and adjust its lightness with a luminance slider. In some
interfaces, when the luminance slider is moved, the entire plane of colors becomes lighter and
darker according to the currently selected level. For those interested in implementing color inter-
faces, Foley et al. (1990) provide algorithms for a number of color geometries.
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Figure 4.17 There are a number of simple transformations of the RGB monitor primaries to provide a color plane with
an orthogonal lightness axis. Four of these are illustrated here: (a) Circle. (b) Triangle. (c) Square.
(d) Hexagon.

The problem of the best color selection interface is by no means resolved. Experimental
studies have failed to show that one way of controlling color is substantially better than another
(Schwarz et al., 1987; Douglas and Kirkpatrick, 1996). However, Douglas and Kirkpatrick have
provided evidence that good feedback about the location of the color being adjusted in color
space can help in the process.

Color Naming

The facts that there are so few widely agreed-upon color names and that color memory is so
poor suggest that choosing colors by name will not be useful except for the simplest applica-
tions. People agree on red, green, yellow, blue, black, and white as labels, but not much more.
Nevertheless, it is possible to remember a rather large number of color names and use them accu-
rately under controlled conditions. Displays in paint stores generally have a standard illuminant
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and standard background for sample strips containing several hundred samples. Under these
circumstances, the specialist can remember and use as many as 1000 color names. But many
of the names are idiosyncratic; the colors corresponding to “taupe,” “fiesta red,” and “prim-
rose” are imprecisely defined for most of us. In addition, as soon as these colors are removed
from the standard booth, they will change their appearance because of adaptation and contrast
effects.

A standardized color naming system called the Natural Color System (NCS) has been devel-
oped based on Hering’s opponent color theory (1920). NCS was developed in Sweden and is
widely used in England and other European countries. In NCS, colors are characterized by the
amounts of redness, greenness, yellowness, blueness, blackness, and whiteness that they contain.
As shown in Figure 4.18, red, green, yellow, and blue lie at the ends of two orthogonal axes.
Intervening “pure” colors lie on the circle circumference, and these are given numbers by sharing
out 100 arbitrary units. Thus, a yellowish orange might be given the value Y70R30, meaning 70
parts yellow and 30 parts red. Colors are also given independent values on a black-white axis
by allocating a blackness value between 0 and 100. A third color attribute, intensity (roughly
corresponding to saturation), describes the distance from the gray-scale axis. For example, in
NCS, the color “spring nymph” becomes 0030-G80Y20, which expands to blackness 00, inten-
sity 30, green 80, and yellow 20 (Jackson et al., 1994). The NCS system combines some of the
advantages of a color geometry with a reasonably intuitive and precise naming system.

In North America, other systems are more popular than NCS. The Pantone system is widely
used in the printing industry, and the Munsell system is an important reference for surface
colors. The Munsell system is useful because it provides a set of standard color chips designed
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Figure 4.18 The Natural Color System (NCS) circle, defined midway between black and white. Two example color
names are shown in addition to the “pure” opponent color primaries. One is an orange yellow and the
other is purple.
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to represent equal perceptual spacing in a three-dimensional mesh. (Munsell color chips and
viewing booths are available commercially, as are Pantone products.) The NCS, Pantone, and
Munsell systems were originally designed to be used with carefully printed paper samples
providing the reference colors, but computer-based interfaces to these systems have been devel-
oped as part of illustration and design packages. Rhodes and Luo (1996) describe a software
package that enables transformations between the different systems using the CIE as an inter-
mediate standard.

Color Palette

When the user wishes to use only a small set of standardized colors, providing a color palette is
a good solution to the color selection problem. Often, color selection palettes are laid out in a
regular order according to one of the color geometries defined previously. It is useful to provide
a facility for the user to develop a personal palette. This allows for consistency in color style
across a number of visualization displays. Another valuable addition to a color user interface is
a method for showing a color sample on differently colored backgrounds. This allows the designer
to understand how contrast effects can affect the appearance of particular color samples.

Sometimes a color palette is based on one of the standard color sets used by the fabric indus-
try or the paint industry. If this is the case, the monitor must be calibrated so that colors actu-
ally appear as specified. In addition, the lighting surrounding the monitor must be taken into
account, as discussed in Chapter 3. Ideally, the monitor should be set up carefully with a stan-
dard surround and little or no ambient light falling directly on the screen. This includes having
a room light such that the standard white in the set of color samples on the screen closely matches
the appearance of a standard white in the room environment.

Application 2: Color for Labeling

The technical name for labeling an object is nominal information coding. A nominal code does
not have to be orderable; it simply must be remembered and recognized. Color can be extremely
effective as a nominal code. When we wish to make it easy for someone to classify visual objects
into separate categories, giving the objects distinctive colors is often the best solution. One of
the reasons that color is considered effective is that the alternatives are generally worse. For
example, if we try to create gray-scale codes that are easily remembered and unlikely to be con-
fused, we find that four is about the limit: white, light gray, dark gray, and black. Given that
white will probably be used for the background and black is likely to be used for text, this leaves
only two. In addition, using the gray scale as a nominal code may interfere with shape or detail
perception. Chromatic coding can often be employed in a way that only minimally interferes
with data presented on the luminance channel.
There are many perceptual factors to be considered in choosing a set of color labels.

1. Distinctness: A uniform color space, such as CIEluv, can be used to determine the degree
of perceived difference between two colors that are placed close together. However, when



124 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

a b
[ }
C d
°® o o °
oo °
o 0 ®
oo.... ®© 0°¢ °
o .. ..
°® ° °®

Figure 4.19 The convex hull of a set of colors is defined as the area within a rubber band that is stretched around the
colors when they are defined in CIE tristimulus space. Although illustrated in two dimensions here, the
concept can easily be extended to three dimensions. (a) Gray is within the convex hull of red, green,
yellow, and blue. (b) Red lies outside the convex hull of green, blue, yellow, and gray. (c) The gray dot is
difficult to find in a set of red, green, yellow, and blue dots. (d) The red dot is easy to find in a set of
green, blue, yellow, and gray dots.

we are concerned with the ability to distinguish a color rapidly from a set of other colors,
different rules may apply. Bauer et al. (1996) showed that the target color should lie
outside the convex hull of the surrounding colors in the CIE color space. This concept is
illustrated in Figure 4.19. The issues related to coding for rapid target identification are
discussed further in Chapter 5.

2. Unique hues: The unique hues—red, green, yellow, and blue, as well as black and white—
are special in terms of the opponent process model. These colors are also special in the
color vocabularies of languages worldwide. Clearly, these colors provide natural choices
when a small set of color codes is required. In addition, work on color confusion suggests
that no two colors should be chosen from the same category, even though they may be
relatively far apart in color space. We should avoid using multiple shades of green as
codes, for example.

3. Contrast with background: In many displays, color-coded objects can be expected to
appear on a variety of backgrounds. Simultaneous contrast with background colors can
dramatically alter color appearance, making one color look like another. This is one
reason why it is advisable to have only a small set of color codes. A method for reducing
contrast effects is to place a thin white or black border around the color-coded object.
This device is commonly used with signal lights; for example, train signals are displayed
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on large black background discs. In addition, we should never display codes using purely
chromatic differences with the background. There should be a significant luminance
difference in addition to the color difference.

Color blindness: Because there is a substantial color-blind population, it may be desirable
to use colors that can be distinguished even by people who are color blind. Recall that the
majority of color-blind people cannot distinguish colors that differ in a red-green
direction. Almost everyone can distinguish colors that vary in a yellow-blue direction, as
shown in Figure 4.8. Unfortunately, this drastically reduces the design choices that are
available.

Number: Although color coding is an excellent way to display category information, only
a small number of codes can be rapidly perceived. Estimates vary between about five and
ten codes (Healey, 1996).

Field size: Color-coded objects should not be very small; especially if the color differences
are in a yellow-blue direction, at least half a degree of visual angle is probably a
minimum size. Very small color-coded areas should not be used, to avoid the small-field
color blindness illustrated in Figure 4.9. In general, the larger the area that is color-coded,
the more easily colors can be distinguished. Small objects that are color-coded should have
strong, highly saturated colors for maximum discrimination. When large areas of color
coding are used, for example, with map regions, the colors should be of low saturation
and differ only slightly from one another. This enables small, vivid color-coded targets to
be perceived against background regions. When colors are used to highlight regions of
black text, they should be light (minimum luminance contrast with the white paper) and
also of low saturation (see Figure 4.20). This will minimize interference with the text.

Conventions: Color-coding conventions must sometimes be taken into account. Some
common conventions are red = hot, red = danger, blue = cold, green = life, green = go.
However, it is important to keep in mind that these conventions do not necessarily cross
cultural borders. In China, for example, red means life and good fortune, and green
means death.

The following is a list of 12 colors recommended for use in coding. They are illustrated in

Figure 4.21.

1. Red 7. Pink
2. Green 8. Cyan
3. Yellow 9. Gray
4. Blue 10. Orange
5. Black 11. Brown
6. White 12. Purple
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import java.applet.Applet;

import java.awt.Graphics;

import java.awt.Color;

public class ColorText extends Applet

public void init ()

red = 100;
green = 255;
blue = 20;

}
public void paint (Graphics g)

Gr.setColor (new Color (red, green, blue));
Gr.drawString (“Colored Text”. 30,50);

}

private int red;
private int green;
private int blue;

Figure 4.20 When large areas are color-coded, low-saturation light colors can be used on a white background. This
interferes much less with detailed information in the text.

e o o
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Figure 4.21 A set of 12 colors for use in labeling. The same colors are shown on a white and a black
background.

These colors have widely agreed-upon category names and are reasonably far apart in color space.
The first four colors, together with black and white, are chosen because they are the unique colors
that mark the ends of the opponent color axes. The entire set corresponds to the 11 color names
found to be the most common in the cross-cultural study carried out by Berlin and Kay, with the
addition of cyan. The colors in the first set of six would normally be used before choosing any
from the second set of six.
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Figure 4.22 Families of colors. (a) Pairs related by hue, family members differ in saturation. (b) Pairs related by
hue, family members differ in saturation and lightness. (c) A family of warm hues and a family of cool
hues.

Sometimes it is useful to generate codes into families. This can be done by using hue as
a primary attribute denoting family membership, with secondary values mapped to a com-
bination of saturation and lightness. Figure 4.22 illustrates. Generally, we cannot expect to
get away with more than two different color steps in each family. The canonical red, green,
yellow, and blue hues make good categories for defining families. Family members then
can be distinguished from one another by saturation, as in Figure 4.22(a), or even better, by
saturation and lightness, as in Figure 4.22(b). Interior designers often consider a family
of warm colors (nearer to red in color space) to be distinct from a family of cool colors
(nearer to blue and green in color space), although the psychological validity of this is
questionable.

Application 3: Color Sequences for Data Maps

Pseudocoloring is the technique of representing continuously varying map values using a
sequence of colors. Pseudocoloring is used widely for astronomical radiation charts, medical
imaging, and many other scientific applications. Geographers use a well-defined color sequence
to display height above sea level—lowlands are always colored green, which evokes vege-
tation, and the scale continues upward, through brown, to white at the peaks of mountains.
Figure 4.23 shows a map of gravitational variations over the North Atlantic, displayed
with high-gravitation areas coded red and low-gravitation areas coded purple. Interme-
diate values are coded with a sequence of colors that roughly approximates the visible-light
spectrum.
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Figure 4.23 Gravitational variation over the North Atlantic is revealed using a spectrum-approximation pseudocolor
sequence.

The most common coding scheme used by physicists is a color sequence that approximates
the physical spectrum, like that shown in Figure 4.23. Although this sequence is widely used in
physics and other disciplines and has some useful properties, it is not a perceptual sequence. This
can be demonstrated by the following test. Give someone a series of gray paint chips and ask
them to place these in order. They will happily comply with either a dark-to-light ordering or a
light-to-dark ordering. Give the same person paint chips with the colors red, green, yellow, and
blue and ask them to place them in order, and the result will be varied. For most people, the
request will not seem particularly meaningful. They may even use an alphabetical ordering. This
demonstrates that the whole spectrum is not perceptually ordered, although short sections of
it are. For example, sections from red to yellow, yellow to green, and green to blue all vary
monotonically (they continuously increase or decrease) on both the red—green and yellow—blue
channels.

It is useful to consider the problem of selecting a pseudocoloring sequence in terms of
Stevens’s (1946) taxonomy of measurement scales into nominal, ordinal, interval, and ratio
categories.

Nominal Pseudocolor Sequences (Labeling Regions)

A nominal pseudocolor sequence is one designed to enable rapid visual classification of regions
where the values within the regions have no particular order (i.e., no “greater than” relationship
holds for the values). For example, Figure 4.24 gives two examples that classify the physiogra-
phy of the seabed of the Arctic Ocean. In 4.24(a) only three colors—red, yellow, and green—are
used to provide visual segmentation into three distinct regions. In 4.24(b), nine different regions
are labeled by color. The considerations in selecting colors for nominal sequences are the same
as for color labeling. The colors should be chosen to be visually distinct from one another. In
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Color sequences designed for classification rather than the display of continuous variables. The
physiographic features of the Arctic seafloor are illustrated. Courtesy of Martin Jakobsson.
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Figure 4.24

general, a nominal set of colors should be custom designed based on the number of colors
required and on the need to display additional symbols on top of the colors. If the overlaid
symbols are to be black or dark, then the background color codes should be light, or vice versa,
to give luminance contrast. If the overlaid symbols are colored, then the colored areas of the
background should have low saturation.

Ordinal Pseudocolor Sequences

An ordinal pseudocolor sequence is one in which the monotonic ordering of data values in dif-
ferent parts of the display can be perceived. If value B lies between value A and value C, the
color codes should perceptually have the same ordering. For ordinal values to be correctly and
rapidly interpreted, it is important that the color sequence increases monotonically with respect
to one or more of the color opponent channels. Such a monotonic ordering can be obtained
straightforwardly by using a black-white, red-green, or yellow-blue sequence. But it can also be
obtained with a saturation sequence or with any relatively straight line through opponent color
space. If it is important to show detail in the data, then it is essential to have a sequence that
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varies according to the luminance (black—white) channel because of the capacity of this channel
to convey high spatial frequency information (Ware, 1988; Rogowitz and Treinish, 1996). Figures
4.25(a) and (b) show ozone concentration data presented as a gray-scale sequence and as a color-
saturation sequence. The saturation shows far less detail. For comparison, Figure 4.25(c) shows
a spectrum approximation. (Images from Rheingans, 1999.) This is not perceptually ordinal but
clearly shows different regions of the data map. Sometimes a spectrum approximation sequence
can be effective, because the perceptual system tends to segment it into red, green, yellow, and
blue regions. As long as the boundaries match significant data classes, the result will be clear.
Sometimes we may wish to overlay pseudocolored information on a shaded surface. In this
case, an isoluminant color map should be employed to avoid distorting the perceived surface
shape through shape-from-shading information. There will be a loss of ability to show detail
through the pseudocoloring, but this cannot be avoided. Although it is often important to have
a color key in a visualization that allows values to be read back from the display, it should be
noted that the results are likely to be quite inaccurate due to simultaneous contrast between parts
of the display (Cleveland and McGill, 1983; Brewer, 1996b). We found that these errors could
be substantial: 20% of the scale on average when using gray scales and saturation scales (Ware,
1988). Using a spectrum sequence dramatically reduced contrast errors to less than half a step
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Figure 4.25 A map of ozone concentrations in the atmosphere is shown: (a) As a black—white sequence. (b) As a
saturation sequence. (c) As a spectrum-approximation sequence. Images courtesy of Penny Rheingans
(Rheingans, 1999).
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Figure 4.25 Continued
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on average. This can be attributed to contrast effects in each opponent channel canceling when
a sequence zigzags with respect to the individual color channels.

Some authors have recommended that, for clarity, color sequences should constitute a
straight line through a perceptual color space, such as CIEluv or CIElab (Robertson and
O’Callaghan, 1988; Levkowitz and Herman, 1992). This would rule out the spectrum approxi-
mation sequence. Further, Spence et al. (1999) found that a color sequence combining variation
in brightness, saturation, and hue was the most effective in a task requiring the rapid detection
of low and high points in an image. It is possible to construct color sequences that combine the
advantages of monotonicity in luminance, so as to show detail, with a variety of colors, to reduce
contrast and enable accurate readings from a color key. The result is a kind of spiral in color
space that cycles through a variety of hues while continuously increasing in lightness (Ware,
1988). Figure 4.26 gives an example using the same gravity data displayed in Figure 4.23.

Interval Pseudocolor Sequences

An interval sequence is one in which each unit step of the sequence represents an equal change
in magnitude of the characteristic being displayed across the whole range of the sequence. In
terms of color, this suggests using a uniform color space in which equal perceptual steps corre-
spond to equal metric steps (Robertson and O’Callaghan, 1988). Another way to produce clearly
discernible intervals is to introduce steps deliberately in the color sequence (a banded color
sequence). The example illustrated in Figure 4.27 is not a map but an economic forecast. Increas-
ing uncertainty in the prediction is shown by means of clearly visible color steps, each of which
represents a 5% increase in the uncertainty level.

The traditional way to display an interval sequence is through the use of isovalue contours.
Contour maps show the pattern of equal heights or other physical attributes with great precision,
but using them to understand the overall shape of a terrain or an energy field takes considerable

Figure 4.26 The same data shown in Figure 4.23, pseudocolored with a sequence that provides a kind of upward
spiral in color space; each color is lighter than the preceding one.
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Percentage increase in prices from a year earlier

1997 98 99 2000 01 02 03

Figure 4.27 An economic forecast with estimated uncertainty. Color steps each show a 5% increase in uncertainty.

skill and experience. To support unskilled map readers, contours can be usefully combined with
pseudocoloring, as shown in Figure 4.28. A well-designed pseudocolor sequence or artificially
shaded height map is usually much better for the nonexpert than an unenhanced set of contours.
It may also be better for the expert when rapid decision making or data fusion is required.

Ratio Pseudocolors

A ratio sequence is an interval sequence that has a true zero and all that this implies: the sign of
a value is significant; one value can be twice as large as another. Expressing this in a color
sequence is a tall order. No known visualization technique is capable of accurately conveying
ratios with any precision. However, a sequence can be designed that effectively expresses a zero
point and numbers above and below zero. Brewer (1996a) calls such sequences diverging
sequences, whereas Spence and Efendov (2001) call them bipolar sequences.

Such sequences typically use a neutral value on one or more opponent channels to represent
zero, and diverging colors (on one or more channels) to represent positive and negative quanti-
ties, respectively. For example, gray may be used to represent zero, increasing redness to
represent positive quantities, and increasing blueness to represent negative quantities. In a target-
detection study, Spence and Efendof (2001) found that a red-green sequence was most effective,
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Figure 4.28 A map containing both contours and a pseudocolor sequence. Data, courtesy of Dana Yoerger at the
Woods Hole Oceanographic Institution, represents a section of the Juan de Fuca Ridgecrest in the
northeastern Pacific Ocean.

confirming the greater information-carrying capacity of this channel than the yellow-blue
channel.

The example in Figure 4.29 shows a map of the stock market provided by SmartMoney.com.
Market capitalization is represented by area, luminance encodes the magnitude of value change
in the past year, and green-red encodes gain-loss. The Web site also gives users the option of a
yellow-blue coding, suitable for most color-blind individuals.

Sequences for the Color Blind

Some color sequences will not be perceived by people who suffer from the common forms of
color blindness: protanopia and deuteranopia. Both cause an inability to discriminate red from
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Figure 4.29 A color sequence with black representing zero. Increasing positive values are shown by increasing
amounts of red. Increasing negative values are shown by increasing amounts of green. The map itself is
a form of treemap (Johnson and Schneiderman, 1991). Courtesy of SmartMoney.com.

green. Sequences that vary mainly on a black-to-white scale or on a yellow-to-blue dimension
(this includes green to blue and red to blue) will still be clear to color-blind people. Figure 4.30
shows two sequences that will be acceptable to these individuals. Meyer and Greenberg (1988)
provide a detailed analysis of color sequences designed for common forms of color blindness.

Bivariate Color Sequences

Because color is three-dimensional, it is possible to display two or even three dimensions using
pseudocoloring (Trumbo, 1981). Indeed, this is commonly done in the case of satellite images,
in which invisible parts of the spectrum are mapped to the red, green, and blue monitor pri-
maries. Although this mapping is simple to implement and corresponds to capabilities of the
display device, (which usually has red, green, and blue phosphors,) such a scheme does not map
the data values to perceptual channels. In general, it is better to map data dimensions to per-
ceptual color dimensions. For example
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Variable one—hue
Variable two—ssaturation

or

Variable one—hue

Variable two—lightness

Figure 4.31 gives an example of a bivariate color sequence from Brewer (1996a) that maps
one variable to yellow-blue variation and the other to a combination of light-dark variation
and saturation. It suffers from the usual problem that the low-saturation colors are difficult to
distinguish.

As a word of caution, it should be noted that bivariate color maps are notoriously difficult
to read. Wainer and Francolini (1980) carried out an empirical evaluation of a color sequence
designed for U.S. census data and found that that it was essentially unintelligible. One approach
to a solution is to apply a uniform color space; Robertson and O’Callaghan (1986) discuss how

Figure 4.30 Seven different color sequences: (a) Gray scale. (b) Spectrum approximation. (c) Red—green.
(d) Saturation. (e) and (f) Two sequences that will be perceived by people suffering from the most
common forms of color blindness. (g) A sequence of colors in which each color is lighter than the
previous one.
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Figure 4.31 A bivariate pseudocoloring scheme using saturation and lightness for one variable and yellow-blue hue
for the other. Courtesy of Cindy Brewer.

to do this. But distinctness may not lead to something that is interpretable. We do not seem to
be able to read different color dimensions in a way that is highly separable. Generally, when the
goal is to display two variables on the same map, it may be better to use visual texture, height
difference, or another channel for one variable and color for the other, thus mapping data dimen-
sions to more perceptually separable dimensions. Pseudocoloring is only one way to display a
2D scalar field. Often, mapping the scalar field to artificial height and shading the resulting surface
with an artificial light source using standard computer graphics techniques is a better alterna-
tive. Using shading to reveal map data is discussed in Chapter 7. Using shading in combination
with chromatic pseudocoloring is often an effective way to reveal bivariate surfaces. There are
many considerations that go into making a color sequence that displays desired quantities without
significant distortions, thus making it unlikely that any predefined set of colors will exactly suit
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a particular data set and visualization goal. To show both overall form and detail, and to provide
the ability to read values from a key, it is often desirable to emphasize certain features in the
data by using a deliberately nonuniform sequence. Assigning more variation in color to a
particular data range will lead to its visual emphasis. Generally, the best way to achieve an effec-
tive color sequence is to place a good color editing tool in the hands of someone who under-
stands both the data display requirement and the perceptual issues of color sequence construction
(Guitard and Ware, 1990).

Application 4: Color Reproduction

The problem of color reproduction is essentially one of transferring color appearances from one
display device, such as a computer monitor, to another device, such as a sheet of paper. The
colors that can be reproduced on a sheet of paper depend on such factors as the color and inten-
sity of the illumination. Northern daylight is much bluer than direct sunlight or tungsten light,
which are both quite yellow, and is prized by artists for this reason. Halogen light is more bal-
anced. Also, monitor colors can be reproduced only within the range of printing inks; therefore,
it is neither possible nor meaningful to reproduce colors directly using a standard measurement
system such as the CIE XYZ tristimulus values.

As we have discussed, the visual system is built to perceive relationships between colors
rather than absolute values. For this reason, the solution to the color reproduction problem lies
in preserving the color relationships as much as possible, not the absolute values. It is also impor-
tant to preserve the white point in some way, because of the role of white as a reference in judging
other colors.

Stone et al. (1988) describe a process of gamut mapping designed to preserve color appear-
ance in a transformation between one device and another. The set of all colors that can be pro-
duced by a device is called the gamut of that device. The gamut of a monitor is larger than that
of a color printer, as shown in Figure 4.7. Stone et al. describe the following set of heuristic prin-
ciples to create good mapping from one device to another:

® The gray axis of the image should be preserved. What is perceived as white on a monitor
should become whatever color is perceived as white on paper.

®  Maximum luminance contrast (black to white) is desirable.

®  Few colors should lie outside the destination gamut.

®  Hue and saturation shifts should be minimized.

® An overall increase of color saturation is preferable to a decrease.

Figure 4.32 illustrates, in two dimensions, what is in fact a three-dimensional set of geometric
transformations designed to accomplish the principles of gamut mapping. In this example, the
process is a transformation from a monitor image to a paper hardcopy, but the same principles
and methods apply to transformations between other devices.
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Figure 4.32 lllustration of the basic geometric operations in gamut mapping between devices, as defined by Stone

et al. (1988).

1. Calibration: The first step is to calibrate the monitor and the printing device in a common
reference system. Both can be characterized in terms of CIE tristimulus values. The
calibration of the color printer must assume a particular illuminant.

2. Range scaling: To equate the luminance range of the source and destination images, the
monitor gamut is scaled about the origin until the white of the monitor has the same
luminance as the white of the paper on the target printer.
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3. Rotation: What we perceive as neutral white on the monitor and on the printed paper can
be very different, depending on the illumination. In general, in a printed image, the white
is defined by the color of the paper. Monitor white is usually defined by the color that
results when the red, green, and blue monitor primaries are set to their maximum values.
To equate the monitor white with the paper white, the monitor gamut is rotated so as to
make the white axes collinear.

4. Saturation scaling: Because colors can be achieved on a monitor that cannot be
reproduced on paper, the monitor gamut is scaled radially with respect to the black—white
axis to bring the monitor gamut within the range of the printing gamut. It may be
preferable to leave a few colors outside the range of the target device and simply truncate
them to the nearest color on the printing-ink gamut boundary.

For a number of reasons, it may not always be possible to apply these rules automatically.
Different images may have different scaling requirements; some may consist of pastel colors
that can easily be handled, whereas others may have vivid colors that must be truncated. The
approach adopted by Stone et al. is to design a set of tools that support these transformations,
making it easy for an educated technician to produce a good result. However, this elaborate
process is not feasible with off-the-shelf printers and routine color printing. In these cases, the
printer drivers will contain heuristics designed to produce generally satisfactory results. They will
contain assumptions about such things as the gamma value of the monitor displaying the origi-
nal image and methods for dealing with oversaturated colors. Sometimes, the heuristics embed-
ded in devices can lead to problems. In our laboratory, we usually find it necessary to start a
visualization process with very muted colors to avoid oversaturated colors on videotape or in
paper reproduction.

Another issue that is important in color reproduction is the ability of the output device to
display smooth color changes. Neural lateral inhibition within the visual system tends to amplify
small artificial boundaries in smooth gradients of color as Mach bands. This sensitivity makes it
difficult to display smoothly shaded images without artifacts. Because most output devices cannot
reproduce the 16 million colors that can be created with a monitor, considerable effort has gone
into techniques for generating a pattern of color dots to create the overall impression of a smooth
color change. Making the dots look random is important to avoid aliasing artifacts (discussed in
Chapter 2). Unless care is taken, artifacts of color reproduction can produce spurious patterns
in scientific images.

Application 5: Color for Exploring Multidimensional
Discrete Data
One of the most interesting but difficult challenges for data visualization is to support exploratory

data analysis. Visualization can be a powerful tool in data mining, in which the goal is often a
kind of general search for relationships and data trends. For example, marketing experts often
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collect large amounts of data about individuals in potential target populations. The variables that
are collected might include age, income, educational level, employment category, tendency to
purchase chocolate, and so on. If the marketer can identify a particular cluster of values in this
population that are related to the likelihood of purchasing a product, this can result in better
targeted, more effective advertising. Each of the measured variables can be thought of as a data
dimension. The task of finding particular market segments is one of finding distinct clusters in
the multidimensional space that is formed by these many variables.

Sometimes a scientist or a data analyst approaches data with no particular theory to test.
The goal is to explore the data for meaningful and useful information in masses of mostly mean-
ingless numbers. Plotting techniques have long been tools of the data explorer. In essence, the
process is to plot the data, look for a pattern, and interpret the findings. Thus, the critical step
in the discovery process is an act of perception. For example, the four scatter plots in Figure 4.33
illustrate very different kinds of data relationships. In the first, there are two distinct clusters,
perhaps suggesting distinct subpopulations of biological organisms. In the second, there is a clear
negative linear relationship between two measured variables. In the third, there is a curvilinear,
inverted U-shaped relationship. In the fourth, there is an abrupt discontinuity. Each of these pat-
terns will lead to a very different hypothesis about underlying causal relationships between vari-
ables. If any of the relationships were previously unknown, the researcher would be rewarded
with a discovery.

Problems can arise in exploring data when more than two dimensions of data are to be
displayed. It is possible to extend the scatter plot to three dimensions using the techniques for
providing strong 3D spatial information, such as stereoscopic displays (see Chapter 8). What do
we do, though, about data with more than three dimensions?

One solution for multidimensional data display is the generalized drafter’s plot (Chambers
et al., 1983) shown in Figure 4.34(a). In this technique, all pairs of variables are used to create
two-dimensional scatter plots. Although the generalized drafter’s plot can often be useful, it
suffers from a disadvantage: it is very difficult to see data patterns that are present only when
three or more data dimensions are taken into account.

Figure 4.33 Visual exploratory data analysis techniques involve representing data graphically in order to understand
relationships between data variables.
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a b C
Figure 4.34 Five-dimensional data is presented: (a) In a generalized drafter’s plot without color dimension mapping.

(b) In a scatter plot with color dimension mapping. (c) In a generalized drafter’s plot with color dimension
mapping.

Color mapping can be used to extend the number of displayable data dimensions to five or
six in a single scatter plot, as shown in Figure 4.34(b). We developed a simple scheme for doing
this (Ware and Beatty, 1988). The technique is to create a scatter plot in which each point is a
colored patch rather than a black point on a white background. Up to five data variables can be
mapped and displayed as follows:

Variable 1 — x-axis position
Variable 2 — y-axis position
Variable 3 — amount of red
Variable 4 — amount of green
Variable 5§ — amount of blue

In a careful evaluation of cluster perception in this kind of display, we concluded that color
display dimensions could be as effective as spatial dimensions in allowing the visual system to
perceive clusters. For this task, at least, the technique produced an effective five-dimensional
window into the data space.

There is a negative aspect of the color-mapped scatter plot. Although identifying clusters and
other patterns can be easy using this technique, interpreting them can be difficult. A cluster may
appear greenish because it is low on the red variable rather than high on the green variable. The
use of color can help us to identify the presence of multidimensional clusters and trends, but once
the presence of these trends has been ascertained, other methods are needed to analyze them. An
obvious solution is to map data variables to the color opponent axes described earlier. However,
our experiments with this practice showed that the results were still not easy to interpret and
that it was difficult to make efficient use of the color space.
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Adding color is by no means the only way to extend a scatter plot to multiple dimensions,

although it is one of the best techniques. In Chapter 5, we will consider other methods, which
use shape and motion.

Conclusion

There has been more research on the use of color in visualization than any other perceptual issue.
Nevertheless, the important lessons are relatively few, and we summarize them here.

To show detail in a visualization, always have considerable luminance contrast between
foreground and background information. Never make the difference only through
chromatic variation. This should be obvious in the case of text, although many
PowerPoint presentations still violate this rule. It also applies to such problems as the
visual display of flow fields, where small color-coded arrows or particle traces are used.

Use only a few colors if they are distinct codes. It is easy to select six distinct colors, but if
10 are needed they must be chosen with care. If the background is varied, then attempting
to use more than 12 colors as codes is likely to result in failure.

Black or white borders around colored symbols can help make them distinct by ensuring a
luminance contrast break with surrounding colors.

Red, green, yellow, and blue are hard-wired into the brain as primaries. If it is necessary
to remember a color coding, these colors are the first that should be considered.

When color-coding large areas, use muted colors, especially if colored symbols are to be
superimposed.

Small color-coded objects should be given high-saturation colors.

When a perceptually meaningful ordering is needed, use a sequence that varies
monotonically on at least one of the opponent color channels. Examples are red to green,
yellow to blue, low saturation to high saturation, and dark to light. Variation on more
than one channel is often better, such as pale yellow to dark blue.

If it is important to show variations above and below zero, use a neutral value to represent
zero and use increases in saturation toward opposite colors to show positive and negative values.

Color contrast can cause large errors in the representation of quantity. Contrast errors can
be reduced with borders around selected areas, or by using muted, relatively uniform
backgrounds.

For the reproduction of smooth color sequences, several million colors are needed under
optimal viewing conditions. In this case, care must be taken to calibrate the monitor and
to take into account monitor gamma values.
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®  When reproducing complex, continuously shaded images, it is critical to preserve the color
relationships and to make sure that, under the particular lighting conditions, neutral
values are perceived as neutral.

®  Beware of oversaturating colors, especially when a printed image is to be the end product.

It is impossible to keep a discussion of color entirely segregated in one chapter. Color affects
every aspect of visualization and is mentioned in many other chapters, especially Chapter 3,
which places color in the context of other methods for coding information.



CHAPTER 5

Visual Attention and Information
that Pops Out

Consider the eyeball as an information-gathering searchlight, sweeping the visual world under
the guidance of the cognitive centers that control our attention. Information is acquired in bursts,
a snapshot for each fixation. From an image buffer, the massively parallel machinery of early
visual processing finds objects based on salient features of images. Once identified, complex
objects are scanned in series, one after another, at about the rate of 25 items per second. This
means that we can parse somewhere between four and twelve items before the eye jumps to
another fixation. Understanding the steps in this process can help us with many visualization
tasks. Here are some examples.

A tactical map display used by a military strategist must simultaneously show many differ-
ent kinds of information about resources, such as equipment, personnel, and environmental con-
ditions that exist in the field. Ideally, with such a display it should be possible either to attend
to a single aspect of the data, such as the deployment of tanks, or, by an act of visual attention,
to perceive the whole, complex, interwoven pattern. Understanding early vision is critical in
understanding how to make information visually distinct or how to make the integrated patterns
stand out.

In a scatter plot, each plotted data point can be made to represent many different kinds of
information by using a glyph instead of an undifferentiated circle. A glyph is a graphical object
designed to convey multiple data values. For information about stocks on the stock exchange,
the color of an information glyph might be used to show the price-to-earnings ratio, the size of
the glyph to display the growth trend, and the shape of the glyph to represent the type of
company—square for technology stocks, round for resources, and so on. But what makes a glyph
stand out if it is displayed in this way? This type of graphical tool will be most useful if the inter-
esting stocks can be made to stand out and catch the analyst’s eye.

Visual search provides one of the great benefits of visualization. It is possible, in less than a
second, to detect a single dark pixel in a 500 x 500 array of white pixels. This screen can be
replaced every second by another, enabling a search of more than 15 million pixels in a minute.

145
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This is an artificial example, because most search tasks are more complex, but it does highlight
the incredible parallel search capacity of the visual system.

Attention is both a low-level and a high-level property of vision. This chapter is concerned
with the low-level mechanisms that help us understand what is more readily available to atten-
tion. A large body of vision research is related to this problem, and in many cases this informa-
tion can be translated, in a fairly direct way, into design guidelines for data visualization.

Chapter 11 is concerned with the high-level direction of attention for problem solving.

Searching the Visual Field

A problem with most research into attention, according to a recent book by Arien Mack and
Irvin Rock, is that almost all perception experiments (except their own) demand attention in the
very design (Mack and Rock, 1998). They have a point. Typically, a subject is paid to sit down
and pay close attention to a display screen and to respond by pressing a key when some speci-
fied event occurs. This is not everyday life. Usually we pay very little attention to what goes on
around us.

To understand better how we see when we are not primed for an experiment, Mack and
Rock conducted a laborious set of experiments that only required one observation from each
experiment. They asked subjects to look at a cross for a fraction of a second and report when
one of the arms changed length. So far, this is like most other perception studies. But the real
test came when they flashed up something near the cross that the subjects had not been told to
expect. Subjects rarely saw this unexpected pattern, even though it was very close to the cross
and they were attending to the display. Mack and Rock could only do this experiment once per
subject, because as soon as subjects were asked if they had seen the new pattern they would have
started looking for “unexpected” patterns, so hundreds of subjects were used. The fact that most
subjects did not see a wide range of unexpected targets tells us that humans do not perceive much
unless we have at least some expectation and need to see it. In most systems, brief, unexpected
events will be missed. Mack and Rock initially claimed from their results that there is no per-
ception without attention. However, because they found that subjects generally noticed larger
objects, they were forced to abandon this extreme position.

Useful Field of View

The attention process is concentrated around the fovea, where vision is most detailed. However,
we can redirect attention to objects within a single fixation, and the region of visual space we
attend to expands and contracts based on task, the information in the display, and the level of
stress in the observer. A metaphor for fovea-center attentional field is the searchlight of atten-
tion. When we are reading fine print, we can read the words only at the exact point of fixation.
But we can take in the overall shape of a larger pattern at a single glance. In the former case,
the searchlight beam is as narrow as the fovea, whereas in the latter it is much wider.
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A concept called the useful field of view (UFOV) has been developed to define the size of
the region from which we can rapidly take in information. The UFOV varies greatly, depending
on the task and the information being displayed. Experiments using displays densely populated
with targets reveal small UFOVs, from 1 to 4 degrees of visual angle (Wickens, 1992). But Drury
and Clement (1978) have shown that for low character densities (less than one per degree of
visual angle), the useful visual field can be as large as 15 degrees. Roughly, the UFOV varies with
target density to maintain a constant number of targets in the attended region. With greater target
density, the UFOV becomes smaller and attention is more narrowly focused; with a low target
density, a larger area can be attended.

Tunnel Vision and Stress

A phenomenon known as tunnel vision has been associated with operators working under
extreme stress. In tunnel vision, the UFOV is narrowed so that only the most important infor-
mation, normally at the center of the field of view, is processed. This phenomenon has been spe-
cifically associated with various kinds of nonfunctional behaviors that occur during problem
handling in disaster situations. The effect can be demonstrated quite simply. Williams (1985)
compared performance on a task that required intense concentration (high foveal load) to one
that was simpler. The high-load task involved naming a letter drawn from six alternatives; the
low-load task involved naming a letter drawn from two alternatives. They found a dramatic drop
in detection rate for objects in the periphery of the visual field (down from 75% correct to 36%
correct) as the task load increased. The Williams data shows that we should not think of tunnel
vision strictly as a response to disaster. It may generally be the case that as cognitive load goes
up, the UFOV shrinks.

The Role of Motion in Attracting Attention

A study by Peterson and Dugas (1972) suggests that the UFOV function can be far larger for
detection of moving targets than for detection of static targets. They showed that subjects can
respond in less than 1 second to targets 20 degrees from the line of sight, if the targets are moving.
If static targets are used, performance falls off rapidly beyond about 4 degrees from fixation. (See
Figure 5.1.) This implies a useful field of at least 40 degrees across for the moving-targets task.
However, this was merely the largest field that was measured. There is every reason to suppose
that the useful visual field for moving targets is even larger; it may well encompass the entire
visual field. Thus, motion of icons in user interfaces can be useful for attracting attention to the
periphery of the screen (Bartram et al., 2003).

Reading from the [conic Buffer

Figure 5.2 shows a collection of miscellaneous symbols. If we briefly flash such a collection of
symbols on a screen—say, for one-tenth of a second—and then ask people to name as many of
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Figure 5.1 Results of a study by Peterson and Dugas (1972). The task was to detect small symbols representing

aircraft in a simulation display. The circles show the response times from the appearances of static
targets. The crosses show response times from the appearances of moving targets. Note the two
different scales.

the symbols as they can, they typically produce a list of three to seven items. Several factors limit
the number of items listed. The first is the short-lived visual buffer that allows us to hold the
image for about one to two tenths of a second while we read the symbols into our short-term
memory. This visual buffer is called iconic memory. Its properties were first described in a classic
paper by Sperling (1960). See Humphreys and Bruce (1989) for a review. Any information that
is retained longer than three-tenths of a second has been read into visual or verbal working
memory (discussed in Chapter 11). This is an artificial example, but it has to do with a process
that is very general. In each fixation between saccadic eye movements, an image of the world is
captured in iconic memory; from this transient store higher-level processes must identify objects,
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Figure 5.2 How many of these symbols can you remember after a glimpse one-tenth of a second long?

match them with objects previously perceived, and take information into working memory for
symbolic analysis.

Preattentive Processing

We can do certain things to symbols to make it much more likely that they will be visually iden-
tified even after very brief exposure. Certain simple shapes or colors “pop out” from their sur-
roundings. The theoretical mechanism underlying pop-out is called preattentive processing
because logically it must occur prior to conscious attention. In essence, preattentive processing
determines what visual objects are offered up to our attention. An understanding of what is
processed preattentively is probably the most important contribution that vision science can make
to data visualization.

Preattentive processing is best introduced with an example. To count the 3s in a table of
digits in Figure 5.3(a), it is necessary to scan all the numbers sequentially. To count the 3s in
Figure 5.3(b), it is necessary only to scan the red digits. This is because color is preattentively
processed.

The typical experiment that is conducted to find out whether something is preattentively
processed involves measuring the response time to find a target in a set of distractors; for example,
finding the 3s in a set of other numbers. If processing is preattentive, the time taken to find the
target should be independent of the number of distractors. Thus, if time to find the target is
plotted against number of distractors, the result should be a horizontal line.

Figure 5.4 illustrates a typical pattern of results. The circles illustrate data from a visual
target that is preattentively different from the distractors. The time taken to detect whether there
is a dark digit in the array of digits shown above is independent of the number of gray digits.
The Xs in Figure 5.4 show the results from processing a feature that is not preattentive. The time
to respond depends on the number of distractors. The results of this kind of experiment are not
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a 85689726984689762689764358922659865986554897689269898
02462996874026557627986789045679232769285460986772098
90834579802790759047098279085790847729087590827908754
98709856749068975786259845690243790472190790709811450
85689726984689762689764458922659865986554897689269898

b 85689726984689762689764358922659865986554897689269898
02462996874026557627986789045679232769285460986772098
90834579802790759047098279085790847729087590827908754
98709856749068975786259845690243790472190790709811450
85689726984689762689764458922659865986554897689269898

Figure 5.3 Preattentive processing. (a) To count the 3s in a table of digits, it is necessary to scan all the numbers

sequentially. (b) To count the 3s in the next table, it is necessary only to scan the red digits. This is
because color is preattentively processed.
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Figure 5.4 Typical results from a study of preattentive processing. The circles show time to perceive an object that
is preattentively distinct from its surroundings. Time to process is independent of the number of irrelevant
objects (distractors). The Xs show how time to process non-preattentively distinct targets depends on the
number of distractors.
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always as perfectly clear-cut as Figure 5.4 would suggest. Sometimes there is a small, but still
measurable, slope in the case of a feature that is thought to be preattentive. As a rule of thumb,
anything that is processed at a rate faster than 10 msec per item is considered to be preattentive.
Typical processing rates for non-preattentive targets are 40msec per item and more (Triesman
and Gormican, 1988).

Why is this important? In displaying information, it is often useful to be able to show
things “at a glance.” If you want people to be able to identify instantaneously some mark on a
map as being of type A, it should be differentiated from all other marks in a preattentive way.

There have been literally hundreds of experiments to test whether various kinds of features
are processed preattentively. Figure 5.5 illustrates a few of the results. Orientation, size, basic
shape, convexity, concavity, and an added box around an object are all preattentively processed.
However, the junction of two lines is not preattentively processed; neither is the parallelism of
pairs of lines, so it is harder to find the targets in the last two boxes in Figure 5.5.

The reason that preattentive processing has attracted so much attention among researchers is
that it is thought to be a way of measuring the primitive features that are extracted in early visual
processing (Triesman and Gormican, 1988). However, there is a risk of misinterpreting the find-
ings of such studies. To take a single example, curved lines can be preattentively distinguished from
straight lines. Despite this, it may be a mistake to think that there are curved-line detectors in early
vision. It may simply be the case that cells responsive to long, straight line segments will not be
strongly excited by the curved lines. Of course, it may actually be that early-vision curvature detec-
tors do exist; it is just that the evidence must be carefully weighed. It is not a good idea to propose
a new class of detector for everything that exhibits the pop-out effect. The scientific principle of
finding the most parsimonious explanation, known as Occami’s razor, applies here.

The features that are preattentively processed can be organized into a number of categories
based on form, color, motion, and spatial position.

Form

® Line orientation
® Line length

® Line width

® Line collinearity
®  Size

®  Curvature

®  Spatial grouping
*  Blur

® Added marks

®  Numerosity
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Color

® Hue

® Intensity

Motion

®  Flicker

® Direction of motion

Spatial Position

® 2D position

® Stereoscopic depth

®  Convex/concave shape from shading

The results of preattentive processing experiments can be applied directly to the design of symbols
for information display. In some cases, it may be desirable that each of many symbols be preat-
tentively distinct from all the others. For example, in the case of a map of the ocean environ-
ment, we might wish to be able to scan visually only for scallop beds, only for fish farms, only
for cod schools, or only for the fishing boats, assuming that we had all of this data. To make
this possible, each type of symbol should be preattentively distinct from the others.

Figure 5.6 shows a set of nine symbols designed so that each is preattentively different from
the others. The set could easily be extended—for example, by using blink coding. One thing that
is clear from a cursory look at this example is that preattentive symbols become less distinct as
the variety of distractors increases. It is easy to spot a single hawk in a sky full of pigeons, but
if the sky contains a greater variety of birds, the hawk will be more difficult to see. Studies have
shown that two factors are important in determining whether something stands out preatten-
tively: the degree of difference of the target from the nontargets, and the degree of difference of
the nontargets from each other (Quinlan and Humphreys 1987; Duncan and Humphreys, 1989).
For example, yellow highlighting of text works well if yellow is the only color in the display
besides black and white, but if there are many colors the highlighting will be less effective. For
another example, Chau and Yeh (1995) showed that preattentive segregation by stereoscopic
depth decreased as the number of depth layers increased.

It is natural to ask which visual dimensions are preattentively stronger and therefore more
salient. Unfortunately, this question cannot be answered, because it always depends on the
strength of the particular feature and the context. For example, Callaghan (1989) compared color
to orientation as a preattentive cue. The results showed that the preattentiveness of the color
depended on the saturation (vividness) and size of the color patch, as well as the degree of dif-
ference from surrounding colors. Similarly, the preattentiveness of line orientation depends on
the length of the line, the degree to which it differs from surrounding lines, and the contrast of
the line pattern with the background.



Visual Attention and Information that Pops Out 153

Orientation Curved/straight Shape

NN (((((( =,

b ((( ((( ‘0:"

Shape Size Number
[ J e o [ J \d (1]
] et
| . @°°° ° o °° O
| | ° e o o : °
| | e o ® 0% ¢
Gray/value Enclosure Convexity/concavity

® 9@ I 99
. @é@@) o0 U
O D VD

Addition Juncture Parallelism
~ <
NI e e <N T
I B /\/\ =z X2
| l | || [~ - /\ = < =
Il — 7 |— ™= =
Figure 5.5 Most of the differences shown are preattentively distinguished. Only juncture and parallelism are not.

Numerous studies have addressed the preattentive properties of various combinations of fea-
tures. It would be impossible to describe all the interactions without writing a complete book on
the subject. However, some generalizations are in order. Adding marks to highlight something is
generally better than taking them away (Triesman and Gormican, 1988). Thus, it is better to
highlight a word by underlining it than to underline all the words in a paragraph except for the
target word. It is also the case that simple numerosity is preattentively processed. We can see at
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Figure 5.6 A set of symbols in which each of the nine symbol types is preattentively distinct from all the others.

a glance that there are one, two, three, or four objects in a group; this ability appears very early
in human development (Dehaene, 1997). Once the number of objects increases beyond four,
explicit counting is necessary.

That color is also preattentive has been well established, and the problem of defining a color
that will be preattentively distinct from surrounding colors has already been discussed in Chapter
4. To restate a key finding, Bauer et al. (1996) showed that to be preattentively distinct, a color
should lie outside the boundary of the region defined by all the other colors in the local part of
the display (see Figure 4.19).

Rapid Area Judgments

Most work on preattentive processing has involved the detection of isolated targets. But other
tasks can also benefit from rapid processing. In interpreting map data, a common task is to
rapidly estimate the area of some region. Healey et al. (1998) showed that fast area estimation
can be done on the basis of either the color or the orientation of the graphical elements filling a
spatial region. It is a reasonable assumption that all the preattentive cues that have been identi-
fied for target identification are also valid for area estimation judgments.

Coding with Combinations of Features

A critical issue for information display is whether more complex patterns can be preattentively
processed. For example, what happens if we wish to search for a gray square, not just something
that is gray or something that is square? It turns out that this kind of search is slow if the
surrounding objects are squares (but not gray ones) and other gray shapes. We are forced to
do a serial search of either the gray shapes or the square objects. This is called a conjunction
search, because it involves searching for the specific conjunction of gray-level and shape attrib-
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Figure 5.7 Searching for the gray squares is slow because they are identified by conjunction coding.

utes. Figure 5.7 illustrates a conjunction search task in which the targets are represented by three
gray squares. Conjunction searches are generally not preattentive, although there are a few very
interesting exceptions.

Conjunctions with Spatial Dimensions

Although early research suggested that conjunction searches were never preattentive, it has
emerged that there are a number of preattentive dimension pairs that do allow for conjunctive
search. Searches can be preattentive when there is a conjunction of spatially coded information
and a second attribute, such as color or shape. The spatial information can be position on the
XY plane, stereoscopic depth, shape from shading, or motion.

Spatial grouping on the XY plane: Triesman and Gormican (1988) argue that preattentive
search can be restricted by the identification of visual clusters. This is a form of
conjunction search: the conjunction of space and color. In Figure 5.8(a), we cannot
conjunctively search for green ellipses, but in Figure 5.8(b), we can rapidly search the
conjunction of lower grouping and gray target. The fact that the target is also elliptical is
irrelevant.

Stereoscopic depth: Nakayama and Silverman (1986) showed that the conjunction of
stereoscopic depth and color, or of stereoscopic depth and movement, can be
preattentively processed. This may be very useful in producing highlighting techniques
allowing for a preattentive search within the set of highlighted items (Bartram and Ware,
2002).

Convexity, concavity, and color: D’Zmura et al. (1997) showed that the conjunction of
perceived convexity and color can be preattentively processed. In this case, the convexity
is perceived through shape-from-shading information.
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Figure 5.8 Spatial conjunction. The pattern on the left is a classic example of a preattentive conjunction search. To
find the gray ellipses, either the gray things or the elliptical things must be searched. However, the
example on the right shows that the search can be speeded up by spatial grouping. If attention is
directed to the lower cluster, perceiving the gray ellipse is preattentive. This is a preattentive conjunction
of spatial location and gray value.

Motion: Driver et al. (1992) determined that motion and target shape can be preattentively
scanned conjunctively. Thus, if the whole set of targets is moving, we do not need to look
for nonmoving targets. We can preattentively find, for example, the red moving target.

An application in which preattentive spatial conjunction may be useful is found in geographic
information systems (GISs). In these systems, data is often characterized as a set of layers:
for example, a layer representing the surface topography, a layer representing minerals, and a
layer representing ownership patterns. Such layers may be differentiated by means of motion or
stereoscopic-depth cues.

Highlighting

The purpose of highlighting is to make some information stand out from other information. This
is the most straightforward application of preattentive processing results. The problem of high-
lighting is easy to solve in homogeneous graphical displays. Yellow background highlighting of
text works well for text that is black on white because yellow is a high luminance color that
maintains text contrast. When the environment is visually complex, already employing color,
texture, and shape, the problem becomes complex. As a rule of thumb, use whatever graphical
dimension is least used otherwise in the design. For example, if texture is not used elsewhere,
use it. Modern computer graphics permit the use of motion for highlighting. This can be very
effective when there is little other motion in the display (Bartram and Ware, 2002). However,
making things move may be too strong a cue for many applications.

A new idea for highlighting is the use of blur. Kosara et al. (2002) suggested blurring every-
thing else in the display to make certain information stand out. They call the technique seman-
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Figure 5.9 Blur can be used to highlight important information by blurring irrelevant information. Kosara et al. (2002)
call this technique semantic depth of field.

tic depth of field, because it applies the depth of focus effects that can be found in photography
to the display of data according to semantic content. As Figure 5.9 illustrates, blur works well,
although again there are obvious drawbacks. If the designer is not completely sure what the user
should attend to, he or she runs the risk of making important information illegible.

Designing a Symbol Set

One way to think about preattentive processing is to understand that we can easily and rapidly
perceive the “odd man out” in visual feature space. If a set of symbols is to be designed to
represent different classes of objects on a map display, then these symbols should be as
distinct as possible. Military operational maps are an obvious example in which symbols can
be used to represent many different classes of targets. (Targets are entities of operational
importance that may be friendly or hostile.) A simplified example provides an interesting design
exercise.
A tactical map might require the following symbols:

®  Aircraft targets
® Tank targets
® Building targets

® Infantry position targets
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In addition:
® Each of the target types can be classified as friendly or hostile.
® Targets exist whose presence is suspected but not confirmed.

Finally, there is a need to display features of the terrain itself. Roads, rivers, vegetation types,
and topography are all important.

In this example, we encounter many of the characteristic problems of symbol set design.
Even though this is a great simplification of the requirements of actual command and control
displays, there are still many different types of things to be represented. There is a need for various
orthogonal classifications (friendly vs. hostile, static vs. mobile). In some circumstances, con-
junction search might be desirable (friendly tanks); in others, it would be useful if whole classes
of objects could be rapidly estimated.

A solution to this simplified problem is illustrated in Figure 5.10. The actual symbols for the
different target types have all been made preattentively distinct using shape. Color has been used
to classify the targets preattentively into friendly and hostile ones. Possible targets are indicated
by adding a thin rectangular box. Spatial grouping also helps to distinguish between friendly and
hostile targets, but this would not always be the case. In a real application of this type, dozens
more different symbols may be required on many different backgrounds, making the design trade-
offs much harder.

Aircraft + Suspected

Infantry C Hostile -

Building u Friendly -
Tank .

Figure 5.10 A set of symbols for a military command and control display.
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Neural Processing, Graphemes, and Tuned Receptors

We now consider the same problem from a neurological perspective. Triesman and others claim
that preattentive processing is due to early visual processing. What is the neurological evidence
for this?

Visual information leaves the retina, passing up the optic nerve, through the neural junction
at the lateral geniculate nucleus (LGN), and on to the much richer world of processing in the
cortex. The first areas in the cortex to receive visual inputs are called, simply, visual area 1 (V1)
and visual area 2 (V2). Most of the output from area 1 goes on to area 2, and together these
two regions make up more than 40% of vision processing (Lennie, 1998). There is plenty of
neural processing power, as several billion neurons in areas V1 and V2 are devoted to analyzing
the signals from only two million nerve fibers coming from the optic nerves of two eyes. This
makes possible the massively parallel simultaneous processing of the incoming signals for color,
motion, texture, and the elements of form. It is here that the elementary vocabularies of both
vision and data display are defined.

Figure 5.11 is derived from Livingston and Hubel’s diagram (1988) that summarizes both
the neural architecture and the features processed in this area of the brain. A key concept in
understanding this diagram is the tuned receptive field. In Chapter 3, we saw how single-cell
recordings of cells in the retina and the LGN reveal cells with distinctive concentric receptive
fields. Such cells are said to be tuned to a particular pattern of a white spot surrounded by black
or a black spot surrounded by white. In general, a tuned filter is a device that responds strongly
to a certain kind of pattern and responds much less, or not at all, to other patterns. In the early
visual cortex, some cells respond only to elongated blobs with a particular position and orien-
tation, others respond most strongly to blobs of a particular position moving in a particular direc-
tion at a particular velocity, and still others respond selectively to color.

There are cells in V1 and V2 that are differentially tuned to each of the following
properties:

®  Orientation and size (with luminance) via the Gabor processor described later in this
chapter

®  Color (two types of signal) via the opponent processing channel mechanisms discussed in

Chapter 4
®  Elements of local stereoscopic depth
®  Elements of motion

Moreover, all these properties are extracted for each point in the visual field. In V1 and V2 and
many other regions of the brain, neurons are arranged in the form of a spatial map of the retina.
It is a highly distorted map, because the fovea is given more space than the periphery of vision.
The receptive fields are smaller for cells that process information coming from the fovea than for
cells that process information from peripheral regions of the visual field. Nevertheless, for every
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Figure 5.11 Architecture of primary visual areas. Adapted from Livingston and Hubel (1988).

point in V1, there is a corresponding area of the visual field in a topographic relationship (adja-
cency is preserved between areas). It is a massively parallel system in which, for each point in
visual space, there are tuned filters for many different orientations, many different kinds of color
information, many different directions and velocities of motion, and many different stereoscopic
depths.

The Grapheme

It is useful to think of the things that are extracted by the early neural mechanisms as the
“phonemes” of perception. Phonemes are the smallest elements in speech recognition, the atomic
components from which meaningful words are made. In a similar way, we can think of orienta-
tion detectors, color detectors, and so on as “visual phonemes,” the elements from which mean-
ingful perceptual objects are constructed.

We use the term grapheme to describe a graphical element that is primitive in visual terms,
the visual equivalent of a phoneme. The basis of the grapheme concept is that the pattern that
most efficiently excites a neuron in the visual system is exactly the pattern that the neuron is
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tuned to detect (Ware and Knight, 1995). Thus, the most efficient grapheme is one that matches
the receptive field properties of some class of neurons. An orientation detector will be excited
most efficiently by a pattern whose light distribution is exactly the same as the sensitivity distri-
bution of the cell. This is simply another way of saying that the detector is tuned to that partic-
ular pattern. Once we understand the kinds of patterns the tuned cells of the visual cortex respond
to best, we can apply this information to create efficient visual patterns. Patterns based on the
receptive field properties of neurons should be rapidly detected and easily distinguished.

A number of assumptions are implicit in this account. They are worth examining critically.
One basic assumption is that the rate at which single neurons fire is the key coding variable in
terms of human perception. This assumption can certainly be questioned. It may be that what is
important is the way in which groups of neurons fire, or perhaps the temporal spacing or syn-
chronization of cell firings. In fact, there is evidence that these alternative information codings
may be important, perhaps critical. Nevertheless, few doubt that neurons that are highly sensi-
tive to color differences (in terms of their firing rates) are directly involved in the processing of
color and that the same thing is true for motion and shape. Moreover, as we shall see, the behav-
ior of neurons fits well with studies of how people perceive certain kinds of patterns. Thus, there
is a convergence of lines of evidence.

We also assume that early-stage neurons are particularly important in determining how dis-
tinct things seem. We know that at higher levels of processing in the visual cortex, receptive fields
are found that are much more complex; they respond to patterns that appear to be composites
of the simple receptive field patterns found at earlier stages. The evidence suggests that compos-
ite patterns analyzed further up the visual processing chain, are not, in general, processed as
rapidly. It seems natural, then, to think of early-stage processing as forming the graphemes, and
of later-stage processing as forming the “words,” or objects, of perception.

Much of the preattentive processing work already discussed in this chapter can be regarded
as providing experimental evidence of the nature of graphemes. The following sections apply the
concept to the perception of visual texture and show how knowledge of early mechanisms enables
us to create rules for textures that are visually distinct.

The Gabor Model and Texture in Visualization

A number of electrophysiological and psychophysical experiments show that visual areas 1 and
2 contain large arrays of neurons that filter for orientation and size information at each point in
the visual field. These neurons have both a preferred orientation and a preferred size (they are
said to have spatial and orientation tuning). These particular neurons are not color-coded; they
respond to luminance changes only.

A simple mathematical model used widely to describe the receptive field properties of
these neurons is the Gabor function. This function is illustrated in Figure 5.12. It consists of the
product of a cosine wave grating and a gaussian. Roughly, this can be thought of as a kind
of fuzzy bar detector. It has a clear orientation, and it has an excitatory center, flanked by
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Figure 5.12 Gabor receptive field, composed of cosine and gaussian components. Multiply the cosine wave grating
on the left by the gaussian envelope in the center to get the two-dimensional Gabor function shown on
the right. This example has an excitatory center flanked by two inhibitory bars.

Vertical, thick Gabor
filters respond most
strongly.

—Aan

Horizontal, thin
Gabor filters respond
most strongly.

Resulting
segmentation

Figure 5.13 The texture segmentation model. Two-dimensional arrays of Gabor detectors filter every part of the
image for all possible orientations and sizes. Areas exciting particular classes of detectors form the basis
of visually distinct segments of the image.

inhibitory bars. The opposite kind of neuron also exists, with an inhibitory center and an
excitatory surround.

Many things about low-level perception can be explained by this model. Gabor-type detec-
tors are used in theories of the detection of contours at the boundaries of objects (form percep-
tion), the detection of regions that have different visual textures, stereoscopic vision, and motion
perception.

The Gabor function has two components, as illustrated in Figure 5.12: a cosine wave and a
gaussian envelope. Multiply them together, and the result is a Gabor function. Mathematically,
a Gabor function has the following form (simplified for ease of explanation):
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2 2
Response = Ccos(%c) exp(— (ijLy)j (5.1)

The C parameter gives the amplitude or contrast value; S gives the overall size of the Gabor func-
tion by adjusting both the wavelength of the cosine grating and the rate of decay of the gauss-
ian envelope. O is a rotation matrix that orients the cosine wave. Other parameters can be added
to position the function at a particular location in space and adjust the ratio of the gaussian size
to the sine wavelength; however, orientation, size, and contrast are most significant in modeling
human visual processing.

Texture Segmentation

One way to apply the Gabor model is in understanding how the visual system segments the visual
world into regions of distinct visual texture. Suppose we wish to understand how people per-
ceptually differentiate types of vegetation based on the visual textures in a black-and-white satel-
lite image. A model based on Gabor filters provides a good description of the way people perform
this kind of texture segmentation task (Bovik et al., 1990; Malik and Perona, 1990).

The segmentation model is illustrated in Figure 5.13. It has three main stages. In the first
stage, banks of Gabor filters respond strongly to regions of texture where particular spatial fre-
quencies and orientations predominate. In a later stage, the output from this early stage is low-
pass-filtered. (This is a kind of averaging process that creates regions, each having the same
general characteristic. At the final stage, the boundaries are identified between regions with
strongly dissimilar characteristics.) This model predicts that we will divide visual space into
regions according to the predominant spatial frequency and orientation information. A region
with large orientation and size differences will be the most differentiated. Also, regions can be
differentiated based on the texture contrast. A low-contrast texture will be differentiated from a
high-contrast texture with the same orientation and size components.

Tradeoffs in Information Density: An Uncertainty Principle

A famous vision researcher, Horace Barlow, developed a set of principles that have become
influential in guiding our understanding of human perception. The second of these, called “the
second dogma” (Barlow, 1972), provides an interesting theoretical background to the
Gabor model. In the second dogma, Barlow asserted that the visual system is simultaneously
optimized in both the spatial-location and spatial-frequency domains. John Daugman (1984)
showed mathematically that Gabor detectors satisfy the requirements of the Barlow dogma.
They optimally preserve a combination of spatial information (the location of the information
in visual space) and oriented-frequency information. A single Gabor detector can be thought of
as being tuned to a little packet of orientation and size information that can be positioned any-
where in space.
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Daugman (1985) has also shown that a fundamental uncertainty principle is related to the
perception of position, orientation, and size. Given a fixed number of detectors, resolution of
size can be traded for resolution of orientation or position. We have shown that same principle
applies to the synthesis of texture for data display (Ware and Knight, 1995). A gain in the ability
to display orientation information precisely inevitably comes at the expense of precision in dis-
playing size information. Given a constant density of data, orientation or size can be specified
precisely, but not both.

Figure 5.14 illustrates this tradeoff, expressed by changing the shape and size of the gauss-
ian multiplier function with the same sinusoidal grating. When the gaussian is large, the spatial
frequency is specified quite precisely, as shown by the small image in the Fourier transform. When
the gaussian is small, position is well specified but spatial frequency is not, as shown by the large
image in the Fourier transform. The lower two rows of Figure 5.14 show how the gaussian enve-
lope can be stretched to specify either the spatial frequency or the orientation more precisely.
Although a full mathematical treatment of these effects is beyond the scope of this book, the
main point is that there are fundamental limits and tradeoffs related to the ways texture can be
used for information display. To restate them simply, large display glyphs can only show posi-
tion imprecisely; precise orientation can be shown at the expense of precise size information, and
both trade off against precision in position.

Texture Coding Information

If texture perception can be modeled and understood using the Gabor function as a model of a
detector, the same model should be useful in producing easily distinguished textures for infor-
mation display. The ideal grapheme for generating visual textures will be the Gabor function
expressed as a luminance profile, as shown in Figure 5.15. A neuron with a Gabor receptive field
will respond most strongly to a Gabor pattern with the same size and orientation. Therefore,
textures based on Gabor primitives should be easy to distinguish.

Primary Perceptual Dimensions of Texture

A completely general Gabor model has parameters related to orientation, spatial frequency, con-
trast, and the size and shape of the gaussian envelope. However, in human neural receptive fields,
the gaussian and cosine components tend to be coupled so that low-frequency cosine compo-
nents have large gaussians and high-frequency cosine components have small gaussians
(Caelli and Moraglia, 1985). This allows us to propose a simple three-parameter model for
the perception and generation of texture.

Orientation O: The orientation of the cosine component
Scale S: The size = 1/(spatial frequency component)

Contrast C: An amplitude or contrast component
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Figure 5.14 In the left-hand column, the same cosine pattern is paired with different gaussian multipliers. In the
center column are textures created using each Gabor function by reducing the size by a factor of 5 and
spattering it in the field. In the right-hand column are 2D Fourier transforms of the textures.
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Figure 5.15 Gabor receptive fields shown as gray-scale images. Different sizes and orientations are represented for
each part of the visual field.

Generation of Distinct Textures

With this simple model, it is straightforward to generate textures using Gabor functions as prim-
itives. These textures can be varied in orientation, size (1/frequency), or contrast.

One method is to randomly splatter down Gabor functions whose orientation, size, and con-
trast have been determined by data values for the region in space where each splatter lands (Ware
and Knight, 1995). When enough splatters have been accumulated in this way, we will have a
continuous map that can represent up to three variables (a trivariate map). We can also map an
additional variable to hue, producing a four-variable map.

Data value 1 — Orientation
Data value 2 — Size

Data value 3 — Contrast
Data value 4 — Hue

Figure 5.16 provides an example showing a magnetic field displayed using orientation and size
manipulations. Color coding is added to the Gabor textures to illustrate field strength. A word
of caution—Figure 5.16 illustrates a direct application of low-level visual theory, but it should
not be taken as an optimal display. It is based on a feature-level model; to understand how to
better show flow patterns, we need to move up the visual system and consider how patterns are
formed from features. A more effective approach to vector field visualization, through pattern
perception, is discussed in Chapter 6.

Note that textures need not be made of Gabor patterns for the method or the theory to
work. It is only necessary that texture elements have a dominant orientation and spatial fre-
quency. It is also important to note that the fundamental tradeoffs in our ability to represent
spatial information using texture are independent of whether or not the Gabor model of texture
perception is correct. To take a simple example, if we consider that texture elements, or textons,
can be made from small graphical shapes representing data, the number of such shapes that can
be drawn per unit area is inversely proportional to their size. The location of the packet of
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Figure 5.16 Magnetic field shown using Gabor textures.

information can be specified only to a precision determined by the size of the object represent-
ing that information.

Spatial-Frequency Channels, Orthogonality, and Maps

Sometimes we may wish to display many different kinds of information in a single map. For
example, we might wish to show sea-surface temperature and sea-surface salinity at the same
time. Naturally, we would prefer that the different sources of information do not interfere with
one another. It would be unfortunate if regions of high salinity appeared to have a greater appar-
ent temperature than they really have, due to visual crosstalk between the way we display tem-
perature and the way we display salinity. Thus, our goal is to create display methods that are
perceptually independent.

The concept of the visual processing channel can be taken directly from vision research and
applied to the independence problem. We have already discussed the concept of color channels
in Chapter 4. Here, the same idea is applied to spatial information. The idea is that informa-
tion carried on one channel should not interfere with information displayed on another. It is
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probably not the case that any of the perceptual channels we shall discuss are fully independent;
nevertheless, it is certainly the case that some kinds of information are processed in ways
that are more independent than others. A channel that is independent from another is said to
be orthogonal to it. Here, the concept is applied to the spatial information carried by Gabor
detectors.

A given Gabor-type neuron is broadly tuned with respect to orientation and size. The half-
width of the spatial tuning curve is approximately a period change (in the sinusoid) of a factor
of 3, and the total number of spatial-frequency channels is about four. Wilson and Bergen (1979)
determined these values using a masking technique, which essentially determines the extent to
which one type of information interferes with another. The resulting estimation of spatial-
frequency channels is illustrated in Figure 5.17.

Orientation tuning-in appears to be about £30 degrees (Blake and Holopigan, 1985). There-
fore, textures that differ from one another by more than 30 degrees in orientation will be easily
distinguished.

These experimental results can be applied to problems in information display. For textured
regions to be visually distinct, the dominant spatial frequencies should differ by at least a factor
of 3 or 4, and the dominant orientations should differ by more than 30 degrees, all other factors
(such as color) being equal. In general, the more displayed information differs in spatial frequency
and in orientation, the more distinct that information will be. In practical applications, this means
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Figure 5.17 Wilson and Bergen spatial channels.
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Figure 5.18 The word TEXTURE is visible only because of texture differences between the letters and the
background; overall luminance is held constant. (a) Only texture orientation is altered. (b) Texture
orientation and size are altered. (c) Texture contrast is altered.

that if we want different regions to be distinct because of their texture, the dominant orienta-
tions of the patterns should be made as different as possible. In Figure 5.18(a), only orientation
is changed between different regions of the display, and although the word TEXTURE appears
distinct from its background, it is weak. The difference appears much stronger when both the
spatial frequency and the orientation differ between the figure and the background, as in Figure
5.18(b). The third way that textures can be made easy to distinguish is by changing the contrast,
as illustrated in Figure 5.18(c).

Texture Resolution

The model of texture segmentation described previously predicts performance when people are
asked to rapidly classify regions of a display. However, if we ask how small a difference people
can resolve, we need a different model. When people are allowed to stare at two regions of a
display for as long as they like, they can resolve far smaller differences than those perceived in
brief presentations.

The resolvable size difference for a Gabor pattern is a size change of about 9% (Caelli
et al., 1983). The resolvable orientation difference is about 5 degrees (Caelli and Bevan, 1983).
These resolutions are much smaller than the channel-tuning functions would predict. This implies
that higher-level mechanisms are present to sharpen up the output from individual receptors. The
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Difference A— B
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Figure 5.19 Differences between two signals are created by an excitatory and an inhibitory connection.

mechanism is based on inhibition. If a neuron has an excitatory input from one neuron and an
inhibitory input from another with a slightly different tuning, the resulting difference signal is
much more sensitive to spatial tuning than either of the original signals. This kind of sharpen-
ing is common in neural systems; it appears in color systems, edge detection, and heading detec-
tion (for navigation). Figure 5.19 illustrates the concept. Neurons A and B both have rather
broadly tuned and somewhat overlapping response functions to some input pattern. Neuron C
has an excitatory input from A and an inhibitory input from B. The result is that C is highly sen-
sitive to differences between A and B at the crossover point.

Texture Contrast Effects

Textures can appear distorted because of contrast effects, just like the luminance contrast illu-
sions that were described in Chapter 3. Thus, a given texture on a coarsely textured background
will appear finer than the same texture on a finely textured background. This phenomenon is
illustrated in Figure 5.20. The effect is predicted by higher-order inhibitory connections. It will
cause errors in reading data that is mapped to texture element size. Texture orientation can cause
contrast illusions in orientation, and this, too, may cause misperception of data. See Figure 5.21.

Other Dimensions of Visual Texture

Although there is considerable evidence to suggest that orientation, size, and contrast are the
three dominant dimensions of visual texture, it is clear that the world of texture is much richer
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Figure 5.20 Texture contrast effect. The two patches left of center and right of center have the same texture
granularity, but texture contrast makes them appear different.
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Figure 5.21 The two horizontal lines are parallel, but they appear tilted due to orientation contrast.

than this. The dimensionality of visual texture is very high, as a visual examination of the world
around us attests. Think of the textures of wood, brick, stone, fur, leather, and other natural
materials. One of the important additional texture dimensions is certainly randomness (Liu and
Picard, 1994). Textures that are regular have a very different quality from random ones.
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Texture Field Displays

We would do well to learn to use texture more effectively in information displays. The world of
visual texture is arguably as rich and expressive as the world of color. Users of GISs commonly
require the display of many overlapping variables on the same map, such as geological infor-
mation, vegetation type, surface topography, and magnetic anomalies. In light of the theory of
parallel feature processing, we are now in a position to say something about various solutions
that apply visual texture to such problems.

The Exvis tool (Pickett and Grinstein, 1988) mapped data values to various attributes
of stick-figure icons such as those shown in Figure 5.22. This package had many display
options, including changing the angles of line segments relative to each other, or relative to a
reference orientation, and changing the line segment widths. These glyphs could then be dis-
played in a dense field over a plane producing a visual texture. Although the Exvis developers
implemented the capability to map data to icon colors, they worked mostly with angles (Pickett
et al., 1995).

What does early visual processing tell us about the Exvis glyph? The theory of visual texture
segmentation based on low-level Gabor detectors suggests a problem. With the Exvis glyph, mul-
tiple segments of a single glyph can have the same or similar orientations, although each repre-
sents a different data dimension. These line segments will be visually confounded when the glyphs
are densely displayed, ensuring that unrelated aspects of the underlying data will be visually con-
founded. Because the orientation tuning of V1 neurons indicates that glyph element orientations
should be separated by at least 30 degrees, and because a line-oriented segment will be confused
with an identical segment rotated through 180 degrees, fewer than six orientations can be rapidly
distinguished.

Weigle et al. (2000) developed a technique called oriented sliver textures specifically designed
to take advantage of the parallel processing of orientation information. Each variable in a mul-
tivariate map was mapped to a 2D array of slivers where all the slivers had the same orienta-
tion. Differently oriented 2D sliver arrays were produced for each variable. The values of each
scalar map were shown by controlling the amount of contrast between the sliver and the back-
ground. Combining all of the sliver fields produced the visualization illustrated in Figure 5.23.

Y
&«

Y «

Figure 5.22  The Exvis data glyph used to form visual textures. Different variables are mapped to the angle between
line segments and their thickness.
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Figure 5.23 The sliver plot of Weigle et al. (2000). Each of the variables shown in the thumbnail patterns in the left
part of the above figure is mapped to a differently oriented sliver field. Courtesy of Chris Weigle.

The right-hand part of this figure shows the combination of the eight variables illustrated in the
thumbnail patterns shown on the left. Weigle et al. conducted a study showing that if slivers were
oriented at least 15 degrees from surrounding regions, they stood out clearly. However, the exper-
iment was only carried out with a single sliver at each location (unlike Figure 5.23). To judge
the effectiveness of the sliver plot for yourself, try looking for each of the thumbnail patterns in
the larger combined plot. The fact that many of the patterns cannot easily be seen suggests that
the technique is not effective for so many variables. The tuning of orientation-sensitive cells sug-
gests that slivers should be at least 30 degrees apart to be clearly readable (Blake and Holopi-
gan, 1985), perhaps more, but in Figure 5.23 some differ by only 15 degrees.

Figure 5.24 shows another sliver plot with only three orientations. This adds a colored back-
ground and also uses slivers having both positive and negative contrast with the background. It
is easier to see the different patterns in this example.

Two other examples of high-dimensional data display from Laidlaw and his collaborators
(Laidlaw et al. 1998) (Figures 5.25 and 5.26) were created using a very different design strategy.



Figure 5.24  Another example of a sliver plot. Three variables are mapped to three differently oriented slivers. A fourth
variable is mapped to the background color. Courtesy of Chris Weigle.

Figure 5.25 A cross section of a mouse spinal column. Seven variables are shown at each location. Part of the image
is enlarged on the right. See text for description. Courtesy of David Laidlaw.
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Figure 5.26 A flow visualization showing six variables relating to fluid flow around a cylinder. Courtesy of David
Laidlaw.

Rather than attempting to create a simple general technique (like slivers), both figures were hand-
crafted in a collaboration between the scientist and the designer. Figure 5.25 shows a cross section
of a mouse spinal column. The data has seven values at each location in the image. The image
is built up in layers: image intensity, sampling rate determines the grid, elliptical shapes show the
in-plane component of principal diffusion and anisotropy, texture on the ellipses shows absolute
diffusion rate.

The image in Figure 5.26 is a flow visualization. It displays six variables relating to the flow
pattern of a fluid around a cylinder. These values are 2D velocity (two values are mapped to
arrow direction and area), vorticity (one value is mapped to color and texture on ellipses), and
deformation rate tensor (three values are mapped to shape and orientation of ellipses).

Without specific knowledge of mouse physiology or fluid dynamics, it is impossible to judge
the success of these examples. Nevertheless, they provide a vivid commentary on the tradeoffs
involved in trying to display high-dimensional multivariate maps. The first point to be made is
that none of the preceding three examples (Figures 5.24, 5.25, and 5.26) shows much detail, and
there is a good reason for this. We only have one luminance channel, and luminance variation
is the only way of displaying detailed information. If we choose to use texture (or any kind of
glyph field), we inevitably sacrifice the ability to show detail, because to be clear each glyph
element must be displayed using luminance contrast. Larger glyphs mean that less detail can
be shown.
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There are also tradeoffs when displaying orientation. It may be only possible to display a
single orientation clearly at each point in space for the purpose of showing flow patterns. Figure
5.26 suggests that if we need to show differently oriented glyphs in the same region, the glyphs
must be widely spaced. This reduces the data density further. Also, Figure 5.26 suggests that the
colors of different glyph layers must be very carefully chosen to be dissimilar. This, in turn, severely
restricts how color-coding can be used on individual glyphs. In Figure 5.25, each of the elliptical
glyphs is textured to display an additional variable. However, the texture striations are at right
angles to the ellipse major axes. This camouflages the glyphs, making their orientation more dif-
ficult to see. The use of texture will inevitably tend to camouflage glyph shape; if the textures are
oriented, the problem will be worse. In general, the more similar the spatial frequencies of the dif-
ferent pattern components, the more likely they are to disrupt one another visually.

The complexity of the design tradeoffs suggests that the problem of creating complex visu-
alizations will be more of a craft than a science for quite some time. The problem is too difficult
for automatic assignments of data maps to graphical attributes to be successful. Still, the designer
needs to be aware of the perceptual tradeoffs in order to make informed decisions about the best
choice of glyph size, shape, and color distribution.

It is also worth pointing out that there are some perceptual dimensions that may be used in
addition to color, shape, and texture. In some cases, it is helpful to use stereoscopic depth and
motion in displaying multidimensional data. Stereoscopic depth, especially if used with a high-
resolution display, can undoubtedly help us perceptually segment data layers. So can motion.
Making all of the points in a data layer move coherently, even by a small amount, may make it
possible to visually attend to either the static layer or the moving layer (as shown by the possi-
bility of preattentive conjunction search with motion).

Glyphs and Multivariate Discrete Data

In the previous section, we saw how texture could be used to represent continuous map data. In
Chapter 4, it was shown that color could be used in a similar way. However, sometimes multi-
variate discrete data is the subject of interest. For example, a marketing specialist may have data
for every person in a particular geographical area, including estimates of income, educational
level, employment category, and location of residence. The marketer would like to see each person
on a map in such a way that the concentrations of individuals with particular sets of attributes
can easily be seen. In this way, neighborhoods to be blanketed with flyers might be selected most
effectively.

To create a glyph, multiple data attributes are mapped in a systematic way to show the dif-
ferent aspects of the appearance of the graphical object. In the aforementioned marketing
example, income might be mapped to the glyph’s size, education level to its color, employment
category to its shape, and geographic location to the x,y location where the glyph is plotted. All
the previously discussed results relating to preattentive detection of size, orientation, and color-
coding of data apply to the design of glyphs.
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Another body of theory that is relevant to glyph design is the theory of integral and sepa-
rable dimensions, developed by Garner (1974). The kind of multidimensional coding that occurs
in the use of glyphs raises questions about the perceptual independence of the display dimen-
sions. Will the color-coding scheme interfere with our perception of glyph size and therefore
distort perceived income level? What if we use both color and size to represent a single variable?
Will this make the information clearer? The concept of integral vs. separable visual dimensions
tells us when one display attribute (e.g., color) will be perceived independently from another (e.g.,
size). With integral display dimensions, two or more attributes of a visual object are perceived
holistically and not independently. An example is a rectangular shape, perceived as a holistic
combination of the rectangle’s width and height. Another is the combination of green light and
red light; this is seen holistically as yellow light, and it is difficult to respond independently to
the red and green components. With separable dimensions, people tend to make separate judg-
ments about each graphical dimension. This is sometimes called analytic processing. Thus, if the
display dimensions are the diameter of a ball and the color of a ball, they will be processed rel-
atively independently. It is easy to respond independently to ball size and ball color.

Integral and separable dimensions have been determined experimentally in a number of ways.
Three experimental paradigms are discussed here. All are related to interactions between pairs
of variables. Very little work has been done on interactions among three or more display
variables.

Restricted Classification Tasks

In restricted classification tasks, observers are shown sets of three glyphs that are constructed
according to the diagram shown in Figure 5.27. Two of the glyphs (A and B) are made the same
on one variable. A third glyph (C) is constructed so that it is closer to glyph B in feature space,
but this glyph differs from the other two in both of the graphical dimensions. Subjects are asked
to group the two glyphs that they think go together best. If the dimensions are integral, A and
C are grouped together because they are closest in the feature space. If they are separable, A and
B are grouped together because they are identical in one of the dimensions (analytic mode). The
clearest example of integral dimensions is color space dimensions. If dimension X is the red—
green dimension and dimension Y is the yellow—Dblue dimension of color space, subjects tend to
classify objects (roughly) according to the Euclidean distance between the colors (defined accord-
ing to one of the uniform color spaces discussed in Chapter 4). Note that even this is not always
the case, as the evidence of color categories (also discussed in Chapter 4) shows.

The width and height of an ellipse creates an integral perception of shape. Thus, in Figure
5.28(a), the ellipses B and C appear to be more similar to each other than to the circle A, even
though the width of B matches the width of A. If the two dimensions are separable, subjects act
in a more analytic manner and react to the fact that two of the objects are actually identical on
one of the dimensions. Shape and gray value are separable. Thus, in Figure 5.28(b), either the
two gray shapes or the two elliptical shapes will be categorized together. With separable dimen-
sions, it is easy to attend to one dimension or the other.
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Figure 5.27 When we are considering integral and separable visual dimensions, it is useful to consider a space
defined by two display dimensions. One might be size; the other might be color. Or one might be hue and
the other might be saturation, both defined in color space.

a Integral b Separable
8 N
‘@ C ‘@
N > C
c B c
.2 Rel B
v wv
c c
[ [
£ £
&) Q [a)
A A
Dimension 1: X size Dimension 1: Lightness

Figure 5.28 (a) The width and height of an ellipse are perceived integrally; therefore, B and C are perceived as more
similar. (b) The gray value and the height of an ellipse are perceived as separable; therefore, A and B,
which have identical lightness, are perceived as more similar.

Speeded Classification Tasks

Speeded classification tasks tell us how glyphs can visually interfere with each other. In a speeded
classification task, subjects are asked to classify visual patterns rapidly according to only one of
the visual attributes of a glyph. The other visual attribute can be set up in two different ways: it
can be given random values (interference condition), or it can be coded in the same way as the
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Figure 5.29 Patterns for a speeded classification task. Subjects are required to respond positively only to those
glyphs that have the same height as the black bar in the upper-left corner. (a) Integral dimensions. In the
first column, a second integral dimension is randomly coded by horizontal size (interference condition). In
the second column, width information is redundantly coded with height information. (b) Separable
dimension. In the first column, gray information is not correlated with height. In the second column, gray
level is a redundant code.

first dimension (redundant coding). If the data dimensions are integral, substantial interference
occurs in the first case. With redundant coding, classification is generally speeded for integral
dimensions. With separable codes, the results are different. There is little interference from the
irrelevant graphical dimension, but there is also little advantage in terms of speeded classifica-
tion when redundant coding is used. Of course, in some cases, using redundant separable codes
may still be desirable. For example, if both color and shape are used for information coding,
color-blind individuals will still have access to the information. Figure 5.29 gives examples of
the kinds of patterns that are used in experiments.

The lessons to be learned from integral—separable dimension experiments are straightfor-
wardly applied to cases in which each data entity has two attributes. If we want people to respond
holistically to a combination of two variables, using integral dimensions will be better. If we want
people to respond analytically, making judgments on the basis of one variable or the other, using
separable dimensions will be better.
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Integral-Separable Dimension Pairs

The preceding analysis has presented integral and separable dimensions as if they were qualita-
tively distinct. This overstates the case; a continuum of integrality—separability more accurately
represents the facts. There is always some interference between different data values presented
using different graphical attributes of a single visual object, even between the most separable
dimensions. Likewise, the most integral dimensions can be regarded analytically to some extent.
We can, for example, perceive the degree of redness and the degree of yellowness of a color, for
instance, orange or pink. Indeed, the original experimental evidence for opponent color channels
was based on analytic judgments of exactly this type (Hurvich, 1981).

Figure 5.30 provides a list of display dimension pairs arranged on an integral—separable
continuum. At the top are the most integral dimensions. At the bottom are the most separable
dimensions. Other possible display dimensions are not represented, because of too little evidence
for blue and stereoscopic depth. However, it seems likely that stereoscopic depth is quite sepa-
rable from other dimensions if only two depth layers are involved. The most separable way of
coding information, as indicated at the bottom of the list, is to use spatial position to code one
of the data dimensions and to use size, shape, or color to code the other. This is exactly what is
done in a bar chart in which each bar represents a single value. Figure 5.31 illustrates some of
the dimension pairs.

As a theoretical concept, the notion of integral and separable dimensions is undoubtedly sim-
plistic; it lacks mechanism and fails to account for a large number of exceptions and asymme-
tries that have been discovered experimentally. Eventually, it is to be expected that a more
complete body of theory will emerge to account for the ways in which different kinds of visual
information are combined. The beauty of the integral—separable distinction lies in its simplicity
as a design guideline.

Integral

dimension pairs
P red-green yellow-blue

red-green  black-white
shape height  shape width
shape size
color size
direction of motion  shape
color shape
color direction of motion
X,y position  size, shape, or color
Separable
dimension pairs

Figure 5.30 This table lists some of the display dimension pairs ranked in order from highly integral to highly
separable.
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Dimensions

Py red-green | yellow-blue

x-size | y-size
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Figure 5.31 Examples of glyphs coded according to two display attributes. At the top are more integral coding pairs.
At the bottom are more separable coding pairs.

Monotonicity of Visual Attributes

Some visual qualities increase continuously, like size, brightness, or the up direction, and are said
to be monotonic. Some visual qualities are not monotonic. Orientation is one. It is meaningless
to say that one orientation is greater or less than another. The same is true of the phase angle
between two oscillating objects. As the phase difference is increased, the objects first appear to
move in opposite directions, but as the phase difference continues to increase, they appear to
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move together again. Phase is cyclic, just as line orientation is cyclic. Hue also lacks a natural
order.

Monotonic display variables naturally express relations such as greater than or less than if
they have a direction that we associate with increasing value. For example, in a 3D data space,
the up direction is defined by gravity, and using up to represent a greater quantity of some vari-
able will be readily interpreted. The axis representing direction toward and away from the view-
point is similarly well defined, but the left and right directions do not have as clear a value. In
the west, we read left to right but this is learned. Other languages, such as Arabic, have right-
to-left ordering. For representing simple quantity, a mapping to any of the following attributes
will be effective: size, lightness (on a dark background), darkness (on a light background), vivid-
ness (higher saturation) of color, or vertical height above the ground plane. For each of these, an
inverse mapping will lead to confusion.

Multidimensional Discrete Data

This is a good place to step back and look at the general problem of multivariate discrete data
display in light of the concepts that have been presented here and in the previous chapter. It is
worth restating this problem. We are provided with a set of entities, each of which has values
on a number of attribute dimensions. For example, we might have 1000 beetles, each measured
on 30 anatomical characteristics, or 500 stocks, each described by 20 financial variables. The
reason for displaying such data graphically is often for data exploration. We hope to find meaning
in the diversity. In the case of the beetles, the meaning might be related to their ecological niche.
In the case of the stocks, the meaning is likely to lie in opportunities for profit.

If we decide to use a glyph display, each entity becomes a graphical object and data attrib-
utes are mapped to graphical attributes of each glyph. The problem is one of mapping data dimen-
sion to the graphical attributes of the glyph. The work on preattentive processing, early visual
processing, and integral and separable dimensions suggests that a rather limited set of visual
attributes is available to us if we want to understand the values rapidly. Figure 5.32 is a list of
the most useful low-level graphical attributes that can be applied to glyph design, with a few
summary comments about the number of dimensions available.

Many of these display dimensions are not independent of one another. To display texture,
we must use at least one color dimension to make the texture visible. Blink coding will certainly
interfere with motion coding. Overall, we will probably be fortunate to display eight dimensional
data clearly, using color, shape, spatial position, and motion to create the most differentiated set
possible.

There is also the issue of how many resolvable steps are available in each dimension. The
number here is also small. When we require rapid preattentive processing, no more than
eight colors are available. The number of orientation steps that we can easily distinguish is prob-
ably about four. The number of size steps that we can easily distinguish is no more than four,
and the values for the other data dimensions are also in the single-digit range. It is reasonable,
therefore, to propose that we can represent about 2 bits of information for each of the eight
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Visual variable

Dimensionality

Comment

Spatial position of glyph

3 dimensions: X, Y, Z.

Color of glyph

3 dimensions: defined by
color opponent theory.

Luminance contrast is
needed to specify all other
graphical attributes.

Shape

2-3? Dimensions unknown.

The dimensions of shape
that can be rapidly
processed are unknown.
However, evidence suggests
that size and degree of
elongation are two primary
ones.

Orientation

3 dimensions: corresponding
to orientation about each of
the primary axes.

Orientation is not
independent of shape. One
object can have rotation
symmetry with another.

Surface texture

3 dimensions: orientation,
size, and contrast.

Not independent of shape
or orientation. Uses up one
color dimension.

Motion coding

2-3? Dimensions largely
unknown, but phase may
be useful.

Blink coding: The glyph
blinks on and off at some
rate.

1 dimension.

Motion and blink coding are
highly interdependent.

Figure 5.32

Graphical attributes that may be used in glyph design.

183

graphical dimensions. If the dimensions were truly independent, this would yield 16 displayable
bits per glyph (64,000 values). Unfortunately, conjunctions are generally not preattentive. If
we allow no conjunction searching, we are left with four alternatives on each of eight dimen-
sions, yielding only 32 rapidly distinguishable alternatives, a far smaller number. Anyone who
has tried to design a set of easily distinguishable glyphs will recognize this number to be more

plausible.
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Stars, Whiskers, and Other Glyphs

There is a family of glyph designs for multidimensional discrete data displays that is interesting
to analyze from a perception perspective. In the whisker plot, each data value is represented by
a line segment radiating out from a central point, as shown in Figure 5.33(a). The length of the
line segment denotes the value of the corresponding data attribute.

A variant of the whisker plot is the star plot (Chambers et al., 1983). This is the same as
the whisker plot but with the ends of the lines connected, as in Figure 5.33(b). In general, it is
better to use a very small number of orientations, perhaps only three, for really rapid classifica-
tion of glyphs, as shown in Figure 5.34(b). It may be possible to increase the number of rapidly
distinguishable orientations by inverting the luminance polarity of half of the bars, as in Figure
5.34(a). Color and position in space can be used to display other data dimensions. If we map

Figure 5.33  Three glyph designs: (a) The whisker or fan plot. (b) A star plot. (c) An Exvis stick icon.

Figure 5.34 (a) It may be possible to increase the number of distinct orientations in a glyph display by changing the
luminance polarity of half the line segments. (b) Changing the widths as well as the lengths of segments
may also be effective.
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three data dimensions to the position of each glyph and two dimensions to the color of the glyph,
we can represent eight-dimensional data clearly and effectively. It may also be useful to change
the amount of “energy” in glyph segments by altering the line width as well as the length of
the line.

When large numbers of glyphs are present in a display, the glyph field becomes a texture
field and the theory discussed earlier will apply.

Conclusion

This chapter has provided an introduction to the early stages of vision, in which literally billions
of neurons act in parallel to extract elementary aspects of form, color, texture, motion, and stereo-
scopic depth. The fact that this processing is done for each point of the visual field means that
objects differentiated in terms of these simple low-level features pop out and can be noticed easily.
Understanding such preattentive processes is the key to designing elements of displays that must
be rapidly attended to. Making an icon or a symbol significantly different from its surroundings
on one of the preattentive dimensions ensures that it can be detected by a viewer without effort
and at high speed.

The lessons from this chapter have to do with fundamental tradeoffs in design choices about
whether to use color, shape, texture, or motion to display a particular set of variables. Here is a
short summary of the key lessons we have learned from low-level vision:

®  Low-level channels tell us about coding dimensions. We can usefully consider color,
elements of form (orientation, size), position, simple motion, and stereoscopic depth as
separate channels.

®  For glyphs to be seen rapidly, they must stand out clearly from all other objects in their
near vicinity on at least one coding dimension. In a display of large symbols, a small
symbol will stand out. In a display of blue, green and gray symbols or a red symbol will
stand out.

®  There is more visual interference within channels. The basic rule is that, in terms of low-
level properties, like interferes with like. If we have a set of small symbols on a textured
background, a texture with a grain size similar to that of the symbols will make them
hard to see.

®  There is more separability between channels. If we wish to be able to read data values
from different data dimensions, each of these values should be mapped to a different data
dimension. Mapping one variable to color and another to glyph orientation will make
them independently readable. If we map one variable to X-direction size and another to Y-
direction size, they will be read more holistically. If we have a set of symbols that are hard
to see because they are on a textured background, they can be made to stand out by using
another coding channel; having the symbols oscillate will also make them distinct.
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Unfortunately, there are no universal rules for mapping multiattribute data to glyphs. The simple
techniques, such as star plots, do not allow us to interpret the data rapidly, because we have
mapped too much information to line segments having similar orientations that interfere visu-
ally with each other. The way to differentiate variables readily is to employ more perceptual chan-
nels. Unfortunately, although this solves one problem, it creates another. We have to decide which
variable to map to color, to shape, and to texture, and we have to worry about which mappings
will be most intuitive for the intended audience. These are difficult design decisions.

In this chapter, we have dealt mainly with how attention is directed within a single fixation
of the eye. Attention is also central in controlling eye movements and is a fundamental concept
in the processes of visual thinking. We revisit the topic of attention in Chapter 11, which explores
how we solve problems through visual thinking.

We have arrived at a transition point in this book. To this point, we have discussed mostly
the massively parallel processing of low-level features of early vision and the elementary coding
of information. We now turn our attention to the way the brain extracts a few complex objects
from elemental information and subjects them to sophisticated analysis. We will also discuss how
the brain finds elaborate patterns in data, and eventually we will look at the ways in which infor-
mation should be integrated and displayed for solving complex problems.



CHAPTER B

Static and Moving Patterns

Data mining is about finding patterns that were previously unknown or that depart from the
norm. The stock-market analyst looks for any pattern of variables that may predict a future
change in price or earnings. The marketing analyst is interested in perceiving trends and patterns
in a customer database. When we look for patterns, we are making visual queries that are key
to visual thinking. Sometimes the queries are vague; we are on the lookout for a variety of struc-
tures in the data. Sometimes they are precise, as when we look for a positive trend in a graph.
In data exploration, seeing a pattern can often lead to a key insight, and this is the most com-
pelling reason for visualization.

What does it take for us to see a group? How can 2D space be divided into perceptually
distinct regions? Under what conditions are two patterns recognized as similar? What constitutes
a visual connection between objects? These are some of the perceptual questions addressed in
this chapter. The answers are central to visualization, because most data displays are two-
dimensional and pattern perception deals with the extraction of structure from 2D space.

Consider again our three-stage model of perception (illustrated in Figure 6.1). At the early
stages of feature abstraction, the visual image is analyzed in terms of primitive elements of form,
motion, color, and stereoscopic depth. At the next 2D pattern perception stage, the contours are
discovered and the visual world is segmented into distinct regions, based on texture, color,
motion, and contour. Next, the structures of objects and scenes are discovered, using informa-
tion about the connections between component parts, shape-from-shading information, and so
on. Pattern perception can be thought of as a set of mostly 2D processes occurring between
feature analysis and full object perception, although aspects of 3D space perception, such as
stereoscopic depth and structure-from-motion, can be considered particular kinds of pattern per-
ception. Finally, objects and significant patterns are pulled out by attentional processes to meet
the needs of the task at hand.

187
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Figure 6.1 Pattern perception forms a middle ground where the bottom-up processes of feature processing meet
the requirements of active attention.

There are radical changes in the kinds of processing that occur at the different stages. In the

early stages, massively parallel processing of the entire image occurs. This drives perception
from the bottom up. But object and visual search recognition is driven from the top down
through active attention, meeting the requirements of visual thinking. At the top level, only
three to five objects (or patterns) are held in visual working memory. Pattern perception is the
flexible middle ground where objects are extracted from patterns of features. Active processes of
attention reach down into the pattern space to keep track of those objects and to analyze them
for particular tasks; the essentially bottom-up processing of feature primitives meets the top-
down processes of cognitive perception. Rensink (2000) calls the middle ground a “proto-object
flux.”
Understanding pattern perception provides abstract design rules that can tell us much
about how we should organize data so that important structures will be perceived. If we can map
information structures to readily perceived patterns, then those structures will be more easily
interpreted.

Learning is important in the pattern mechanism. It occurs in the short term through visual
priming and in the long term as a kind of skill learning. Priming refers to the fact that once we
have seen a pattern, it becomes much easier to identify on subsequent appearance. Long-term
learning of patterns occurs over hundreds or thousands of trials, but some patterns are much
easier to learn than others (Fine and Jacobs, 2002). In this chapter, we consider 2D-pattern per-
ception and what this tells us about information display. In the next two chapters, we consider
3D-space perception, much of which is a form of advanced pattern perception.
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Gestalt Laws

The first serious attempt to understand pattern perception was undertaken by a group of German
psychologists who, in 1912, founded what is known as the Gestalt school of psychology. The
group consisted principally of Max Westheimer, Kurt Koffka, and Wolfgang Kohler (see Koffka,
1935, for an original text). The word gestalt simply means pattern in German. The work of the
Gestalt psychologists is still valued today because they provided a clear description of many basic
perceptual phenomena. They produced a set of Gestalt laws of pattern perception. These are
robust rules that describe the way we see patterns in visual displays, and although the neural
mechanisms proposed by these researchers to explain the laws have not withstood the test of
time, the laws themselves have proved to be of enduring value. The Gestalt laws easily translate
into a set of design principles for information displays. Eight Gestalt laws are discussed here:
proximity, similarity, connectedness, continuity, symmetry, closure, relative size, and common
fate (the last concerns motion perception and appears later in the chapter).

Proximity

Spatial proximity is a powerful perceptual organizing principle and one of the most useful in
design. Things that are close together are perceptually grouped together. Figure 6.2 shows two
arrays of dots that illustrate the proximity principle. Only a small change in spacing causes us
to change what is perceived from a set of rows, in Figure 6.2(a), to a set of columns, in Figure
6.2(b). In Figure 6.2(c), the existence of two groups is perceptually inescapable. Proximity is not
the only factor in predicting perceived groups. In Figure 6.3, the dot labeled x is perceived to be
part of cluster a rather than cluster b, even though it is as close to the other points in cluster b

a b C
[ ]
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[
[ ]
o o
[
Figure 6.2 Spatial proximity is a powerful cue for perceptual organization. A matrix of dots is perceived as rows on

the left (a) and columns on the right (b). In (c), because of proximity relationships, we perceive two
groupings of dots.
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Figure 6.3 The principle of spatial concentration. The dot labeled x is perceived as part of group a rather than
group b.
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Figure 6.4 According to the Gestalt psychologists, similarity between the elements in alternate rows causes the row
percept to dominate.

as they are to each other. Slocum (1983) called this the spatial concentration principle. Accord-
ing to this principle, we perceptually group regions of similar element density.

The application of the proximity law in display design is straightforward: the simplest and
most powerful way to emphasize the relationships between different data entities is to place them
in proximity in a display.

Similarity

The shapes of individual pattern elements can also determine how they are grouped. Similar
elements tend to be grouped together. In both Figure 6.4(a) and (b), the similarity of the elements
causes us to see the rows most clearly.



Static and Moving Patterns 191

Figure 6.5 (a) Integral dimensions are used to delineate rows and columns. (b) When separable dimensions (color
and texture) are used, it is easier to attend separately to either the rows or the columns.

We can also apply lessons from the concept of integral and separable dimensions that was
discussed in Chapter 5. Figure 6.5 shows two different ways of visually separating row and
column information. In 6.5(a), integral color and gray-scale coding is used. In Figure 6.5(b), green
color is used to delineate rows and texture is used to delineate columns. Color and texture are
separable dimensions, and the result is a pattern that can be visually segmented either by rows
or by columns. This technique can be useful if we are designing so that users can easily attend
to either one pattern or the other.

Connectedness

Palmer and Rock (1994) argue that connectedness is a fundamental Gestalt organizing principle
that the Gestalt psychologists overlooked. The demonstrations in Figure 6.6 show that connect-
edness can be a more powerful grouping principle than proximity, color, size, or shape. Con-
necting different graphical objects by lines is a very powerful way of expressing that there is some
relationship between them. Indeed, this is fundamental to the node-link diagram, one of the most
common methods of representing relationships between concepts.

Continuity

The Gestalt principle of continuity states that we are more likely to construct visual entities out
of visual elements that are smooth and continuous, rather than ones that contain abrupt changes
in direction. (See Figure 6.7.)

The principle of good continuity can be applied to the problem of drawing diagrams con-
sisting of networks of nodes and the links between them. It should be easier to identify the sources
and destinations of connecting lines if they are smooth and continuous. This point is illustrated
in Figure 6.8.



192 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

@ d
( —o

1138

Figure 6.6 Connectedness is a powerful grouping principle that is stronger than (a) proximity, (b) color, (c) size, or
(d) shape.
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Figure 6.7 The pattern on the left (a) is perceived as a curved line overlapping a rectangle (b) rather than as the
more angular components shown in (c).

Symmetry

Symmetry can provide a powerful organizing principle. Figures 6.9 and 6.10 provide two exam-
ples. The symmetrically arranged pairs of lines in Figure 6.9 are perceived much more strongly
as forming a visual whole than the pair of parallel lines. In Figure 6.10(a), symmetry may be the
reason why the cross shape is perceived, as opposed to shapes in 6.10(b), even though the second
option is not more complicated. A possible application of symmetry is in tasks in which data
analysts are looking for similarities between two different sets of time-series data. It may be easier
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Figure 6.8 In (a), smooth continuous contours are used to connect the elements, whereas in (b), lines with abrupt
changes in direction are used. It is much easier to perceive connections when contours connect

smoothly.

Figure 6.9 The pattern on the left consists of two identical parallel contours. In each of the other two patterns, one

of the contours has been reflected about a vertical axis, producing bilateral symmetry. The result is a
much stronger sense of a holistic figure.

I L]

Figure 6.10 We interpret pattern (a) as a cross in front of a rectangle. An alternative, two objects shown in (b) are
not perceived, even though the black shape behind the white shape would be an equally simple

interpretation. The cross on the rectangle interpretation has greater symmetry (about horizontal axes) for
both of the components.

O
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Figure 6.11 An application designed to allow users to recognize similar patterns in different time-series plots. The
data represents a sequence of measurements made on deep ocean drilling cores. Two subsets of the
extended sequences are shown on the right.

to perceive similarities if these time series are arranged using vertical symmetry, as shown in
Figure 6.11, rather than using the more conventional parallel plots.

Closure

A closed contour tends to be seen as an object. The Gestalt psychologists argued that there is a
perceptual tendency to close contours that have gaps in them. This can help explain why we see
Figure 6.12(a) as a complete circle and a rectangle rather than as a circle with a gap in it as in
Figure 6.12(b).
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Figure 6.12 The Gestalt principle of closure holds that neural mechanisms operate to find perceptual solutions
involving closed contours. Hence in (a), we see a circle behind a rectangle, not a broken ring as in (b).

(>

Figure 6.13 An Euler diagram. This diagram tells us (among other things) that entities can simultaneously be
members of sets A and C but not of A, B, and C. Also, anything that is a member of both B and C is also a
member of D. These rather difficult concepts are clearly expressed and understood by means of closed
contours.

Wherever a closed contour is seen, there is a very strong perceptual tendency to divide regions
of space into “inside” or “outside” the contour. A region enclosed by a contour becomes a
common region in the terminology of Palmer (1992). He showed common region to be a much
stronger organizing principle than simple proximity. This, presumably, is the reason why Venn-
Euler diagrams are such a powerful device for displaying the interrelationships among sets of
data. In an Euler diagram, we interpret the region inside a closed contour as defining a set of
elements. Multiple closed contours are used to delineate the overlapping relationships among
different sets. A Venn diagram is a more restricted form of Euler diagram containing all possi-
ble regions of overlap. The two most important perceptual factors in this kind of diagram are
closure and continuity.

A fairly complex structure of overlapping sets is illustrated in Figure 6.13, using an Euler
diagram. This kind of diagram is almost always used in teaching introductory set theory, and
this in itself is evidence for its effectiveness. Students easily understand the diagrams, and they
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Figure 6.14 An Euler diagram enhanced using texture and color can convey a more complex set of relations than a
conventional Euler diagram using only closed contour.

can transfer this understanding to the more difficult formal notation. Stenning and Ober-
lander (1994) theorize that the ease with which Euler diagrams can be understood results
specifically from the fact that they have limited expressive power, unlike fully abstract formal
notation.

Although simple contours are generally used in Euler diagrams to show set membership, we
can effectively define regions using color and texture as well, as discussed in Chapters 4 and 5.
Indeed, by using both we should be able to create Euler diagrams that are considerably more
complex and still readily understandable. Figure 6.14 illustrates.

Closed contours are extremely important in segmenting the monitor screen in windows-based
interfaces. The rectangular overlapping boxes provide a strong segmentation cue, dividing the
display into different regions. In addition, rectangular frames provide frames of reference: the
position of every object within the frame tends to be judged relative to the enclosing frame. (See
Figure 6.15.)

Relative Size

In general, smaller components of a pattern tend to be perceived as objects. In Figure 6.16, a
black propeller is seen on a white background, as opposed to the white areas being perceived as
objects.

Figure and Ground

Gestalt psychologists were also interested in what they called figure—ground effects. A figure is
something objectlike that is perceived as being in the foreground. The ground is whatever lies
behind the figure. The perception of figure as opposed to ground can be thought of as the fun-
damental perceptual act of identifying objects. All the Gestalt laws contribute to creating a figure,
along with other factors that the Gestalt psychologists did not consider, such as texture seg-
mentation (see Chapter 5). Closed contour, symmetry, and the surrounding white area all con-
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Figure 6.15 Closed rectangular contours strongly segment the visual field. They also provide reference frames. Both
the positions and the sizes of enclosed objects are, to some extent, interpreted with respect to the
surrounding frame.

Figure 6.16 The black areas are smaller, and therefore more likely to be perceived as an object. It is also easier to
perceive patterns that are oriented horizontally and vertically as objects.

tribute to the perception of the shape in Figure 6.17 as figure, as opposed to a cut-out hole, for
example.

Figure 6.18 shows the classic Rubin’s Vase figure, in which it is possible to perceive either
two faces, nose to nose, or a black vase centered in the display. The fact that the two percepts
tend to alternate suggests that competing active processes may be involved in trying to construct
figures from the pattern.
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Figure 6.17 Symmetry, surrounding white space, and a closed contour all contribute to the strong sense that this
shape is figure, rather than ground.

Figure 6.18 Rubin’s Vase. The cues for figure and ground are roughly equally balanced, resulting in a bistable percept
of either two faces or a vase.

More on Contours

A contour is a continuous perceived boundary between regions of a visual image. A contour can
be defined by a line, by a boundary between regions of different color, by stereoscopic depth, by
motion patterns, or by texture. Contours can even be perceived where there are none. Figure
6.19 illustrates an illusory contour; a ghostly boundary of a blobby shape is seen even where
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none is physically present. There is extensive literature on illusory contours (see Kanizsa, 1976,
for an early review).

Because the process that leads to the identification of contours is seen as fundamental to
object perception, contour detection has received considerable attention from vision researchers.
There are a number of detailed neurophysiological models designed to explain how contours can
be extracted from the visual image, based on what is known about early visual processing. See
Marr (1982), for example.

Higher-order neurophysiological mechanisms of contour perception are not well understood.
However, one result is intriguing. Gray et al. (1989) found that cells with collinear receptive fields
tend to fire in synchrony. Thus, we do not need to propose higher-order feature detectors,
responding to more and more complex curves, to understand the neural encoding of contour
information. Instead, it may be that groups of cells firing in synchrony is the way that the brain
holds related pattern elements in mind. Theorists have suggested a fast enabling link, a kind of
rapid feedback system, to achieve the firing of cells in synchrony. For a review, see Singer and
Gray (1995).

Fortunately, because a theoretical understanding is only just emerging, the exact mechanisms
involved in contour detection are less relevant to the purpose of designing visualizations than are
the circumstances under which we perceive contours. A set of experiments by Field et al. (1993)
places the Gestalt notion of good continuation on a firmer scientific basis. In these experiments,
subjects had to detect the presence of a continuous path in a field of 256 randomly oriented
Gabor patches (see Chapter 5 for a discussion of Gabor functions). The setup is illustrated

Figure 6.19 Illusory contour.
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Figure 6.20 A schematic diagram illustrating the experiments conducted by Field et al. (1993). If the elements were
aligned as shown in (a) so that a smooth curve could be drawn through some of them, the curve shown
in (b) was perceived. In the actual experiments, Gabor patches were used.

schematically in Figure 6.20. The results show that subjects were very good at perceiving a
smooth path through a sequence of patches. As one might expect, continuity between Gabor
patches oriented in straight lines was the easiest to perceive. More interesting, even quite wiggly
paths were readily seen if the Gabor elements were aligned as shown in Figure 6.20(b).

There are direct applications of this result in displaying vector field data. A common tech-
nique is to create a regular grid of oriented arrows, such as the one shown in Figure 6.21. When
the arrows are displaced so that smooth contours can be drawn between them, the flow pattern
is much easier to see.

Perceiving Direction: Representing Vector Fields

The perception of contour leads us naturally to the perceptual problem of representing vector
fields. This problem can be broken down into two components: the representation of orienta-
tion and the representation of magnitude. Some techniques display one component but not both.

Instead of using little arrows, one obvious and effective way of representing vector fields is
through the use of continuous contours; a number of effective algorithms exist for this purpose.
Figure 6.22 shows an example from Turk and Banks (1996). This effectively illustrates the direc-
tion of the vector field, although it is ambiguous in the sense that for a given contour there can
be two directions of flow. Conventional arrowheads can be added, as in Figure 6.21, but the
result is visual clutter. In addition, in Figure 6.22 the magnitudes of the vectors are given by line
density and inverse line width, and this is not easy to read.

An interesting way to resolve the flow direction ambiguity is provided in a seventeenth-
century vector field map of North Atlantic wind patterns by Edmund Halley (discussed in Tufte,
1983). Halley’s elegant pen strokes, illustrated in Figure 6.23, are shaped like long, narrow air-
foils oriented to the flow, with the wind direction given by the blunt end. Interestingly, Halley
also arranges his strokes along streamlines. We verified experimentally that strokes like Halley’s
are unambiguously interpreted with regard to direction (Fowler and Ware, 1989).
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Figure 6.21 The results of Field et al. (1993) suggest that vector fields should be easier to perceive if smooth contours
can be drawn through the arrows. (a) A regular grid is used to determine arrow layout. (b) The arrows
have been shifted so that smooth contours can be drawn through the arrows. As theory predicts, the
latter is more effective.

We also developed a new method for creating an unambiguous sense of vector field direc-
tion that involves varying the color along the length of a stroke. This is illustrated in Figure 6.24.
There was a strong interaction between the direction of color change and the background color.
If one end of the stroke was given the background color, the stroke direction was perceived to
be in the direction of color change away from the background color. In our experiments, the
impression of direction produced by color change completely dominated that given by shape.

Comparing 2D Flow Visualization Techniques

Laidlaw et al. (2001) carried out an experimental comparison of the six different flow visual-
ization methods illustrated in Figure 6.25 and briefly described as follows.
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Figure 6.22 Vector field streamlines are an effective way to represent vector field or flow field data. However, the
direction is ambiguous and the magnitude is not clearly expressed (Turk and Banks, 1996).

Figure 6.23 Drawing in a style based on the pen strokes used by Edmund Halley (1696), discussed in Tufte (1983), to
represent the trade winds of the North Atlantic. Halley described the wind direction as being given by
“the sharp end of each little stroak pointing out that part of the horizon, from whence the wind
continually comes.”
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Figure 6.24

Vector direction can be unambiguously given by means of color change relative to the background.
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Figure 6.25

Six different flow visualization techniques evaluated by Laidlaw et al., 2001. Used by permission.
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(a) Arrows on a regular grid. Fixed length.
(b) Arrows on a jittered grid to reduce perceptual aliasing effects. Fixed length.

(c) Triangle icons. Icon size proportional to field strength density inversely related to icon size
(Kirby et al., 1999).

(d) Line integral convolution (Cabral and Leedom, 1993).
(e) Large-head arrows along a streamline using a regular grid (Turk and Banks, 1996).

(f) Large-head arrows along streamlines using constant spacing algorithm. (Turk and Banks,
1996).

In order to evaluate any visualization, it is necessary to specify a set of tasks. Laidlaw et al. (2001)
had subjects identify critical points as one task. These are points in a vector or flow field where
the vectors have zero magnitude. The results showed the arrow-based methods illustrated in
Figure 6.25(a) and (b) to be the least effective for identifying the locations of these points. A
second task involved perceiving advection trajectories. An advection trajectory is the path taken
by a particle dropped in a flow. The streamline methods of Turk and Banks proved best for
showing advection, especially the method shown in Figure 6.25(f). The line integral convolution
method, shown in Figure 6.25(d), was by far the worst for advection, probably because it does
not unambiguously identify direction.

Although the study done by Laidlaw et al. (2001) is the first serious comparative evaluation
of the effectiveness of vector field visualization methods, it is by no means exhaustive. There are
alternative visualizations, and those shown have many possible variations: longer and shorter
line segments, color variations, and so on. In addition, the tasks studied by Laidlaw et al. do not
include all of the important visualization tasks that are likely to be carried out with flow visu-
alizations. Here is a more complete list:

® Identifying the location and nature of critical points

®  Judging an advection trajectory

®  Perceiving patterns of high and low velocity

®  Perceiving patterns of high and low vorticity (sometimes called curl)
®  Perceiving patterns of high and low turbulence

Both the kinds and the scale of patterns that are important will vary from one application to
another; small-scale detailed patterns, such as eddies, will be important to one researcher, whereas
large-scale patterns will interest another.

The problem of optimizing flow display may not be quite so complex and multifaceted as it
would first seem. If we ignore the diverse algorithms and think of the problem in purely visual
terms, then the various display methods illustrated in Figures 6.22 through 6.25 have many char-
acteristics in common. They all consist principally of contours oriented in the flow direction,
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although these contours have different characteristics in terms of length, width, and shape.
The line integral convolution method illustrated in Figure 6.25(d) produces a very different-
looking, blurry result; however, something similar could be computed using blurred contours.
Contours that vary in shape and gray value along their lengths could be expressed with two
or three parameters. The different degrees of randomness in the placement of contours could be
parameterized. Thus, we might consider the various 2D flow visualization methods as part of a
family of related methods—different kinds of flow oriented contours. Considered in this way,
the display problem becomes one of optimizing the various parameters to reveal important
aspects of the data for a particular set of tasks and not so much a problem of developing new
algorithms.

Perception of Transparency: Overlapping Data

In many visualization problems, it is desirable to present data in a layered form. This is espe-
cially common in geographic information systems (GISs). Sometimes, a useful technique is to
present one layer of data as if it were a transparent layer over another. However, there are many
perceptual pitfalls in doing this. The contents of the different layers will always interfere with
each other to some extent, and sometimes the two layers will fuse perceptually so that it is not
possible to determine to which layer a given object belongs.

In simple displays, as in Figure 6.26(a), the two main determinants of perceived transparency
are good continuity (Beck and Ivry, 1988) and the ratio of colors or gray values in the different
pattern elements. A reasonably robust rule for transparency to be perceived is x <y < z or x >
y>zory<z<uwory>z>w, where x, v, 2, and w refer to gray values arranged in the pattern
shown in Figure 6.26(b) (Masin, 1997). Readers who are interested in perceptual rules of trans-
parency should consult Metelli (1974).

Another way to represent layers of data is to show each layer as a see-through texture or
screen pattern (Figure 6.27). Watanabe and Cavanaugh (1996) explored the conditions under
which people perceive two distinct overlapping layers, as opposed to a single fused composite
texture. They called the effect laciness. In Figure 6.27(a) and (b), two different overlapping rec-
tangles are clearly seen, but in (c), only a single textured patch is perceived. In (d), the percept
is bistable. Sometimes it looks like two overlapping squares containing patterns of “—” elements;
sometimes a central square containing a pattern of “+” elements seems to stand out as a distinct
region.

In general, when we present layered data, we can expect the basic rules of perceptual inter-
ference, discussed in Chapter 3, to apply. Similar patterns interfere with one another. Graphical
patterns that are similar in terms of color, spatial frequency, motion, and so on, tend to interfere
more with one another than do those with dissimilar components.

One possible application of transparency in user interfaces is to make pop-up menus
transparent so that they do not interfere with information located behind them. Harrison and
Vincente (1996) investigated the interference between background patterns and foreground trans-
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Figure 6.26 In (a), transparency is perceived only when good continuity is present and when the correct relationship
of the colors is present. See text for an explanation of (b).

parent menus. They found that it took longer to read from the menu with text or wireframe
drawings in the background than with continuously shaded images in the background. This is
exactly what would be expected from an interference model. Because a continuously shaded
image lacks the high-frequency detail of a wireframe image or text, there will be less interference
between the two. The advantages of transparent layered displays must be weighed against the
perceptual interference between the layers. For the designer to minimize visual interference, layers
must be maximally separated in the different visual channels. Color, texture, motion, and stereo-
scopic depth channels can all be used in any combination, depending on the design requirements.
The more channels used, the better the separation will be.

Pattern Learning

If pattern perception is, as claimed, fundamental to extraction of meaning from visualizations,
then an important question arises. Can we learn to see patterns better? Artists talk about seeing
things that the rest of us cannot see, and ace detectives presumably spot visual clues that are
invisible to the beat officer.

What is the scientific evidence that people can learn to see patterns better? The results are
mixed. There have been some studies of pattern learning where almost no learning occurred. An
often-cited example is the visual search for the simple conjunction of features such as color and
shape (Treisman and Gelade, 1980). But other studies have found learning for certain patterns
(Logan, 1994). A plausible explanation is that pattern learning occurs least for simple, basic
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Figure 6.27 Watanabe and Cavanaugh (1996) called the texture equivalent of transparency /aciness. This figure is
based on their work.

patterns processed early in the visual system, and most for complex, unfamiliar patterns processed
late in the visual system.

Fine and Jacobs (2002) reviewed 16 different pattern-learning experiments and found very
different amounts of learning. The studies they looked at all contained large numbers of
trials (in which a subject would attempt to see a particular pattern in a display) distributed over
several days. They found that for simple pattern perception tasks, such as the ability to resolve
a grating pattern like that shown in Figure 6.28(a), almost no learning occurred. This task
depends on early-stage visual processing, for which the neural machinery is consolidated in the
first few months of life. In tasks involving patterns of intermediate complexity, some learning
does occur. For example, seeing spatial frequency differences within a pattern such as that shown
in Figure 6.28(b) can be learned (Fine and Jacobs, 2000). This is a “plaid” pattern constructed
by summing a variety of the sinusoidal gratings. Processing of such patterns is thought to occur
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mostly at an intermediate stage of the visual system. The most learning was found in higher-level
pattern tasks, such as detecting the downward pointing triangles in Figure 6.28(c) (Sigman and
Gilbert, 2000).

Another factor that affects learning is the degree to which a particular pattern is already
familiar. We would not expect much change in a subject’s ability to identify letters of the alpha-
bet in a short experiment, because most people have already been exposed to millions of alpha-
betic characters. Rapid learning can only be expected for patterns that are unfamiliar. The change
in rate of learning over time is captured by the power law of practice, which has the following
form:

log(T,) = C —alog(n) (6.1)

This law states that log of the time T, to respond on the 7" trial is inversely proportional to the
log of the number of trials. The constant C is the time taken on the first trial (or block of trials).

The power law of practice is usually applied to manual skill learning, but it has also been
shown to apply to the perception of complex patterns. Kolers (1975) found that a power law
applied to the task of learning to read inverted text. His results are illustrated in Figure 6.29.
Initially, it took subjects about 15 minutes to read a single inverted page, but when over 100
pages had been read, the time was reduced to 2 minutes. Although Figure 6.29 shows a straight-
line relationship between practice and learning, this is only because of the logarithmic transfor-
mation of the data. The relationship is actually very nonlinear. Consider a hypothetical task where
people improve by 30% from the first day’s practice to the second day. Doubling the amount
of practice has resulted in a 30% gain. According to the power law, someone with 10 years of
experience at the same task will take a further 10 years to improve by 30%. In other words,
practice yields decreasing gains over time.
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Figure 6.29 The time to read a page of inverted text is plotted against the number of pages read. Both axes have
logarithmic spacing. Data replotted from Newell and Rosenbloom (1981).

In addition to long-term pattern-learning skills, there are also priming effects that are much
more transient. Whether these constitute learning is still the subject of debate. Priming refers to
the phenomenon that once a particular pattern has been recognized, it will be much easier to
identify in the next few minutes or even hours. This is usually thought of as a kind of height-
ened receptivity within the visual system, but some theorists consider it to be visual learning. In
either case, once a neural pathway has been activated, its future activation becomes facilitated.
For a modern theory of perceptual priming based on neural mechanisms, see Huber and O’Reilly
(2003).

What are the implications of these findings for visualization? One is that people can learn
pattern-detection skills, although the ease of gaining these skills will depend on the specific nature
of the patterns involved. Experts do indeed have special expertise. The radiologist interpreting
an X-ray, the meteorologist interpreting radar, and the statistician interpreting a scatter plot will
each bring a differently tuned visual system to bear on his or her particular problem. People who
work with visualizations must learn the skill of seeing patterns in data. In terms of making visu-
alizations that contain easily identified patterns, one strategy is to rely on pattern-finding skills
that are common to everyone. These can be based on low-level perceptual capabilities, such as
seeing the connections between objects linked by lines. We can also rely on skill transfer. If we
know that our users are cartographers, already good at reading terrain contour maps, we can
display other information, such as energy fields, in the form of contour maps. The evidence from
priming studies suggests that when we want people to see particular patterns, even familiar ones,
it is a good idea to show them a few examples ahead of time.
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The Perceptual Syntax of Diagrams

Diagrams are always hybrids of the conventional and the perceptual. Diagrams contain conven-
tional elements, such as abstract labeling codes, that are difficult to learn but formally powerful.
They also contain information that is coded according to perceptual rules, such as Gestalt prin-
ciples. Arbitrary mappings may be useful, as in the case of mathematical notation, but a good
diagram takes advantage of basic perceptual mechanisms that have evolved to perceive structure
in the environment. By presenting examples, the following sections describe the visual grammar
of two different kinds of diagrams: node-link diagrams and the layered maps used in GISs.

The Grammar of Node-Link Diagrams

For a mathematician, a graph is a structure consisting of nodes and edges (links between the
nodes). See Figure 6.30 for examples. There is a specialized academic field called graph drawing
whose goal is to make graphs that are pleasantly laid out and easy to read. In graph drawing,
layout algorithms are optimized according to aesthetic rules, such as the minimization of link
crossings, displaying symmetry of structure and minimizing bends in links (Di Battista et al.,
1999). Path bendiness and the number of link crossings have both been shown empirically
to degrade performance on the task of finding the shortest path between two nodes (Ware
et al., 2002). However, for the most part, there has been little attempt either to systematically
apply our knowledge of pattern perception to problems in graph drawing or to use empirical
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Figure 6.30 Node-link diagrams, technically called graphs: (a) A graph. (b) A graph with two connected components.
(c) A directed graph. (d) A tree structure graph. (e) A nonplanar graph. It cannot be laid out on a plane
without links crossing.
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methods to determine that graphs laid out according to aesthetic principles are, in fact, easier to
understand.

In the following paragraphs, we broaden the concept of a graph to consider a very large
class of diagrams that we will call, generically, node-link diagrams. The essential characteristic
of these diagrams is that they consist of nodes, representing various kinds of entities, and links,
representing relationships between the entities. Dozens of different diagrams have this basic form,
including software structure diagrams, data-flow diagrams, organization charts, and software
modeling diagrams. Figure 6.31 provides four examples commonly used in software engineer-
ing. The set of abstractions common to node-link diagrams is so close to ubiquitous that it can
be called a visual grammar. The nodes are almost always outline boxes or circles, usually repre-
senting the entities in a system. The connecting lines generally represent different kinds of rela-
tionships, transitions, or communication paths between nodes. Experimental work shows that
visualizing interdependencies between program elements helps program understanding (Linos
et al., 1994).

The various reasons why we may be justified in calling these graphical codes perceptual are
distributed throughout this book, but are addressed mostly in this chapter and Chapter 5. The
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Figure 6.31 Four different kinds of node-link diagrams used in software engineering: (a) A code module diagram.
(b) A data flow diagram. (c) An object modeling diagram. (d) A state transition diagram. Each of these
diagrams would normally contain text labels on the nodes and the arcs.
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fundamental argument is that closed contours are basic in defining visual objects. Thus, although
a circular line may be only a mark drawn on paper, at some level in the visual system it is object-
like. Similarly, two objects can be connected by a line, and this visual connection has the ability
to represent any of a number of relationships.

Although lines get their expressive power from neural mechanisms designed to interpret
objects, they are fundamentally ambiguous. Kennedy (1974) has elucidated many ways in which
contours (lines) can represent aspects of the environment. Some of them are illustrated in Figure
6.32. A circle can represent a ring, a flat disk, a ball, a hole, or the boundary between two objects
(a disk in a hole). This nicely illustrates the mixture of perception and convention that is common
to diagrams. Our visual systems are capable of interpreting a line contour in any of these ways.
In real-world scenes, additional information is available to clarify ambiguous contours. In a
diagram, the contour may remain perceptually ambiguous and some convention may be neces-
sary to remove the ambiguity. In one kind of diagram, a circle may represent an object; in another,
it may represent a hole; in a third, it may represent the boundary of a geographic region. The
diagram convention tells us which interpretation is correct.

A general data model that uses a form of node-link diagram is the entity-relationship model.
It is widely used in computer science and business modeling (Chen, 1976). In entity relationships,
modeling entities can be objects and parts of objects, or more abstract things such as parts of
organizations. Relationships are the various kinds of connections that can exist between entities.
For example, an entity representing a wheel will have a part-of relationship to an entity repre-
senting an automobile. A person may have a customer relationship to a store. Both entities and
relationships can have attributes. Thus, a particular customer might be a preferred customer. An
attribute of an organization might be the number of its employees. There are standard diagrams
for use in entity-relationship modeling, but we are not concerned with these here. We are more

Figure 6.32 The line circle shown at the top left can represent many kinds of objects: a wire ring, a disk, a ball, a
cut-out hole, or the boundary between a disk and the hole in which it resides.
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interested in the different ways diagrams can be constructed to represent entities, relationships,
and attributes in an easily perceived manner.

The following list is a description of the general ways in which entities and relationships can
be expressed using node-link diagrams. This can be regarded loosely as a visual syntax. These
are conjectured to be good display mappings, although none has been proved through scientific
study to be the best. Each of the elements in the list has a perceptual, rather than conventional,
basis for the way it conveys meaning. Most of these elements are discussed more extensively else-
where in this book. Figure 6.33 provides a set of matching illustrations.

1. A closed contour in a node-link diagram generally represents an entity of some kind. It
might be part of a body of software, or a person in an organization.

2. The shape of the closed contour is frequently used to represent an entity type (an attribute
of the entity).

3. The color of an enclosed region represents an entity type (an attribute).

4. The size of an enclosed region can be used to represent the magnitude of an entity (a
scalar attribute).

5. Lines that partition a region within a closed contour can delineate subparts of an entity.
This may correspond to a real-world multipart object.

6. Closed-contour regions may be aggregated. The result is readily seen as a composite entity.

7. A number of closed-contour regions within a larger closed contour can represent
conceptual containment.

8. Placing closed contours spatially in an ordered sequence can represent conceptual ordering
of some kind.

9. A line linking entities represents some kind of relationship between them.

10. A line linking closed contours can have different colors, or other graphical qualities such
as waviness. This effectively represents an attribute or type of a relationship.

11. The thickness of a connecting line can be used to represent the magnitude of a
relationship (a scalar attribute).

12. A contour can be shaped with tabs and sockets to indicate which components have
particular relationships.

13. Proximity of components can represent groups.

The vast majority of node-link diagrams currently in use are very simple. For the most part,
these diagrams use identical rectangular or circular nodes and constant-width lines, like those
shown in Figure 6.31. Although such generic diagrams are very effective in conveying patterns
of structural relationships among entities, they are often poor at showing the types of entities
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Graphical Code

Visual Instantiation

Semantics

1. Closed contour. — Entity, object, node.
) o O )
2. Shape of closed region. o Entity type.
Q
3. Color of enclosed region. . . Entity type.
4. Size of enclosed region. Entity value.

Larger = more.

5. Partitioning lines within
enclosed region.

Entity partitions are
created, e.g., TreeMaps.

6. Attached shapes.

Attached entities.
Part-of relations.

7. Shapes enclosed by
contour.

Contained entities.

8. Spatially ordered shapes.

A sequence.

9. Linking line.

Relationship between
entities.

10. Linking-line quality.

Type of relationship
between entities.

11. Linking-line thickness.

Strength of relationship
between entities.

12. Tab connector.

A fit between components.

Figure 6.33

. e ©0
13. Proximity. °S oo Groups of components.
The visual grammar of diagram elements (node—link diagrams).
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and the types of relationships. Attributes, when they are shown, are often provided in the form
of text labels attached to the boxes and lines, although occasionally dashed lines and other vari-
ations are used to denote types.

Clearly, there are ways to extend this vocabulary that are perceptually sound. Chapter 7
introduces the concept of a geon diagram as a graphical device that uses 3D objects, with surface
texture and color, to represent entities and relationships. There is a range of possibilities between
the rectangular-box-and-line diagram and fully rendered, colored, and textured 3D objects. We
can make diagram boxes that are more objectlike, with shape and texture denoting various attri-
butes, and we can depict relationships using thin tubes. Most of the different ways of repre-
senting attributes shown in Figure 6.33 are rarely used, although they are relatively easy to
implement with modern computer graphics.

The Grammar of Maps

A second visual grammar can be found in the way maps are designed and interpreted. Only three
basic kinds of graphical marks are common to most maps: areas, line features, and point fea-
tures (Mark and Franck, 1996). Figure 6.34 illustrates this basic grammar of maps and shows
how these three elements can work in isolation and in combination.

1,2, 3.  Geographical areas are usually denoted by closed contours, tinted areas, or
textured areas. Often, in a map, all three methods can be used; for example, lines to
represent county boundaries, color-coding to represent climate, and texture to represent
vegetation.

4. Geographical linear features represent either boundaries or elongated geographical regions.
The difference between geographical areas and linear features is sometimes related to
scale. At a small scale, a river will be represented by a thin line of constant width; at a
larger scale, it can become an extended geographical area.

5. Dots or other small symbols are used to represent point features, although whether or not
something is a point feature depends on the scale. At a large scale, an entire city may be
represented by a single dot; at a small scale, a dot might be used to show the locations of
churches, schools, or tourist attractions.

6. A dot on a line means that the entity denoted by the point feature is on, or attached to,
the entity denoted by the linear feature. For example, a city is “on” a river.

7. A dot within a closed contour means that the entity denoted by the point feature lies
within the boundaries of the area feature. For example, a town is within a province.

8. A line crossing a closed-contour region means that a linear feature traverses an area
feature. For example, a road passes through a county.

9. A line that ends in a closed-contour region means that a linear feature ends or starts
within an area feature. For example, a river flows out of a park.

10. Overlapping contour regions denoted by contour, color, or texture denote overlapping
spatial entities. For example, a forested region may overlap a county boundary.
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Graphical Code Visual Instantiation Semantics

1. Closed contour. %

2. Colored region.

Geographic region.

Geographic region.

3. Textured region. Geographic region.

4. Line. Linear map features such as
rivers, roads, etc. Depends
on scale.

5. Dot. Point features such as town,

building. Depends on scale.

6. Dot on line. Point feature such as town

on linear feature such as road.

7. Dot in closed contour. Point feature such as town
located within a geographic

region.

8. Line crosses closed-
contour region.

Linear feature such as river
crossing geographic region.

9. Line exits closed-contour
region.

A linear feature such as a
river terminates in a
geographic region.

10. Overlapping contour,
colored regions, textured
regions.

Overlapping geographically
defined areas.

Figure 6.34 The visual grammar of map elements.

Maps need not be used only for geographical information. Johnson and Shneiderman
(1991) developed a visualization technique they call a #reemap, for displaying information
about the tree data structures commonly used in computer science. Figure 6.35 shows an
example of a tree data structure presented in treemap form and in a conventional node-link
diagram.
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Figure 6.35 (a) A treemap representation of hierarchical data. Areas represent the amount of data stored in parts of
the tree data structure. (b) The same tree structure, represented using a node—link diagram.

The original treemap was based on the following algorithm. First the rectangle is divided
with a vertical partition according to the number of branches from the root of the tree. Next,
each subrectangle is similarly divided, but with horizontal partitions. This process is repeated to
the “leaves” of the tree. The area of each leaf on the tree corresponds to the amount of infor-
mation that is stored there.

The great advantage of the treemap over conventional tree views is that the amount of infor-
mation on each branch of the tree can be easily visualized. Because the method is space-filling,
it can show quite large trees containing thousands of branches. The disadvantage is that the hier-
archical structure is not as clear as it is in a more conventional tree drawing, which is a special-
ized form of node-link diagram.

Patterns in Motion

To this point, we have mainly discussed the use of static patterns to represent data, even though
the data is sometimes dynamic—as in the case of a vector field representing a pattern of moving
liquid or moving gas. We can also use motion as a display technique to represent data that is
either static or dynamic. The perception of dynamic patterns is not understood as well as the
perception of static patterns. But we are very sensitive to patterns in motion and, if we can learn
to use motion effectively, it may be a good way to display certain aspects of data.

We start by considering the problem of how to represent data communications with
computer animation. One way of doing this is to use a graphical object to represent each
packet of information and then to animate that package from the information source to its
destination.
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First we consider the simplest case—data represented by a series of identical and equally
spaced graphical elements, as shown in Figure 6.36. In this case, there is a fundamental limita-
tion on the throughput that can be represented. In a computer animation sequence, the basic
process is a loop that involves drawing the animated object, displaying it, moving it, and then
redrawing it. When this cycle is repeated fast enough, a sequence of static pictures is seen as a
smoothly moving image. The limitation on perceived data throughput arises from the amount
that a given object can be moved before it becomes confused with another object in the next
frame—this is called the correspondence problem.

If we define the distance between pattern elements as A, we are limited to a maximum dis-
placement of A/2 on each frame of animation before the pattern is more likely to be seen as
moving in the reverse direction from that desired. The problem is illustrated in Figure 6.36(a).

Figure 6.36 If motion is represented using a regular sequence of identical and equally spaced elements, there is a
strict limit on the throughput that can be perceived. This limit can be extended by varying the sizes and
shapes of the graphical elements.
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When all the elements are identical, the brain constructs correspondences based on object prox-
imity in successive frames. This is sometimes called the wagon-wheel effect, because of the
tendency of wagon wheels in Western movies to appear to be rotating in the wrong direction.
Experiments by Fleet (1998) suggest that the maximum change per frame of animation for motion
to reliably be seen in a particular direction is about A3 for the basic representation shown in
Figure 6.36(a). Given an animation frame rate of 60 frames per second, this establishes an upper
bound of 20 messages per second that can be represented.

There are many ways in which the correspondence limitation can be overcome by giving the
graphical elements a different shape, orientation, or color. Two possibilities are illustrated in
Figure 6.36(b) and (c). In one, the gray values of the elements are varied from message to message;
in the other, the shapes of the elements are varied. Research with element shapes suggests that
correspondence of shape is more important than correspondence of color in determining per-
ceived motion (Caelli et al., 1993). In a series of experiments that examined a variety of enhanced
representations like those illustrated in Figure 6.36(b) and (c), Fleet (1998) found that the average
phase shift per animation frame could be increased to 3\ before correspondence was lost. Given
an animation frame rate of 60 frames per second, this translates to an upper bound of 180 mes-
sages per second that can be represented using animation.

Of course, when the goal is to visualize high traffic rates, there is no point in representing
individual messages in detail. Most digital communications systems transfer millions of data
packets per second. What is important at high data rates is an impression of data volumes, the
direction of traffic flow, and large-scale patterns of activity.

Form and Contour in Motion

A number of studies have shown that people can see relative motion with great sensitivity. For
example, contours and region boundaries can be perceived with precision in fields of random
dots if defined by differential motion alone (Regan, 1989; Regan and Hamstra, 1991). Human
sensitivity to such motion patterns rivals our sensitivity to static patterns; this suggests that
motion is an underutilized method for displaying patterns in data.

For purposes of data display, we can treat motion as an attribute of a visual object, much
as we consider size, color, and position to be object attributes. We evaluated the use of simple
sinusoidal motion in enabling people to perceive correlations between variables (Limoges et al.,
1989). We enhanced a conventional scatter plot representation by allowing the points to oscil-
late sinusoidally, either horizontally or vertically (or both) about a center point. An experiment
was conducted to discover whether the frequency, phase, or amplitude of point motion was the
most easily “read.” The task was to distinguish a high correlation between variables from a low
one. A comparison was made with more conventional graphical techniques, including using point
size, gray value, and x,y position in a conventional scatter plot. The results showed that data
mapped to phase was perceived best; in fact, it was as effective as most of the more conventional
techniques, such as the use of point size or gray value. In informal studies, we also showed that
motion appears to be effective in revealing clusters of distinct data points in a multidimensional
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data space (see Figure 6.37). Related data shows up as clouds of points moving together in ellip-
tical paths, and these can be easily differentiated from other clouds of points.

Moving Frames

Perceived motion is highly dependent on its context. Johansson (1975) has demonstrated a
number of grouping phenomena that show that the brain has a strong tendency to group moving
objects in a hierarchical fashion. One of the effects he investigated is illustrated in Figure 6.38.
In this example, three dots are set in motion. The two outer dots move in synchrony in a hori-
zontal direction. The third dot, located between the other two, also moves in synchrony but in
an oblique direction. However, the central dot is not perceived as moving along an oblique path.
Instead, what is perceived is illustrated in 6.38(b). An overall horizontal motion of the entire
group of dots is seen; within this group, the central dot also appears to move vertically.

A rectangular frame provides a very strong contextual cue for motion perception. It is so
strong that if a bright frame is made to move around a bright static dot in an otherwise
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Figure 6.37 An illustration of the elliptical motion paths that result when variables are mapped to the relative phase
angles of oscillating dots. The result is similar elliptical motion paths for points that are similar. In this
example, two distinct groups of oscillating dots are clearly perceived.
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Figure 6.38  When dots are set in synchronized motion, as shown in (a), what is actually perceived is shown in (b).
The entire group of dots is seen to move horizontally, and the central dot moves vertically within the
group.
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Figure 6.39 (a) When a stationary dot is placed within a moving frame in a dark room, it is the dot that is perceived to
move in the absence of other cues. (b) The effect is hierarchical.

completely dark environment, it is often the static dot that appears to move (Wallach, 1959).
Wallach also showed that the effect works in a hierarchical fashion. Thus, the perceived motion
of the static dot in Figure 6.39(b) is strongly influenced by the motion of a surrounding square
frame, but it is much less influenced by the motion of the circle outside the square.

Computer animation is often used in a straightforward way to display dynamic phenomena,
such as a particle flow through a vector field. In these applications, the main goal from a per-
ceptual point of view is to bring the motion into the range of human sensitivities. The issue is
the same for viewing high-speed or single-frame movie photography. The motions of flowers
blooming or bullets passing through objects are speeded up and slowed down, respectively, so
that we can perceive the dynamics of the phenomena. Humans are reasonably sensitive to motion
ranging from a few millimeters per second to a few hundred millimeters per second for objects
viewed at normal screen distances. Generally, the data animator should aim for motion in the
midrange of a few centimeters per second. (See Chapter 2 for some of the basic issues related to
motion sensitivity.)

The use of motion to help us distinguish patterns in abstract data is at present only a research
topic, albeit a very promising one. One application of the research results is the use of frames to
examine dynamic flow field animations. Frames can be used as an effective device for highlight-
ing local relative motion. If we wish to highlight the local relative motion of a group of parti-
cles moving through a fluid, a rectangular frame that moves along with the group will create a
reference area within which local motion patterns can emerge.

Another way in which motion patterns are important is in helping us to perceive visual space
and rigid 3D shapes. This topic is covered in Chapter 8 in the context of the other mechanisms
of space perception.

Expressive Motion

Using moving patterns to represent motion on communication channels, or in vector fields, is a
rather obvious use of motion for information display, but there are other, more subtle uses.
There appears to be a vocabulary of expressive motion comparable in richness and variety to
the vocabulary of static patterns explored by the Gestalt psychologists. In the following sections,
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some of the more provocative results are discussed, together with their implications for data
visualization.

Perception of Causality

When we see a billiard ball strike another and set the second ball in motion, we perceive that
the motion of the first ball causes the motion of the second, according to the work of Michotte
(translated 1963). Michotte’s book The Perception of Causality is a compendium of dozens of
experiments, each showing how variations in the basic parameters of velocity and event timing
can radically alter what is perceived. He conducted detailed studies of the perception of interac-
tions between two patches of light and came to the conclusion that the perception of causality
can be as direct and immediate as the perception of simple form. In a typical experiment, illus-
trated in Figure 6.40, one rectangular patch of light moved from left to right until it just touched
a second patch of light, then stopped. At this point, the second patch of light would start to
move. This was before the advent of computer graphics, and Michotte conducted his experiments
with an apparatus that used little mirrors and beams of light. Depending on the temporal rela-
tionships between the moving-light events and their relative velocities, observers reported
different kinds of causal relationships, variously described as “launching,” “entraining,” or “trig-
gering.”

Precise timing is required to achieve perceived causality. For example, Michotte found that
for the effect he called launching to be perceived, the second object had to move within 70 mil-
liseconds of contact; after this interval, subjects still perceived the first object as setting the second
object in motion, but the phenomenon was qualitatively different. He called it delayed launch-
ing. Beyond about 160 milliseconds, there was no longer an impression that one event caused
the other; instead, unconnected movements of the two objects were perceived. Figure 6.41 pro-
vides a reproduction of some of his results. For causality to be perceived, visual events must be
synchronized within at least one-sixth of a second. Given that virtual-reality animation often
occurs at only about 10 frames per second, events should be frame-accurate for clear causality
to be perceived.

If an object makes contact with another and the second object moves off at a much greater
velocity, a phenomenon that Michotte called triggering is perceived. The first object does not
seem to cause the second object to move by imparting its own energy; rather, it appears that
contact triggers propelled motion in the second object.

H B -

Figure 6.40 Michotte (1963) studied the perception of causal relationships between two patches of light that always
moved along the same line but with a variety of velocity patterns.
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Figure 6.41 From Michotte (1963). When one object comes into contact with another and the second moves off, the
first motion may be seen to cause the second if the right temporal relationships exist. The graph shows
how different kinds of phenomena are perceived, depending on the delay between the arrival of one
object and the departure of the other.

More recent developmental work by Leslie and Keeble (1987) has shown that infants at only
27 weeks of age can perceive causal relations such as launching. This would appear to support
the contention that such percepts are in some sense basic to perception.

The significance of Michotte’s work for data visualization is that it provides a way to increase
the expressive range beyond what is possible with static diagrams. In a static visualization, the
visual vocabulary for representing relationships is quite limited. To show that one visual object
is related to another, we can draw lines between them, we can color or texture groups of objects,
or we can use some kind of simple shape coding. The only way to show a causal link between
two objects is by using some kind of conventional code, such as a labeled arrow. However, such
codes owe their meaning more to our ability to understand conventional coded language symbols
than to anything essentially perceptual. This point about the differences between language-based
and perceptual codes is elaborated in Chapter 9. What Michotte’s work gives us is the ability to
significantly enrich the vocabulary of things that can be immediately and directly represented in
a diagram.

Perception of Animate Motion

In addition to the fact that we can perceive causality using simple animation, there is evidence
that we are highly sensitive to motion that has a biological origin. In a series of now-classic
studies, Gunnar Johansson attached lights to the limb joints of actors (Johansson, 1973). He then
produced moving pictures of the actors carrying out certain activities, such as walking and
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Figure 6.42 (a) In Johansson’s (1973) experiments, a pattern of moving dots was produced by making a movie of
actors with lights attached to parts of their bodies. (b) Heider and Semmel (1944) made a movie of simple
geometric shapes moving through complex paths. Viewers of both kinds of displays attribute
anthropomorphic characteristics to what they see.

dancing. These pictures were made so that only the points of light were visible, and, in any given
still frame, all that was perceived was a rather random-looking collection of dots, as shown
in Figure 6.42(a). A remarkable result from Johansson’s studies was that viewers of the animated
movies were immediately conscious of the fact that they were watching human motion. In
addition, they could identify the genders of the actors and the tasks they were performing.
Some of these identifications could be made after exposures lasting only a small fraction of a
second.

Another experiment pointing to our ability to recognize form from motion was a study by
Heider and Semmel (1944). In this study, an animated movie was produced incorporating the
motion of two triangles and a circle, as shown in Figure 6.42(b). People viewing this movie readily
attributed human characteristics to the shapes; they would say, for example, that a particular
shape was angry, or that the shapes were chasing one another. Moreover, these interpretations
were consistent across observers. Because the figures were simple shapes, the implication is that
patterns of motion were conveying the meaning. Other studies support this interpretation. Rimé
et al. (1985) did a cross-cultural evaluation of simple animations using European, American, and
African subjects, and found that motion could express such concepts as kindness, fear, or aggres-
sion, and there was considerable similarity in these interpretations across cultures, suggesting
some measure of universality.

Enriching Diagrams with Simple Animation

The research findings of Michotte, Johansson, Rimé, and others suggest that the use of simple
motion can powerfully express certain kinds of relationships in data. Animation of abstract
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shapes can significantly extend the vocabulary of things that can be conveyed naturally beyond
what is possible with a static diagram. The key result, that motion does not require the support
of complex depictive representations (of animals or people) to be perceived as animate, means
that simplified motion techniques may be useful in multimedia presentations. The kinds of
animated critters that are starting to crawl and hop over Web pages are often unnecessary and
distracting. Just as elegance is a virtue in static diagrams, so is it a virtue in diagrams that use
animation. A vocabulary of simple expressive animation requires development, but research
results strongly suggest that this will be a productive and worthwhile endeavor. The issue is press-
ing, because animation tools are becoming more widely available for information display systems.
More design work and more research are needed.

Conclusion

The brain is a powerful pattern-finding engine; indeed, this is the fundamental reason why visu-
alization techniques are becoming important. There is no other way of presenting information
so that structures, groups, and trends can be discovered among hundreds of data values. If we
can transform data into the appropriate visual representation, its structure may be revealed.
However, not all patterns are equally easy to perceive. The brain appears to be especially good
at discovering linear features and distinct objects, so much so that the discovery of spurious pat-
terns should always be a concern. Because the brain is a pattern-finding engine, patterns may be
perceived even where there is only visual noise.

Much of the material presented in this chapter, especially the Gestalt laws of pattern per-
ception, leads to rules that seem obvious to any visual designer. Nevertheless, it is surprising how
often these design rules are violated. A common mistake is that related data glyphs are placed
far apart in displays. Another is that closed contours are used in ways that visually segment a
display into regions that make it difficult, rather than easy, to comprehend related information.
The use of windows is often to blame, because they result in strong framing effects, which can
cause confusion if used inconsistently.

For information to be clearly related, the visual structure should reflect relationships between
data entities. Placing data glyphs in spatial proximity, linking them with lines, or enclosing
them within a contour will provide the necessary visual structure to make them seem related.
In terms of seeing patterns in rather abstract data displays, perception of contours is likely to
be especially important. The visual system contains a number of mechanisms for finding
contours. These contours can be simple lines, dots, or other features in a linear pattern; bound-
aries between regions of different textures, different colors, different motion; or even illusory
contours.

For the researcher and for those interested in finding novel display techniques, the effective
use of motion is suggested as a fertile area for investigation. Patterns in moving data points can
be perceived easily and rapidly. Given the computing power of modern personal computers, the
opportunity exists to make far greater use of animation in visualizing information.
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In considering pattern perception, we should always bear in mind that the perception of
abstract patterns is probably not a primary purpose of visual perception. Rather, pattern-finding
mechanisms are part of the neural machinery that divides the world into visual objects. For
example, the reason that closed contours are so compelling in segmenting space is that they nor-
mally define objects in our environment; they do not have any special significance in and of them-
selves. In the next chapter, we consider ways in which 3D objects are perceived and ways in
which object displays can be used to organize information.



CHAPTER 7

Visual Objects and Data Objects

The object metaphor is pervasive in the way we think about abstract data. Object-oriented pro-
gramming is one example; the body politic is another. Object-related concepts are also basic in
modern systems design. A modular system is one that has easily understood and easily replaced
components. Good modules are plug-compatible with one another; they are discrete and sepa-
rate parts of a system. In short, the concept of a module has a lot in common with the percep-
tual and cognitive structures that define visual objects. This suggests that visual objects may be
an excellent way to represent modular system components. A visual object provides a useful
metaphor for encapsulation and cohesiveness, both important concepts in defining modular
systems.

For our present purposes, an object can be thought of as any identifiable, separate, and dis-
tinct part of the visual world. Information about visual objects is cognitively stored in a way that
ties together critical features, such as oriented edges and patches of color and texture, so that
they can be identified, visually tracked, and remembered. Because visual objects cognitively group
visual attributes, if we can represent data values as visual features and group these features into
visual objects, we will have a very powerful tool for organizing related data.

Two radically different theories have been proposed to explain object recognition. The first
is image-based. It proposes that we recognize an object by matching the visual image with some-
thing roughly like a snapshot stored in memory. The second type of theory is structure-based. It
proposes that is analyzed in terms of primitive 3D forms and the structural interrelationships
between them. Both of these models have much to recommend them, and it is entirely plausible
that each is correct in some form. It is certainly clear that the brain has multiple ways of ana-
lyzing visual input. Certainly, both models provide interesting insights into how to display data
effectively.

227
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Image-Based Object Recognition

We begin with some evidence related to picture and image perception. People have a truly remark-
able ability to recall pictorial images. In an arduous experiment, Standing et al. (1970) presented
subjects with a list of 2560 pictures at a rate of one every 10 seconds. This was like the family
slide show from hell, it took them more than seven hours spread over a four-day period. Amaz-
ingly, when subsequently tested, subjects were able to distinguish pictures from others not pre-
viously seen, with better than 90% accuracy.

People can also recognize objects in images that are presented very rapidly. Suppose you
asked someone, “Is there a dog in one of the following pictures?” and then showed them a set
of images, rapidly, all in the same place, at a rate of 10 per second. Remarkably, they will be
able to detect the presence, or absence, of a dog in one of the images most of the time. This
experimental technique is called rapid serial visual presentation (RSVP). Experiments have shown
that the maximum rate for the ability to detect common objects in images is about 10 images
per second (Potter and Levy, 1969; Potter, 1976).

A related phenomenon is attentional blink. If, in a series of images, a second dog were to
appear in an image within 350ms of the first, people do not notice it (or anything else). This
moment of blindness is the attentional blink (Coltheart, 1999). It is conjectured that the brain
is still processing the first dog, even though the image is gone, and this prohibits the identifica-
tion of other objects in the sequence.

It is useful to make a distinction between recognition and recall. We have a great ability to
recognize information that we have encountered before, as the picture memory experiment of
Standing et al. shows. However, if we are asked to reconstruct visual scenes—for example, to
recall what happened at a crime scene—our performance is much worse. Recognition is much
better than recall. This suggests that a major use of visual images can be as an aid to memory.
An image that we recognize can help us remember events or other information related to that
image. This is why icons are so effective in user interfaces; they help us to recall the functional-
ity of computer programs.

More support for image-based theories comes from studies showing that three-dimensional
objects are recognized most readily if they are encountered from the same view direction as when
they were initially seen. Johnson (2001) studied subjects’ abilities to recognize bent pipe struc-
tures. Subjects performed well if the same viewing direction was used in the initial viewing and
in the test phase; they performed poorly if a different view direction was used in the test phase.
But subjects were also quite good at identification from exactly the opposite view direction.
Johnson attributed this unexpected finding to the importance of silhouette information. Silhou-
ettes would have been similar, although flipped left-to-right from the initial view.

Although most objects can easily be recognized independent of the size of the image on the
retina, image size does have some effect. Figure 7.1 illustrates this. When the picture is seen from
a distance, the image of the Mona Lisa face dominates; when it is viewed up close, smaller objects
become dominant: a gremlin, a bird, and a claw emerge. Experimental work by Biederman and
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Figure 7.1 When the image of the Mona Lisa is viewed from a distance, the face dominates. But look at it from
30cm, and the gremlin hiding in the shadows of the mouth and nose emerges. When component objects
have a size of about 4 degrees of visual angle, they become maximally visible. Adapted from the work of
the Tel Aviv artist Victor Molev.

Cooper (1992) suggests that the optimal size for recognizing a visual object is about 4 to 6 degrees
of visual angle. This gives a useful rule of thumb for the optimal size for rapid presentation of
visual images so that we can best see the visual patterns contained in them.

Another source of evidence for image-based object recognition comes from priming effects.
The term priming refers to the fact that people can identify objects more easily if they are given
prior exposure to some relevant information. Most priming studies have been carried out using
verbal information, but Kroll and Potter (1984) showed that pictures of related objects, such as
a cow and a horse, have a mutually priming effect. This is similar to the priming effect between
the words cow and horse. However, they found little cross-modality priming; the word cow pro-
vided only weak priming for a picture of a horse. It is also possible to prime using purely visual
information, that is, information with no semantic relationship. Lawson et al. (1994) devised a
series of experiments in which subjects were required to identify a specified object in a series of
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briefly presented pictures. Recognition was much easier if subjects had been primed by visually
similar images. They argued that this should not be the case if objects are recognized on the basis
of a high-level, 3D structural model of the kind that we will discuss later in this chapter; only
image-based storage can account for their results.

Priming effects can occur even if information is not consciously perceived. Bar and Bieder-
man (1998) showed pictorial images to subjects, so briefly that it was impossible for them to
identify the objects. They used what is called a masking technique, a random pattern shown
immediately after the target stimulus to remove the target from the iconic store, and they rigor-
ously tested to show that subjects performed at chance levels when reporting what they had seen.
Nevertheless, 15 minutes later, this unperceived exposure substantially increased the chance of
recognition on subsequent presentation. Although the information was not consciously perceived,
exposure to the particular combination of image features apparently primed the visual system to
make subsequent recognition easier. They found that the priming effect decreased substantially
if the imagery was displaced sideways. They concluded that the mechanism of priming is highly
image-dependent and not based on high-level semantic information.

Palmer et al. (1981) showed that not all views of an object are equally easy to recognize.
They found that many different objects have something like a canonical view from which they
are most easily identified. From this and other evidence, a theory of object recognition has been
developed, proposing that we recognize objects by matching the visual information with inter-
nally stored viewpoint-specific exemplars, or “prototypes” (Edelman and Buelthoff, 1992;
Edelman, 1995). According to this theory, the brain stores a number of key views of objects.
These views are not simple snapshots; they allow recognition despite simple geometric distor-
tions of the image that occur in perspective transformation. This explains why object perception
survives the kinds of geometric distortions that occur when a picture is viewed and tilted with
respect to the observer. However, there are strict limits on the extent to which we can change an
image before recognition problems occur. For example, numerous studies show that face recog-
nition is considerably impaired if the faces are shown upside down (Rhodes, 1995).

Adding support to the multiple-view, image-based theory of object recognition is neuro-
physiological data from recordings of single cells in the inferotemporal cortexes of monkeys.
Perrett et al. (1991) discovered cells that respond preferentially to particular views of faces.
Figure 7.2 shows some of their results. One cell (or cell assembly) responds best to a three-quarter
view of a face; another, to profiles, either left or right; still another responds to a view of a head
from any angle. We can imagine a kind of hierarchical structure, with the cell assemblies that
respond to particular views feeding into higher-level cell assemblies that respond to any view of
the object.

Applications of Images in User Interfaces

The fact that visual images are easily recognized after so little exposure suggests that icons in
user interfaces should make excellent memory aids, helping us recall the functionality of parts
of complex systems. Icons that are readily recognized may trigger activation of related concepts
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Figure 7.2 The responses of three cells in the temporal cortex of a monkey to faces in different orientations. At the

top is a cell most sensitive to a right profile. The middle cell responds well to either profile. The cell at the
bottom responds well to a face irrespective of orientation. Adapted from Perrett et al. (1991).
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in the semantic network of long-term memory. Icons are also helpful because to some extent they
can represent pictorially the things they are used to reference.

Priming may be useful in helping people search for particular patterns in data. The obvious
way of doing this is to provide sample images of the kind of pattern being sought and repeating
the samples at frequent intervals during the search process. An example would be the use of
images of sample viruses in a medical screening laboratory.

Searching an Image Database

Presenting images rapidly in sequence may be a useful way to allow users to scan picture data-
bases (Wittenburg et al., 1998; de Bruijn et al., 2000). The fact that people can search rapidly
for an image in a sequence of up to 10 pictures per second suggests that presenting images using
RSVP may be efficient. Contrast this with the usual method of presenting image collections in a
regular grid of small thumbnail images. If it is necessary to make an eye movement to fixate each
thumbnail image, it will not be possible to scan more than three to four images per second.

Even though RSVP is promising, there are a number of design problems that must be solved
in building a practical interface. Once a likely candidate image is identified as being present in
an RSVP sequence, it must still be found. By the time a user responds with a mouse click several
images will have passed, more if the user is not poised to press the stop button. Thus, either con-
trols must be added for backing up through the sequence, or part of the sequence must be fanned
out in a conventional thumbnail array to confirm that candidate’s presence and study it further
(Spence, 2002; Wittenburg et al., 1998).

Personal Image Memory Banks

Based on straightforward predictions about the declining cost and increasing capacity of com-
puter memory, it will soon be possible to have a personal memory data bank containing video
and sound data collected during every waking moment of a person’s lifetime. This could be
achieved with an unobtrusive miniature camera, perhaps embedded in a pair of eyeglasses, and
assuming continuing progress in solid-state storage, the data could be stored in a device weigh-
ing a few ounces and costing a few hundred dollars. Storing speech information will be even
more straightforward. The implications of such devices are staggering. Among other things, it
would be the ultimate memory aid—the user would never have to forget anything. However, a
personal visual memory device of this kind would need a good user interface. One way of search-
ing the visual content might be by viewing a rapidly presented sequence of selected frames from
the video sequence. Perhaps 100 per day would be sufficient to jog the user’s memory about basic
events. Video data compressed in this way might make it possible to review a day in a few seconds,
and a month in a few minutes.
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Structure-Based Object Recognition

Image-based theories of object recognition imply a rather superficial level of analysis of visual
objects. However, there is evidence that a much deeper kind of structural analysis must also occur.
Figure 7.3 shows two novel objects, probably never seen by the reader before. Yet despite the
fact that the images of these two objects are very different from one another, they can be rapidly
recognized as representations of the same object. No image-based theory can account for this
result.

Geon Theory

Figure 7.4 provides a somewhat simplified overview of a neural-network model of structural
object perception, developed by Hummel and Biederman (1992). This theory proposes a hierar-
chical set of processing stages leading to object recognition. Visual information is decomposed
first into edges, then into component axes, oriented blobs, and vertices. At the next layer, three-
dimensional primitives such as cones, cylinders, and boxes, called geons, are identified. A selec-
tion of geons is illustrated in Figure 7.5. Next, the structure is extracted that specifies how the
geon components interconnect; for example, in a human figure, the arm cylinder is attached near
the top of the torso box. Finally, object recognition is achieved.

Silhouettes

Silhouettes appear to be especially important in determining how we perceive the structure
of objects. The fact that simplified line drawings are often silhouettes may, in part, account for
our ability to interpret them. At some level of perceptual processing, the silhouette boundaries
of objects and the simplified line drawings of those objects excite the same neural contour-
extraction mechanisms. Halverston (1992) noted that modern children tend to draw objects on
the basis of the most salient silhouettes, as did early cave artists. Many objects have particular

Figure 7.3 These two objects are rapidly recognized as identical, or at least very similar, despite the very different
visual images they present.
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Figure 7.4 A simplified view of Hummel and Biederman's (1992) neural-network model of form perception.
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Figure 7.5 According to Biederman’s geon theory, the visual system interprets 3D objects by identifying 3D
component parts called geons.

silhouettes that are easily recognizable; think of a teapot, a shoe, a church, a person, or a violin.
These canonical silhouettes are based on a particular view of an object, often from a point at
right angles to a major plane of symmetry. Figure 7.6 illustrates canonical views of a teapot and
a person.

David Marr suggested ways in which the brain might use silhouette information to extract
the structures of objects (Marr, 1982). He argued that “buried deep in our perceptual machin-
ery” are mechanisms that contain constraints determining how silhouette information is inter-
preted. Three rules are embedded in this perceptual machinery:

1. Each line of sight making up a silhouette grazes the surface exactly once. The set of
such points is the contour generator. The idea of the contour generator is illustrated in
Figure 7.7.

2. Nearby points on the contour of an image arise from nearby points on the contour
generator of the viewed object.

3. All the points on the contour generator lie on a single plane.

Under Marr’s default assumptions, contour information is used in segmenting an image into
its component solids. Marr and Nishihara (1978) suggested that concave sections of the silhou-
ette contour are critical in defining the ways different solid parts are perceptually defined. Figure
7.8 illustrates a crudely drawn animal that we nevertheless readily segment into head, body, neck,
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Figure 7.6 Many objects have canonical silhouettes, defined by the viewpoints from which they are most easily
recognized. In the case of the man, the overall posture is unnatural, but the component parts—hands,
feet, head, and so on—are all given in canonical views.

Contour generator

Figure 7.7 According to Marr, the perceptual system makes assumptions that occluding contours are smoothly
connected and lie in the same plane. Adapted from Marr (1982).

7
\

Figure 7.8 Concave sections of the silhouette define subparts of the object and are used in the construction of a
structural skeleton. Adapted from Marr and Nishihara (1978).
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Figure 7.9 A photograph of a hand and a simplified line drawing of the hand. Ryan and Schwartz (1956) showed that
a cartoon image was recognized more rapidly than a photograph.

legs, and so on. Marr and Nishihara also suggested a mechanism whereby the axes of the parts
become cognitively connected to form a structural skeleton.

One of the consequences of structural theories of perception is that certain simplified views
should be easier to read. There are practical advantages to this. For example, a clear diagram
may sometimes be more effective than a photograph. This is exactly what Ryan and Schwartz
(1956) showed when they found that a hand could be perceived more rapidly in the form of a
simplified line drawing than in the form of a photograph (see Figure 7.9).

But this result should not be overgeneralized. Other studies have shown that time is required
for detailed information to be perceived (Price and Humphreys, 1989; Venturino and Gagnon,
1992). Simplified line drawings may be most appropriate only when rapid responses are required.

Although image-based theories and structure-based theories of object recognition are usually
presented as alternatives, it may be that both kinds of processes occur. If geons are extracted
based on concavities in the silhouette, certain views of a complex object will be much easier to
recognize. Further, it may well be that viewpoint-dependent aspects of the visual image are stored
in addition to the 3D structure of the object. Indeed, it seems likely that the brain is capable of
storing many kinds of information about an object or scene if they have some usefulness. The
implication is that even though 3D objects in a diagram may be more effective in some cases,
care should be taken to provide a good 2D layout.

Faces

Faces are special objects in human perception. Infants learn about faces faster than other objects.
It is as if we are born with visual systems primed to learn to recognize important humans,
such as our own mothers (Morton and Johnson, 1991; Bruce and Young, 1998; Bushnell et al.,
1989). A specific area of our brains, the right middle fusiform gyrus, is especially important in
face perception (Puce et al., 1995; Kanwisher et al., 1999; Kanwisher et al., 1997). This area is
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Figure 7.10 Happiness, elation, anger, sadness, disgust, determination, fear, surprise.

also useful for recognizing other complex objects, such as automobiles; although it is not essen-
tial as a Volkswagen detector, we cannot recognize faces without it.

Faces have an obvious importance in communication, because we use facial expression to
communicate our emotion and degree of interest. Cross-cultural studies by Paul Ekman and
coworkers strongly suggests that certain human expressions are universal communication signals,
correctly interpreted across cultures and social groups (Ekman and Friesen, 1975; Ekman, 2003).
Ekman identified six universal expressions: anger, disgust, fear, happiness, sadness and surprise.
These are illustrated in Figure 7.10, along with determination and elation (a variation on hap-
piness). The motion of facial features is also important in conveying emotion. Animated images
are necessary to convey a full range of nuanced emotion; it is especially important to show motion
of the eyebrows (Basilli, 1978; Sadr et al., 2003).

Facial expressions are produced by the contractions of facial muscles. The facial action
coding system (FACS) is a widely applied method of measuring and defining groups of facial
muscles and their effect on facial expression (Ekman et al., 1988). The eyebrows and mouth are
particularly significant in emotion signaling, but the shape of the eyes is also important. There
is evidence that false smiles can be distinguished from true smiles from the particular expression
around the eyes that occurs with contraction of a muscle that orbits the eye (Ekman et al., 1988;
Ekman, 2003). This muscle contracts with true smiles but not with false ones. According
to Ekman (2003) it is difficult, if not impossible, to control this voluntarily and thus fake a
“true” smile.

The main application of FACS theory in computer displays has been in the creation of
computer avatars that convey human emotion (Kalra et al., 1993; Ruttkay et al., 2003). Appro-
priate emotional expression may help make a virtual salesperson more convincing. In computer-
aided instruction, the expression on a human face could reward or discourage.
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The Object Display and Object-Based Diagrams

Wickens (1992) is primarily responsible for the concept of an object display as a graphical device
employing “a single contoured object” to integrate a large number of separate variables. Wickens
theorized that mapping many data variables onto a single object will guarantee that these vari-
ables are processed together, in parallel. This approach, he claimed, has two distinct advantages.
The first is that the display can reduce visual clutter by integrating the variables into a single
visual object. The second is that the object display makes it easier for an operator to integrate
multiple sources of information.

Among the earlier examples of object displays are Chernoff faces, named after their inven-
tor, Herman Chernoff (1973). In this technique, a simplified image of a human face is used as a
display. Examples are shown in Figure 7.11. To turn a face into a display, data variables are
mapped to different facial features, such as the length of the nose, the curvature of the mouth,
the size of the eye, the shape of the head, etc. There are good psychological reasons for choos-
ing what might seem to be a rather whimsical display object. Faces are probably the most impor-
tant class of objects in the human environment. Even newborn babies can rapidly distinguish

)
9
0
0
)
[)
)
[)
0
0

S (-
e
6 ¢

0
0
0
()
)
[)
q
[)

0
)
()
[}

O ) ©SE
):G

&

@ ©

@

0
[
9
0
) —
)
(_0
©

Figure 7.11 Chernoff faces. Different data variables are mapped to the sizes and shapes of different facial features.
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faces from nonfaces with scrambled features, suggesting that we may have special neural
hardware for dealing with faces. Jacob et al. (1976) carried out a classification task using a
series of displays that were progressively more objectlike. The displays included Chernoff
faces, tables, star plots, and the whisker plots described in Chapter 5. They found that
the more objectlike displays, including Chernoff face plots, enabled faster, more accurate
classification.

Chernoff faces have not generally been adopted in practical visualization applications. The
main reason for this may be the idiosyncratic nature of faces. When data is mapped to
faces, many kinds of perceptual interactions can occur. Sometimes the combination of
variables will result in a particular stereotypical face, perhaps a happy face or a sad face, and
this will be identified more readily. In addition, there are undoubtedly great differences in
our sensitivity to the different features. We may be more sensitive to the curvature of the mouth
than to the height of the eyebrows, for example. This means that the perceptual space of
Chernoff faces is likely to be extremely nonlinear. In addition, there are almost certainly many
uncharted interactions between facial features, and these are likely to vary from one viewer to
another.

Often, object displays will be most effective when the components of the objects have a
natural or metaphorical relationship to the data being represented. For example, Figure 7.12
illustrates how a storage vessel in a chemical plant might be represented using both a conven-
tional bar chart and a customized object display. The variables in the object diagram are repre-
sented as follows:

®  Size of cylinder represents tank capacity.

®  Height of liquid represents volume of material stored.
®  Texture of liquid represents the chemical composition.
®  Color of liquid represents liquid temperature.

® Diameter of pipe represents outflow capacity.

®  Status of the valve and thickness of the outgoing fluid stream represent rate at which
liquid is being drawn from the tank.

In this example, the object display has a number of clear advantages. It can reduce accidental
misreadings of data values. Mistakes are less likely because components act as their own
descriptive icons. In addition, the structural architecture of the system and the connections
between system components are always visible, and this may help in diagnosing the causes
and effects of problems. Conversely, the disadvantage of object displays is that they lack gener-
ality. Each display must be custom-designed for the particular application and, ideally, should be
validated with a user population to ensure that the data representation is clear and properly inter-
preted. This requires far more effort than displaying data as a table of numbers or a simple bar
chart.
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Figure 7.12 Two representations of the same data. The object diagram on the right combines six variables in an
easily interpreted, cohesive representation.

The Geon Diagram

Biederman’s geon theory, outlined earlier, can be applied directly to object display design. If cylin-
ders and cones are indeed perceptual primitives, it will make sense to construct diagrams using
these geon elements. This should make the diagrams easy to interpret if a good mapping can be
found from the data to a geon structure. The geon diagram concept is illustrated in Figure 7.13(a).
Geons are used to represent the major components of a compound data object, whereas the archi-
tecture of the data object is represented by the structural skeleton linking the geons. The size of
a geon becomes a natural metaphor for the relative importance of a data entity, or its complex-
ity or relative value. The strength of the connections between the components is given by the
necklike linking structures. Additional attributes of entities and relationships can be coded by
coloring and texturing them.

We evaluated the geon diagram concept in a comparison with Unified Modeling Language
(UML) diagrams (Irani et al., 2001). UML is a widely used, standardized diagramming notation
for representing complex systems. Equivalent diagrams were constructed by matching geon ele-
ments to UML elements (see Figure 7.13). We found that when the task involved rapid identifi-
cation of substructures in a larger diagram, participants performed both faster and with only half
the errors using the geon diagrams. Another experiment showed that geon diagrams were easier
to remember.

In Biederman’s theory, surface properties of geons, such as their colors and textures, are sec-
ondary characteristics. This makes it natural to use the surface color and texture of the geon to
represent data attributes of a data object. The important mappings between data and a geon
diagram are as follows:
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Figure 7.13 (a) A geon diagram constructed using a subset of Biederman’s geon primitives. The primitive elements
can also be color-coded and textured. (b) A Unified Modeling Language (UML) equivalent.
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Major components of - Geons
a complex data object
Architectural links between - Limbs consisting of elongated geons—connections
data object components between limbs reflect architectural structure of data
Minor subcomponents - Geon appendices—small geon components attached to larger geons
Component attributes - Geon color, texture, and symbology mapped onto geons

Although the geon diagram is a 3D representation, there are reasons to pay special attention to
the way it is laid out in 2D in the x,y plane. As discussed earlier, some silhouettes are especially
effective in allowing the visual system to extract object structure. Thus, a common-sense design
rule is to lay out structural components principally on a single plane. A diagramming method
resembling the bas-relief stone carvings common in classical Rome and Greece may be optimal.
Such carvings contain careful 3D modeling of the component objects, combined with only limited
depth and a mainly planar layout.

Abstract semantics may be expressible, in a natural way, through the way geons are inter-
connected. In the everyday environment, there is meaning to the relative positioning of objects
that is understood at a deep, possibly innate level. Because of gravity, above is different from
below. If one object is inside another, it is perceived as either contained by that other object or
a part of it. Irani et al. (2001) suggested that the semantics inherent in the different kinds of rela-
tionships of real-world objects might be applied to diagramming abstract concepts. Based on this
idea, the researchers developed a set of graphical representations of abstract concepts. Some of
the more successful of these mappings are illustrated in Figure 7.14 and listed as follows.

®  Sometimes we wish to show different instances of the same generic object. Geon theory pre-
dicts that having the same shape should be the best way of doing this. Geon shape is domi-
nant over color, which is a secondary attribute. Thus the elbow shapes in Figure 7.14(a) are
seen as two instances of the same object, whereas the two green objects are not.

® Having an object inside another transparent object is a natural representation of a part-of
relationship. The inside objects seem part of the outside objects, as in Figure 7.14(b).

®  One object above and touching another, as shown in Figure 7.14(c), is easily understood
as representing a dependency relationship.

® A thick bar between two objects is a natural representation of a strong relationship between
two objects; a thinner, transparent bar represents a weak relationship. See Figure 7.14(d).

Perceiving the Surface Shapes of Objects

Not all things in the world are made up of closed, discrete components like geons. For example,
there are undulating terrains that have no clearly separable components. Although to some extent
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Figure 7.14 Certain spatial relationships between objects can readily represent abstract concepts. (a) That objects
belong to the same class is better shown by shape than by color. (b) A part-of relationship. (c) A
dependency relationship. (d) Strong and weak relationships.

we can decompose such a landscape into features such as hills and valleys, these are not
essential to perceiving the shape of any given area of the surface. Examples of continuous surfaces
that are important in visualization include digital elevation maps representing the topography of
the land or the ocean floor, maps of physical properties of the environment, such as pressure and
temperature, and maps representing mathematical functions that are only distantly related to the
raw data. The general terms for this class of data object are two-dimensional scalar field and uni-
variate map. The two traditional methods for displaying scalar field information are the contour
map, which originated in cartography, and the pseudocolor map, discussed in Chapter 4.

Spatial Cues for Representing Scalar Fields

From a Gibsonian point of view, the obvious way to represent a univariate map is to make it
into a physical surface in the environment. Some researchers occasionally do just this; they con-
struct plaster or foam models of data surfaces. But the next best thing may be to use computer
graphics techniques to shade the data surface with a simulated light source and give it a simu-
lated color and texture to make it look like a real physical surface. Such a simulated surface can
be viewed using a stereoscopic viewing apparatus, by creating different perspective images, one
for each eye. These techniques have become so successful that the auto industry is using them to
design car bodies in place of the full-sized clay models that were once constructed by hand to
show the curves of a design. The results have been huge cost savings and a considerably accel-
erated design process.
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An important issue in the creation of univariate maps is determining how to represent surface
shape most effectively. Four principal sets of visual cues for surface shape perception have been
studied: shading models, surface texture, stereoscopic depth, and motion parallax.

Shading Models

The basic shading model used in computer graphics to represent the interaction of light with sur-
faces has already been discussed in Chapter 2. It has four basic components, as follows:

Lambertian shading: Light reflected from a surface equally in all directions
Specular shading: The highlights reflected from a glossy surface

Ambient shading: Light coming from the surrounding environment

Cast shadows: Shadows cast by an object, either on itself or on other objects

Figure 7.15 illustrates the shading model, complete with cast shadows, applied to a digital ele-
vation map of San Francisco Bay. As can be seen, even this simple lighting model is capable of
producing a dramatic image of a surface topography. A key question in choosing a shading model
for data visualization is not its degree of realism, but how well it reveals the surface shape. There
is some evidence that more sophisticated lighting may be harmful in representing surfaces.

Figure 7.15 A shaded representation of San Francisco Bay, shown as if the water had been drained out of it. Data
courtesy of Jim Gardiner, U.S. Geological Survey. Image constructed using IVS Fledermaus software.
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Figure 7.16 The brain generally assumes that lighting comes from above. The bumps in this image become hollows
when the picture is turned upside down.

Experiments by Ramachandran (1988) suggest that the brain assumes a single light source from
above in determining whether a particular shaded area is a bump or a hollow. (See Figure 7.16.)
The kinds of complex shadows that result from multiple light sources and radiosity modeling
may be visually confusing rather than helpful. Chapter 8 presents evidence that cast shadows
provide spatial information relevant to the layout of objects in space rather than their surface
shapes.

Surface Texture

Surfaces in nature are generally textured. Gibson (1986) took the position that surface texture
is an essential property of a surface. A nontextured surface, he said, is merely a patch of light.
The way in which textures wrap around surfaces can provide valuable information about surface
shape.

Texturing surfaces is especially important when they are viewed stereoscopically. This
becomes obvious if we consider that a uniform nontextured polygon contains no internal stereo-
scopic information about the surface it represents. Under uniform lighting conditions, such a
surface also contains no orientation information. When a polygon is textured, every texture
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Figure 7.17 A stereo pair showing a textured surface.

element provides stereoscopic depth information relative to neighboring points. Figure 7.17
shows a stereoscopic pair of images representing a textured surface.

Without texture, it is usually impossible to distinguish one transparent curved surface from
another transparent curved surface lying beneath it. Figure 7.18 shows an illustration from Inter-
rante et al. (1997) containing experimental see-through textures designed to reveal one curved
surface lying above another. The concept of laciness, discussed in Chapter 6, is relevant here,
because it tells us something about how to make layers visually distinct. Stereoscopic viewing
considerably enhances our ability to see one surface through another, semitransparent one.

Integration of Cues for Surface Shape

Given the many factors that may be involved in surface shape perception, the question arises as
to which of them are most helpful. To study this problem, Norman et al. (1995) used computer
graphics to render smoothly shaded rounded objects like the one shown in Figure 7.19. They
manipulated the entire list of variables given above—specular shading, Lambertian shading,
texture, stereo, and motion parallax—in a multifactor experiment. Stereo and motion were
studied only in combination with the other cues because without shading or texture, neither
stereo nor motion cues can be effective. The subjects’ task was to indicate surface orientation at
a number of selected points by manipulating the 3D glyph shown in Figure 7.20.

Norman et al. found all of the cues they studied to be useful in perceiving surface orienta-
tion, but the relative importance of the cues differed from one subject to another. For some sub-
jects, motion appeared to be the stronger cue; for others, stereo was stronger. A summary of their
results with motion and stereo data combined is given in Figure 7.21. Motion and stereo both
reduced errors dramatically when used in combination with any of the surface representations.
Overall, the combination of shading (either specular or Lambertian) with either stereo or motion
was either the best or nearly the best combination for all the subjects.

There have been other studies of the relative importance of different cues to the perception
of surface shape. Todd and Mingolla (1983) found surface texture to be more effective in deter-
mining surface shape than either Lambertian shading or specular shading. However, because of
the lack of a convincing general theory for the combination of spatial cues, it is difficult to gen-
eralize from experiments such as this. Many of the results may be valid only for specific textures
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Figure 7.18 Texture designed to reveal surface shape. From Interrante et al. (1997).

used, for example. The fact that there are large individual differences is another barrier to reach-
ing general conclusions. Random textures, such as those used by Norman et al. (1995), may not
be as effective in revealing shape as texture that follows the surface in some way (Interrante et
al., 1997; Kim et al., 1993). For these reasons, it is not meaningful to make general statements
such as “Lambertian shading is more useful than texture.” The values of the different cues will
also depend on the specific task. For example, specular highlights can be extremely useful in
revealing fine surface details, as when a light is used to show scratches on glass. At other times,
highlights will obscure patterns of surface color.

Interaction of Shading and Contour

The boundary contours of objects can interact with surface shading to change dramatically the
perception of surface shape. Figure 7.22 is adapted from Ramachandran (1988). It shows two
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Figure 7.19 Textured, shaded, irregular objects were used by Norman et al. (1995) in experiments to determine which
visual information contributes most to the perception of surface shape.

Figure 7.20 Interactive glyph used by Norman et al. (1995) to measure perception of surface orientation.

shapes that have exactly the same shading but different silhouette contours. The combination
of silhouette contour information with shading information is convincing in both cases, but
the surface shapes that are perceived are very different. This tells us that shape-from-shading
information is inherently ambiguous; it can be interpreted in different ways, depending on the
contours.

Contours that are drawn on a shaded surface can also drastically alter the perceived shape
of that surface. Figure 7.23 has added shaded bands that provide internal contour information.
As in Figure 7.22, the actual pattern of shading within each of the two images, and within the
bands, is the same. It is the contour information that makes one surface shape appear so differ-
ent from the other. This technique can be used directly in displaying shaded surfaces to make a
shape easier to perceive.

One of the most common ways to represent surfaces is to use a contour map. A contour
map is a plan view representation of a surface with isoheight contours, usually spaced at regular
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Figure 7.21 Results of the study of shape perception by Norman et al. (1995). The average errors in adjusted
orientation are shown for five different surface representations. The different representations are labeled
as follows: (L) Lambertian shading, (S) specular highlight shading, (T) texture with no shading, (L+T)
Lambertian shading with texture, and (L + S) Lambertian shading with specular highlights. The four sets
of histograms represent results from four different subjects.

Figure 7.22 When scanned from left to right, the sequences of gray values in these two patterns are identical. The
external contour interacts with the shading information to produce the perception of two very differently
shaped surfaces.



Visual Objects and Data Objects 251

Figure 7.23 The left-to-right gray sequence in these patterns is identical. The internal contours interact with the
shading information to produce the perception of two very differently shaped surfaces.

Figure 7.24 A contour is created by the intersection of a plane with a scalar field.

intervals. Conceptually, each contour can be thought of as the line of intersection of a horizon-
tal plane with a particular value in a scalar height field, as illustrated in Figure 7.24. Although
reading contour maps is a skill that requires practice and experience, contour maps should not
necessarily be regarded as entirely arbitrary graphical conventions. Contours are visually ambigu-
ous with respect to such things as degree of slope and direction of slope; this information is given
only in the printed labels that are attached to them. However, it is likely that the contours in
contour maps get at least some of their expressive power because they provide a limited per-
ceptual code. As we have seen, both occluding (silhouette) contours and surface contours are
effective in providing shape information. Although contour-map contours are not silhouettes,
they obey one of the cognitive restrictions that Marr (1982) proposed for occluding contours,
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namely, that contours are assumed to be planar. They also provide texture gradient information.
Thus, contour maps are a good example of a hybrid code; they make use of a perceptual mech-
anism, and they are also partly conventional.

There are many ways to make oriented textures conform to a surface. Texture lines can be
constructed to follow the fall-line (down slope), to be horizontal contours, to be at right angles
to maximum curvature direction, or to be orthogonal to the line of site of a viewer, to present a
few examples. Kim et al. (1993) investigated combinations of first and second principal direc-
tions of curvature contours, as illustrated in Figure 7.25. All of the textured surfaces were arti-
ficially lit using standard computer graphics shading algorithms. Subjects made smaller errors in
surface orientation judgments when two contour directions were used to form a mesh, as in
Figure 7.25(a). Nevertheless, this study and Norman et al. (1995) found that errors averaged 20
degrees. This is surprisingly large and suggests that further gains are possible.

Guidelines for Displaying Surfaces

Taken together, the evidence suggests that to represent a surface clearly it may be possible to do
better than simply create a photorealistic rendering of a scene using the most sophisticated
techniques of computer graphics. A simplified lighting model—for example, a single light
source located at infinity—may be more effective than complex rendering using multiple
light sources. The importance of contours and the easy recognizability of cartoon representation
suggest that an image may be enhanced for display purposes by using techniques that are
nonrealistic.

Taking all these caveats into consideration, some guidelines may be useful for the typical
case:

1. A simple lighting model, based on a single light source, should normally be used. The
light source should be from above and to one side and infinitely distant.

2. Both Lambertian and moderate specular surface reflection should be modeled. More
sophisticated lighting modeling, such as the interreflection of light between surfaces,
should be avoided for reasons of clarity.

3. Specular reflection is especially useful in revealing fine surface detail. Because specular
reflection depends on both the viewpoint and the position of the light source, the user
should be given interactive control of the lighting direction, and the amount of specular
reflection to specify where the highlights will appear.

4. Cast shadows should be used if possible, but only if the shadows do not interfere with
other displayed information. The shadows should be computed to have blurred edges to
make a clear distinction between shadow and surface pigment changes.

5. Surfaces should be textured, especially if they are to be viewed in stereo. However, the
texturing should ideally be low-contrast so as not to interfere with shading information.
Textures that have linear components are more likely to reveal surface shape than textures
with randomly stippled patterns.
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A\

Surface-revealing texture patterns (Kim et al., 2003). (a) Two-directional texture pattern following first
and second principal directions. (b) One-directional texture pattern following first principal curvature
direction. (c) One-directional line-integral convolutions texture following first principal curvature
direction. (d) No texture. Reproduced with permission.
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6. Where appropriate hardware is available, both structure-from-motion (by rotating the
surface) and stereoscopic viewing will enhance the user’s understanding of 3D shape.
These may be especially useful when one textured transparent surface overlays another.

Bivariate Maps: Lighting and Surface Color

In many cases, it is desirable to represent more than one continuous variable over a plane. This
representation is called a bivariate or multivariate map. From the ecological optics perspective
discussed in Chapter 1, the obvious bivariate map solution is to represent one of the variables
as a shaded surface and the other as color coding on that surface. A third variable might use
variations in the surface texture. These are the patterns we have evolved to perceive. An example
is given in Figure 7.26, where one variable is a height map of the ocean floor and the surface
color represents sonar backscatter strength. In this case, the thing being visualized is actually a
physical 3D surface. However, the technique also works when both variables are abstract. For
example, a radiation field can be expressed as a shaded height map and a temperature field can
be represented by the surface color.

If this colored and shaded surface technique is used, some obvious tradeoffs must be
observed. Since luminance is used to represent shape-from-shading by artificially illuminating the
surface, we should not use luminance (at least not much) in coloring the surface. Therefore, the
surface coloring must be done mainly using the chromatic opponent channels discussed in
Chapter 4. But because of the inability of color to carry high—spatial frequency information, only
rather gradual changes in color can be perceived. Therefore, in designing a multivariate surface
display, rapidly changing information should always be mapped to luminance. For a more

Figure 7.26 A bivariate map showing part of the Stellwagen Bank National Marine Sanctuary (Mayer et al., 1997).
One variable shows angular response of sonar backscatter, color-coded and draped on the depth
information given through shape-from-shading. Courtesy of Larry Mayer.
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detailed discussion of these spatial tradeoffs, see Robertson and O’Callaghan (1988), Rogowitz
and Treinish (1996), and Chapter 4 of this book.

A similar set of constraints applies to the use of visual texture. Normally it is advisable to
use luminance contrast in displaying texture, but this will also tend to interfere with shape-from-
shading information. Thus, if we use texture to convey information, we have less available visual
bandwidth to express surface shape and surface color. We can gain a relatively clear and easily
interpreted trivariate map, but only so long as we do not need to express a great deal of detail.
Using color, texture, and shape-from-shading to display different continuous variables does not
increase the total amount of information that can be displayed per unit area, but it does allow
multiple map variables to be independently perceived.

Cushion Maps

The treemap visualization technique was introduced in Chapter 6 and illustrated in Figure
6.36 (Johnson and Shneiderman, 1991). As discussed, a problem with treemaps is that they
do not convey tree structure well, although they are extremely good at showing the sizes and
groupings of the leaf nodes. An interesting solution devised by van Wijk and van de Wetering
(1999) makes use of shading. They applied a hierarchical shading model to the treemap so
that areas representing large branches are given an overall shading. Regions representing
smaller branches are given their own shading within the overall shading. This is repeated down
to the leaf nodes, which have the smallest scale shading. The illustration shown in Figure
7.27 shows a computer file system. As can be seen, the hierarchical structure of the system is
quite clear.

Integration

In this chapter, we have seen a number of ways in which different spatial variables interact to
help us recognize objects, their structures, and their surfaces. However, there has been no dis-
cussion of how the brain organizes these different kinds of information. What is the method by
which the shape, color, size, texture, structure, and other attributes of an object are stored and
indexed? Unfortunately, this is still a largely open question. Only some highly speculative theo-
ries exist.

One suggestion is the theoretical concept of the object file, introduced by Kahneman and
Henik (1981) to account for human perceptual organization. An object file is a temporary cog-
nitive structure that stores or indexes all aspects of an object: its color, size, orientation, texture,
and even its name and other semantic links (Kahneman et al., 1992). An object file can be thought
of as a cognitive data structure that maintains links to all the perceived attributes of an object.
An object file allows us to keep track of objects in the visual field, and from one fixation to the
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Figure 7.27 The cushion map is a variation on a treemap that uses shape-from-shading information to reveal
hierarchical structure. Courtesy of Jack van Wijke.

next when they temporarily disappear behind other objects. Work by Pylyshyn and Storm (1988)
and Yantis (1992) suggests that only a small number of visual objects, somewhere between two
and four, can be maintained simultaneously in this way. Because of this, the display designer
should drastically restrict the number of complex objects that are required simultaneously for
any complex decision-making task.

Because both linguistic and visual information is included in the object file, it explains a
number of well known psychological effects. One effect is that almost any information about an
object, either visual or verbal, can be used to prime for that object. If there were a strong sepa-
ration between visual and verbal information, we would not expect a verbal priming cue, for
example, the word bark, to make it easier to identify a picture of a dog. But in fact, verbal
priming does improve object recognition, at least under certain circumstances.

However, as discussed earlier in this chapter, there are also many priming effects that are
strongest within a sensory modality; this is part of the evidence for separate verbal and visual
processing centers. The concept of the object data structure also accounts for interference effects.
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In the Stroop effect, subjects read a list of color words such as red, yellow, green and blue (Stroop,
1935). If the words themselves are printed with colored inks and the colors do not match the
word meanings—for example, the word blue is colored red—people read more slowly. This shows
that visual and verbal information must be integrated at some level, perhaps in something like
Kahneman and Henik’s object file.

Speculating further, the cognitive object file also provides an explanation of why object dis-
plays can be so effective. Essentially, the object display is the graphical analog of a cognitive
object file. However, the strong grouping afforded by an object display can be a double-edged
sword. A particular object display may suit one purpose but be counterproductive for another.
Object-based displays are likely to be most useful when the goal is to give an unequivocal message
about the relationship of certain data variables. For example, when the goal is to represent a
number of pieces of information related to a part of a chemical plant, the object display can be
clear and unambiguous. Conversely, when the goal is information discovery, the object display
may not be useful because it will be strongly biased toward a particular structure. Other, more
abstract representations will be better because they more readily afford multiple interpretations.
Chapter 9 offers more discussion of the relationship between verbal and visual information and
presents a number of rules for integrating the two kinds of information.

Conclusion

The notion of a visual object is central to our understanding of the higher levels of visual pro-
cessing. In a sense, the object can be thought of as the point at which the image becomes thought.
Objects are units of cognition as well as things that are recognized in the environment.

There is strong evidence to support both viewpoint-dependent recognition of objects and the
theory that the brain creates 3D structural models of objects. Therefore, in representing infor-
mation as objects, both kinds of perceptually stored information should be taken into account.
Even though data may be represented as a 3D structure, it is critical that this structure be laid
out in such a way that it presents a clear 2D image. Special attention should be paid to silhou-
ette information, and if objects are to be rapidly recognized, they should be presented in a famil-
iar orientation.

Visual processing of objects is very different from the massive processing of low-level
features described in Chapter 5. Only a very small number of complex visual objects, perhaps
only one or two, can be held in mind at any given time. This makes it difficult to find novel
patterns that are distributed over multiple objects. However, there is a kind of parallelism in
object perception. Although only one visual object may be processed at a time, all the features
of that object are processed together. This makes the object display the most powerful way of
grouping disparate data elements together. Such a strong grouping effect may not always be desir-
able; it may inhibit the perception of patterns that are distributed across multiple objects.
However, when strong visual integration is a requirement, the object display is likely to be the
best solution.
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Once we choose to represent visual objects in a data display, we encounter the problem of
what degree of abstraction or realism should be employed. There is a tradeoff between literal
realism, which leads to unequivocal object identification, and abstraction, which leads to more
general-purpose displays. Most interesting is the possibility that we can create a kind of hyper-
realism through our understanding of the mechanisms of perception. By using simplified light-
ing models and enhanced contours, together with carefully designed colors and textures, the
important information in our data may be brought out with optimal clarity.



CHAPTER 8

Space Perception and the
Display of Data in Space

We live in a three-dimensional world (actually, four dimensions if time is included). In the short
history of visualization research, most graphical display methods have required that data be
plotted on sheets of paper, but computers have evolved to the point that this is no longer neces-
sary. Now we can create the illusion of 3D space behind the monitor screen, changing over time
if we desire. The big question is why we should do this. There are clear advantages to conventional
2D techniques, such as the bar chart and the scatter plot. Designers already know how to draw
diagrams and represent data effectively in two dimensions, and the results can easily be included
in books and reports. Of course, one compelling reason for an interest in 3D space perception is
the explosive advance in 3D computer graphics. Because it is so inexpensive to display data in an
interactive 3D virtual space, people are doing it—often for the wrong reasons. It is inevitable that
there is now an abundance of ill conceived 3D design, just as the advent of desktop publishing
brought poor use of typography and the advent of cheap color brought ineffective and often garish
use of color. Through an understanding of space perception, we hope to reduce the amount of poor
3D design and clarify those instances in which 3D representation is really useful.

The first half of this chapter presents an overview of the different factors involved in the per-
ception of 3D space. The second half gives a task-based analysis of the ways in which different
kinds of spatial information are used in performing seven different tasks, ranging from tracing
paths in 3D networks to judging the morphology of surfaces to appreciating an aesthetic impres-
sion of spaciousness. The way we use spatial information differs greatly, depending on the task
at hand. Docking one object with another and trying to trace a path in a tangled web of virtual
wires require different ways of seeing.

Depth Cue Theory

The visual world provides many different sources of information about 3D space. These sources
are usually called depth cues, and a large body of research is related to the way the visual system

259
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processes depth-cue information to provide an accurate perception of space. Following is a list
of the more important depth cues. They are divided into categories according to whether they
can be reproduced in a static picture (monocular static) or a moving picture (monocular dynamic)
or require two eyes (binocular).

Monocular Static (Pictorial):

® Linear perspective

®  Texture gradient

®  Size gradient

®  Occlusion

®  Depth of focus

®  Cast shadows

®  Shape-from-shading

®  Depth-from-eye accommodation (this is nonpictorial)
Monocular Dynamic (Moving Picture):

®  Structure-from-motion (kinetic depth, motion parallax)
Binocular:

® Eye convergence

®  Stereoscopic depth

Shape-from-shading information has already been discussed in Chapter 7. The other cues
are discussed in this chapter. More attention is devoted to stereoscopic depth perception than to
the other depth cues, not because it is the most important, but because it is relatively complex
and because it is difficult to use stereoscopic depth effectively.

Perspective Cues

Figure 8.1 shows how perspective geometry can be described for a particular viewpoint and a
picture plane. The position of each feature on the picture plane is determined by extending a ray
from the viewpoint to that feature in the environment. If the resulting picture is subsequently
scaled up or down, the correct viewpoint is specified by similar triangles, as shown. If the eye is
placed at the specified point with respect to the picture, the result is a correct perspective view
of the scene. A number of the depth cues are direct results of the geometry of perspective. These
are illustrated in Figures 8.2 and 8.3.
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The geometry of linear perspective is obtained by sending a ray from each point in the environment

Figure 8.1
through a picture plane to a single fixed point. Each point on the picture plane is colored according to the
light that emanates from the corresponding region of the environment. The result is that objects vary in
size on the picture plane in inverse proportion to their distance from the fixed point. If an image is
created according to this principle, the correct viewpoint is determined by similar triangles, as shown in
the upper right.
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Figure 8.2 Perspective cues arising from perspective geometry include the convergence of lines and the fact that

more distant objects become smaller on the picture plane.

Figure 8.3 A texture gradient is produced when a uniformly textured surface is projected onto the picture plane.
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®  Parallel lines converge to a single point.

®  Objects at a distance appear smaller on the picture plane than do nearby objects. Objects
of known size may have a very powerful role in determining the perceived size of adjacent
unknown objects. Thus, an image of a person placed in a picture of otherwise abstract
objects gives a scale to the entire scene.

®  Uniformly textured surfaces result in texture gradients in which the texture elements
become smaller with distance.

In the real world, we generally perceive the actual size of an object rather than the size at which
it appears on a picture plane (or on the retina). This phenomenon is called size constancy. The
degree to which size constancy is obtained is a useful measure of the relative effectiveness of
depth cues. However, when we perceive pictures of objects, we enter a kind of dual perception
mode. To some extent, we have a choice between accurately perceiving the size of the depicted
object as though it were in a 3D space and accurately perceiving the size of the object at the
picture plane (Hagen, 1974). The amount and effectiveness of the depth cues used will, to some
extent, make it easy to see in one mode or the other. The picture-plane sizes of objects in a very
sketchy schematic picture are easy to perceive. Conversely, the real 3D sizes of objects will be
more readily perceived with a highly realistic moving picture, although large errors will be made
in estimating picture-plane sizes.

In terms of the total amount of information available from an information display, there is
little evidence that a perspective picture lets us see more than a nonperspective image. A study
by Cockburn and McKenzie showed that perspective cues added no advantage to a version of
the Data Mountain display of Robertson et al. (1998). The version shown in Figure 8.4(b) was
just as effective as the one in Figure 8.4(a). However, both of these versions make extensive use
of other depth cues (occlusion and height on the picture plane).

Figure 8.4 (a) Variations on Robertson et al.’s (1998) Data Mountain Display. Courtesy of Andy Cockburn.
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Figure 8.4 Continued (b) Same as part (a) but without perspective.

Pictures Seen from the Wrong Viewpoint

It is obvious that most pictures are not viewed from their correct centers of perspective. In a
movie theater, only one person can occupy this optimal viewpoint (determined by the focal length
of the original camera and the scale of the final picture). When a picture is viewed from an incor-
rect viewpoint, the laws of geometry suggest that significant distortions should occur. Figure 8.5
illustrates this. If the mesh shown in Figure 8.5 is projected on a screen with a geometry based
on viewpoint (a), but it is actually viewed from position (b), it should be perceived to stretch
along the line of sight as shown (if the visual system were a simple geometry processor). However,
although people report seeing some distortion initially when looking at moving pictures from the
wrong viewpoint, they become unaware of the distortion after a few minutes. Kubovy (1986)
calls this the robustness of linear perspective. Apparently, the human visual system overrides some
aspects of perspective in constructing the 3D world that we perceive.

One of the mechanisms that can account for this lack of perceived distortion may be based
on a built-in perceptual assumption that objects in the world are rigid. Suppose that the mesh in
Figure 8.5 is smoothly rotated about a vertical axis, projected assuming viewpoint (a) but viewed
from point (b). It should appear as a nonrigid, elastic body. But perceptual processing is con-
strained by a rigidity assumption, and this causes us to see a stable, nonelastic three-dimensional
object.

Under extreme conditions, some distortion is still seen with off-axis viewing of moving pic-
tures. Hagen and Elliott (1976) showed that this residual distortion is reduced if the projective
geometry is made more parallel. This can be done by simulating long—focal length lenses, which
may be a useful technique if displays are intended for off-axis viewing.

Various technologies exist that can track a user’s head position with respect to a computer
screen and thereby estimate the position of the eye(s). With this information, a 3D scene can be
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b a

Figure 8.5 When a perspective picture is seen from the wrong viewpoint (point b), simple geometry predicts that
large distortions should be seen. However, they are generally not seen or, when seen, are minimal.

computed and viewed so that the perspective is “correct” at all times by adjusting the viewpoint
parameters in the computer graphics software (Deering, 1992; Ware et al., 1993). There are two
reasons why this might be desirable, despite the fact that incorrect perspective viewing of a picture
seems generally unimportant. The first reason is that as an observer changes position, the per-
spective image will change accordingly, resulting in motion parallax. Motion parallax is itself a
depth cue, as discussed later in the structure-from-motion section. The second reason is that in
some virtual-reality systems, it is possible to place the subject’s hand in the same space as the
virtual computer graphics imagery. When we make visually guided hand movements toward some
object in the world, we are constantly correcting our movements based on visual feedback. If
this were done using computer graphics imagery to represent a virtual object and a virtual image
of the subject’s hand, head-coupled perspective could be necessary to keep the subject’s body
sense (kinesthetic feedback) of hand position aligned with his or her visual feedback. An example
of an experimental setup is shown in Figure 8.6. However, research has shown that as long as
continuous visual feedback is provided, without excessive lag, people can adjust rapidly to simple
changes in the eye—hand relationship (Held et al., 1966). The effects of lag on performance are
discussed further in Chapter 10.
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Figure 8.6 A user is attempting to trace 3D blood vessels in an interface that puts his hand in the same space as the
virtual computer graphics imagery. From Serra et al., 1997.

When virtual-reality head-mounted displays are used, it is essential that the perspective be
coupled to a user’s head movement, because the whole point is to allow users to change view-
point in a natural way. Experimental evidence supports the idea that head-coupled perspective
enhances the sense of presence in virtual spaces more than stereoscopic viewing (Arthur et al.,
1993; Pausch et al., 1996).

Occlusion

If one object overlaps or occludes another, it appears closer to the observer. See Figure 8.7. This is
probably the strongest depth cue, but it provides only binary information. An object is either
behind or in front of another; no information is given about the distance between them. A kind of
partial occlusion occurs when one object is transparent or translucent. In this case, there is a color
difference between the parts of an object that lie behind the transparent plane and the parts that
are in front of it. This can be useful in positioning one object inside another (Zhai et al., 1994).
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Figure 8.7 An object that occludes another appears closer to the viewer.

Occlusion can be useful in design; for example, the tabbed cards illustrated in Figure 8.8(a)
use occlusion to provide rank-order information, in addition to rapid access to individual cards.
Although modern graphical user interfaces (GUIs) are usually described as being 2D, they are
actually 3D in a nontrivial way. Overlapping windows rely on our understanding of occlusion
to be effective. See Figure 8.8(b).

Depth of Focus

When we look around, our eyes change focus to bring the images of fixated objects into sharp
focus on the fovea. As a result, the images of both nearby and more distant objects become
blurred. The equations that determine depth of focus are presented in Chapter 2. Focus effects
are important in separating foreground objects from background objects, as shown in Figure 8.9.
Perhaps because of its role as a depth cue, simulating depth of focus is an excellent way to high-
light information by blurring everything except that which is critical. Unfortunately, the tech-
nique is computationally expensive and thus currently limited in utility.

Focus can be considered a pictorial depth cue only if the object of fixation can be predicted.
In normal vision, our attention shifts and our eyes refocus dynamically depending on the dis-
tance of the object fixated. Chapter 2 describes a system designed to change focus information
based on measured point of fixation in a virtual environment.

Cast Shadows

Cast shadows are a very potent cue to the height of an object above a plane, as illustrated in
Figure 8.10(a). They can function as a kind of indirect depth cue—the shadow locates the object
with respect to some surface in the environment. In the case of Figure 8.10, this surface is not
present in the illustration but is assumed by the brain. In a multifactor experiment, Wanger
et al. (1992) found that shadows provided the strongest “depth” cue when compared to tex-
ture, projection type, frames of reference, and motion. But it should be noted that they used a
checkerboard as a base plane to provide the actual distance information. Cast shadows function
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Figure 8.8 (a) Careful use of occlusion enables small tabs to provide access to larger objects. (b) Window interfaces
use occlusion.
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Figure 8.9 The eye adjusts to bring objects of interest into sharp focus. As a result, objects at different distances
become blurred.
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Figure 8.10 (a) Shadows can provide a strong cue for the relative height of objects above a plane. (b) The effect
becomes even stronger with motion. The ball actually appears to bounce when the ball and shadow are
animated to follow the trajectories shown.
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best as a height-above-surface cue when there is a relatively small distance between the object
and the surface, and they can be especially effective in showing when an object is very close to
the point of contact (Madison et al., 2001).

Cast shadows are useful in distinguishing information that is layered a small distance above
a planar surface, as illustrated in Figure 8.11. This technique can be applied to layered map dis-
plays of the type used in geographical information systems (GISs). In complex environments,
where objects are arranged throughout 3D space, cast shadows can be confusing rather than
helpful, because it may not be possible to determine perceptually which object cast a particular
shadow.

Kersten et al. (1997) showed that cast shadows are especially powerful when objects are in
motion. One of their demonstrations is illustrated in Figure 8.10(b). In this case, the apparent
trajectory of a ball moving in 3D space is caused to change dramatically depending on the path
of the object’s shadow. The image of the ball actually travels in a straight line, but the ball appears
to bounce because of the way the shadow moves. In this study, shadow motion was shown to
be a stronger depth cue than change in size with perspective.

It seems likely that shadows can be correctly interpreted without being realistic. Kersten
et al. (1996) found no effect of shadow quality in their results. However, one of the principal
cues in distinguishing shadows from nonshadows in the environment is the lack of sharpness in
shadow edges. Fuzzy shadows are likely to lead to less confusing images.

Shape-from-Shading

See Chapter 7 for a discussion of the perception of surface shape-from-shading information. We
can add one more point here. Shading information can be useful in emphasizing the affordances
of display widgets such as buttons and sliders, even in displays that are very flat. Figure 8.12
illustrates a slider enhanced with shading. This technique is widely used in today’s GUIs.

A Strong
Sense of Depth

Figure 8.11 Cast shadows can be useful in making data appear to stand out above an opaque plane.
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Figure 8.12 Even with mostly 2D interfaces, subtle shading can make sliders and other widgets look like objects that
can be manipulated.

Eye Accommodation

The eye changes focus to bring attended objects into sharp focus on the retina. However, because
we are only capable of focusing to one-half of a diopter, this means that accommodation can
provide limited information about the distance to nearby objects (Hochberg, 1971). Accommo-
dation does not appear to be used to judge distance directly, but it is used in computing the size
of nearby objects (Wallach and Floor, 1971).

Structure-from-Motion

When an object is in motion or when we ourselves move through the environment, the result is
a dynamically changing pattern of light on the retina. Structure-from-motion information is gen-
erally divided into two different classes: motion parallax and the kinetic depth effect.

An example of motion parallax occurs when we look sideways out of a car or train window.
Things nearby appear to be moving very rapidly, whereas objects close to the horizon only
appear to move gradually. Overall, there is a velocity gradient, as illustrated in Figure 8.13(a).
When we move forward through a cluttered environment, the result is a very different expand-
ing pattern of motion, like that shown in Figure 8.13(b). Wann et al. (1995) showed that sub-
jects were able to control their headings with an accuracy of 1 to 2 degrees when they were given
feedback from a wide-screen field of dots through which they had to steer. There is also evidence
for specialized neural mechanisms sensitive to the time to contact with visual moving targets.
These may enable animals to become aware of objects on a collision course (Wang and Frost,
1992).

The kinetic depth effect can be demonstrated with a wire bent into a complex 3D shape and
projected onto a screen, as shown in Figure 8.13(c). Casting the shadow of the wire will suffice
for the projection. The result is a two-dimensional line, but if the wire is rotated, the three-dimen-
sional shape of the wire immediately becomes apparent (Wallach and O’Connell, 1953). The
kinetic depth effect dramatically illustrates a key concept in understanding space perception. The
brain generally assumes that objects are rigid in 3D space, and the mechanisms of object per-
ception incorporate this constraint. The moving shadow of the rotating bent wire is perceived as
a rigid 3D object, not as a wiggling 2D line. It is easy to simulate this in a computer graphics
system by creating an irregular line, rotating it about a vertical axis, and displaying it using stan-
dard graphics techniques.
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Figure 8.13 Three different kinds of structure-from-motion information. (a) The velocity gradient that results when the
viewer is looking sideways out of a moving vehicle. (b) The velocity field that results when the viewer is
moving forward through the environment. (c) The kinetic depth information that results when a rotating
rigid object is projected onto a screen.

For many tasks, structure-from-motion information is at least as important as stereoscopic
depth in providing us with information about the spatial layout of objects in space (Rogers and
Graham, 1979). It helps us determine both the 3D shapes of objects and the large-scale layout
of objects in space. Structure-from-motion is the reason for the effectiveness of fly-through
animated movies that take an observer through a data space.

Eye Convergence

When we fixate an object with both eyes, they must converge to a degree dictated by the dis-
tance of the object. This vergence angle is illustrated in Figure 8.14. Given the two line-of-sight
vectors, it is a matter of simple trigonometry to determine the distance to the fixated object.
However, the evidence suggests that the human brain is not good at this geometric computation
except for objects within arm’s length (Viguier et al., 2001). The vergence sensing system appears
capable of quite rapid recalibration in the presence of other spatial information (Fisher and
Cuiffreda, 1990).
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Figure 8.14 The vergence angle 0 varies as the eyes fixate on near and far objects.

Stereoscopic Depth

There is an often-expressed opinion that stereoscopic displays allow “truly” three-dimensional
images. In advertising literature, potential buyers are urged to buy stereoscopic display equip-
ment and “see it in 3D.” As should be plain from this chapter, stereoscopic disparity is only one
of many depth cues that the brain uses to analyze 3D space, and it is by no means the most useful
one. If fact, as much as 20% of the population may be stereo-blind, yet they function perfectly
well and in fact are often unaware that they have a disability. Nevertheless, stereoscopic displays
can provide a particularly compelling sense of a three-dimensional virtual space, and for certain
tasks they can be extremely useful.

The basis of stereoscopic depth perception is forward-facing eyes with overlapping visual
fields. On average, human eyes are separated by about 6.4 centimeters; this means that the
brain receives slightly different images, which can be used to compute relative distances of pairs of
objects. Stereoscopic depth is a technical subject, and we therefore begin by defining some of the
terms.

Figure 8.15 illustrates a simple stereo display. Both eyes are fixated on the vertical line (a
for the right eye, ¢ for the left eye). A second line d in the left eye’s image is fused with b in the
right eye’s image. The brain resolves the discrepancy in line spacing by perceiving the lines as
being at different depths, as shown.

Angular disparity is the difference between the angular separation of a pair of points imaged
by the two eyes (disparity = o — B). Screen disparity is the distance between parts of an image
on the screen (screen disparity = (c — d) — (a — b)).

If the disparity between the two images becomes too great, double vision, called diplopia,
occurs. Diplopia is the appearance of the doubling of part of a stereo image when the visual
system fails to fuse the images. The 3D area within which objects can be fused and seen without
double images is called Panum’s fusional area. In the worst case, Panum’s fusional area has
remarkably little depth. At the fovea, the maximum disparity before fusion breaks down is only
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Figure 8.15 A simple stereo display. Different images for the two eyes are shown on the left. On the right, a top-down
view shows how the brain interprets this display. The vertical lines a and b in the right-eye image are
perceptually fused with ¢ and d, respectively, in the left-eye image.

1/10 degree, whereas at 6 degrees eccentricity (of the retinal image from the fovea), the limit is
1/3 degree (Patterson and Martin, 1992).

It is worthwhile to consider what these numbers imply for monitor-based stereo displays. A
screen with 30 pixels/cm, viewed at 57cm, will have 30 pixels per degree of visual angle. The
1/10-degree limit on the visual angle before diplopia occurs translates into about three pixels of
screen disparity. This means that we can only display three whole-pixel-depth steps before
diplopia occurs, either in front of or behind the screen. It also means that in the worst case, it
will only be possible to view a virtual image that extends in depth a fraction of a centimeter from
the screen (assuming an object on the screen is fixated). However, it is important to emphasize
that this is a worst-case scenario. It is likely that antialiased images will allow better-than-pixel
resolution, for exactly the same reason that vernier acuities can be achieved to better-than-pixel
resolution (discussed in Chapter 2). In addition, the size of Panum’s fusional area is highly depen-
dent on a number of visual display parameters, such as the exposure duration of the images and
the size of the targets. Both moving targets and blurred images can be fused at greater dispari-
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ties, and the fusional area becomes larger, with lateral separation of the image components
(Patterson and Martin, 1992). Depth judgments can also be made outside the fusional area,
although these are less accurate.

Stereopsis is a superacuity. We can resolve disparities of only 10 seconds of arc at better than
chance. This means that we should be able to see a depth difference between an object at 1 kilo-
meter and an object at infinity, under optimal viewing conditions.

Problems with Stereoscopic Displays

It is common for users of 3D visualization systems with stereoscopic display capabilities to disable
stereo viewing once the novelty has worn off, and view the data using a monocular perspective.
There are a number of reasons that stereoscopic displays are disliked. Double-imaging problems
tend to be much worse in stereoscopic computer displays than in normal viewing of the 3D envi-
ronment. One of the principal reasons for this is that in the real world, objects farther away than
the one fixated are out of focus on the retina. Because we can fuse blurred images more easily
than sharply focused images, this reduces diplopia problems in the real world. In addition, focus
is linked to attention and foveal fixation. In the real world, double images of nonattended periph-
eral objects generally will not be noticed. Unfortunately, in present-day computer graphics
systems, particularly those that allow for real-time interaction, depth of focus is never simulated.
All parts of the computer graphics image are therefore equally in focus, even though some parts
of the image may have large disparities. Thus, the double images that occur in stereoscopic com-
puter graphics displays are very obtrusive.

Frame Cancellation

Valyus (1966) coined the phrase frame cancellation to describe a common problem with
stereoscopic displays. If the stereoscopic depth cues are such that a virtual image should
appear in front of the screen, the edge of the screen appears to occlude the virtual object,
as shown in Figure 8.16. Occlusion overrides the stereo depth information, and the depth effect
collapses. This is typically accompanied by a double image of the object that should appear in
front.

The Vergence—Focus Problem

When we change our fixation between objects placed at different distances, two things happen:
the convergence of the eyes changes (vergence), and the focal lengths of the lenses in the eyes
accommodate to bring the new object into focus. The vergence and the focus mechanisms are
coupled in the human visual system. If one eye is covered, the vergence and the focus of the
covered eye change as the uncovered eye accommodates objects at different distances. This illus-
trates vergence being driven by focus. The converse also occurs: a change in vergence can drive
a change in focus.
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Usable working volume

Figure 8.16 Frame cancellation occurs when stereoscopic disparity cues indicate that an object is in front of the
monitor screen. Because the edge of the screen clips the object, this acts as an occlusion depth cue and
the object appears to be behind the window, canceling the stereo depth effect. Because of this, the
usable working volume of a stereoscopic display is restricted as shown.

In a stereoscopic display, all objects lie in the same focal plane, regardless of their apparent
depth. However, accurate disparity and vergence information may fool the brain into perceiving
them at different depths. Screen-based stereo displays provide disparity and vergence informa-
tion, but no focus information. The failure to present focus information correctly, coupled with
vergence, may cause a form of eyestrain (Wann et al., 1995; Mon-Williams and Wann, 1998).
This problem is present in both stereoscopic head-mounted systems and monitor-based stereo
displays. Wann et al. concluded that vergence and focus cross-coupling “prevents large depth
intervals of three-dimensional visual space being rendered with integrity through dual two-
dimensional displays.” This may account for the common reports of eyestrain occurring with
dynamic stereoscopic displays.

Distant Objects

The problems with stereoscopic viewing are not always related to disparities that are too large.
Sometimes disparities may be too small. The stereoscopic depth cue is most useful for 30 meters
or less from the viewer. Beyond this, disparities are too small to be resolved. For practical pur-
poses, most useful stereoscopic depth is obtained within distances of less than 10 meters from
the viewer and may be optimal for objects held roughly at arm’s length.

Making Effective Stereoscopic Displays

Because stereoscopic depth perception is a superacuity, the ideal stereoscopic display should have
very high resolution, much higher than the typical desktop monitor. On current monitors, the
fine detail is produced by pixels, and in a stereoscopic display the pixelation of features such as
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fine lines will generate false binocular correspondences. High-resolution displays enable the pre-
sentation of fine texture gradients and hence disparity gradients that are the basis for stereoscopic
surface shape perception.

There are also ways of mitigating the diplopia, frame cancellation, and vergence—focus prob-
lems described previously, although they will not be fully solved until true 3D displays become
commercially viable. All the solutions involve reducing screen disparities by artificially bringing
the computer graphics imagery into the fusional area. Valyus (1966) found experimentally that
the diplopia problems were acceptable if no more than 1.6 degrees of disparity existed in the
display. Based on this, he proposed that the screen disparity should be less than 0.03 times the
distance to the screen. However, this provides only about £1.5cm of useful depth at normal
viewing distances. Using a more relaxed criterion, Williams and Parrish (1990) concluded that a
practical viewing volume falls between —25% and +60% of the viewer-to-screen distance. This
provides a more usable working space.

One obvious solution to the problem of creating useful stereoscopic displays is simply to
create small virtual scenes that do not extend much in front of or behind the screen. However,
in many situations this is not practical—for example, if we wish to make a stereoscopic view of
extensive terrain. A more general solution is to compress the range of stereoscopic disparities so
that they lie within a judiciously enlarged fusional area, such as that proposed by Williams and
Parrish. A method for doing this is described in the next two sections.

But before going on, we must consider a potential problem. We should be aware that tam-
pering with stereoscopic depth may cause us to misjudge distance. There is conflicting evidence
as to whether this is likely. Some studies have shown stereoscopic disparity to be relatively unim-
portant in making absolute depth judgments. For example, Wallach and Karsh (1963) found that
when they rotated a wireframe cube viewed in stereo, only half the subjects they were trying to
recruit were even aware of a doubling in their eye separation. Because increasing eye separation
increases stereo disparities, this should have resulted in a grossly distorted cube. The fact that
distortion was not perceived indicates that kinetic depth-effect information and rigidity assump-
tions are much stronger than stereo information. Ogle (1962) argued that stereopsis gives us
information about the relative depths of objects that have small disparities; when it comes to
judging the overall layout of objects in space, other depth cues dominate. Yet, under certain cir-
cumstances, accurate depth may be made on the basis of stereoscopic disparities (Durgin et al.,
1995). More research will be needed before we have a really clear picture of the way stereoscopic
depth is combined with other depth information in the brain. Also, many experiments show large
individual differences in how we use the different kinds of depth information, so we will never
have a simple “one-size-fits-all” account.

Overall, we can conclude that the brain is very flexible in weighing evidence from the dif-
ferent depth cues and that disparity information can be scaled by the brain depending on other
available information. Thus, it should be possible to manipulate artificially the overall pattern
of stereo disparities and enhance local 3D space perception without distorting the overall sense
of space if other strong cues to depth, such as linear perspective, are provided. We (Ware et al.,
1998) investigated dynamically changed disparities by smoothly varying the stereoscopic eye
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separation parameter. We found that a subject’s disparity range could be changed by about 30%
over two seconds, without them even noticing, as long as the change was smooth.

Cyclopean Scale

One simple method that we have developed to deal with diplopia problems is called a cyclopean
scale (Ware et al., 1998). As illustrated in Figure 8.17, this manipulation involves scaling the
virtual environment about the midpoint between the observer’s estimated eye positions.
The scaling variable is chosen so that the nearest part of the scene comes to a point just behind
the monitor screen. To understand the effects of this operation, it is worthwhile to consider first
that scaling a virtual world about a single viewpoint does not result in any change in computer
graphics imagery (assuming depth of focus is not taken into account). Thus, the cyclopean scale
does not change the overall sizes of objects as they are represented on a computer screen. The
cyclopean scale has a number of benefits for stereo viewing:

®  More distant objects, which would normally not benefit from stereo viewing because they
are beyond the range where significant disparities exist, are brought into a position where
usable disparities are present.

®  The vergence—focus discrepancy is reduced. At least for the part of the virtual object that
lies close to the screen, there is no vergence—focus conflict.

®  Virtual objects that are closer to the observer than to the screen are also scaled so that
they lie behind the screen. This removes the possibility of frame cancellation.
Virtual Eye Separation

The cyclopean scale, although useful, does not remove the possibility of disparities that result in
diplopia. In order to do so, it is necessary to compress or expand the disparity range. To under-
stand how this can be accomplished, it is useful to consider a device called a telestereoscope. This

Original
Scaled

e —

Figure 8.17 Cyclopean scale: A virtual environment is resized about a center point midway between the left and right
viewpoints.
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uses a system of mirrors to increase the effective separation of the eyes, as shown in Figure 8.18.
A telestereoscope is generally used to increase disparities when distant objects are viewed.
However, the same principle can also be used to decrease the range of disparities by optically
moving the eyes closer together.

Figure 8.19 illustrates the concept of virtual eye separation and demonstrates how the appar-
ent depth of an object decreases if the virtual viewpoints have a wider eye separation than the
actual viewpoint. We consider only a single point in the virtual space. If E, is the virtual eye sep-
aration and E, is the actual eye separation of an observer, the relationship between depth in the
virtual image (z,) and in the viewed stereo image (z,) is a ratio:

E, _z(z, +z.) (8.1)

E, 2,(zs+z.)

where z, represents the distance to the screen. By rearranging terms, we can get the stereo depth
expressed as a function of the virtual depth and the virtual eye separation.

2,2, E, (8.2)

Zs

"EZ +Ez -Epz,

Figure 8.18 A telestereoscope is a device that increases the effective eye separation, thereby increasing
stereoscopic depth information (disparities).
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Figure 8.19 The geometry of virtual eye separation. In this example, the stereoscopic depth is decreased by
computing an image with a virtual eye separation that is smaller than the actual eye separation.
Stereoscopic depth can just as easily be increased.

If the virtual eye separation is smaller than the actual eye separation, stereo depth is decreased.
If the virtual eye separation is larger than the actual eye separation, stereo depth is increased.
E,=E, for “correct” stereoscopic viewing of a virtual scene, although for the reasons stated, this
may not be useful in practice. When E, = 0.0, both eyes get the same image, as in single-
viewpoint graphics. Note that stereo depth and perceived depth are not always equal. The brain
is an imperfect processor of stereo information, and other depth cues may be much more impor-
tant in determining the perceived depth.

Experimental evidence shows that subjects given control of their eye-separation parameters
have no idea of what the “correct” setting should be (Ware et al., 1998). When asked to adjust
the virtual eye-separation parameter, subjects tended to decrease the eye separation for scenes in
which there was a lot of depth, but actually increased eye separation beyond the normal (enhanc-
ing the sensation of stereoscopic depth) when the scene was flat. This behavior can be mimicked
by an algorithm designed to test automatically the depth range in a virtual environment
and adjust the eye-separation parameters appropriately (after cyclopean scale). We have found
the following function to work well for a large variety of digital terrain models. It uses the ratio
of the nearest point to the farthest point in the scene to calculate the virtual eye separation in
centimeters.

EyeSeparation = 2.5 + 5.0*(NearPoint/FarPoint)* (8.3)
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This function increases the eye separation to 7.5cm for shallow scenes (as compared to a normal
value of 6.4cm) and reduces it to 2.5 cm for very deep scenes.

Artificial Spatial Cues

There are effective ways to provide information about space that are not based directly on the
way information is provided in the normal environment, although the best are probably effec-
tive because they make use of existing perceptual mechanisms.One common technique that is
used to enhance 3D scatter plots is illustrated in Figure 8.20. A line is dropped from each data
point to the ground plane. Without these lines, only a 2D judgment of spatial layout is possible.
With the lines, it is possible to estimate 3D position. Kim et al. (1991) showed that this artifi-
cial spatial cue can be at least as effective as stereopsis in providing 3D position information.

It should be understood that although the vertical line segments in Figure 8.20 can be con-
sidered artificial additions to the plot, there is nothing artificial about the way they operate as
depth cues. Gibson (1986) pointed out that one of the most effective ways to estimate the sizes
of objects is with reference to the ground plane. Adding the vertical lines creates a link to the
ground plane and the rich texture size and linear perspective cues embedded in it. They function
in the same way as cast shadows, only they are generally easier to interpret, given that cast
shadows can be confusing with certain lighting directions.

Computer graphics systems sometimes provide a facility for what vision researchers
call proximity luminance covariance (Dosher et al., 1986), which is simply (but rather confus-
ingly) called depth cueing by computer graphics texts. Depth cueing in computer graphics is
the ability to vary the color of an object depending on its distance from the viewpoint, as
illustrated in Figure 8.21. Normally, this is done so that more distant objects are faded toward
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Figure 8.20 Dropping lines to a ground plane is an effective artificial spatial cue.
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Figure 8.21 Proximity luminance covariance as a depth cue. Object color is altered with distance in the direction of
the background color. This simulates extreme atmospheric effects.

the background color, becoming darker if the background is dark and lighter if the background
is light.

Proximity luminance covariance mirrors an environmental depth cue sometimes called
atmospheric depth. This refers to the reduction in contrast of distant objects in the environment,
especially under hazy viewing conditions. However the depth cueing is used in computer graph-
ics, it is generally much more extreme than any atmospheric effects that occur in nature, and for
this reason it can be considered an “artificial” cue. Dosher et al. (1986) showed that proximity
luminance covariance could function as an effective depth cue but was weaker than stereo for
static displays. With moving displays, however, proximity luminance covariance became a rela-
tively stronger cue in making an ambiguous 3D scene unambiguous.

Depth Cues in Combination

In computer graphics—based data displays, the designer has considerable freedom about which
depth cues to include in a data visualization and which to leave out. One approach would be
to simply include all of them. However, this is not always the best solution. There can be
considerable costs associated with creating a stereoscopic display or with using real-time
animation to take advantage of structure-from-motion cues. Other cues, such as depth-of-focus
information, are difficult or impossible to compute in the general case, because without knowing
what object the observer is looking at, it is impossible to determine what should be shown
in focus and what should be shown out of focus. A general theory of space perception should
make it possible to determine which depth cues are likely to be most valuable. Such a theory
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would provide information about the relative values of different depth cues when they are used
in combination.

Unfortunately, there is no single, widely accepted unifying theory of space perception,
although the issue of how depth cues interact has been addressed by a number of studies. For
example, the weighted-average model assumes that depth perception is a weighted linear sum of
the depth cues available in a display (Bruno and Cutting, 1988). Alternatively, depth cues may
combine in a geometric sum (Dosher et al., 1986). Young et al. (1993) proposed that depth cues
are combined additively, but are weighted according to their apparent reliability in the context
of other cues and relevant information. However, there is also evidence that some depth cues—
in particular, occlusion—work in a logical binary fashion rather than contributing to an arith-
metic or geometric sum. For example, if one object overlaps another in the visual image, it is
perceived as closer to the observer.

Most of the work on the combination of spatial information implicitly contains the notions
that spatial information is combined into a single cognitive model of space and that this model
is used as a resource in performing all spatial tasks. This theoretical position is illustrated in
Figure 8.22. However, evidence is accumulating that this unified model of cognitive space is fun-
damentally flawed.

The alternative model is that depth cues are combined expeditiously, depending on task
requirements (Bradshaw et al., 2000; Fine and Jacobs, 1999). For example, Wanger et al. (1992)
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execution
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Task B
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and execution
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Figure 8.22 Most models of 3D space perception assume that depth cues (C1... CN) feed into a cognitive 3D model
of the environment. This, in turn, is used as a resource for task planning and execution.
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showed that cast shadows and motion parallax cues both helped in the task of orienting one
virtual object to match another. Correct linear perspective (as opposed to parallel orthographic
perspective) actually increased errors; thus, it acted as a kind of negative depth cue for this par-
ticular task. However, when the task was one of translating an object, linear perspective was the
most useful of the cues, and motion parallax did not help at all. Bradshaw et al. (2000) showed
that stereopsis is critical in setting objects at the same distance from the observer, but motion
parallax is more important for a different layout task involving the creation of a triangle laid
out in depth. This alternative model is illustrated in Figure 8.23. Depending on whether the task
is threading a needle or running through a forest, different depth cues are most informative, and
judgments are made depending on the best available evidence.

An application designer’s choice is not whether to design a 3D or 2D interface, but rather
how much 3D to use, because depth cues can be applied somewhat independently. For example,
in a static picture we use all the monocular pictorial depth cues, but not motion parallax or
stereoscopic disparity. If we add structure-from-motion information, we get what we see at the
movie theater. If we add stereo to a static picture, the result is the kind of stereoscopic viewer

Task A
Planning
and execution

Task B
Planning
and execution

Figure 8.23 Experimental evidence shows that depth cues (C1...CN) are weighted very differently for different
tasks, suggesting that there is no unified cognitive spatial model.
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Figure 8.24 A dependency graph for depth cues. Arrows indicate how depth cues depend on each other for
undistorted appearance.

popular in Victorian times. We can also use far fewer depth cues. Modern desktop GUIs only
use occlusion for windows, some minor shading information to make the menus and buttons
stand out, and a cast shadow for the cursor.

However, there are some restrictions on our freedom to arbitrarily choose combinations of
depth cues. Figure 8.24 shows a dependency graph for depth cues. An arrow means that a par-
ticular cue depends on another cue to appear correctly. This graph does not show absolute rules
that cannot be broken, but it does imply that breaking the rules will have undesirable conse-
quences. For example, the graph shows that kinetic depth depends on correct perspective. It is
possible break this rule and show kinetic depth with a parallel (orthographic) perspective. The
undesirable consequence is that a rotating object will appear to distort as it rotates. This graph
is transitive; all of the depth cues depend on occlusion being shown properly, because they all
depend on something that in turn depends on occlusion. Thus, occlusion is, in a sense, the most
basic depth cue; it is difficult to break the occlusion dependency rule and have a perceptually
coherent scene.

Task-Based Space Perception

The obvious advantage of a theory of space perception that takes the task into account is that
it can be directly applied to the design of interactive 3D information displays. The difficulty is
that the number of tasks is potentially large, and many tasks that appear at first sight to be simple
and unified are found, upon more detailed examination, to be multifaceted. Nevertheless, taking
the task into account is unavoidable; perception and action are intertwined. If we are to under-
stand space perception, we must understand the purpose of perceiving. The best hope for progress
lies in identifying a small number of elementary tasks that are as common as possible. Once this
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is done, informed design decisions can be made. The remainder of this chapter is devoted to
analyzing the following tasks:

® Tracing data paths in 3D graphs

®  Judging the morphology of surfaces and surface target detection
®  Finding patterns of points in 3D space

®  Judging the relative positions of objects in space

®  Judging the relative movement of self within the environment

® Reaching for objects

®  Judging the “up” direction

® Feeling a sense of presence

This list of eight tasks is at best only a beginning; each has many variations. One additional task,
navigation (or wayfinding), is discussed in Chapter 10.

Tracing Data Paths in 3D Graphs

Many kinds of information structures can be represented as networks of nodes and arcs, technically
called graphs. Figure 8.25 shows an example of object-oriented computer software represented using
a 3D graph. Nodes in the graph stand for various kinds of entities, such as modules, classes, vari-
ables, and methods. The 3D spars that connect the entities represent various kinds of relationships
characteristic of object-oriented software, such as inheritance, function calls, and variable usage.

Information structures are becoming so complex that there has been considerable interest in
the question of whether a 3D visualization will reveal more information than a 2D visualization.

One special kind of graph is a tree, illustrated in Figure 8.26. Trees are a standard technique
for representing hierarchical information, such as organizational charts or the structure of infor-
mation in a computer directory. The cone tree is a graphical technique for representing tree graph
information in 3D (Robertson et al., 1993). It shows the tree branches arranged around a series
of circles, as illustrated in Figure 8.27. The inventors of the cone tree claim that as many as 1000
nodes may be displayable without visual clutter using cone trees—clearly more than could be
contained in a 2D layout. However, 3D cone trees require more complex user interactions to
access some of the information than are necessary for 2D layouts.

Empirical evidence also exists that shows that the number of errors in detecting paths in 3D
tree structures is substantially reduced if a 3D display method is used. Sollenberger and Milgram
(1993) investigated a task involving two 3D trees with intermeshed branches. The task was to
discover to which of two tree roots a highlighted leaf was attached. Subjects carried out the task
both with and without stereo depth, and with and without rotation to provide kinetic depth.
Their results showed that both stereo and kinetic depth viewing reduced errors, but that kinetic
depth was the more potent cue.
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Figure 8.25 The structure of object-oriented software code is represented as a graph in 3D.
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Figure 8.26 A tree is one of the most common ways of structuring information.
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Figure 8.27  The cone tree developed by Robertson et al. (1993).

However, an abstract tree structure is not necessarily a good candidate for 3D visualization,
for the reason that a tree data structure can always be laid out on a 2D plane in such a way that
none of the paths cross (path crossings are the main reason for errors in path-tracing tasks). Con-
versely, more general graph structures, such as that illustrated in Figure 8.28, usually cannot be
laid on a plane without some paths crossing and therefore would benefit more from 3D viewing
techniques.

To study the effects of stereo and kinetic depth cues on 3D visualization of graphs, we sys-
tematically varied the size of a graph laid out in 3D and measured path-tracing ability with both
stereoscopic and motion depth cues (Ware and Franck, 1996). Our results, illustrated in Figure
8.28, showed a factor-of-1.6 increase in the complexity that could be viewed when stereo was
added to a static display, but a factor-of-2.2 improvement when kinetic depth cues were added.
A factor-of-3.0 improvement occurred with both stereo and kinetic depth cues. These results held
for a wide range of graph sizes. A subsequent experiment showed that the advantage of kinetic
depth cues applied whether the motion was coupled to movements of the head or movements of
the hand, or consisted of automatic oscillatory rotation of the graph.

Occlusion is one additional depth cue that should make it easier to differentiate arcs if they
are colored differently, because occlusion makes it easier to see which arcs lie above and beneath.
It seems unlikely that other depth cues will contribute much to a path-tracing task. There is no
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Figure 8.28 The plot shows how the errors increase as the number of nodes increases in a 3D graph representing
stereo and motion depth cues.

obvious reason that we should expect perspective viewing to aid the comprehension of connec-
tions between nodes in a 3D graph, and this was confirmed empirically by our study (Ware and
Franck, 1996). There is also no reason to suppose that shading and cast shadows would provide
any significant advantage in a task involving connectivity, although shading might help in reveal-
ing the orientation of the arcs.

Judging the Morphology of Surfaces
and Surface Target Detection
Shape-from-shading and texture cues are extremely important in revealing surface shape, as dis-

cussed in Chapter 7. Here is some additional information on the value of stereoscopic and motion
parallax information.
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Experimental evidence suggests that the relative contribution of structure-from-motion
and stereoscopic depth depends on very specific task-related factors. Surface shape detection is
not a simple problem. A study of the judged heights of cones showed that stereo depth was much
more effective than structure-from-motion (Durgin et al., 1995). Conversely, Tittle et al. (1995)
showed that structure-from-motion information was more important than stereo information
in judging the gradient of a textured surface. Disparity curvature information may be consider-
ably more important than absolute disparities in judging the shapes of surfaces, because
this information is relatively invariant with viewing distance. Rogers and Cagnello (1989) showed
that the kind of curvature matters. In a stereoscopic display, we are approximately twice as sen-
sitive to the curvature of a horizontally oriented cylinder as we are to that of a vertically ori-
ented cylinder.

There are also temporal factors to be taken into consideration. When we are viewing stereo-
scopic displays, it can take several seconds for the impression of depth to build up. However,
stereoscopic depth and structure-from-motion information interact strongly. With moving stereo-
scopic displays, the time to fusion can be considerably shortened (Patterson and Martin, 1992).
In determining shape from surfaces made from random dot patterns, using both stereoscopic and
motion depth cues, Uomori and Nishida (1994) found that kinetic depth information dominated
the initial perception of surface shape, but after an interval of four to six seconds, stereoscopic
depth came to dominate.

Overall, it is clear that the way different depth cues combine in judgments of surface shape
is highly complex. The relative values of stereo and structure-from-motion depend on the viewing
distance, the texture of the surface, the kind of surface shape, and the viewing time. Because of
this, when arbitrary surface shapes are being viewed, stereoscopic depth, kinetic depth, shape-
from-shading, and surface textures can all add to our understanding of surface shape. The most
important cues for any particular surface will vary, but including them all will ensure that good
shape information is always presented.

Stereoscopic depth can also be used to enhance real-world imagery. Kalaugher (1985) devel-
oped an intriguing technique that enabled a fusion of real-world imagery and photographic
imagery. His method is simply to take a slide viewer out into the field, to the same place where
a photographic slide image of the scene was previously taken. One eye is then used to view the
photographic image while the other eye views the actual scene. Using this technique, it is possi-
ble to either enhance or reduce stereoscopic depth simply by moving laterally. Kalaugher reported
that with this viewing technique, otherwise invisible features in the real world, such as ledges on
distant cliffs, could be seen. A variation of the technique can also be used to view changes in a
landscape, such as landslides. When the eyes are alternately covered, these appear as anomalous
depth or as movement effects.

Patterns of Points in 3D Space

The scatter plot is probably the most effective method for finding unknown patterns in 2D dis-
crete data. In a 3D scatter plot, three data variables are used to position a point with respect to
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the XYZ axes. The resulting 3D scatter plot is usually rotated around a vertical axis, exploiting
structure-from-motion to reveal its structure (Donoho et al., 1988). This technique can be added
to the color- and shape-enhanced scatter plots discussed in Chapters 4 and 5.

There has been little or no empirical work on the role of depth cues in perceiving structures
such as clusters and correlations in 3D. Nevertheless, a number of conclusions can be deduced
from our understanding of the way depth cues function.

Perspective cues will not help us perceive depth in a 3D scatter plot, because a cloud of small,
discrete points has no perspective information. If the points all have a constant and relatively
large size, weak depth information will be produced by the size gradient. Similarly, with small
points, occlusion will not provide useful depth information, but if the points are larger, some
ordinal depth information will be perceivable. If there are a large number of points, cast shadows
will not provide information, because it will be impossible to determine the association between
a given point and its shadow. Shape-from-shading information will be missing, because a point
has no orientation information. Each point will reflect light equally, no matter where it is placed
and no matter where the light source is placed.

Hence, it is likely that the only important depth cues that will be useful in a 3D scatter plot
are stereoscopic depth and structure-from-motion. There seems to be little doubt that using both
will be advantageous. As with the perception of surfaces, discussed above, the relative advan-
tages of the different cues will depend on a number of factors. Stereo depth will be optimal for
fine depth discriminations between points that lie near one another in depth. Structure-from-
motion will be more important for points that lie farther apart in depth.

One of the problems with visualizing clouds of data points is that the overall shape of the
cloud cannot easily be seen, even when stereo and motion cues are provided. One way to add
extra shape information to a cloud of discrete points is to add shape-from-shading information
artificially. It is possible to treat a cloud of data points as though each point were actually a
small, flat oriented object. These flat particles can be artificially oriented, if they lie near the
boundary of the point cloud, to reveal the shape of the cloud when shading is applied. In this
way, perception of the cloud’s shape can be considerably enhanced, and shape information can
be perceived without additional stereo and motion cues. At the same time, the positions of indi-
vidual points can be perceived. Figure 8.29 illustrates this.

Judging Relative Positions of Objects in Space

Judging the relative positions of objects is a complex task, performed very differently depending
on the overall scale and the context. When very fine depth judgments are made in the near vicin-
ity, as in the task of threading a needle, stereopsis is the strongest single cue. Stereoscopic depth
perception is a superacuity and is optimally useful for objects held at about arm’s length. For
these fine tasks, motion parallax is not very important, as evidenced by the fact that people hold
their heads still when threading needles.

In larger environments, stereoscopic depth can play no role at all at distances beyond 30 m.
Conversely, when we are judging the overall layout of objects in a larger environment, motion
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Figure 8.29 A cloud of discrete points is represented by oriented particles. The orientation is determined by using an
inverse-square law of attraction between the particles. When the cloud is artificially shaded, its shape is
revealed (Li, 1997).

parallax, linear perspective, cast shadows, and texture gradients all contribute, depending on the
exact spatial arrangement.

Gibson (1986) noted that much of size constancy can be explained by a referencing opera-
tion with respect to a textured ground plane. The sizes of objects that rest on a uniformly tex-
tured ground plane can be obtained by reference to the texture element size. Objects slightly
above the ground plane can be related to the ground plane through the shadows they cast. In
artificial environments, a very strong artificial reference can be provided by dropping a vertical
line to the ground plane. A practical aid to visualizing spatial layout is a regular grid or checker-
board on the floor and walls, as illustrated in Figure 8.20. A grid provides a strong linear per-
spective cue, as well as a reference texture that may be optimal for many applications.

Judging the Relative Movement of Self within the Environment

When we are navigating through a virtual environment representing an information space, there
are a number of frames of reference that may be adopted. For example, an observer may feel she
is moving through the environment or that she is stationary and the world is moving past. In
virtual-environment systems that are either helmet-mounted or monitor-based, the user
rarely actually moves physically any great distance, because real-world obstacles lie in the way.
If self-movement is perceived, it is generally an illusion. Note that this applies only to linear
motion, not to rotations; users with helmet-mounted displays can usually turn their heads quite
freely.

A sensation of self-movement can be strongly induced even when the subject is not moving.
This phenomenon, called vection, has been studied extensively. When observers are placed inside
a large moving visual field—created either by a physical drum or by means of computer graph-
ics within a virtual-reality helmet—they invariably feel that they are moving, even though they
are not. A number of visual parameters influence the amount of vection that is perceived:
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Field size: In general, the larger the area of the visual field that is moving, the stronger the
experience of self-motion (Howard and Heckman, 1989).

Foreground/background: Much stronger vection is perceived if the moving part of the visual
field is perceived as background more distant from the observer than foreground objects
(Howard and Heckman, 1989). In fact, vection can be perceived even with quite a small
moving field, if that field is perceived to be relatively distant. The classic example occurs
when someone is sitting in a train at a station and the movement of an adjacent vehicle
(seen through a window) causes that person to feel he or she is moving even though this is
not the case.

Frame: Vection effects are considerably increased if there is a static foreground frame between
the observer and the moving background (Howard and Childerson, 1994).

Stereo: Stereoscopic depth can determine whether a moving pattern is perceived as background
or foreground, and thereby increase or decrease vection (Lowther and Ware, 1996).

In aircraft simulators and other vehicle simulators, it is highly desirable that the user experiences
a sense of motion, even though the simulator’s actual physical motion is relatively small or non-
existent. One of the unfortunate side effects of this perceived motion is simulator sickness. The
symptoms of simulator sickness can appear within minutes of acute exposure to perceived
extreme motion. Kennedy et al. (1989) report that between 10 and 60% of users of immersive
displays report some symptoms of simulator sickness. This high incidence may ultimately be a
major barrier to the adoption of fully immersive display systems.

Simulator sickness is thought to be caused by conflicting cues from the visual system and
the vestibular system of the inner ear. When most of the visual field moves, the brain usually
interprets this as a result of self-motion. But if the observer is in a simulator, no corresponding
information comes from the vestibular system. According to this theory, the contradictory infor-
mation results in nausea.

There are ways to ensure that simulator sickness does occur, and ways of reducing its effects.
Turning the head repeatedly while moving in a simulated virtual vehicle is almost certain to induce
nausea (DiZio and Lackner, 1992). This means that a virtual ride should never be designed in
which the participant is expected to look from side to side while wearing a helmet-mounted
display. Simulator sickness in immersive virtual environments can be mitigated by initially restrict-
ing the participant’s experience to short periods of exposure, lasting only a few minutes each day.
This allows the user to build up a tolerance to the environment, and the periods of exposure can
gradually be lengthened (McCauley and Sharkey, 1992).

Reaching for Objects

A number of researchers have investigated how eye—hand coordination changes when there is a
mismatch between feedback from the visual sense and the proprioceptive sense of body position.
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A typical experiment involves subjects pointing at targets while wearing prisms that displace the
visual image relative to the proprioceptive information from their muscles and joints. Subjects
adapt rapidly to the prism displacement and point accurately. Work by Rossetti et al. (1993) sug-
gests that there may be two mechanisms at work, a long-term, slow-acting mechanism that is
capable of spatially remapping misaligned systems, and a short-term mechanism that is designed
to realign the visual and proprioceptive systems within a fraction of a second. These results have
been confirmed in studies with fish-tank VR systems, showing that a large translational offset
between the hand position and the object being manipulated with the hand has only a small effect
on performance (Ware and Rose, 1999).

Rotational mismatches between what is seen and what is held may have a much greater neg-
ative impact on eye—hand coordination than translational mismatches. Experiments with prisms
that invert the visual field have shown that it can take months to reach behavior approaching
normal performance under this condition, and adaptation may never be complete (Harris, 1965).

Designers of 3D display systems must make choices about which depth cues to include. In
a full-blown virtual reality system, the goal is to include all of the depth cues at the highest fidelity
possible, but in practical systems for molecular modeling or 3D computer-aided design, various
tradeoffs must be made. Two of the options are whether to use a stereoscopic display and whether
to provide motion parallax through perspective coupled to head position. Both require an invest-
ment in technology not normally provided with computer workstations. The evidence suggests
that having a stereoscopic display is more important than the motion parallax that occurs through
the motion of the user’s head with respect to the objects of attention (Boritz and Booth, 1998;
Arsenault and Ware, in press). It appears that users can adapt rapidly to a stereoscopic view from
an incorrect viewpoint.

Actually providing a sense of physical contact with nearby objects is also important in cal-
ibrating the proprioceptive system, especially for grasping (Mackenzie and Iberall, 1994). Unfor-
tunately, this component of natural object interaction is proving very difficult to simulate.
Although VR displays can produce excellent 3D sound and reasonable simulation of visual space,
the simulation of touch is still very poor. There is no technology that can produce a physically
touchable virtual object at any desirable location within a reasonably large volume of space,
although such simulations can be made for small volumes of space by devices such as the
PHANTOM (Massie and Salisbury, 1994). This means that it is possible to create small-scale
virtual environments that allow for touch and high-resolution stereo display, but not to create
large-scale data spaces with the same haptic affordances.

Judging the “Up” Direction

In abstract 3D data spaces (for example, molecular models), there is often no sense of an “up”
direction, and this can be confusing. The “up” direction is defined both by gravity, sensed by the
vestibular system in the inner ear, and by the presence of the ground on which we walk. Much
of the research that has been done on perceived “up” and “down” directions has been done as
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part of space research, to help us understand how people can best orient themselves in a gravity-
free environment.

Nemire et al. (1994) showed that linear perspective provides a strong cue in defining objects
perceived at the same horizontal level. They showed that a linear grid pattern on the virtual floor
and walls of a display strongly influenced what the participants perceived as horizontal; to some
extent, this overrode the perception of gravity. Other studies have shown that placing recogniz-
able objects in the scene very strongly influences a person’s sense of self-orientation. The pres-
ence of recognizable objects with a known normal orientation with respect to gravity, such as a
chair or a standing person, can strongly influence which direction is perceived as up (Howard
and Childerson, 1994). Both of these results can easily be adapted to virtual environments. Pro-
viding a clear reference ground plane and placing recognizable objects on it can define, to some
extent, a vertical polarity for a data space.

The Aesthetic Impression of 3D Space (Presence)

One of the most nebulous and ill-defined tasks related to 3D space perception is achieving a
sense of presence. What is it that makes a virtual object or a whole environment seem
vividly three-dimensional? What is it that makes us feel that we are actually present in an
environment?

Much of presence has to do with a sense of engagement, and not necessarily with visual
information. A reader of a powerfully descriptive novel may visualize (to use the word in its
original cognitive sense) himself or herself in a world of the author’s imagination—for example,
watching Ahab on the back of the great white whale, Moby-Dick.

Presence is somewhat anomalous in a task-based classification of spatial information, because
presence as such does not have a clear task associated with it. It is simply the sense of being
there. Nevertheless, a number of practical applications require a sense of presence. For an archi-
tect designing a virtual building to present to a client, the feeling of spaciousness and the aes-
thetic quality of that space may be all-important. In virtual tourism, where the purpose is to give
a potential traveler a sensation of what the Brazilian rain forest is really like, presence is also
crucial.

A number of studies have used virtual-reality techniques for phobia desensitization. In one
study by North et al. (1996), patients who had a fear of open spaces (agoraphobia) were exposed
to progressively more challenging virtual open spaces. The technique of progressive desensitiza-
tion involves taking people closer and closer to the situations that cause them fear. As they
overcome their fears at one level of exposure, they can be taken to a slightly more stressful sit-
uation. In this way, they can overcome their phobias, one step at a time. The reason for using
VR simulations in phobia desensitization is to provide control over the degree of presence and
to reduce the stress level by enabling the patient to exit the stressful environment instantaneously.
After treatment in a number of virtual environments, the experimental subjects of North et al.
scored lower on a standardized Subjective Units of Discomfort test.
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In developing a virtual-reality theme park attraction for Disneyland, Pausch et al. (1996)
observed that high frame rate and high level of detail were especially important in creating a
sense of presence for users “flying on a magic carpet.” Presenting a stereoscopic display did
not enhance the experience. Empirical studies have also shown that high-quality structure-
from-motion information contributes more to a sense of presence than does stereoscopic
display (Arthur et al., 1993). However, the sense of presence may also be divided into subtasks.
Hendrix and Barfield (1996) found stereoscopic viewing to be very important when subjects
were asked to rate the extent to which they felt they could reach for and grasp virtual objects,
but it did not contribute at all to the sense of the overall realism of the virtual condition. Hendrix
and Barfield also found that having a large field of view was important to creating a sense of
presence.

Conclusion

High-quality, interactive 3D displays are now becoming cheap, although even mediocre-quality
VR systems are still expensive. But creating a 3D visualization environment is considerably more
difficult than creating a 2D system with similar capabilities. We still lack design rules for 3D
environments, and many interaction techniques are competing for adoption.

The strongest argument for the ultimate ascendancy of 3D visualization systems, and 3D
user interfaces in general, must be that we live in a 3D world and our brains have evolved to
recognize and interact with 3D. The 3D design space is self-evidently richer than the 2D design
space, because a 2D space is a part of 3D space. It is always possible to flatten out part of a 3D
display and represent it in 2D.

Nevertheless, it also should be cautioned that going from 2D to 3D adds far less visual infor-
mation than might be supposed. Consider the following simple argument. On a line of a com-
puter display, we can perceive 1000 distinct pixels. On a plane of the same display, we can display
1000 x 1000 = 1,000,000 pixels. But going to a stereoscopic display only increases the number
of pixels by a factor of 2. Even this is an overestimate, because it assumes that the images pre-
sented to the two eyes are completely independent, whereas in fact they must be highly corre-
lated for us to perceive stereoscopic depth. We may only be able to fuse stereoscopically images
that differ by 10% or so. Of course, as we have shown in this chapter, motion parallax can enable
us to see more information, and in the case of 3D networks, a network about three times as large
can be perceived with stereo and motion parallax. The other depth cues, such as occlusion and
linear perspective, certainly help us perceive a coherent 3D space, but as the study of Cockburn
and McKenzie (2001) suggests, we should not automatically assume that 3D provides more
readily accessible information.

This chapter has been about the use of 3D spaces to display information. It should not be
assumed; however, that a 3D display is automatically superior to a 2D solution. Deciding whether
or not to use a 3D display must involve deciding whether there are sufficient important subtasks
for which 3D is clearly beneficial. The complexity and the consistency of the user interface for
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the whole application must be weighed in the decision. Even if 3D is better for one or two sub-
tasks, the extra cost involved and the need for nonstandard interfaces for the 3D components
may suggest that a 2D solution would be better overall. In terms of overall assessment, the cost
of navigation is an essential component, and many 3D navigation methods are considerably
slower than 2D alternatives. Even if we can show somewhat more information in 3D, the rate

of information access may be slower. Issues relating to overall system costs are dealt with in
Chapters 10 and 11.
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CHAPTER g

Imaoes, Words, and Gestures

This chapter addresses the relationship between visual information and verbal or textual infor-
mation. Most visualizations are not purely graphical; they are composites, combining images
with text or spoken language. But why do we need words? And when will images and words
each be most effective? How should labels be used in diagrams? How should visual and verbal
material be integrated in multimedia presentations? A particularly thorny but interesting problem
is whether or not we should be using visual languages to program computers. Although com-
puters are rapidly becoming common in every household, very few householders are program-
mers. It has been suggested that visual programming languages may make it easier for
“nonprogrammers” to program computers.

We begin by considering the differences between visual and verbal means of communication,
then move on to the application areas.

Coding Words and Images

Bertin, in his seminal work, Semiology of Graphics (1983), distinguishes two distinct sign
systems. One cluster of sign systems is associated with auditory information processing and
includes mathematical symbols, natural language, and music. The second cluster is based on
visual information processing and includes graphics, together with abstract and figurative
imagery. More recently, the dual coding of Paivio (1987) proposes that there are fundamentally
different types of information stored in working memory; he calls them imagens and logogens.
Roughly speaking, imagens denote the mental representation of visual information, whereas
logogens denote the mental representation of language information.

Visual imagens consist of objects, natural groupings of objects, and whole parts of objects
(for example, an arm), together with spatial information about the way they are laid out in a
particular environment, such as a room. Logogens store basic information pertaining to language,

297
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although not the sounds of the words. Logogens are processed by a set of functional subsystems
that provide support for reading and writing, understanding and producing speech, and logical
thought. Logogens need not necessarily be tied to speech. Even in the profoundly deaf, the
same language subsystems exist and are used in the reading and production of Braille and sign
language.

The architecture of dual coding theory is sketched in Figure 9.1. Visual-spatial information
enters through the visual system and is fed into association structures in the nonverbal imagen
system. Visual text is processed, but is then fed into the association structures of logogens.
Acoustic verbal stimuli are processed primarily through the auditory system and then fed into
the logogen system. Logogens and imagens, although based on separate subsystems, can be
strongly interlinked. For example, the word cat and language-based concepts related to cats will
be linked to visual information related to the appearance of cats and their environment.

Much of this theory is uncontroversial. It has been known for decades that there are differ-
ent neural processing centers for verbal information (speech areas of the temporal cortex) and
visual information (the visual cortex). But the idea that we can “think” visually is relatively
recent. One line of evidence comes from mental imaging. When people are asked to compare the
size of a light bulb with the size of a tennis ball, or the green of a pea with the green of a Christ-
mas tree, most claim that they use mental images of these objects to carry out the task (Kosslyn,
1994). Other studies by Kosslyn and his coworkers show that people treat objects in mental
images as if they have real sizes and locations in space. Recently, positron emission tomography
(PET) has been used to reveal which parts of the brain are active during specific tasks. This shows
that when people are asked to perform tasks involving mental imaging, the visual processing
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Figure 9.1 According to dual-coding theory, visual and verbal information is stored in different systems with

different characteristics. Adapted from Paivio (1987).
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centers in the brain are activated. Also, when they mentally change the size and position of an
imagined object, different visual areas of the brain are activated (Kosslyn et al., 1993). In addi-
tion, if visual processing centers in the brain are damaged, mental imaging ability is disrupted
(Farah et al., 1992). It would seem that when we see a cow and when we mentally visualize a
cow, the same neural pathways are excited, at least in part.

Indeed, modern visual memory theory takes the position that visual object processing and
visual object recognition are part of the same process. To some extent, the visual memory traces
of objects and scenes are stored as part of the processing mechanism; thus it is not necessary for
an object to be fully processed for recognition to take place (Beardsley, 1997). This can account
for the great superiority of recognition over recall. We can easily recognize that we have seen
something before, but reproducing it in a drawing or with a verbal description is much harder.

The Nature of Language

Noam Chomsky revolutionized the study of natural language because he showed that there are
aspects of the syntactic structure of language that generalize across cultures (Chomsky, 1965). A
central theme of his work is the concept that there are “deep structures” of language, repre-
senting innate cognitive abilities based on inherited neural structures. In many ways, this work
forms the basis of modern linguistics. The fact that Chomsky’s analysis of language is also a cor-
nerstone of the theory of computer languages lends support to the idea that natural languages
and computer languages have the same cognitive basis.

There is a critical period for normal language development that extends to about age 10.
However, language is most easily acquired in the interval from birth to age three or four. If we
do not obtain fluency in some language in our early years, we will never become fluent in any
language.

Sign Language

Being verbal is not a defining characteristic of natural language. Sign languages are interesting
because they are exemplars of true visual languages. If we do not acquire sign languages early
in life, we will never become very adept at using them. Groups of deaf children spontaneously
develop rich sign languages that have the same deep structures and grammatical patterns as
spoken language. These languages are as syntactically rich and expressive as spoken language
(Goldin-Meadow and Mylander, 1998). There are many sign languages; British sign language is
a radically different language from American sign language, and the sign language of France is
similarly different from the sign language of francophone Québec (Armstrong et al., 1994). Sign
languages grew out of the communities of deaf children and adults that were established in the
19t century, arising spontaneously from the interactions of deaf children with one another. Sign
languages are so robust that they thrived despite efforts of well-meaning teachers to suppress
them in favor of lip reading—a far more limiting channel of communication.

Although in spoken languages words do not resemble the things they reference (with a
few rare exceptions), signs are based partly on similarity. For example, see the signs for a tree
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Figure 9.2 Three different sign-language representations of a tree. Note that they are all very different and all
incorporate motion From Bellugi and Klima (1976).

illustrated in Figure 9.2. Sign languages have evolved rapidly. The pattern appears to be that a
sign is originally created on the basis of a form of similarity in the shape and motion of the
gesture, but over time, the sign becomes more abstract and similarity becomes less and less impor-
tant (Deuchar, 1990). It is also the case that even signs apparently based on similarity are only
recognized correctly about 10% of the time without instruction, and many signs are fully abstract.
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Language Is Dynamic and Distributed over Time

We take in spoken, written, and sign language serially; it can take a few seconds to hear or read
a short sentence. Armstrong et al. (1994) argue that in important ways, spoken language is essen-
tially dynamic. Verbal expression does not consist of a set of fixed, discrete sounds; it is more
accurately described as a set of vocal gestures producing dynamically changing sound patterns.
The hand gestures of sign language are also dynamic, even when denoting static objects, as Figure
9.2 illustrates. There is a dynamic and inherently temporal phrasing at the syntactic level in the
sequential structure of nouns and verbs. Even written language becomes a sequence of mentally
recreated dynamic utterances when it is read.

In contrast with the dynamic, temporally ordered nature of language, relatively large sec-
tions of static pictures and diagrams can be understood in parallel. We can comprehend a complex
visual structure in a fraction of a second, based on a single glance.

Visual and Spoken Language

The difficulty of writing and understanding computer programs has led to the development
of a number of so-called visual languages in the hope that these can make the task easier.
But we must be very careful in discussing these as languages. Visual programming languages
are mostly static diagramming systems, so different from spoken languages that using the
word language for both can be more misleading than helpful. Linguists and anthropologists
commonly use the term natural language to refer to the spoken and written communications
that make up our everyday human communication. Many of the cognitive operations required
for computer programming have more in common with natural language than with visual
processing.
Consider the following instructions that might be given to a mailroom clerk:

Take a letter from the top of the In tray.

Put a stamp on it.

Put the letter in the Out tray.

Continue until all the letters have stamps on them.

This is very like the following short program, which beginning programmers are often asked to
write:

Repeat
get a Tine of text from the input file
change all the Towercase letters to uppercase
write the Tine to the output file

Until (there is no more input)
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Figure 9.3 A flowchart is often a poor way to represent information that can be readily expressed in natural

language-like pseudocode.

This example program can also be expressed in the form of a graphical language called a
flowchart (see Figure 9.3).

Flowcharts provide a salutary lesson to those who design visual programming languages.
Flowcharts were once part of every introductory programming text, and it was often a contrac-
tual requirement that large bodies of software be documented with flowcharts describing the code
structure. Once almost universally applied, flowcharts are now almost defunct. Why did flow-
charts fail? It seems reasonable to attribute this to a lack of commonality with natural language.
We have already learned to make while statements and if-then structured expressions in every-
day communications. Using natural language-like pseudocode transfers this skill. But a graphi-
cal flowchart representing the same program must be translated before it can be interpreted in
the natural-language processing centers.

Nevertheless, some information is much better described in the form of a diagram. A second
example illustrates this. Suppose that we wish to express a set of propositions about the man-
agement hierarchy of a small company.

Jane is Jim’s boss.
Jim is Joe’s boss.

Anne works for Jane.
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Figure 9.4 A structure diagram shows a hypothetical management hierarchy.

Mark works for Jim.
Anne is Mary’s boss.
Anne is Mike’s boss.

This pattern of relationships is far more clearly expressed in a diagram, as shown in Figure 9.4.

These two examples suggest that visual language, in the form of static diagrams, has certain
expressive capabilities that are very different from, and perhaps complementary to, natural
language. Diagrams should be used to express structural relationships among program elements,
whereas words should be used to express detailed procedural logic.

However, the existence of the sign languages of the deaf suggests that there can be visual
analogs to natural language and hence that effective visual programming languages are poten-
tially possible. If they are to be developed, however, they must be dynamically phrased, rely
heavily on animation, and ideally be learned early in life. We will return to this concept later in
this chapter.

Images vs. Words

The greatest advantage of words over graphical communication, either static or dynamic, is that
spoken and written natural language is ubiquitous. It is by far the most elaborate, complete, and
widely shared system of symbols that we have available. For this reason alone, it is only when
there is a clear advantage that visual techniques are preferred. In general, words should provide
the general framework for the narrative of an extended communication. They can also be used
for the detailed structure.

Having said that, often the visualization designer has the task of deciding whether to repre-
sent information visually, using words, or both. Other, related choices involve the selection of
static or moving images and spoken or written text. If both words and images are used, methods
for linking them must be selected. Useful reviews of cognitive studies that bear on these issues
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have been summarized and applied to multimedia design by a number of authors, including
Strothotte and Strothotte (1997), Najjar (1998), and Faraday (1998). What follows is a summary
of some of the key findings, beginning with the issue of when to use images vs. words. We
start with static images, then consider animated images before moving to discuss the problem of
combining images and words.

Static Images vs. Words

As a general comment, images are better for spatial structures, location, and detail, whereas
words are better for representing procedural information, logical conditions, and abstract verbal
concepts. Here are some more detailed points:

® Images are best for showing structural relationships, such as links between entities and
groups of entities. Bartram (1980) showed that planning trips on bus routes was better
achieved with a graphical representation than with tables.

®  Tasks involving localization information are better conveyed using images. Haring and Fry
(1979) showed improved recall of compositional information for pictorial, as opposed to
verbal, information.

®  Visual information is generally remembered better than verbal information, but not
for abstract images. A study by Bower et al. (1975) suggested that it is important that
visual information be meaningful and capable of incorporation into a cognitive framework
for the visual advantage to be realized. This means that an image memory advantage
cannot be relied on if the information is new and is represented abstractly and out of
context.

® Images are best for providing detail and appearance. A study by Dwyer (1967) suggests
that the amount of information shown in a picture should be related to the amount of
time available to study it. A number of studies support the idea that first we comprehend
the shape and overall structure of an object, then we comprehend the details (Price and
Humphreys, 1989; Venturino and Gagnon, 1992). Because of this, simple line drawings
may be most effective for quick exposures.

® Text is better than graphics for conveying abstract concepts, such as freedom or efficiency
(Najjar, 1998).

®  Procedural information is best provided using text or spoken language, or sometimes text
integrated with images (Chandler and Sweller, 1991). Static images by themselves are not
effective in providing complex, nonspatial instructions.

®  Text is better than graphics for conveying program logic.

® Information that specifies conditions under which something should or should not be done
is better provided using text or spoken language (Faraday, 1998).
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Animated Images vs. Words

Computer animation opens up a whole range of new possibilities for conveying information. The
work of researchers such as Michotte (1963), Heider and Simmel (1944), and Rimé et al. (1985),
discussed in Chapter 6, shows that people can perceive events such as hitting, pushing, and aggres-
sion when geometric shapes are moved in simple ways. None of these things can be expressed
with any directness using a static representation, although many of them can be well expressed
using words. Thus, animation brings graphics closer to words in expressive capacity.

® Possibly the single greatest enhancement of a diagram that can be provided by animation
is the ability to express causality (Michotte, 1963). With a static diagram, it is possible to
use some device, such as an arrow, to denote a causal relationship between two entities.
But the arrowhead is a conventional device that perceptually shows that there is some
relationship, not that it has to do with causality. The work of Michotte shows that with
appropriate animation and timing of events, a causal relationship will be directly and
unequivocally perceived.

An act of communication can be expressed by means of a symbol representing a message
moving from the message source object to the message destination object (Stasko, 1990).
For example, Figure 9.5 shows a part of a message-passing sequence between parts of a

N

Figure 9.5 The “snakes” concept (Parker et al., 1998). Image courtesy of NVision Software Systems.
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distributed program using a graphical technique called snakes (Parker et al., 1998).
Animation moves the head of the snake from one software component to the next as the
locus of computation moves; the tail of the snake provides a sense of recent history.
Although a verbal or text description of this is possible, it would be difficult to describe
adequately the behavior of multiple process threads, whereas multiple snakes readily can
express this.

® A structure can be transformed gradually using animation. In this way, processes of
restructuring or rearrangement can be made explicit. However, only quite simple
mechanisms can be readily interpreted. Based on studies that required the inference of
hidden motion, Kaiser et al. (1992) theorized that a kind of “naive physics” is involved in
perceiving action. This suggests that certain kinds of mechanical logic will be readily
interpreted—for example, a simple hinge motion—but that complex interactions will not
be interpreted correctly.

® A sequence of data movements can be captured with animation. The pioneering movie
Sorting Out Sorting used animation to explain a number of different computer sorting
algorithms by clearly showing the sequence in which elements were moved (Baecker,
1981). The smooth animated movement of elements enabled the direct comprehension of
data movements in a way that could not be achieved using a static diagram.

® Some complex spatial actions can be conveyed using animation (Spangenberg, 1973). An
animation illustrating the task of disassembling a machine gun was compared to a
sequence of still shots. The animation was found to be superior for complex motions, but
verbal instructions were just as effective for simple actions, such as grasping some
component part. Based on a study of mechanical troubleshooting, Booher (1975)
concluded that an animated description is the best way to convey perceptual-motor tasks,
but that verbal instruction is useful to qualify the information. Teaching someone a golf
swing would be better achieved with animation than with still images.

Links between Images and Words

The central claim of multimedia is that providing information in more than one medium of com-
munication will lead to better understanding (Mousavi et al., 1995). Mayer et al. (1999) and
others have translated this into a theory based on dual coding. They suggest that if active pro-
cessing or related material takes place in both visual and verbal cognitive subsystems, learning
will be better. It is claimed that dual coding of information will be more effective than single-
modality coding. According to this theory, it is not sufficient for material to be simply presented
and passively absorbed; it is critical that both visual and verbal representation be actively con-
structed, together with the connections between them.

Supporting multimedia theory, studies have shown that images and words in combination
are often more effective than either in isolation (Faraday and Sutcliffe, 1997; Wadill
and McDaniel, 1992). Faraday and Sutcliffe (1999) showed that multimedia documents with
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frequent and explicit links between text and images can lead to better comprehension. Fach and
Strothotte (1994) theorized that using graphical connecting devices between text and imagery
can explicitly form cross-links between visual and verbal associative memory structures. Care
should be taken in linking words and images. For obvious reasons, it is important that words
be associated with the appropriate images. These links between the two kinds of information
can be static, as in the case of text and diagrams, or dynamic, as in the case of animations and
spoken words.

Static Links

When text is integrated into a static diagram, the Gestalt principles discussed in Chapter 6 apply,
as Figure 9.6 shows. Simple proximity is commonly used in labeling maps. A line drawn around
the object and the text creates a common region; this can also be used to associate groups of
objects with a particular label. Arrows and speech balloons linking text and graphics also apply
the principle of connectedness.

Beyond merely attaching text labels to parts of diagrams, there is the possibility of inte-
grating more complex procedural information. Chandler and Sweller (1991) showed that a set
of instructional procedures for testing an electrical system were understood better if blocks of
text were integrated with the diagram, as shown in Figure 9.7. In this way, process steps could
be read immediately adjacent to the relevant visual information. Sweller et al. (1990) used the
concept of limited-capacity working memory to explain these and similar results. They argue that
when the information is integrated, there is a reduced need to store information temporarily while
switching back and forth between locations.

There can be a two-way synergy between text and images. Faraday and Sutcliffe (1997)
found that propositions given with a combination of imagery and speech were recalled better
than propositions given only through images. Pictures can also enhance memory of text. Wadill
and McDaniel (1992) provided images that were added redundantly to a text narrative; even
though no new information was presented, the images enhanced recall.

a b C d
Hexagon A square

Some simple shapes

\. me
O

Figure 9.6 Various Gestalt principles are used to guide the linking of text and graphics: (a) Proximity.
(b) Continuity/connectedness. (c) Common region. (d) Common region combined with connectedness.
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308 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

‘ If resistance is not at least one
megaohm in either of the two
N A previous tests, measure each
@ Disconnect appliances and circuit separately.
busways during these tests. g

R / @ Take first
@ Make sure T measure by

u < main SXVItch L @ Make sure connecting
< is “on. < fuses are “in. other lead to
the active.

n )

@ Remove main earth [————7—7———F————— [ -
from neutral bar. NT
=11
\ 4} E @ Take next
0000 Q O O measure by
neutral K MEN bar connecting
[ — the lead to
the neutral.
@ Connect one lead
to the earth wire at
MEN bar.

@ Set meter to read

earth
stake insulation.
land
Required
result for this test and
all other tests is at least
one megaohm.
Figure 9.7 An illustration used in a study by Chandler and Sweller (1991). A sequence of short paragraphs is

integrated with the diagram to show how to conduct an electrical testing procedure.

The nature of text labels can strongly influence the way visual information is encoded.
Jorg and Horman (1978) showed that when images were labeled, the choice of a general
label (such as fish) or a specific label (such as flounder) influenced what would later be
identified as previously seen. The broader-category label caused a greater variety of images to
be identified (mostly erroneously). In some cases, it is desirable that people generalize
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specific instances into broader, more abstract categories, so this effect may sometimes be used to
advantage.

Gestures as Linking Devices

When possible, spoken information—rather than text information—should accompany images,
because the text necessarily takes visual attention away from the imagery. If the same informa-
tion is given in spoken form, the auditory channel can be devoted to it, whereas the visual channel
can be devoted to the imagery (Mousavi et al., 1995). The most natural way of linking spoken
material with visual imagery is through hand gestures.

Deixis

In human communication theory, a gesture that links the subject of a spoken sentence with a
visual reference is known as a deictic gesture, or simply deixis. When people engage in conver-
sation, they sometimes indicate the subject or object in a sentence by pointing with a finger, glanc-
ing, or nodding in a particular direction. For example, a shopper might say “Give me that one,”
while pointing at a particular wedge of cheese at a delicatessen counter. The deictic gesture is
considered to be the most elementary of linguistic acts. A child can point to something desirable,
usually long before she can ask for it verbally, and even adults frequently point to things they
wish to be given without uttering a word. Deixis has its own rich vocabulary. For example, an
encircling gesture can indicate an entire group of objects or a region of space (Levelt et al., 1985;
Oviatt et al., 1997).

To give a name to a visual object, we point and speak its name. Teachers will often talk
through a diagram, making a series of linking deictic gestures. To explain a diagram of the res-
piratory system, a teacher might say, “This tube connecting the larynx to the bronchial pathways
in the lungs is called the trachea,” with a gesture toward each of the important parts.

Deictic techniques can be used to bridge the gap between visual imagery and spoken
language. Some shared computer environments are designed to allow people at remote locations
to work together while developing documents and drawings. Gutwin et al. (1996) observed that
in these systems, voice communication and shared cursors are the critical components in main-
taining dialog. It is generally thought to be much less important to transmit an image of the
person speaking. Another major advantage of combining gesture with visual media is that this
multimodal communication results in fewer misunderstandings (Oviatt, 1999; Oviatt et al.,
1997), especially when English is not the speaker’s native language.

Oviatt et al. (1997) showed that, given the opportunity, people like to point and talk at the
same time when discussing maps. They studied the ordering of events in a multimodal interface
to a mapping system, in which a user could both point deictically and speak while instructing
another person in a planning task using a shared map. The instructor might say something like
“Add a park here,” or “Erase this line,” while pointing to regions of the map. One of their find-
ings was that pointing generally preceded speech; the instructor would point to something and
then talk about it.
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Interestingly, the reverse order of events may be appropriate when we are integrating text
(as opposed to spoken language) with a diagram. In a study of eye movements, Faraday and Sut-
cliffe (1999) found that people would read a sentence, then look for the reference in an accom-
panying diagram. Based on this finding, they created a method for making it easy for users
to make the appropriate connections. A button at the end of each sentence caused the relevant
part of the image to be highlighted or animated in some way, thus enabling readers to switch
attention rapidly to the correct part of the diagram. They showed that this did indeed result in
greater understanding.

This research suggests two rules of thumb:

® If spoken words are to be integrated with visual information, the relevant part of the
visualization should be highlighted just before the start of the relevant speech segment.

® If written text is to be integrated with visual information, links should be made at the end
of each relevant sentence or phrase.

Deictic gestures can be more varied than simple pointing. For example, circular encompassing
gestures can be used to indicate a whole group of objects, and different degrees of emphasis can
be added by making a gesture more or less forceful.

Symbolic Gestures

In everyday life, we use a variety of gestures that have symbolic meaning. A raised hand signals
that someone should stop moving. A wave of the hand signals farewell. Some symbolic gestures
can be descriptive of actions. For example, we might rotate a hand to communicate to someone
that they should turn an object. McNeill (1992) called these gestures kinetographics.

With input devices such as the Data Glove that capture the shape of a user’s hand, it is pos-
sible to program a computer to interpret a user’s hand gestures. This idea has been incorporated
into a number of experimental computer interfaces. In a notable study carried out at
MIT, researchers explored the powerful combination of hand gestures and speech commands
(Thorisson et al., 1992). A person facing the computer screen first asked the system to

“Make a table”
This caused a table to appear on the floor in the computer visualization. The next command,
“On the table, place a vase,”

was combined with a gesture placing the fist of one hand on the palm of the other hand to show
the relative location of the vase on the table. This caused a vase to appear on top of the table.
Next, the command,

“Rotate it like this,”

was combined with a twisting motion of the hand causing the vase to rotate as described by the
hand movement.
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Although such systems are still experimental, there is evidence that combining words
with gestures in this way will ultimately result in communication that is more effective and less
error-prone (Mayer and Sims, 1994).

Expressive Gestures

Gestures can have an expressive dimension in addition to being deictic. Just as a line can be given
a variety of qualities by being made thick, thin, jagged, or smooth, so can a gesture be made
expressive (McNeill, 1992; Amaya et al., 1996). A particular kind of hand gesture, called a beat,
sometimes accompanies speech, emphasizing critical elements in a narrative. Bull (1990) studied
the way political orators use gestures to add emphasis. Vigorous gestures usually occurred at the
same time as vocal stress. Also, the presence of both vigorous gestures and vocal stress often
resulted in applause from the audience. In the domain of multimedia, animated pointers some-
times accompany a spoken narrative, but often quite mechanical movements are used to animate
the pointer. Perhaps by making pointers more expressive, critical points might be brought out
more effectively.

Visual Momentum in Animated Sequences

Moving the viewpoint in a visualization can function as a form of narrative control. Often a
virtual camera is moved from one part of a data space to another, drawing attention to differ-
ent features. In some complex 3D visualizations, a sequence of shots is spliced together to explain
a complex process. Hochberg and Brooks (1978) developed the concept of visual momentum in
trying to understand how cinematographers link different camera shots together. As a starting
point, they argued that in normal perception, people do not take more than a few glances at a
simple static scene; following this, the scene “goes dead” visually. In cinematography, the device
of the cut enables the director to create a kind of heightened visual awareness, because a new
perspective can be provided every second or so. The problem faced by the director is that of
maintaining perceptual continuity. If a car travels out of one side of the frame in one scene, it
should arrive in the next scene traveling in the same direction, otherwise the audience may lose
track of it and pay attention to something else. Wickens (1992) has extended the visual momen-
tum concept to create a set of four principles for user interface design:

1. Use consistent representations. This is like the continuity problem in movies, which
involves making sure that clothing, makeup, and props are consistent from one cut to
another. In visualization, this means that the same visual mappings of data must be
preserved. This includes presenting similar views of a 3D object.

2. Use graceful transitions. Smooth animations between one scale view and another allow
context to be maintained. Also, the technique of smoothly morphing a large object into a
small object when it is “iconified” helps to maintain the object’s identity.
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3. Highlight anchors. Certain visual objects may act as visual reference points, or anchors,
tying one view of a data space to the next. An anchor is a constant, invariant feature of a
displayed world. Anchors become reference landmarks in subsequent views. When cuts are
made from one view to another, ideally, several anchors should be visible from the
previous frame. The concept of landmarks is discussed further in Chapter 10.

4. Display continuous overview maps. Common to many adventure video games and
navigation systems used in aircraft or ground vehicles is the use of an overview map
that places the user in a larger spatial context. This is usually supplemented by a
more detailed local map. The same kind of technique can be used with large information
spaces. The general problem of providing focus and context is also discussed further in
Chapter 10.

Another technique used in cinematography is the establishing shot. Hochberg (1986) showed
that identification of image detail was better when an establishing shot preceded a detail
shot than when the reverse ordering was used. This suggests that an overview map should be
provided first when an extended spatial environment is being presented.

Animated Visual languages

When people discuss computer programs, they frequently anthropomorphize, describing software
objects as if they were people sending messages to each other and reacting to those messages by
performing certain tasks. This is especially true for programs written using object-oriented
programming techniques. Some computer languages explicitly incorporate anthropomorphism.
ToonTalk is one such language (Kahn, 1996). ToonTalk uses animated cartoon characters in a
cartoon city as the programming model. Houses stand for the subroutines and procedures used
in conventional programming. Birds are used as message carriers, taking information from one
house to another. Active methods are instantiated by robots, and comparison tests are symbol-
ized by weight scales. The developers of ToonTalk derived their motivation from the observation
that even quite young children can learn to control the behavior of virtual robots in games such
as Nintendo’s Mario Brothers.

A ToonTalk example given by Kahn is programming the swapping of values stored in two
locations. This is achieved by having an animated character take one object, put it to the side,
take the second object and place it in the location of the first, and then take the first object and
move it to the second location. Figure 9.8 illustrates this procedure.

KidSim is another interactive language, also intended to enable young children to acquire
programming concepts using direct manipulation of graphical interfaces (Cypher and Smyth,
1995). Here is the authors’ own description:

KidSim is an environment that allows children to create their own simulations. They
create their own characters, and they create rules that specify how the characters are to
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Figure 9.8 A swap operation carried out in ToonTalk. In this language, animated characters can be instructed to
move around and carry objects from place to place, just as they are in video games (Kahn, 1996b).

behave and interact. KidSim is programmed by demonstration, so that users do not need
to learn a conventional programming language.

In KidSim, as in ToonTalk, an important component is programming by example using direct
manipulation techniques. In order to program a certain action, such as a movement of an object,
the programmer moves the object using the mouse and the computer infers that this is a
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Figure 9.9 Creating a “Move Right” rule in KidSim. The user shapes a spotlight to outline the square to the right of
the character, then drags the character into the adjacent square. At the bottom, the initial and final states
for the rule are displayed (Cypher and Smyth, 1995).

programming event that should occur when a certain set of conditions is met. For example, when
an actor gets close to a rock, the actor should jump over the rock.

Programming by example always requires that the programmer make a number of assump-
tions about how the system should behave. In KidSim, programs are based on graphical rewrite
rules—a picture is replaced by another picture specified by demonstration. Figure 9.9 illustrates
how the rule “If there is an empty space to the right of me, move me into it” is created. The pro-
grammer must first specify the area to which the rule applies and then drag the object from its
old position to the new position. There are implicit assumptions that the user must make: the
rule will apply wherever the picture object occurs on the screen, and the rule is repeated in an
animation cycle.

The use of animated characters as program components can often lead to false assumptions
about the programs that use them. Humans and animals get tired and bored, and can be expected
to give up repetitive activities quite soon unless they are strongly motivated. Therefore, a child
programming a computer with animated characters will expect them to stop and do something
else after a while. But this is a poor metaphor for computers, which do not get tired or bored
and can continue doing the same repetitive operation millions of times. Ultimately, both the
strengths and the weaknesses of programming with animated characters will derive from the rich
variety of visual metaphors that become available. Like all metaphors, they will be helpful if they
are apt and harmful if they are not.
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Rader et al. (1997) carried out an extensive independent evaluation of KidSim in two class-
rooms over the course of a year. The system was deliberately introduced without explicit teach-
ing of the underlying programming concepts. They found that children rapidly learned the
interactions needed to draw animated pictures but failed to gain a deep understanding of the
programs. The children often tried to generalize the behavior they saw in ways that the machine
did not understand. Students sometimes found it frustrating when they set up conditions they
thought should cause some action, and then nothing happened.

A study by Palmiter et al. (1991) provided two kinds of instructions for a procedural task;
one was an animated demonstration, the other was a written text. They found that immediately
following instruction, the animated demonstration produced better performance. However, a
week later, the results reversed; those who received written instructions did better. They explained
these results by suggesting that in the short term, subjects could simply mimic what they had
recently seen if they were given animated instructions. In the longer term, the effort of inter-
preting the written instructions produced a deeper symbolic coding of the information that was
better retained over time.

Conclusion

Some of the advantages of visual representation, such as better comprehension of patterns and
spatial relationships in general, seem clear and well documented. It is when we try to pin down
the advantages of words that we run into difficulty. Indeed, some of the statements made, and
supported by experimental results, appear to be contradictory. For example, some authors have
suggested that procedural information is better described using words than images. But there
appear to be counterexamples. The Gantt chart is a widely used graphical tool for project plan-
ning, and this is surely visual procedural information. Also, the study cited earlier by Bartram
(1980), showing that visual representation of bus routes is better for planning a bus trip can be
described as procedural planning.

It is possible that there is ultimately no kind of information for which words are demon-
strably superior—all things being equal. But of course, they are not equal. Natural language pro-
vides us with the most developed and widely used symbol system available. We are all experts
at it, having been trained intensively from an early age. We are not similarly experts at visual
communication. The sign languages of the deaf show that a rich and complete visual equivalent
is possible, but these alternative natural languages are inaccessible to most of us. Given the
dominance of words as a medium of communication, visualizations will necessarily be hybrids,
claiming ground only where a clear advantage can be obtained.

We should use images and words together whenever possible. Concepts presented using both
kinds of coding are understood and remembered better. We evidently have cognitive subsystems
dealing with both visual and verbal information (as discussed in Chapter 10), and it is possible
that using both together may allow us to do more cognitive work. But to obtain a positive benefit
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from multimedia presentations, cross-references must be made so that the words and images can
be integrated conceptually. Both time and space can be used to create these cross-links. The deictic
gesture, wherein someone points at an object while speaking about it, is probably the most
elementary of visual-verbal linking device. It is deeply embedded in human discourse and
probably provides the cognitive foundation for other linking devices.

The material presented in this chapter suggests a number of conclusions about how we should
design easy-to-learn computer programming languages. They should be hybrids of visual and
natural language codes. Structure should be presented visually, and perhaps also created visually
using direct manipulation techniques. Modules can be represented as visual objects, easily con-
nected by drawing lines between them or by snapping them together. Detailed logical procedures
should be programmed using words, not graphics. Ultimately, the use of speech recognition
software may help beginning programmers with the difficulty of using a keyboard. They may use
pointing gestures to bind the spoken words to the relevant parts of the diagrams.



CHAPTER “]

Interacting with Visualizations

A good visualization is not just a static picture or a 3D virtual environment that we can walk
through and inspect like a museum full of statues. A good visualization is something that allows
us to drill down and find more data about anything that seems important. Ben Shneiderman has
coined what he calls a “mantra” to guide visual information-seeking behavior and the interfaces
that support it: “Overview first, zoom and filter, then details on demand,” (Shneiderman, 1998).
But in reality we are just as likely to see an interesting detail, zoom out to get an overview, find
some related information in a lateral segue, and then zoom in again to get the details of the
original object of interest. The important point is that a good computer-based visualization is an
interface that can support all of these activities. Ideally, every data object on a screen will be
active and not just a blob of color on the screen. It will be capable of displaying more informa-
tion as needed, disappearing when not needed, and accepting user commands to help with the
thinking processes.

Interactive visualization is a process made up of a number of interlocking feedback loops
that fall into three broad classes. At the lowest level is the data manipulation loop, through which
objects are selected and moved using the basic skills of eye~hand coordination. Delays of even a
fraction of a second in this interaction cycle can seriously disrupt the performance of higher-level
tasks. At an intermediate level is an exploration and navigation loop, through which an analyst
finds his or her way in a large visual data space. As people explore a new town, they build a
cognitive spatial model using key landmarks and paths between them; something similar occurs
when they explore data spaces.

But exploration can be generalized to more abstract searching operations. Kirsh and Maglio
(1994) define a class of epistemic actions as activities whereby someone hopes to better under-
stand or perceive a problem. At the highest level is a problem-solving loop through which the
analyst forms hypotheses about the data and refines them through an augmented visualization
process. The process may be repeated through multiple visualization cycles as new data is added,
the problem is reformulated, possible solutions are identified, and the visualization is revised or
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replaced. Sometimes the visualization may act as a critical externalization of the problem, forming
a crucial extension of the cognitive process.

This chapter deals with two of the three loops: low-level interaction and exploration. General
problem solving is discussed in Chapter 11.

Data Selection and Manipulation Loop

There are a number of well established “laws” that describe the simple, low-level control loops
needed in tasks such as the visual control of hand position or the selection of an object on the
screen.

Choice Reaction Time

Given an optimal state of readiness, with a finger poised over a button, a person can react
to a simple visual signal in about 130 msec (Kohlberg, 1971). If the signals are very infrequent,
the time can be considerably longer. Warrick et al. (1964) found reaction times as long as
700 msec under conditions such that there could be as much as two days between signals.
The participants were engaged in routine typing, so they were at least positioned appropriately
to respond. If people are not positioned at workstations, their responses will naturally take
longer.

Sometimes, before someone can react to a signal, he or she must make a choice. A simple
choice reaction-time task might involve pressing one button if a red light goes on and another if
a green light goes on. This kind of task has been studied extensively. It has been discovered that
reaction times can be modeled by a simple rule called the Hick—Hyman law for choice reaction
time (Hyman, 1953).

According to this law,

Reaction time = a + b log, (C) (10.1)

where C is the number of choices and @ and b are empirically determined constants. The expres-
sion log, (C) represents the amount of information processed by the human operator, expressed
in bits of information.

Many factors have been found to affect choice reaction time—the distinctness of the signal,
the amount of visual noise, stimulus-response compatibility, and so on—but under optimal con-
ditions, the response time per bit of information processed is about 160 msec plus the time to set
up the response. Thus, if there are eight choices (3 bits of information), the response time will
typically be on the order of the simple reaction time plus approximately 480 msec. Another impor-
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tant factor is the degree of accuracy required—people respond faster if they are allowed to make
mistakes occasionally, and this effect is called a speed-accuracy tradeoff. For a useful overview
of factors involved in determining reaction time, see Card et al. (1983).

2D Positioning and Selection

In highly interactive visualization applications, it is useful to have graphical objects function not
only as program output—a way of representing data—but also as program input, a way of finding
out more about data.

Selection using a mouse or some similar input device (such as a joystick or trackball) is one
of the most common interactive operations in the modern graphical user interface, and it has
been extensively studied. A simple mathematical model provides a useful estimation of the time
taken to select a target that has a particular position and size:

Selection time = a + b log, (D/W +1.0) (10.2)

where D is the distance to the center of the target, W is the width of the target, and a and b are
constants determined empirically. These are different for different devices.

This formula is known as Fitts’ law, after Paul Fitts (1954). The term log, (D/W + 1.0) is
known as the index of difficulty (ID). The value 1/b is called the index of performance (IP) and
is given in units of bits per second. There are a number of variations in the index-of-difficulty
expression, but the one given here is the most robust (MacKenzie, 1992). Typical IP values for
measured performance made with the fingertip, the wrist, and the forearm are all in the vicinity
of 4 bits per second (Balakrishnan and MacKenzie, 1997). To put this into perspective, consider
moving a cursor 16cm across a screen to a small (0.5cm) target. The index of difficulty will be
about 5 bits. The selection will take more than a second longer than selecting a target that is
already under the cursor.

Fitts’ law can be thought of as describing an iterative process of eye—hand coordination,
as illustrated in Figure 10.1. The human starts by judging the distance to the target and
initiates the hand movement. On successive iterations, a corrective adjustment is made to
the hand movement based on visual feedback showing the cursor position. The number of
iterations around the control loop increases both as the distance to the target gets larger and
as the size of the target gets smaller. The logarithmic nature of the relationship derives from
the fact that on each iteration, the task difficulty is reduced in proportion to the remaining
distance.

In many of the more complex data visualization systems, as well as in experimental data
visualization systems using 3D virtual-reality (VR) technologies, there is a significant lag between
a hand movement and the visual feedback provided on the display (Liang et al., 1991; Ware and
Balakrishnan, 1994).
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Fitts’ law, modified to include lag, looks like this:
Mean time = g+ b (Human Time + MachineLag)log, (D/W +1.0) (10.3)

According to this equation, the effects of lag increase as the target gets smaller. Because of this,
a fraction-of-a-second lag can result in a subject’s taking several seconds longer to perform a
simple selection task. This may not seem like much, but in a VR environment intended to make
everything seem easy and natural, lag can make the simplest task difficult.

Fitts’ law is part of ISO standard 9214-9, which sets out protocols for evaluating user per-
formance and comfort when using pointing devices with visual display terminals. It is invaluable
as a tool for evaluating potential new input devices.

Hover Queries

The most common kind of selection action with a computer is done by dragging a cursor over
an object and clicking the mouse button. The hover query dispenses with the mouse click. Extra
information is revealed about an object when the mouse cursor passes over it. Usually it is imple-
mented with a delay; for example, the function of an icon is shown by a brief text message after

Detect start
signal Human Processing
No Judge distance Effect hand
to target movement
In target?

Yes

Machine Processing

Measure hand

Update display position

Move on to next task

Figure 10.1 The visually guided reaching control loop. The human processor makes adjustments based on visual
feedback provided by the computer.
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hovering for a second or two. However, a hover query can function without a delay, making it
very fast. The enables the mouse cursor to be dragged over a set of data objects, rapidly reveal-
ing the data contents and perhaps allowing an interactive query rate of several per second in
special circumstances.

Path Tracing

Fitts’ law deals with single, discrete actions, such as reaching for an object. Other tasks, such as
tracing a curve or steering a car, involve continuous ongoing control. In such tasks, we are con-
tinually making a series of corrections based on visual feedback about the results of our recent
actions. Accot and Zhai (1997) used Fitts’ law to derive a prediction about continuous steering
tasks. Their derivation revealed that the speed at which tracing could be done should be a simple
function of the width of the path:

v=W/t (10.4)

where v is the velocity, W is the path width, and 7 is a constant that depends on the motor control
system of the person doing the tracing. In a series of experiments, the researchers found an almost
perfect linear relationship between speed of path-following and the path width, confirming their
theory. The actual values of T lay between .05 and .11sec, depending on the specific task. To
make this more concrete, consider the problem of tracing a pencil along a 2 mm-wide path. Their
results suggest that this will be done at a rate of between 1.8 and 4 cm/sec.

Two-Handed Interaction

In most computer interfaces, users select and move graphical objects around the screen with a
mouse held in one hand, leaving the other unoccupied. But in interacting with the everyday world,
we frequently use both our hands. This leads us to the question of how we might make the com-
puter interface better by taking advantage of both hands (Buxton and Myers, 1986).

The most important principle that has been discovered relating to the way tasks should be
allocated to the two hands is Guiard’s kinematic chain theory (Guiard, 1987). According to this
theory, the left hand and the right hand form a kinematic chain, with the left hand providing a
frame of reference for movements with the right, in right-handed individuals. For example, if we
sculpt a small object out of modeling clay, we are likely to hold it in the left hand and do the
detailed shaping with the right. The left hand reorients the piece and provides the best view,
whereas the right pokes and prods within that frame of reference.

A number of interface designers have incorporated this principle into demonstrably superior
interfaces for various tasks (Bier et al., 1993, Kabbash et al., 1994). For example, in an innov-
ative computer-based drawing package, Kurtenbach et al. (1997) showed how templates, such
as the French curve, could be moved rapidly over a drawing with the left hand while an artist
used his or her right hand to paint around the shape.
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Another way that using the left hand can be beneficial is in positioning tools for easy access.
In interactive drawing packages, users spend a lot of time moving between the drawing and
various menus, positioned off to the side of the screen. The toolglass and magic lens approach,
developed by Bier et al. (1993), got around this problem by allowing users to use the left hand
to position tool palettes and the right hand to do normal drawing operations. This allowed for
very quick changes in color or brush characteristics. As an additional design refinement, they
also made some of the tools transparent (hence toolglasses).

In an application more relevant to information visualization, Stone et al. (1994) developed
the magic lens idea as a set of interactive information filters implemented as transparent windows
that the user can move over an information visualization with the left hand. The magic lens could
be programmed to be a kind of data X-ray, revealing normally invisible aspects of the data. For
example, a magic lens view of a map might show some or all of the regions with high rainfall,
or alternatively, the geology underneath. In the magic lens design, the right hand can be used in
a conventional way, to control a cursor that can then be used to click within the magic lens, to
make selections or position objects.

Learning

Over time, people become more skilled at any task, barring fatigue, sickness, or injury. A simple
expression known as the power law of practice describes the way task performance speeds up
over time.

log(T,,) = C — atlog(n) (10.5)

where C = log(T)) is based on the time to perform the task on the first trial and, T, is the time
required to perform the nth trial, and o is a constant that represents the steepness of the learn-
ing curve.

One of the ways in which skilled performance is obtained is through the chunking of small
subtasks into programmed motor procedures. The beginning typist must make a conscious effort
to hit the letters ¢, b, and e when typing the word the, but the brains of experienced typists can
execute preprogrammed bursts of motor commands so that the entire word can be typed with a
single mental command to the motor cortex. Skill learning is characterized by more and more
of the task becoming automated and encapsulated. To encourage skill automation, the computer
system should provide rapid and clear feedback of the consequences of user actions (Hammond,
1987).

Control Compatibility

Some control movements are easier to learn than others, and this depends heavily on prior expe-
rience. If you move a computer mouse to the right, causing an object on the screen to move to
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the right, this positioning method will be easy to learn. A skill is being applied that was gained
very early in life and has been refined ever since. But if the system interface has been created such
that a mouse movement to the right causes a graphical object to move to the left, this will be
incompatible with everyday experience and positioning the object will be difficult. In the behav-
iorist tradition of psychology, this factor is generally called stimulus—response (S-R) compatibil-
ity. In modern cognitive psychology, the effects of S-R compatibility are readily understood in
terms of skill learning and skill transfer.

In general, it will be easier to execute tasks in computer interfaces if the interfaces are
designed in such a way that they take advantage of previously learned ways of doing things. Nev-
ertheless, some inconsistencies are easily tolerated, whereas others are not. For example, many
user interfaces amplify the effect of a mouse movement so that a small hand movement results
in a large cursor movement. Psychologists have conducted extensive experiments that involve
changing the relationship between eye and hand. If a prism is used to laterally displace what is
seen relative to what is felt, people can adapt in minutes or even seconds (Welch and Cohen,
1991). This is like using a mouse that is laterally displaced from the screen cursor being
controlled.

On the other hand, if people are asked to view the world inverted with a mirror, it can take
weeks of adaptation for them to learn to operate in an upside-down world (Harris, 1965). Snyder
and Pronko (1952) had subjects wear inverting prisms continuously for a month. At the end of
this period, reaching behaviors seemed error-free, but the world still seemed upside-down. This
suggests that if we want to achieve good eye—hand coordination in an interface, we do not need
to worry too much about matching hand translation with virtual object translation, but we should
worry about matching the axis or rotation.

Some imaginative interfaces designed for virtual reality involve extreme mismatches between
the position of the virtual hand and the proprioceptive feedback from the user’s body. In the Go-
Go Gadget technique (named after the cartoon character, Inspector Gadget), the user’s virtual
hand is stretched out far beyond his or her actual hand position to allow for manipulation of
objects at a distance (Poupyrev et al., 1996).

Studies by Ramachandran (1999) provide interesting evidence that even under extreme dis-
tortions people may come to act as if a virtual hand is their own, particularly if touch is stimu-
lated. In one of Ramachandran’s experiments, he hid a subject’s hand behind a barrier and showed
the subject a grotesque rubber Halloween hand. Next, he stroked and patted the subject’s actual
hand and the Halloween hand in exact synchrony. Remarkably, in a very short time, the subject
came to perceive that the Halloween hand was his or her own. The strength of this identifica-
tion was demonstrated when the researcher hit the Halloween hand with a hammer. The sub-
jects showed a strong spike in galvanic skin response (GSR), indicating a physical sense of shock.
No shock was registered without the stroking. The important point from the perspective of virtual
reality interfaces is that even though the fake hand and the subjects’ real hand were in quite dif-
ferent places, a strong sense of identification occurred.

Consistency with real-world actions is only one factor in skill learning. There are also the
simple physical affordances of the task itself. It is easier for us to make certain body movements
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than others. Very often we can make computer-mediated tasks easier to perform than their real-
world counterparts. When designing a house, we do not need to construct it virtually with bricks
and concrete. The magic of computers is that a single button click can often accomplish as much
as a prolonged series of actions in the real world. For this reason, it would be naive to conclude
that computer interfaces should evolve toward VR simulations of real-world tasks or even
enhanced Go-Go Gadget-style interactions.

Vigilance

A basic element of many interaction cycles is the detection of a target. Although several aspects
of this have already been discussed in Chapter 5, a common and important problem remains to
be covered—the detection of infrequently appearing targets.

The invention of radar during World War II created a need for radar operators to monitor
radar screens for long hours, searching for visual signals representing incoming enemy aircraft.
Out of this came a need to understand how people can maintain vigilance while performing
monotonous tasks. This kind of task is common to airport baggage X-ray operators, industrial
quality-control inspectors, and the operators of large power grids. Vigilance tasks commonly
involve visual targets, although they can be auditory. There is extensive literature concerning
vigilance (see Davies and Parasuraman, 1980, for a detailed review). Here is an overview of some
of the more general findings, adapted from Wickens (1992):

1. Vigilance performance falls substantially over the first hour.
2. Fatigue has a large negative influence on vigilance.

3. To perform a difficult vigilance task effectively requires a high level of sustained attention,
using significant cognitive resources. This means that dual tasking is not an option during
an important vigilance task. It is not possible for operators to perform some useful task in
their “spare time” while simultaneously monitoring for some difficult-to-perceive signal.

4. Irrelevant signals reduce performance. The more irrelevant visual information is presented
to a person performing a vigilance task, the harder it becomes.

Overall, people perform poorly on vigilance tasks, but there are a number of techniques that can
improve performance. One method is to provide reminders at frequent intervals about what the
targets will look like. This is especially important if there are many different kinds of targets.
Another is to take advantage of the visual system’s sensitivity to motion. A difficult target for a
radar operator might be a slowly moving ship embedded in a great many irrelevant noise signals.
Scanlan (1975) showed that if a number of radar images are stored up and rapidly replayed, the
image of the moving ship can easily be differentiated from the visual noise. Generally, anything
that can transfer the visual signal into the optimal spatial or temporal range of the visual system
should help detection. If the signal can be made perceptually different or distinct from irrelevant
information, this will also help. The various factors that make color, motion, and texture dis-
tinct can all be applied. These are discussed in Chapters 4 and 5.
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Exploration and Navigation Loop

View navigation is important in visualization when the data is mapped into an extended and
detailed visual space. The problem is complex, encompassing theories of pathfinding and map
use, cognitive spatial metaphors, and issues related to direct manipulation and visual feedback.

Figure 10.2 sketches the basic navigation control loop. On the human side is a cognitive
logical and spatial model whereby the user understands the data space and his or her progress
through it. If the data space is maintained for an extended period, parts of its spatial model may
become encoded in long-term memory. On the computer side, the visualization may be updated
and refined from data mapped into the spatial model.

Here, we start with the problem of 3D locomotion; next, we consider the problem of
pathfinding, and finally move on to the more abstract problem of maintaining focus and context
in abstract data spaces.

Locomotion and Viewpoint Control

Some data visualization environments show information in such a way that it looks like a 3D
landscape, not just a flat map. This is done with remote sensing data from other planets, or with
maps of the ocean floor or other data related to the terrestrial environment. The data landscape
idea has also been applied to abstract data spaces such as the World Wide Web (see Figure 10.3
for an example). The idea is that we should find it easy to navigate through data presented in
this way because we can harness our real-world spatial interpretation and navigation skills.

James Gibson (1986) offers an environmental perspective on the problem of perceiving for
navigation:

A path affords pedestrian locomotion from one place to another, between the terrain
features that prevent locomotion. The preventers of locomotion consist of obstacles,
barriers, water margins, and brinks (the edges of cliffs). A path must afford footing; it
must be relatively free of rigid foot-sized obstacles.

Gibson goes on to describe the characteristics of obstacles, margins, brinks, steps, and slopes.
According to Gibson, locomotion is largely about perceiving and using the affordances offered
for navigation by the environment. (See Chapter 1 for a discussion of affordances). His per-
spective can be used in a quite straightforward way in designing virtual environments, much as
we might design a public museum or a theme park. The designer creates barriers and paths in
order to encourage visits to certain locations and discourage others.

We can also understand navigation in terms of the depth cues presented in Chapter 8. All
the perspective cues are important in providing a sense of scale and distance, although the stereo-
scopic cue is important only for close-up navigation in situations such as walking through a
crowd. When we are navigating at higher speed, in an automobile or a plane, stereoscopic depth
is irrelevant, because the important parts of the landscape are beyond the range of stereoscopic
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Figure 10.2 The navigation control loop.
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Figure 10.3 Web sites arranged as a data landscape (T. Bray, 1996).

discrimination. Under these conditions, structure-from-motion cues and information based on
perceived objects of known size are critical.

It is usually assumed that smooth-motion flow of images across the retina is necessary for
judgment of the direction of self-motion within the environment. But Vishton and Cutting (1995)
investigated this problem using VR technology, with subjects moving through a forestlike virtual
environment, and concluded that relative displacement of identifiable objects over time was the
key, not smooth motion. Their subjects could do almost as well with a low frame rate, with images
presented only 1.67 times per second, but performance declined markedly when updates were less
than 1 per second. The lesson for the design of virtual navigation aids is that these environments
should be sparsely populated with discrete but separately identifiable objects—there must be
enough landmarks that several are always visible at any instant, and frame rates ideally should be
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at least 2 per second. However, it should also be recognized that although judgments of heading
are not impaired by low frame rates, other problems will result. Low frame rates cause lag in visual
feedback and, as discussed previously, this can introduce serious performance problems.

Spatial Navigation Metaphors

Interaction metaphors are cognitive models for interaction that can profoundly influence the
design of interfaces to data spaces. Here are two sets of instructions for different viewpoint
control interfaces:

1. “Imagine that the model environment shown on the screen is like a real model mounted
on a special turntable that you can grasp, rotate with your hand, move sideways, or pull
towards you.”

2. “Imagine that you are flying a helicopter and its controls enable you to move up and
down, forward and back, left and right.”

With the first interface metaphor, if the user wishes to look at the right-hand side of some part
of the scene, she must rotate the scene to the left to get the correct view. With the second inter-
face metaphor, the user must fly her vehicle forward, around to the right, while turning in toward
the target. Although the underlying geometry is the same, the user interface and the user’s con-
ception of the task are very different in the two cases.

Navigation metaphors have two fundamentally different kinds of constraints on their use-
fulness. The first of these constraints is essentially cognitive. The metaphor provides the user with
a model that enables the prediction of system behavior given different kinds of input actions. A
good metaphor is one that is apt, matches the system well, and is also easy to understand. The
second constraint is more of a physical limitation. A particular metaphor will naturally make
some actions physically easy to carry out, and others difficult to carry out, because of its imple-
mentation. For example, a walking metaphor limits the viewpoint to a few feet above ground
level and the speed to a few meters per second. Both kinds of constraints are related to Gibson’s
concept of affordances—a particular interface affords certain kinds of movement and not others,
but it must also be perceived to embody those affordances.

Note that, as discussed in Chapter 1, we are going beyond Gibson’s view of affordances here.
Gibsonian affordances are properties of the physical environment. In computer interfaces, the
physical environment constitutes only a small part of the problem, because most interaction is
mediated through the computer and Gibson’s concept as he framed it does not strictly apply. We
must extend the notion of affordances to apply to both the physical characteristics of the user
interface and the representation of the data. A more useful definition of an interface with the
right affordances is one that makes the possibility for action plain to the user and gives feedback
that is easy to interpret.

Four main classes of metaphors have been employed in the problem of controlling the view-
point in virtual 3D spaces. Figure 10.4 provides an illustration and summary. Each metaphor has
a different set of affordances.
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Figure 10.4 Four different navigation metaphors: (a) World-in-hand. (b) Eyeball-in-hand. (c) Walking. (d) Flying.
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World-in-hand. The user metaphorically grabs some part of the 3D environment and
moves it (Houde, 1992; Ware and Osborne, 1990). Moving the viewpoint closer to some
point in the environment actually involves pulling the environment closer to the user.
Rotating the environment similarly involves twisting the world about some point as if it
were held in the user’s hand. A variation on this metaphor has the object mounted on a
virtual turntable or gimbal. The world-in-hand model would seem to be optimal for
viewing discrete, relatively compact data objects, such as virtual vases or telephones. It
does not provide affordances for navigating long distances over extended terrains.

Eyeball-in-hand. In the eyeball-in-hand metaphor, the user imagines that she is directly
manipulating her viewpoint, much as she might control a camera by pointing it and
positioning it with respect to an imaginary landscape. The resulting view is represented on
the computer screen. This is one of the least effective methods for controlling the
viewpoint. Badler et al. (1986) observed that “consciously calculated activity” was
involved in setting a viewpoint. Ware and Osborne (1990) found that although some
viewpoints were easy to achieve, others led to considerable confusion. They also noted
that with this technique, physical affordances are limited by the positions in which the
user can physically place her hand. Certain views from far above or below cannot be
achieved or are blocked by the physical objects in the room.

Walking. One way of allowing inhabitants of a virtual environment to navigate is simply
to let them walk. Unfortunately, even though a large extended virtual environment can be
created, the user will soon run into the real walls of the room in which the equipment is
housed. Most VR systems require a handler to prevent the inhabitant of the virtual world
from tripping over the real furniture. A number of researchers have experimented with
devices like exercise treadmills so that people can walk without actually moving. Typically,
something like a pair of handlebars is used to steer. In an alternative approach, Slater et
al. (1995) created a system that captures the characteristic up-and-down head motion that
occurs when people walk in place. When this is detected, the system moves the virtual
viewpoint forward in the direction of head orientation. This gets around the problem of
bumping into walls, and may be useful for navigating in environments such as virtual
museums. However, the affordances are still restrictive.

Flying. Modern digital terrain visualization packages commonly have fly-through
interfaces that enable users to smoothly create an animated sequence of views of the
environment. Some of these are more literal, having aircraftlike controls. Others use the
flight metaphor only as a starting point. No attempt is made to model actual flight
dynamics; rather, the goal is to make it easy for the user to get around in 3D space in a
relatively unconstrained way. For example, we (Ware and Osborne 1990) developed a
flying interface that used simple hand motions to control velocity. Unlike real aircraft, this
interface makes it as easy to move up, down, or backward as it is to move forward. They
reported that subjects with actual flying experience had the most difficulty; because of
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their expectations about flight dynamics, pilots did unnecessary things such as banking on
turns and were uncomfortable with stopping or moving backward. Subjects without flying
experience were able to pick up the interface more rapidly. Despite its lack of realism, this
was rated as the most flexible and useful interface when compared to others based on the
world-in-hand and eyeball-in-hand metaphors.

The optimal navigation method depends on the exact nature of the task. A virtual walking inter-
face may be the best way to give a visitor a sense of presence in an architectural space; some-
thing loosely based on the flying metaphor may be a more useful way of navigating through
spatially extended data landscapes. The affordances of the virtual data space, the real physical
space, and the input device all interact with the mental model of the task that the user has
constructed.

Wayfinding, Cognitive, and Real Maps

In addition to the problem of moving through an environment in real time, there is the metalevel
problem of how people build up an understanding of larger environments over time. This problem
is usually called wayfinding. It encompasses both the way in which people build mental models
of extended spatial environments and the way they use physical maps as aids to navigation.

Unfortunately, this area of research is plagued with a diversity of terminology. Throughout
the following discussion, bear in mind that there are two clusters of concepts, and the differences
between these clusters relate to the dual coding theory discussed in Chapter 9.

One cluster includes the related concepts of declarative knowledge, procedural knowledge,
topological knowledge, and categorical representations. These concepts are fundamentally logical
and nonspatial.

The other cluster includes the related concepts of spatial cognitive maps and coordinate rep-
resentations. These are fundamentally spatial.

Seigel and White (1975) proposed that there are three stages in the formation of wayfind-
ing knowledge. First, information about key landmarks is learned; initially there is no spatial
understanding of the relationships between them. This is sometimes called declarative knowl-
edge. We might learn to identify a post office, a church, and the hospital in a small town.

Second, procedural knowledge about routes from one location to another is developed.
Landmarks function as decision points. Verbal instructions often consist of procedural statements
related to landmarks, such as “Turn left at the church, go three blocks, and turn right by the gas
station.” This kind of information also contains topological knowledge, because it includes con-
necting links between locations. Topological knowledge has no explicit representation of the
spatial position of one landmark relative to another.

Third, a cognitive spatial map is formed. This is a representation of space that is two-dimen-
sional and includes quantitative information about the distances between the different locations
of interest. With a cognitive spatial map, it is possible to estimate the distance between any two
points, even though we have not traveled directly between them, and to make statements such
as “The university is about one kilometer northwest of the train station.”
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In Seigel and White’s initial theory and in much of the subsequent work, there has been a
presumption that spatial knowledge developed strictly in the order of these three stages: declar-
ative knowledge, procedural knowledge, and cognitive spatial maps. Recent evidence from a
study by Colle and Reid (1998) contradicts this. They conducted an experimental study using a
virtual building consisting of a number of rooms connected by corridors. The rooms contained
various objects. In a memory task following the exploration of the building, subjects were found
to be very poor at indicating the relative positions of objects located in different rooms, but they
were good at indicating the relative positions of objects within the same room. This suggests that
cognitive spatial maps form easily and rapidly in environments where the viewer can see every-
thing at once is the case for objects within a single room. It is more likely that the paths from
room to room were captured as procedural knowledge. The practical application of this is that
overviews should be provided wherever possible in extended spatial information spaces.

The results of Colle and Reid’s study fit well with a somewhat different theory of spatial
knowledge proposed by Kosslyn (1987). He suggested that there are only two kinds of knowl-
edge, not necessarily acquired in a particular order. He called them categorical and coordinate
representations. For Kosslyn, categorical information is a combination of both declarative knowl-
edge and topological knowledge, such as the identities of the landmarks and the paths between
them. Coordinate representation is like the cognitive spatial map proposed by Seigel. A spatial
coordinate representation would be expected to arise from the visual imagery obtained with an
overview. Conversely, if knowledge were constructed from a sequence of turns along corridors
when the subject was moving from room to room, the natural format would be categorical.

Landmarks provide the links between categorical and spatial coordinate representations.
They are important both for cognitive spatial maps and for topological knowledge about routes.
Vinson (1999) created a generalized classification of landmarks based on Lynch’s classification
(1960) of the “elements” of cognitive spatial maps. Figure 10.5 summarizes Vinson’s design
guidelines for the different classes of landmarks. This broad concept includes paths between loca-
tions, edges of geographical regions, districts, nodes such as public squares, and the conventional
ideal of a point landmark such as a statue.

Vinson also created a set of design guidelines for landmarks in virtual environments. The
following rules are derived from them:

®  There should be enough landmarks that a small number are visible at all times.
®  Each landmark should be visually distinct from the others.
® Landmarks should be visible and recognizable at all navigable scales.

® Landmarks should be placed on major paths and at intersections of paths.

Creating recognizable landmarks in 3D environments can be difficult because of multiple view-
points. Darken et al. (1998) reported that Navy pilots typically fail to recognize landmark terrain
features on a return path, even if these were identified correctly on the outgoing leg of a
low-flying exercise. This suggests that terrain features are not encoded in memory as fully three-
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Lynch'’s Types Examples Functions

Paths Street, canal, transit line Channel for navigator
movement

Edges Fence, riverbank Indicates district limits

Districts Neighborhood Reference region

Nodes Town square, public Focal point for travel

building

Landmarks Statue Reference point into which

we cannot enter

Figure 10.5 The functions of different kinds of landmarks in a virtual environment. Adapted from Vinson (1999).

dimensional structures, but rather are remembered in some viewpoint-dependent fashion. (See
Chapter 7 for a discussion of viewpoint-dependent object memory.)

An interesting way to assist users in the encoding of landmarks for navigation in 3D envi-
ronments was developed by Elvins et al. (1997). They presented subjects with small 3D subparts
of a virtual cityscape that they called worldlets, as illustrated in Figure 10.6. The worldlets pro-
vided 3D views of key landmarks, presented in such a way that observers could rotate them to
obtain a variety of views. Subsequently, when they were tested in a navigation task, subjects who
had been shown the worldlets performed significantly better than subjects who had been given
pictures of the landmarks, or subjects who had simply been given verbal instructions.

Cognitive maps can also be acquired directly from an actual map much more rapidly than
by traversing the terrain. Thorndyke and Hayes-Roth (1982) compared people’s ability to judge
distances between locations in a large building. Half of them had studied a map for half an hour
or so, whereas the other half never saw a map but had worked in the building for many months.
The results showed that for estimating the straight-line Euclidean distance between two points,
a brief experience with a map was equivalent to working in the building for about a year.
However, for estimating the distance along the hallways, the people with experience in the build-
ing did the best.

To understand map-reading skills, Darken and Banker (1998) turned to orienteering, a sport
that requires athletes to run from point to point over rugged and often difficult terrain with the
aid of a map. Experienced orienteers are skilled map readers. One cognitive phenomenon the
researchers observed was related to an initial scaling error rapidly remedied; they observed that
“initial confusion caused by a scaling error is followed by a ‘snapping’ phenomenon where the



Interacting with Visualizations 333

patrol Ipetrol

Figure 10.6 Elvins et al. (1998) conceived the idea of worldlets as navigation aids. Each worldlet is a 3D
representation of a landmark in a spatial landscape. (a) A straight-on view of the landmark. (b) The region
extracted to create the worldlet. (c) The worldlet from above. (d) The worldlet from street level. Worldlets
can be rotated to facilitate later recognition from an arbitrary viewpoint.

world that is seen is instantaneously snapped into congruence with the mental representation”
(Darken et al., 1998). This suggests that wherever possible, aids should be given to identify match-
ing points on both an overview map and a focus map.

Frames of Reference

The ability to generate and use something cognitively analogous to a map can be thought of as
applying another perspective or frame of reference to the world. A map is like a view from above.
Cognitive frames of reference are often classified into egocentric and exocentric. According to
this classification, a map is just one of many exocentric views—views that originate outside of
the user.

The egocentric frame of reference is, roughly speaking, our subjective view of the world. It
is anchored to the head or torso, not the direction of gaze (Bremmer et al., 2001). Our sense of
what is ahead, left, and right does not change as we rapidly move our eyes around the scene,
but it does change with body and head orientation.
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As we explore the world, we change our egocentric viewpoint primarily around two axes of
rotation. We turn our bodies mostly around a vertical axis (pan) to change heading, and swivel
our heads on the neck (also pan) about a similar vertical axis for more rapid adjustments in view
direction. We also tilt our heads forward and back, but generally not to the side (roll). Thus,
human angle of view control normally has only two degrees of freedom. These heading (pan)
and tilt rotational degrees of freedom are illustrated in Figure 10.7.

A consequence of the fact that we are most familiar with only two of the three degrees of
freedom of viewpoint rotation is that when displaying maps, either real or in a virtual environ-
ment, we are most comfortable with only two degrees of freedom of rotation. Figure 10.8 illus-

Tilt

Pan

o %
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<

Figure 10.7 Primary rotation axes of egocentric coordinates.

Figure 10.8 View-control widgets for examining geographic data. Note that the rotational degrees of freedom match
the rotational degrees of freedom of egocentric coordinates. The three views show different amounts of
tilt. The handle on the top widgets can be dragged left and right around the ring to change the view
heading.
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trates an interface for rotating geographical information spaces constructed to have the same two
degrees of freedom (Ware et al., 2001). The widgets allow rotation around the center point (equiv-
alent to turning the body) and tilt from horizontal up into the plane of the screen (equivalent to
forward-and-back head tilt), but they do not allow rotation about the line of site through the
center of the screen (equivalent to the rarely used sideways head tilt).

Because we tend to move our bodies forward, and only rarely sideways, a simple interface
to simulate human navigation can be constructed with only three degrees of freedom, two for
rotations (heading and tilt) and one to control forward motion in the direction of heading. If a
fourth degree of freedom is added, it may be most useful to allow for something analogous to
head turning. This allows for sideways glances while traveling forward.

The term exocentric simply means external. In 3D computer graphics, exocentric frames of
reference are used for applications such as monitoring avatars in video games, controlling virtual
cameras in cinematography, and monitoring the activities of remote or autonomous vehicles.
Obviously, there is an infinity of exocentric views. The following is a list of some of the more
important and useful ones.

Another person’s view For some tasks, it can be useful to take the egocentric view of
someone else who is already present in our field of view. Depending on the angular
disparity in the relative directions of gaze, this can be confusing, especially when the other
person is facing us. In the ClearBoard system (Ishii and Kobayashi, 1992), a remote
collaborator appeared to be writing on the other side of a pane of glass. By digitally
reversing the image, a common left-right frame of reference was maintained.

Over-the-shoulder view A view from just behind and to the side of the head of an
individual. This view is commonly used in cinematography.

God’s-eye view Following a vehicle or avatar from above and behind. Figure 10.9(a)
illustrates. This view is very common in video games. Because it provides a wider field of

Figure 10.9  (a) God's-eye view of a moving vehicle shown by the tube object in the foreground. (b) Wingman'’s view of
the same vehicle.
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view, it can be better for steering a remote vehicle than the more obvious choice, an
egocentric view from the vehicle itself (Wang and Milgram, 2001).

Wingman’s view Following a vehicle or avatar while looking at it from the side. Figure
10.9(b) illustrates. Exocentric views that follow a moving object, such as the God’s-eye or
wingman’s views, are sometimes called tethered (Wang and Milgram, 2001).

Map view A top-down view.

Whether an egocentric or an exocentric frame of reference is likely to be most useful depends on
the task (McCormick et al., 1998). Some tasks, such as steering a virtual vehicle, are better done
with an egocentric view or an exocentric God’s-eye tethered view. Other tasks involving global
spatial awareness, such as estimating the distance between a set of objects, can be performed
better with an exocentric map view.

If we have multiple views simultaneously, then the links between views can be made
visually explicit (Ware and Lewis, 1995; Plumlee and Ware, 2003). Figure 10.10 illustrates

Fils iew Opdons Tools Commands Help

Viewpoint of tcthered view

Tethered
View

Figure 10.10  The subwindow in the upper left corner provides a tethered view. The overview contains a number of
graphical devices to make the tethering explicit (Plumlee and Ware, 2003).
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graphical methods for showing where the tethered view is with respect to a larger overview. These
include a viewpoint proxy, a transparent pyramid showing the direction and angle of the
tethered view, and lines that visually link the secondary window with its source.

None of the exocentric views has been studied as much as the map view.

Map Orientation

How should a map be displayed? Two alternatives have been extensively studied: the track-up
display, shown in Figure 10.11(b), and the north-up display, shown in Figure 10.11(a). A track-
up map is oriented so that the straight-ahead direction, from the point of view of the navigator,
is the up direction on the map. The second alternative is to display the map so that north is
always up, at the top of the map.

Figure 10.11  (a) North-up map. (b) Track-up map. (c) North-up map with user view explicitly displayed.
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One way of considering the map orientation problem is in terms of control compatibility.
Imagine yourself in a car, driving south from Berlin, Germany, to Rome, Italy. With a north-up
map, a right turn becomes a left direction on the map. Many people find this confusing and reori-
ent the map, even though this means that the place names are upside-down. Experimental studies
of map use confirm this, showing that fewer errors are made when subjects use a track-up map
(Eley, 1988). However, the north-up map does have advantages. Expert navigators often prefer
this orientation because it provides a common frame of reference for communicating with
someone else.

It is possible to enhance a north-up map and make it almost as effective as a track-up map,
even for novices. Aretz (1991) provided a north-up map for helicopter navigators, but with the
addition of a clear indicator of the forward field of view of the navigator. This significantly
enhanced the ability of the user to orient himself or herself. Figure 10.11(c) illustrates this kind
of enhanced map.

Supporting Visualizations with Maps
The research suggests a number of ways that visualizations can be enhanced with maps:

®  Overview maps should be provided when an information space is large. Given how hard
it is to build up a mental map by exploring an environment, an overview can substantially
reduce the cognitive load.

®  User location and direction of view within the map should be indicated. A common way
of doing this is with a You are here arrow.

® Imagery of key landmarks should be provided. A landmark image on a map should be
constructed from a viewpoint that will occur when the wayfinder encounters the actual
landmark.

It should be borne in mind that procedural instructions can be more useful than a map when the
task itself requires navigating from landmark to landmark. In this case, the cognitive represen-
tation of the task is likely to be topological. If the problem is to guide a user from node to node
through a virtual information space, providing a sequence of instructions may be more appro-
priate than providing a map. A verbal or written set of procedural instructions can also be
enhanced with landmark imagery.

Focus, Context, and Scale

We have been dealing with the problem of how people navigate through 3D data spaces, under
the assumption that the methods used should reflect the way we navigate in the real world. The
various navigation metaphors are all based on this assumption. However, there are a number of
successful spatial navigation techniques that do not use an explicit interaction metaphor, but do
involve visual spatial maps. These techniques make it easy to move rapidly between views at dif-
ferent scales; because of this, they are said to solve the focus—context problem. If we think of the



Interacting with Visualizations 339

problem of wayfinding as one of discovering specific objects or locations in a larger landscape,
the focus—context problem is simply a generalization of this, the problem of finding detail in a
larger context. The focus—context problem is not always spatial; there are also structural and
temporal variations.

Spatial scale Spatial-scale problems are common to all mapping applications. For example, a
marine biologist might wish to understand the spatial behavior of individual codfish
within a particular school off the Grand Banks of Newfoundland. This information is
understood in the context of the shape of the continental shelf and the boundary between
cold Arctic water and the warm waters of the Gulf Stream.

Structural scale Complex systems can have structural components at many levels. A
prime example is computer software. This has structure within a single line of code,
structure within a subroutine or procedure (perhaps 50 lines of code), structure at the
object level for object-oriented code (perhaps 1000 lines of code), structure at the packet
level, and structure at the system level. Suppose that we wish to visualize the structure of
a large program, such as a digital telephone switch (comprising as many as 20 million
lines of code); we may wish to understand its structure through as many as six levels of
detail.

Temporal scale Many data visualization problems involve understanding the timing of events
at very different scales. For example, in understanding data communications, it can be
useful to know the overall traffic patterns in a network as they vary over the course of a
day. It can also be useful to follow the path of an individual packet of information
through a switch over the course of a few microseconds.

It is worth noting that the focus—context problem has already been solved by the human visual
system. The brain continuously integrates detailed information from successive fixations of the
fovea with the less detailed information that is available at the periphery. This is combined with
data coming from the prior sequence of fixations. For each new fixation, the brain must somehow
match key objects in the previous view with those same objects moved to new locations. Differ-
ing levels of detail are supported in normal perception because objects are seen at much lower
resolution at the periphery of vision than in the fovea. Because we have no difficulty in recog-
nizing objects at different distances, this also means that scale-invariance operations are sup-
ported in normal perception. The best solutions to the problem of providing focus and context
in a display are likely to take advantage of these perceptual capabilities.

Although the spatial scale of a map, the structural levels of detail of a computer program,
and the temporal scale in communications monitoring are very different application domains,
they can all be represented by means of spatial layouts of data and they belong to a class
of related visualization problems. The same interactive techniques can usually be applied. In
the following sections, we consider the perceptual properties of four different visualization
techniques to solve the focus—context problem: distortion, rapid zooming, elision, and multiple
windows.
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Distortion Techniques

A number of techniques have been developed that spatially distort a data represe

ntation, giving

more room to designated points of interest and decreasing the space given to regions away from
those points. What is of specific interest is spatially expanded at the expense of what is not, thus
providing both focus and context. Figure 10.12 illustrates one such method, called intelligent
zooming (Bartram et al., 1994). Parts of the graph are dynamically repositioned and resized based
on selected points of interest, and selected nodes are expanded to show their contents. Some tech-
niques have been designed to work with a single focus, such as the hyperbolic tree browser
(Lamping et al., 1995), shown in Figure 10.13. Others allow multiple foci to be simultaneously
expanded, for example, the table lens (Rao and Card, 1994) illustrated in Figure 10.14. Many
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Figure 10.12 A view of the intelligent zoom system developed by Bartram et al. (1998).
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Figure 10.13  Hyperbolic tree browser from Lamping et al. (1995). The focus can be changed by dragging a node from
the periphery into the center.
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Figure 10.14  Table lens from Rao and Card (1994). Multiple row- and column-wise centers of focus can be created.

of these methods use simple algebraic functions to distort space based on the distance from each
focus.

An obvious perceptual issue related to the use of distorting focus—context methods is whether
the distortion makes it difficult to identify important parts of the structure. This problem can be
especially acute when actual geographical maps are expanded. For example, Figure 10.15 from
Sarkar and Brown (1994) shows a distorted view of a map of major cities in North America,
together with communications paths between them. The focus is on St. Louis, with the graph
expanded at that point, whereas all other regions are reduced in size. The result achieves the goal
of making the information about St. Louis and neighboring cities clearer, at the expense of an
extreme distortion of the shape of the continent. Compromises are possible; Bartram et al. (1994)
do not distort the focal information locally presented in the graph nodes, but they do distort the
overall graph layout (see Figure 10.12).

Rapid Zooming Techniques

In rapid zooming techniques, a large information landscape is provided, although only a part of
it is visible in the viewing window at any instant. The user is given the ability to zoom rapidly
into and out of points of interest, which means that although focus and context are not simul-
taneously available, the user can move rapidly and smoothly from focus to context and back. If
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Figure 10.15 Fish-eye view of links between major American cities. The focus is on St. Louis (Sarkar and Brown
1994).

rapid smooth scaling is used, the viewer can perceptually integrate the information over time.
The Pad and Pad++ syastems (Bederson and Hollan, 1994) are based on this principle.
They provide a large planar data landscape, with an interface using a simple point-and-click
technique to move rapidly in and out. Care has been taken to make the animation smooth and
continuous.

Mackinlay et al. (1990) invented a rapid-navigation technique for 3D scenes that they called
point of interest navigation. This method moves the user’s viewpoint rapidly, but smoothly, to a
point of interest that has been selected on the surface of some object. At the same time, the view
direction is smoothly adjusted to be perpendicular to the surface. A variant of this is to base the
navigation on an object. Parker et al. (1998) developed a similar technique that is object- rather
than surface-based; clicking on an object scales the entire 3D “world” about the center of
that object while simultaneously bringing it to the center of the workspace. This is illustrated in
Figure 10.16.

In all these systems, the key perceptual issues are the rapidity and ease with which the view
can be changed from a focal one to an overview and back. Less than a second of transition time
is probably a good rule of thumb, but the animation must be smooth to maintain the identity of
objects in their contexts. To maintain a sense of location, landmark features should be designed
to be recognized consistently, despite large changes in scale.
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Figure 10.16  In the NV3D systems (Parker et al., 1998), clicking and holding down the mouse causes the environment
to be smoothly scaled as the selected point is moved to the center of the 3D workspace.

Elision Techniques

In visual elision, parts of a structure are hidden until they are needed. Typically, this is achieved
by collapsing a large graphical structure into a single graphical object. This is an essential com-
ponent of the Bartram et al. (1994) system, illustrated in Figure 10.12, and of the NV3D system
(Parker et al., 1998; see Figure 8.25). In these systems, when a node is opened, it expands to
reveal its contents.

The elision idea can be applied to text as well as to graphics. In the generalized fish-eye tech-
nique for viewing text data (Furnas, 1986), less and less detail is shown as the distance from the
focus of interest increases. For example, in viewing code, the full text is shown at the focus;
farther away, only the subroutine headers are made visible, and the code internal to the sub-
routine is elided.

Elision in visualization is analogous to the cognitive process of chunking, discussed earlier,
whereby small concepts, facts, and procedures are cognitively grouped into larger “chunks.”
Replacing a cluster of objects that represents a cluster of related concepts with a single object is
very like chunking. This similarity may be the reason that visual elision is so effective.

Multiple Windows

It is common, especially in mapping systems, to have one window that shows an overview and
several others that show expanded details. The major perceptual problem with the multiple-
window technique is that detailed information in one window is disconnected from the overview
(context information) shown in another. A solution is to use lines to connect the boundaries of
the zoom window to the source image in the larger view. Figure 10.17 illustrates a zooming
window interface for an experimental calendar application. Multiple windows show day, month,
and year views in separate windows (Card et al., 1994). The different windows are connected
by lines that integrate the focus information in one table within the context provided by another.
Figure 10.18 shows the same technique used in a 3D zooming user interface. The great advan-
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Figure 10.17  The spiral calendar (Card et al., 1994). The problem with multiple-window interfaces is that information
becomes visually fragmented. In this application, information in one window is linked to its context within
another by a connecting transparent overlay.

tage of the multiple-window technique over the others listed previously is that it is both nondis-
torting and able to show focus and context simultaneously.

Rapid Interaction with Data

In a data exploration interface, it is important that the mapping between the data and its visual
representation be fluid and dynamic. Certain kinds of interactive techniques promote an experi-
ence of being in direct contact with the data. Rutkowski (1982) calls it the principle of trans-
parency; when transparency is achieved, “the user is able to apply intellect directly to the task;
the tool itself seems to disappear.” There is nothing physically direct about using a mouse to drag
a slider on the screen, but if the temporal feedback is rapid and compatible, the user can obtain
the illusion of direct control. A key psychological variable in achieving this sense of control is
the responsiveness of the computer system. If, for example, a mouse is used to select an object
or to rotate a cloud of data points in 3D space, as a rule of thumb visual feedback should
be provided within 1/10 second for people to feel that they are in direct control of the data
(Shneiderman, 1987).

Interactive Data Display

Often data is transformed before being displayed. Interactive data mapping is the process of
adjusting the function that maps the data variables to the display variables. A nonlinear mapping
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Figure 10.18 The GeoZui3D system allows for subwindows to be linked in a variety of ways (Plumlee and Ware, 2003).
In this illustration the focus of one subwindow is linked to an undersea vehicle docking. A second
subwindow provides an overview of a group of undersea vehicles. The faint translucent triangles in the
overview show the position and direction of the subwindow views.

between the data and its visual representation can bring the data into a range where patterns are
most easily made visible. Figure 10.19 illustrates this concept. Often the interaction consists of
imposing some transforming function on the data. Logarithmic, square root, and other functions
are commonly applied (Chambers et al., 1983). When the display variable is color, techniques
such as histogram equalization and interactive color mapping can be chosen (see Chapter 4). For
large and complex data sets, it is sometimes useful to limit the range of data values that are
visible and mapped to the display variable; this can be done with sliders.

Ahlberg et al. (1992) call this kind of interface dynamic queries and have incorporated it
into a number of interactive multivariate scatter-plot applications. By adjusting data range sliders,
subsets of the data can be isolated and visualized. An example is given in Figure 10.20, showing
a dynamic query interface to the Film Finder application (Ahlberg et al., 1992). Dragging the
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Figure 10.19 In a visualization system, it is often useful to change interactively the function that maps data values to a
display variable.
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Figure 10.20  The Film Finder application of Ahlberg and Shneiderman (1987) used dynamic query sliders to allow rapid

interactive updating of the set of data points mapped from a database to the scatter-plot display in the
main window. Courtesy of Matthew Ward.
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Year of Production slider at the bottom causes the display to update rapidly the set of films shown
as points in the main window.

Another interactive technique is called brushing (Becker and Cleveland, 1987). This enables
subsets of the data elements to be highlighted interactively in a complex representation. Often
data objects, or different attributes of them, simultaneously appear in more than one display
window, or different attributes can be distributed spatially within a single window. In brushing,
a group of elements selected through one visual representation becomes highlighted in all the dis-
plays in which it appears. This enables visual linking of components of heterogeneous complex
objects. For example, data elements represented in a scatter plot, a sorted list, and a 3D map can
all be visually linked when simultaneously highlighted.

Brushing works particularly well with a graphical display technique called parallel coordi-
nates (Inselberg and Dimsdale, 1990). Figure 10.21 shows an example in which a set of auto-
mobile statistics are displayed: miles per gallon, number of cylinders, horsepower, weight, and
so on. A vertical line (parallel coordinate axis) is used for each of these variables. Each auto-
mobile is represented by a vertical height on each of the parallel coordinates, and the entire auto-
mobile is represented by a compound line running across the graph, connecting all its points. But
because the pattern of lines is so dense, it is impossible to trace any individual line visually and

[HPG Cylinde |Horsepo [Weight Origin

Figure 10.21 In a parallel-coordinates plot, each data dimension is represented by a vertical line. This example
illustrates brushing. The user can interactively select a set of objects by dragging the cursor across
them. From: XmdvTool (http://davis.wpi.edu/~xmdv). Courtesy of Matthew Ward (1990).
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Figure 10.22 In some interactive visualization systems, it is possible to change the mapping between data attributes
and the visual representation.

thereby understand the characteristics of a particular automobile. With brushing, a user can select
a single point on one of the variables, which has the result of highlighting the line connecting all
the values for that automobile. This produces a kind of visual profile. Alternatively, it is
possible to select a range on one of the variables, as illustrated in Figure 10.21, and all the lines
associated with that range become highlighted. Once this is done, it is easy to understand
the characteristics of a set of automobiles (those with low mileage, in this case) across all the
variables.

As discussed in Chapter 3, it is possible to map different data attributes to a wide variety of
visual variables: position, color, texture, motion, and so on. Each different mapping makes some
relationships more distinct and others less distinct. Therefore, allowing a knowledgeable user to
change the mapping interactively can be an advantage. (See Figure 10.22.) Of course, such
mapping changes are in direct conflict with the important principle of consistency in user inter-
face design. In most cases, only the sophisticated visualization designer should change display
mappings.

Conclusion

This chapter has been about the how to make the graphic interface as fluid and transparent as
possible. Doing so involves supporting eye—hand coordination, using well-chosen interaction
metaphors, and providing rapid and consistent feedback. Of course, transparency comes from
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practice. A violin has an extraordinarily difficult user interface, and to reach virtuosity may take
thousands of hours, but once virtuosity is achieved, the instrument will have become a trans-
parent medium of expression. This highlights a thorny problem in the development of novel inter-
faces. It is very easy for the designer to become focused on the problem of making an interface
that can be used rapidly by the novice, but it is much more difficult to research designs for the
expert. It is almost impossible to carry out experiments on expert use of radical new interfaces
for the simple reason that no one will ever spend enough time on a research prototype to become
truly skilled.

Having said that, efforts to refine the user interface are extremely important. One of the
goals of cognitive systems design is to tighten the loop between human and computer, making it
easier for the human to obtain important information from the computer via the display. Simply
shortening the amount of time it takes to select some piece of information may seem like a small
thing, but information in human visual and verbal working memories is very limited; even a few
seconds of delay or an increase in the cognitive load, due to the difficulty of the interface, can
drastically reduce the rate of information uptake by the user. When a user must stop thinking
about the task at hand and switch attention to the computer interface itself, the effect can be
devastating to the thought process. The result can be the loss of all or most of the cognitive
context that has been set up to solve the real task. After such an interruption, the train of thought
must be reconstructed, and research on the effect of interruptions tells us that this can drasti-
cally reduce cognitive productivity (Field and Spence, 1994; Cutrell et al., 2000).



CHAPTER ""

Thinking with Visualizations

One way to approach the design of an information system is to consider the cost of knowledge.
Pirolli and Card (1995) drew an analogy with the way animals seek food to gain insights about
how people seek information. Animals minimize energy expenditure to get the required gain in
sustenance; humans minimize effort to get the necessary gain in information. Foraging for food
has much in common with the seeking of information because, like edible plants in the wild,
morsels of information are often grouped, but separated by long distances in an information
wasteland. Pirolli and Card elaborated the idea to include information “scent”—like the scent
of food, this is the information in the current environment that will assist us in finding more suc-
culent information clusters.

The result of this approach is a kind of cognitive information economics. Activities are ana-
lyzed according to the value of what is gained and the cost incurred. There are two kinds of
costs: resource costs and opportunity costs (Pirolli, 2003). Resource costs are the expenditures
of time and cognitive effort incurred. Opportunity costs are the benefits that could be gained by
engaging in other activities. For example, if we were not seeking information about information
visualization, we might profitably be working on software design.

In some ways, an interactive visualization can be considered an internal interface between
human and computer components in a problem-solving system. We are all becoming cognitive
cyborgs in the sense that a person with a computer-aided design program, access to the Internet,
and other software tools is capable of problem-solving strategies that would be impossible for
that person acting unaided. A businessman plotting projections based on a spreadsheet business
model can combine business knowledge with the computational power of the spreadsheet to plot
scenarios rapidly, interpret trends visually, and make better decisions.

In this chapter, our concern is with the economics of cognition and the cognitive cost of
knowledge. Human attention is a very limited resource. If it is taken up with irrelevant visual
noise, or if the rate at which visual information is presented on the screen poorly matches the
rate at which people can process visual patterns, then the system will not function well.

351
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There are two fundamental ways in which visualizations support thinking: first, by sup-
porting visual queries on information graphics, and second, by extending memory. For visual
queries to be useful, the problem must first be cast in the form of a query pattern that, if seen,
helps solve part of the problem. For example, finding a number of big red circles in a GIS display
may indicate a problem with water pollution. Finding a long, red, fairly straight line on a map
can show the best way to drive between two cities. Once the visual query is constructed, a visual
search strategy, through eye movements and attention to relevant patterns, provides answers.

Memory extension comes from the way a display symbol, image, or pattern can rapidly
evoke nonvisual information and cause it to be loaded from long-term memory into verbal-
propositional processing centers.

This chapter presents the theory of how we think with visualizations. First, the memory and
attention subsystems are described. Next, visual thinking is described as a set of embedded
processes. Throughout, guidelines are provided for designing visual decision support systems.

Memory Systems

Memory provides the framework that underlies active cognition, whereas attention is the motor.
As a first approximation, there are three types of memory: iconic, working, and long-term. There
may also be a fourth, intermediate store that determines what from working memory finds its
way into long-term memory. Iconic memory is a very brief image store, holding what is on the
retina until it is replaced by something else or until several hundred milliseconds have passed
(Sperling, 1960). Long-term memory is the information that we retain from everyday experience,
perhaps for a lifetime. Consolidation of information into long-term memory only occurs,
however, when active processing is done to integrate the new information with existing knowl-
edge (Craik and Lockhart, 1972). Visual working memory holds the visual objects of immediate
attention. These can be either external or mental images. In computer science terms, this is a reg-
ister that holds information for the operations of visual cognition.

Visual Working Memory

The most critical cognitive resource for visual thinking is called visual working memory. Theo-
rists disagree on details of exactly how visual working memory operates, but there is broad agree-
ment on basic functionality and capacity—enough to provide a solid foundation for a theory of
visual thinking. Closely related alternative concepts are the visuospatial sketchpad (Marr, 1982),
visual short-term memory (Irwin, 1992), and visual attention (Rensink, 2002). Here is a list of
some key properties of visual working memory:

®  Visual working memory is separate from verbal working memory.

®  Capacity is limited to a small number of simple visual objects and patterns, perhaps three
to five simple objects.
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® DPositions of objects are stored in an egocentric map. Perhaps nine locations are stored, but
only three to five are linked to specific objects.

® Attention controls what visual information is held and stored.
®  The time to change attention is about 100 msec.

® The semantic meaning or gist of an object or scene (related more to verbal working
memory) can be activated in about 100 msec.

® For items to be processed into long-term memory, deeper semantic coding is needed.

Working memory is not a single system; rather, it has a number of interlinked but separate com-
ponents. There are separate systems for processing auditory and visual information, as well as
subsystems for body movements and verbal output (Thomas et al., 1999). There may be addi-
tional stores for sequences of cognitive instructions and for motor control of the body. Kieras
and Meyer (1997), for example, proposed an amodal control memory, containing the operations
needed to accomplish current goals, and a general-purpose working memory, containing other
miscellaneous information. A similar control structure is called the central executive in
Baddeley and Hitch’s model (1974), illustrated in Figure 11.1.

A detailed discussion of nonvisual working memory processes is beyond the scope of this
book. Complete overview models of cognitive processes, containing both visual and nonvisual
subsystems can be found in the Anderson ACT-R model (Anderson et al., 1997) and the execu-
tive process interactive control (EPIC) developed by Kieras and his coworkers (Kieras and Meyer,
1997). The EPIC architecture is illustrated in Figure 11.2. Summaries of the various working
memory theories can be found in Miyake and Shah (1999).

That visual thinking results from the interplay of visual and nonvisual memory systems
cannot be ignored. However, rather than getting bogged down in various theoretical debates
about particular nonvisual processes, which are irrelevant to the perceptual issues, we will here-
after refer to nonvisual processes generically as verbal-propositional processing.

It is functionally quite easy to separate visual and verbal-propositional processing. Verbal-
propositional subsystems are occupied when we speak, whereas visual subsystems are not. This
allows for simple experiments to separate the two processes. Postma and De Haan (1996) provide
a good example. They asked subjects to remember the locations of a set of easily recognizable
objects—small pictures of cats, horses, cups, chairs, tables, etc.—laid out in two dimensions on
a screen. Then the objects were placed in a line at the top of the display and the subjects were

Verbal working [ Central
memory exectutive

Visual working
memory

Figure 11.1 The multicomponent model of working memory of Baddeley and Hitch (1974).
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Figure 11.2 A unified extended cognitive model containing both human and machine processing systems. Adapted
from Kieras and Meyer, (1997).

asked to reposition them—a task the subjects did quite well. In another condition, subjects were
asked to repeat a nonsense syllable, such as blah, while in the learning phase; in this case they
did much worse. However, saying blah did not disrupt memory for the locations themselves; it
only disrupted memory for what was at the locations. This was demonstrated by having subjects
place a set of disks at the positions of the original objects, which they could do with relative
accuracy. In other words, when blah was said in the learning phase, subjects learned a set of
locations but not the objects at those locations. This technique is called articulatory suppression
(Postma and DeHaan, 1996; Postma et al., 1998).

Presumably, the reason why saying blah disrupted memory for the objects is that this
information was translated into a verbal-propositional coding when the objects were
attended.
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Visual Working Memory Capacity

Position is not the only information stored in visual working memory; some abstract shape, color,
and texture information is also retained. Visual working memory can be roughly defined as the
visual information retained from one fixation to the next. This appears to be limited to about
three to five simple objects (Irwin, 1992; Xu, 2002; Luck and Vogel 1997; Melcher, 2001). The
exact number depends on the task and the kind of pattern. Figure 11.3(a) illustrates the kinds
of patterns used in a series of experiments by Vogel et al. (2001). In these experiments, one set
of objects was shown for a fraction of a second (e.g., 400 msec), followed by a blank of more
than 0.5sec. After the blank, the same pattern was shown, but with one attribute of an object
altered—for example, its color or shape. The results from this and a large number of similar
studies have shown that about three objects can be retained without error, but these objects can
have color, shape, and texture. If the same amount of color, shape, and texture information is
distributed across more objects, memory declines for each of the attributes.

Only quite simple shapes can be stored in this way. For example, each of the mushroom shapes
shown in Figure 11.3(b) uses up two visual memory slots (Xu, 2002). Subjects do no better if the
stem and the cap are combined than if they are separated. Intriguingly, Vogel et al. (2001) found
that if colors were combined with concentric squares, as shown in Figure 11.3(c), then six colors
could be held in visual working memory, but if they were put in side-by-side squares, only three
colors could be retained. Melcher (2001) found that more information could be retained if longer
viewing was permitted: up to five objects after a four-second presentation.

What are the implications for data glyph design? (A glyph, as discussed in Chapter 3, is a
visual object that displays one or more data variables.) If it is important that a data glyph be
held in visual working memory, then it is important that its shape allows it to be encoded accord-
ing to visual working memory capacity. For example, Figure 11.4 shows two ways of representing
the same data. One consists of an integrated glyph containing a colored arrow showing orien-
tation, by arrow direction; temperature, by arrow color; and pressure, by arrow width. A second
representation distributes the three quantities among three separate visual objects: orientation by

a b c
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Figure 11.3 Patterns used in studies of the capacity of visual working memory. (a) From Vogel et al. (2001). (b) From
Xu (2002). (c) From Vogel et al. (2001).
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Figure 11.4 If multiple data attributes are integrated into a single glyph, more information can be held in visual
working memory.

an arrow, temperature by the color of a circle, and air pressure by the height of a rectangle. The
theory of visual working memory and the results of Vogel et al. (2001) suggest that three of the
former glyphs could be held in visual working memory, but only one of the latter.

Object Files, Coherence Fields, and Gist

What exactly is held in working memory? Kahneman et al. (1992) coined the term object file
to describe the temporary grouping of a collection of visual features together with other links
to verbal-propositional information. They hypothesized that an object file would consist of a
neural activation pattern having the equivalent of pointers reaching into the part of the
brain where visual features are processed, as well as pointers to verbal working memory struc-
tures and to stored motor memories concerned with the appropriate body movements to make
in response.

What we perceive is mostly determined by the task at hand, whether it is finding a path over
rocks or finding the lettuce in a grocery store. Perception is tuned by the task requirements to
give us what is most likely to be useful. In the first example we see the rocks immediately in front
of us. In the second we see green things on the shelves. We can think of perception as occurring
through a sequence of active visual queries operating through a focusing of attention to give us
what we need. The neural mechanism underlying the query may be a rapid tuning of the pattern
perception networks to respond best to patterns of interest (Dickinson et al. 1997). Rensink
(2002, 2000) coined the term nexus to describe this instantaneous grouping of information by
attentional processing.

Another term sometimes used to describe a kind of summary of the properties of an object
or a scene is gist. Gist is used mainly to refer to the properties that are pulled from long-term
memory as the image is recognized. Visual images can activate verbal-propositional information
in as little as 100 msec (Potter, 1976). Gist consists of both visual information about the typical
structure of an object and links to relevant verbal-propositional information. We may also store
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the gist of a whole environment, so that when we see a familiar scene, the interior of a car, for
example, a whole visual framework of the typical locations of things will be activated. We can
think of an object file as the temporary structure in working memory, whereas gist is a longer-
term counterpart.

Change Blindness

One of the consequences of the very small amount of information held in visual working memory
is a phenomenon known as change blindness (Rensink, 2000). Because we remember so little, it
is possible to make large changes in a display between one view and the next and people gener-
ally will not notice, unless the change is to something they have recently attended. If a change is
made while the display is being fixated, the inevitable blink will draw attention to it. But if
changes are made mid-eye movement, midblink, or after a short blanking of the screen (Rensink,
2002), the change generally will not be seen. Iconic memory information in retinal coordinates
decays within about 200 msec (Phillips, 1974). By the time 400 msec have elapsed, what little
remains is in visual working memory.

An extraordinary example of change blindness is a failure to detect a change from one person
to another in midconversation. Simons and Levin (1998) carried out a study in which an unsus-
pecting person was approached by a stranger holding a map and asking for directions. The con-
versation that ensued was interrupted by two workers carrying a door and during this interval
another actor, wearing different clothes, was substituted to carry on the conversation. Remark-
ably, most people did not notice the substitution.

To many people, the extreme limitation on the capacity of visual working memory seems
quite incredible. How can we experience a rich and detailed world, given such a shallow inter-
nal representation? The answer to this dilemma is that the world “is its own memory” (O’Regan,
1992). We perceive the world to be rich and detailed, not because we have an internal detailed
model, but simply because whenever we wish to see detail we can get it, either by focusing atten-
tion on some aspect of the visual image at the current fixation or by moving our eyes to see the
detail in some other part of the visual field. We are unaware of the jerky eye movements by which
we explore the world; we are only aware of the complexity of the environment detail being
brought into working memory on a need-to-know, just-in-time fashion (O’Regan, 1992; Rensink,
2002; Rensink et al., 1997). This is in agreement with the idea of visual queries being basic to
perception.

Spatial Information

For objects acquired in one fixation to be reidentified in the next requires some kind of buffer
that holds locations in egocentric coordinates as opposed to retina-centric coordinates (Hochberg,
1968). This also allows for the synthesis of information obtained from successive fixations. Figure
11.5 illustrates the concept. Neurophysiological evidence from animal studies suggests that the
lateral interparietal area near the top of the brain (Colby, 1998) appears to play a crucial role
in linking eye-centered coordinate maps in the brain with egocentric coordinate maps.
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Figure 11.5 A spatial map of objects that have recently been held by attention is a necessary part of visual working
memory.

Egocentric-spatial location memory also holds remarkably little information, although prob-
ably a bit more than the three objects that Vogel et al. (2001) suggest. It may be possible to
remember some information about approximately nine locations (Postma et al., 1998). Three of
these may contain links to object files, whereas the remaining ones specify only that there is some-
thing at a particular region in space, but very little more. Some evidence suggests that fixation
of a particular object may be essential for that object and its location to be held from one fixa-
tion to the next (Hollingworth and Henderson, 2002).

Some visual information is retained over several seconds and several fixations. Potter (2002)
provided evidence for this. Subjects viewed a rapid serial presentation of 10 pictures at the
rate of six per second and afterwards were able to identify whether a particular picture was in
the set about 60% of the time. This suggests that some residual gist is retained over many
visual changes in scene. A recent and very intriguing study by Melcher (2001) suggests that
we can build up information about several scenes that are interspersed. When the background
of a scene was shown, subjects could recall some of the original objects, even though
several other scenes had intervened. This implies that a distinctive screen design could help with
visual working memory when we switch between different views of a data space. We may be
able to cognitively swap in and swap out different data “scenes,” albeit each with a low level of
detail.

An interesting question is how many moving targets can be held from one fixation to the
next. The answer seems to be about four or five. Pylyshyn and Storm (1988) carried out exper-
iments in which visual objects moved around on a display in a pseudo-random fashion. A subset
of the objects was visually marked by changing color, but then the marking was turned off. If
there were five or fewer marked objects, subjects could continue to keep track of them, even
though they were now all black. Pylyshyn coined the term FINST, for fingers of instantiation,
to describe the set of pointers in a cognitive spatial map that would be necessary to support this
task. The number of individual objects that can be tracked is somewhat larger than the three
found by Vogel et al. (2001), although it is possible that the moving objects may be grouped per-
ceptually into fewer chunks (Yantis, 1992).
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Attention

The studies showing that we can hold three or four objects in visual working memory required
intense concentration on the part of the participants. Most of the time, when we interact with
displays or just go about our business in the everyday world, we will not be attending that closely.
In a remarkable series of studies, Mack and Rock (1998) tricked subjects into not paying atten-
tion to the subject of the experiment, although they wanted to make sure that subjects were at
least looking in the right direction. They told subjects to attend to a cross pattern for changes in
the length of one of the arms; perfect scores on this task indicated they had to be attending. Then
the researchers presented a pattern that the subject had not been asked to look for. They found
that even though the unexpected pattern was close to, or even on, the point of fixation, most of
the time it was not seen. The problem with this kind of study is that the ruse can only be used
once. As soon as you ask subjects if they saw the unexpected pattern, they will start looking for
unexpected patterns. Mack and Rock therefore used each subject for only one trial; they used
literally hundreds of subjects in a series of studies.

Mack and Rock called the phenomenon inattentional blindness. It should not be considered
as a peculiar effect only found in the laboratory. Instead this kind of result probably reflects
everyday reality much more accurately than the typical psychological experiment in which sub-
jects are paid to closely attend. Most of the time we simply do not register what is going on in
our environment unless we are looking for it. The conclusion must be that attention is central
to all perception.

Although we are blind to many changes in our environment, some visual events are
more likely to cause us to change attention than others are. Mack and Rock found that although
subjects were blind to small patterns that appeared and disappeared, they still noticed larger
visual events, such as patterns larger than one degree of visual angle appearing near the point of
fixation.

Jonides (1981) studied ways of moving a subject’s attention from one part of a display to
another. He looked at two different ways, which are sometimes called pull cues and push cues.
In a pull cue, a new object appearing in the scene pulls attention toward it. In a push cue, a
symbol in the display, such as an arrow, tells someone where a new pattern is to appear. It appears
to take only about 100 msec to shift attention based on a pull cue but can take between 200 and
400 msec to shift attention based on a push cue.

Visual attention is not strictly tied to eye movements. Although attending to some particu-
lar part of a display often does involve an eye movement, there are also attention processes oper-
ating within each fixation. The studies of Triesman and Gormican (1988) and others (discussed
in Chapter 5) showed that we process simple visual objects serially at a rate of about one every
40-50 msec. Because each fixation typically will last for 100-300 msec, this means that our visual
systems process two to six objects within each fixation, before we move our eyes to attend visu-
ally to some other region.

Attention is also not limited to specific locations of a screen. We can, for example, choose
to attend to a particular pattern that is a component of another pattern, even though the
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patterns overlap spatially (Rock and Gutman, 1981). Thus, we can choose to attend to the curved
pattern or to the rectangular shape in Figure 11.6. We can also choose to attend to a particular
attribute if it is preattentively distinct (Treisman 19835). For example, on a field of black text with
parts highlighted in red, we can choose to attend only to the red items. Having whole groups
of objects that move is especially useful in helping us to attend selectively (Bartram and Ware,
2002). We can attend to the moving group or the static group, with relatively little interference
between them.

The selectivity of attention is by no means perfect. Even though we may wish to focus on
one aspect of a display, other information is also processed, apparently to quite a high level. The
well known Stroop effect illustrates this (Stroop, 1935). In a set of words printed in different
colors, as illustrated in Figure 11.7, if the words themselves are color names that do not match
the ink colors, subjects name the colors more slowly than if the colors match the words. This
means that the words are processed automatically; we cannot entirely ignore them even when
we want to. More generally, it is an indication that all highly learned symbols will automatically
invoke verbal-propositional information that has become associated with them.

The Role of Motion in Attracting Attention

As we conduct more of our work in front of computer screens, there is an increasing need for
signals that can attract a user’s attention. Often someone is busy with a primary task, perhaps
filling out forms or composing email, while at the same time events may occur on other parts of
the display, requiring attention. These user interrupts can alert us to an incoming message from

Figure 11.6 We can attend to either the curved orange shape or the black rectangle, even though they overlap in
space.

RED GREEN BLUE BLACK GREEN PURPLE BLUE BLACK
GREEN RED GREEN BLUE BLACK GREEN PURPLE
BLUE BLACK BLACK GREEN RED

GREEN RED YELLOW PURPLE RED BLACK BLUE BLACK
ORANGE BLUE RED YELLOW RED BLACK YELLOW GREEN
ORANGE GREEN RED GREEN

Figure 11.7 As quickly as you can, try to name the colors of the words in the set at the top. Then try to name the
colors in the set below. Even though both tasks involve ignoring the words themselves, people are
slowed down by the mismatch. This is called the Stroop effect.
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a valued customer or a signal from a computer agent that has been out searching the Internet
for information on the latest flu virus. There are four basic visual requirements for a user
interrupt:

® A signal should be easily perceived, even if it is outside of the area of immediate focal
attention.

® If the user wishes to ignore the signal and attend to another task, the signal should
continue to act as a reminder.

®  The signal should not be so irritating that it makes the computer unpleasant to use.

® It should be possible to endow the signal with various levels of urgency.

Essentially, the problem is how to attract the user’s attention to information outside the central
parafoveal region of vision (approximately the central six degrees). For a number of reasons, the
options are limited. We have a low ability to detect small targets in the periphery of the visual
field. Peripheral vision is color blind, which rules out color signals (Wyszecki and Stiles, 1982).
Saccadic suppression during eye movements means that some transitory event occurring in the
periphery will generally be missed if it occurs during an eye movement (Burr and Ross, 1982).
Taken together, these facts suggest that a single, abrupt change in the appearance of an icon is
unlikely to be an effective signal.

The set of requirements suggests two possible solutions. One is to use auditory cues. In certain
cases, these are a good solution, but they are outside the scope of this book. Another solution is
to use blinking or moving icons. In a study involving shipboard alarm systems, Goldstein and
Lamb (1967) showed that subjects were capable of distinguishing five flash patterns with approx-
imately 98% reliability and that they responded with an average delay of approximately 2.0
seconds. But anecdotal evidence indicates that a possible disadvantage of flashing lights or blink-
ing cursors is that users find them irritating. Unfortunately, many Web page designers generate a
kind of animated chart junk: small, blinking animations with no functional purpose are often used
to jazz up a page. Moving icons may be a better solution. Moving targets are detected more easily
in the periphery than static targets (Peterson and Dugas, 1972). In a series of dual task experi-
ments, Bartram et al. (2003) had subjects carry out a primary task, either text editing or playing
Tetris or Solitaire, while simultaneously monitoring for a change in an icon at the side of the
display in the periphery of the visual field. The results showed that having an icon move was far
more effective in attracting a user’s attention than having it change color or shape. The advantage
increased as the signal was farther from the focus of attention in the primary task.

Another advantage of moving or blinking signals is that they can persistently attract atten-
tion, unlike a change in an icon, such as the raising of a mailbox flag, which fades rapidly from
attention. Also, although rapid motions are annoying, slower motions need not be and they can
still support a low-level of awareness (Ware et al., 1992).

Interestingly, more recent work has suggested that it may not be motion per se that attracts
attention, but the appearance of a new object in the visual field (Hillstrom and Yantis, 1994;
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Enns et al., 2001). This seems right; after all, we are not constantly distracted in an environment
of swaying trees or people moving about on a dance floor. It also makes ecological sense; when
early man was outside a cave, intently chipping a lump of flint into a hand axe, or when early
woman was gathering roots out on the grassland, awareness of emerging objects in the periph-
ery of vision would have had clear survival value. Such a movement might have signaled an immi-
nent attack. Of course, the evolutionary advantage goes back much further than this. Monitoring
the periphery of vision for moving predators or prey would provide a survival advantage for
most animals. Thus, the most effective reminder might be an object that moves into view, dis-
appears, and then reappears every so often. In a study that measured the eye movements made
while viewing multimedia presentations, Faraday and Sutcliffe (1997) found that the onset of
motion of an object generally produced a shift of attention to that object.

Rensink’s Model

Rensink (2002) has recently developed a model that ties together many of the components we
have been discussing. Figure 11.8 illustrates. At the lowest level are the elementary visual fea-
tures that are processed in parallel and automatically. These correspond to elements of color,
edges, motion, and stereoscopic depth. From these elements, prior to focused attention, low-level
precursors of objects, called proto-objects, exist in a continual state of flux. At the top level, the
mechanism of attention forms different visual objects from the proto-object flux. Note that
Rensink’s proto-objects are located at the top of his “low-level vision system.” He is not very
specific on the nature of proto-objects, but it seems reasonable to suppose that they have char-
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Figure 11.8 A model of visual attention. Adapted from Rensink (2002).
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acteristics similar to the mid-level pattern perception processes in the three-stage model laid out
in this book.

Rensink uses the metaphor of a hand to represent attention, with the fingers reaching down
into the proto-object field to instantiate a short-lived object. After the grasp of attention is
released, the object loses its coherence and the components fall back into the constituent proto-
objects. There is little or no residue from this attentional process. Other components of the model
are a layout map containing location information and the rapid activation of object gist.

The central role of attention in Rensink’s model suggests a way that visual queries can be
used to modify the grasp of attention and pull out the particular patterns we need to support
problem solving. For example, we might need to know how one module connects to another in
a software system. To obtain this information, a visual query is constructed to find out if lines
connect certain boxes in the diagram. This query is executed by focusing visual attention on those
graphical features.

The notion of proto-objects in a continuous state of flux suggests, also, how visual displays
can provide a basis for creative thinking, because they allow multiple visual interpretations drawn
from the same visualization. Another way to think about this is that different patterns in the
display become cognitively highlighted, as we consider different aspects of a problem.

Eye Movements

We constantly make eye movements to seek information. Moving our eyes causes different parts
of the visual environment to be imaged on the high-resolution fovea, where we can see detail.
These movements are frequent. For example, as you read this page, your eye is making between
two and five jerky movements, called saccades, per second.

Here are the basic statistics describing three important types of eye movement:

1. Saccadic movements: In a visual search task, the eye moves rapidly from fixation to
fixation. The dwell period is generally between 200 and 600 msec, and the saccade takes
between 20 and 100 msec. The peak velocity of a saccade can be as much as 900 deg/sec
(Hallett, 1986; Barfield et al., 1995).

2. Smooth-pursuit movements: When an object is moving smoothly in the visual field, the
eye has the ability to lock onto it and track it. This is called a smooth-pursuit eye
movement. This ability also enables us to make head and body movements while
maintaining fixation on an object of interest.

3. Convergent movements (also called vergence movements): When an object moves toward
us, our eyes converge. When it moves away, they diverge. Convergent movements can be
either saccadic or smooth.

Saccadic eye movements are said to be ballistic. This means that once the brain decides to switch
attention and make an eye movement, the muscle signals for accelerating and decelerating the
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eye are first programmed, then the program is run to make the eye movement. The movement
cannot be adjusted in mid-saccade. During the course of a saccadic eye movement, we are less
sensitive to visual input than we normally are. This is called saccadic suppression (Riggs et al.,
1974). The implication is that certain kinds of events can easily be missed if they occur while we
happen to be moving our eyes. This is important when we consider the problem of alerting a
computer operator to an event.

Another implication of saccadic suppression is that it is reasonable to think of information
coming into the visual system as a series of discrete snapshots. The brain is often processing rapid
sequences of discrete images. This capacity is being increasingly exploited in television advertis-
ing, in which several cuts per second of video have become commonplace.

Accommodation

When the eye moves to a new target at a different distance from the observer, it must refocus,
or accommodate, so that the target is clearly imaged on the retina. An accommodation response
typically takes about 200 msec. The mechanisms controlling accommodation and convergent eye
movements are neurologically coupled, and this can cause problems with virtual-reality displays.
This problem is discussed in Chapter 8.

Eye Movements, Search, and Monitoring

How does the brain plan a sequence of eye movements to interpret a visual scene? A simple
heuristic strategy appears to be employed according to the theory of Wolfe and Gancarz (1996).
First, the feature map of the entire visual field is processed in parallel (see Chapter 35) to gener-
ate a map weighted according to the current task. For example, if we are scanning a crowd to
look for people we know, the feature set will be highly correlated with human faces. Next, eye
movements are executed in sequence, visiting the strongest possible target first and proceeding
to the weakest. Finally once each area has been processed, it is cognitively flagged as visited. This
has the effect of inhibiting that area of the weighted feature map.

A searchlight is a useful metaphor for describing the interrelationships among visual atten-
tion, eye movements, and the useful field of view. In this metaphor, visual attention is like a
searchlight used to seek information. We point our eyes at the things we want to attend to. The
diameter of the searchlight beam, measured as a visual angle, describes the useful field of view
(UFOV). The central two degrees of visual angle is the most useful, but it can be broader, depend-
ing on such factors as stress level and task. The direction of the searchlight beam is controlled
by eye movements. Figure 11.9 illustrates the searchlight model of attention.

Supervisory Control

The searchlight model of attention has been developed mainly in the context of supervisory control
systems to account for the way people scan instrument panels. Supervisory control is a term used
for complex, semiautonomous systems that are only indirectly controlled by human operators.
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Figure 11.9 The searchlight model of attention. A visual search strategy is used to determine eye movements that
bring different parts of the visual field into the useful visual field of view.

Examples are sophisticated aircraft and power stations. In these systems, the human operator has
both a monitoring and a controlling role. Because the consequences of making an error during an
emergency can be truly catastrophic, a good interface design is critical. Two Airbus passenger jets
have crashed for reasons that are attributed to mistaken assumptions about the behavior of super-
visory control systems (Casey, 1993). There are also stories of pilots in fighter aircraft turning
warning lights off because they are unable to concentrate in a tense situation.

A number of aspects of visual attention are important when considering supervisory control.
One is creating effective ways for a computer to gain the attention of a human—a user-interrupt
signal. Sometimes, a computer must alert the operator with a warning of some kind, or it must
draw the operator’s attention to a routine change of status. In other cases, it is important for an
operator to become aware of patterns of events. For example, on a power grid, certain combi-
nations of component failures can indicate a wider problem. Because display panels for power
grids can be very large, this may require the synthesis of widely separated visual information.

In many ways, the ordinary human—-computer interface is becoming more like a supervisory
control system. The user is typically involved in some foreground task, such as preparing a report,
but at the same time monitoring activities occurring in other parts of the screen.

Visual Monitoring Strategies

In many supervisory control systems, operators must monitor a set of instruments in a semi-
repetitive pattern. Models developed to account for operators’ visual scanning strategies gener-
ally have the following elements (Wickens, 1992):
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Channels: These are the different ways in which the operator can receive information.
Channels can be display windows, dials on an instrument panel, or nonvisual outputs,
such as loudspeakers (used for auditory warnings).

Events: These are the signals occurring on channels that provide useful information.
Expected cost: This is the cost of missing an event.

System operators base their monitoring of different channels on a mental model of system event
probabilities and the expected costs of these (Moray and Rotenberg, 1989; Wickens, 1992). Char-
bonnell et al. (1968) and Sheridan (1972) proposed that monitoring behavior is controlled by
two factors: the growth of uncertainty in the state of a channel (between samples) and the cost
of sampling a channel. Sampling a channel involves fixating part of a display and extracting the
useful information. The cost of sampling is inversely proportional to the ease with which the
display can be interpreted. This model has been successfully applied by Charbonnell et al. (1968)
to the fixation patterns of pilots making an instrument landing. A number of other factors may
influence visual scanning patterns:

®  Operators may minimize eye movements. The cost of sampling is reduced if the points to
be sampled are spatially close. Russo and Rosen (1975) found that subjects tended to
make comparisons most often between spatially adjacent data. If two indicators are within
the same effective field of view, this tendency will be especially advantageous.

® There can be oversampling of channels on which infrequent information appears (Moray,
1981). This can be accounted for by short-term memory limitations. Human working
memory has very limited capacity, and it requires significant cognitive effort to keep a
particular task in mind. People can reliably monitor an information channel every minute
or so, but they are much less reliable when asked to monitor an event every 20 minutes.
One design solution is to build in visual or auditory reminders at appropriate intervals.

® Sometimes operators exhibit dysfunctional behaviors in high-stress situations. Moray and
Rotenberg (1989) suggested that under crisis conditions, operators cease monitoring some
channels altogether. In an examination of control-room emergency behavior, he found that
under certain circumstances, an operator’s fixation became locked on a feedback indicator,
waiting for a system response at the expense of taking other, more pressing actions.

®  Sometimes, operators exhibit systematic scan patterns, such as the left-to-right, top-to-
bottom one found in reading, even if these have no functional relevance to the task
(Megaw and Richardson, 1979).

Long-Term Memory

We now turn away from strictly visual processing to consider the structure of information in
verbal-propositional memory. We will need this background information to understand how visu-
alizations can function as memory aids by rapidly activating structured nonvisual information.
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Long-term memory contains the information that we build up over a lifetime. We tend to
associate long-term memory with events we can consciously recall—this is called episodic memory
(Tulving, 1983). However, long-term memory also includes motor skills, such as the finger move-
ments involved in typing and the perceptual skills, integral to our visual systems, that enable us
to rapidly identify words and thousands of visual objects. Nonvisual information that is not
closely associated with concepts currently in verbal working memory can take minutes, hours,
or days to retrieve from long-term memory.

There is a common myth that we remember everything we experience but we lose the index-
ing information; in fact, we remember only what gets encoded in the first 24 hours or so after
an event occurs. The best estimates suggest that we do not actually store very much information
in long-term memory. Using a reasonable set of assumptions, Landauer (1986) estimated that
only about 10 bits of information are stored over a 35-year period. This is what can currently
be found in the solid-state main memory of a personal computer. The power of human long-term
memory is not in its capacity but in its remarkable flexibility. The same information can be com-
bined in many different ways and through many different kinds of cognitive operations.

Human long-term memory can be usefully characterized as a network of linked concepts
(Collins and Loftus, 1975; Yufic and Sheridan, 1996). Our intuition supports this model. If we
think of a particular concept—for example, data visualization—we can easily bring to mind a
set of related concepts: computer graphics, perception, data analysis, potential applications. Each
of these concepts is linked to many others. Figure 11.10 shows some of the concepts relating to
information visualization.

The network model makes it clear why some ideas are harder to recall than others. Con-
cepts and ideas that are distantly related naturally take longer to find; it can be difficult to trace
a path to them and easy to take wrong turns in traversing the concept net, because no map exists.
For this reason, it can take minutes, hours, or even days to retrieve some ideas. A study by
Williams and Hollan (1981) investigated how people recalled names of classmates from their
high school graduating class, seven years later. They continued to recall names for at least 10
hours, although the number of falsely remembered names also increased over time. The forget-
ting of information from long-term memory is thought to be more of a loss of access than an
erasure of the memory trace (Tulving and Madigan, 1970). Memory connections can easily
become corrupted or misdirected; as a result, people often misremember events with a strong
feeling of subjective certainty (Loftus and Hoffman, 1989).

Chunks of information are continuously being prioritized, and to some extent reorganized,
based on the current cognitive requirements (Anderson and Milson, 1989). It is much easier to
recall something that we have recently had in working memory. Seeing an image from the past
will prime subsequent recognition so that we can identify it more rapidly (Bichot and Schall,
1999).

Long-term memory and working memory appear to be overlapping, distributed, and spe-
cialized. Long-term visual memory involves parts of the visual cortex, and long-term verbal
memory involves parts of the temporal cortex specialized for speech. More abstract and linking
concepts may be represented in areas such as the prefrontal cortex. Working memory is better
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Figure 11.10 A concept map showing a set of linked concepts surrounding the idea of information visualization.
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thought of as existing within the context of long-term memory than as a distinct processing
module. As visual information is processed through the visual system, it activates the long-term
memory of visual objects that have previously been processed by the same system. This explains
why visual recognition is much faster and more efficient than visual recall. In recognition, a visual
memory trace is being reawakened, so that we know that we have seen a particular pattern. In
recall, it is necessary for us actually to describe some pattern, by drawing or in words, but we
may not have access to the memory trace. In any case, the memory trace will not generally contain
sufficient information for reconstructing an object, which would be required for recognition but
not for recall. The memory trace also explains priming effects: If a particular neural circuit has
recently been activated, it becomes primed for reactivation.

Chunks and Concepts

Human memory is much more than a simple repository like a telephone book; information is
highly structured in overlapping and interconnected ways. The term chunk and the term concept
are both used in cognitive psychology to denote important units of stored information. The
two terms are used interchangeably here. The process of grouping simple concepts into more
complex ones is called chunking. A chunk can be almost anything: a mental representation of
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an object, a plan, a group of objects, or a method for achieving some goal. The process of becom-
ing an expert in a particular domain is largely one of creating effective high-level concepts or
chunks.

It is generally thought that concepts are formed by a kind of hypothesis-testing process
(Levine, 1975). According to this view, multiple tentative hypotheses about the structure of the
world are constantly being evaluated based on sensory evidence and evidence from internal long-
term memory. In many cases, the initial hypotheses start with some existing concept: a mental
model or metaphor. New concepts are distinguished from the prototype by means of trans-
formations (Posner and Keele, 1968). For example, the concept of a zebra can be formed from
the concept of a horse by adding a new node to a concept net containing a reference to a horse
and distinguishing information, such as the addition of stripes.

What about purely visual long-term memory? It does not appear to contain the same kind
of network of abstract concepts that characterizes verbal long-term memory. However, there may
be some rather specialized structures in visual scene memory. Evidence for this comes from studies
showing that we identify objects more rapidly in the right context, such as bread in a kitchen
(Palmer, 1975). The power of images is that they rapidly evoke verbal-propositional memory
traces; we see a cat and a whole host of concepts associated with cats becomes activated. Images
provide rapid evocation of the semantic network, rather then forming their own net (Intraub and
Hoffman, 1992). To identify all of the objects in our visual environment requires a great store
of visual appearance information. Biederman (1987) estimated that we may have about 30,000
categories of visual information. The way visual objects are cognitively constructed is discussed
more extensively in Chapter 8.

Visual imagery is the basis for a well-known mnemonic technique called the method of loci
(Yates, 1966). This was known to Greek and Roman orators and can be found in many self-help
books on how to improve your memory. To use the method of loci, you must identify a path
that you know well, such as the walk from your house to the corner store. To remember a series
of words—for example, mouse, bowl, fork, box, scissors—place each object at specific locations
along the path in your mind’s eye. You might put one at the end of your driveway next to the
mailbox, the next by a particular lamppost, and so on. Now, to recall the sequence, you simply
take an imaginary walk—magically, the objects are where you have placed them. The fact that
this rather strange technique actually works suggests that there is something special about asso-
ciating concepts to be remembered with images in particular locations that helps us remember
information.

The Data Mountain was an experimental computer interface designed to take advantage of
the apparent mnemonic value of spatial layout (Robertson et al., 1998). The Data Mountain
allowed users to lay out thumbnails of Web pages on the slope of an inclined plane, as illustrated
in Figure 8.4. A study by Czerwinski et al. (1999) found that even six months later, subjects who
had previously set up information in this way could find particular items as rapidly as they could
shortly after the initial layout. It should be noted, however, that before retesting subjects were
given a practice session that allowed them to relearn at least some of the layout; it is possible to
scan a lot of information in the two minutes or so that they were given.
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Using a setup very similar to the Data Mountain, Cockburn and Mackenzie (2001) showed
that removing the perspective distortion, as shown in Figure 8.4, had no detrimental impact on
performance. Thus, although spatial layout may aid memory, it does not, apparently, have to be
a 3D layout. On balance, there does appear to be support for the mnenomic value of spatial
layout, because a lot of items (i.e., 100 items) were used in the memory test and the review period
was brief, but there is little evidence that the space must be three-dimensional.

One important aspect of the Data Mountain study was that subjects were required to orga-
nize the material into categories. This presumably caused a deeper level of cognitive processing.
Depth of processing is considered a primary factor in the formation of long-term memories (Craik
and Lockhart, 1972). To learn new information, it is not sufficient to be exposed to it over an
over again, the information must be integrated cognitively with existing information. Tying verbal
and visual concepts together may be especially effective. Indeed, this is a central premise in the
use of multimedia in education.

Problem Solving with Visualizations

We are now in a position to outline a theory of how thinking can be augmented by visual queries
on visualizations of data. Figure 11.11 provides an overview of the various components. This
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Figure 11.11  The cognitive components involved in visual thinking.
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borrows a great deal from Rensink (2000, 2002) and earlier theorists, such as Baddeley and Hitch
(1974), Kahneman et al. (1992) and Triesman (19835). It is based on the three-stage model devel-
oped throughout this book, but with the third stage now elaborated as an active process. At the
lowest stage is the massively parallel processing of the visual scene into the elements of form, oppo-
nent colors, and the elements of texture and motion. In the middle stage is pattern formation, pro-
viding the basis for object and pattern perception. At the highest level, the mechanism of attention
pulls out objects and critical patterns from the pattern analysis subsystem to execute a visual query.

The content of visual working memory consists of “object files,” to use the term of
Kahneman et al., a visual spatial map in egocentric coordinates that contains residual informa-
tion about a small number of recently attended objects. Also present is a visual query pattern
that forms the basis for active visual search through the direction of attention.

We tend to think of objects as relatively compact entities, but objects of attention can be
extended patterns, as well. For example, when we perceive a major highway on a map winding
though a number of towns, that highway representation is also a visual object. So, too, is the V
shape of a flight of geese, the pattern of notes on a musical score that characterize an arpeggio,
or the spiral shape of a developing hurricane.

Following is a list of the key features of the visual thinking process:

1. Problem components are identified that have potential solutions based on visual pattern
discovery. These are formulated into visual queries consisting of simple patterns.

2. Eye-movement scanning strategies are used to search the display for the query patterns.

3.  Within each fixation, the query determines which patterns are pulled from the flux of
pattern-analysis subsystems.

a. Patterns and objects are formed as transitory object files from proto-object and proto-
pattern space.

b. Only a small number of objects or pattern components are retained from one fixation to
the next. These object files also provide links to verbal-propositional information in verbal
working memory.

c. A small number of cognitive markers are placed in a spatial map of the problem space to
hold partial solutions where necessary. Fixation and deeper processing are necessary for
these markers to be constructed.

4. Links to verbal-propositional information are activated by icons or familiar patterns,
bringing in other kinds of information.

Visual Problem Solving Processes

The actual process of problem solving can be represented as a set of embedded processes. They
are outlined in Figure 11.12. At the highest level is problem formulation and the setting of high-
level goals—this is likely to occur mostly using verbal-propositional resources.
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Figure 11.12  Visually aided problem solving can be considered a set of embedded processes. Interactive techniques,
such as brushing, zooming, or dynamic queries, can be substituted for the eye movement control loop.

To give substance to this rather abstract description, let us consider how the model deals
with a fairly common problem—planning a trip aided by a map. Suppose that we are planning
a trip through France from Port-Bou in Spain, near the French border, to Calais in the
northeast corner of France. The visualization that we have at our disposal is the map shown in
Figure 11.13.

The Problem-Solving Strategy

The initial step in our trip planning is to formulate a set of requirements, which may be precise
or quite vague. Let us suppose that for our road trip through France we have five days at our
disposal and we will travel by car. We wish to stop at two or three interesting cities along the
way, but we do not have strong preferences. We wish to minimize driving time, but this will be
weighted by the degree of interest in different destinations. We might use the Internet as part of
the process to research the attractions of various cities; such knowledge will become an impor-
tant weighting factor on the alternate routes. We begin planning our route: a problem-solving
strategy involving visualization.

Visual Query Construction

We establish the locations of various cities through a series of preliminary visual queries to the
map. Fixating each city icon and reading its label helps to establish a connection to the verbal-
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Figure 11.13  Planning a trip from Port-Bou to Calais involves finding the major routes that are not excessively long and
then choosing among them. This process can be understood as a visual search for patterns.

propositional knowledge we have about that city. Little, if any, of this will be retained in working
memory, but the locations will be primed for later reactivation.

Once this has been done, path planning can begin by identifying the major alternative routes
between Port-Bou and Calais. The visual query we construct for this will probably not be very
precise. Roughly, we are seeking to minimize driving time and maximize time at the stopover
cities. Our initial query might be to find the set of alternative routes that are within 20% of the
shortest route, using mostly major highways. From the map, we determine that major roads are
represented as wide orange lines and incorporate this fact into the query.

The Pattern-Finding Loop

The task of the pattern-finding loop is to find all acceptable routes as defined by the previous
step. The patterns to be discovered are continuous contours, mostly orange (for highways) and
not overly long, connecting the start city icon with the end city icon. Two or three acceptable



374 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

solutions may be stored in visual working memory, or a single route may use the entire capac-
ity of this limited resource.

Once a complete path has been identified, it must be retained in some way while alternate
solutions are found. If a route is complex, part of the task can be held in verbal-propositional
form (e.g., the western route or the Bordeaux route), and this label can be used later as the start-
ing point for a rapid visual reconstruction. An interactive computer-based map can support this
loop by allowing a user to highlight a potential solution, as illustrated for the Bordeaux, Poitiers,
Paris path in Figure 11.13. This will free up more capacity in searching for alternative paths.

As a result of this process, three alternative solutions are identified. A western route goes
through Toulouse, Bordeaux, Nantes, Caen, and Rouen. A central route shares a path to
Bordeaux but then goes via Poitiers, Orleans, and Paris. An eastern route would get us to Paris
via Montpellier, Avignon, Lyon, and Dijon.

The Eye Movement Control Loop

The detailed execution of the pattern-finding process is carried out through a series of eye move-
ments to capture each of the major continuous paths meeting the criteria. The eye movements
are planned using the task-weighted spatial map of proto-patterns. Those patterns most likely to
be relevant to the current task are scheduled for attention, starting with the one weighted most
significant. As part of this process, partial solutions are marked in visual working memory by
setting placeholders in the egocentric spatial map. For example, the part of the route that goes
to Bordeaux might be marked while the alternatives for the rest of the trip are explored. Once
an entire path has been identified, it may be checked with a set of rapid eye movements.

This stage may be supported in an interactive system by some form of both spatial and
semantic scaling (Furnas 1986). At the early planning stage, only major highways and good sec-
ondary roads are required, so it will be easier to carry out this task if the map is simplified to
show only these. A smaller map may also be easier to parse with eye movements. Later planning
stages will require more detail and zoomed-in map views.

The Intrasaccadic Scanning Loop

This is the innermost loop of the visual query system, where the information available from a
single fixation is processed. Sections of lines representing roads are successively formed through
selective tuning of the pattern-finding mechanism (Dickinson et al., 1997). Those representing
minor roads going in the wrong direction will be rejected, whereas those representing connected
major roads going in the right direction will be held in visual working memory up to a limit of
three or four road segments. City names will also be processed, causing information about them
to be loaded into verbal-propositional memory.

Implications for Interactive Visualization Design

The model presented here has a number of implications for data display systems. The following
are perhaps the three most important:
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1. Data should be presented in such a way that informative patterns are easy to perceive,
allowing us to take advantage of the pattern-finding capabilities of the middle stage of
visual processing.

2. The cognitive impact of the interface should be minimized, so that thinking is about the
problem, not the interface.

3. The interface should be optimized for low-cost, rapid information seeking.

In the following sections, we consider these implications in more detail, first speculating on the
nature of visual queries and then in the context of interactive data navigation techniques, both
in isolation and as they are encapsulated in various experimental applications.

Visual Query Patterns

The patterns that can be part of visual problem solving are infinitely diverse: path finding in
graphs, quantity estimation, magnitude estimation, trend estimation, cluster identification, cor-
relation identification, outlier detection and characterization, target detection, identification of
structural patterns (e.g., hierarchy, degree of coupling), to name a few.

For a visual query to be performed rapidly and with a low error rate, it should consist of a
simple pattern or object that can be held in visual working memory. Three elementary queries,
or one more complex query, can be held in visual working memory. Other cognitive strategies
are required when a query is more than the capacity of visual working memory. Figure 11.14
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Figure 11.14  Any simple pattern can form the basis for a visual query. Expertise with a particular kind of visual display
will allow for more complex queries.
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gives some suggestions of patterns that might constitute simple queries. The number of possible
patterns is astronomical. Knowledge from vision research about pattern perception and pre-
attentive vision can provide a good understanding of the kinds of visual queries that can be
processed rapidly. After all, most studies of perception take the form of having subjects make
repeated visual queries of a display.

We may be able to query patterns of considerably greater complexity as we become expert
in a particular set of graphical conventions, such as a circuit diagram. A chess master can
presumably make visual queries consisting of patterns that would not be possible for a novice.
Nevertheless, even for the expert, the laws of preattentive processing and elementary pattern per-
ception will make certain patterns much easier to see than others.

Costs of Navigation

In the previous chapter, we discussed various methods for navigating through information spaces.
Now we briefly reconsider these in the light of the current theory. The benchmark point of com-
parison for all navigation techniques should be saccadic eye movement. This allows us to acquire
a new set of informative visual objects in 100-200 msec. Moreover, information acquired in this
way will be integrated readily with other information that we have recently acquired from the
same space. Thus, the ideal visualization is one in which all the information for visualization is
available on a single high-resolution screen. Even if the information is in different windows, the
cost of navigating there is only a single eye movement, or in the worst case, an eye movement
plus a head movement if the angle is large. Consider some of the computer-based alternatives to
eye movements.

Hypertext Link

Clicking a hypertext link involves a 1-2 sec guided hand movement and a mouse click. This can
generate an entirely new screenful of information. However, the cognitive cost is that the entire
information context typically has changed, and the new information may be presented using
a different visual symbol set and different layout conventions. Several seconds of cognitive re-
orientation may be required.

Brushing, Dynamic Queries, and Hover Queries

Both brushing (Ahlberg et al., 1992) and dynamic queries (Becker and Cleaveland, 1987) allow
information to be revealed on some data dimension by making a continuous mouse movement.
Hover queries cause extra information to pop up rapidly as the mouse is dragged over a series
of data objects. All three of these require a mouse movement typically taking about two seconds.
After this initial setup time, the mouse can allow rapid scanning in a tight, exploratory visual
feedback. The data is continuously modified according to the mouse movement. This may enable
an effective query rate of several per second, similar to the rate for eye movements. However,
this rate is only possible for quite specific kinds of query trajectory; we cannot jump from point
to point in the data space as we can by moving our eyes.



Thinking with Visualizations 371

Walking or Flying in Virtual Reality

Compared to eye movements or rapid exploration techniques like hyperlink following or brush-
ing, navigating a virtual information space by walking or flying is likely to be both considerably
slower and cognitively more demanding. In virtual reality, as in the real world, walking times
are measured in minutes at best. Even with virtual flying interfaces (which do not attempt to sim-
ulate real flying and are therefore much faster), it is likely to take tens of seconds to navigate
from one vantage point to another. In addition, the cognitive cost of manipulating the flying inter-
face is likely to be high without extensive training. And although walking in virtual reality
simulates walking in the world, it cannot be the same, so the cognitive load is higher.

Table 11.1 gives a set of rough estimates of the times and cognitive costs associated with
different navigation techniques. When simple pattern finding is needed, the importance of having
a fast, highly interactive interface cannot be emphasized enough. If a navigation technique is
slow, then the cognitive costs can be much greater than just the amount of time lost, because an
entire train of thought can become disrupted by the loss of the contents of both visual and non-
visual working memories.

The figures in Table 11.1 should be taken as ballpark estimates; they have not been
empirically validated.

Magnifying Windows vs. Zooming

As an example of how visual working memory capacity can be used to make substantial design
decisions, we now consider the problem of when extra windows are needed in a visualization
interface. Consider the task of finding similar or identical patterns spaced far apart in a large
geographical space, as illustrated in Figure 11.15. With a zooming interface, it is necessary to

Navigation Technique Time Cognitive Effort
Attentional object switch within a fixation 50 msec Minimal
Saccadic eye movement 150 msec Minimal
Hypertext jump 2sec Medium
Brushing 2 sec setup, 250sec/query Medium
Dynamic queries 2 sec setup, 250sec/query Medium
Floating queries 2 sec setup, 250sec/query Medium
Zooming 2 sec setup + log spatial change High

Flying 30sec—3 min High

Walking 30sec—10 min High

Table 11.1 Approximated times for navigation in information spaces
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Figure 11.15  Subwindows show a magnified view together with the source of the information in the background
overview.

zoom in to and look at one pattern, then hold that pattern in visual working memory
while zooming out to seek other patterns. The pattern in visual working memory is then
compared to new patterns seen during the search process. If a possible match is found, it
may be necessary to zoom back and forth to confirm details of the match. An alternative method
is to use extra windows to magnify parts of the main display. When two such windows are in
position, it is possible simply to make eye movements between them to assess the match more
rapidly.

The critical resource here is visual working memory capacity, because this determines how
many visits are required to make the comparison. If the target pattern is simple enough to be
held in visual working memory, then zooming will often be more efficient, because it avoids the
overhead of setting up multiple windows. If more than three items are in the target pattern, then
it will be necessary to zoom back and forth between them, and the multiwindow solution will
be faster.
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Figure 11.16  Model predictions are shown on the left. Measured task performance is shown on the right. Multiple
windows speed performance relative to the use of a zooming interface when the number of objects to be
compared is five or more.

We have modeled two user interfaces—simple zooming vs. multiple windows—considering
visual working memory capacity as a critical resource and estimating the number of zooms vs.
window movements necessary to complete the task of finding identical groups of simple shapes
clustered but widely separated in a geographical space (Plumlee and Ware, 2002). The predictions
of the model are shown in Figure 11.16(a), modeled for capacities of visual working memory at
two, three, and four items, leading to a range of predictions as shown by the broad colored wedges.
As can be seen, the model predicts that zooming will have an initial benefit because extra windows
take more time to set up. However, as the number of objects increases, the extra window interface
will be beneficial. The measured results, as shown Figure 11.16(b), closely matched the prediction.

Interfaces to Knowledge Structures

Although a visual icon or object can activate logical verbal information rapidly and effectively,
it can do so only if this information has a strong, previously learned association between the
image and the meaning. This is why advertisers spend millions promoting logos. It is also why
the design of symbol sets is so critical. Once a symbol set has been learned by a wide group of
users, the cost of changing it can be huge.

Concept Maps and Mind Maps

A more complex way to map out knowledge structures is to use some form of node-link diagram,
with nodes representing concepts and the links representing the relationships between them. The



380 INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

technique of sketching out links between concepts, as shown in Figure 11.10, has received con-
siderable attention from educational theorists. These concept maps (or mind maps as they are
sometimes called) are often recommended as study aids for students (Jonassen et al., 1993).
Usually, such maps are constructed informally by sketching them on paper, but computer-based
tools also exist. Essentially, a concept map is a type of node-link diagram in which the nodes
represent concepts and the links represent relationships between concepts. It can be used to make
the structure of a cognitive concept network explicitly available. An individual can use a concept
map as a tool for organizing his or her own personal concept structure, and it may reveal pat-
terns of relationships between ideas that had not been evident when the concepts were stored
internally. A concept map can also be constructed in a group exercise, in which case it becomes
a tool for building a common understanding.

Constellation

The Constellation system of Munzner et al. (1999) provides an example of how a highly inter-
active node-link visualization can provide views into very a complex semantic network, far larger
than can be displayed on a static concept map. Figure 11.17 shows a screen shot, but this static
image does not do justice to the system. Constellation uses hover queries to allow for rapid high-
lighting of subsets of the graph. Links attached to a node became highlighted as the cursor passes
over the node. In addition, when the user clicks on a particular node, Constellation uses intelli-
gent zoom, causing the graph to rearrange itself partially so that closely related semantic con-
cepts are allocated more screen space and larger fonts. By using these techniques, a large amount
of semantic information can be accessed very quickly.

Note that the rapid query techniques get around the usual problems of graph layout. Most
of the work in graph layout is aimed at producing aesthetically pleasing drawings of graph struc-
tures, by paying particular attention to minimizing edge crossings of nodes (Di Battista et al., 1998).
A good, clear static graph drawing of the information in Figure 11.17 by the conventional cri-
teria, is probably impossible, because there are simply too many links. In Constellation, Munzer
abandoned the usual criteria, allowing edges to cross each other and to cross nodes. Using inter-
active techniques to reveal information as needed allowed visual access to much larger structures.

The node-link diagram is a method for looking at networks of concepts, but a common way
of organizing knowledge is through a hierarchy, and the most common visualization of a hier-
archy is a tree. A degree-of-interest tree (Card and Nation, 2002) is a tree visualization that uses
a degree-of-interest function (Furnas, 1986) to show or hide interactively parts of the tree struc-
ture based on their estimated relevance to a selected node. It enables a large tree structure to be
interactively explored.

Linking Computer-Based Analysis with Visualization

The greatest power in information visualization arises when the power of computers to sample
and condense very large amounts of information is combined with a visual interface. If the com-
puter contains a model of a knowledge domain, then this model can form the basis for inter-
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Figure 11.17 A screen image of the Constellation system showing a view into the MindNet semantic network
database.

active applications that visually hide and show information based on the estimated relevance to
some task. Only the most relevant information is being displayed to the user.

Psychologists have developed a number of other tools for mapping the cognitive structure
of concepts, besides simple sketching. One is based on multidimensional scaling (Shepard, 1962).
The technique involves giving participants pairs of examples of the ideas or objects to be mapped
and asking them to rate the similarity. For example, if the goal is to find out how someone con-
ceptualizes different kinds of animals, that person is given pairs of cat—-dog, mouse—cow, cat—ele-
phant, and so on, and asked to give each pair a similarity rating. Once all pair ratings for the
entire set have been obtained, the multidimensional scaling technique is used to compute a math-
ematical space in which similar animals are close together. This technique can sometimes reveal
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the nature of the most significant dimensions of this space, but often the mathematical dimen-
sions that are found have little intuitive meaning. The multidimensional scaling technique does
not show links between concepts; it only shows proximity. Concepts that are close together in
the space are assumed to be related.

Multidimensional scaling can be used as a tool in visualizing concept spaces, but it suffers
from the problem that the space created can have a high dimensionality. However, the dimen-
sionality can be reduced by simply showing the two or three most significant dimensions as a
2D or 3D scatter plot. More dimensions can be added by color-coding or changing the shape of
each data glyph, as discussed in Chapters 4 and S.

The analysis of large text databases is an application area where it is useful to get a view of
a large number of points in a multidimensional conceptual space. The SPIRE system creates a
classification of documents with respect to a keyword query and can be applied to databases con-
sisting of hundreds of thousands of documents (Wise et al., 1995). The result is a set of vectors
in an n-dimensional space. To help people understand the resulting clusters of documents, Wise
et al. created a visualization called a ThemeScape, which shows the two most important dimen-
sions as a kind of data landscape. This is illustrated in Figure 11.18. Flags on the tops of hills
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Figure 11.18  An entire week of CNN news stories is summarized in a ThemeScape visualization (Wise et al., 1995).
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label and identify the largest clusters of documents in this space. Essentially, a ThemeScape uses
the two most significant dimensions of the space to create a smoothed two-dimensional his-
togram. This can be regarded as a different kind of concept map—one that does not show the
links but uses spatial proximity and salience to show the major concentrations of information
and, to some extent, their relationships. This kind of display will be useful when two dimensions
really do capture most of the variability in the data. If more dimensions are significantly involved,
then color-coding and more interactive exploratory techniques may be necessary.

Trajectory Mapping

Trajectory mapping is a recent psychological method for mapping out the structure of concept
spaces (Richards and Koenderink, 1995). Unlike multidimensional scaling, trajectory mapping
explicitly finds links between concepts. In trajectory mapping, a participant is also given pairs of
examples from the set of objects (or concepts) to be organized. However, in this case the person
is asked to look at the objects that make up the pair and extrapolate on the basis of some dif-
ference between them, then select another sample concept that represents the result of that extra-
polation. For example, someone given a mouse and a dog as exemplars might extrapolate to a
cow if they thought size was a critical variable, or might extrapolate to a monkey based on a
concept of animal intelligence. Participants are also allowed to say that there is no meaningful
extrapolation, in which case one of the exemplars becomes a terminator in the resulting concept
graph. This exercise is designed to produce a set of cognitive pathways linking concepts. Strong
pathways can be distinguished from weak ones.

Lokuge et al. (1996) used a combination of trajectory mapping and multidimensional scaling
to create different visual maps linking various tourist attractions in the Boston area, such as
museums and open-air markets. The results were based both on conceptual similarity between
the different items and the pathways between them. One of the results is shown in Figure 11.19.
This technique could be used to generate customized tours automatically. The tourist would enter
a set of interests, and the system would combine this with the database information to create a
walking tour of suitable attractions.

It should be recognized that no matter how they are generated, concept maps are somewhat
crude instruments for making knowledge explicit. All of them reveal only that there is a rela-
tionship between ideas, not the nature of that relationship.

Creative Problem Solving

We commonly divide problem-solving activities into the routine and the creative. The essential
difference is that in creative thinking, the emphasis is on novelty. Theories of creative thinking
generally break the process into three states: preparation, production, and judgment (Matlin,
1994). Visualization can help with all three.
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Figure 11.19 A trajectory map of tourist destinations in the Boston area, laid out according to the results of a
multidimensional scaling experiment (Lokuge et al., 1996).

In the preparation stage, the problem-solver acquires the background information needed to
build a solution. Sometimes, preparation will involve a stage of exploratory data analysis. Visu-
alization can help through pattern discovery (discussed especially in Chapter 6). In this process,
the visual queries may initially be a loosely defined search for any significant pattern, becoming
more focused as the issues become better defined.

In the production stage, the problem-solver generates a set of potential solutions. A solution
often starts with a tentative suggestion, which is either rejected or later refined. Early theorists
proposed that the quantity of ideas, rather than the quality, was the overriding consideration
in the production of candidate solutions. However, experimental studies fail to support this
(Gilhooly, 1988). Generating ideas irrespective of their value is probably not useful.

Possibly the most challenging problem posed in data visualization systems is to support the
way sketchy diagrams are used by scientists and engineers in the production stage. Discoveries
and inventions made using table-napkin sketches are legendary. Here is a description of the role
of a diagram by an architectural theorist (Alexander, 1964):

Each constructive diagram is a tentative assumption about the nature of the context.
Like a hypotbesis, it relates an unclear set of forces to one another conceptually; like a
hypothesis, it is usually improved by clarity and economy of notation. Like a hypothesis,
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it cannot be obtained by deductive methods, but only by abstraction and invention. Like a
hypotbhesis, it is rejected when a discrepancy turns up and shows that it fails to account
for some new force in the context.

If creativity is to be supported, the medium must afford tentative interactions. The lack of pre-
cision in quick, loose sketches actually allows for multiple interpretations. The fact that a line
can be interpreted in many different ways, as discussed in Chapter 6, can be a distinct benefit in
enabling a diagram to support multiple tentative hypotheses. The sketches people construct as
part of the creative process are rapid, not refined, and readily discarded. Giving a child high-
quality watercolor paper and paints is likely to inhibit creativity if the child is made aware of
the expense and cautioned not to “waste” the materials. Schumann et al. (1996) carried out an
empirical study of architectural perspective drawings executed in three different styles: a precise
line drawing, a realistically shaded image, and a sketch. All the drawings contained the same fea-
tures and level of detail. The sketch version was rated substantially higher on measures of ability
to stimulate creativity, changes in design, and discussions.

In the judgment stage, the problem-solver analyzes the potential solutions. This stage is an
exercise in quality control; as fast as hypotheses are created and patterns are discovered, most
must be rejected. In a visualization system used for data mining, the user may discover large
numbers of patterns but will also be willing to reject them almost as rapidly as they are discov-
ered. Some will already be known, some will be irrelevant to the task at hand, only a few will
be novel, and even fewer will lead to a practical solution. Many judgment aids are not visual;
for example, statistical tools can be used to test hypotheses formally. But when visualization is
part of the process, it should not be misleading or hide important information.

The challenge for problem-solving interfaces is to support the rapid creation of loose
sketches, the ability to modify them, and the ability to discard all or some of them. All this must
be done with an interface so simple that it does not intrude on the visual thinking process.

Conclusion

The best visualizations are not static images to be printed in books, but fluid, dynamic artifacts
that respond to the need for a different view or for more detailed information. In some cases,
the visualization can be an interface to a simulation of a complex system; the visualization, com-
bined with the simulation, can create a powerful cognitive augmentation. An emerging view of
human-computer interaction considers the human and the computer together as a problem-
solving system. The visualization is a two-way interface, although highly asymmetric, with far
higher bandwidth communication from the machine to the human than in the other direction.
Because of this asymmetry in data rates, cognitive support systems must be constructed that are
semiautomatic, with only occasional nudges required from users to steer them in a desired direc-
tion. The high-bandwidth visualization channel is then used to deliver the results of modeling
exercises and database searches.
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At the interface, the distinction between input and output becomes blurred. We are accus-
tomed to regarding a display screen as a passive output device and a mouse as an input device.
This is not how it is in the real world, where many things work both ways. A sheet of paper or
a piece of clay can both record ideas (input) and display them (output). The coupling of input
and output can also be achieved in interactive visualization. Each visual object in an interactive
application can potentially provide output as a representation of data and also potentially receive
input. Someone may click on it with a mouse to retrieve information or may use it as an inter-
face to change the parameters of a computer model. The ultimate challenge for this kind of highly
interactive information visualization is to create an interface that supports creative sketching of
ideas, affording interactive sketching that is as fluid and inconsequential as the proverbial paper-
napkin sketch.

The person who wishes to design a visualization must contend with two sets of conflicting
forces. On the one hand, there is the requirement for the best possible visual representation, tai-
lored exactly to the problem to be solved. On the other hand, there is the need for consistency
in representation any time that two or more people work on a problem. This need is even greater
when large, international organizations have a common set of goals that demand industrywide
visualization standards. At the stage of new discoveries in information visualizations, standard-
ization is the enemy of innovation and innovation is the enemy of standardization. Thus it is
important to get the research done before the standards are formed, otherwise it will be too late.

These are exciting times for information visualization, because we are still in the discovery
phase, although this phase will not last for long. In the next few years, the wild inventions that
are now being implemented will become standardized. Like clay sculptures that have been baked
and hardened, the novel data visualization systems of today’s laboratory will become cultural
artifacts, everyday tools of the information professional.
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Changing Primaries

This appendix describes the operation of transforming one set of primaries into another. The
mathematical name for this operation is a change of basis.

To convert a color from one set of primary lights to another, it is first necessary to define a
conversion between the primaries themselves. We can think of this as matching each of the new
primary lights using the old primary system. Suppose we designate our original set of primaries
Py, P,, and P; and the new set of primaries O, O,, and Qs;. We now use our original primaries
to create matches with each of the new primaries in turn. Let us call the amount of each of the
P primaries c;.

Thus,

O =cyP +ephy +e3P
O, =P+ b + o3P
Qs =5\ P +ciyP, + e3P (A1)

If we denote the matrix of ¢; values C, then

P=CO (A.2)

To reverse the transformation, invert the matrix:

P=C"'Q (A3)
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This same matrix can now be used to convert any set of values expressed in one set of primaries
to the other set of primaries. Thus, the values p1, p,, and p; represent the amounts of the lights
in primary system P needed to make a match.

Sample = p, P, + p, P, + p,P; (A.4)

Then we can calculate the values g in primary system QO simply by solving

q=Cp (A.5)



APPENDIX B

CIE Color Measurement System

To determine a standard observer, a set of red, green, and blue lamps is used by a number of
representative subjects to match all the pure colors of the spectrum. The result is called a set of
color-matching functions. The set of color-matching functions for the Commission Internationale
de I’Eclairage (CIE) standard observer is illustrated in Figure B.1. They were obtained with red,
green, and blue pure spectral hues at 700, 546, and 436 nanometers, respectively, using a number
of trained observers. Notice that there are negative values in these functions. These exist for the
reasons discussed in Chapter 4. It is not possible to match directly all spectral lights with these,
or any other, primaries.

For a number of reasons, the CIE chose not to use the standard-observer color-matching
functions directly as the color standard, although it would have been perfectly legitimate to do
so. Instead, they chose a set of abstract primaries called the XYZ tristimulus values and trans-
formed the original color-matching functions into this new coordinate system. The process is the
transformation from one coordinate system to another, as described in Appendix A. The trans-
formed color-matching functions are illustrated in Figure B.2.

The CIE XYZ tristimulus values have the following properties:

1. All tristimulus values are positive for all colors. To achieve this, it was necessary to create
primaries that do not correspond to any real lights. The XYZ primary axes are purely
abstract concepts. However, this model has the advantage that all perceivable colors fall
within the CIE gamut. They are, in effect, a set of virtual primaries.

2. The X and Z tristimulus values have zero luminance. Only the Y tristimulus value
contains luminance information, and the color-matching function (y) is the same as the
V(A) function, discussed in Chapter 3.

To determine the XYZ tristimulus values for a given patch of light, we integrate the energy
distribution with the three x,y,z color-matching functions that define the CIE standard. Note that

389
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Figure B.1 The color-matching functions that define the CIE 1931 standard observer. To obtain these, each pure
spectral wavelength was matched by a mixture of three primary lights.

this is a generalization of the process of obtaining luminance described in Chapter 3—only here,
we obtain three values to fully specify a color:

X = ijE(x)a—cAdx
A
Y =K, [ EQ)y,dh
A
Z =K, [ EQM)Z,dh (B1.1)

A

If K,, = 680 lumens/watt and E(A) is measured in watts per unit area solid angle (steradians),
then Y gives luminance.

This appendix provides only a very brief introduction to the complex and technical subject
of colorimetry. Many important issues have been neglected that must be taken into account in
serious color measurement. One issue is whether the light to be measured is an extended source,
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Figure B.2 The CIE tristimulus functions used to define the color of a light in XYZ tristimulus coordinates.

such as a monitor, in which case we measure in light emitted per unit area (candelas per square
meter), or a lamp, in which case we measure total light output in all directions.

The subject becomes still more complex when we consider the measurement of surface colors;
the color of the illuminating source must be taken into account, and we can no longer use a
trichromatic system. Fortunately, computer monitors, because they emit light, do allow us to use
a trichromatic system. The reader who intends to get involved in serious color measurement
should obtain one of the standard textbooks, such as Wyszecki and Stiles (1982) or Judd and
Wyszecki (1975).
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APPENDIX [:

The Perceptual Evaluation
of Visualization Techniques
and Systems

There is a hierarchy of value in research. The ultimate goal of the scientist is to discover an
immutable truth that will form the foundation for a new way of understanding the world. Applied
researchers must often be satisfied with more humble objectives; sometimes it may be necessary
to show that soon-to-be-obsolete interface A is better in some small way than soon-to-be-
obsolete interface B. Between these two scenarios are many graduations. A research-based design
guideline is something that can be of enduring value. A rough continuum of value exists, depend-
ing on the research goals. The following list starts with those goals that are most valuable.

Research Goals

Uncover fundamental truths and test theories. This is the holy grail of research—a
fundamental truth that forever changes how we think of the world. Even small truths are
to be prized. Because visualization techniques often produce patterns that do not exist in
nature, or rarely do, studies of such techniques can be part of the new discipline of
information psychophysics. Cognitive modeling of the way people interact with the
interfaces to information systems is an important part of cognitive systems theory; and
because all human intellectual achievements are ultimately the products of cognitive
systems, not individuals alone, lasting truths may be achieved.

Discover the nature of the world. The early stages of science can be like butterfly collecting. It
is necessary to get a feeling for the range of phenomena to be encompassed before
developing theories. Some areas of perception are still like this. For example, the
perception of patterns in motion is still at an early stage. The application of motion in
visualization similarly lags.

393
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Ascertain if an existing theory generalizes to practice. Many phenomena that are studied by
vision researchers in the simplified conditions of the laboratory may not apply to a more
complex data visualization. It can be a useful contribution simply to show that a well
known laboratory result generalizes to a common visualization problem.

Make an objective comparison between two or more display methods. Directly comparing two
display methods can show which is the more effective. Ideally, the two methods should be
tested with a variety of test data to provide some degree of generality.

Make an objective comparison between two or more display systems. Directly comparing two
interfaces to an information system has obvious value to someone intending to choose one
or the other. However, because system interfaces are typically complex, with usually
dozens of differences between them, it is rarely possible to make valid generalizations
from such studies.

Measure task performance. Simply measuring the time to perform a task with a particular
interface is useful; it is even more useful if the task is elementary and frequently used.
Error rates and error magnitudes are other common measurements providing useful
guidelines for the designer of information systems.

Ascertain user preferences for different display methods. Occasionally, factors such as the
“cool appearance” of a particular interface can be decisive in its adoption. Naturally, the
techniques used for research should be suited to the goals of the research. Finding the
balance between an attractive display, and an optimal display for the task, should be
the goal.

This appendix is intended to provide a preliminary acquaintance with the kinds of empirical
research methods that can be applied to visualization. It is not possible in a few thousand words
to give a complete cookbook of experimental designs. When studies are looked at in detail, there
are almost as many designs as there are research questions, but a number of broad classes stand
out. It is generally the case that the methods used for evaluating visualization are borrowed from
some other discipline, such as psychophysics or cognitive psychology. Such methods have been
continually refined through the mill of peer review. For introductory texts on experimental design
and data analysis, see Elmes et al. (1999) or Goodwin (2001). What follows is an introduction
to some of the more common methodologies and measurement techniques.

Psychophysics

Psychophysics is a set of techniques based on applying the methods of physics to measurements
of human sensation. These techniques have been extremely successful in defining the basic set of
limits of the visual system. For example, how rapidly must a light flicker before it is perceived
as steady, or what is the smallest relative brightness change that can be detected? Psychophysi-
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cal techniques are ideal for discovering the important sensory dimensions of color, visual texture,
sound, and so on, and more than a century of work already exists. Psychophysicists insist on
a precise physical definition of the stimulus pattern. Light levels, temporal characteristics, and
spatial characteristics must all be measured and controlled.

Psychophysical techniques are normally used for studies intended to reveal early sensory
processes, and it is usually assumed (sometimes wrongly) that instructional biases are not sig-
nificant in these experiments. Extensive studies are often carried out using only one or two
observers, frequently the principal investigator and a lab assistant or student. These results are
then generalized to the entire human race, with a presumption that can infuriate social scientists.
Nevertheless, for the most part, scientific results—even those obtained with few subjects or as
early as the 19th century—have withstood the test of time and dozens of replications. Indeed,
because some of the experiments require hundreds of hours of careful observation, experiments
with large subject populations are usually out of the question.

If a measured effect is easily altered because of instructional bias, we must question whether
psychophysical methods are appropriate. The sensitivity of a measurement to how instructions
are given can be used as a method for teasing out what is sensory and what is arbitrary.
If a psychophysical measurement is highly sensitive to changes in the instructions given to
the subject, it is likely to be measuring something that has higher-level cognitive or cultural
involvement.

A few of the studies that have been published in recent years can be understood as a new
variant on psychophysics, namely information psychophysics. The essence of information
psychophysics is to apply methods of classical psychophysics to common information structures,
such as elementary flow patterns, surface shapes, or paths in graphs.

When designing studies in information psychophysics, it is important to use meaningful units.
For specifying the size of graphical objects there are three possibilities: pixels, centimeters, and
visual angle. Each of these can be important. For larger objects, the size in centimeters and the
visual angle should be determined. For small objects, pixel size can also be an important vari-
able, and this should be specified. If you want to get really serious about color, then the monitor
should be calibrated in some standard way, such as the CIE XYZ standard (Wyszecki, 1982).
For moving objects, it is also important to know both the refresh rate (the frame rate of the
monitor) and how fast your computer graphics are actually changing (update rate). It is worth
thinking about how a graphics system actually works to get a better idea of the true precision
of measurement. For example, if the update rate and refresh rate of the display are 60 Hz, then
the granularity of measurement cannot be better than 16 msec.

Following are some of the common psychophysical methods that may also be applied to
information psychophysics.

Detection Methods

There is a range of techniques that rely on how many errors people make when performing a
certain task. Sometimes, determining an error rate is the goal of the experiment. If, for example,
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Figure C.1 The threshold in this particular example is defined as a 75% correct rate of responding. Errors are

determined at many levels of a critical variable. A curve is fit through the points (heavy line) and this is
used to define the threshold.

a visualization is used as part of an aircraft inspection process, then the expected error rate of
the inspector is a critical issue.

More commonly, error rates are used as a rigorous way of finding thresholds. The idea is
to keep showing subjects a display with some parameter at a range of levels. The percentage of
correct detections is measured at each level, and a plot like Figure C.1 is generated. We define
the threshold by some error rate; for example, if the chance error rate is 50%, then we might
define the threshold as 75%. A problem with this process is that it requires a large number of
trials to get a percent error rate for each level of our test parameter, and this can be especially
difficult if the region of the threshold is not known. Hundreds of trials can be wasted making
measurements that are well above, or below, threshold.

The staircase procedure is a technique for speeding up the determination of thresholds using
error rates. The subject’s responses are used to home in on the region of the threshold. If the
subject makes a correct response to a target, the stimulus level is lowered for the next trial. If a
subject fails to see a target, the stimulus level is raised. In this way, the program homes in on the
threshold (Wetherill and Levitt, 1965).

The most sophisticated way of using error rates in determining thresholds for pattern detec-
tion is based on signal detection theory. A target pattern is assumed to produce a neural signal
with a normal distribution, in the presence of neural noise caused by other factors. A parame-
ter in the model determines whether observers are biased toward positive responses (producing
false positives) or negative responses (producing false negatives). One way to represent the results
of a study using signal detection theory is the receiver operating characteristics (ROC) curve
(Swets, 1996; Irwin and McCarthy, 1998).
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Method of Adjustment

A useful technique for tuning up a visualization is to give application domain experts control
over some variable and ask them to adjust it so that it is optimal in some way for them. This is
called the method of adjustment. Get a population of users to do this, and a useful default setting
can be derived from the mean or median setting.

The method of adjustment can also be used to answer questions about perceptual distortion.
For example, if we are interested in simultaneous lightness contrast, we can ask subjects to adjust
a patch of gray until it matches some other gray and use the difference to estimate the magni-
tude of the distortion due to contrast.

There are biases associated with method of adjustment. If we are interested in the threshold
for just seeing a target, we might turn up the contrast until it is visible or turn down the con-
trast until it disappears. The threshold will be lower in the latter case. Once we can see some-
thing, it is easier to perceive at a lower contrast.

Cognitive Psychology

In cognitive psychology, the brain is treated as a set of interlinked processing modules. A classic
example of a cognitive model is the separation of short-term and long-term memory. Short-term
memory, also called working memory, is the temporary buffer where we hold concepts, recent
percepts, and plans for action. Long-term memory is a more or less permanent store of infor-
mation that we have accumulated over a lifetime.

Methods in cognitive psychology commonly involve measuring reaction time or measuring
errors, always with the goal of testing a hypothesis about a cognitive model. Typical experiments
involve very simple, but ideally important tasks, such as determining whether or not a particu-
lar object is present in a display. The subject is asked to respond by hitting a key as fast as
possible. The resulting time measurement can be used to estimate the time to perform simple
cognitive operations, once the time taken to physically move the hand or depress a key is
subtracted.

Another common kind of experiment measures interference between visual patterns. The
increase in errors that results is used as evidence that different channels of information process-
ing converge at some point. For example, if the task of mentally counting down in sevens from
100 were to interfere with short-term memory for the locations of objects in space, it would be
taken as evidence that these skills share some common cognitive processing. The fact that there
is little or no interference suggests that visual short-term memory and verbal short-term memory
are separate (Postma and De Haan, 1996).

Recently, some cognitive theories have gained a tremendous boost because of advances in
brain imaging. Functional MRI techniques have been developed that allow researchers actually
to see which parts of the brain are active when subjects perform certain tasks. In this way, func-
tional units that had only been previously inferred have actually been pinpointed (Zeki, 1993).
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Structural Analysis

In structural analysis, theories of cognitive processing are constructed using direct observation
as evidence. Structuralist researchers conduct studies that are more like interviews than formal
experiments. Often the subjects are required to carry out certain simple tasks and report at the
same time on their understanding and their perceptions. Using these techniques, researchers such
as Piaget have been able to open up large areas of knowledge very rapidly and to establish the
basic framework of our scientific understanding. However, in some cases, the insights obtained
have not been confirmed by subsequent, more careful experiments. In structuralism, emphasis is
given to hypothesis formation, which at times may seem more like the description and classifi-
cation of behavior than a true explanation.

A structural analysis is often especially appropriate to the study of computer interfaces,
because it is fast-moving and can take a variety of factors into account. We can quantify judg-
ments to some extent through the use of rating scales. By asking observers to assign numbers to
subjective effectiveness, clarity, and so on, we can obtain useful numerical data that compares
one representation to another. There are several tools of structural analysis. We can ask domain
experts what they need in a visualization (requirements analysis). We can try to understand what
they are attempting to accomplish at a more elementary level (task analysis). Research tools also
include testbench applications, semistructured interviews, and rating scales.

Testbench Applications for Discovery

At the early, butterfly-collecting stage of science, the goal is to map out the range of phenomena
that exist. In visualization research, the goal is to gain an intuitive understanding of diversity,
notable phenomena, and what works and does not work from an applied perspective.

The primary early-stage tool for the visualization researcher is the testbench application. It
gives the researcher the flexibly to try out different ways of mapping the data into a visual rep-
resentation. Of course, there is no such thing as a universal testbench. The goal should be to
build a flexible tool capable of producing a range of visual mappings of the data and a range of
interaction possibilities. For example, if the problem is to find the best way to represent the shape
of a surface, the testbench application should be able to load different surface shapes, change
lighting, change surface texture properties, turn stereoscopic viewing on and off, and provide
motion parallax cues.

There is a tendency for programmers to make the user interface for a testbench too sophis-
ticated. This can be self defeating, because it limits flexibility. The objective should be to explore,
not to build a polished application for scientists. If the easiest way to explore is to change a con-
stant in the code and recompile, then this is what should be done. Often a good testbench inter-
face is a text file of parameters, setting various aspects of the display. This can be modified in a
word processor and reloaded. Sometimes a panel of sliders is useful, allowing a researcher to
adjust parameters interactively. For the most part, the quality of the code does not matter for a
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testbench application, although it is essential that the parts of the program dealing with display
parameters are correct.

There are many ways to play with testbenches, and play is definitely the operative word.
This is a time for creative exploration, forming hypotheses quickly and discarding them easily.
Interesting possibilities can be shown to domain experts. It is especially useful to show them the
best solutions you have. You may only get one chance to have a physicist, an oceanographer, or
a surgeon to take you seriously. Asking their opinions about something that actually looks better
than whatever they are currently using is one way to get their interest. Phenomena that may be
significant can be shown to other vision researchers.

Once something interesting has been identified with a testbench, a rigorous study can be
carried out using the methods of psychophysics or cognitive psychology.

Structured Interviews

One of the most useful tools, both for initial requirements and task analysis and for the evalu-
ation of problem solutions, is the structured or semistructured interview. The method is to con-
struct an interview with a structured set of questions to elicit information about specific task
requirements. It is structured to make sure that the important questions are asked and that the
answers come in a somewhat coherent form.

Structured interviews can be excellent tools to evaluate what aspects of a visualization actu-
ally are important to potential users. They can also be used to evaluate a number of different
solutions for strengths and weaknesses. In many cases, it is useful for structured interviews to be
built around the performance of particular tasks. The participant is asked to perform particular
tasks with the system or with more than one system and is then asked to comment on suitabil-
ity, ease of use, clarity of presentation, and so on. The great advantage of structured interviews
is that they make it possible to gain information about a wide range of issues with relatively little
effort, in comparison with more objective methods, such as reaction time or error rate mea-
surements. Also, you might learn something you did not ask about.

Rating Scales

The Likert scale (also called a rating scale) is a method for turning opinions into numbers. Sub-
jects are simply asked to rate some phenomenon by choosing a number on some range, such as
the following:

(GOOD)1 2 3 4 5 (BAD)

For example, if we have six different visual representations of a flow pattern, we might ask sub-
jects to rate how well they can see each pattern on a scale of 1 to 5.
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Subjects tend to use rating scales in their own idiosyncratic ways. Some will be biased to the
low end of the scale and others to the upper end, but generally they will tend to try to use most
to the scale for whatever set of samples they are shown. Because of this, no absolute meaning
should ever be given to rating scale data. If 10 inferior visual representations are shown to sub-
jects, they will still differentiate them into good and bad; the same will be true for 10 very good
ones. However, rating scales are an excellent tool for measuring relative preferences.

Rating scales can be used to answer broad questions about preferences for two or more dif-
ferent solutions to a problem. Quite often, users will prefer one solution to another, even though
no objective differences are measured. In some cases, one interface might even be objectively
superior, but another preferred.

Statistical Exploration

Sometimes it may be useful to use statistical discovery techniques to learn about some class of
visualization methods. Suppose we wish to carry out an investigation into how many data dimen-
sions can be conveyed by visual texture. The first obvious question is: How many perceptually
distinct texture dimensions are there? The next question is: How can we effectively map data
dimensions to them? If the answer cannot be found in the research literature, one way to proceed
is to use a kind of statistical data-mining strategy to find the answer. First, we might ask people
to classify textures in as many different ways as we can think of (e.g., roughness, regularity, elon-
gation, fuzziness). The next step is to apply a statistical method to discover how many dimen-
sions there really are in the subjects’ responses. The following sections list the major techniques.

Principal Components Analysis

The goal of principal components analysis is to take a set of variables and find a new set
of variables (the principal components) that are uncorrelated with each other (Young et al.,
1978; Tabachnick and Fidell, 2001; Hotelling, 1933). This might be used to reduce a high-
dimensional data set to lower dimensions. In many data sets (think of multiple measurements on
the dimensions of parts of beetles, for example), many of the variables are highly correlated,
and the first two or three principal components contain most of the variability in the data. If
this is the case, then one immediate advantage of the data reduction resulting from PCA is
that the data can be mapped into a two- or three-dimensional space and thereby visualized as a
scatter plot.

Multidimensional Scaling

Multidimensional scaling (MDS) is a method explicitly designed to reduce the dimensionality of
a set of data points to two or three, so that these dimensions can be displayed visually. The

method is designed to preserve, as far as possible, metric distances between data points (Young
et al., 1978; Wong and Bergeron, 1997).
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Clustering

Cluster analysis is a statistical technique designed to find clusters of points in a data space of any
dimensionality (Romesburg, 1984). There are two basic kinds: hierarchical and k-means. In hier-
archical clustering, a tree structure is built, with individual data points at the leaves. These points
are combined recursively, most similar first. Hierarchical clustering can provide the basis for
hierarchical taxonomy.

K-means clustering requires the user to input a number of clusters (k). A set of k clusters is
generated by finding the cluster means that minimize the sum of squared distances between each
set of data points and its nearest mean.

Either kind of clustering can be used as a method for data reduction in visualization, because
a tight cluster of points can be reduced to a single data glyph.

Multiple Regression

In visualization, multiple regression is a statistical technique that can be used to discover whether
it is possible to predict some response variable from display properties. For example, the time
required to judge the shortest path in a node-link diagram might be predicted from the number
of link crossings in the diagram and the bendiness of the path (Ware et al., 2002).

Cross-Cultural Studies

If sensory codes are indeed interpreted easily by all humans, this proposition should be testable
by means of cross-cultural studies. In a famous study by Berlin and Kay (1969), color naming
was compared across more than 100 languages. In this way, the researchers established the uni-
versality of certain color terms, equivalent to our red, green, yellow, and blue. This study is sup-
ported by neurophysiological and psychophysical evidence that suggests these basic colors are
hard-wired into the human brain. Such studies are rare, for obvious reasons, and with the
globalization of world culture, meaningful studies of this type are rapidly becoming impossible.
Television is bringing about an explosive growth in universal symbols. In the near future, cross-
cultural studies aimed at basic questions relating to innate mechanisms in perception may be
impossible.

Child Studies

By using the techniques of bebaviorism, it is possible to discover things about a child’s sensory
processing even before the child is capable of speech. Presumably, very young children have only
minimal exposure to the graphic conventions used in visualization. Thus, the way they respond
to simple patterns can reveal basic processing mechanisms. This, of course, is the basis for the
Hochberg and Brooks’ (1978) study discussed in Chapter 1.
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It is also possible to gain useful data from somewhat older children, such as five-year-olds.
They presumably have all the basics of sensory processing in place, but they still have a long way
to go in learning the graphic conventions of our culture, particularly in those obscure areas that
deal with data visualization.

Practical Problems in Conducting User Studies

Experimenter Bias

Researchers’ careers depend on what they publish, and it is much easier to publish results that
confirm a hypothesis than results showing no effects. There are many opportunities for experi-
menter bias in both the gathering and the interpretation of results.

As a rule of thumb, if the data being measured relates to some low-level, fundamental aspect
of vision, then it will be less subject to bias. For example, if a subject is given a control that
allows the setting of what seems to be a “pure” yellow, neither reddish nor greenish, the setting
is likely to be extremely consistent and will be relatively robust even if the experimenter makes
comments like “Are you sure that’s not a little tinged with green?” On the other hand, if the
experimenter says, “I want you to rate this system, developed by me to obtain my PhD, in com-
parison with this other system, developed at the University of Blob,” then experimenter bias
effects can be extreme.

When considering your own work or that of others, be critical. The great advantage of
science is that it is incremental and always open to reasoned criticism. Applied science tends to
adopt somewhat looser standards, and replications of experiments are rare. Many of the studies
we read are biased. In evaluating a published result, always look to see whether the data actu-
ally supports what is being claimed. It is common for claims to be made that go far beyond the
results. Often the abstract and title suggest that some method or other has clearly been demon-
strated to be superior. An examination of the method may show otherwise. A common example
is when a difference that is not statistically significant is claimed to support a hypothesis. Some
of most important questions to ask are:

What is the task?

Does the experiment really address the intended problem?
Are the control conditions appropriate?

Does the experiment actually test the stated hypothesis?
Are the results significant?

Are there possible confounding variables?

Confounding variables are variables that change in the different experimental conditions,
although they are not the variables that the researchers claim to be responsible for the measured
effect.
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How Many Subjects to Use?

In vision research, some kinds of studies are run with only two, three, or four subjects. These
are studies that purport to be looking at the low-level machinery of vision. It makes sense; humans
all have the same visual system, and to measure its properties you do not need a large sample of
the population. On the other hand, if you are interested in how color terms are used in the general
population, then the general population must be sampled in some way.

Statistically, the number of subjects and the number of observations required depend on the
variability of responses with a single subject and the variability from one subject to another.

Most experiments are run with between 12 and 20 subjects, where all of the experimental
conditions can be carried out on the same subjects (a within subjects design). In some cases,
because of learning effects, different subjects must be assigned to different conditions. Such exper-
iments will require more subjects.

Research is always an optimization problem—how to get the most information with the least
effort. One reason there have been so many simple reaching experiments presented at the
Association for Computing Machinery (ACM) Computer-Human Interaction (CHI) conferences
is that a Fitts’ law experiment (the standard experimental method) is very easy to carry out;
it is possible to gather a data point every two or three seconds. A substantial amount of
data can be gathered in half an hour of subject time, making it possible to run large numbers of
subjects.

Combinatorial Explosion

One of the major problems in designing a visualization study is deciding on the independent vari-
ables. Independent variables are set by the experimenter in the design stage. In a study of the
effectiveness of flow visualization, independent variables might be line width and line spacing of
streamlines. The dependent variables are the measured user responses, such as the amount of
error in judging the flow direction.

In visualization design problems, there are often many possible independent variables. Let
us take the example of flow visualization consisting of streaklets—small, curved line segments
showing the direction of flow. Streaklet length, streaklet start width, streaklet end width, streak-
let start color, streaklet end color, and background color may all be important. Supposing we
would like to have four levels of each variable and we wish to study all possible combinations.
The result is 4° = 2048 different conditions. Normally, we would like at least 10 measurements
of user performance in each condition. We will require over 20,000 measurements. If it were to
take 30 seconds to make each measurement, the result would be more than 160 hours of obser-
vation for each subject. We might decide to have 15 subjects in our experiment. This means over
a year of work, running subjects 40 hours per week. For most researchers, such a study would
be impossibly large.

The brute force approach experimental design is to include all variables of interest at all
meaningful levels. Because of the combinatorial explosion that results, this cannot work. The
way to obtain more from studies, with less effort, is to develop either theories or descriptive
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models that can be applied to a range of design problems. Empirical studies can be much simpler
and focus on specific aspects of the theory.

Task Identification

A critical element in experimental design is deciding on the fask the subject is to perform. Ideally,
this will be something that is both theoretically interesting and very commonly used in real appli-
cations. Even if the exact task is not common, it should be representative of activities that are
common in visualization interfaces. For example, if the application domain involves visualizing
node-link diagrams, the subject might be asked if there is a path between two highlighted nodes.
This task is good, because perceiving links between nodes is likely to be important for almost all
of the great variety of node-link diagrams that exist.

In order to provide a useful measure of performance, it is also important that the task can
be set up to have a clear and simple user response. For example, the subject might push the right
mouse button to indicate yes and the left mouse button to indicate 7o.

Controls

In an experimental design, a control is a condition that is used to provide some basis for com-
parison. In a theoretical study, the control is usually some condition that provides a reference for
theory testing. A theory might predict that a contrast effect will bias a judgment by 30%; the
control measurement would be made without the contrast-causing factor to provide a baseline
for comparison.

In evaluating a new visualization method, the most reasonable control is the current best
practice display method. Some studies employ the somewhat dishonest practice of using a very
poor alternative method as a control, thereby exaggerating the value of their own method. This
is one of the reasons that the research literature should be read with a measure of skepticism.

Getting Help

Studies in information visualization are fundamentally multidisciplinary. Usually knowledge of
computer science, human visual perception, and some application domain is necessary. Often,
the best way to do research is to be part of a collaborative team—a computer scientist who can
design and build novel interactive visualization systems, a psychologist who understands the per-
ceptual issues and has experience in perception and cognition research, and a domain expert who
understands the potential application. Naturally, everyone has his or her own area of interest,
and finding compatible collaborators can be difficult, but it can also be very rewarding.

In reality, a single researcher must take on several roles, although getting help and advice is
usually worth the effort. Most academics are willing to provide a certain amount of free advice
for no more reward than a line in the acknowledgments section of a published paper.

Finally, many universities operate a statistical consulting service that can provide help in
experimental design or data analysis.
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2-1/2D sketch processing, 22
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space perception;
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scale (UCS) diagram
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“action system” of pattern
perception, 22
acuities. See visual acuities
adaptation, lightness constancy
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advection trajectories, 204
aesthetic impression of 3D
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affordance theory
direct perception of
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interface design and,
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top-down approach of,
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computer monitor
deficiencies, 68
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metaphors and, 327
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design using, 20

physical vs. graphical,
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visual representation of,
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antialiasing techniques,
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Nyquist limit and, 63-64
temporal, 67
useful effects, 65
ambient optical array
computer graphics and,
31-32
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dynamic flow patterns,
32-33
ambient shading, 36, 245-
246
amodal control memory, 353
analytic processing, separable
dimensions and, 177
angular disparity for
stereoscopic depth,
271-272
animated visual languages,
312-315
animation. See also motion
animated images vs.
words, 305-306
animated visual languages,
312-315

correspondence problem,
218-219
for diagram enrichment,
224-225
moving frames, 221
perception of animate
motion, 223-224
visual momentum in,
311-312
wagon-wheel effect, 219
antialiasing techniques
overview, 64-65
temporal, 67
vernier acuity and, 65-66
arbitrary representations
characteristics, 15-17
defined, 10
hybrids with sensory
representations, 13
methodologies for
studying, 15, 16
Saussure’s arbitrariness
principle, 6
sensory representations vs.,
10, 27
artifacts (cultural), 1-2, 17
artifacts (graphical)
aliasing, 63-65
visualization and
perception of, 3
artificial spatial cues, 279-280
atmospheric depth, 280
attention
as both low-level and high-
level property of
vision, 146
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as control for visual
working memory,
353
eye movements and, 359
fovea-center attentional
field, 146
inattentional blindness,
359
motion and attraction of,
360-362
as motor for cognition,
352
push and pull cues, 359
Resink’s model, 362-363
searchlight model of, 364
selectivity of, 359-360
supervisory control systems
and, 364-365
time to change, 353
visual monitoring
strategies, 365-366
visual working memory
and, 353, 359-362
attentional blink, 228
attributes of entities or
relationships. See also
entity-relationship
model
defined, 24, 212
dimensions of, 25
levels of measurement,
24-25
augmented-reality systems
applications, 43
beam-splitters for, 43,
44
defined, 42
optics and, 42-45
perceptual problems in
HMDs, 43-44
perceptual problems in
HUDs, 43
virtual-reality displays vs.,

45

beam-splitters, 43, 44
beat (hand gesture), 311
behaviorism, 401-402
binocular depth cues. See also
specific cues
defined, 260
eye convergence, 270
stereoscopic depth,
271-279
binocular viewing, visual
acuities and, 48
bistable regions of transparency,
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bivariate color sequences,
135-138
bivariate maps, 254-255
black, specular vs. nonspecular
reflection and, 88, 89
black-white channel. See
luminance channel
blindness. See also color
blindness
to change, 357
inattentional, 359
stereo, 271
blink, attentional, 228
blink coding, 183
brain. See also neurons
architecture of primary
visual areas, 159-
160
as evolved for this physical
world, 10, 11-12
Gabor function and
receptive field
properties, 161-162
illusions and hard-wired
processing in, 14
organization of object
information by,
255-257
parallel processing by
neuron arrays, 20-21,
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range of light levels and
lightness constancy,
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shading information and,
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specialized regions and
neural pathways,
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tabula rasa view of,
10-11

tuned receptive fields in,
159-160

visual field and processing
power, 51

brain pixels

defined, 52-53

optimal screen and, 53-57

total number (TPB) for
computer display, 54

uniquely stimulated (USBP)
by computer display,
54-55

visual efficiency (VE)
equation, 55

brightness. See also lightness;

luminance;
simultaneous
brightness contrast

Cornsweet effect, 77

defined, 80, 83

edge enhancement, 77-79

luminance vs., 80, 84

Mach band effect, 74, 77,
94

magnitude estimation,
83-84

monitor gamma, 84, 92

as monotonic visual
attribute, 181

overview, 83-84

power law, 83-84

simultaneous brightness
contrast, 72-73,
75-79



surface-shading methods
and DOG model,
75-77
Weber’s law, 88-89
brown, 118
brushing technique, 348, 376

CAE FOHMD, 57, 58
camera analogy for the eye,
38-40
canonical view
image-based object
recognition and, 230
for silhouettes, 235, 236
cast shadows
defined, 245
as depth cues, 266-268
guidelines for displaying
surfaces, 252
layered data and, 268
motion and, 268-269
overview, 36
for scalar field
representation,
245-246
categorical colors, 113
categorical knowledge for
wayfinding, 331
category data, 25
cathode ray tube displays. See
computer monitors
causality, motion and
perception of,
222-223
Cave Automatic Virtual
Environment (CAVE),
55, 56
central executive in visual
working memory, 353
change blindness, 357
change of basis, 387-388
Chernoff faces, 239-240
Chevreul illusion, 74, 77

child studies, 401-402
choice reaction time, 318-319
chromatic aberration, 45-46,
47
chromatic contrast, 117,
124-125
chromatic spatial sensitivity, 62
chromaticity coordinates (CIE)
chromaticity diagram
properties, 105-107
complementary wavelength
of a color, 107
of equal-energy white, 106
excitation purity, 106-107
generating colors defined
by CIE tristimulus
values, 107-108
overview, 104-105
purple boundary, 105
spectrum locus, 105
standard illuminants, 106
transforming tristimulus
values to and from,
105
for two sets of monitor
phosphors, 107
chromostereopsis, 46, 47
chunking
in long-term memory, 367,
368-369
of subtasks, 322
CIE standards. See also
chromaticity
coordinates (CIE)
abstract primary lamps
and, 103
chromaticity coordinates,
104-108
chromaticity diagram
properties, 105-107
CIE 1976 uniform
chromaticity scale
(UCS) diagram, 109,
110
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CIElab uniform color
space, 108, 132
CIEluv uniform color
space, 8§9-90,
108-110, 132
color differences and
uniform color spaces,
108-110
color measurement system
overview, 389-391
color volume, 103, 104
converting between
tristimulus values and
chromaticity
coordinates, 105
human spectral sensitivity
function standard,
81-82
illuminants, 106
luminance as Y tristimulus
value, 103
monitor gamut, 103
overview, 103-104
standard observer for, 103
tristimulus values,
103-104, 389-391
uniform gray-scale
standard, §9-90
CIElab uniform color space,
108, 132
CIEluv uniform color space
applications, 108
CIE 1976 uniform
chromaticity scale
(UCS) diagram, 109,
110
color sequences from, 132
equations, 108-109
limitations, 109, 111
uniform gray-scale
standard, 89-90
classification tasks
restricted, glyphs for,
177-178



454 SUBJECT INDEX

speeded, glyphs for,
178-179
closure (Gestalt law)
figure and ground
perception and, 196,
198
overview, 194-196, 197
cluster analysis, 401
coding words and images
dual coding theory,
297-299, 306
imagens and logogens,
297-298
images vs. words, 303-306
links between images and
words, 306-311
nature of language,
299-301
text labels for images,
307-309
visual languages, 301-303
cognition. See also thinking
with visualizations
attention as motor for, 352
cognitive components of
visual thinking,
370-371
frames of reference,
333-337
memory as framework for,
352
as process in systems, 1-2
spatial map for
wayfinding, 330, 331,
332-333
visual thinking, 298-299
cognitive psychology, 397
cognitive science, 1
cognitive spatial map for
wayfinding, 330, 331,
332-333
color. See also CIE standards;
color blindness
appearance, 116-118

Application 1: color
specification interfaces
and color spaces,
119-123

Application 2: labeling,
123-127

Application 3: data maps,
127-138

Application 4: color
reproduction,
138-140

Application 5: exploratory
data analysis,
140-143

as attribute rather than
primary characteristic,
98, 116

categorical colors, 113

CIE standards, 103-110

color-matching setup,
100-101

conjunction of convexity
and, 155

connectedness grouping
principle vs., 191, 192

contrast, 117

correspondence problem
and, 219

critical function of color
vision, 97-98

cross-cultural consistency,
112

cultural meanings for, 16

equation describing, 100,
101

for Euler diagram
enhancement, 196

gamut, 101

glyph design and, 183

lessons for visualization,
143-144

measurement, 100-103

multivariate surface display
and, 254

negative light and,
101-102
opponent process theory,
110-116
preattentive processing of,
152, 154, 155
proximity luminance
covariance, 279-280
relative unimportance of
color vision, 97
saturation, 117-118
surface colors vs. lights,
104
three-stage model of
perception and, 21,
187, 188
transparency perception
and, 205
trichromacy theory,
98-99
unique hues, 112
color blindness
author’s experience, 97
color labels and, 125
color sequences for,
134-135, 136
overview, 99-100
in peripheral vision, 361
color channels. See also specific
channels
described, 110
illustrated, 111
information display and,
116
properties, 113-116
saturation and, 118
color constancy, 80
color palettes, 123
color processing, 116
color reproduction
gamut and, 138
heuristic principles for, 138
relationships vs. absolute
values for, 138



smooth color changes and,
140
three-dimensional
transformations for
gamut mapping,
138-140
color spaces. See also CIE
standards; specific
color spaces
changing primaries,
387-388
CIElab uniform color
space, 108, 132
CIEluv uniform color
space, 8§9-90,
108-110, 132
color differences and
uniform color spaces,
108-110
color sequences from, 132
color specification
interfaces and,
119-121
cone response space, 99,
100
defined, 98
HSV, 119
perceived color differences
and, 123
RGB, 101, 102, 119
trichromacy and, 98-99
color specification interfaces
color palettes for, 123
color planes for, 120-121
color spaces and, 119-121
names for colors and,
121-123
separating luminance from
chromatic dimensions,
119-120
colorimetry, trichromacy as
basis for, 100
column perception. See row and
column perception

combinatorial explosion in user
studies, 403-404
Commission Internationale de
I’Eclairage (CIE). See
CIE standards
complementary wavelength of a
color, 107
compound lens imaging
properties, 41
computer animation. See
animation
computer languages. See
programming
languages
computer monitors
acuity graph for, 54
brain pixels and the
optimal screen, 53-57
calibrating to CIE
coordinates, 104
chromatic aberration in,
45-46
chromaticity coordinates
for two sets of
phosphors, 107
contrast illusions on CRT
displays, 87
contrast variations in, 60
depth of focus and, 42
gamma function, 84, 92
gamut, 101, 103, 108
generating colors defined
by CIE tristimulus
values, 107-108
illumination and
surrounds, 90-93, 95
matching colors to room
colors, 92-93
nonlinearity in, 84
optimal display, 62-67
refresh rate, 66-67
screen size and visual
efficiency, 54-57
stereo displays, 272
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strengths and deficiencies,
67-68
three-dimensional
transformations for
gamut mapping,
138-140
visual angle and, 40
visual efficiency (VE)
equation, 55
voltage transformation into
lightness in, 92
computers as cognitive tools, 2
concavity, 155
concept maps or mind maps,
379-380
cone cells
cone response space, 99,
100
foveal, 47
overview, 47
sensitivity functions, 99
trichromacy and, 98
conjunction search
defined, 154-155
pattern learning study, 206
preattentive processing
and, 154-156
with spatial dimensions,
155-156
connectedness (Gestalt law),
191, 192
Constellation system, 380, 381
continuity
Gestalt law, 191-192, 193
good continuation
experiments,
199-200, 201
transparency perception
and, 2035, 206
contour. See also continuity
closure (Gestalt law),
194-196, 197, 198
contour maps, 249,
251-252
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Cornsweet effect, 77
defined, 198
direction perception and,
200-201, 202, 203
edge enhancement, 77-79
expressive power of lines,
212
flow visualization
techniques (2D), 201,
203-205
illusory, 198-199
motion and, 219-220
neurophysiological
mechanisms of
perception, 199
shading interaction,
248-252, 253
silhouettes, 233, 235-237
surface shape perception
and, 248-252
three-stage model of
perception and, 21,
187, 188
contour generator, 235
contour maps, 249, 251-252
contrast. See also simultaneous
brightness contrast
Chevreul illusion, 74, 77
chromatic, 117, 124-125
contrast threshold as
function of temporal
and spatial frequency,
61-62
Cornsweet effect, 77
crispening, 90
edge enhancement, 77-79
Hermann grid illusion, 72,
73
illusions on CRT displays,
87
luminance contrast effects,
94, 95
Mach band effect, 74, 77,
94

paper reproductions of
effects, 86-87
perceptually independent
textures and, 169
as primary perceptual
dimension of texture,
164
sharpening, 94
simultaneous brightness
contrast, 72-73,
75-79
spatial contrast sensitivity
function, 59-61
text contrast, 83
texture contrast effects,
170, 171
control compatibility in
interaction, 322-324
controls in user studies, 404
convergent eye movements, 363
convexity, 155
coordinate knowledge for
wayfinding, 331
Cornsweet effect, 77
correspondence problem, 218
cost of knowledge, 351
creative problem solving,
383-385
crispening, 90
cross-cultural studies, 401
cross-cultural validity of
sensory vs. arbitrary
representations, 14
CRT displays. See computer
monitors
cultural relativism, 6, 8
culture
arbitrary representations
and, 16
color code meanings and,
16, 125
cross-cultural consistency
for color, 112
cross-cultural studies, 401

embedded aspects of
visualization, 16
language structure as
cross-cultural, 299
order of color name
appearance in
languages, 112
sign language and, 299
cushion maps, 255, 256
cyclic visual attributes, 181-182
cyclopean scale for stereoscopic
displays, 276

data classification
attributes of entities or
relationships, 24-25
entities, 23
metadata, 26
operations as data,
25-26
overview, 23
relationships, 23-24
usefulness of, 23, 25
data glyphs. See glyphs
data maps. See also exploration
and navigation loop
for interaction
bivariate color sequences,
135-138
bivariate or multivariate
maps, 254-255
color sequences for,
127-138
contour maps, 249,
251-252
cushion maps, 255, 256
generation of distinct
textures using Gabor
function, 166-167
interval pseudocolor
sequences, 132-133
knowledge structure
interfaces, 379-383



nominal pseudocolor
sequences (labeling
regions), 128-129

ordinal pseudocolor
sequences, 129-132

orientation of maps,
337-338

perceptual color sequences,
128

pseudocoloring in,
127-128

ratio pseudocolors,
133-134

sequences for the color
blind, 134-135

simultaneous brightness
contrast and reading
errors, 75

spectrum color sequences,
128, 136

supporting visualization
with, 338

tactical map displays, 1435,
157-158

treemaps, 216-217

visual grammar of
elements, 215-217

data mining, 187
Data Mountain interface, 262,

263, 264, 369-
370

data selection and manipulation

loop for interaction
2D positioning and
selection, 319-320
choice reaction time,
318-319
control compatibility,
322-324
described, 317
Fitts’ law, 319-320, 321
Hick-Hyman law, 318
hover queries, 320-321,
376

kinematic chain theory,
321
lag between hand
movement and visual
feedback in VR,
319-320
learning, 322
path tracing, 321
selection time for graphical
interfaces, 319
speed-accuracy tradeoff,
318-319
two-handed interaction,
321-322
vigilance tasks, 324
declarative knowledge for
wayfinding, 330, 331
deixis, 309-310
dependency graph for depth
cues, 283
dependent variables, 403
depth cues. See also task-based
space perception;
specific cues
artificial spatial cues,
279-280
atmospheric depth, 280
binocular cues, 260
cast shadows, 266-268
combinations of cues,
280-283
defined, 259
dependency graph, 283
depth of focus, 266
eye accommodation, 269
eye convergence, 270
monocular dynamic cues,
260, 269-271
monocular static cues,
260
navigation and, 326
occlusion, 265-266
perspective cues, 260-
262
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pictures seen from the
wrong viewpoint and,
263-265

shape-from-shading, 260,
268-269

size gradient, 260-262

stereoscopic depth,
271-279

structure-from-motion,
269-270

texture gradient, 260-262

weighted-average model,

281

depth of focus. See also

stereoscopic depth

augmented-reality systems
and, 43-44

computer monitor
deficiencies, 68

defined, 41

as depth cue, 266

of human eye, 41-42

range for various distances
(table), 42

simulating with flat-screen
displays, 35

vergence-focus problem,
273-274

virtual-reality displays and,
45, 46

derived data, 26
design. See also interface design

affordance theory and,
18-20

contour perception and,
199-200, 201

Gestalt laws as principles
for, 190, 191, 192,
194, 196, 197, 225

glyph, 176-177, 182-183,
355-356

implications from visual
problem solving
model, 374-379
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multidimensional discrete
data and, 182-183
occlusion and, 266
pattern perception and,
188
preattentive processing
and, 152, 157-158
symbol, 152, 157-158
transparency applications,
205-206
visual working memory
capacity and,
355-356
detail
establishing shot and, 312
tradeoff with texture, 175
visual working memory
limitations and, 357
detection methods in
psychophysics,
395-396
deuteranopia (color blindness),
99-100
diagrams
animation for enriching,
224-225
chromaticity diagram
properties, 105-107
Euler, 195-196
flowcharts, 302
geon diagrams, 241-243,
244
map grammar, 215-217
node-link diagrams,
210-215, 284-287,
379-380
perceptual syntax of,
210-217
role of convention and,
10
sketchy, 384-385
structure diagrams,
302-303
text labels, 307-309

tracing data paths in 3D
graphs, 284-287
Difference of Gaussians (DOG)
model
Chevreul illusion and, 74,
77
equation for, 71
Hermann grid illusion and,
72,73
Mach band effect and, 74,
77
pattern perception and,
71-72
simultaneous brightness
contrast and, 72—
73
surface-shading methods
and, 75-77
diplopia
cyclopean scale and, 276
defined, 271
as stereoscopic display
problem, 274-275
direct perception
defined, 18
problems for visualization
theory development,
19-20
visual mechanisms and, 19,
20
direction as monotonic visual
attribute, 181
display. See information display
distant objects, stereoscopic
depth cue and, 274
distortion techniques, 340-
342
DOG. See Difference of
Gaussians (DOG)
model
dots per inch, 63, 65
dual coding theory, 297-299,
306, 330
dynamic queries, 346, 348, 376

ecological optics
ambient optical array,
31-32
surfaces vs. classical
geometry,
30-31
edge enhancement. See also
contour
artists’ techniques, 78
Cornsweet effect, 77
for flow pattern
enhancement,
78-79
egocentric frames of reference,
333-335, 336
electromagnetic spectrum, 30,
31
elision techniques, 344
End of Science, The (Horgan),
1
entity-relationship model
attributes of entities or
relationships, 24-235,
212
entities defined, 23
modeling entities defined,
212
for node-link diagrams,
212-213
relationships defined,
23-24,212
environment. See visual
environment
EPIC (executive process
interactive control),
353, 354
episodic memory, 367
equiluminous patterns, 114
error perception, 3
establishing shot
(cinematography),
312
Euler diagrams, 195-196
excitation purity, 106-107



executive process interactive
control (EPIC), 353,
354
exocentric frames of reference,
335-336. See also
map view
experimenter bias, 402
exploration and navigation loop
for interaction
basic navigation control
loop, 325
costs of navigation,
376-379
described, 317
focus-context problem for
changing scales,
338-345
frames of reference,
333-337
locomotion and viewpoint
control, 325-333
map orientation, 337-338
overview, 325
perception for navigation,
325-327
rapid interaction with
data, 345-349
self-motion perception and
frame rate, 326-327
spatial navigation
metaphors, 327-330
wayfinding, 330-333
exploratory data analysis, color
for, 140-143
expressive gestures, 311
expressive motion, 221-222
Exvis data glyphs, 172, 184
eye accommodation, 269, 364
eye chart demonstrating visual
acuity, 51, 52
eye convergence depth cues,
270
eye movements
attention and, 359

eye accommodation, 269,
364

eye movement control
loop, 374

intrasaccadic scanning
loop, 374

saccadic, 363-364, 376

saccadic suppression, 361,
364

supervisory control systems
and, 364-365

types of, 363

visual monitoring
strategies, 365-366

eye, the. See also specific parts

accommodation, 269, 364

acuity distribution and the
visual field, 50-53

brain pixels and the
optimal screen, 53-57

camera analogy for, 38-40

chromatic aberration,
45-46

computational perspective
for, 39

diplopia, 271

illustrated, 39

lens, 41-42

neural processing in,
70-71

optics and augmented-
reality systems, 42—45

optics in virtual-reality
displays, 45, 46

Panum’s fusional area,
271-273

range of light levels and
lightness constancy,
85

receptors, 46—47

simple acuities, 47-49

spatial contrast sensitivity
function, 57-62

vergence angle, 270
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visual angle, 40
visual stress, 62, 63
eyeball-in-hand navigation
metaphor, 328, 329

faces
Chernoff faces, 239-240
facial expressions, 238
recognition of, 237-238
facial action coding system
(FACS), 238
families of colors, 127
feedback loops in visualization,
4-5
figure and ground, 197-199
fish-eye technique, generalized,
344
Fitts’ law, 319-320, 321
flow patterns. See also vector
fields
advection trajectories, 204
background luminance
adjustment for, 78-79
overview, 32-33
sliver plots for, 175
tasks for flow
visualization, 204
visualization techniques,
78-79, 201, 203-205
flowcharts, 302
flying navigation metaphor,
328, 329-330, 377
focal distances, 43-44
focus. See also depth of focus
eye accommodation, 269,
364
focus-context problem for
changing scales,
338-345
heads-up display problems,
44
vergence-focus problem,
273-274
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focus-context problem for

changing scales
distortion techniques for,
340-342
elision techniques for, 344
multiple windows for,
344-345
overview, 338-339
rapid zooming techniques
for, 342-344
spatial scale and, 339
structural scale and, 339
temporal scale and, 339

form perception

color channels and, 115

features preattentively
processed, 149-152

motion and, 219-220, 224

fovea

acuity and distance from,
51

cone cell packing in, 47

defined, 47

fovea-center attentional
field, 146

Panum’s fusional area,
271-273

parafovea, 56, 361

receptor mosaic in, 48

frame cancellation, 273
frame rate, self-motion

perception and,
326-327

frames

moving frames and
perception of motion,
220-221

vection and, 290-291

frames of reference

defined, 333

egocentric, 333-335, 336

exocentric, 335-336

multiple simultaneous
views and, 336-337

fundamental uncertainty

principle for
perception, 164

Gabor function

Barlow’s second dogma
and, 163

equation for, 163

fundamental uncertainty
principle and, 164,
165

Gabor receptive fields,
162, 164, 166

generation of distinct
textures using,
166-167

good continuation
experiments,
199-200

illustrated, 162

overview, 161-162

primary perceptual
dimensions of texture
and, 164

resolvable size for Gabor
pattern, 169-170

spatial tuning curve, 168

texture segmentation and,
162, 163

gamma

gamma function, 84
voltage steps and
perceptual steps, 92

gamut

color reproduction and,
138

defined, 101

discriminable colors for
color monitors, 108

monitor gamut (CIE),
103

primaries and, 101

saturation contours, 118

three-dimensional
transformations for
gamut mapping,
138-140

ganglion cells, retinal. See also

Difference of
Gaussians (DOG)
model

illustrated, 53

lateral geniculate nucleus
and, 70, 71

on-center receptive field,
70-71, 72

receptive field defined,
52-53, 70

generalized fish-eye technique,

344

geographic information systems

(GISs), 205

geons

defined, 233

geon diagrams, 241-243,
244

illustrated, 235

neural-network model and,
233

theory, 233

UML diagrams vs. geon
diagrams, 241, 242

Gestalt laws

closure, 194-196, 197

connectedness, 191, 192

continuity, 191-192, 193

design principles from,
190, 191, 192, 194,
196, 197, 225

development of, 189

figure and ground and,
197-199

linking text and graphics
and, 307

proximity, 189

relative size, 196, 197

similarity, 190-191



spatial concentration
principle, 189-190
symmetry, 192-194
gestures
deixis, 309-310
expressive, 311
overview, 309
symbolic, 310-311
GISs (geographic information
systems), 205
gist
defined, 356
time for activation, 353
visual working memory
capacity and,
356-357
glyphs
camouflaged by texture,
176
defined, 145
design, 176-177, 182-183,
355-356
Exvis data glyphs, 172,
184
integral and separable
dimensions theory
and, 177-178
integral-separable
dimension pairs and,
180-181
integrated, 355-356
key lessons, 185-186
low-level graphical
attributes in design of,
182, 183
multidimensional discrete
data and, 182-183
multidimensional mapping,
184-185
multivariate discrete data
and, 176-182
for restricted classification
tasks, 177-178
in scatter plots, 145

for speeded classification
tasks, 178-179
star plots, 184
visual working memory
capacity and,
355-356
whisker plots, 184
God’s-eye view, 335-336
Go-Go Gadget technique, 323,
324
Gouraud shading, 75-77
graphemes, 160-161
graphical interface design. See
interface design
graphs. See node-link diagrams
grating acuity, 49
gray scales. See also luminance
Chevreul illusion, 74, 77
CIE standard, 89-90
deficiencies for encoding
data, 75, 93-94
dots per inch and, 65
fundamental questions for
applying, 69
Mach band effect, 74, 77,
94
optimal display and, 65
simultaneous brightness
contrast, 72-73
green, unique hues of, 112
group perception. See Gestalt
laws; pattern
perception

head-mounted displays (HMDs)

CAE fiber-optic display
(FOHMD), 57, 58

depth of focus and, 42

optical and perceptual
problems, 44-45

perspective coupled to
head movement for,
265
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heads-up displays (HUDs), 44
Hermann grid illusion, 72, 73
Hick-Hyman law for choice
reaction time, 318
hierarchical clustering, 401
highlighting
adding vs. taking away,
153-154
semantic depth of field,
156-157
visually complex
environments and,
156
HMDs. See head-mounted
displays (HMDs)
hover queries, 320-321, 376
HSV color space, 119
HUDs (heads-up displays), 44
hue
families of colors, 127
in HSV color space, 119
unique hues, 112, 124
human spectral sensitivity
function, 81-82
hyperbolic tree browser, 340,
342
hyperlink text, 376
hypothesis formation,
visualization as aid in,

4

iconic memory, 148-149, 352
icons
image-based object
recognition and, 230,
232
user interrupts using,
361
illusory contours, 198-199
image-based object recognition
attentional blink, 228
canonical view, 230
defined, 227
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neurophysiological data,
230, 231
priming effects, 229-230
rapid serial visual
presentation (RSVP),
228, 232
recall ability for images,
228
recognition vs. recall, 228
size and, 228-229
user interface applications,
230, 232
view direction and, 228
imagens, 297-298
images vs. words
animated images vs.
words, 305-306
overview, 303-304,
315-316
static images vs. words,
304
inattentional blindness, 359
independent variables, 403
information density, 164
information display. See also
computer monitors;
design
abilities of the eye and, 29
color channels and, 116
computer compared to
world, 29
costs of navigation,
376-379
depth of focus and, 42
guidelines for displaying
surfaces, 252, 254
optimal display, 62-67
perspective and total
information, 262,
263, 264
power law and, 84
visual query patterns,
375-376
information psychophysics, 395

instructional bias, 14
integer data, 25
integral and separable
dimensions
glyphs and, 177-178,
180-181
pairs of, 180-181
separating row and column
information and, 191
intelligent zooming, 340
interaction metaphors, 327. See
also spatial navigation
metaphors
interactive data display
brushing technique, 348,
376
costs of navigation,
376-379
dynamic queries, 346, 348,
376
interactive data mapping,
345-346
parallel coordinates
technique, 348-349
visual query patterns,
375-376
interactive visualization. See
also thinking with
visualizations; specific
loops
data selection and
manipulation loop,
317, 318-324
exploration and
navigation loop, 317,
325-349
implications from visual
problem solving
model, 374-379
overview, 317-318
problem-solving loop,
317-318
transparency principle,
345, 349-350

interface design. See also data

selection and
manipulation loop for
interaction;
exploration and
navigation loop for
interaction; virtual-
reality (VR) displays

2D positioning and
selection, 319-320

affordance theory and,
18-20

choice reaction time,
318-319

closure (Gestalt law) and,
196, 197

control compatibility,
322-324

costs of navigation,
376-379

depth cues and, 282-283

FACS and avatar creation,
238

frames of reference,
333-337

hover queries, 320-321, 376

icons, 230, 232

image-based object
recognition
applications, 230, 232

kinematic chain theory,
321

knowledge structure
interfaces, 379-383

magic lens, 322

path tracing, 321

problems with direct
perception for, 19-20

RSVP for image database
search, 232

selection time for graphical
interfaces, 319

spatial navigation
metaphors, 327-330



toolglasses, 322
transparency for, 205—
206
transparency principle,
345, 349-350
two-handed interaction,
321-322
user interrupts, 360-361
vigilance tasks, 324
interference effects, 256-257
interval data
defined, 24
pseudocolor sequences,
132-133
real-number data and, 25
intrasaccadic scanning loop,
374
ISO standard for pointing
device use, 320
isoluminant patterns, 114

JND (just noticeable difference),
109

joystick. See pointing devices

just noticeable difference (JND),
109

KidSim animated visual
language, 312-315
kinematic chain theory, 321
kinetic depth effect, 269-270
K-means clustering, 401
knowledge structure interfaces
concept maps or mind
maps, 379-380
Constellation system, 380,
381
linking computer-based
analysis with
visualization,
380-383
trajectory mapping, 383

labeling. See also
pseudocoloring
color blindness and, 125
color conventions and, 125
contrast with background
and, 124-125
distinctness for color
labels, 123-124
families of colors for,
127
field size and, 125
gray scale deficiencies for
encoding, 75, 93-94
as nominal information
coding, 123
number of colors for,
125
recommended colors,
125
text labels for images,
307-309
unique hues for, 124
laciness effect, 205, 207
Lambertian shading
defined, 245
examples, 36
guidelines for displaying
surfaces, 252
overview, 35
for scalar field
representation,
245-246
surface shape perception
and, 247-248, 250
landmarks for wayfinding,
331-332
language
animated visual languages,
312-315
computer languages, 299,
301-302
deep structures of, 299
development in children,
299
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dual coding theory,
297-299, 306
as dynamic and distributed
over time, 301
images vs. words, 303-306
links between images and
words, 306-311
logogens, 297-298
natural, 299, 301
sign language, 299-300
visual languages, 301-303
lateral geniculate nucleus
(LGN), 70, 71, 159
lateral inhibition, 77, 85
launching effect, 222
layered data
cast shadows and, 268,
269
transparency perception
and, 205-206
learning. See training or
learning
lens of the eye
camera analogy, 38-39
depth of focus and, 41-42
equation for imaging
properties, 41
illustrated, 39
nodal point, 41
letter acuity, 49
levels of measurement, 24-25
LGN (lateral geniculate
nucleus), 70, 71, 159
lightness. See also brightness;
luminance; reflected
light
defined, 80
luminance vs., 80, 84
preattentive processing of,
149, 150
lightness constancy
adaptation mechanism, 85
contrast mechanisms and,
86
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defined, 80
direction of illumination
and, 87, 88
factors aiding perception,
85-86, 87-88
lateral inhibition
mechanism, 85
paper reproductions of
effects, 86-87
range of light levels and,
85
reference white used by
brain, 87
specular vs. nonspecular
reflection and, 88,
89
Likert scale, 399-400
limited-capacity working
memory, 307
linear perspective, 260-262
lines. See contour
links between images and
words
deixis, 309-310
expressive gestures, 311
gestures as linking devices,
309-311
overview, 306-307
static links, 307-309
symbolic gestures,
310-311
logogens, 297-298
long-term memory. See also
memory
capacity, 367
chunking, 367, 368-369
concepts and, 369
defined, 352
episodic, 367
as network of linked
concepts, 367, 368
as verbal-propositional
memory, 366
visual, 369-370

visual working memory

and, 367-368
luminance. See also brightness;

gray scales; lightness;
simultaneous
brightness contrast

background luminance
adjustment for flow
fields, 78-79

as basic to vision, 69

brightness vs., 80, 84

CIE Y tristimulus value as,
103

color specification
interfaces and,
119-120

defined, 80, 81

equation for, 81

gamma function, 84

human spectral sensitivity
function or V(A),
81-82

lightness vs., 80, 84

luminance contrast effects,
94, 95

multivariate surface display
and, 254

overview, 81-83

power law, 83-84

proximity luminance
covariance, 279-
280

receptor information and,
69

of sine wave grating,
58-59

text contrast, 83

unique hues and, 112

Weber’s law, 88-89

luminance channel

described, 110

human spectral sensitivity
function and, 81-82

illustrated, 111

in opponent process
theory, 110, 111
properties, 113-116

Macaque monkey visual
pathways, 11, 12
Mach band effect, 74, 77, 94
magic lens, 322
magnifying windows vs.
zooming, 377-379
magnitude estimation, 83-84
map reading errors for scaling,
332-333
map view
defined, 336
map orientation, 337-338
maps, data. See data maps
masking technique for priming,
230
MDS (multidimensional
scaling), 381-382,
400
memory. See also long-term
memory; visual
working memory
extension by visualizations,
352
as framework for
cognition, 352
iconic, 148-149, 352
icons and, 230, 232
imagens and logogens in,
297-298
limited-capacity working
memory, 307
long-term, 352, 366—
370
navigation control loop
and, 325
recall ability for images,
228
recognition vs. recall,
228



sensory vs. arbitrary
representations and,
16
visual working memory,
352-363
metadata, 26
method of adjustment, 397
methodologies, 15. See also
visualization
techniques and
systems
mind maps or concept maps,
379-380
Mona Lisa illusion, 228-229
monitor gamut (CIE), 103
monitors. See computer
monitors
monocular dynamic depth cues,
260, 269-271
monocular static depth cues.
See also specific cues
cast shadows, 266-268
defined, 260
depth of focus, 266
eye accommodation, 269
list of, 260
occlusion, 265-266
perspective cues, 260-262
pictures seen from the
wrong viewpoint,
262-265
shape-from-shading, 260,
268, 269
size gradient, 260-262
texture gradient, 260-262
monotonicity of visual
attributes, 181-182
motion. See also animation
attention attraction and,
360-362
cast shadows and depth
perception, 266-268
causality perception and,
222-223

color channels and
sensitivity, 115
correspondence problem,
218-219
for diagram enrichment,
224-225
expressive, 221-222
flow patterns, 32-33
form and contour in,
219-220
glyph design and, 183
judging relative movement
of self in
environment,
290-291
monocular dynamic depth
cues, 260, 269-271
moving frames and
perception of,
220-221
for multidimensional data
display, 176
pattern perception and, 22,
217-225
perception of animate
motion, 223-224
preattentive processing of,
152, 156
sensitivity in the periphery,
50
structure-from-motion
depth cues, 269-270
surface shape perception
and, 247
target shape and, 156
three-stage model of
perception and, 21,
187, 188
UFOV and, 147
wagon-wheel effect, 219
motion blur, 67
motion parallax, 269
mouse (computer). See pointing
devices
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mouse spinal column, 174, 175
Muller-Lyer illusion, 14
multidimensional discrete data
color for displaying,
140-143
glyph design and, 182-
183
key lessons, 185-186
motion for displaying,
176
resolvable steps per
dimension and,
182-183
stereoscopic depth for
displaying, 176
multidimensional scaling
(MDS), 381-382, 400
multimedia, claims for,
306-307
multiple regression, 401
multiple windows, 344-345
multiple-window technique,
344-345
multivariate discrete data,
glyphs and, 176-182
multivariate maps, 254-255
Munsell system, 122-123

names for colors

brown, 118

categorical colors, 113

color specification
interfaces and,
121-123

combinations never used,
110, 112

cross-cultural consistency,
112

disagreement about, 121

Munsell system, 122~

123
Natural Color System
(NCS), 122-123
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order of appearance in
languages, 112
Pantone system, 122—
123
nanometers, 30
Natural Color System (NCS),
122-123
natural language, 299, 301
navigation interface. See
exploration and
navigation loop for
interaction
navigation metaphors. See
spatial navigation
metaphors
NCS (Natural Color System),
122-123
negative light, 101-102
network model for long-term
memory, 367, 368
neural pathways for visual
processing, 11
neural-network model of
structural object
recognition, 233,
234
neurons. See also brain
Gabor function and
receptive field
properties, 161-162
neural pathways and visual
processing, 11-12
overview, 70
parallel processing by
neuron arrays, 20-21,
188
neurophysiology. See also brain;
neurons
of canonical view, 230,
231
mechanisms of perception,
199
opponent process theory
studies, 113

1976 uniform chromaticity
scale (UCS) diagram
(CIE), 109, 110
nodal point, 41
node-link diagrams
concept maps or mind
maps, 379-380
entity-relationship model
for, 212-213
examples, 210
graph drawing algorithms,
210
interdependencies and
understanding of, 211
links defined, 211
nodes defined, 211
as perceptual, 211-212
in software engineering,
211
tracing data paths in 3D
graphs, 284-287
treemaps vs., 216-217
visual grammar of
elements, 213-215
nominal data
category data and, 25
defined, 24
pseudocolor sequences,
128-129
nominal information coding.
See labeling
nominalism, 8-9
north-up map orientation,
337-338
numerosity, preattentive
processing of, 151,
153-154
Nyquist limit, 63-64

object display
advantages of, 239, 241
Chernoff faces, 239-240
defined, 239

realism vs. abstraction
tradeoff, 258
relationship to data
presented, 240-241
object file concept, 255-257,
356, 371
object recognition. See image-
based object
recognition; structure-
based object
recognition
objects
cushion maps, 255, 256
defined, 227
faces, 237-238
image-based object
recognition, 228-232
information organization
by the brain, 255-257
judging relative positions
in space, 289-290
object display and object-
based diagrams,
239-243
object file concept,
255-257, 356, 371
overview, 257-258
perceiving surface shapes
of, 243-255
pervasiveness of metaphor,
227
proto-object flux, 22,
362-363
reaching for objects,
291-292
structure-based object
recognition, 233—
237
occlusion. See also transparency
3D visualization of graphs
and, 286
closure (Gestalt law) and,
194-195
design and, 266



as most basic depth cue,
283
overview, 265-266
symmetry (Gestalt law)
and, 192, 193
operations, 25-26
opponent process theory
categorical colors, 113
cross-cultural validity, 112
luminance channel, 110,
111
naming and, 110, 112
neurophysiological studies,
113
overview, 110
properties of color
channels, 113-116
psychological basis, 110
red-green channel, 110,
111
unique hues, 112
yellow-blue channel, 111
opportunity cost of knowledge,
351
optical flow, 32-33
optimal display
acuity information and, 62
aliasing and, 63-65
brain pixels and, 53-57
gray levels, 65
number of dots, 63, 65
spatial contrast sensitivity
function and, 62-63
superacuities and, 65-66
temporal requirements,
66—67
ordinal data
defined, 24
integer data and, 25
pseudocolor sequences,
129-132
orientation
in Barlow’s second dogma,

163

correspondence problem
and, 219

as cyclic visual attribute,
181-182

fundamental uncertainty
principle and, 164,
165

glyph design and, 183

of maps, 337-338

oriented sliver textures,
172-176

perceptually independent
textures and, 168-169

as primary perceptual
dimension of texture,
164

texture contrast illusions,
170, 171

tradeoffs using, 176

oriented sliver textures,
172-176
over-the-shoulder-view, 335

paint model of surfaces
ambient shading, 36
cast shadows, 36
Lambertian shading, 35
overview, 35
specular shading, 36
Pantone system, 122-123
Panum’s fusional area, 271-273
paper
computer monitor vs., 92
lightness constancy effects
and, 86-87
standard lamp for colors
on, 116
parafovea
attracting attention
outside, 361
pattern perception and, 56
parallel coordinates technique,
348-349
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parallel processing by neuron
arrays, 20-21, 188
Passamoquoddy Bay
visualization, 2—4
path tracing
in 3D graphs, 284-287
in interactive visualization,
321
pattern perception. See also
space perception
“action system” vs.
“what” system, 22
aliasing and, 64
contours and, 198-205
data mining and, 187
DOG model and, 71-72
Gestalt laws, 189-198
Hermann grid illusion, 72,
73
integral and separable
dimensions and, 191
learning in, 188, 206-
209
motion and, 22, 217-225
multivariate surface display
and, 254
parafovea and, 56
perceptual syntax of
diagrams, 210-217
priming, 188, 209
spatial concentration
principle, 189-190
three-stage model of
perception and,
21-22, 187-188
transparency and
overlapping data,
205-206
in visual processing model,
21-22
visualization and, 3
pattern-induced epilepsy, 62
Perception of Causality, The
(Michotte), 222-223
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perceptual color sequences, 128
perceptual processing. See
visual processing
perceptually independent
textures, 167-169
personal image memory banks,
232
perspective depth cues
overview, 260-262
pictures seen from the
wrong viewpoint,
262-265
total information and,
262, 263, 264
phase angle, as cyclic visual
attribute, 181-182
phobia desensitization, VR
techniques for,
293
Phong shading, 75-77
point acuity, 49
point of interest navigation,
343
pointing devices
control compatibility,
322-323
hover queries, 320-321,
376
ISO standard for
performance and
comfort, 320
selection time for graphical
interfaces, 319
time for hyperlink jumps,
376
two-handed interaction,
321-322
position. See spatial position
power law
of practice, 208, 322
for sensations, 83-84
preattentive processing
combinations of features
and, 154

conjunction search and,
154-156
defined, 149
illustrated, 152
of lightness, 149, 150
list of features
preattentively
processed, 149-152
neurological evidence for,
159-161
processing rate for, 151
rapid area judgments and,
154
symbol design and, 152,
157-158
typical experiments and
results, 149-151
variety of distractors and,
152-153
preparation stage of creative
problem solving, 384
presence (aesthetic impression
of 3D space),
293-294
primary colors
changing sets, 102-103,
387-388
CIE standards, 103-110
cross-cultural consistency,
112
defined, 99
gamut and, 101
negative light and,
101-102
RGB color space, 101, 102
trichromacy theory,
98-99
tristimulus values (CIE),
103-104
priming
defined, 188, 209, 229
image-based object
recognition and,
229-230

masking technique, 230
object file concept and,
256
in pattern perception, 188,
209
principal components analysis,
400
printers (dots per inch), 63, 65
problem solving with
visualizations
cognitive components of
visual thinking,
370-371
costs of navigation,
376-379
eye movement control
loop, 374
implications for interactive
visualization design,
374-379
intrasaccadic scanning
loop, 374
key features of visual
thinking, 371
pattern-finding loop,
373-374
problem-solving strategy,
372
process overview, 371-372
visual query construction,
372-373
visual query patterns,
375-376
problem-solving loop for
interaction, 317-318
procedural knowledge for
wayfinding, 330, 331
production stage of creative
problem solving, 384
programming languages
animated visual languages,
312-315
Chomsky’s analysis and,
299



easy-to-learn, 316
flowcharts, 302
natural language and, 299,
301-302
protanopia (color blindness),
99-100
proto-object flux, 22, 362-363
proximity (Gestalt law)
connectedness vs., 191,
192
overview, 189
proximity luminance
covariance, 279-280
pseudocoloring
bivariate color sequences,
135-138
for the color blind,
134-135, 136
interval sequences,
132-133
nominal sequences
(labeling regions),
128-129
ordinal sequences,
129-132
overview, 127-128
physical spectrum for, 128,
136
ratio pseudocolors,
133-134
Psychology of Everyday Things,
The (Norman), 20
psychophysics, 394-396
purple boundary, 105
push and pull cues for
attention, 359

rapid area judgments, 154

rapid serial visual presentation
(RSVP), 228, 232

rapid zooming techniques,
342-344

rating scales, 399-400

ratio data
defined, 24
pseudocolor sequences,
133-134
real-number data and, 25
reaction time, choice, 318-319
realistic representation, 8-9
real-number data, 25
receptive fields. See also
Difference of
Gaussians (DOG)
model
in the brain, 159-160
defined, 52-53, 70
Gabor receptive fields,
162, 164, 166
of ganglion cells, 52-53,
70-71, 72
graphemes and, 161
on-center, 70-71, 72
tuned, 159-160
receptors
adaptation mechanism, 85
foveal, 47, 48
luminance information
and, 69
recognition of objects. See
image-based object
recognition;
structure-based object
recognition
recognition vs. recall, 228
red-green channel
color sequence, 136
described, 110
illustrated, 111
properties, 113-116
saturation and, 118
reference white, 87, 89
reflected light. See also
lightness; specular
shading
ambient light, 36
cast shadows, 36
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equation for, 36-37
Lambertian model, 35
specular light, 36, 38
relationships. See entity-
relationship model
relative size (Gestalt law), 196,
197
research methods. See
visualization
techniques and
systems
Resink’s model for attention,
362-363
resolution
for stereoscopic displays,
274-275
of texture, 169-170
visual acuities and, 48
resource cost of knowledge,
351
restricted classification tasks,
glyphs for, 177-178
retina. See also fovea
camera analogy vs. human
perception, 39-40
ganglion cells, 52-53,
70-71
illustrated, 39
Panum’s fusional area,
271-273
photoreceptor cells in,
46-47
RGB color space
overview, 101, 102
transformation to HSV
color space, 119
robustness of linear perspective,
262
rod cells, 46-47, 98
row and column perception
integral and separable
dimensions and, 191
proximity and, 189
similarity and, 190
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RSVP (rapid serial visual
presentation), 228,
232

Rubin’s Vase, 197, 198

saccadic eye movements,
363-364, 376
saccadic suppression, 361, 364
sampling, 366
saturation
color sequence, 136
in HSV color space, 119
overview, 117-118
scaling for gamut mapping,
140
scalar fields or univariate maps
defined, 244
shading models, 245-246
spatial cues for
representing, 244-247
surface texture, 246-247
scalar quantities, 25
scale. See size or scale
scatter plots
3D patterns of points,
288-289
artificial spatial cues for,
279-280
color for extending to
multiple dimensions,
141-143
glyphs in, 145
science, end foreseen for, 1
searching the visual field. See
visual search
searchlight model of attention,
364
segmentation model for texture
figure and ground
perception and, 196
illustrated, 162
overview, 163
texture resolution and,
169

selection in interactive
visualizations. See
data selection and
manipulation loop for
interaction
selection time for graphical
interfaces, 319
selectivity of attention, 359-360
self-movement sensation
(vection), 290-291,
326-327
semantic depth of field,
156-157
Semiology of Graphics (Bertin),
6,297
semiotics
arbitrary conventional
representations,
15-17
cultural relativism and, 6,
8
defined, 6
Gibson’s affordance theory,
18-20
of graphics, 6-8
nominalist critique of, 8-9
origins of, 6
pictures as sensory
languages, 8-10
properties of sensory
representations,
13-15
sensory vs. arbitrary
representations,
10-13
studies contradicting the
nominalist view, 9
studying arbitrary
conventional symbols,
17-20
testing claims about
sensory
representations, 15
semistructured interviews,

399

sensory immediacy, 14, 15
sensory representations
arbitrary representations
vs., 10, 27
brain regions and neural
pathways and, 11-12
defined, 10
hybrids with arbitrary
representations, 13
methodologies for
studying, 15
properties, 13-15
shading
ambient, 36, 245
brain and shading
information, 37
cast shadows, 36, 245
contour interaction,
248-252, 253
DOG model and surface-
shading methods,
74-77
Gouraud, 75-77
guidelines for displaying
surfaces, 252
Lambertian, 35, 36, 245
models for scalar field
representation,
245-246
multivariate surface display
and, 254
paint model of surfaces
and, 35-36
Phong, 75-77
shape-from-shading depth
cues, 260, 268, 269
specular, 36, 245
surface shape perception
and, 247-252
uniform, 75-77
shape
connectedness grouping
principle vs., 191, 192
correspondence problem
and, 219



shape-from-shading depth
cues, 260, 268-269
sharpening, 94
sign language, 299-300
signal detection theory, 396
silhouettes
canonical, 235, 236
contour generator, 235
rules for interpreting,
235-237
simple line drawings and,
233
structure-based object
recognition and, 233,
235-237
similarity
Gestalt law, 190-191
of pictures to objects, 8-9
symmetry and perception
of, 192, 194
simple lens imaging properties,
41
simulator sickness, 291
simultaneous brightness
contrast. See also
Difference of
Gaussians (DOG)
model
Chevreul illusion, 74, 77
Cornsweet effect, 77
edge enhancement, 77-79
Mach band effect, 74, 77,
94
map reading errors and, 75
overview, 72-73
surface-shading methods
and DOG model,
75-77
sine wave grating
for contrast sensitivity
measuring, 59-60
contrast threshold as
function of temporal
and spatial frequency,
61-62

defined, 57

illustrated, 58, 59

luminance, 58-59

variations, 57-58

size or scale. See also spatial

frequency

in Barlow’s second dogma,
163

connectedness grouping
principle vs., 191,
192

cyclopean scale for
stereoscopic displays,
276

figure and ground
perception and, 197

focus-context problem for
changing scales,
338-345

fundamental uncertainty
principle and, 164,
165

gradient as depth cue,
260-262

ground plane and
estimation of, 279

image-based object
recognition and,
228-229

intelligent zooming, 340

as monotonic visual
attribute, 181

multidimensional scaling,
381-382, 400

as primary perceptual
dimension of texture,
164

rapid zooming techniques,
342-344

relative (Gestalt law), 196,
197

resolvable size for Gabor
pattern, 169-170

scaling error in map
reading, 332-333
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size constancy, 269, 290
vection and, 290-291
sketchy diagrams, 384-385
sliver plots, 172-176
smooth-pursuit eye movements,
363
space perception. See also depth
cues; task-based space
perception
3D design and, 259
as advanced pattern
perception, 188
depth cue theory, 259-283
task-based, 283-294
unifying theory lacking for,
281
weighted-average model,
281
spatial concentration principle,
189-190
spatial conjunction, preattentive
processing and,
155-156
spatial contrast sensitivity
function
defined, 59
optimal display and, 62-63
spatial frequency and,
60-61
spatial frequency
Barlow’s second dogma
and, 163
channels, 168
contrast threshold as
function of, 61-62
Nyquist limit, 63-64
optimal display and,
62-66
perceptually independent
textures and, 169
spatial contrast sensitivity
function, 59-61
spatial contrast sensitivity
function and, 60-61
visual stress and, 62, 63
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spatial information in visual
working memory,
357-358
spatial modulation sensitivity
function. See spatial
contrast sensitivity
function
spatial navigation metaphors
cognitive constraints, 327
eyeball-in-hand, 328,
329
flying, 328, 329-330, 377
illustrated, 328
interaction metaphors
defined, 327
physical constraints, 327
spatial navigation
metaphors, 327-330
viewpoint control interface
examples, 327
walking, 328, 329, 330,
377
world-in-hand, 328, 329
spatial position
fundamental uncertainty
principle and, 164,
165
glyph design and, 183
preattentive processing of,
152
spatial sensitivity, color
channels and,
114-115
spatial-scale focus-context
problem, 339
spectrum color sequences, 128,
136
spectrum locus, 105
specular shading
defined, 245
guidelines for displaying
surfaces, 252
lightness constancy and,

88

overview, 36
for scalar field
representation,
245-246
surface shape perception
and, 247-248, 250
speed-accuracy tradeoff,
318-319
speeded classification tasks,
glyphs for, 178-179
S-R (stimulus-response)
compatibility,
322-324
stages of visual processing
Stage 1: extracting low-
level properties,
20-21
Stage 2: pattern
perception, 21-22,
187-188
Stage 3: sequential goal-
directed processing,
22
stages of visualization, 4-5
staircase procedure, 396
standardization, 386
star plots, 184
static images vs. words, 304
static links between images and
words, 307-309
statistical exploration, 400-401
stereo acuity, 47, 49
stereo-blindness, 271
stereopsis superacuity, 273
stereoscopic depth. See also
depth of focus;
stereoscopic displays
“true” 3D and, 271
angular disparity for,
271-272
basis of, 271
color channels and, 115
diplopia, 271, 275
distant objects and, 274

guidelines for displaying
surfaces, 252

for judging relative
positions of objects in
space, 289-290

for multidimensional data
display, 176

other depth cues vs.,
271-274, 276

Panum’s fusional area for,
271-273

perception as superacuity,
273

preattentive processing and
conjunction search,
155

for real-world imagery
enhancement, 288

simple stereo display,
271-272

stereo-blindness, 271

surface shape perception
and, 247, 288

vection and, 290-291

vergence-focus problem,
273-274

stereoscopic displays. See also

task-based space
perception

3D visualization of graphs
and, 286-287

cyclopean scale for,
276

diplopia and, 274-276

distance judgment
problems, 275

distant objects and, 274

enlarging the fusional area,
275

frame cancellation and, 273

making effective displays,
274-279

other depth cues and,
275-276



problems with, 273-274
resolution required for,

274-275
surface shape perception
and, 288
vergence-focus problem,
273-274
viewer-to-screen distance,
275
virtual eye separation for,
276-279
stimulus-response (S-R)
compatibility,
322-324
stress
tunnel vision and, 147
visual, 62

Stroop effect, 257
structural analysis, 398-400
structural-scale focus-context
problem, 339
structure diagrams, 302-303
structure-based object
recognition
defined, 227
effectiveness of simplified
views, 237
geon theory, 233, 234, 235
neural-network model,
233, 234
silhouettes and, 233,
235-237
view direction and, 233
structured interviews, 399
structure-from-motion depth
cues
importance of, 270
kinetic depth effect,
269-270
motion parallax, 269
superacuities
optimal display and,
65-66
overview, 47-48

stereoscopic depth
perception, 271-273
supervisory control systems,
364-366
surface shape perception
bivariate or multivariate
maps, 254-255
continuous surfaces,
243-244
guidelines for displaying
surfaces, 252, 254
integration of cues for,
247-248, 249, 250
shading and contour
interaction, 248-252,
253
spatial cues for scalar
fields, 244-247
surfaces
classical geometry vs.,
30
judging the morphology
of, 287-288
light colors vs. surface
colors, 104
paint model of, 35-38
perceiving surface shapes
of objects, 243-255
as primary human
interface with objects,
30-31
surface target detection,
288
texture as fundamental
property of, 33-34
symbol design
glyph design and
multidimensional
discrete data,
182-183
preattentive processing
and, 152, 157-158
symbolic gestures, 310-311
symmetry (Gestalt law)
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figure and ground
perception and, 196,
198

overview, 192-194

table lens, 340, 342
tabula rasa view of the brain,
10-11
tactical map displays, 1435,
157-158
task identification in user
studies, 404
task-based space perception. See
also depth cues
aesthetic impression of 3D
space (presence),
293-294
identifying tasks, 283-284
judging relative movement
of self in
environment,
290-291
judging relative positions
of objects in space,
289-290
judging the morphology of
surfaces and surface
target detection,
287-288
judging the up direction,
292-293
patterns of points in 3D
space, 288-289
reaching for objects,
291-292
tracing data paths in 3D
graphs, 284-287
TBP (total brain pixels), 54
teleostereoscope, 276-277
temporal aliasing, 67
temporal frequency
contrast threshold as
function of, 61-62
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optimal display and,
66—67
visual stress from, 62
temporal-scale focus-context
problem, 339
tensor quantities, 25
text contrast, 83
text labels for images, 307-309
texture
computerized visualizations
lacking, 33-34
in contour maps, 252
contrast effects, 170, 171
as critical to perception,
33, 34
dimensionality of visual
texture, 170-171
for Euler diagram
enhancement, 196
Exvis data glyphs, 172
field displays, 172-176
as fundamental property of
surfaces, 33
fundamental uncertainty
principle and, 164,
165
generation of distinct
textures, 166-167
glyph design and, 183
glyphs camouflaged by,
176
gradient as depth cue,
260-262, 288
guidelines for displaying
surfaces, 252
multivariate surface display
and, 255
oriented sliver textures,
172-176
perceptually independent
textures, 167-169
primary perceptual
dimensions, 164
resolution of, 169-170
segmentation model, 162,

163, 169, 196
surface shape perception
and, 247-248, 249,
250, 253
surface texture, 33-34,
246-247
three-stage model of
perception and, 21,
187, 188
tradeoffs using, 175-
176
ThemeScape visualization,
382-383
thinking. See cognition
thinking with visualizations. See
also problem solving
with visualizations
cost of knowledge
approach, 351
creative problem solving,
383-385
eye movements, 363-366
long-term memory,
366-370
memory extension and,
352
memory systems, 352—
363
problem solving with
visualizations,
370-383
visual queries and, 352,
356, 372-373
3D displays. See stereoscopic
displays; task-based
space perception;
virtual-reality (VR)
displays
time
for attention to change,
353
choice reaction time,
318-319
Fitts’ law, 319-320, 321
Hick-Hyman law, 318

lag between hand
movement and visual
feedback in VR,
319-320
language as distributed
over, 301
for navigation in
information spaces,
377
saccadic eye movement
dwell period, 363
selection time for graphical
interfaces, 319
for semantic meaning to be
activated, 353
temporal aliasing, 67
temporal frequency, 61-62,
66—67
temporal-scale focus-
context problem, 339
toolglasses, 322
ToonTalk animated visual
language, 312
total brain pixels (TBP), 54
trackball. See pointing devices
track-up maps, 337
training or learning
chunking of subtasks, 322
in interactive visualization,
322
for pattern perception,
188, 206-209
power law of practice,
208, 322
sensory vs. arbitrary
representations and,
13, 15-16
transparency and, 349-350
trajectory mapping, 383
transparency
bistable regions, 205, 207
good continuity and
perception of, 2035,
206
interface design and, 205



laciness effect, 205, 207
overlapping data and,
205-206
toolglasses, 322
transparency principle for
interaction, 345,
349-350
tree structures
3D visualization and,
284-286
cone tree, 284, 286
cushion maps, 255, 256
hyperbolic tree browser,
340, 342
treemaps, 216-217
treemaps
conventional tree views vs.,
216-217
cushion maps, 255, 256
trichromacy theory, 98-99
triggering effect, 222
tristimulus values (CIE)
generating colors on
monitors, 107-108
overview, 103-104,
389-391
transforming chromaticity
coordinates to and
from, 105
trompe l'oeil art, 9
tuned receptive fields, 159-160
tunnel vision, 147
2-1/2D sketch processing, 22
2D flow visualization
techniques, 201,
203-205
2D positioning and selection,
319-320
two-handed interaction,
321-322

UCS (uniform chromaticity
scale) diagram (CIE),
109, 110

UFOV. See useful field of view
(UFOV)
UML (Unified Modeling
Language), 241, 242
uncertainty principle for
perception, 164
uniform chromaticity scale
(UCS) diagram (CIE),
109, 110
uniform color spaces
applications, 108
CIElab uniform color
space, 108, 132
CIEluv uniform color
space, 8§9-90,
108-110, 132
color sequences from,
132
limitations, 109, 111
perceived color differences
and, 123
uniform shading, 75-77
unique hues
labeling and, 124
in opponent process
theory, 112
uniquely stimulated brain pixels
(USBP), 54-55
univariate maps. See scalar
fields or univariate
maps
USBP (uniquely stimulated
brain pixels), 54-55
useful field of view (UFOV)
cognitive load and, 147
motion and, 147
overview, 147
target density and, 147
tunnel vision and, 147
user interfaces. See interface
design
user interrupts, 360-361
user studies
combinatorial explosion,
403-404

Subject Index 415

controls, 404

dependent variables, 403

experimenter bias, 402

getting help, 404

independent variables, 403

number of subjects to use,
403

task identification, 404

value, in HSV color space,
119
VE (visual efficiency) equation,
55
vection (self-motion) effects,
290-291, 326-327
vector fields. See also flow
patterns
advection trajectories,
204
direction perception and,
200-201, 202, 203
flow visualization
techniques (2D), 201,
203-205
good continuation and,
200, 201
tasks for flow
visualization, 204
vector quantities, 25
verbal-propositional memory.
See long-term memory
verbal-propositional processing,
353-354
vergence angle, 270
vergence eye movements, 363
vergence-focus problem,
273-274
vernier acuity
antialiasing and, 65-66
defined, 49
optimal display and,
65-66
as superacuity, 47—-48
useful aliasing and, 65
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view direction

canonical silhouettes, 235,
236

canonical view, 230

depth in pictures seen from
the wrong viewpoint,
262-265

frames of reference,
333-337

image-based object
recognition and, 228

judging the up direction,
292-293

landmark creation and,
331-332

map orientation, 337-338

structure-based object
recognition and, 233

vigilance tasks, 324
virtual eye separation, 276-279
virtual-reality (VR) displays

augmented-reality systems
vs., 45

Go-Go Gadget technique,
323, 324

lag between hand
movement and visual
feedback, 319-320

lightness constancy and,
87

optics in, 45, 46

overview, 68

perspective coupled to
head movement for
HMDs, 265

for phobia desensitization,
293

self-motion perception and
frame rate, 326-327

virtual hand/physical hand
mismatches, 323

visible light spectrum, 30, 31
visual acuities. See also specific

acuities

binocular viewing and, 48

chromatic spatial
sensitivity, 62

defined, 47

distance from fovea and,
51

distribution and the visual
field, 49-53

eye chart demonstrating,
51, 52

structure diagrams,
302-303
visual momentum in
animation, 311-312
visual long-term memory,
369-370
visual momentum, 311-312
visual monitoring strategies,
365-366

visual processing

higher-than-device
resolution and, 48
illustrated, 49
low-frequency contrast
sensitivity, 60-61
optimal display and, 62
simple, 47-49
superacuities, 47-48,
65-66, 273
temporal frequency, 61-62
visual angle, 40
visual buffer. See iconic memory
visual clusters, preattentive
processing and, 155
visual efficiency (VE) equation,
5SS
visual environment
ecological optics, 30-32
figure and ground
perception, 196-198
optical flow, 32-33
paint model of surfaces,
35-38
surrounds of monitors,
90-93, 95
texture, 33-34
visible light, 30
visual field of view, 50-51
visual languages
animated, 312-315
development of, 301
examples of differing
arbitrariness, 6, 7
flowcharts, 302

interfaces with other
cognitive processes,
22

low-level, relative nature
of, 94

model of, 20-22

neural pathways involved
in, 11

of objects, 257

retina image and, 39-40

Stage 1: extracting low-
level properties,
20-21

Stage 2: pattern
perception, 21-22

Stage 3: sequential goal-
directed processing,
22

value of color processing,
116

verbal-propositional
processing vs.,
353-354

visual processing channel,

167-168

visual queries. See also problem

solving with
visualizations
constructing, 372-373
patterns, 375-376
perception as sequence of,
356
visualizations’ support for
thinking and, 352



visual search. See also

interactive
visualization;
preattentive
processing
as benefit of visualization,
145-146
fovea-center attentional
field and, 146
iconic memory and,
148-149
image-based object
recognition and, 232
“mantra” for behavior and
interfaces, 317
parsing rate for, 145
preattentive processing
and, 149-158
of tactical map displays,
145, 157-158
three-stage model of
perception and, 188
tunnel vision and, 147
UFOV for, 147

visual stress, 62, 63
visual thinking. See problem

solving with

visualizations;
thinking with
visualizations

visual working memory

amodal control memory,
353

attention and, 353,
359-363

capacity, 352, 355-356

central executive in, 353

change blindness and, 357

defined, 352

disruption of, 353-354

gist stored in, 356-357

glyph design and, 355-356

long-term memory and,
367-368

nonvisual memory systems
and, 353-354

object file concept,
255-257, 356, 371

overview, 352-354

properties, 352-353

spatial information in,
357-358

as system of components,
353

visualization. See also

interactive
visualization; thinking
with visualizations

advantages of, 2-4

arguments against treating
as science, 5-6

color lessons important to,
143-144

continuous surfaces in,
243-244

culturally embedded
aspects, 16

defined, 2

direct perception and
problems for theory
development, 19-20

goal for science of, 23

linking computer-based
analysis with,
380-383

maps for enhancing,
338

of operations, 26

perceptual evaluation of
techniques and
systems, 393-404

role in cognitive systems, 2

stages of, 4-5

standardization and, 386

tasks for flow
visualization, 204

visual search as benefit of,
145-146
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visualization techniques and
systems
child studies, 401-402
cognitive psychology, 397
cross-cultural studies, 401
practical problems in
conducting user
studies, 402-404
psychophysics, 394-397
research goals, 393-394
statistical exploration,
400-401
structural analysis,
398-400
V(A). See human spectral
sensitivity function
voltage, in gamma function, 84,
92
VR. See virtual-reality (VR)
displays

wagon-wheel effect, 219
walking navigation metaphor,
328, 329, 330, 377
wayfinding
categorical knowledge for,
331
cognitive spatial map for,
330, 331, 332-333
coordinate knowledge for,
331
declarative knowledge for,
330, 331
defined, 330
dual coding theory and,
330
landmarks and, 331-332
procedural knowledge for,
330, 331
stages of, 330
terminology diversity for,
330
Weber’s law, 88-89
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“what” system of pattern
perception, 22
whisker plots, 184
white
chromaticity coordinates of
equal-energy white,
106
CIE standard illuminants,
106
reference white in CIE
standard, 89
reference white used by
brain, 87

specular vs. nonspecular

reflection and, 88,
89

Wingman’s view, 336

words. See images vs. words;
links between images
and words

world-in-hand navigation
metaphor, 328, 329

yellow-blue channel

described, 110

illustrated, 111
properties, 113-116
saturation and, 118

zooming

intelligent, 340

magnifying windows vs.,
377-379

multiple-window technique
for, 344-345

rapid zooming techniques,
342-344
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