MWILEY

Inside Your
Calculator

From Simple Programs
to Significant Insights

Gerald R. Rising

INSIDE YOUR
CALCULATOR

1807
@WILEY
2007

BICENTENNIAL

z
M
-
z

AVINNILINIDIS

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

WiLLIAM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFICER CHAIRMAN OF THE BOARD

INSIDE YOUR
CALCULATOR

From Simple Programs
to Significant Insights

GERALD R. RISING

State University of New York Distinguished Teaching Professor
University at Buffalo
Buffalo, New York

NNNNNNNNNNN

1807
S WILEY[; WILEY-
12°°7 | INTERSCIENCE

NNNNNNNNNNNN

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico
Library of Congress Cataloging-in-Publication Data is available.

Rising, Gerald R.

Inside your calculator : from simple programs to significant insights
Gerald R. Rising.

p. cm.

Includes bibliographical references and index.

ISBN: 978-0-470-11401-8

[1. Calculators. 2. Mathematical instruments. 3. Office equipment and
supplies.] 1. Title

QA75.R57 2007

510.28'4-dc22

2006052567

Printed in the United States of America

10987654321

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To
Don Stover

Teacher, scholar, friend

CONTENTS

Preface xi

PART I THE SETTING

1 Introduction 3

PART II ALGORITHMS AND PROGRAMS

2 Numbers, Algorithms, and Programs 19
3 Integer Powers 40
4 Square Root 51
5 Rational Powers 73
6 Logarithms 84
7 Archimedes’ Calculation of = 106

8 Calculating Trigonometric Functions 117

vii

viii CONTENTS

9 CORDIC Calculation of Cosine 138

PART III DISPLAYING INFORMATION

10 Graphing 163
APPENDIXES 177
A A Primer on Programming 179
B Interpolation 188
C Pre-Electronic Calculation Tools 191
D Fermat’s Last Theorem 204
E An Extension and an Application of Integer Division 206
F Binary Arithmetic 211
G Binary Subtraction 222
H The Rapid Convergence of Newton’s Method 228
I How Newton’s Method Applies to the Square Root

Algorithm and the Rth Root of N 230
J The Ancient Greeks Approximate /2 233
K Continued Fraction Approximations 238
L Multiplying Numbers with Many Digits 243
M Finding Equation Roots by Binary Search 249
N Derivation of the Logarithm Change of Base Formula 256
O The Ratio of Decimal to Binary Digits 257

CONTENTS
P Constructing a Log Table

Q Relations between Sides of Inscribed and Circumscribed
Polygons

R Change in Form of a Polygon Formula

S An Area Approach to Archimedes’ Problem

FURTHER READING: A Personal Selection

INDEX

ix

260

265

273

276

281

285

PREFACE

Computation is all about shortcuts.

Consider, for example, how you would compute 4 5.!

A reasonable response would be “I don’t ‘compute’ anything. I simply
recall a fact I have memorized: 4 x5 = 20.”

Indeed, that is how almost all of us arrive at that answer now, but
consider how we got to this point historically. That 4 x5 is a shortcut
notation for adding four 5Ss, thatis, 4 x5 =5+ 5 + 5 4 5 (or equivalently
five 4s), and multiplication of whole numbers in general is simply shortcut
addition.

Thus we could solve the original exercise 4 %5 by adding four Ss,
again applying memorized “facts”: 545 =10, 10 + 5 = 15, and finally
15+ 5 = 20, to arrive at our final answer.

But addition is also a shortcut, in this case a shortcut for counting.
Adding 5 + 5 is, for remote uncivilized tribes as well as for small children,
a kind of “counting on.” We can calculate it by starting with the first 5
and counting five more places, thus:

5+5
1,2,3,4,5, 6,7,8,9,10

'Throughout this book the now standard computer science symbol # represents multipli-
cation.

xi

xii PREFACE

So our original calculation has been reduced to counting:

4%5

5+54+5+5

first 5 4 second 5 + third 5 + fourth 5

1,2,3,4,5, 6,7,8,9,10, 11,12,13,14,15, 16,17,18,19,20

Thus again: computation is all about shortcuts.

But clearly from these examples, learning math is also about procedures
and memorization. We needed a procedure to change counting to addition
and another to change addition to multiplication, and, of course, we’ll
need many more procedures—to change multiplication to exponentia-
tion and to calculate with fractions, for example—to carry out more and
more sophisticated computations. Along the way we need to memorize
not only those procedures (called algorithms) but also those addition and
multiplication facts, like 5+ 6 = 11 and 4 % 5 = 20, in order to carry out
computations efficiently.

It is these last two components of computation that lead us quite natu-
rally to computing devices. What calculators contribute is a great deal of
memory and a great deal of speed. Even the cheapest handheld calculator
operates so rapidly that it could compute 4 * 5 by counting about as fast
as we could recall the fact that we know is the answer. They don’t have to
do that, however. Engineers have “taught” our calculators just as parents
and teachers have taught our children to take shortcuts in computation.
And it is exactly those kinds of shortcuts that are described in this book.

What is so remarkable about those shortcuts is how elementary they
are. To understand them, all that is required of the reader is a general
knowledge of school arithmetic and algebra, which, for those who have
forgotten some of that, will be reviewed along the way.

You will see in this book how the various calculator keys can be backed
up by procedures—how, that is, your $15 scientific calculator can calculate

(1.05)*° = 299033351.2
V37 = 6.08276253
737 = 2.054406
log 387 = 2.587710965
cos 108° = —0.3090169944
sin~1(.9440057250) = 1.23456789

ON READING THIS BOOK xiii

and does so as rapidly as you can key in the numbers and the operation key.

Two reservations must be recognized. Although the programs intro-
duced in this book will in most cases calculate answers about as rapidly
as will the hardwired procedures in the calculator, they are seldom the
same procedures. In order to gain efficiency, those manufacturers’ algo-
rithms draw upon more complicated techniques. They are also carefully
guarded trade secrets. You will, however, meet a simulation of one of
those techniques in Chapter 9.

I also note that few of the concepts of this text are original with me.
Most are drawn, with permission, from a remarkable book in preparation,
Donald Stover’s PreCalculus Problems and Projects. My role in this book
is still, I suggest, an honorable one: interpreting those important algorithms
and programs for a wider audience. I hope that your reading will prove
me successful in that endeavor.

ON READING THIS BOOK

This book is aimed at a range of audiences. I suggest here how different
readers might approach the contents.

General Readers

Many of you will not have been using mathematics regularly, and your
memory of details may be less than you would like. I urge you to read this
book straight through, because I summarize any necessary mathematics
background with care. I think that you will take from this approach a
better understanding of topics you only thought you mastered as a school
student.

It will not be necessary for you to follow the programs in detail or
to program a calculator yourself in order to see how the problems are
addressed. But don’t simply skip the programs; they convey information
as well.

I also suggest that you read Appendix C between reading Chapters 1
and 2. It will provide further background for contemporary calculation.

Readers Interested in Programming

Whether or not you are an experienced programmer, you should find the
programs of this book instructive. If you have one of the Texas Instruments
TI-84 or TI-83 series calculators, you can key in the programs and see
how they work. I urge you, however, not simply to copy the programs.
Be concerned with their structure to see how they work, for many of the
ideas introduced are also broadly applicable.

xiv PREFACE

Appendix A should answer any questions you have about TI-84 program-
ming details. For users of other calculators, a supplementary Appendix A
appropriate for other Texas Instruments calculators as well as those of the
Casio FX series is available for free download from the website:

www.buffalo.edu/~insrisg/InsideYourCalculator/

Other reference and supplementary materials are also available from this
website.

Again I suggest that you read the book straight through because
Chapter 1 will remind you of some of the benefits of modern calculation,
while Chapter 2 develops some important ideas that support subsequent
programming.

You should also be interested in the special techniques presented in
Appendixes E, I, J, K, L, and M.

Readers Interested in Specific Topics

This book should serve as a useful reference in support of individual
topics. If you are interested in logarithms, for example, turn to that chapter.
There you will find almost all of the presentation related to that topic,
independent of the rest of the book. In particular, if you are a teacher,
you should find ways to extend and enliven your presentation of such
topics by using this approach.

Chapter 9 is special in this regard, for it provides some insight into
the CORDIC program that supports so much of what goes on in calculat-
ing machines, including sophisticated computers as well as the simplest
handheld scientific calculators.

All Readers

As with most authors, I have found the years preparing this book a happy
experience. I hope that I convey my enjoyment working with these ideas
and that you, too, will gain from considering them seriously.

GERALD R. RISING

Buffalo, New York
March 2007

PART I

THE SETTING

1

INTRODUCTION

“Reeling and Writhing, of course, to begin with,” the Mock Turtle replied,
“and the different branches of Arithmetic—
Ambition, Distraction, Uglification and Derision.”

—Lewis Carroll

The word algorithm is central to mathematics and computer science. It
means a step-by-step problem solving procedure. All of us have learned
many algorithms in our schooling. The algorithm for “long division”
is a good example. I still recall the oversimplified version we students
pronounced as a refrain for our fourth-grade teacher: “divide, multiply,
subtract, bring down, repeat.” It never occurred to that teacher—or to
us students, of course—that it might be appropriate for us to understand
what was going on as we carried out what were to us a series of mindless
rote activities.

We should always have been concerned with why algorithms like that
work. Fortunately, the computer revolution has brought that concern to
the forefront.

The seeds of my own investigation of algorithms were planted at
a math meeting in Kansas City in 1972. A Hewlett-Packard Company
representative who had attended a talk I gave on computation caught my
attention and introduced himself. At the time that company was producing
some of the early desktop electronic calculators, so I was pleased to talk
with him.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

4 INTRODUCTION

Figure 1.1 The HP-35 scientific calculator of the 1970s.

“I’ve got something to show you,” he told me slyly, the twinkle in
his eye reminding me of those grifters whose inside pockets are filled
with stolen wristwatches. He did not, however, have contraband for sale.
Instead he took from his jacket pocket a small leather-encased parcel.
He opened it to disclose the first handheld scientific calculator,
an HP-35 (Figure 1.1).

As I write this over 30 years later, I find it difficult to communicate the
astonishment I felt on that morning. Until that time the only electronic
calculators available were “four-bangers”—so called because their pro-
cessing was limited to the four fundamental operations of paper-and-pencil
arithmetic: addition, subtraction, multiplication, and division. Even those
had not been around for long. The first handheld calculators had been
available only since 1970, the first electronic desktop calculators since
1963. Here was a calculator that not only performed those four operations
but also—for the first time—calculated trigonometric and logarithmic
functions, reciprocals, and roots.

Still more impressive to me, when I punched the appropriate keys to enter
2.356>7!, the calculator almost instantaneously displayed 24.03091523.

To gain some sense of both my astonishment and the remarkable power
this tiny instrument provided, consider how I would have had to address
that problem at that time. (Logarithms will be reviewed later, and you

INTRODUCTION 5

do not have to follow the details of this worked example to understand
my point.)

I would have written the exercise as an equation x = 2.356%7! then
taken the logarithm of each side, in the process applying one of the rules
of logs to the right side:' logx = 3.71 * log 2.356.

Next I would have looked up log 2.356 in a (base 10) log table, inter-
polating? to give .3722, annexed the appropriate characteristic, 0, and
substituted it in that equation: logx = 3.71 % 0.3722.

Now I would have multiplied those right-side factors with a simple
calculator® to produce log x = 1.3809.

Finally, I would have returned to log tables to find, by interpolating
again, the antilog of 1.3809 to arrive finally at x = 24.04.

Notice several things about that processing. First, of course, it was
lengthy and time-consuming—and I have not even included the interpo-
lation procedures. Moreover, it gave nowhere near the number of decimal
places of the calculator answer; and finally, the answer it did produce was
not even accurate to that fourth digit.*

Knowing all this, I was stunned. A single exercise that would have
taken me at least 5 minutes was now calculated as fast as I could key in
the numbers and operation. Electronic engineers had been able to pack into
this tiny device tremendous computing power, and I could not imagine
how they performed this feat of calculating wizardry.

It turns out, I now learn, that even the manufacture of this calcu-
lator was a kind of fluke. When one of the early electronic desktop
calculators was developed that would compute with this power, William
Hewlett, the head of Hewlett-Packard Company, was impressed with the
small space taken up inside the case by its electronic components. He
asked his engineers if they could squeeze this power into a shirtpocket-
sized calculator. The engineers responded with the HP-35. At first they
planned to make only a few: for their boss, other company administrators,
their engineering colleagues, and, of course, themselves. Fortunately for

'A reminder: throughout this book, * represents multiplication.

2Sadly, one of the “benefits” for calculators that has attracted some teachers to them is
that their extra digits “eliminate the need for interpolation.” See Appendix B for more on
this important mathematical technique.

3Without an electronic calculator that processed arithmetic, I would have had to choose
between multiplying those numbers by paper and pencil or taking logs again, complicating
the calculation still further.

4Some older readers may recall that a slide rule would have simplified matters for those
who knew how to use one, but even less accuracy would have been possible: to three
digits on all but a few expensive models that provided four.

6 INTRODUCTION

them they changed their minds because, by the time this calculator was
finally outmoded a few years later, tens of thousands had been sold—for
$395 each!

Of course, within a few years Japanese manufacturers would flood the
market with inexpensive four-bangers and scientific calculators. At the
height of those times when—as what was called Japan, Inc.—our defeated
World War II opponent seemed about to reverse the results of that war
economically, calculator prices reached rock bottom. Even programmable
calculators could then be purchased for under $10.

But at that meeting my imagination was captured by that tiny instru-
ment. I wanted to know what was happening inside that calculator. How
did it magically produce those results? How did those engineers accom-
plish this further advance in computation?

I knew that electronic engineers had several things going for them that
their predecessors did not have. Their electronics gave them:

1. Great computational speed
2. Large storage (memory) capacity
3. Programming opportunities

Somehow they had harnessed those electronic gifts to produce what
were to me and others such brilliant results.

THE BLACK BOX

The problem I faced, it seemed to me, was related to a pedagogical device
that is useful for encouraging students at almost any level to think seri-
ously about mathematics. The teaching device is often called a black box
or function machine, and the challenge is What’s My Rule?

The students are presented with an imaginary black box into which you
can feed a number. Each time you enter a number you receive in response
a corresponding answer number. By testing with as many input numbers
as you wish, you are asked to determine what is happening inside the
black box, what mathematical operations are doing to that input number
to manufacture that output number.

The students don’t even have to state the rule in words. By show-
ing their teacher that they can correctly predict what output number
results from the input numbers with which they are challenged, they
demonstrate that they know “what is going on in the box.” (This way
they also don’t disclose the secret to others who can continue to seek
the rule.)

THE BLACK BOX 7

[

33

Figure 1.2 A function “machine.”

Consider a sample black box problem. You are to determine what the
following box does to numbers dropped in the top funnel. Shown in
Figure 1.2 is a 7 entered to produce 33.3

By trying other input values, students would seek to determine the rule
that would produce these results. Mathematicians recognize such boxes
as the equivalent of functions.

I, too, sought to determine what is going on in a black box, except
that my box was equivalent to a scientific calculator key. Also my search
was different from the search in What’s My Rule? 1 know the rule; it is
stamped on or near that key. What I sought and what this book is about is
how that rule might be accomplished—for example, what could be going
on inside that black box labeled (see Figure 1.3).

In this task trial and error will not suffice, however. You can enter
value after value to obtain outcome after outcome without making much
progress in determining what is going on inside the box. So a quite
different approach is required. In order to answer this question you have
to explore the mathematics of the function cosine® as well as the pro-
gramming necessary to support that math. And that is what you will do
in the remainder of this book.

SWithout further information, there is a wide range of possibilities for this box rule. If
we consider the input value as x, the rule could be 5x —2 or x> — 16 or even just 33
for every input x. Mathematicians know that the rule for a finite number of specific input
values need not be unique, but that does not affect the game as it is played with less
sophisticated contestants.

°T have arbitrarily chosen cosine, abbreviated on the calculator, to represent one
of the circular or trigonometric functions. Once we have the means for calculating its
values, the sine, [SIN], and tangent, [TAN], keys are quickly determined by use of trigono-
metric identities.

8 INTRODUCTION

149

Cos

AN
/

—-.85716730074

Figure 1.3 The key as a black box.

SUPERHUMAN ENGINEERS?

I have always held engineers in very high regard. They are the “Can do!”
people of this world. Given a practical problem, they set out to solve it.
Build a dam, erect a skyscraper, construct a road, send a rocket to the
moon: they get at it. I honor them for their creativity and their work ethic.’
But at first the awe I felt for engineers got in the way of my figuring out
how computers calculate. I was certain that they were applying some very
advanced and highly abstruse math in extraordinarily complex programs
to solve these problems.

That it turned out otherwise came as a revelation to me as I hope it
will to you. In the following chapters you will meet simple programs that
carry out the functions of those calculator keys. In the process you should
gain further insights into the mathematical and programming concepts
that support them, insights that should serve you well in other contexts.
And the number of program steps needed to carry out these tasks is
several orders of magnitude fewer than those that support contemporary
computer games.

Here, for example, is a seven-line program that will calculate the cosine
for the input of any number of degrees to nine- or ten-digit accuracy:®

"Basing my judgment on my over 40 years of university lecturing, I prefer teaching classes
of engineers to all other students.

8Those who wish to enter this program should find Appendix A on programming
specifics useful.

SUPERHUMAN ENGINEERS? 9

PROGRAM: COSDEG
: Prompt X
X« /180—X
XxX/4294967296— S
For (I,1,16)
S(4-S)—>S
End (For)
Disp 1-S/2

If you enter those seven program lines in a programmable calculator
and run the program, it will carry out this seemingly formidable task.

Suppose now, for example, that you wish to calculate the cosine of
149°. When you run the program, the calculator will display X=2?, to
which you would respond by keying 149 and pressing [ENTER.” Your
display would then look like this:

X=7149
—.8571673008
Done

You will see how and why that remarkable program works in Chapter 8.
For now I want only to show you the tasks those steps are performing:

Prompt X This is the program line that displays that X? when the
program is run, inviting you to type in a number of degrees.

Xx7 /180—X In this line the number you entered in response to the
prompt in line 1 is multiplied by 7. The value of 7w (3.1415926535898)
is stored!” in calculator memory. The product you attain is then divided
by 180. The arrow tells you to store this result in X, replacing any value
that was there previously.

XxX/4294967296—S More arithmetic. Our new stored X is multi-
plied by itself and then divided by that strange number, which looks

9 Although it is not necessary in order to follow the arguments in this book, I strongly
encourage you to run this and other programs. To run this program it is not necessary to
set your calculator in Degree mode, but to check it you would need to do so.

10Most calculators will show stored values like 7 to the limited number of digits of the
display, but will carry more digits in memory. To check any calculator to determine how
many digits of r are stored, enter 7, subtract 3.1415926, and multiply by 10000000. If your
calculator value for 7w had been the 3.141592654 displayed, the result of this calculation
would have been .54. When you see something different from this, in the case of the TI-84
.535898, those digits replace the 54 to give us 3.1415926535898. Thus this calculator
carries m accurate to 14 digits. Other calculators and computers will differ, and it is an
interesting task to check them out, not just for 7 but for calculated values such as +/2
as well.

10 INTRODUCTION

like the national debt and happens to be 232. The quotient, clearly a
very small number, is stored in S.

For (I,1,16)

S(4-S)—>S

End These three lines form what is called a counting loop. In the
For line an internal counter I runs the lines between it and the End
line 16 times. (It “counts” from the first value, 1, to 16.) Of course,
here there is only one line to be calculated over and over. It takes
the current value of S, multiplies it by 4 minus that same value, and
stores the result back in S. (You can think of the For statement as
“For I taking values from 1 to 16, do the following:.”)

The power of this control stucture is displayed clearly here. These
three lines replace 16 program lines, all alike:

S(4-S)—S
S(4-S)—S

S(4-S)—S

Disp 1-S/2 One last minor bit of arithmetic. The final S result pro-
duced by that For loop is divided by 2 and the result subtracted from
1. The answer is then displayed. It is the cosine of your original input
X, in our example 149°.

To understand what went on in those steps, readers not already familiar
with simple programming will have had to learn from this analysis about
input (Prompt), output (Disp), and calculator storage (—) and how
a particular loop (For) works. Aside from those programming features,
however, all that is involved here is simple arithmetic, in this case sub-
traction, multiplication, and division. Of course, that means simple for the
calculator! None of us would want to divide by 4294967296 or carry out
even one of those 16 multiplications of 10-digit factors without access to
such a device.

Before closing this discussion, I must enter an important reservation.
Some of you will have checked the result of our program calculation of
cosine 149°. Our result, —.8571673008, does not quite agree with the
result you obtain when you simply use the scientific calculator keyboard

to key 149 and press [ENTER|. If you do that, the calculator will
display —.8571673007,'! which differs by one in that tenth place from

UTf you do that and get the wildly different answer, —.2237409501, your calculator is in
Radian mode and you must change it to Degree mode.

JUST HOW POWERFUL IS THAT PROGRAM? 11

our program calculation. An error of that magnitude corresponds to a
measurement that is off by less than an inch in 100,000 miles, but the two
values do differ, suggesting that they are arrived at by different internal
processing avenues.

In fact, cosine is calculated by most computers and calculators by a
quite different (and still faster) program. You will meet a simulation of that
program in Chapter 9—not, however, to make this tiny correction but only
because it involves additional interesting mathematics and programming.

JUST HOW POWERFUL IS THAT PROGRAM?

Iinvite you to examine the power of that seven-line program by comparing
it with what you would have needed to do to accomplish the same result
before the advent of electronic calculation.!?

Consider Table 1.1, which gives only the values for angles in whole-
number degrees. If you wished to give values for tenths of a degree (1.0°,
1.1°, 1.2°, etc.), the table would have to be 10 times as long. Similarly,
for values to hundredths of a degree (1.01°, 1.02°, 1.03°, etc.), it would
have to be 100 times as long.

But our seven-line program provides values for angles measured to
hundred millionths of a degree. For example, our scientific calculator
tells us that cos 45.12345678° = .0705581518. To provide all this infor-
mation (even allowing for linear interpolation), a table 10,000,000 times
as long as Table 1.1 would be necessary. Whereas Table 1.1, in degrees,
takes up one page, a table that would provide all this information would
call for 10 million pages. That is, of course, a great many pages. It
would take twenty thousand 500-page volumes to include all of them,
an entire library devoted to the values corresponding to this one of the
many calculations that our little calculators so simply programmed can
perform.

Two reasonable questions arise at this point. First, angles are rarely
given in decimal values. Instead, like hours, degrees are broken down into
60 minutes and each minute into 60 seconds. For example, you might have
an angle of 27°39'12”, that notation representing 27 degrees, 39 minutes,
and 12 seconds. While some calculators allow input in this form, many
do not. It is reasonably simple to convert from one form to the other,

12This discussion is oversimplified. More information could be included on each page,
and various shortcuts are employed by books of tables to reduce the number of pages.
However, the message remains: a remarkable amount of information may be retrieved
through calculator processing.

INTRODUCTION

TABLE 1.1. Cosine Values from 0° to 90°

Degrees Cosine ‘ Degrees Cosine

0 1.000000000 45 707106781
1 999847695 46 694658370
2 999390827 47 .681998360
3 998629535 48 .669130606
4 997564050 49 .656059029
5 996194698 50 642787610
6 994521895 51 629320391
7 992546152 52 615661475
8 .990268069 53 .601815023
9 987688341 54 587785252
10 984807753 55 573576436
11 981627183 56 .559192903
12 978147601 57 .544639035
13 974370065 58 529919264
14 970295726 59 515038075
15 965925826 60 .500000000
16 961261696 61 484809620
17 956304756 62 469471563
18 951056516 63 453990500
19 945518576 64 438371147
20 939692621 65 422618262
21 933580426 66 406736643
22 927183855 67 390731128
23 920504853 68 .374606593
24 913545458 69 358367950
25 906307787 70 .342020143
26 .898794046 71 325568154
27 .891006524 72 309016994
28 .882947593 73 .292371705
29 .874619707 74 275637356
30 .866025404 75 258819045
31 .857167301 76 .241921896
32 .848048096 77 224951054
33 .838670568 78 207911691
34 .829037573 79 .190808995
35 .819152044 80 173648178
36 .809016994 81 156434465
37 798635510 82 139173101
38 788010754 83 121869343
39 777145961 84 104528463
40 .766044443 85 .087155743
41 754709580 86 069756474
42 743144825 87 .052335956
43 731353702 88 .034899497
44 719339800 89 .017452406
45 707106781 90 .000000000

JUST HOW POWERFUL IS THAT PROGRAM? 13

however. There are 60 minutes in a degree and 60 times 60 seconds (thus
3600 seconds) in a degree, so you calculate

27°39'12" = 27+39 + 12\’ = 27.65333333°
o 60 3600/ T

and find the cosine of this result. This gives cos 27°39'12” = .8857719399.

The second question deserves a serious response. Is all this accuracy
of any real value? Cannot you get along just as well with the four- or
five-digit accuracy of those older days?

Mathematics, science, and engineering teachers at all levels should be
especially sensitive to such questions for they face the obverse of this
problem: their students are quite content with meaningless accuracy. When
asked to find the circumference of a circle with a 12.0 inch diameter,!?
for example, those youngsters who know the formula C = wd will enter
12 into a calculator with 10-digit display and multiply it by the calculator
value of 7 to obtain 37.69911184. They are quite satisfied then to give
37.69911184 inches as their answer when most of those decimal digits
unnecessarily confound the problem. A more appropriate answer would
be 37.7 inches.'*

But we are still faced with this fair inquiry: Is all this extra accuracy
ever of any value?

An example should respond to this question. Global Positioning Sys-
tem satellite (GPS) devices (e.g., see Figure 1.4) are widely used today.
GPS instruments, formerly equipment restricted to the armed forces, have
become widely available. They are used by surveyors; travelers by air-
plane, car, and boat; hunters and explorers; and parcel delivery personnel.
Although these tools, the size of handheld calculators, provide many other
features—most notably maps—their basic function is to determine your
location on the earth; that is, your latitude and longitude. This is accom-
plished by calculating your position in relation to a number of satellites.

When I take my GPS out in my backyard and turn it on, it reports
my latitude as 44°00.179" north, my longitude as 78°44.932" west. It also
reports how accurate these values are, this accuracy depending on the

13The measure 12.0 inches differs from the measure 12 inches. The measure 12.0 inches
indicates that the measure is to the nearest tenth of an inch; the measure 12, to the nearest
inch. In formal terms, if a measurement m is 12.0, then 11.95 < m < 12.05. If, on the
other hand, a measurement »n is 12, then 11.5 <n < 12.5.

4There are rules governing significant digits obtained from calculations with numbers
arrived at through measurement. Note that in this case we have simply retained the same
number of digits—three—as the given diameter 12.0. It should also be noted that there
is an exact, but abstract and not useful for measurement, answer to this question: 127.

14 INTRODUCTION

GARMIN

Figure 1.4 A GPS device.

number of satellites it can “see” from this location."> When I took that
reading, for example, my GPS reported “Accurate to 19 feet.”

Even readers unfamiliar with GPS devices have almost surely seen their
contribution under less happy circumstances. Those laser-guided “smart”
bombs employed by armed forces that miss their targets by at most a few
feet have similar tools built into them. World War II veterans like me
are especially impressed by that accuracy. During that war just 60 years
ago, the proportion of bombs dropped by our B-17 Flying Fortresses over
Europe that fell within 1000 feet of a designated target was only 20%.
Those were daylight raids; the British nighttime bombing was still less
accurate. !

If those examples don’t make the case for that many digits, you need
only extend these kinds of tasks to the accurate location of spacecraft
as they travel through the solar system and beyond. An idea of the kind

5Under a heavy canopy of trees, GPS devices are of little use. Thus open areas and
winter provide better accuracy.

16This information is derived from page 5 of Franklin D’Olier et al., The United
States Strategic Bombing Survey Summary Report (European War), available from
www.anesi.com/ussbs02.htm.

WHAT LIES AHEAD 15

of accuracy called for in astronomical measurements is suggested by the
definition of the meter to be the length of a path traveled by light through
a vacuum in .000000003335640952 second.

Where does the remarkable precision of these contemporary devices
come from? It should be evident that one source of this precision is our
ability to calculate to extreme accuracy.

WHAT LIES AHEAD

In the remainder of this book I will share with you the results of my
exploration of electronic calculation. Included will be the basis for that
cosine program and the other features that make the scientific calculator
so different from the four-bangers that came before them.

But first we must set the stage for modern electronic calculation. In
Chapter 2 you will meet some additional mathematical background to
support this history. Then you will examine some remarkable algorithms
that could be used to back up the calculator keys , , and .
(General readers may wish to review the history preceding electronic
calculation in Appendix C before continuing with Chapter 2.)

PART 11

ALGORITHMS AND PROGRAMS

2

NUMBERS, ALGORITHMS,
AND PROGRAMS

And I never fail to be surprised by the gift of
an odd remainder, footloose at the end.

—Mary Cornish

The giant step in computation that occurred during World War II derived
in large measure from number theory, one of those esoteric areas of math-
ematics that seemed until recent times to be of interest only to ivory
tower university theorists and a few amateur mathematicians. Despite the
contributions of that subject to modern computing, this mathematical sub-
division is still considered by many in the mathematics community to be
out of the mainstream of contemporary research.

Although their activities take them far afield, the basic concerns of
number theorists lie in the properties of the integers; that is, zero and the
positive and negative whole numbers. This set is often displayed as {.. .,
-3, -2,—-1,0, 1, 2, 3, ...}, those terminal dots (ellipses) indicating that
the numbers continue on indefinitely following the pattern of those listed
in both positive and negative directions.

The integers are often displayed in elementary school mathematics
classrooms on what has come to be called a number line (Figure 2.1)

Your first thought may well be: What could be easier than dealing
with the integers? I promise you that almost anything could be. You need
only turn to a number theory textbook to see that matters are not as
simple as they may appear. Beyond the first few pages, the math rapidly
gets out of hand. And some problems have been so difficult that they

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

19

20 NUMBERS, ALGORITHMS, AND PROGRAMS

-5 -4 -3 -2 -1 O 1 2 3 4 5 6

Figure 2.1 A number line.

have baffled mathematicians for centuries. Among them is the famous (or
infamous) Fermat’s last theorem. See Appendix D for more about this
famous conjecture and its recent proof.

One reason why number theory is considered out of the mainstream of
mathematics is that it supposedly provides so few applications to the real
world; yet one of its most elementary topics, binary numeration, has given
us the basis for what many consider a paradigm shift in computation. We
will explore some aspects of that subject shortly.

TWO PROBLEMS

Consider now two problems that few calculator users consider seriously
enough. Their solution will provide you with not just insight into proce-
dures but also concepts that will prove useful later.

The First Problem

The first relates to how we enter numbers in our calculator. While this
seems like a straightforward process, you will see that it has interesting
implications.

Suppose that we wish to enter the number 342 in a calculator or com-
puter. Everyone knows how to do that. You simply punch the keys 3, 4,
and 2 in succession. No problem.

Well, not quite. How does the calculator know that the 3 you first
pressed represents 300 and not just 3 or 30 or even 30007 Although we
all write numbers from left to right, their values are determined from right
to left. For the number 342, for example, we start on the right to assign 2
units, then 4 tens, and finally 3 hundreds. (If you fail to see this point for
such a small number, consider how you would determine the value the 5
contributes to the number 5268433207. If you don’t start counting places
from the right, you have a system of which I am unaware.!

What we need is an algorithm that assigns a value to the number as
we press those keys representing the digits. It turns out that the algorithm
employed to carry this out is, once we think about it, transparently simple.
We need only consider the process step by step in order to develop that
procedure.

IThe answer is, of course, 5 billion; or in Great Britain, 5 thousand million. (In Great
Britain a billion is a million million.)

TWO PROBLEMS 21

Step 1. You press the 3 key. At this point the calculator value is 3 and,
if you next press a + or / or some other operation key, your calculator
will know that 3 was the number you wished represented internally.

Step 2. In this case, however, it is not. The next key you press is 4,
another digit, so the calculator must change its mind. Now the number
it must consider is 34. How did it arrive at that? It shifted the 3 to the
left and appended the 4. Again, if you next pressed an operation key,
the calculator would operate on the resulting number, 34.

Step 3. But again you are not ready to calculate. You press the 2 key.
And now the 34 is shifted to the left to make room for the 2, and we
have 342.

That phrase “shift to the left” is exactly like the shift when we multiply
by a number with more than one digit. (When we multiply by 23, for
example, the partial product is also “shifted to the left” when we multiply
by the 2.) The trick in both cases is the same; it is accomplished by
multiplication by 10. In our input example, it is multiplication by 10 that
changes 3 into 30 in step 2 and 34 into 340 in step 3.

We can generalize how those steps work in order to turn them into an
algorithm:

Step 1. A number key is pressed (in our example the number 3.)

Step 2. If the next key pressed is also a digit, the earlier number is
multiplied by 10 and the new number is added. (Pressing the 4 key
gives us 3 x 104+ 4 = 34))

Step 3. Repeat step 2 until a nondigit key is pressed; then continue with
further calculation.

Another way of considering this is in the form of an algorithm that
the calculator follows. To ensure that you see what is going on here, 1
have numbered the algorithm lines and added following the listing an
explanation of how the algorithm works. One additional point: the —
represents “is assigned to” or on your calculator [STO>|:

Press a digit key

Key pressed — N

Press another key

While the last key pressed is a digit
new key — X
ION+X — N
press another key

U NV, N SN O I O I

22 NUMBERS, ALGORITHMS, AND PROGRAMS

8 End of While loop until nondigit key is pressed
9 Continue calculations with N as defined

To see how this algorithm works, consider again entering our number,
342. Following the instruction in line 1, you press the 3, which is then
assigned in line 2 to N. In line 3 you then press the next key, 4. You enter
a loop consisting of lines 4—8, the End instruction in line 8 sending you
back to line 4 until the condition in line 4 no longer holds. When that
happens, you leave the loop and move to line 9.

Rather than continue this explanation in paragraph form, here in great
detail are all of the steps required to enter 342 in your calculator:

Step Line What Happens

Press the first key, 3

3 is assigned to N

Press the next key, 4

The 4 is a digit, so we enter the loop

4 is assigned to X

Using the current values, N = 3 and X = 4, calculate
10N + X, thus 10 x 3 4+ 4 = 34 is assigned to N,
replacing the former value

AN N RN -
AN N B W=

7 7 Press the next key, 2

8 8 End sends us back to step 4

9 4 The 2 is a digit, so we reenter the loop

10 5 2 is assigned to X

11 6 Using the current values, N = 34 and X = 2, calculate
10N + X, thus 10 % 34 + 2 = 342 is assigned to N,
replacing the former value

12 7 Press the next key (any nondigit)

13 8 End sends us back to step 4

14 4 The new key is not a digit, so we leave the loop and go
to step 9

15 9 Continue calculating with N = 342 (although we have

no other use for it in this example, the calculator
retains X = 2 as well.)

It is important to note that in carrying out this process the only actions
the calculator user takes is pressing in succession the 3, 4, 2, and then
any nondigit key. By following its internal algorithm, the calculator does
the rest.

It is also worth noting here that only two internal storage places are
required for this algorithm: storage for N and X. An alternate way of

TWO PROBLEMS 23

handling this problem would be to store each digit as its key is depressed
and to make up the complete number when a nondigit key is punched.
Clearly that would use more storage, especially with larger numbers. Our
little algorithm will take care of decimal integers up to the usual 8- or
10-digit display capacity of the calculator.?

Here it is useful to compare the two ways of thinking about numbers
algebraically. In standard school terminology we think of 342 as 3 x 100 +
4 % 10 4 2. Following our algorithm, however, this number is represented
differently. It becomes successively

3
3x104+4
Bx10+4)%x104+2

and we have 342 = (3 % 10 4+ 4) % 10 + 2. For larger numbers, this new
processing uses many parentheses. For example

56,832 = ((5%x104+6) « 10+ 8) * 10+ 3) x 10+ 2

This is slightly shortened if we recall the alternate representation, a x b =
(a)b:
56,832 = (((5*%104+6)10+8)10+43)10+ 2

There is an attractive way of carrying out this process called synthetic
substitution. Some readers will have met this procedure in school but may
still not recognize this application. In the case of our last example, 56,832,
the processing would look like the following.

We first write 10 representing the decimal base, and separately the
digits in our number, 56832. Below this we leave space and draw a hori-
zontal line:

10) 5 6 8 3 2

Now we start the process by simply bringing down the first digit, in
this case 5:

10) 5 6 8 3 2

5

This algorithm is designed to handle the input of integers only. It must, of course, be
extended to handle decimals like 35.47.

24 NUMBERS, ALGORITHMS, AND PROGRAMS

Next we multiply the 5 in the lowest row by the 10 base and record
the product (50) under the 6:

10) 5 6 8 3 2
50

5

Add this second column and place the sum (56) below it. Notice that
this multiplication and addition corresponds to our algorithm step of 5 %
10 4 6:

10) 5 6 8 3 2
50
5 56

Now repeat these two steps—multiply by 10 up to the right, then sum
down. If you follow the algorithm with care, your final result should look
like this

10) 5 6 8 3 2
50 560 5680 56830
5 56 568 5683 56832

and the number you seek is at the end of the process. Note that this
procedure avoids writing in all those parentheses.

We have seen that decimal integers can be written in two forms. It is
useful to note that algebraic expressions called polynomials may similarly
be written in these two forms. Thus, for example

Oxt 4243 —8x2 +7x —4 = ((9x +2)x — 8)x + T)x — 4

You can check this by multiplying out those parentheses of the right
side one at a time, of course working from the inside out:
(Ox+2)x =8)x+T)x —4
((9x% +2x — 8)x +7)x — 4
(9x° +2x% —8x +T)x — 4
Ox* 4+ 2x3 —8x2+7x — 4

THE SECOND PROBLEM 25

This, too, may be developed by synthetic substitution, but with x replac-
ing the 10 of our decimal example, we have

x) 9 2 -8 7 —4
Ox 9x2 42 9x3 +2x2 — 8x Ox* +2x3 — 8x2 + 7x

9 9x+2 9xZ4+2x—8 I3 +2x2—8x+7 Ix*+2x3—8xZ4+7x—4

You have seen here how the apparently simple act of entering a number
in your calculator leads to some unexpected mathematical processing. You
will soon see that this number processing will be useful in a different
context.

THE SECOND PROBLEM

This side trip will take you back to elementary school, where you first
took up the topic of division.

If you think back to that time, hopefully you will recall that, after you
studied division exercises that “came out even” like 14/7 and 35/5, you
found that some exercises left remainders (R) as in:

6 R 1 and 7 R 8

2)13 10) 78

or, if written in “long division” form:

6 and 7

2)13 10) 78

12 _70
1R 8 R

The introduction of fractions and, later, decimals soon replaced those
calculations, and I suspect that many readers will have forgotten them.
Asked to calculate 13 divided by 2 or on your calculator 13/2, you would
answer 6% or 6.5, and asked to calculate 78/10, you would answer 7% or
7.8. To answer 6 remainder 1 and 7 remainder 8 to those requests now
seems silly, childish, or even misleading.

For many programming applications, however, those calculations are
far from silly. In fact, as you will see later, they will prove extremely
useful to us in a number of settings.

It turns out that it is a bit complicated to calculate those integer quo-
tients and remainders. If you try, for example, to divide 13 by 2 with the
calculator, you obtain the expected decimal quotient 6.5 and certainly not

26 NUMBERS, ALGORITHMS, AND PROGRAMS

6 remainder 1. You need to do something quite different to obtain that
answer.

There is a mathematical function that helps us with this situation.
Mathematicians call it the greatest integer function (short for the “great-
est integer less than or equal to” function) but computer scientists call
it more simply “floor” and many calculators call it int. In elementary
school terms you can best think of this function as “rounding down.” For
the positive numbers we are dealing with here, it is enough to think
of this as simply dropping the fractional part. For negative numbers,
however, rounding down doesn’t work that way; thus int(w) = 3, but
int(—m) = —4. In what follows, we will use int (short for the integer
part) to represent this function.’?

If you want the whole-number quotient of 13 divided by 2, then, you need
only enter int(13/2). Your calculator should then display 6. For int(78/10)
it should display 7. More generally, if you want the whole-number quotient
of a number N divided by D, you would enter int(N /D).

But now, how do you get that remainder? When dividing by 2, a com-
plicated way would be to check to see if the division “comes out even”
by means of a test like this:

If N/2 = int(N/2)
Then 0—R
Else 1—R

End

If N =12, then N/2 would equal int(N/2) because both would be
6. In this case the remainder R would be set equal to 0 by the Then
instruction. But if N = 13, N/2 would equal 6.5 and int(N/2) would
equal 6. Since 6.5 # 6, you would apply the Else instruction, which
would give you a remainder of 1, as desired.

This approach has several limitations. It requires many instruction lines,
control structures, and some complex processing. Far more important, it
works only for division by 2. For other divisors, additional remainders
are possible. For example, 78/10 produces a remainder of 8.

A better approach is to follow what happens when you actually carry
out that “long division” process:

6 and 7
2)13 10) 78
12 70

1R 8 R

3Beware, however; you may have a calculator on which int simply drops the decimal
part and gives a different answer for negative numbers. You would then need to work
around this problem in your programming.

THE SECOND PROBLEM 27

Consider first, 13/2. Recall that the quotient was obtained as int(13/2).
To obtain the remainder, you multiply that quotient by 2, giving 12, and
subtract that 12 from 13. Restated in terms of the quotient int(13/2) we
calculated, that would be 13 — 2xint(13/2).

The same process applies to 78/10. The quotient is int(78/10), and the
remainder is the dividend minus 10xint(78/10).

This process is perfectly general. For any positive integer N, the remain-
der, R, for N divided by D is R= N — Dxint(N/D). Pictured, the
process looks like this:

int(N/D)
D)N

D % int(N/D)

N — D+ int(N/D)

Now we have the means of finding the quotient and remainder when
dividing by D. Since int(N/D) = Q, we can use the two instructions:

int(N/D)—Q
N-D*Q—R

or, if we are interested in the remainder separately, we can write
N-D*int(N/D)—R

In carrying out serious mathematical programming you will find those
instructions very useful and well worth remembering.* When you need
them in this text, however, I will recall them for you.’

But now, having completed our detour and addressed our two problems,
we will use what we have developed to show how decimal and binary
numbers are related.

While this will provide examples for programs, it must be pointed out
that calculators, unlike computers, do not calculate in binary. Instead they
calculate using binary-coded decimal (BCD) number representation. In
BCD only the digits of decimals are reproduced in binary. It will be
clear in the chapters that follow, however, that these algorithms illustrate
important tasks.

“In many computer languages and on more advanced calculators, you can obtain the
remainder in the division of N/D by use of the modulo or mod function. For example,
depending on your specific programming language, you would enter 78 mod 10 or
mod(78,10) to obtain the remainder 8.

>In Appendix E you will find an application of integer division to long division and
expressing fractions as repeating decimals.

28 NUMBERS, ALGORITHMS, AND PROGRAMS
BINARY NUMERATION

In base ten we have the digits less than ten, that is, 0 through 9. This
Hindu-Arabic numeration format applies to any other numeration base as
well. Base seven would utilize the seven digits less than seven: 0 through
6. Base twelve, the duodecimal system,6 needs the digits less than twelve:
0 through 9 together with two more digits to make twelve. The additional
digits for base twelve are usually written with the letters such as A and B.
Base sixteen, a base used widely in computer science, requires six digits
in addition to our ten to represent numbers. Thus you would count in base
sixteen: 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11, and so on.

It is worth generalizing these ideas to all base systems with base N > 2.
Each system requires N digits, O through N — 1, but there is never any
digit for N, the number base itself. In every one of these systems, the
number N itself is written as 10.

Following this rule, base two (the binary system) utilizes only the two
digits less than two: 0 and 1, and the number two is written 10.

Remarkably, with just this pair of digits we can still represent all the
positive integers and, as we will see, by extension, all rational numbers,
both positive and negative. We concern ourselves here, however, just with
those positive integers and zero.

With virtually everything operating electronically today,” some useful
working mechanisms are being lost to us. I offer one of these here: the
automobile or motorcycle odometer. Until electronics took over, this was
a mechanical device made up of rotating cylinders.

Those old odometers, a breakdown of which is displayed in Figure 2.2
operated on a simple principle. The rightmost dial was driven by a gear
attached to one of the car or bike wheels. It turned as distance was covered.
But this dial was attached to its neighbor to the left in such a way that when
that first dial turned from 9 back to O, it rotated the second dial one digit.

Suppose that you have turned back the dials to zeros so that your
odometer display is 00000002 As the vehicle moves forward, you will
then display 0000001, 0000002, 0000003, up to 0000009, but then the
“carry” will come into play as the rightmost dial turns from 9 to O and

6Base twelve occurs in English measurement—for example, 12 inches in a foot or a dozen
and 12 dozen in a gross. Because the number 12 has {1,2,3,4,6,12} as factors while 10
has only {1,2,5,10} and for other reasons, the Dozenal Society (formerly the Duodecimal
Society) continues to argue for wider use of base twelve. To learn more about the society
and its work, visit its website: www.polar.sunynassau.edu/~dozenal/.

7One of the few devices that will probably not soon be taken over by electronics is the
flush toilet of your home.

8Many odometers display tenths of a mile. We consider only integers here.

BINARY NUMERATION 29

3 2618 59

326 1 859

Figure 2.2 A decimal odometer.

10110 01

10110[0(1

Figure 2.3 A binary odometer.

you next get 0000010. Similarly, after the display reaches 0000019, that
same mechanism will produce 0000020.

Each dial except the one on the far left has this same carrying mech-
anism. When you reach 0000099, for example, carries on both the right-
hand dials come into play and you get 0000100. I recall my brother and
I, as youngsters, being excited whenever a group of 9s appeared and we
could watch the transition to the next number with many of the dials
rotating at the same time.

A binary odometer would work in the same way except that the number
corresponding to the decimal 9 (the largest digit) is, since we have only
0 and 1, simply 1. Each of the odometer cylinders would have just two
digits on them, and the hook to the next cylinder to the left would operate
whenever a dial would change from 1 back to O (see Figure 2.3).

Let’s see how this works. Again we’ll turn our odometer back to zeros
in order to begin with 0000000. As the rightmost dial turns, we’ll first
have 0000001 as before, but here we already need to have that rightmost
cylinder change from 1 to 0. When it does, it pulls the next digit with
it, and we have 0000010. Then 0000011, but this is like the decimal
0000099, and when those right two cylinders change to zeros, the next
digit changes to 1. This produces 0000100.

30 NUMBERS, ALGORITHMS, AND PROGRAMS

Following this rule, here are the successive binary integers. I offer them
with the odometer zeros and then without them, the way we more often
think of numbers:

0000000 0
0000001 1
0000010 10
0000011 11

0000100 100
0000101 101
0000110 110
0000111 111
0001000 1000
0001001 1001 ...

Thus we would count in binary:9 1, 10, 11, 100, 101, ..., and these
binary numbers correspond to our decimal 1, 2, 3, 4, 5, Here, then,
are the decimal numbers from 1 to 20 with their corresponding binary
numbers:

Decimal Binary

1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

°It is not a good idea to assign the usual (decimal) number words, like ten for 10 and
eleven for 11, to these binary numbers. Doing so can lead to confusion with decimal
numeration. It is better to read binary numbers digit by digit; thus, 1101, for example,
would be read “one one zero one” or more commonly “one one oh one.” Thus you would
count: “one, one oh, one one, one oh oh, one oh one,” and so on.

PLACE VALUE AND CONVERSION 31

17 10001
18 10010
19 10011
20 10100

If binary numeration is new to you, those integers probably seem weird.
Even so, as you look at them you should immediately observe some
important regularities. Notice first, for example, that all the binary integers
with a 1 followed by all zeros correspond to the decimal integers 2,
4, 8, and 16, that is, powers of 2. Then notice that the binary integers
represented by all 1s are always one less than powers of 2.!° (Those are
like the nines that change to zeros on the decimal odometer.)

We need to address one more matter before we consider how to change
decimals to binary numbers and binary numbers to decimals. We should
clarify the matter of notation, for it is very easy to confuse decimal and
binary numbers if we are not careful. The binary 10 (“one oh”) whose
decimal value is 2, for example, looks exactly like the decimal 10 (“ten”)
whose value is five times greater. We need to avoid calling that binary 10
“ten.” This problem can be met by adding a subscript after a number to
indicate its base as in the aside above. Thus we could write: 204ecimal =
10100pinary, and you will occasionally see this written as: 2019 = 10100,
or 20, = 10100w0.

There is, of course, a problem with these latter forms because you
must agree beforehand that the subscripts will be decimal numbers. In
what follows I will use the last of these notations only when confusion
between the bases might arise. More often the context will make clear
with what base we are dealing.

PLACE VALUE AND CONVERSION

The great power of the Hindu-Arabic numeration system derives from the
idea of place value. We met this idea earlier when we considered how
numbers are entered into a calculator. It is important to understand that

19Clearly, the number of binary digits necessary to represent a number is larger than the
number of decimal digits. In fact, for 8 and 9, four times as many binary digits are required,
1000 and 1001. Because we have five times as many digits for decimal numeration, you
might think that—as a kind of tradeoff—you would often need five times as many digits
in binary notation. That is not the case. In fact after 9, it is never necessary to use more
than 3.5 times as many binary digits to represent a decimal. For those interested in the
mathematics that supports this, Appendix O shows that this ratio of binary to decimal
digits needed to represent large numbers approaches 1/log2 = 3.3219....

32 NUMBERS, ALGORITHMS, AND PROGRAMS

this same place value system applies to binary numbers. Let’s see how
this works.
We know that when we write 3649, those digits have “place values™:

Thousands Hundreds Tens Units
3 6 4 9

Moving to the left digit by digit, each place carries a value 10 times
the preceding place.

The same thing is true for numbers in binary, except that, as we proceed
to the left the value of each digit is multiplied by 2. Thus, if we write
1101, we have:

Eights Fours Twos Units
1 1 0 1

There is, of course, a problem with what I have written. Once again, |
have used decimal names, this time for those columns. The word “two” is
okay as that serves the same role in the binary system as the word “ten”
does in the decimal system. It is the “four” and ‘“eight” that cause the
problem.

We can get around this in the following way. In decimal, we could
have used exponents and evaluated 3649 as

Ten? Ten? Ten Unit
3 6 4 9

and in binary we could have written

Two® Two? Two Unit
1 1 0 1

The clear similarity between these two expressions of place value sug-
gests that any Hindu-Arabic number may be written in polynomial form. If
t is the base we are using, then the decimal number 3649 may be expanded
as 313 4+ 612 + 4t + 9, with + = 10, and the binary number 1101 may be
expanded as 123+ 1240t + 1, with r = 2.

We have, of course, cheated a bit in these two expressions. We have
again slipped into decimal mode in giving the value of ¢. This slippage,
however, gives us one means of converting binary numbers to decimal.
Simply substituting 2 for ¢ (as in the song) in the polynomial, 1#3 4 172 +

PLACE VALUE AND CONVERSION 33

07 + 1, and calculating in decimal, we obtain successively:
122 + 122 +0%2+1
1«8+ 1%x4+0+1
13

and we have shown what we found in our odometer counting, that
1101¢wo = 13¢en.

For larger numbers this process becomes a bit cumbersome, so we
can instead deal with our polynomial by the left-to-right representation
we introduced earlier in this chapter; thus 1£3 + 1£2 + 0r + 1 becomes
((1t 4+ 1)t 4+ 0)t + 1, which, evaluated with ¢ = 2, gives us

(I*x2+1)x24+02+1
(B*2)x2+1

6241

13

This is more easily accomplished with the synthetic substitution format
we also introduced for the evaluation of polynomials. To change 1101y,
to decimal by this means, we simply write

2) 1 1 0 1

and forge ahead. Our result will look like this:

2) 1 1 0 1
2 6 12

1 3 6 13

For small numbers, either method is easy to use, but for numbers with
many digits, synthetic substitution is far easier. Suppose, for example, that
we have the number 101010101y,, Wwhich we wish to convert to decimal.
The worked-out synthetic substitution would appear like this

2) 101 0 1 O 1 O 1
2 4 10 20 42 84 170 340

1 2 5 10 21 42 85 170 341

and we have established that 101010101wo = 34 1¢en.

34 NUMBERS, ALGORITHMS, AND PROGRAMS

For the calculator to carry out this kind of mechanistic conversion, the
process is straightforward. An algorithm like the one introduced to read
numbers into the calculator may be used:

Leftmost digit — N
While digits remain
next digit - X
2N+ X —- N
End of loop governed by the While test

Here are program steps that will carry out this algorithm:

PROGRAM:BINDEC
0—N
: Prompt B Leftmost binary digit
: While B=0 or B=1
: 2N+B—N
Prompt B Next digit, or enter 2 to end loop'!
End (While)
Disp N

That is a very simple program, but it has one major drawback. To use
it, you have to enter the binary digits one at a time. We would like to
have a program that will allow you to enter at the prompt a binary integer
like 1101 and have the program display 13 in response.

To solve our new problem we will not modify what we have developed,
but will start over with a different approach. We’ll now use the idea of
place value and work out our answer by evaluating the binary digits
beginning on the right.

To change that binary integer 1101 into decimal, we recall how we
assigned place value to that number:

Two? Two? Two Unit
1 1 0 1

We now simply assign the decimal values to the place values:

23 22 2 1
1 1 0 1

"'This program does not follow the algorithm because you have no programming tool
to test whether B is O or 1. The entry of 2 (or any numerical value not one or two)
tricks the program into ending the loop. Although the algorithm’s test is not available
as a programming step, your calculator has it internally. Also the nonprogram com-
ments appear on the right in regular text font to distinguish them from programming
lines.

PLACE VALUE AND CONVERSION 35

Having done that, we can easily add up our decimal values. Working
from the right, we have

%1 = 1
0x2 = 0
1%x22=1%4 = 4
1%22=1%x8 = 8

Sum = 13

To accomplish all that, things get a little tricky. First, we need a way
to pick off the digits one at a time.

To get the units digit, U, from B = 1101, we use the program line
B—10*int(B/10)—U.

By now you should recognize what that instruction is doing. It is finding
the remainder when B is divided by 10, by the process we introduced
earlier in this chapter. And indeed, if you divide 1101 by 10, you get a
remainder of 1.2

Now we want to move on to the next digit. In order to treat it as the
units digit of a number, we need to get rid of that 1 we have already used
and change 1101 to 110. Once again, we apply integer division: 110 is
the integer quotient when you divide 1101 by 10. Thus our new value of
B is obtained by int(B/10)—B.

We also need a mechanism to multiply the digits we obtain from each
place by the appropriate power of 2. To do this, we set a value for the
exponent, E, to 0 at the outset, since the units digit will be multiplied by
20 = 1. Then we will increase this exponent by one as we evaluate each
subsequent digit.

Here, then, is the program to accomplish all this:

PROGRAM: BINDEC2
0—D
0—E
Prompt B
: While B>0
B—10*int(B/10)—U Split off a digit.
U*2"E+D—D Evaluate the digit.
int(B/10)—B “Remove” that digit.
E+1—E Increase the exponent.
End (While)
Disp D

12 Alert readers may be concerned here. We are applying decimal division to a binary
number. Recall that in binary, however, the base two is written 10, just as in decimal
the base ten is written 10. Despite this, you can follow the argument by thinking of the
division as it would be calculated in decimal form.

36 NUMBERS, ALGORITHMS, AND PROGRAMS

We have now solved the first of our two problems. You can convert a
binary number to a decimal number by means of this program. We are
left with the reverse problem, converting a decimal number to binary.
Although the process is not complicated once we justify it, that justifica-
tion will take some effort.

We begin with a familiar example: convert 13, to binary. (You know
the answer, of course, because you just saw how to convert in the other
direction.) We can do this by working backward through the synthetic
division we used to convert from binary to decimal. At first we know
only the following:

2) 1

1 13

But the following facts are available to us:

1. All the digits in the top line will be Os or 1s, because they will be
binary digits.

2. All the numbers in the second line will be even, because they are
obtained by multiplying the previous sum by 2.

The only way we could obtain that 13 then would be to have a 1 in
the top line and 12 below it. That gives us

2) 1 1
12
1 13

Now we ask ourselves how we obtained the 12. It was the product of
2 times the previous value in the bottom line. That entry must then have
been 6.

2) 1 1
12
1 6 13

Now we repeat the process we used with 13. That 6 must be the sum
of an even number plus O or 1. The only possibility for this is 0 4 6, and
we have:

2) 1 0 1
6 12

PLACE VALUE AND CONVERSION 37

Repeat this procedure in the next column, and you arrive at the binary
result, 1101, in the top row.

2y 11 0 1
2 6 12
1 3 6 13

Unfortunately, that is a rather cumbersome process to follow to convert
decimal to binary. But careful examination of the process shows two
important facts:

1. Whenever the number in the lower line was odd, the digit in the
top line was 1; whenever the number in the third line was even, the
digit in the top line was O.

2. As we progress to the left along that bottom line, the values are the
whole-number quotients obtained by dividing the preceding numbers
by 2. (the remainder was already used and is no longer considered.)'?

We can combine these two facts into one process by noticing that fact
1 above is equivalent to

1. The number in the top line is the remainder when the number in
the bottom line is divided by 2.

It appears that our old friend—dividing by 2 to obtain quotient and
remainder—is the key to this conversion, and indeed that is the case. In
our example we divide 13 by 2, placing the quotient, 6, to our left and
the remainder, 1, in our answer. Then we repeat this process with the 6,
and so on.

To change the decimal number 13 to binary, then, we would go through
the following steps

13/2=6R 1
6/2=3R0
3/2=1R 1
1/2=0R 1

13You can check these points out with the previous and longer synthetic substitution
example establishing the equivalence of 101010101y = 341en-

38 NUMBERS, ALGORITHMS, AND PROGRAMS

and we would take those remainders in reverse order to obtain the binary
number 1101.

Happily, we have developed the procedure to obtain the quotient and
remainder when dividing by 2. We can use the following two programming
lines:

int(D/2)—Q
D—20—R

We must now address the second problem. It is one of representation.
Remember that our procedure of successive divisions gave us the digits,
but in reverse order. We certainly don’t want to end up with the binary
number with its digits reversed, so we need take into account this ordering.

We can respond to this problem just as we did in our program changing
binary integers to decimal integers.

We’re now ready for a full program to change a decimal number to
binary:

PROGRAM:DECBIN

: 0B

: 0—E

: Prompt D

: While D>0

: D—2xint(D/2)—U Splitting off a binary digit
U*10"E+B—B Building the binary number
int(D/2)—D Eliminating the decimal digit

: E+1—E Increasing the exponent

: End (While)

: Disp B

Our two programs BINDEC2 and DECBIN allow us to change back and
forth between binary and decimal integers. Although we do not need these
programs for processing large numbers in calculators, we will find that
the ideas that those programs illustrate will occur again and again in the
chapters that follow.

I conclude this chapter with a brief comment about binary-coded dec-
imals (BCDs), for that is the way numbers are entered and processed in
calculators. In this system each decimal digit is individually translated to
binary. Thus 3972015 would be represented as

0011 1001 0111 0010 0000 0001 0101

Notice how four binary digits are used for each decimal digit. Com-
puters do not use this representation because space is saved using full

PLACE VALUE AND CONVERSION 39

binary representation. For example, seven-digit numbers in regular binary
representation would require only 24 digits as opposed to the 28 digits
of BCD.

There is more information about the electronics that support binary pro-
cessing in Appendixes F and G, and some insight into how carries might
be handled for BCD arithmetic may be interpreted from the discussion of
multiplication of large numbers in Appendix L.

INTEGER POWERS

The most powerful force in the universe is compound interest.

—Albert Einstein

Integer powers' are to multiplication as multiplication is to addition. Just

as we have for addition
b+b+b+b+b=>5b
we have for multiplication:
bxbxbxbxb=10b

Thus it is quite reasonable, if we think of multiplication as multiple addi-
tion, to think of powers as a kind of multiple (multiple addition).

There are several ways to define integer powers. The most common
one is the one we all learned in school:

b" =1xbxbx---xb for integer n > 0
\ n factors /
Your definition may not have had that 1 at the beginning, but it allows
us to include n = 0 as well as integers n > 0 in our definition. Now the

definition confirms that > = b x b % b = b = b, but it also resolves the case
where we have no factors, b = 1.

'In common usage, the word power simply means strength. In mathematics power and
exponent have distinct meanings. In the expression b° = p, b is the base, e the exponent
and p the power. Thus, for example, the powers of 5 include 5, 25, 125, 625, and so on.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

40

INTEGER POWERS 41

An alternate definition has two parts:
B’ =1, "' = b" % b, for integer n > 0

This is called a recursive definition because you must build (or recur) the
values to reach the value you wish to determine.

Suppose, for example, that you wish to determine 5 by this definition.
There are two ways to do this. In the first, start with 0 = 1. Now let
n=0to give b' ="' =p%xb=1%b=>b. Next let n =1 to give
b* = b = bl xb! = b« b. Finally let n = 2 to give b° = b*t! = b? «
b' =bxbxb.

Without all that discussion, this method builds in recursive steps:
PO=1,b"'=b,b> =bxb,b>=bxbxbh.

The second way is to work backward. We want b3 = b>*!, so let
n =2 in the definition. The definition tells us that »2T! = b% x b, but
b*> = b'*! = b x b'. Combining these gives us b> = b * b * b'. Finally
bl = b1 = pY % b = 1 % b; this last one is from the first part of the def-
inition. Substituting this in b = b« b« b! givesus b> =bxbxbx 1 or
simply b % b * b.

Again, simplifying this procedure, the power breaks down as b =
b*«b=>b"xbxb=>bxbxb.

This may all seem like a great deal of effort to arrive at something that
we knew to be much easier from our first definition. It turns out to be
useful for us to think of powers in this recursive form to build a simple
program to calculate them.

Here is a program for calculating BY for positive integer E:

PROGRAM: POSIPOW?
: Prompt B,E
1—P
For (I,1,E)
P*B—P
End (For)
Disp P

I consider that program a perfect gem. It is simplicity itself. Once the
values of B and E are entered in the first step, the power P is set equal
to 1 and you enter the For loop. Each time you pass through this For

2Naming programs, especially when the number of symbols allowed is restricted, is not
always easy. Here I have named this program POSIPOW for positive integral powers. A
real problem, however, is remembering what those abbreviations represented when you
originally wrote them.

42 INTEGER POWERS

loop, the current value of P is multiplied by B. You are building the
power step by step as in the recursive definition.
Thus we have

Pass through For loop P
Before 1
1 B
2 B x B
3 BxBxB
4 BxB*BxB

Notice that the program even works for £ = (0. Why? Because, when
E =0, the For loop is not calculated. The value of E is already greater
than the starting value, 1, of the loop. Thus P remains unchanged and we
have BE = 1.

It is worth turning aside for a moment to show that multiplication
can also be defined recursively and calculated by a related program. A
recursive definition of multiplication by a whole number is:

Oxa=0, (n+1)*a =a+n=xa for integer a > 0

With this definition you calculate successively after O«xa =0,1xa =
a,2xa=a+a,3*a=a+a+ a, and so on. The program that would
accomplish this is

PROGRAM INTMULT
: Prompt A,N

. 0P

: For (I,1,N)

: P+A—P
: End

: Disp P

This time, of course, P accumulates the product, not the power.
Returning to our program to calculate powers of BE:

PROGRAM POSIPOW
: Prompt B,E

i 1P

: For (I,1,E)

: P*B—P

: End
: Disp P

INTEGER POWERS 43

Simple though it is, this program raises an important issue, and the best
way to expose that issue is to consider an historical example.

Peter Minuet is credited with purchase in 1626 of Manhattan Island
from local Native Americans for trinkets valued at $24. How historians
arrived at that particular value is beyond me, but we will proceed with
that widely published payment. Many people think of this as a Dutch
ripoff of uninformed aborigines. But suppose that those Indians invested
their $24 (perhaps in real estate; it was too early for a casino) to provide
an annual return of 8%, which they leave invested to be compounded
annually. What would their $24 be worth in, say, 2010?

This is a standard investment problem. The principal, P, is multiplied
by 1.08 each year to give a new P. The formula to carry this out is
A= P+ R)", with R the annual rate of return and N the number of
years. In this case we would have A = 24(1.08)3%4,

We can calculate that 1.08%* with our power program, using B = 1.08
and £ = 384. If you have entered that program, you should try this now,
and once you have a value, compare that value and the time it took to
calculate it with the value and time you get an answer by keying in
1.08 |7 384 [ENTER|.

The mathematical results should be the same: 6.834741711E12 or
6,834,741,711,000.> But while you arrive at the same answer, the time
it takes for your program to run is significantly longer than the time for
the “direct” calculation by using your calculator’s power key. What are
those times? Using a stopwatch, on my calculator the program took 5.8
seconds, while the key gave an answer almost instantaneously.

Clearly our program is slow compared to the calculator’s own process-
ing for large powers, but it is still very fast. In this regard just think of
multiplying 1.08 % 1.08 % 1.08 * - - - with 384 factors even using a calcu-
lator. In the program that For loop is passed through 384 times during
that 5.8 seconds; thus (not counting other steps in the program) it does
so over 65 times per second. That’s faster than your incandescent light

3Scientific notation gives us the means to represent numbers too large or too small for all
of their digits to be included in the calculator display. The E12 at the end of this number
translates into *10'2. Recalling that each multiplication by 10 moves the digit one place
(to the right when positive, to the left when negative), this means that the decimal point
in 6.834741711 must be moved to the right 12 places. Once we get beyond the last digit
displayed, 1 in this case, we affix zeros. The zeros are not meant to be correct (e.g., a
more powerful computer would show that this number would continue 384); rather, they
indicate the magnitude of the number. When the scientific notation exponent is negative
as in 3.75E"4, we have 3.75 % 10~*. This time we move the decimal point to the left
four digits, affixing zeros when necessary to give .000375. Scientific notation also gives
scientists the ability to express how accurate a measurement is.

44 INTEGER POWERS

flashes each second.* Not bad, but even so not as quick as your calculator’s
hardwired program.

We can improve this speed in striking fashion. Here is a somewhat
more complicated program to do this:

PROGRAM: QINTPOW

: Prompt B,E

1P

: While E>0

: E—2*int(E/2)—R

If R=1

P*B—P

: B*B—B

: int(E/2)—E

: End

: Disp P

If you try that program, you will find that it calculates 1.08%%* almost as
fast as the hardwired calculator program.

To show you how that program works, I will take you on still another
diversion—a diversion from a diversion in this case. I promise to return
to tie things up by the end of the chapter.

There is an interesting method of multiplying called duplation and
mediation that was probably used to multiply Roman numerals two mil-
lennia ago. The method requires only the ability to carry out three simple
operations: multiply by 2, divide by 2, and add.

Suppose, for example, that we wish to multiply 23 * 35. We write the
factors at the head of two columns:

23 35

Next we divide the left column by 2, discarding any remainder, and mul-
tiply the right column by 2. We will then have

23 35
11 70
We continue in this way until the left column reaches 1. We will then have
23 35
1170
5 140
2 280
1 560

4Most incandescent lights work at 120 hertz (Hz), which means 120 changes per second
including both on and off; thus the light turns on and then off 60 times per second.

INTEGER POWERS 45

Now we do something strange. We cross out any number in the right
column opposite an even number in the left. In this case we would cross
out the 280:

23 35
11 70
5 140
2 280
1 560

Finally we simply add the numbers remaining in the right column to obtain
our product:

23 35
170
5 140
2 280
1560

805

Notice that, although the numbers are quite different, this method also
works when we interchange the factors:

35 23
17 46
8 92
4 184
2 368
1 736

805

More even number partners crossed out this time, but the same product.

If you are especially alert, you will notice that this process is similar
to the one we used in Chapter 2 to convert a decimal number to binary.
We are, in fact, doing just that: converting the number in the left column
to binary.

To see what is going on here, consider an easy question: Which of the
following numbers would convert to a binary number with a one in its
units column: 3456 or 34577 Of course, the answer to that question is
3457. Because it is odd, it has a binary digit one in its units column. The
rest of the columns represent multiples of 2. Even numbers would have
a zero in that units digit. Now let’s see how that applies to 23 x 35. We
began by writing 23 and 35 in two columns

23 35

46 INTEGER POWERS

and that 23 =2 % 11 + 1. We take care of that remainder of 1 (or binary
units digit) by multiplying it by 35. In effect, we have

23 1 * 35

Now we have 11 twos left after dividing by 2 and “discarding” that
remainder of 1. (You have seen that we weren’t really discarding it. In fact,
we used it as a multiplier.) The number 11 is odd again, so we have a 1 in
the twos column of the binary representation of 23. Thus we have so far

23 1 * 35
11 2 * 35

and once that two is taken care of, we have 5 fours left. Odd again, so
we have a one in the fours column of our binary representation:

23 1 * 35
11 2 * 35
5 4 % 35

But this time when we divide that 5 by 2, we have 2 in the eights binary
column. Dividing 2 by 2 leaves a remainder of 0. This means that there
are no 8s, so we do not count 8 * 35. We then have:

23 1 * 35
11 2 * 35
5 4 * 35
2 &—*3§

Our last division gives us 1 in the 16 binary column, so we have

23 1 35
11 2 * 35
5 4 * 35
2 8&—*=-35
1 16 * 35

Adding up those values in the right column, we have (1 * 35) + (2 % 35) +
(4 % 35) 4+ (16 * 35). Factoring out the 35 (or applying the distributive
law) we have, as expected, (1 +2 + 4 + 16) * 35 = 23 % 35.

Now, how does this apply to our Peter Minuet problem? (Notice that
we are finally working our way back to our powers program.)

INTEGER POWERS 47

Consider what we seek in that problem: 1.08°%4. With our first program
we calculated that as

1.08 % 1.08 % 1.08 % 1.08 - - - (384 factors)

but we have rules for powers that allow us to bunch the factors. Specifi-
cally, we know that b* x b¥ = b**7,

What we can do is break the 384 down into a sum of binary powers, just
as we did in duplation and mediation by peeling off those odd remainders.
Here we go:

Number R Power of 2

384 0*1
192 0*2
96 0*4
48 0*8
24 0* 16
12 0*32
6 0 * 64
3 1 * 128
1 1 * 256

You can then write 384 as 128 + 256 or 27 + 28. You can also, of course,
read the binary representation for 384 by taking the 1s and Os from the
bottom of the column upward: 384, = 110000000.

For our purposes, using our rule for powers, we have 1.08%%* =
1.08'28 % 1.082%.

In this case, even though you have so few factors in the final product,
you might think that you still have to calculate 1.08% as 1.08 % 1.08 and
1.08* as 1.08 % 1.08 x 1.08 % 1.08, and so on.

Ah, but notice something else about those powers. Once we have calcu-
lated 1.082, we can simply multiply it by itself—1.08% % 1.082 = 1.08*.
We can similarly multiply 1.08% % 1.08* = 1.088, in the process cutting
down still more on the number of multiplications.

Our digressions reaching an end, it is finally time to return to the pro-
gram designed to calculate powers faster to see how it carries out this
process. I have numbered the program lines to help refer to them:

PROGRAM: QINTPOW

: Prompt B,E

: 1P

: While E>O0
E—2*int(E/2)—R
If R=1

AWM=

48 INTEGER POWERS

P*B—P
B*B—B
: int(E/2)—E
: End
0O : Disp P

- ©Ooo~N®

If you run this program entering 1.08 for B and 384 for E, you can follow
what happens though a few of the While loops.

But first you need two reminders from Chapter 2—another digression
but at least a brief one. You may have forgotten, but the fourth program
line calculates the remainder when E is divided by 2. Also the eighth line
calculates the quotient when E is divided by 2. Once you recognize those
two calculations, the rest is reasonably straightforward.

In the program P accumulates the power that will be reported at the
end of the program. It is set equal to 1 in line 2. Now we will explore
what happens in each pass through the While loop.

In line 4 we divide the exponent E by 2 to obtain the remainder. That
tells us if we have a 1 in its units digit. In this case the remainder of
384/2 is 0, so the answer to the If test is false and we skip line 6. We
do, however, square the base B in line 7 and divide our exponent E by
2 in line 8, before we go back to take our second pass through the loop.
We leave the loop with B = 1.08? and E = 192.

The next time through the loop, the remainder for 192/2 is again 0,
so again we skip the If instruction. This time we end the loop with
B = 1.08* and E = 96.

It turns out in this processing that the If test will not come out to be
“true” until the eighth pass through the loop when B = 1.08'?% and E = 3.
Then finally the If test is passed and P becomes 1 s 1.08'?8, It is true on
the last loop pass as well to make P = 1% 1.08'28 % 1.08%¢ = 1.083%4,
which in this case is our final answer.

You should see in that series of values how the values of (1.08)" are
multiplied by the current value of the power, P, whenever the Nth binary
digit of 384 (from the right) is one. That’s the number in the Rth column
from the right, the remainder when the current exponent E is divided by
2. The number 384 has lots of Os in its binary representation, so only a
few of those powers are included in forming the product—specifically
1.08'%% and 1.08%3.

Now let us estimate how much the new program has saved in pro-
cessing. We know that the original calculation of 1.083%* required 384
multiplications, the first 1% 1.08. How many does the new program
require?

INTEGER POWERS 49

There are two kinds of products calculated in the new program. First
there are the products for B. Beginning with 1.08, the program had to
calculate 1.08%, 1.08%,1.08%, 1.08', 1.08%, 1.08%, 1.08!2%, and 1.08%%.
But each of those products required only multiplying the previous value
by itself. Thus, for example, 1.08%2 = 1.08'¢ * 1.081°, Therefore, we
need carry out only eight of those multiplications.

We also have to multiply to obtain the successive values of P. Those
multiplications occurred when the value of R was 1. Recall that R was the
remainder when the remaining exponent was divided by 2 or equivalently
the current binary digit. For numbers of this size, having a 1 each time
through would have meant nine such multiplications.

Each time through the loop we also had to do two divisions (in lines 4
and 8) and one more multiplication (in line 4) and we made nine passes
through the loop. Counting division as multiplication (by an inverse) we
have 27 more multiplications to count.

Combining these, we have 8 + 9 + 27 = 44 multiplications instead of
384, a considerable savings. We can return to those 5.8 seconds it took
for the simple program. Roughly translated into time, the new program
should take about 44/384*%5.8 seconds or about a two-thirds of a sec-
ond, fast enough to compare with the speed of the calculator’s power
" key.

This is only an example of the kind of efficiency that can be hardwired
into a calculator or computer.

One final extension for integer powers remains. We have considered
powers B, for E > 0. What about negative powers?

This is an easy problem to resolve. We need only recall that B~V =
1/B". Thus, if the exponent is negative, we need only calculate the corre-
sponding positive power and take the reciprocal at the end of the program.
For example, to calculate 773, we calculate 7° and then divide one by that
value to arrive at 1/7°.

Here is how our simple power program could be modified to accomplish
this:

PROGRAM: INTPOW
: Prompt B,E

: abs(E)—F

: 1—>P

: For (I,1,F)

: P*B—P
: End

: If E<O

: 1/P—P
: Disp P

50 INTEGER POWERS

The changes in this program are straightforward. In the second step F is
the positive value of the exponent E (whether E was positive or negative).
Then the For loop operates with this value producing, when it has com-
pleted its job, the value BF. Now the If instruction kicks in. If the value
of E is negative, we need 1/P = B~ = BE. If E>0, BE=Bf =P
and we leave the value of P unchanged.

Similar additional steps would modify the shortcut program QINTPOW,
and we now are able to calculate integer powers. In the next two chapters
we will consider rational powers: in Chapter 5 square root (results of the
1/2 or .5 exponent) and in Chapter 6, powers like 237,

Only when we have completed those chapters will we finally have
accomplished as much as that remarkable single |7 key on your calculator.

We should not leave this chapter without completing the exercise
posed by Peter Minuit’s dealings with the Manhattan Indians. We cal-
culated 1.083%4, but we still had to multiply that value by the $24 orig-
inally invested. By 2010 the Native Americans would have accumulated
$164,033,801,100,000, an amount that would give every American Indian
over $35 million. Perhaps their original bargain wasn’t so bad after all.

A

SQUARE ROOT

Root, hog, or die.

—Denis William Brogan

Before we explore algorithms for extracting square roots, I remind readers
of some notation. We have a general sense that finding a square root
“undoes” squaring: 4> = 16 and so /16 = 4. While both of those equations
are correct, a problem arises. What if we square a negative number? For
instance, (—4)2 = 16 also, but we still have V16 = 4. We don’t get back
that —4 that we started with.

It turns out that several things are involved here, including some history.

First, that radix symbol, the ~/ , was employed before negative roots
were considered and it continues to represent the positive square root.!

Mathematicians are happy with that usage, since that makes »/ a func-
tion. Why? Because functions must produce single values. If we allowed
V16 to represent +4 (as too many students believe), then v/ would not
be a function.

Thus we have two quite different situations:

1. There are two square roots of all positive real numbers. Thus a
square root of 16 may be either 4 or —4.

Incidentally, the bar across the top of the number plays the role of parentheses. Thus
you will find in many older books the notation V' (a + b) where most of us would write
~/a + b. Notice that your calculator adopts the older notation.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

51

52 SQUARE ROOT

2. There is only one +/ of a positive real number. ~/16 = 4. A number
like +/16 is often read “radical 16” or “root 16” to make this
difference clear. It is also, less clearly, referred to as “the square
root of 16.”

But the problem goes a bit further. When we write n%, we don’t know
whether that n is positive or negative or even zero, and unless we are very
careful, this, too, raises an unexpected difficulty. Suppose, for example,
that we have n = —4 and we consider v/n2. Carry out the steps: (—4)% =
16 and /16 = 4. Once again we don’t get back what we started with.
For this reason we cannot write v/n2 = n unless we specify that n > 0.
In fact, if n<O, VnZ=—n.In summary, we have

\/ﬁ:{n ifn>0 I

-n ifn<O

A new symbol proves useful here. It is the symbol |n| for what is called
the absolute value of n. When we know the number that n represents, the
idea is a simple one. Students often refer to it as “the number without
the sign.” Thus we have both |5| =5 and |-5] =5 as well as |0] = 0.
The absolute value of a number is always non-negative, but we must not
say that [n?| = n, unless we know that n is positive.

In fact, the formal definition of absolute value is

n ifn>0
lnl:{ —-n ifn<0 (D)

and it should be immediately apparent (by comparing I with II) that the
definitions of v/n2 and |n| are exactly the same. This gives us an easier
way to represent v/n2:

Vn? = [n|

and this clears up the problem of V/n? when we don’t know whether n is
positive or negative.?

Absolute value has an important role to play in mathematics. In partic-
ular, when we talk about the distance between two numbers, we want that
distance to be nonnegative. For that reason, we let |a — b| represent the

>That equation ~/n2 = |n| works both ways, of course. You can, for example, determine
the absolute value of n, when you have access to the key, by entering v/n2. In similar
fashion, you could calculate v/n2 by entering abs(n).

SQUARE ROOT 53

distance between a and b. It makes no difference whether a > b ora < b
or even a = b, that distance |a — b| will never turn out to be negative.

With that behind us, we can turn to the way positive square roots are
calculated.

Until at least the 1980s, one of the algorithms regularly taught in junior
high school was for square root calculation. It was a procedure learned
by reluctant students for hundreds of years® and, of course, promptly
forgotten by most. It seemed a strange procedure and, like so many of the
others students and teachers had to master, few knew of any justification
for it whatsoever.

To demonstrate how arbitrary the algorithm is, I’ll take you through
the steps, applying them to an example. We will follow this algorithm to

calculate +/5715.36.

1. Separate the given number (formally the /57 15.36
radicand) into pairs of digits working left
and right from the decimal point. Place a
decimal point where your answer will
appear above the original decimal point.

2. Find the nearest square less than or equal to 49 < 57
the leftmost pair.

3. Write this number beneath the pair and its 7.
square root above it as the first digit in your v 57 15.36
answer. 49

4. Subtract your square from the pair as in the 7.
long-division algorithm. Vv 57 15.36

49
8
5. Bring down the next pair of digits. 7 .
~ 57 15.36
49
815

6. Multiply your partial answer by 20 and R
write the product to the left of the result ~ 57 15.36
you obtained in step 4. 49

140 | 815
815

— &5 s0
140

3Historians tell us that both square root calculation methods described in this chapter were
used by Babylonians over 2000 years ago.

54 SQUARE ROOT

7. Divide your result in step 5 by your answer 7 5.
in step 6 and write the quotient as the next v 57 15.36
digit in your answer. 49

140 | 815

8. Add this digit to your answer in step 6 and 7 5.
then multiply the result by it, placing the Vv 57 15.36
product under your answer from step 5. 49

140 | 815
+5 |
145%5] 725
9. Subtract and continue from step 5. 7 5.
v 57 15.36
49
140 | 815
+5 |
145 %5 725
90
10. The completed algorithm would look like 7 5.6
this in slightly abbreviated form: ~ 57 15.36
49
140 | 815
145 | 725
1500 | 90 36
1500 | 90 36

And indeed +/5715.36 = 75.6, as you can check using the |¥_| key on your
calculator or by squaring 75.6.*

Like other teachers at that time, I taught that algorithm as a memorized
and essentially mindless process, and it wasn’t until years later that I
discovered why it works. Like the early Greek mathematicians, I will
consider it first as a problem in geometry. You should agree that finding
the square root of 5715.36 is equivalent to finding the side of a square
with area 5715.36.

In other words, we are faced with the square of Figure 4.1.

We begin by finding a square that will fit inside this one as in Figure 4.2.

“Doubting that any student I taught would recall that square root algorithm, a few years
ago at a school reunion I asked a few of them about it. Only one had any recollection.
His response: “It had something to do with multiplying by 20, didn’t it?” As, in fact, it
did.

SQUARE ROOT 55

s

A = 5715.36

Figure 4.1

70 X

70 A = 4900

A = 5715.36

Figure 4.2

This corresponds to the first three steps in our algorithm, and we have

7 0.0
~ 57 15.36
49 00.00

or more simply
7

v/ 571536
49

Clearly, if we subtract 4900 from 5715.36, we will have the area of that
backward L-shaped blank part of the diagram.’> Thus that remaining area
is 815.36.

SL-shaped figures like that turned up so often in Greek mathematics that they were given
a name, gnomon.

56 SQUARE ROOT

70 X

70 A = 4900

A = 5715.36

70 70 X
A = 815.36

Figure 4.3

At this point the algorithm would show only

7.
Vv 57 15.36
49
8 15

with that. 36 retained in the radicand until later.

If we let x be the rest of that side of the original square, that backward
L-shaped area may be considered as two 70 by x rectangles and one x
by x square. I have realigned those three quadrilaterals in Figure 4.3.

The resulting figure has dimensions 2 * 70 4+ x by x. Equivalently, we
can think of that length as 20 x 7 + x, and that 20 % 7 is how we calculated

the 140 in our algorithm:
7

Vv 571536
49
140 | 8 15

The 140 is, of course, playing the role of first estimate of the length of
that long narrow rectangle, and the x (which, you should recall, represents
the rest of the side of the original square and thus the rest of our square
root) is its width. We seek the value of x by dividing that 140 into the
area 815.36; but clearly the quotient must be used in two ways, first to
complete the length and then to serve as the width. When we decide to

SQUARE ROOT 57

: []

140 5
A = 815.36

Figure 4.4

choose x = 5, we have the following situation shown in Figure 4.4, which
corresponds to that odd “add then multiply” step 8 of the algorithm:

7 5.
Vv 57715.36
49
140 | 815
145 | 725

Of course, even this does not take up the full area. We still have 90.36
left over:

7 5.
+ 57715.36
49
140 | 8 15
145 | 725
90 36

We return to the original diagram to see how to proceed. We now have
Figure 4.5.

75.0 v

75.0

75.0 75.0 0%

A = 90.36

Figure 4.5

58 SQUARE ROOT

75.0 .6

75.0

.6 [I]
150.0 .6

A = 90.36

Figure 4.6

Here our trial divisor is 1500 (corresponding to 150.0 because we’re
working now with tenths), which is again 75 times our old friend 20. And
y turns out to be 6, completing the procedure to give us the value of the
square’s side to be 75.6, as shown in Figure 4.6.

This corresponds to the completed algorithm:

7 5.6
V57 15.36
49
140 | 815
145 | 725
1500 | 90 36
1506 | 90 36
0

We can also approach this square root algorithm algebraically. To do
so, I offer a simpler example: finding +/676.
Let +/676 = 10t + u, with ¢ the tens digit and u the units digit of the

square root. Then, squaring each side and applying simple algebra, we
have

676 = (107 + u)> = 100¢* + 20ru + u”> = 100> + (20t + u)u
or, skipping those intermediate steps:

676 = 1007 + (20t + u)u

SQUARE ROOT 59

Notice in this representation how our friend 20 again plays a role. Clearly
the largest value for the digit + we can use is 2, so we have

676 = 400 + (20 % 2 + u)u

which may also be written
676 — 400 = (20 % 2 + u)u.

This corresponds to
2

J6 76.
4
40|12 76

Now all we need to do is choose a suitable u that satisfies 276 = (40 +
u)u, and that turns out to be 6. Adding that 6, multiplying by it, and
placing it in our answer finally completes our algorithm since 276 =
(40 + 6)6:
2 6
6 76.
4
4012 76
46|12 76

Needless to say, that algorithm—even when justified—was not a
favorite of students.® Given that attitude, you can just imagine still earlier
students who had to memorize an even more complicated algorithm for
calculating cube root. That algorithm is based on the following relation-
ship:

(10t + u)® = 100073 + 300¢%u + 307u® + u*
= 1000> + u(300¢% + u (30t + u))

Never exposed to the geometric or algebraic justifications for that
square root algorithm, it was popular with neither students nor teach-
ers. That it was a rote and unjustified procedure was the reason often
given for the introduction in schools of a replacement: an algorithm much
simpler to state. It is often called the “divide and average” square root

There is another aspect of it that caused student problems. In estimating the divisor after
multiplying by 20, there is a tendency to overestimate, failing to account for the fact that
you have to add before multiplying.

60 SQUARE ROOT

procedure. I know of no school text or classroom teacher who ever named
the mathematician, Isaac Newton, whom historians credit for the method.’
I will name it for him here.

NEWTON’S METHOD FOR SQUARE ROOT EXTRACTION

Here is the way Newton’s method applies to the calculation of +/N:

Line 1. Guess an answer. Call it G.

Line 2. Calculate N/G = H.

Line 3. If G = H, report G as JN.

Line 4. If not, average G and H to give a new G
and go back to step 2.

Clearly, this is a much more straightforward procedure than the earlier
algorithm. Let’s see how it applies to our original example, v/5715.36.
(In doing so I will restrict computations to three decimal digits.)

Step 1, line 1. We could guess any positive number we wish, but let’s
start as we did before with G = 70.

Step 2, line 2. Calculate H:

5715.36
70

= 81.648

Step 3, line 3. G =70 and H = 81.648 are not equal, so we continue.
Step 4, line 4. Average G and H:

81.648 + 70
2

=75.824

and 75.824 becomes a new G to return to line 2 of the algorithm.
Step 5, line 2. Calculate a new H:
5715.36
75.824

Step 6, line 3. G =75.824 and H = 75.377 are not equal, so we
continue.

=75.377

7 Although this method was used much earlier by the Babylonians, their use appears to be
similar to that of twentieth-century school students, as a rote procedure. Newton provided
the basis for the method as shown in Appendix I.

NEWTON’S METHOD FOR SQUARE ROOT EXTRACTION 61

Step 7, line 4. For our next G, we average G and H:

75.824 +75.377

= 75.601
2
Step 8, line 2. Calculate a new H:
5715.36
= 75.599
75.601

Step 9, line 3. G =75.601 and H = 75.599 are close but still not equal,
SO we continue.

Step 10, line 4. Average G and H:

75.601 4 75.599
; =75.6

Step 11, line 2. Calculate a new H:
5715.36
75.6

Step 12, line 3. Since G = 75.6 and H = 75.6 are equal, we report 75.6
as +/5715.36.

=75.6

In summary, here are our successive values of G and H as we pass though
the algorithm steps:

G H

70 81.648
75.824 75.377
75.601 75.599
75.6 75.6

Newton’s method has several positive features. It is easy to recall: “guess
then (divide, average, repeat).” It also converges on the answer rapidly.
And, remarkably, it is even error correcting; that is, if you make a compu-
tational error along the way, the procedure will right itself in subsequent
steps.

At the same time this algorithm has features that make it a less than
perfect procedure for paper—and—pencil computation. To get a sense of
the first problem, you need only perform those steps, doing the long
division by hand. Unless you are different from the rest of us who are
unenthusiastic about carrying out long division, you will not be happy
with this task.

62 SQUARE ROOT

There is another aspect of this problem that I have largely hidden in
my recordkeeping. In the algorithm steps I rounded the numbers to three
decimal places. Here is that list of successive Gs and Hs to 10-digit
accuracy:

G H

70 81.648
75.824 75.37666174
75.60033087 75.59966913
75.6 75.6

Our calculation did not need those extra digits, but for more accuracy they
would be required, making the long-division process without a calculator
even worse.

Before calculators became available, students hated that method even
more than they disliked the earlier algorithm. I know: I had to teach it
through the 1950s and 1960s. But then the early calculators appeared, and
you would think that they would make this method more acceptable. Even
with a calculator, however, recopying those values in order to carry out
the calculations is both time-consuming and an invitation to recordkeeping
errors.

With the earliest calculators (without any |V_| key, of course), there was
a still easier approach. Seeking x = +/N is equivalent to seeking x with
x? = N. Simply guess successive values of x and adjust them depending
on whether their squares are larger or smaller than N. (Note that students
didn’t need a special key to square a number; they could merely multiply
the number by itself.)

Here, for example, is how you might find +/5715.36 by this means. We
seek an x such that x2 = 5715.36. As we did before, we’ll start with a
guess of 70.

Guess Square

70 4900 Too small; thus the answer is between 70 and 80

75 5625 Too small; thus the answer is between 75 and 80
78 6084 Too large; thus the answer is between 75 and 78
77 5929 Still too large; thus the answer is between 75 and 77
76 5776 Still too large; thus the answer is between 75 and 76

75.5 5700.25 Too small; thus the answer is between 75.5 and 76
75.7 5730.49 Too large; thus the answer is between 75.5 and 75.7
75.6 5715.36 Bingo!

NEWTON’S METHOD FOR SQUARE ROOT EXTRACTION 63

Since 75.6% = 5715.36, +/5715.36 = 75.6. If you try that method to cal-
culate any other square root, you’ll find it very straightforward and reason-
ably fast. And you can, of course, calculate by this means to any number
of digits.?

There is a second problem with Newton’s method that is still more
important and must be addressed. When it was introduced in schools, and
despite its sponsors’ criticism of the earlier method for failing to justify
their procedure, none of those sponsors justified this procedure any more
than they did that first algorithm. We will address that justification after
we have considered the calculator program.

It turns out that both of these last two procedures—Newton’s method
or guess and check by squaring—may be programmed, but we will choose
Newton’s method.’

Here is a simple program that will calculate /N for any nonnegative
number, N.10

PROGRAM: SQRT

Prompt N

Prompt G Initial estimate G

0—H

While G#H
N/G—H Divide N by your estimate, G, to obtain H
(G+H) /2—G Average G and H to provide a new estimate, G

End Go through the loop again until G = H.

Disp G

If you run that program with a reasonable first estimate, G, you will find
that it carries out its calculation in less than a second and about as fast as
the programmed key on your calculator.'!

To see what is going on, I will add two additional instructions and,
since it is then superfluous, remove the final instruction:

8In 1969 my doctoral student, Paul Pang, now a college president, tested these three
methods with middle school students. The clear winner in terms of both preference and
understanding was this third method.

9 An adaptation of the guess and check by squaring method turns out to be one of those
used to solve complicated equations. It appears in Appendix M. As it happens, it, too, is
a process credited to Isaac Newton.

101 the program the instruction While Gs£H could be replaced with Repeat until G=H.
With this instruction the check whether G = H is at the end of the loop. Thus the loop
is processed at least once. For this reason the step 0 — H may be omitted.

1L /N may also be calculated by N [5. As we will see in the next chapter, however, the
programs may be very different.

64 SQUARE ROOT

PROGRAM: SQRTCK
: Prompt N
: Prompt G
: 0—H
: While G#H
N/G—H
Disp G,H Show the current value of G and H.
Pause
(G+H) /2—G
: End (While)

If you run that program with N = 5715.36 and G = 70, you will alternate
the following values of G and H:

G H

70 81.648
75.824 75.37666174
75.60033087 75.59966913
75.6 75.6

You should recognize those values as exactly the same ones we obtained
by carrying out the algorithm earlier. That should certainly be the case
because the algorithm simply replicates the steps for hand calculation.

TWO ASIDES ABOUT CALCULATOR CALCULATION

There is a problem with the While loop in the program we have used. That
check whether G # H can occasionally cause a calculator or computer to
run endlessly. It may seem easy to check whether two numbers are equal,
but very small differences between numbers that do not show up on your
calculator display may make two numbers that appear the same yet turn
out to be different. The result is the calculator values of G and H jumping
back and forth between two nearly equal values. This is called dithering.

To avoid this problem, your calculator probably does several things.
First, as you have seen, it calculates with numbers more accurate than
those shown in the display.

Despite this additional accuracy, your calculator could still run into
problems with minute differences between numbers—the rightmost
unseen digit hovering between 4 and 5 and thus causing rounding dif-
ferences, for example—and this can lead to the kind of thing that occa-
sionally punishes us when our computer acts up and we have to press

ESCAPE] or even pull the plug.

TWO ASIDES ABOUT CALCULATOR CALCULATION 65

To get around this, the calculator may check for minor differences. For
example, it might apply the following rule: If it finds that the difference
is less than half the value of the rightmost digit in your display, it will
allow the numbers to be considered equal.

Programmers prefer to avoid this kind of error by providing this
instruction themselves. For example, for our statement While G#H, they
might substitute something like While abs(G—H)/G>.00000000005."
A similar substitution can be used to test equality.

There is another problem with the program I have introduced. Your
calculator [¥_| key does not require you to enter an initial guess, G. It only
calls for a value of N. To solve this problem, instead of asking for G in
the program, we can use an arbitrary value of G, say, 10. Here then is
the revised program:

PROGRAM: SQRTG10
: Prompt N
: 10—-G Substituting for Prompt G
: 0—H
: While G#H
N/G—H
: (G+H) /2—G
: End
: Disp G

Let’s see what that initial guess, clearly a poor one for this calculation,
does to our computation of +/5715.36. Here are the successive (but unre-
ported'?) values of G and H when this program is run:

G H
10 571.536
290.768 19.6560832

155.2120416 36.82291619
96.0174789 59.52416233
77.77082061 73.48977361
75.63029711 75.56971503
75.60000607 75.59999393
75.6 75.6

R2Technically |G — H|/G is the relative error between H and G relative to G.
13We can obtain these values by running the program SQRTCK on page 64 with N =
5715.36 and G = 10.

66 SQUARE ROOT

Notice that, despite the wide swings of the first few values, the program
zeroes in on the answer in only a few additional steps, and the calculator
in large part makes up for these additional steps with its rapid processing.

The choice of 10 for G in the program was arbitrary and the calculation
of the square roots of very large numbers, say, 10?3, or very small num-
bers, say, 1072, would take enough steps to make the time waiting for
an answer evident in comparison to the almost instantaneous calculation
using the key. Clearly, then, in this case the calculator algorithm is
more sophisticated than ours.

ARITHMETIC AND GEOMETRIC MEANS

So far, you have been asked to accept Newton’s algorithm without justi-
fication. To establish that it does indeed give us correct answers, we now
provide the math that supports this process.

The “trick” of Newton’s algorithm is to use the arithmetic mean as an
approximation for the geometric mean in his algorithm. To understand his
procedure, we need to define those means.

To find the average of two numbers, we calculate half their sum. Math-
ematicians assign the more formal name arithmetic mean (A.M.) to that
average, so, for two numbers a and b, we have

_a—l—b
2

114

AM.

There are other types of means as well'* and the one we are concerned
with here is called the geometric mean (G.M.). Like the A.M.,, it, too, has
an alternate name: the mean proportional.!> For two positive numbers, it
is defined as the square root of their product. Thus for a and b, we have

GM. = +Vvab
14 Among them are the harmonic mean:
1 2ab

and the root mean square,

Mathematicians generalize all of these means to apply to more than two values a and b.
5The mean proportional between two numbers a and b is the number x in the proportion:
a/x = x/b. To see that x corresponds to the G.M., solve the proportion for x: x* = ab

and x = +/ab.

ARITHMETIC AND GEOMETRIC MEANS 67

Figure 4.7 Arithmetic and geometric means.

We can compare the A.M. and G.M. for given a and b geometrically in
Figure 4.7.

The given segments a and b are placed end to end as shown in
Figure 4.7, with a = AC and b = CB. The midpoint O of AB is located,
and a semicircle is constructed with AB as diameter. Segments OD and
CE are constructed perpendicular to AB, meeting the semicircle at D
and E.

Since a + b = AB, the diameter of the semicircle, and O D is a radius
of that semicircle, OD = (a + b)/2. Thus, OD is the A.M. of a and b.

An angle inscribed in a semicircle is a right angle, so angle AEB is a
right angle. Thus the triangles ACE and ECB are similar, and we have
the proportion a/CE = CE/b so (CE)? = ab and CE = v/ab. We have
shown that CE is the G.M. of a and b.

An important feature of this diagram is the comparison of O D and
CE. Notice that varying the position of C on AB changes the relationship
between a and b, but for any position, OD > CE. In fact, they will be
equal only when a = b. This establishes that A.M. > G.M.

We can show this useful relationship'® algebraically as well. We begin
with a statement that is always true for positive numbers, a and b; since
any number squared is nonnegative: (a — b)> > 0. Squaring, we have a> —
2ab + b* > 0. Add 4ab to both sides of the inequality to obtain a® +
2ab + b? > 4ab. The left side is again a perfect square: (a + b)2 > 4dab,
and, since both sides are positive, we can take their square roots to obtain
a + b > 2/ab. Finally, dividing by 2 gives us the inequality we seek,
(a+b)/2 > Jab, which establishes once again that: A.M. > G.M.

Now we have the tools we need in order to investigate Newton’s algo-
rithm for square root.

18For several interesting applications of this relationship, see P. J. Nahin, When Least Is
Best, Princeton University Press, 2004, especially pages 13-20.

68 SQUARE ROOT

WHY NEWTON’S ALGORITHM FOR SQUARE
ROOT WORKS

Newton’s Method involves a series of what we have called guesses, which
we have designated G in the program. Estimates may be a better word
for them, but we will stick with G.

Look at that program again. I have numbered the steps for reference:

PROGRAM: SQRT
Prompt N
10—G

: O—H

: While G#H

: N/G—H

(G+H) /2—G
End
Disp G

ONOOOThWN =

Now recall the roles of those three letters, N, G, and H. We seek VN
and the program calls for the value of N to process in line 1. Line 2
assigns that arbitrary value of 10 to G. In line 5, H plays the role of the
quotient of the division step of “Divide and average.” It is set at O in line
3 so that there is no possibility that it will be equal to that initial guess
G.!7 This is necessary in order to enter the While loop.

Clearly the values of G and H change as the loop repeats. In order to
examine these changes we need to designate them with different symbols,
and this is a perfect role for subscripts. We set the initial values of G
and H to be Go and Hy. Then subsequent values will be G, G, G3, ...
and H,, H,, Hs, ...'"® and when we want to talk about a general value
of G or H, we can designate that value as G, or H,."? Using these
subscripts, we can describe how we process the algorithm from step to
step as H, = N/G, and

Gn+Hn

Gn—H)
7Calculator and computer users often forget that values left from previous programs
continue to reside in memory. Here, for example, the concern is that a leftover H = 10
would lead to ~/N = 10 for any N. Any negative value for H would have served equally
well in step 3. In this program with G assigned the value 10, any number different from
10 would do for H.

8Notice how these subscripts allow us to recall the basic variable while separating its
values at stages in the process.

Do not confuse this n for a general step number with the N for which we seek the
square root.

WHY NEWTON’S ALGORITHM FOR SQUARE ROOT WORKS 69

If this algorithm is to work, it must provide a series of values that will
get closer and closer to +/N, finally getting so close that we will be able
to discern no difference between that value and ~/N.?° This suggests that
we study the error at each stage of the process. That error, which we will
call E, because it differs at each step n, we define as E, = |G, — v/N|.

Note several things about that definition. First, the error is changing
(hopefully reducing) and that is why the subscript n is used. For each
G, there is a corresponding E,. The second thing about the definition
is the use of absolute value, which was defined earlier in this chapter.
The reason for its use here is our wish to have E, positive. If G, >
VN, G, — +/N would be positive (or zero), but if G, < VN, G, — N
would be negative; in either case the absolute value would make the
corresponding value of E, positive.

Dealing with absolute value algebraically is rather complicated, how-
ever. For that reason it will be useful to show that, for values of n > 1,
G, > +/N. In that case we can remove the absolute value signs because
G, — ~/N will be nonnegative and the absolute value of a nonnegative
number is that number.

Fortunately, no matter what value we choose for Gy, it is straightfor-
ward to show that successive values of G,, will be greater than /N. Here
is how we can do this.

We have established that

H, = % and Gpyl = w
Note that the first equation is equivalent to G, H, = N and therefore the
geometric mean of these values, /G, H, = VN.

We also know that the AM. > G.M. Applying this to the variables G,
and H,, we have

Cut e . 6 H
2

Substituting what we have established for each member of this equation,
we have what we set out to show that G,,+; > /N forn = 0,1,2,3,....

Notice that this statement does not say that Gy > JN. (In fact, our
choice of Gy =10 in our program would be less than /N for any
N > 100.) But it does say that, no matter what the choice of a posi-
tive Go, G, > VN for n=1,2,3,.... To see that this is true, simply

20T some cases as with +/64 the value will be exact, but in others, like +/5 when the
root is irrational, the value will be as near as your calculator will display.

70 SQUARE ROOT

substitute the given values for n successively in the previous statement
for G, 1.

It is not necessary, but we could have set G(in our program so that
it, too, would be greater than VN.In place of the statement 10—G, we
could have written N+1/4—G. To show that N + 1/4 > /N, we simply
substitute 2N for a and 1/2 for b in the A.M. > G.M. theorem

b
a—; > «ab

The resulting statement,

reduces to the desired N + 1/4 > JN.

Knowing that G,, > /N at least for all n > 1, we consider how the cor-
responding H, relates to +/N. Taking reciprocals of inequalities relating
positive values reverses the order, thus G, > /N leads to

1
G

=

-

Multiplying each side of this inequality by N gives

N
<
G, ~

3=

Since the left side is H,, and the right VN, we have shown that H, < +/N.

We now have the important relationship H, < VN <G, for n=
1,2,3,4,.... In other words, we have ~/N between H, and G,,.

We’re finally ready to explore those errors. Recall that we defined
the error E, = |G, — VN |. Since we have proved that G, > VN for
n > 1, however, we can drop the absolute value signs to give E, =
G, —/N.

If we can show that the error is shrinking significantly from step to
step, we will have proved our algorithm works. What we seek then is the
relation between E,; and E,. Specifically we want E, | < E, as we
approach +/N. We will begin with the result we just proved and build

WHY NEWTON’S ALGORITHM FOR SQUARE ROOT WORKS 71

upon it. You should be able to follow these steps:

H, <~N
G, +H, <G, +~N

Gn+Hn<Gn+«/N
2 - 2

G, + /N
2

Gn—H <

G,++N
Gup1 = VN = 5= = VN
— Gp+ N —-2JN
Gn+1_ N < i

2
G, —~N
En-i—lf_n

2

We have proved that the error is at least halved in each pass through

the algorithm. If each E, | = E, /2, we would have the situation depicted
in Figure 4.8.

That we actually do much better than this we can see by following
a simple example, the program calculation of +/9. We expect E, | <

Go

N

Figure 4.8 G, values approach +/N.

72 SQUARE ROOT

E, /2, which is equivalent to expecting E, 11/ E, < % The fourth column
calculates the successive values of E,+1/E}:

n Gn E, = Gn - \/N En+1/En
1 925 6.25

2 5111486486 2.111486486 <0.34

3 3.436113369 0.436113369 <0.21

4 3.027675872 0.027675872 <0.07

5 3.000126492 0.000126492 <0.005

6 3.000000003 0.000000003 <0.00003
7 3 0 0

In this tabulation, note that the error not only decreases to less than half
at each step but also decreases more rapidly as the algorithm progresses.
You can see in Appendix H that, once you have a correct decimal fraction
digit, in other words when you are within one of +/N, the number of
correct decimal digits at least doubles with each successive step.

You now have not only a fast algorithm that carries out the work of
your calculator’s /N key but you also have an algorithm that you can
use as part of the process for other keys. Thus /N can play the role of
what is called a subroutine in other calculations.

From now on, then, we need not write out those program steps. We will
call on that subroutine merely by writing +/N in our programs. Whenever
we do this, we will know that the calculator could be sending N into a
modification of that nine-step program. As you will see in later chapters,
this gives us an important tool for designing additional algorithms.

Several final notes. Readers familiar with the calculus can see in
Appendix I how this “divide and average” algorithm is indeed a par-
ticular case of the more general Newton’s Method. Appendixes J and K
provide some ways to approximate irrational numbers with increasingly
accurate fractions. Appendix J also shows how the Greeks proved the
existence of an irrational ratio.

RATIONAL POWERS

To him who looks on the world rationally, the world in its
turn presents a rational aspect. The relation is mutual.

—Georg Wilhelm Friedrich Hegel

RATIONAL AND REAL NUMBERS

At the outset I seek to clarify something about rational and real numbers.
Most readers who have studied mathematics in school or college know
that the rational numbers include the integers and fractions. They may
be defined as all numbers that can be written as a /b with a any integer
and b any positive integer.! Thus, numbers like 283 and — 52 are rational
numbers. The integers fit this definition as well, smce they may be written

with 1 in the denominator. For example —37 = —=~. So too are decimal

fractions like 1307090 =.379 or _E = 2.1 rational numbers

But there are also numbers that are not among the rationals. They
are called irrational numbers. These include numbers like +/7, 7, e, and
cos27°. The rational and irrational numbers together make up the real

numbers.2

'They may also be deﬁned as numbers that may be expressed as repeating decimals.
Thus numbers such as = = .33333..., and ; = .42857142857142857 ... are rationals.
Repeating zeros are also allowed in order to make numbers that do not seem to need
repeating to be decimals, like 27 and , for example, fit this category: 27 = 27.00000. .

and 1 = .500000. ...

2Unlike rational numbers, irrational numbers cannot be expressed as repeating decimals.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

73

74 RATIONAL POWERS

Now here is where some confusion arises. Your calculator has a key
marked 7, and we have a calculator key (and a program) to calculate
square roots like +/7; however, your calculator will deal only with rational
numbers. In fact, it deals only with terminating decimals, a rational number
subset. The 7 and +/7 that your calculator reports are 10-digit decimal
approximations of those real numbers.

This calculator and computer restriction to decimals does not affect
our calculations, and we will even develop a program to calculate pow-
ers like e”, knowing that by ‘“calculate” we mean that we will find
decimal approximations, just as the calculator values of e and 7 are
approximations. For us, then, we only have the 10-digit approximations
€™ = 2.718281828% 141592654 — 23 14069263.

Although we will use simpler examples, the program we will develop
in this chapter will carry out that kind of calculation.

RATIONAL POWERS WE CAN ALREADY CALCULATE

Before we introduce a program to calculate BY for any exponent E, you
should understand that you already can evaluate many rational powers.
In Chapter 3 we addressed the problem of calculating with integral expo-
nents, exponents like 5, 17, and —3. In Chapter 4 when we developed
the square root algorithm, you added to these the exponent % = .5 since
Vx =x1? = x3,

By combining the programs of those chapters, you can then also cal-
culate expressions like 7°3.3.14175 and 0.00473.

Here is how to change the form of those expressions so that you can
use the earlier programs or the keys they represent:

3.1417° = 3,147+ = 31417 % 3.14° = 3.147 x V/3.14

1
0.004735 = (—

34.5
= 2501 = 2503 % 250 = 250° % /250
0.004) * *

In each case you would then multiply the integral power that you obtained
from the program of Chapter 3 by the square root that you obtained from
the program of Chapter 4 to get your answer. In the case of 7°7, for
example, you would have

73 5% /7T = 16807 % 2.645751311 = 44467.14229

BINARY NUMBERS BETWEEN ZERO AND ONE 75

We can do still more than this. We can enter a number, say, 16, in
our square root program, then take the result and enter it in the same
program. This would give us the square root of the square root of 16:
V16 = V4 =2,

This process would apply to any number. For example, for 5, we might
have

V V5 = /2236067977 = 1.495348781

Just what is it that we’re calculating here? If we represent those square
1/2
roots by % powers, we have //x = (x'/?) 2 x4 = x5,
Aha! We can calculate not just x5 but also x2. In exactly the same

way we have
VX = ((Xl/z)m)l/z =x/f=x'P

In fact, with a suitable number of square roots we can calculate any
power whose exponent is itself a power of % Thus we can calculate with
the following exponents: .5, .25, .125, .0625, .03125, .015625, .0078125,
and so on.

Recall at this point that the program we developed in the last chapter
justified our use of the || key on our calculator. We will use it from now
on. If, for example, you want to calculate 347-'2, you can simply enter
(note that parentheses are omitted here and in similar situations.)

347. When you then press [ENTER], your calculator should display
2.077500727. You can check that this is indeed the same as 347''% by
entering 347[7.125.3

We will see that this ability to calculate such powers is the key to the
rational power program that we will develop.

BINARY NUMBERS BETWEEN ZERO AND ONE

We talked about binary numbers for the whole numbers in Chapter 2; in
this chapter we will make use of binary numbers between zero and one.*

Just as .1 represents the decimal number one-tenth, that same symbol,
.1, represents one-half in binary. The key to understanding a general binary

3In doing this we are, of course, getting ahead of the game. It is exactly such calculations
that we will introduce later in this chapter. At this point such a check merely assures us
that we are on the right track.

4What should we call these numbers? Binimals? Bicycles? I know of no standard name
for them.

76 RATIONAL POWERS

like 1001.101 is to observe that the place values continue to the right as
in the following display:

23 22 20 20 2-1 272 273
1 0 o 1 - 1 0 1

The decimal values corresponding to these places are

1 1
8 0 0 1 5 0 3
or, converting to decimal fractions:
8 0 0 1 5 0 125

Summing these values, we have 1001.101yyo = 9.625cy.

Now if you focus attention on those values between zero and one, you
should see that the decimal equivalents of those binaries are exactly those
values that we found in talking about roots in the previous section. They
are .5, .25, .125, .0625, .03125, and so on.

That suggests a way to think about calculating such numbers. Consider
the following carefully chosen example: 3625, We can rewrite 362 as
3°%:125 "and then (again recalling the rules for exponents) rewrite this as
39 % 3125 Ah, but this is the same as 3/%2 % 31/8 and you know from the

last section that this is +/3 % Vv V353

This you can calculate. You can key

13« V]IV 3 ENTER]

to find that 3 = 1.987013346. (You can also check that result by enter-
ing 3[.625.)

There is something else you should notice about this particular calcu-
lation. If we write the exponent .625 in binary, we would have 3101 and
that exponent tells us where the square roots appear in our calculation:

3.101 — 31/2+0/4+1/8 — 31/2 % 31/8 — ﬁ* /ﬁ

That binary form also tells us how to proceed in the following way.
Beginning with .1y,, we needed a single square root. Then we increase

5In many of the descriptions that follow, the ~/ symbols are retained to clarify the issues
involved, whereas in the program processing they would be calculated and the resulting
decimal values carried forward.

DEVELOPING AN ALGORITHM TO CALCULATE RATIONAL POWERS 77

the number with each place as we move to the right, including the factor
in our product only when a 1 appears. Without the intermediate steps,
then, here is how a more complicated binary power would work without
those intermediate steps:

That exponent was, of course, in binary. We can change it to decimal
form: .0101 1o = + + 1= + 35 = 1 = .34375,.

Thus, if we carried out the calculation above, we would have calculated
7.34375

It would be nice if all exponents were equivalent to products of powers
of % Unfortunately they are not, but, by using these exponents with care,
you will see that we can approximate any power.

DEVELOPING AN ALGORITHM TO CALCULATE
RATIONAL POWERS

At the outset you should notice that we can always separate the integer
part of any power from the part less than one in the same way we did
in the previous section. For that reason, we will focus on the calculation
of rational exponents, E, with 0 < E < 1. In other words, we want to
calculate the values of expressions like: 37.57%

Notice that the base can be any positive number;® only the exponent is
restricted in this way.

Here is one way to think about calculating a power like the example
we have shown:

1. Change the exponent to binary form.
2. Use square roots as shown in the last section to evaluate the expression.
3. Stop when sufficient accuracy is reached.

That is, in fact, what we will do but, once we develop a program, we
will combine the first two of those algorithm steps. We will also need
to see how to end the process if the exponent isn’t exactly equivalent to
a binary.

Let’s see how we might accomplish step 1. We’ll use that .709 exponent
for our example. We could subtract .5 from .709 and use it as .1 in binary,
and we could continue in this way, subtracting successive powers of .5.

®There is no problem with B < 0 for integer powers. We know, for example, that (—2)> =
—8and (-2)3 = —é, but we could not assign a real number value to powers like (=2)%7.

78 RATIONAL POWERS

The process would look like this with the new digit in italics:
Decimal Binary

.709
—_.5 = v
.209

209
—25 won’'t goso = .10
209

—.125 = 101
.084

.084
—.0625 = 1011
.0215

.0215
—.03125 won’t go so = 10110

.0215
—.015625 = .101101
.005875

.005875
—.0078125 won’t go so = .1011010

and so on.

There is an alternate process that leads to the same result. It is based
on the fact that each time we double the remaining decimal number, the
whole number resulting is the binary value we seek. Here is how this
works for this same decimal .709:

09 %2 =1418= .1

418 %2 =0.836 = .10
836%x2 =1.672 = .10/

672 %2 =1.344 = 101/
344 %2 = 0.688 = .10110
688 %2 =1.376 = .101101
376 «2 =0.752 = .1011010

TWO PROGRAMS 79

and so on.

Notice that at each stage in this second process the whole-number part
of the doubled product contributes to the binary representation and is
removed from the decimal.

Now let’s see how we could then carry out step 2 of that algorithm: to
apply square roots to those binary positions in the exponent. Here again
is the example with which we began this discussion: 37.57%,

We have shown how to change that exponent (but not the base) to the
binary value: 37.5-1011010- " 5o we should calculate

375*\/\/ 375*\[375* \/ 375*...

stopping only when we have our desired accuracy.

Instead of carrying out those processes separately, we will see that we
can combine the process of converting the power to binary and taking
those successive square roots. This leads to reasonably short programs.

TWO PROGRAMS

We will develop two programs to calculate BX, with 0 < E < 1. The first
one follows the first process we used to convert the exponent to binary. 1
have numbered the lines in order to refer to them in the explanation that
follows it:

PROGRAM RATPOWA

1 : Prompt B,E

2 : 1P

3 : VB—>S

4 .5 X

5 : While E>.00000000005
6 : If E>X

7 Then

8 E—X—E
9 : P*S—P
10 : End (If)

11 : X/2—X

12 : J/S-S

13 : End (While)

14 : Disp P

Because it is easy to get lost in following a complicated example, we’ll
consider a simple one, 7623, We know that this is equivalent to 7-1°! when

80 RATIONAL POWERS

the exponent is binary. Thus it should take only three passes through the
While loop (one for each binary digit) to complete the calculation.

In line 1 we would enter B = 7 and E = .625. P is going to accumulate
the power we seek; in line 2 we set that P = 1. The third line sets S = V7,
the square root of the base, 7. In line 4 we set X = .5. That .5 is the first
number that we attempt to subtract from the exponent in that first decimal-
to-binary conversion algorithm. With these values established, we enter
the While loop.

The If test asks if E is large enough to subtract X = .5 from it. Since
.625 > .5, we perform this subtraction in line 8, leaving E = .125. But
rather than wait until the entire conversion to binary is accomplished, we
multiply P by S = +/7 now. Thus we now have P = 1 /7 = /7.

Before leaving the While loop, we prepare ourselves for the next pass
by replacing X by X/2 in line 11, which makes X = .25 and S by /S
in line 12, which makes S = v/+/7.

Although E = .125 is plenty to send us through the While loop again,
it is not as large as X = .25, so the If test fails and lines 8 and 9 are not
processed. But lines 11 and 12 are, and we end the loop with X = .125

and S =4/ /7. E remains .125, so we enter the While loop a third
time. In it £ = X = .125, so the lines following If are processed. In line

8, E becomes 0, and in line 9, P becomes \/7*\/\/ /7. In line 11, S

becomes 4/ 4/ V/ 4/7 and in line 12, X becomes 0.

Since X = 0, we are finished with the While loop and the value P =

V7T * RY, V7 is reported.7

Now we’ll examine a second program to calculate BY, with0 < E < 1.
This one follows the second procedure for changing the exponent from
decimal to binary. I have again numbered the lines in order to refer to
them in the following explanation:

PROGRAM: RATPOW2

1 :Prompt B,E

2 ! 1->P

3 : VB—S

4 : While E>0 and abs(S—1)>.00000000005
5 int(2E)—>1I

6 If I=1

7 P*S—P

"Notice that last value of S is never used. If after running this program you type S
RETURN]|, you will obtain that fourth root of 7 that was retained.

A GENERAL PROGRAM FOR RATIONAL POWERS 81

8 : 2*E-I—>E
9 : VS =S
10 : End (While)
11 : Disp P

To calculate the same example we used in the other program, 7%, we
again enter B =7 and E = .625 in line 1 and the values P =1 and
S = +/7 are set in lines 2 and 3.

Notice that in this program, since E is being doubled in each step,
it may never get small enough to meet the E < .0000000001 test of
the While loop that we used in the other program. For that reason, an
additional test is necessary. That other test involves §, which will be

successively ~/B, v /B, v V+/B, and so on. Because B is positive, these

numbers approach 1.8 In the example we have chosen, however, because
E will be zero again after three passes through the loop, this additional
test will not apply.

It is within the While loop that we use the second algorithm. In line 5
we double the exponent E to make E = 1.25 and take its integer value,
1, as I. This is exactly what we did to find the first binary place in that
algorithm. But again as in the previous program, instead of accumulating
the entire binary exponent, we process it now in the If instruction. Since
I = 1, we multiply P by the current value of S, namely, +/7. This makes
P=1=x% «/7 .

Next, in line 8, since we have applied it to P, we subtract that [=1
from the doubled value of E, making £ = .25. And before leaving the

While loop in line 9, we make S = v/+/7, again as in the other program.
The next time through the loop, doubling E produces 0.5, so the integer
value of this is / = 0, and the If instruction is not processed. We end the

loop with E =1 and S = /v ~/7.
The last pass through the loop then makes P = 1 /7 % /+v/+/7, just

as we wish.

A GENERAL PROGRAM FOR RATIONAL POWERS

We will now combine our program in this chapter with the one in
Chapter 3, modifying it and adding a few touches where appropriate, to
construct a new program that calculates BX for B > 0 and any rational E.

8When B > 1, as E approaches 0, B approaches 1 from above, but when 0 < B < 1 as
E approaches 0, BE approaches 1 from below. That is the reason for using the absolute
value of § — 1.

82 RATIONAL POWERS

Instead of numbering individual lines in this program, I have numbered
six sections:

PROGRAM: RPOWALL
: Prompt B,E
: 1->P
2 : 0—>N
: If E<O
1—>N
: abs(E)—E
3 : int(E)—>I
: B—»C
: While I>0
: I-2xint(I/2)—>R
If R=1
P+xC—P
CxC—C
int(I/2)—1I
: End (While)
4 : E—int(E)—>F
: VB—>S
: .5-X
: While F>.00000000005
: If F>X
Then
F—X—F
PxS—P
End (If)
X/2—X
VS -8
: End (While)
5 : If N=1
: 1/P—P
6 : Disp P

Let’s see how this program works.

In section 1 we enter our values for B and E and set P = 1. In section 2
we set N = 0 and change it to 1 only if £ is negative. (We will not use
N again until section 5.) Next we replace E by its absolute value, thus
making E positive.

In section 3 we split off the integer value of E, calling it /, and send it
through the program from Chapter 3 for integer powers. When this section
is completed P represents the integer power of the base B.

Here it will be useful to remind ourselves how exponents work. Con-
sider 743 ; 7435 = 74+35 = 7% 4 735 Notice that we multiply the integer

A GENERAL PROGRAM FOR RATIONAL POWERS 83

power by the fractional power to obtain our answer. For this reason we
simply continue with the value of P obtained from section 3 as we enter
and process section 4, which is the same as our program RATPOW1, but
with F replacing E.

When section 4 is completed, we then, have the value of BE with
positive E. Moreover, we know from section 2 whether the E with which
we began the program is positive or negative. If £ < 0, we know that
we would have set N = 1. In that case we simply replace P with its
reciprocal 1/P. The answer is then displayed by section 6.

It is worth considering what happens in this program when special
values of E are entered:

1. What if E = 0? In section 1, P is set equal to 1. In section 2, N
remains 0. In the first line of section 3, I is set equal to O and
therefore the While loop is skipped. In the first line of section 4,
since both E and int(E) are O, their difference, F, is 0. This means
that the While loop of this section is skipped as well. In section 5,
since N = 0, P remains unchanged. Thus we display the answer, 1.
Since BY = 1, we have the correct result.

2. What if E = 1? This time in section 3, I =1, then C = B and
we enter the While loop. In it we calculate R = 1 (the remainder
when 1 is divided by 2). Since R = 1, the If instruction gives us
P =1x%C = C, and the final instruction in the loop sets I = 0O (the
quotient when 1 is divided by 2). This value of I means that the
loop is not processed again. In section 4, F =1 — 1 =0 and then
S =+/B and X = .5 (neither of which will be used). The second
loop is not processed since F' = 0 and the P = C is displayed. Since
we set C = B, this is the same as displaying B. Just what we want
since B! = B.

3. What if E = —1? This would be just like processing E = 1, except
that N = 1 in section 2. Thus in section 5, we would substitute 1/B
for B. Okay again, since B~! = 1/B.

Our RPOWALL program does indeed calculate Bf for B > 0 and any E.
In doing so it carries out the function of the and keys on some
scientific calculators and the [~ key on others.

LOGARITHMS

The invention of logarithms came on the world as a bolt from the blue.
No previous work had led up to it, foreshadowed it or heralded its arrival.
It stands isolated, breaking in upon human thought abruptly

without borrowing from the work of other intellects or

following known lines of mathematical thought.

—Lord Moulton

While today logarithms turn up in such applications as compound inter-
est and radioactive decay, they were originally invented to simplify
calculation.

It is difficult now for all but elderly people like this author, who
lived before the advent of electronic calculators, to understand how much
time was absorbed in carrying out those calculations. An examination of
the notebooks of early scientists such as Newton and Kepler show how
detailed was their arithmetic. For example, it was not uncommon for them
to multiply numbers with 10 or even more digits, filling notebooks with
such calculations.

It is hard to imagine sitting down without a calculator to compute a
product like 73857 * 97836.

I just did so, and it took me more than 2 minutes to carry out the arith-
metic. Once finished, I checked my result, 7,225,873,452, by calculator,!

Notice that I kept this product within the 10-digit range of my calculator. If T multiplied
numbers with six or more digits by a calculator with 10-digit display, I would have had to

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

84

LOGARITHMS 85

which took no longer than recording the digits, and was relieved to find
that for once I had made no computation errors.

In fact, in precalculator times much science remained unexplored
because of the time needed to carry out the lengthy mathematical opera-
tions required.

In order to address this calculation problem, Scottish mathematician
John Napier and a few years later his English colleague Henry Briggs
together developed logarithms much as we know them today. From the
time of that invention in the early seventeenth century until the middle of
the twentieth century, a period of over 350 years, this mathematical con-
cept was used extensively and almost exclusively to simplify calculations.

The value of logarithms (logarithm is abbreviated log?) for computation
derives from the fact that they “step down” arithmetical processes. Multi-
plication and division are calculated by addition and subtraction, powers,
and roots by multiplication and division.

Here are the familiar properties:

log(a x b) =loga + log b
log(a/b) =loga — logb
log(a") =nloga

log V/a =

Of course, the key to using any of these calculation formulas—or, in fact,
to apply logs in scientific settings—is determining the logarithms of the
numbers.

An example will demonstrate calculation with logs. Let’s carry out that
multiplication I introduced earlier, 73857 % 97836.

From that first defining equation, we know that log(73857 * 97836) =
log 73857 4 log 97836.

We use our calculator’s key to obtain the values of the right side
of that equation: log(73857 % 97836) = 4.868391663 + 4.990498688.

log a

n

apply some algebra to get the product. For example, I could calculate 1234567 x 7654321
by considering those numbers as binomials (1234t + 567)(7654¢ + 321), with ¢ repre-
senting thousand, calculating the four products and combining the results. Programming
a computer to carry out such multidigit calculations and display them in groups of digits
represents an interesting challenge. A program to do this is presented in Appendix L.

2The word log is used in two ways that are usually determined by the context. On
many calculators represents log;,, that is, log with the particular base 10, but the
abbreviation log is often used in a more general sense as meaning logarithm with any
base. (Be aware, however, that on some calculators and computers log represents log,.)

86 LOGARITHMS

We add those right side values to give us®

log (73857 % 97836) = 9.858890351

We now have the log of the product. To get the product itself, we must
find the antilog of 9.858890351; that is, we must “undo” the log function.
More formally, we must apply the inverse function. That is accomplished
by typing 9.858890351 to produce 7225873445.

Aha! Our calculator has not given us the correct answer. Can you just
see your seventh grade teacher marking a big check next to that result?
“Partial credit?” you ask, and she simply frowns. You could argue that
your answer is off by only 7 in over 7 billion. That is a relative error
of less than .0000001%. And indeed that is as good as most 10-digit
calculators can do by means of logs.*

Before calculators were available, there was no simple machine with
a keystroke that would provide the logs of numbers. Instead the numbers
were looked up in books of tables. Briggs, the coinventor of logarithms,
produced a table of logs for the integers from 1 to 20,000 and from 90,000
to 100,000, accurate to 14 decimal places. (The missing 20,000 to 90,000
gap was later calculated by Adriaan Vlacq, a Dutch publisher.’)

There were, however, slide rules, devices like the one shown in
Figure 6.1, whose basic scales were marked off in logarithmic distances.

o shmumiﬂ||lm|lmqlmwmwil.J.k'.ltul{muug;ﬂ‘l |[,,'}‘1f.|‘|'g,|

Figure 6.1 A slide rule.

3You would probably not have included that intermediate step, simply having typed
73857 + 97836 [ENTER].

“It also suggests that calculator multiplication, which gave us an exact answer to that
10-digit product, is not done by logs.

5This and other interesting information about the early history of logarithms is found in
Eli Maor, e: The Story of a Number (Princeton University Press, 1994). As Maor points
out and as is so often the case, it may be that credit for this discovery has been assigned
to the wrong person. A Swiss watchmaker, Joost Burgi, developed a system very similar
to and arguably better than Napier’s 26 years before Napier’s publication of his results
in 1614. Unfortunately for him, Burgi did not publish his ideas until 1620.

BASE 10 LOGARITHMS 87

You can see how to develop a simple slide rule using log properties in
Appendix P.

Their scales provide three- and sometimes even four-digit accuracy for
computations. Until the late 1970s these wooden or metal devices were
as widely used, especially among engineers, as scientific calculators are
today. As soon as those calculators became available, however, slide rules
(as well as most books of tables) became obsolete.

BASE 10 LOGARITHMS

log] and [2nd| [log]

Since some readers will have forgotten much information about logs, it
will be useful to review what logs are before we develop programs to
calculate them.

A key to understanding logs is the simple equivalence: logarithm =
exponent.

In formal terms, you can see that equivalence in these two basic eq-
uations:

10N =N)

log 10¥ =N (ID)

Stated in prose, those equations tell us in two different ways that N is the
power of 10 with exponent log N.

When you think of logarithms in those terms, you will find it simpler
to derive many of their properties; for example

X*y= lologx * lolog y — 1010g x+log y

The second equality sign (=) is based on the law of exponents b¢ x b/ =
bt/ . Now if we take the logarithm of the first and last expressions, we
have

log(x % y) = log(10"°8 **log »)

but the right side of that equation is, by equation (II), equal to log x +
log y. Thus we have derived the log equation: log(x * y) = log x + log y.

Other log properties are derived similarly.

Return now to equation (I): 10°°¢ ¥ = N. From it we know immediately
the logs of powers of 10. For example, suppose N = 100. Since 10> =
100 = 1092 190 those first and last exponents are equal, and we have
log 100 = 2.

88 LOGARITHMS

Similar substitutions give us a sequence of values:

log 1000 =3
log 100 =2
log 10=1
log1=0
log .1=-1
log .01 =-2
log .001 = -3

For example, to show thatlog .01 = —2, we think of the equation, 10%g 01 —
.01, which is the same as 1092 0! = ﬁ = 1072. Since the bases are alike
(both 10), the exponents are equal and we have log .01 = —2.

These integer values are called the characteristics of logs. If all we
had to do was calculate with powers of 10, we could do so easily. What
we need, however, are the values between those powers. For example, we
need to find such values as log 3, log 5280, and log .57664.

Before we turn to that problem, however, we need to recall some
additional basics. Remember that in carrying out our example of log calcu-
lation, we came to the point at which log(73857 x 97836) = 9.858890351.

We didn’t want this log answer. Instead we wanted the actual value of
73857 % 97836. Again we can use our defining relationship to determine
this result: 73857 x 97836 = 10108(73857+97836) — 1(9.858890351

We could calculate 107838899351 by typing 10 [9.858890351
or on a scientific calculator using the key with x =10 and y =
9.858890351 or using the program of Chapter 5. We need not do so,
however, because the sequence gives you this value. In fact it is
labeled “10"” on most calculators.

What you should take from all this are the facts that calculating with
logs involve:

1. Converting numbers to the corresponding powers of 10—that is,
finding their logs via the key
2. Using the rules for exponents to process the results

3. Returning to the answer by using the key sequence—that
is, using the antilog or “10*” key

Thus, a last way of seeing this calculation is 73857 x 97836 =
104.868391663 % 104.990498688 — 109.858890351 — 7225873445.

If you carried out those steps, using the key to find the exponents in
the second step, adding those exponents in the third, and applying the

NATURAL LOGARITHMS 89

or “10*” keys for the final step, you will have seen how logarithms
carry out calculations.

NATURAL LOGARITHMS

When you think about it, the use of the base 10 is not necessary to
work with logarithms. For calculations, however, 10 has advantages. In
particular, you can tell the characteristic by inspection. For example, since
385 lies between 100 and 1000 or 10? and 103, its characteristic is 2.
Beyond that, the decimal part of the log of 385, its so-called mantissa,
will be the same as that of 38.5 or 385,000. A quick check with the
key will show these values®

log 385 = 2.58546073
log 38.5 = 1.58546073
log 385, 000 = 5.58546073

Whereas base 10 has these advantages for calculation, another base proves
more useful in many problem settings, especially those related to expo-
nential growth and decay and compound interest. That base is the irra-
tional number e = 2.718281828....7 (While those repeated 1828s make
it appear that a pattern has developed, it has not. If we continue the rep-
resentation, the next two digits are 4 and 5. They do, however, make the
number easier to remember.) Logarithms with this base are called natural
logs and are found by use of the [In] key.?

oA problem arises, however, with negative characteristics. You will find, for example,
that your key will give you log 0.0385 = —1.41453927 instead of the —2.58546073
that you might expect, knowing that log 385 = 2.58546073. This problem is addressed
later in this chapter.

"The irrational number ¢ has a formal definition, namely

1 n
e = lim (1 + —)
n—o00 n

which to many people is confusing at best. One way of thinking about it is that $1,000,000¢
is the amount you would receive in return in one year for $1,000,000 invested at 100%
rate of interest compounded continuously. I have used $1,000,000 % ¢ because the bank
would round $1 * e down to $2.71. (If you know where you can receive that interest rate
not involving organized crime, please inform this author.)

8The numbers ¢ and 10 are not the only useful log bases. Especially of value in computer
science is log,, sometimes abbreviated 1g. Once you have access to one log base, however,
you can easily convert to another using a change of base formula, which will be discussed
later and proved in Appendix N. An interesting applicaion that involves all three bases is
in Appendix O.

90 LOGARITHMS

To carry out the same calculation we did with log;, with
In, since In73857 = 11.20988607 and In97836 = 11.49104789, you
would have 73857 x 97836 = 611.20988607 x 6“'49104789 — 622'70093396 —
7225873476. The calculation ¢?27909339 — 7225873476 is found by using
22.70093396. Notice that this approximation to the exact answer
7225873452 is different from the answer we achieved using log;, and
again different from the exact answer.

DEVELOPING A PROGRAM TO CALCULATE
LOGARITHMS

It turns out that, like trigonometric functions, on many calculators and
computers logs are calculated by means of CORDIC-based programs, one
of which is discussed in Chapter 9. In this section we will consider a
slower program that is based on a simple relationship between numbers
and their logarithms. We will use base 10 logs throughout this section but,
once we have developed a program, we will see in a later section how to
modify it for any other base such as e or 2.

Our program will be divided into two parts. In the first part we will
calculate the characteristic, the whole-number part of the log; in the second
part, the mantissa, the decimal part. To simplify this discussion, for now
we will consider only logrithms of numbers greater than or equal to one.
(We will address the problem of calculating logs of numbers between zero
and one later.)

Suppose, for example, that we seek log 500. Here are program lines
that will locate this log between two nonnegative integers, K and M:

: Prompt X
1w

: 0—M

: While X > W
: W*10—W
: M+1—M

: End (While)
: W/10—-U

! M—1-K

Let’s see how that program segment works. We enter 500 for X. In the
second and third steps the program sets W = 1 and its log, M = 0. Next
we encounter a While loop that is governed by comparing X with W.
Clearly our X, 500, is > 1, the current value of W, so we enter the loop.

DEVELOPING A PROGRAM TO CALCULATE LOGARITHMS 91

Within the While loop, we multiply W by 10 and increase its log,
M, by 1. This corresponds to log 10 = 1. This loop is repeated, giving
successively:

While 4

Before entry 1
After 1st pass 10
After 2nd pass 100
After 3rd pass 1000

WO X

Notice that the loop is processed until W > 500. Since it was still true that
X > M (500 > 100) when the loop was entered the final time, we end
this part of the program with W = 1000 and M = 3. Although W > X
and its corresponding M is also larger than the characteristic we seek, as
we will see, they will prove useful to us.

In the final two steps we calculate U = 100 and K = 2. Notice that
this locates X between U and W (with 100 < 500 < 1000) and log X
between K and M (with 2 < log X < 3.)

More generally, this program segment takes an input value, X > 1, and
ends with U < X < W and log U <log X < log W.

Before we move on to calculate mantissas, I remind you of two basic
properties of logarithms that we will use:

1. We have

log x
2

log /x =

To show this, consider the following: log a> = log(a * a) = log a +
log a = 2log a; thus log a®> = 2log a. Now substitute \/x for a and
we have’ log x = 2log +/x. Finally, dividing each side by 2, we have
the desired relation:

log x
2

log /x =

2. Suppose that we already know two numbers and their logs. For
example, assume that we know log x =r and log y = s, and we

9You may recall that a2 = |a|. In working with logs we deal only with positive bases
with |a| = a; thus we need not be concerned with absolute value.

92 LOGARITHMS

want to calculate log ,./xy. Using what we just showed and the rule
for the log of a product, we have:

logx+logy r+s
log /xy = 5 =

You should notice something about this relationship. It involves our
old friends, on the left side the geometric mean, and on the right
side, the arithmetic mean. Thus the log of the geometric mean of
two numbers is the arithmetic mean of their logs.

Now remember how we started this discussion. We agreed to work
from two values that we already knew, x and y. Let’s see what happens
if we start with the x = 100 and y = 1000 that were less than and greater
than the 500 of our example in locating the characteristic. We have

logm _ log 100—;10g 1000

Because log 100 = 2 and log 1000 = 3, we have log+/100000 = (2 +
3)/2, and, since /100000 = 316.227766, we find that log 316.227766 =
2.5.

That may at first seem like the silliest calculation you have ever seen.
What use is there for the log of 316.227766, even if it does equal a nice
decimal, 2.5? Indeed, that log alone does very little for us. The point is,
however, that it gives us an additional value squeezing in on the value
whose log we seek. We now know the number whose log is 2, the number
whose log is 3, and, in addition, the number whose log is 2.5. We can use
the same technique to find the numbers whose logs are 2.25 and 2.75.

Suppose, then, that we seek the number whose log is 2.75. We can find
it in this way:

log 316.227766 + log 1000
2

log +/316.227766 % 1000 =

2543
log v/316227.766 = 2+

Calculating the square root on the left side and simplifying the right, we
have log 562.3413252 = 2.75.

We can, of course, continue to use this technique to find more and more
logs. Proceeding to do so without some system will do us little good,
though, so we must work out a system to calculate a particular logarithm.

Here is how we can continue the process of calculating
log 500. From the program segment that calculated the characteris-
tic, we already know that 2 = log 100 < log 500 < log 1000 = 3,s0 2 <

DEVELOPING A PROGRAM TO CALCULATE LOGARITHMS 93

log 500 < 3. We also found that 2.5 = log 316.227766 < log 500 <
log 1000 =3, so 2.5 <log500 <3 and 2.5 =1log 316.227766 <
log 500 < log 562.3413252 = 2.75, so 2.5 < log 500 < 2.75.

So far, then, we have closed in to the point that we know log 500 is
between 2.5 and 2.75. Continuing with the corresponding values, we have

25+2.75
2
log 421.6965034 = 2.625.

log +/316.227766 % 562.3413252 =

This squeezes in a bit further: 2.625 = log 421.6965034 < log 500 <
log 562.3413252 = 2.75, and we have 2.625 < log 500 < 2.75.
Continuing in this same way, we would have

2.6875 < log 500 < 2.75
2.6875 < log 500 < 2.71875
2.6875 < log 500 < 2.703125
2.6953125 < log 500 < 2.703125
2.6953125 < log 500 < 2.69921875
2.697265625 < log 500 < 2.69921875
2.698242188 < log 500 < 2.69921875
2.698730469 < log 500 < 2.69921875
2.698730469 < log 500 < 2.698974609
2.698852539 < log 500 < 2.698974609
2.698913574 < log 500 < 2.698974609
2.698944092 < log 500 < 2.698974609
2.698959351 < log 500 < 2.698974609
2.69896698 < log 500 < 2.698974609
2.69896698 < log 500 < 2.698970795
2.698968887 < log 500 < 2.698970795
2.698969841 < log 500 < 2.698970795
2.698969841 < log 500 < 2.698970318
2.698969841 < log 500 < 2.698970079

94 LOGARITHMS

2.698969960 < 500 < 2.698970079
2.698969960 < 500 < 2.698970020
2.698969990 < 500 < 2.698970020
2.698969990 < 500 < 2.698970005
2.698969997 < 500 < 2.698970005
2.698970001 < 500 < 2.698970005
2.698970003 < 500 < 2.698970005
2.698970004 < 500 < 2.698970005
2.698970004 < 500 < 2.698970004

and indeed, as you can check by using a calculator’s key, log 500 =
2.698970004.

I have shown only the result of all of those steps, each involving cal-
culation of a geometric mean and an arithmetic mean and determining
which side of the inequality to change, in order to show how slowly this
procedure converges.

You will now see that our program to calculate logs will carry out
exactly the steps we have described and worked out by direct calculation.

This program consists of two parts. We have already seen the first part,
calculation of the characteristic. The second part that we will develop
now will calculate the mantissa, the decimal part of the log. The inde-
pendence of these two parts should be evident when we recall that
knowing log 500 = 2.69897004, we also know that log 50 = 1.69897004,
log 5000 = 3.69897004 and so on.

What we need to do to develop this second part of our program is
to show how to carry out that long series of calculations. We need only
assume what we know so far: that we seek better and better approxima-
tions to log X, designated L in the program, and that we know (from
the search for the characteristic in the first part of the program) that
K <L < M. Of course, when we begin this process, K and M are inte-
gers with K + 1 = M. We also know that U < X < W.

Here, then, are program steps that will continue this process:

: While K # M
V. (U*W) =V
(K + M)/2—L
If X >V
Then
V—U
L—K

DEVELOPING A PROGRAM TO CALCULATE LOGARITHMS 95

Else
V—>W
L—M
End (If)
End (While)

: Disp L

To see how the steps mirror the process we went through mechanically
earlier, consider how it would have processed the first step of that example,
finding log 500. Here is what we would know from the earlier program
segment as we enter this program section:

1. X = 500, the number whose log we seek
2. Because 100 < X < 1000, U = 100 and W = 1000
3. Because 2 <log X <3, K =2and M = 3.

First, we should see that each pass through the While loop represents
one step in the process of narrowing the interval within which log 500 is
located.

The two program lines that narrow the interval are

Vo (U*W) =V
(K + M)/2—L

Once these geometric and arithmetic means are calculated, the decision
is made whether to reduce the number and log interval from above or to
raise it from below; then the appropriate action is taken.

If X >V
Then
V—U
L—K
Else
V—W
L—>M
End (If)

This If-Then-Else series of steps may be illustrated by two familiar
activities:

The first is the true/false test. The If line is asking a question, in
this case, “Is X > V?” There are only two answers to a true/false
question, as there are here. True takes us to the Then instructions,
false takes us to the Else instructions.

96 LOGARITHMS

The second is the children’s game “Twenty Questions” when played
with numbers. In that game you seek a number located between, say,
1 and 100. A good strategy is to ask a question that will divide the
numbers in half, for example, you might ask, “Is the number greater
than 50?10 If the answer is “Yes,” you know now that your number
is between 51 and 100; if the answer is “No,” you know that the
number is between 1 and 50. An algorithm for this single step could
be written as follows:

If N > 50
Then 51 < N < 100
Else 1 < N < 50
End

In the case of our program the If question X > V? determines whether
we close in from below or above. A true answer leads us to close in from
below, and those are the actions following Then. If the answer is false,
we close in from above by taking the actions following Else. This is
represented in the diagram of Figure 6.2.

What we have done in this program segment is an example of what
programmers call binary search or interval bisection. This common tech-
nique is used widely by programmers, and an example of its use in finding
a root of an equation is given in Appendix M.

If x> vV

Yes, X > V No, Else make

is here these changes
\4 L velrL
Then make because X < V
these changes is here
U e K UeéK

Figure 6.2 The If-Then-Else role in binary search.

10There are other possibilities to separate the numbers into two equal groups, for example,
“Is the number odd?”

DEVELOPING A PROGRAM TO CALCULATE LOGARITHMS 97

Notice that in both the Then and E1se lines of our program two actions
are taken. Both the number boundary and the corresponding log boundary
are moved.

The While loop is repeated until the boundaries have squeezed so close
that they approximately coincide; that is, when K = M, the process is
complete. In fact, the While loop is repeating exactly those approximation
steps shown on pages 93-94.

Here, then, is a program combining these two parts:

PROGRAM: LOGGRE1!!
: Prompt X
1—->W
: 0—M
: While X > W
: Wx10—W
M+1—M
: End (While)
: W/10—->U
i M=1—K
: While K # M
Vo (U*W) =V
(K+M) /2—L
If X >V
Then
V—U
L—K
Else
V—W
L—M
End (If)
: End (While)
: Disp L

There is much going on in this program. We know from the worked-
out steps on pages 93—-94 that if we enter X = 500, the second While
loop alone must be processed 30 times before we achieve the answer,
2.698970004 for log 500. Thus it is not unexpected that this program is
relatively slow. On my calculator it took almost 3 seconds to calculate
this value. The key, on the other hand, appears to produce an answer
instantly.

Several important questions remain to be addressed.

'I'This name is an abbreviation for “log greater than or equal to 1.”

98 LOGARITHMS

LOGARITHMS OF SMALL NUMBERS

The program we developed in the last section considers only numbers
X > 1. There is another restriction as well: we deal only with logarithms
of positive numbers. The reason: logs are exponents and rational exponents
on negative bases are useful only in advanced work.!> We do want to know
values like log .5 and log .00067, so we want to extend our program to
calculate logs of numbers in the range 0 < X < 1.

Notice that this problem involves calculation only of the characteristic
for we know that, for example, the mantissa is the same for log .00067 as
it is for log 6.7.

One way to address this problem would be to change our starting point
in the first part of the program. We could, for example, replace the program
lines

1—-W
0—M

with

.00001—>W
“5—M

This program revision would take care of logs for numbers as small as
.00001. Unfortunately, much of science involves numbers far smaller than
that. It would, of course, be possible to set those starting numbers still
smaller, but we seek a more general approach that will accommodate all
positive numbers.

We will consider two solutions to this problem. In the first we treat
negative characteristics differently from positive characteristics. Here is a
program segment that separates calculation of the characteristic for X > 1
(what we did in the previous program) and 0 < X < 1:

Prompt X
1—-W
0—M
If X > 1
Then
While X > W
W*10—-W
2Exceptions include a few powers like (—27)!/3 = —3. Others have complex roots like

(-8 =1+ i/3 as well as —2 (see Chapter 9), most of which require more advanced
calculators or computers.

LOGARITHMS OF SMALL NUMBERS 99

M+1—M
End (While)
W/10—U
M—1—K
Else
While X < W
W*.1—->W
M—1—M
End (While)
W—U
U*10—W
M—K
: K+1—M
: End (If)

The change here is the addition of more If-Then-Else program lines,
the Else lines taking care of values of X between 0 and 1.
Note that in that E1se section the While loop descends:

While X < W
W/10—-W
M- 1—>M

End (While)

As the value of W is divided by 10, the corresponding characteristic, M,
is reduced by 1.

Once W is less than X we must adjust the values of W, U, M and K
sothat U < X < W and K <log X < M. These lines are different from
those at the end of the Then instructions because W < X and M < log X.
The first instruction, W—U, gives us U < X, as we wish, and the second
line, U*10—W, places W where we want it, immediately above X in
numerical value:

: W—U

: U*10->W
: M=K
K+ 1->M

Then similar adjustments are made for M and K. As with W, M has
overtaken log X and we have M < log X. M—K corrects this to make
K <log X. Then the corrected value of M is found by adding 1 to this
value.

The second approach is much simpler. In it we will determine a cor-
rection to be applied at the end of the program. Here are program lines

100 LOGARITHMS

that will do this. They will be inserted at the beginning of the program
immediately after the instruction Prompt X:

: 0—C

: While X < 1
10*X—X

: C+1—C

: End (While)

Notice first that this While loop would be bypassed if X > 1.

To see how this program segment works, consider how it would find
the correction factor for log .005. Entering the While loop, X = .005, and
C = 0, we would then have

X C

Afterpass 1 .05 1
After pass 2 .5 2
After pass 3 5 3

and then, because X > 1 we would leave the loop with X =5 and C = 3.

These values would be used in the rest of the program. The (incorrect)
value of X would produce a characteristic K = 0, and the While loop of
that characteristic calculation section would be processed just once.

Then the mantissa would be calculated for 5 instead of .005, but we
know that they would be the same. When we reach the final step of the
full program, then, we have L = log 5. We change that step from Disp
L to Disp L—C to correct that characteristic.

Here is the complete program with these lines inserted (I leave the
preparation of a complete program for the other solution to this problem
to the reader):

PROGRAM: LOGX

: Prompt X

: 0—>C

: While X < 1
10*X—>X

: C+1—-C

: End (While)

1w

: 0—>M

: While X > W
W*10—>W
M+1—M

LOGARITHMS OF SMALL NUMBERS 101

: End (While)
: W/10—->U
: M-1—=K
: While K # M
: Vo (U*W) =V
(K+M) /2—L
If X >V
Then
V—U
L—K
Else
V—W
L—M
: End (If)
: End (While)
: Disp L-C

In the example we considered log.005, and I claimed that the cor-
rection factor, C = 3, would give us this log instead of the log 5 that
entered that last program line. If you were to run the program for log
5 and then for log .005 (or if you used the key to determine these
values), you would achieve the following results: log 5 = 0.6989700043
and log .005 = —2.301029996.

Your immediate reaction may well be: “Wait a minute. Aren’t those
mantissas supposed to be the same? And isn’t that characteristic of log
.005 supposed to be —37”

What has happened here is that your calculator has combined —3 +
0.698970004 to give —2.301029996. This is something that those of us
who learned logs using log tables must get used to. In tables mantissas
are always positive, so you end up with mixtures of negative charac-
teristics and positive mantissas like that log 0.005 = —3 4 0.698970004.
For computational purposes, the calculator answer makes many problems
much easier. For example, suppose that we want to calculate x = +/.005
by using logarithms:!?

log .005
log x = log V005 = 0g4

Thus we must divide log 0.005 by 4 and then find the antilog.'* If, in that
old world of table use, you did this problem, you would have been faced

130f course, we could simply calculate the answer by using 0.005"(.25).
14To see this, let x = +/0.005. Then log x = log +/0.005 and, by the properties of loga-
rithms, log x = (log 0.005)/4.

102 LOGARITHMS

with
—3 4+ 0.698970004
4

Clearly, direct division would cause problems because that would give
you a characteristic of —.75, which tells us nothing about the placement
of the decimal point in the answer. The usual way of handling this situa-
tion was to make an adjustment to replace the characteristic by a number
divisible by 4. Here, for example, you could change the problem to by
subtracting 1 from the characteristic and adding it back to the mantissa,'
to make this change:

—3 + 0.698970004 —4 + 1.698970004
4 4
Only now may the division be performed, giving —1 + .424742501. The
antilog of 424742501 or 10424742501 — 2 659147948. Finally, moving the
decimal point in this answer to represent the characteristic —1, you would

have an answer, .2659147948.
Now consider the same problem with calculator-based logs

log.005 —2.301029996
log V005 = 0g4 = 1

and antilog (—.5752574989) = 1075752574989 — 2659147948.
For applications to real-world problems, the calculator-calculated logs
not only simplify but also clarify processing.

= —.5752574989

CALCULATING LOGARITHMS WITH OTHER BASES

The program we have developed calculates the logarithm with base 10.
This is all that is needed to find a log to any base, because there is a
formula for conversion from a base we know (in our case base 10) to any
other base:

This formula is derived in Appendix N.
We will use the formula with A = 10,

5Tn school algebra, the procedure used is often still more complicated and involves
addition and subtraction of ten before making further adjustments.

CALCULATING LOGARITHMS WITH OTHER BASES 103

and since we have abbreviated log;, as log, we have

Through use of this formula we can now calculate logs with any base.
For example, if we wish to find In x, that is log, x, we need only use

log x

Inx =log, x =
log e

We can determine log e, that is, log 2.718281828, by use of our program

with X = 2.718281828. It would give us log e = 0.4342944819. Instead

of working this out for each calculation, we could merely substitute this

value in the formula to give

log x

Inx = ————
0.4342944819

or, since dividing by 0.4342944819 is equivalent to multiplying by its
reciprocal,16 2.302585093, we have Inx = 2.302585093 * x.

By an exactly similar procedure we could show that lg x, that is, log, x,
may be found by the formula lg x = 3.321928095 x x.!7

Instead of following that route, however, we can develop a program to
calculate loggz x for any base B > 1, by making very minor adjustments
to our program for calculating log x. Simply replace 10 by B throughout
the program and change the input line to Prompt B, X.

To be complete, however, we need to take into account one final special
case, the possibility that 0 < B < 1.

We know that B < 1 implies 1/B > 1, so let’s see what happens if we
use the change of base formula on log;,z X

_logg X
logp(1/B)

and loggz(1/B) =Y is equivalent to BY = 1/B; thus ¥ = —1 and we
have

logy/p X

_logg X logg X
~logzg(1/B) -1

16For anyone who has forgotten the meaning, the reciprocal of X is 1/X or X!, As used
here, dividing by X is equivalent to multiplying by the reciprocal of X.

7You could add Disp 2.302585093*X or Disp 3.321928095*X to the end of the LOGX
program to show the values of In X or Ig X.

104 LOGARITHMS

In other words, we can convert our base B < 1to 1/B > 1 as long as we
change the sign of the resulting log. We can accomplish this with one last
If instruction leading to one last change in the final program line. Here
are the necessary program lines that follow Prompt B,X:

1—F
If B < 1
Then
1/B—B
: “1—>F
: End (If)

And we take into account this sign change in the final program line by
changing it to

: Disp F(V — C)

This finally allows us to give a full program to calculate loggz X for any
value of X > 0 to any base, B > 0:

PROGRAM: LOGBX
: Prompt B,X
r 1—>F
If B < 1
Then
1/B—B
“1—>F
: End (If)
: 0—C
: While X < 1
: B*X—X
: C+1—C
: End (While)
1w
1 0—M
: While X > W
W*B—W
: M+1—M
: End (While)
: W/B—=U
! M—1—K
: While K # M
Vo (U*W) =V
(K+M) /2—L
If X >V

FINDING THE ANTILOG 105

Then
V—U
L—K
Else
V—W
L—M
End (If)
: End (While)
: Disp F(L — C)

When you run this program to find In 500, you would respond to the cues:

B? 2.718281828
X? 500

Alternatively, you could respond to B? with e(1). To find 1g 500, you
would respond with

B? 2
X? 500

FINDING THE ANTILOG

I conclude this chapter by answering a reasonable question: Do we need
another program to carry out the inverse operation, finding the antilog?

We need only recall that the antilogp x is equivalent to B*, to see that
we need no additional program. In Chapter 5 we showed how to calculate
rational powers. We need only use that program or the keys related to it
with the given base to carry out the calculation.

For example, we have found that log 50 = 1.698970004. If we want the
antilog of 1.698970004, we should get 50. You can see if this is the case by
entering 10"1.698970004, by using the key with X = 1.698970004
or by using the program that justifies those keys in Chapter 5 with B = 10
and E = 1.698970004. The result for all three calculations should be very
close to 50.

Similarly, if you want to find the antilog, X, the natural antilog, you
would calculate e*. If, for example, you knew that InY = 5.521460918,
you could let X = 5.521460918, and enter 2.718281828" 5.521460918
or use the ¢* key with X = 5.521460918 or use the Chapter 5 program
with B = 2.718281828 and E = 5.521460918. In every case you should
find the result to be approximately 250.

ARCHIMEDES’ CALCULATION OF =

Give me a place to stand and I will move the earth.

— Archimedes, quoted by Pappus of Alexandria (see Figure 7.1)

Figure 7.1 Archimedes’ lever moves the earth (engraving from Mechanics Magazine,
London, 1824.)

The electronics technology that supports modern computing is new, but
the mathematics is not. In fact, some of that mathematics is almost as old

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

106

ARCHIMEDES’ CALCULATION OF = 107

as civilization. In this chapter we will turn back the calendar 2200 years
to see how Archimedes calculated . It will turn out, as we will see in
the next chapter, that his approach to this problem is mirrored by ours
when we observe how cosine may be calculated.

Mathematicians consider Archimedes one of the half dozen or so finest
members of their community in all history, belonging in the company of
major figures like Newton, Kepler, Galileo, Euler, Einstein, and Gauss.
It has been said that, if he were to return today, he would quickly adapt
to modern terminology and become comfortable in any contemporary
university mathematics department.

Unfortunately, like Rodney Dangerfield, mathematicians like Archimedes
“get no respect” from the general public. The few who know anything about
him have been led to consider him a figure of burlesque, rushing out naked
from the Roman baths shouting, “Eureka! Eureka!”—1I have found it! I have
found it! Asked what he found, still fewer could respond. In that surely
apocryphal story told by Vitruvius 300 years after Archimedes died, the
mathematician had been challenged to determine whether a sacred wreath
was made, as claimed, of pure gold. In the bath Archimedes noticed how
his body displaced its volume of water, and he was able to apply this idea to
solve the problem of the gold crown.

Important though the concept of displacement is to physics, it wasn’t
much of an accomplishment compared to what Sherman Stein calls
Archimedes’ “dazzling discoveries about the surface area and volume
of a sphere, the center of gravity and the stability of floating objects.”
And he did much more. He contributed to military science, in particular
designing catapults that exploited his principle of the lever. He developed
the Archimedean screw, a pump for raising water. And, of course, he
approximated the value of m to three-digit accuracy: 3.14. In fractional
notation his values are 3% <7m< 3%.

That may not seem like much to us today until we recall that
Archimedes had to work with the nearly useless pre-Hindu-Arabic numer-
ation and had no easy means of calculating square roots. As I trace
his mathematical development in what follows, I will largely bypass the
additional problems these deficiencies created for him. You will see that
what he accomplished, even forgetting the roadblocks, was extraordinary
enough.

Recall that the number 7 is defined as the ratio of the circumference
to the diameter of a circle. Thus @ = C/d. This is, of course, equiv-
alent to that formula learned in middle school, C = md, by which the
circumference of any circle is calculated from its diameter.

108 ARCHIMEDES’ CALCULATION OF =

Figure 7.2 A circle with inscribed and circumscribed regular hexagons.

Archimedes begins his calculation of C/d for a fixed circle by squeez-
ing the value of C between the perimeters of inscribed and circumscribed
regular polygons, beginning with hexagons.

On the diagram in Figure 7.2 the circle has circumference C and diam-
eter d. We denote the sides of the inscribed hexagon by Sg and the sides of
the circumscribed hexagon as Tg. (Throughout this chapter the subscripts
designate the number of sides of the associated polygons.) The perimeter
Ps of the inscribed hexagon is then 6S¢ = Pg, and the perimeter Q¢ of
the circumscribed hexagon is 675 = Q. We then have the relationships
Ps < C < Q6,65 < md < 6T and finally 6S¢/d < m < 6T¢/d.

From this last inequality it should be clear that Archimedes had first
to calculate single sides of those inscribed and circumscribed hexagons.
Because all circles are similar, we can assume any size circle. We choose
the unit circle, so named for having r = 1. Thus we have in that inequality
d = 2. Archimedes then calculated the equivalent of S¢ =1 and Tg =
2/4/3.1

Here is how this may be accomplished.

For Sg the derivation is straightforward. The symmetries of the regular
hexagon of Figure 7.3 allow us to divide it into six equilateral triangles,
all of whose sides are equal to the radius of the circle. Thus, for the side
of the inscribed polygon, we have S¢ =r = 1.

ISchool students often learn “simplifying” processes to rid fractions of irrational denom-
inators. While this was quite reasonable when doing so avoided division by lengthy
decimals, calculators have eliminated the need for this extra step. The technique of ratio-
nalizing the denominator (or occasionally the numerator) is, however, often useful in
establishing equivalence of algebraic or trigonometric expressions.

ARCHIMEDES’ CALCULATION OF = 109

Figure 7.3

The side of the circumscribed hexagon requires a little more calculation.
We have the polygon of Figure 7.4, divided into six equilateral triangles,
but now the circle’s unit radius is the length of a perpendicular bisector
from the center to any of the sides of the regular polygon. (This segment
is called the polygon’s apothem.) To calculate Ts, we examine one of
those triangles in Figure 7.5.

If we represent Ts by 2x we can apply the Pythagorean theorem to one
of the smaller triangles to give us (2x)? = x> + 12. Simplifying, we have
3x2 =1,x* =1, x = 1/+/3, and T = 2x = 2//3.

Archimedes was able to approximate this irrational number with the

fraction %. We can calculate these values to compare them: 2/+/3 =
1.154700538 and % = 1.154716981.2

Figure 7.4

2 Actually there is a still better estimate with a smaller denominator: 209/181. To see how
to find such estimates, see Appendix K.

110 ARCHIMEDES’ CALCULATION OF =

Figure 7.5

Notice that his value is accurate to 10-thousandths or five decimal
places. How he derived this remarkably accurate estimation, he doesn’t tell
us and historians of mathematics have suggested several very complicated
procedures as possibilities. We will not explore those avenues here.?

Recalling our inequality 6S¢/d < m < 6T¢/d, we can now substitute
our values for d, Sg, and Ty to obtain

6(1) 6(%)
—<nmt<——= o 3<m<—
2 2 J3
Since 6 = 2 %3 = 2 % +/3 % +/3, this may also be written 3 < 7 < 2./3.
This gives us a first approximation range for the value of 7: 3 < 7w <
3.464101615.

That one-digit accuracy doesn’t tell us much, but it gave Archimedes,
just as it gives us, a starting point. He now observes that doubling the
number of sides of the inscribed and circumscribed polygons will give
better estimates.

Consider first the case for the inscribed hexagon and dodecagon of
Figure 7.6.

It seems clear that the sides of the dodecagon (12-gon) more closely
approximate the circumference of the circle, but let us establish carefully
that it does so, by considering what happens as one chord is replaced by
two connecting the same endpoints.

In Figure 7.7 we have S¢ < Si2 + S12 < arc(AB) + arc(BC). Each of
the inequalities is justified by the basic notion that the shortest distance
between two points is the straight-line segment joining them.

3Several sources of further information about Archimedes, including speculation about
his calculation of these square roots to such accuracy are included in the reading list at
the end of this book.

ARCHIMEDES’ CALCULATION OF = 111

Figure 7.7

Simplifying this expression, we have S < 251> < arc(AC). We multi-
ply through this inequality by 6 to obtain 655 < 1251, < 6 x arc(AC).

This inequality establishes that the perimeter of the hexagon, 6S¢, is
less than the perimeter of the dodecagon, 1257, which in turn is less
than the circumference of the circle, 6 * arc(AC), just what we want. We
have shown that doubling the number of sides creates a polygon whose
perimeter is closer to the circumference of the circle.

We turn next to the circumscribed hexagon and dodecagon of Figure 7.8
in order to establish that their perimeters “shrink™ toward the circle cir-
cumference as the number of their sides is doubled.

Again it looks as though the dodecagon approximates the circle cir-
cumference more closely than the hexagon does, but let us justify that
observation.

112 ARCHIMEDES’ CALCULATION OF =

Figure 7.9

Instead of considering sides of the polygons directly, this time we
focus on the length along the polygonal paths from A to C in Figures 7.8
and 7.9. This is one-sixth of the way around the circle. On the hexagon
this is AB + BC, and on the dodecagon AD + DE + EC. Note that the
symmetries of the regular polygons render AB + BC =Ty and AD +
DF + FE + EC = 2T|>. We must show that the second sum, which is
equivalent to AD + DE + EC, is less than the first, AB 4+ BC.

It turns out that we need consider only the points D and E. The
shortest distance between them is clearly DE; thus DE < DB + BE.
Add AD 4+ EC to each side of this inequality, and we have AD +
DE+ EC <AD+ DB+ BE + EC. Now combine AD + DB = AB
and BE + EC = BC on the right side of the inequality to give us the
desired AD + DE + EC < AB + BC. This is equivalent to 271, < Tg.

Multiplying each side of this inequality by 6 gives us 1271, < 674
and establishes that the perimeter of the dodecagon (the left side of the
inequality) is less than the perimeter of the hexagon (the right side) and
thus closer to the circle circumference.

4Alert readers will note that I have not established that the perimeters of both circum-
scribed figures are greater than the circumference of the circle. Although it seems obvious
(and is, of course, true), proving it here would take us too far from the basic argument.
It is proved in Appendix O.

ARCHIMEDES’ CALCULATION OF = 113

Although we have considered doubling the number of sides only in
terms of hexagon to dodecagon, essentially the same arguments work
whenever the number of sides is doubled. I encourage readers to see
that this is the case by following our argument as it would apply going
from inscribed and circumscribed squares to the corresponding regular
octagons.

Archimedes did not bother with the justification we have gone through.
He accepted it as true that doubling the number of sides improved his &
estimates. Instead, he developed a procedure for calculating S, from S,
and T3, from 7,,. He had to do so by painstaking effort for each step, but
the procedure he followed was always the same.

Beginning with the hexagon values that we have already calculated,
which led him to simplify 6Ss/d < m < 6Ts/d to 3 < w < 2+/3, he was
able to find the § and T values for polygons with 12, 24, 48, and 96
sides:

12851, 1271
d d
24S24 24T24

d d
48843 48Ty
d d
96596 96Ty
d d
We can generalize these inequalities with the single statement: nS,/d <
m <nT,/d, and we can also represent Archimedes’ laborious steps by

means of formulas, which turn out to be quite complex even in modern
notation. The two formulas are’

2JT?+4—4
Son =4/2—4/4— 52 and Tznz(”;—).

To avoid interruption of this development, the derivation of these for-
mulas is deferred to Appendix R.

>In order to avoid a square root within a square root, this expression may be rewritten

/ / Sn
. 4_S3:,/1+S7"+,/1—52—"

Proving this requires use of some algebra with which few mathematicians are familiar. It
is included with the formula derivation of Appendix R.

114 ARCHIMEDES’ CALCULATION OF =

While Archimedes had to work out in detail his individual values, we
need not do this. We can instead set a calculator to run a program for us
using our initial values and these formulas. Here is such a program:

PROGRAM : ARCHPI
. 6—>N
: 1S
: 2//3 T
: For (I,1,10)
Disp N,N*S/2,N*T/2
Pause
2N—N
Vv (2=V (4-8%))—>S
: (2% (T*+4)—4) /T->T
: End (For)

Some words of explanation are in order. N represents the current num-
ber of sides of the polygons. S and T represent the side lengths of the
inscribed and circumscribed polygons beginning with the values we calcu-
lated for the hexagon (N = 6). Once these initial values have been set, the
For loop first displays three things: the current number of sides and the
result of the division perimeter/diameter (recall d = 2) for the inscribed
and circumscribed polygons. These are the values between which 7 is
squeezed. Then the number of sides is doubled (2N—N) and the new side
lengths calculated by the conversion formulas before again displaying the
new perimeter/diameter results.

Here are the results of running this program through its first five For
loop passes together with correct significant digits underscored and an
additional column indicating the number of correct digits at each stage:

I N Py/d On/d Accurate Digits
1 6 3 3.464101615 1
2 12 3.105828541 3.215390309 1
3 24 3.132628613 3.159659942 1
4 48 3.139350203 3.146086215 2
5 96 3.141031951 3.142714600 3

Archimedes went no farther than this, and his fractional approximations
for square roots further restricted his results to 3;—? <7< 3%, which may
be represented to 10 digits (many of them carrying no meaning) in decimal
form as 3.1408450704 < 7w < 3.1428571429. Our program allows us to
continue, however, until we obtain 7 to double that number of digits of
accuracy. These represent the next five passes through the For loop.

ARCHIMEDES’ CALCULATION OF = 115

N Py/d On/d Accurate Digits

192 3.141452472 3.141873050 3
384 3.141557608 3.141662747
768 3.141583892 3.141610175
1536 3.141590463 3.141597036
0 3072 3.141592106 3.141593785

— 0 00 N\ |~
AN L L B

It is reasonable to modify our program to produce just that value for
accurate to seven digits. We need only move our Disp line to the end of
the program, thus printing the value of 7 only once:

PROGRAM: ARCHPIZ2
. 6—>N
1 1S
1 2/V3 ST
: For (I,1,10)
2N—N
Vv (2—V (4-8%))—>S
: End (For)
: Disp int(100000*N*S/2) /100000

Note that we have only calculated the values for the inscribed polygon,
a further simplification of the program. That final program line illustrates
a useful technique. It rounds the answer to five decimal digits by the
following steps:

N % §/2 = 3.141592106

100000 * N % S/2 = 314159.2106
int(100000 * N % S/2) = 314159
int(100000 * N * §/2)/100000 = 3.14159

There are, however, limits to our program. Even if we increased the upper
limit for / in the For loop, we would find ourselves no better off even with
our powerful 10-digit calculators than Archimedes was with his severely
limited resources. From here on our calculations lose accuracy because
the small errors from rounding—even beyond the 10 to 14 our calculators
carry—accumulate and lead to reporting inaccuracies. It is important to
understand, however, that the program itself, if extended to a higher /
limit, would continue to converge on the value of & when computers that
process more digits are used.

116 ARCHIMEDES’ CALCULATION OF =

Of course, we need only press the 7 key on our calculator to obtain a
10-digit value of m: 3.141592654. That value (which, as we have seen,
includes additional digits) is simply stored in memory.

To recapitulate, we have seen how a brilliant mathematician over two
millennia ago developed a systematic procedure for calculating 7. We
adopted his procedure, but we did so using the additional tools available to
us largely because of our improved numeration and algebra. This allowed
us to avoid Archimedes’ extremely burdensome calculations.

But we must not forget that we shortcut some important geometry to
make our story at least a bit easier to follow. If you wish to explore the
story we have investigated further, you should visit Appendix Q to find
how these complicated formulas for calculating the length of those new
sides when their number is doubled may be derived:

2/T2+4—4
Son =4/2—/4— 52 and T2n=%.

You may also wish to see a different and quite remarkable approach to
Archimedes’ problem in Appendix S.

3

CALCULATING TRIGONOMETRIC
FUNCTIONS

The analysis of angular sections involves geometric and arithmetic secrets
which hitherto have been penetrated by no one.

—Francois Vieta

Recall now that seven-line program from Chapter 1 that calculated
cosine:

PROGRAM: COSDEG
: Prompt D
Dxm /180—R
R«xR/4294967296—S
For (I,1,16)
S(4-8)—S
End (For)
Disp 1-S/2

In this chapter we will see why that brief program works. But in order
to do so, it is appropriate first to review some of the basic concepts
of trigonometry. In doing so I will focus my discussion largely on the
function cosine, since that is the function our program calculates. It is
important to understand, however, that the other five circular functions
are closely related to this one. Once we know cosine, we can calculate
the others by means of the following formulas, determining the correct

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

117

118 CALCULATING TRIGONOMETRIC FUNCTIONS

sign from the size of angle A:

+1
sinA = ++v/ 1 —cos? A, CSCA = —
V1 —cos? A

an A j:\/l—cos2A (A +cos A
anA=4+— """ COtA= — "
V1 —cos? A

cos A
1
cos A

sec A =

You may or may not recall deriving those relationships from the basic defi-
nitions of the various functions. The point here is simply that our calculation
of the single function cosine opens all of trigonometric calculation to us.

RIGHT-TRIANGLE TRIGONOMETRY

At some time in middle school most of us first met trigonometry. This
initial contact with the ratios sine, cosine, and tangent was strictly in
terms of that title word, because trigonometry clearly breaks down into
trig = triangle and metry = measurement. We determined sides and angles
of triangles through use of these ratios.

In fact, the subject at that level is even more restricted—to right tri-
angles. On any right triangle, we learned, the cosine is the ratio between

two sides:

adjacent leg
COSA= ———
hypotenuse

The sine and tangent have similar ratios:
ite 1 ite 1

gin A — opposite eg, an A — opPom e leg

hypotenuse adjacent leg

In Figure 8.1 that means cos A = b/c and cos B = a/c. The other functions
follow similarly: sin A = a/c,sinB =b/c,tan A = a/b and tan B = b/a.

b

Figure 8.1

THE CIRCULAR FUNCTIONS 119

Those trigonometric ratios! allowed us to solve simple measurement
problems in such fields as surveying and navigation.

THE CIRCULAR FUNCTIONS

Those definitions of cosine, sine, and tangent as ratios in a right triangle
necessarily restrict use to angles between 0° and 90°. Serious applications
of these functions call for extension of these concepts. To do so we need
to consider them as they are defined on a circle.

Strict usage requires us to call these extended definitions circular func-
tions but, like the words number and numeral, which to some purists
represent different concepts,” in general use, even mathematicians often
refer to circular functions as trigonometric functions. I will do so here.

Clearly, we do not want the values of the trigonometric functions that
we defined as right triangle ratios to be discarded as we move to new def-
initions. Instead we want to subsume those values in our new definitions.

Here is how that is done. We simply embed a right triangle, like the
one on which we defined the trig ratios, in a unit circle—that is, a circle
with radius one. We then center that unit circle on the coordinate plane
with x and y axes as shown in Figure 8.2.

Figure 8.2 A point on the unit circle.

IThe other trig functions, secant x = 1/cosine x, cosecant x = 1/sine x, and cotangent
x = 1/tangent x, are defined similarly.

2When we talk of five marbles, we are talking about a number of marbles. A numeral,
on the other hand, is a symbol for a number. Thus V and 5 are different numerals for
the idea of five-ness. Back in the 1960s much was made of this by University of Illinois
mathematics educator Max Beberman. In his UICSM algebra text Max had a student who
was confused about number and numeral claiming that half of 8 is 3, “the right half.”
Clearly the student was talking about a numeral in that case.

120 CALCULATING TRIGONOMETRIC FUNCTIONS

(cos A, sin A)

|
|
| A
sin A:

a =

o cos A /(1,0)

Figure 8.3 Circular function definitions.

p e

On the diagram in Figure 8.2, our right triangle differs only in nota-
tion from the one we used for our trig functions. For continuity we will
continue to use angle A now with its vertex at the origin O. By conven-
tion this angle A is considered positive when measured counterclockwise
from the positive x axis. Because the radius of our unit circle is 1, the
hypotenuse of our triangle is also 1. And finally, since we have chosen the
point where the hypotenuse meets the circle to have coordinates (x, y),
the horizontal side of the triangle is x and its vertical side is y.

It should be clear, then, that the trigonometric ratios on this trian-
gle would be cos A = x/1 = x,sinA =y/1 = y,and tan A = y/x. Also,
since cos A = x and sin A = y, we can modify our diagram by substi-
tuting these values wherever x and y occur. Figure 8.3 is the resulting
diagram.

Many things are important about this new definition of these circular
functions. Among them, A is no longer limited to acute angles; it can
increase to 90° and beyond. As the angle increases, we continue the values
of cosine and sine as the x and y coordinates of the point where the rotated
ray meets the unit circle. Also, since the values of cos A and sin A are
the coordinates of the point where the terminal side of the angle A meets
the unit circle, we no longer need that right triangle. In fact, when A is a
multiple of 90°, there is no triangle, but we still have values. For example,
when A =90°, x =0 and y = 1, thus cos A = 0/1 = 0.

Further, the Pythagorean theorem establishes a basic trigonometric
identity on the right triangle that will prove especially useful® sin> A +
cos’ A = 1.

The diagrams in Figure 8.4 show examples of these relationships for
angles larger than 90°. In order to insure that you follow this development,

3By convention sin® A represents (sin A)2.

DEGREES AND RADIANS 121

(cos A, sin A) y\

So - (cos A, sin A) \\\\ -
(cos (-A4), sin (-A4))

Figure 8.4 Circular functions beyond the first quadrant.

especially if you are meeting these ideas for the first time, you should
sketch similar diagrams for such angles as A = 0°, 30°, 45°, 60°, 120°,
180°, 225°, and 330° and, by noting the x and y coordinates for those
points, determine the values for cosine and sine for those angles.

DEGREES AND RADIANS

There is one additional point to be made about this diagram, and it is fun-
damental. Notice that A appears in two places. It labels both the angle at
the origin and the arc between the point (1,0) and the point (cos A, sin A)
on the circumference of the circle. Now clearly an arc and an angle are two
quite different things. Why and how, then, do we make this association,
and what is its purpose?

This correlation between the length of the arc and its angle (see
Figure 8.5) is arbitrary but useful. In terms of degrees we need only think
of one revolution as 360°, whether it be the angle or the arc. A quarter
way around, then, is 90°, half way, 180°, and so on.

Once that association is made, we follow it with a more fundamental
association. We have made the arc for the complete circle 360°, but on

Figure 8.5 Angles and arcs on unit circles.

122 CALCULATING TRIGONOMETRIC FUNCTIONS

the unit circle the length of this same arc (the circumference of the circle)
is 2. On the basis of this association, we again arbitrarily make the
connection 360° = 27, where the left and right sides of that equation
represent different kinds of measure.

This is similar to our saying that 50 mm = 5 c¢m, but 360° = 27 has a
more important role than do those measurement equivalents. The left side
of that equation is clearly labeled in degrees, but the right side carries
no corresponding label. The “measurement” assigned to that right side
is often designated in radians, so our equation may be written 360° =
27 radians. There is a sense, however, in which this designation misses
the central point of the association. The 2w arc length is a length, just
as the radius is of length 1.* We haven’t felt it necessary to call that
radius 1 anything, and in particular few would even think of calling it
1 radian.

So we will stick with our unit circle relationship 360° = 27 except
where clarity calls for use of the designation radian. We will see the
power of this relationship in a moment, but first let us observe some of its
consequences. We can, for example, divide each side of the equation by 4
to give us 90° = /2 or by 6 to arrive at 60° = /3 and so on. Another
important relation is obtained when we divide that original equation by
2m. That gives us 12;—00 = 1. Carrying out that division on the left side
tells us that about 57.3° = 1. That this is quite reasonable is shown by
Figure 8.6.

In Figure 8.6, notice that A is slightly less than the 60° angle of
the dotted equilateral triangle, which further justifies our calculation of
1 radian ~ 57.3°.

Figure 8.6

“If we wish to assign a unit of length to either the radius or the arc, then that same unit
must be assigned to both. Thus a radius of 1 cm would have a 90° arc length of 7/2 cm.
On the other hand, we cannot do that with the equation 90° = 27: (90°) cm = 27 cm is
meaningless because 90° ¢cm carries no useful meaning.

DEGREES AND RADIANS 123

r

Figure 8.7 A sector.

Alternatively, we can also divide each side of our original equation
360° = 27, by 360 to give us 1° = 7/180. These two equations suggest
the means of converting degrees to radians and vice versa. If our degree
measure is D and radian measure is R, we have: D x 7/180° = R and
R % 180°/m = D, or both relationships may be combined in the single

proportion:
D 180°

R T

Beware, however—the equivalence of 360° with 27 radians is only on
the unit circle and that association does not extend to circles with other
radii. On the sector of Figure 8.7, for example, it is straightforward to
demonstrate through similarity that s, the length of the arc intercepted by
the angle A on a circle with radius r, may be calculated by the formula
s = (A/360°)27r = 7rA/180°, if A is given in degrees. More simply, if
A is in radians, it is s = r A. Similarly, the area S of that sector in radians
is S = Ar?/2. These two formulas are important to engineering and other
applications.

Now why all the fuss? This is, of course, the crux of the matter. We
would not want to convert to radians unless it repays us in some way.
And, indeed, it does provide a payoff. If we wish to perform calculations
or explore relationships, we don’t want to base our activities on differing
units. Consider this in a rather simplistic context. Suppose that we wish to
know the area of a rectangular path 42 cm wide and 9.6 m long. It would
not be useful to recall the rectangle area formula, A = [w, and calculate
9.6 % 42 to claim that our answer is about 400. Instead, we would wish to
use common units, either centimeters or more likely in this case, meters.
The area in meters would be 9.6 x .42 ~ 4.0 square meters (m?).

This seeming digression is important in relation to the cosine program
that we seek to understand. As you will soon see, radians play an important
role in that program.

124 CALCULATING TRIGONOMETRIC FUNCTIONS

Figure 8.8 The graph of ¥ = cos X°.

THE GRAPH OF COSINE

An amusing example of the problems associated with the use of degrees in
equations involving circular functions results when inexperienced users of
graphic calculators attempt to plot the graph of cosx. They are surprised
when they enter this function and press the key. What they obtain
looks more like the graph of ¥ = 1 than the familiar wave of the cosine.
(If you have a graphing calculator handy, you might wish to confirm this
for yourself.)

The astonishing result shown in Figure 8.8 is due to the fact that they
(or you, perhaps) have set up the calculator in Degree mode and have
set the range of the x axis to a small number of units. As a result, the
calculator plots values of cosine for angles very near 0°. If you look back
at the table of trigonometric values in Chapter 1, you will see that the
values of cosine for small angles are all very near one.

As soon as you change the mode of the calculator to Radian, the graph
will take its appropriate shape as, shown in Figure 8.9.

THE COSINE PROGRAM

One line of the cosine program with which this chapter began is necessary
only if you enter a value of X in degrees. It is the line X*x /180—X.

That program line converts an angle X in degrees to angle X in radians.
If you enter an angle in radians, that work is already done and the line
would, in fact, create an error. Here, then, is the even simpler program
for calculation of cosine R when R is entered in radians:

THE COSINE PROGRAM 125

Figure 8.9 The graph of ¥ = cos X with X in radians.

PROGRAM: COSRAD
: Prompt R
R*R/4294967296—R
For (I,1,16)
S(4-S)—S
: End (For)
: Disp 1-S/2

Two other lines of the cosine program are central to the calculator calcu-
lation of cosine. They are S(4—S)—S and Disp 1-S/2. Once you see
what those two steps are doing, you should understand the program.

Consider the second of those program lines first.

On unit circle O with diameter AB as shown on Figure 8.10, angle X
or angle AOC has its equivalent arc X or arc AC. The coordinates of point
C are then (cos X, sin X). CD is drawn perpendicular to the diameter AB
to form triangle ACD, and radius OC is drawn. On the diagram, cos X
is the horizontal coordinate of point C. It is important to notice that
cos X is negative, since D is to the left of the origin O. For that reason,

(cos X, sin X) C

A(1,0)

Figure 8.10

126 CALCULATING TRIGONOMETRIC FUNCTIONS

—OD = cos X, and AD = 1 — cos X. CD, the vertical distance to point
C,i1ssin X.

We want to relate chord s = AC to cos X on this diagram. To do
so, we apply the Pythagorean theorem twice. In right triangle ODC the
Pythagorean theorem tells us that

cos’ X +sin® X = 1 D
and it also applies to right triangle ADC where we have:
(1 —cos X)? + sin’ X = s? (ID)

We can square 1 — cos X using the identity (a — b)> = a? — 2ab + b*:
(1 —cos X)?> =1 —2xcos X + cos® X. Substituting this in equation (II)
gives us

1 —2%cos X +cos® X +sin’> X = 52 (1D

But from equation (I) we have cos® X + sin> X = 1, so we can replace
these terms with 1 in equation (III) to obtain 1 — 2% cos X + 1 = 52,

which may be solved for cos X by the following steps:

2 —2x%cos X = s?
2 —52=2%cos X

1 —s2/2=cosX

Here we make a key substitution. We set s2 = S. When we do that, we
have 1 — §/2 = cos X.

Since we began the program by entering X, we display its cosine with
that last line instruction: Disp 1-S/2.

Be sure you see what this derivation tells us. It says that, if we can
find the square of the length, s, of that chord AC, that is, s2 or S, we can
display the value of cos X simply as 1 — §/2.

We are, of course, far from home free. We must now find a way of
determining S, knowing X, the angle or arc whose cosine we seek. Unfor-
tunately there is no direct way of doing this without applying the very
trigonometric functions we seek to determine. We will instead find a way
to approximate this relationship.

SThis is an important point. OD represents a segment and a segment length is always a
positive number. (You wouldn’t say that the side of a triangle is —3, for example.) But
here the cosine is measured to the left of the origin on the x axis and is therefore negative.
That is why we must say cosx = —OD.

THE COSINE PROGRAM 127

Figure 8.11
x/2
H
c
X/2
A(1,0)
Figure 8.12

Figure 8.11 represents the same unit circle as the previous diagrams,
but here we focus on s = AC and arc X, eliminating the other lines and
labels of that earlier diagram.

Now we bisect arc X, labeling its midpoint H and each half X /2. We
also draw chord AH of length A, to produce Figure 8.12.

We next add two segments to the diagram, diameter HJ and chord AJ
to obtain Figure 8.13.

Now more geometry theorems come into play. The first is a result of
the symmetry of the circle. Because that diameter HJ is drawn from the
midpoint of arc AC, it also bisects chord AC and is perpendicular to that
chord. Thus we have M the midpoint of AC, with CM and AM both equal
to s/2. AM is also perpendicular to HJ.

Another theorem tells us that any angle inscribed in a semicircle is a
right angle. In Figure 8.14, for example, the angles at P, O, and R are
all right angles.

128 CALCULATING TRIGONOMETRIC FUNCTIONS

Figure 8.13

0

Figure 8.14

In our case this means that angle JAH is a right angle and in right
triangle JAH we can apply the Pythagorean theorem to give us HJ? =
HA? + A%

The length of diameter HJ is 2 since we are working in a unit circle.
Substituting for HJ and HA then, we have 2% = h? 4+ AJ?. Solving this
for AJ, we have AJ = +/4 — h2. This gives us Figure 8.15.

We focus our attention on triangle HAJ which is extracted to give
Figure 8.16.

Now we need only recall the area formula for any triangle: area = %*
base * height. On this triangle we can use HJ as base and AM as height

to give us
s s
Area= —%2% - = —
2 2 2

We can also use AJ as base and AH as height to give us

1
Area:a*h*\/4—h2

THE COSINE PROGRAM 129

Figure 8.16

Now, clearly, since these two area results are for the same triangle,
they are equal. That means that § = $h+/4 — h? or s = hv/4 — h2.

That was a rather stiff argument, but we now have an important rela-
tionship that will be a key to our calculation. In order to avoid dealing
with that square root, we can square both sides of the equation to give us
52 = h*(4 — h?).

We began this development by setting # as the chord of half the arc
of chord s. This formula, however, tells us how to go from the smaller
chord to the larger, so it is a formula for the increase in chord length as
arc lengths are doubled. When we double the length of an arc, we can find
the length of the chord of the new arc s by substituting the length of the
shorter arc /4 in this formula. We will make use of this relationship shortly.

But first we must return to that original diagram on which we have the
means to obtain our cos X if we know s or its square, S. But we don’t
know the chord s; instead all we know is X, the length of the arc AC.

130 CALCULATING TRIGONOMETRIC FUNCTIONS

(cos X,sin X) C

B\ 5 5 /A (1,0

Figure 8.17 cosX =1 —s%/2.

Figure 8.18

We have just gone to a great deal of trouble to show how to obtain the
chord of an arc from the chord of an arc half as long (see Figure 8.17).
We apply this procedure many times as on Figure 8.18. On this diagram
the arc lengths are placed at the ends of the arcs.

We know now how to get from the chord for the arc of length X/2
(h on the diagram) to the chord of length X (s on the diagram). But we
could use this same procedure to go from X/4 to X/2, from X/8 to X /4,
and so on.

To see why we want to do this, note how the lengths of the chords are
approaching closer and closer the lengths of their associated arcs. On the
diagram it is already difficult to see the difference when we have halved
the arc only three times. Although the chord will never equal its arc, we
will make it as small as possible and then consider them close enough to
be considered equal.

Just how small should we get? The answer to this question is determined
by the number of digits of accuracy your calculator or computer manages.
In the case of calculators displaying 10-digit accuracy, we can get very
small, indeed. In fact, we can take half of the arc 16 times, so that we
have an arc of length X/2'® = X /65536 before we make this exchange.

We can shorten our work by dealing with the squares of the chord
lengths at each step. Recall in this regard that we found our relationship
to be simpler when we used squares in the equation s> = h%(4 — h?).

RECAPITULATION 131

We start, then, with the square of that tiny chord X/65536. That is
X?2/4294967296. And that is the source of that strange program line:
XxX/4294967296—S.

Notice that we have stored this value in S. This is not, of course, the
S that, we will use in our final program step. Instead, it is the square of
this very small chord. We will use S for 42 as well as s?.

This means that we can take that formula, s> = h?(4 — h?), convert it
to an algorithm step

(4 — h?) — 2 @

and let S play the roles of both 4> and s2. This leads us finally to that
program line: S(4—S)—S.

What we must do now is apply this process for finding the new § as
we double the chord length 16 times, finally

X X X

or as we calculate at each step
S—>new S —new § - --- > new S - new S — new S

ending up with the S corresponding to the square of the full arc length
X. To do this, we use the For loop:

For (I,1,16)
S(4-S)—>S
End (For)

RECAPITULATION

To see how this all comes together, we will go through the program
COSDEG step by step.

: Prompt X Enter angle X°.
! Xxm /180—X This line converts X° to radian measure.
! X%X/4294967296—S This line accomplishes four things. It:
(1) divides the arc X by 2! (or 65536),
(2) assigns that arc length to the
corresponding chord length,
(3) squares the result (X/65536) =
X x X /4294967296, and
(4) assigns this squared value to S.

132 CALCULATING TRIGONOMETRIC FUNCTIONS

It is also in this (third and last) line that the jump from that short arc to
its associated short chord is accomplished.

: For (1,1,16)
S(4-S)—S
: End (For)

These three lines apply the formula h%(4 — h?) — s2, 16 times with S
alternately playing the role of both 4% and s2. Recall that in the step before
this loop, S was already the square of that chord of length X /65536. When
the loop is ended, the S is the square of the chord for the arc X:

: Disp 1-S/2

Finally we apply that formula 1 — s = cos x to display the value we seek.

TRACING THE COSINE PROGRAM

I have made much in Chapter 1 and in this chapter of the brevity of the
program for calculating the cosine of an angle expressed in degrees. It is
useful, however, to see how much calculation goes on as those few lines
are processed.

Suppose, for example, that we seek cos 128°. When we enter the seven
program lines in our calculator or computer and run the program, it simply
carries out its responsibilities and prints the result: —.6156614754. What
we will examine in this section are the intermediate steps in that cal-
culation. Here is the cosine program modified to display intermediate
values.

PROGRAM: COSXDISP

: Prompt X

! X*r/180—>X

: Disp X

: Pause

! X*X/4294967296—S

: Disp S

: Pause

: For (I,1,16)
S(4-S)—S
Disp S

: Pause

: End

: Disp 1-S/2]

TRACING THE COSINE PROGRAM 133

The Prompt X command displays on the screen X=? and we would type
127 [ENTER.. This sets X = 128.

The next program line, X« /180—X, takes the current value of X (in
this case 128), multiplies it by , divides the result by 180, and stores the
result back in X (in place of the 128). As a result, now X = 2.234021443.

In the next step, XxX/4294967296— S, this value of X is multiplied
by itself, the result divided by 4294967296, and the quotient stored in S.
For our example, the result of this calculation is. 000000001162023238,
obviously a very small number. (If you adapt the program to print
intermediate values, this would be displayed in scientific notation, as
1.162023238E-9.) In any case we now have (suppressing any hidden
digits) S = .000000001162023238.

This value of § is taken into that For loop and run through the step
S(4—S)—S 16 times. Here are the step-by-step results displaying the
decimal values. The values show how the square of the chord length
increases each time the arc length is doubled:

Step Decimal Value

.000000004648092952
.00000001859237179
.0000000743694868
.0000002974779417
.000001189911678
.000004759645297
.00001903855853
.00007615387166
.0003046096872

10 .001218346

11 0048718995

12 .0194638625

13 .0774766081

14 .3039038077

15 1.123257707

16 3.231322951

O 0O\ B~ W

That is quite a bit of work for three lines of program. Once again you
should see the importance of calculating speed and the power of For
loops.

Finally, in that last line, Disp 1-S/2, the arithmetic gives us the
displayed value for cos 128°:

—.6156614754

134 CALCULATING TRIGONOMETRIC FUNCTIONS

So we see once again that much goes on inside your calculator when you
run a program.® I doubt that any reader would enjoy carrying out this series
of computations on a nonprogrammable calculator, to say nothing of trying
to do this arithmetic by hand, even though no step involves arithmetic
beyond subtraction, multiplication, and division. Here, for example, is the
arithmetic you would have to perform just to convert from degrees to
radians: 128 % 3.1415926535898/180.

AN ASIDE ABOUT THE COSINE CALCULATION
I consider this cosine program a favorite for a number of reasons:

1. It is brief and for that reason alone quite elegant.

2. It calculates a significant result that earlier but within my lifetime
could not be done.’

3. The rationale for the program derives from elementary geometry
and few of us ever see geometry used in two such perfect settings.

4. The program makes use of a quite remarkable but reasonable trick:
the switch from arc to chord for very short arcs.

The best way for anyone to gain full understanding of a lengthy devel-
opment like that of this chapter is to repeat the derivation in a different
setting. The program was developed here for a second quadrant angle.
You might try to go through the derivation for an acute angle.

Finally, I must remind you of a point made back in Chapter 1. Pro-
gramming speed is very important to programmers and this program, fast
as it is, is still not fast enough for professionals. They calculate the trig
functions by a quite different means that is the subject of the next chapter.

A PROGRAM TO CALCULATE ARCCOSINE

The program that we have developed will produce y from a given x in the
equation y = cos x. We conclude this chapter by addressing the problem
of producing x from such an equation, given y. This is the inverse of

SWe will see that the CORDIC program that carries out these calculations is equally
complex. We will meet it in the next chapter.

I am prepared to hedge here only slightly. It is within the realm of possibility that
individual results could be obtained through days of hand calculating drudgery. In fact,
exactly that kind of drudgery took up most of the waking hours of scientists like Johannes
Kepler. That they finally accomplished results as accurate as those we are able to obtain
in seconds I believe remains a remarkable achievement.

A PROGRAM TO CALCULATE ARCCOSINE 135

4

Figure 8.19

the function cosine, just as the square root function is the inverse of the
function squaring.

This inverse function is designated cos™! or arccos.? It is widely used in
mathematics, but a simple example will show an elementary application.

Suppose that you want to know the smallest angle of the 3—4-5 right
triangle of Figure 8.19.

We know that cos A =4/5, which is equivalent here to A =
cos~1(4/5).

A program that will calculate arccosine will reverse the process of our
program to calculate cosine. Here it is:

1

PROGRAM: ACOSDEG
: Prompt X

2(1-X)—>S

For (I,1,16)

S/(2+v (4-8))—S

End (For)

4294967296*S—T

Vv (T)—>R

180*R/7—D

Disp D

To compare the two programs, [will place the corresponding lines side by
side and consider them separately. Note that in these pairings the arccosine
segments are given in reverse order.

PROGRAM: COSDEG PROGRAM: ACOSDEG
D*7z /180—R : 180*R/mw—D

8Possible confusion is caused by the use of —1 here (and elsewhere) to indicate the inverse
function. In other settings it represents the reciprocal, as in x ! = 1/x. The expression
(cosx)~! = 1/ cos x should not be confused with cos~! x, the inverse cosine.

136 CALCULATING TRIGONOMETRIC FUNCTIONS

The first pair represent changing degrees to radians and radians back to
degrees, since (D x w/180) = R is equivalent to (180 % R)/m = D.

PROGRAM: COSDEG PROGRAM: ACOSDEG
: R%/4294967296—S : 4294967296*S—T
: v (T)=R

The same is true of this pair, except that 7 plays an intermediate role.
Indeed, the two statements of the arccosine program could have been
combined into one:’

: 65536*y (S)— R

Note that /4294967296 = 65536. Again the lines represent the reverse
conversion. In the cosine program R is squared and the result divided by
that large number. In the arccosine program R is multiplied by that large
number and the square root taken of the result:

PROGRAM: COSDEG PROGRAM: ACOSDEG

: For (I,1,16) :For (I,1,16)
S(4-S)— S i S/(24+v (4-S))— S
: End (For) : End (For)

The most complex reversal is in these For loops. The arccosine program
must reverse the process of S(4—S)—S. To do that, we must solve the
equation ¥ = S(4 — S) for S. This is equivalent to solving the quadratic
§2—4S+Y =0.

The quadratic formula with a =1, b = —4 and ¢ =Y provides the
following solutions: S =2 £ 4/4 — Y. In order to keep the answer within
the appropriate range, we must choose the negative sign. When we select
that and replace Y by S, we have the instruction 2 — /4 — § — S, but this
line is still problematic. When S is small, the value of the radical is nearly
4, making the square root close to 2. When this, in turn, is subtracted from
2, the result can have only a few significant digits, leading to inaccurate
computation results.

To address this problem, we again, as in Appendix R, rationalize the
numerator as follows:

2+ /E=S 4—(@4-5 S
Y/ s _4-d=9
24+ VE—S 24V/4—S 24/4-5S

9The 4294967296 is retained simply to show the same number in the program.

A PROGRAM TO CALCULATE ARCCOSINE 137

Because now we are adding the value of the square root, the problem
of getting too near zero no longer applies. Thus we have the resulting
instruction:

S/(24v (4-8)) —»S

PROGRAM: COSDEG PROGRAM: ACOSDEG
: Disp 1-8/2 : 2(1-X)—S

Set 1 — S/2 = X and solve for S, and you find this final equivalence.
While this program calculates cos™' x in degrees, a simple change
causes the program to display the answer in radians. You need only replace
the final two lines of the program with : Disp R.
The entire program is

PROGRAM: ACOSRAD
: Prompt X
1 2(1-X)—>S
For (I,1,16)
: S/ (2+v (4-8))—S
: End (For)
1 4294967296*S—T
: Vv (T)>R
: Disp R

CORDIC CALCULATION OF COSINE

Many things have more than direction; The magnitude is also a question.
With acceleration or force, And many more things, of course,
It’s vectors that make the connection.

—Jan Gullberg

A note at the outset: You have now explored how your calculator can be
programmed to perform various key functions. This chapter readdresses
one of those functions, cosine, from a different, more complex and tech-
nical perspective. In doing this it comes close to the way many calculator
functions are programmed by computer scientists. This chapter should
serve, then, as an introduction to the real world of calculator engineering.
In the process it will provide further insights into calculator programming
and important precalculus mathematics.

You have seen how simple programs can carry out the functions of
calculator keys. But a reasonable question is: Do the calculator keys really
work the way I have modeled them in earlier chapters?

Although calculator companies are often unwilling to divulge trade
secrets, you can find in technical manuals some partial answers to this
question, and that answer is, in the case of several functions you have met
here, quite simply “No”. What you have seen in this book are straightfor-
ward and elementary programs that will carry out the key functions, most
of them with very good accuracy and reasonable speed, but for efficiency
the programs “hardwired” into your calculator chips are in many cases
quite different and quite a bit more complicated.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

138

COMPLEX NUMBERS 139

How, then, does your calculator really work?!

To evaluate trigonometric, logarithmic, exponential, and other func-
tions, many calculators employ a single program represented by the
acronym CORDIC for coordinate rotation digital computer. In this
chapter I will introduce this approach by sketching a CORDIC-type pro-
gram that will calculate values for cosine. To do even that will require a
review of some additional precalculus mathematics and some additional
calculator features. By the end of this chapter you should see why we
have used simpler algorithms to accomplish these tasks.

COMPLEX NUMBERS

We first need to review some concepts associated with complex numbers.
Donald Stover has this to say about them in his textbook, Precalculus
Problems and Projects:

In their second year of elementary algebra, students typically encounter
complex numbers a + bi, where a and b are real numbers and i is a so-
called “imaginary number” with the mysterious property i> = —1. Students
may find this strange, even illogical. They can visualize a and b as locations
on the number line, yet i is nowhere to be seen; they are expected to accept
the idea of multiplying this ghostly quantity by b, adding the result to a,
and taking the whole thing seriously.

A contributing problem here is the choice of the word “imaginary” to
describe those bi numbers. There is a sense in which all numbers are imag-
inary—they represent abstract human concepts. In this regard consider
just one example: you will try in vain to find an instance of a real measure-
ment in the physical world around us. Why? Because the measurements
we are limited to in our world allow us only to make approximations.
That does not mean that real numbers do not exist, however. Quite the
contrary, real numbers are another very important mathematical concept
that gives us power over that physical world. We may not be able to
display them exactly, but we need numbers like v and +/3 to deal with
everyday mathematical problems.

So, too, do complex numbers give us power over our world. But for

historical reasons we are stuck with that misleading word, “imaginary”.?

'One way the keys do not work is the way you might hear conjectured by a teacher of
calculus: they do not work by evaluating power series.

2What word would do better? Perhaps “abstract” or “ideal” would do. Other possibilities
might be “orthogonal” or “perpendicular” numbers that would fit the Argand diagram
discussion to follow. All would at least avoid the implication of a kind of magic that
“imaginary” implies.

140 CORDIC CALCULATION OF COSINE

Imaginary

(—3,2)7 7777777777 2

|

|

| 1

|

| Real
<~ 6 o o ¢ o o o >

-3 1

Figure 9.1 The Argand diagram.

Figure 9.2 The Argand diagram: an alternate view.

A useful and important way of dealing with complex numbers, which
are indeed represented by a + bi, with a and b real numbers (we’ll return
to the role of that i shortly), is to extend the number line into a number
plane, called by mathematicians an Argand diagram. On that plane we plot
the point (a, b) to represent a + bi. Figure 9.1 shows how the complex
number —3 + 2i would be plotted.

On this diagram the x axis is now called the real axis and the y axis
is called the imaginary axis. Note that no i is necessary on the Argand
diagram. We can, however, use it by assigning the units on the imagi-
nary axis 1i, 2i, 3i, and so on, and calling the point (a, b), a + bi, as in
Figure 9.2. This is simply a matter of notation.

COMPLEX NUMBERS 141

This representation takes much of the magic out of complex numbers.
Their imaginary component is simply directed 90° from their real com-
ponent. However, this does not tell the entire story. We need more than a
way to represent complex numbers: we want to be able to calculate with
them just as we do with rational and real numbers.

The following rules are arbitrary, but they were not chosen by mathe-
maticians simply to confuse us. Rather, they were chosen to make complex
numbers conform to requirements imposed on mathematical systems.> (In
what follows we will continue with standard usage, calling the parts of
the complex number a + bi; with a the real part and bi the imaginary
part.)

We need to define the two operations for complex numbers: addition
and multiplication. Subtraction and division depend on those definitions,
simply “undoing” them. In defining these operations we must be careful
because we will be adding and multiplying the real numbers a, b, ¢ and
d in the process of defining the quite different rules for addition and
multiplication of complex numbers. To be sure that we keep the two
separate, I will temporarily use circled symbols, @& and ®, to indicate
complex operations, + and *, our familiar real-number operations. Once
the operations are defined, however, these distinctions will be dropped.*

Addition is straightforward:

(a,b) ®(c,d)=(a+c,b+d)
or

(a+bi)® (c+di)=(a+c)+ (b+d)i

Stated in words, the rule is simply: Add the real coefficients and the
imaginary coefficients separately.
Multiplication is much more complicated:

(a,b) ® (c,d) = (ac — bd, ad + bc)
or

(a +bi)® (c +di) = (ac — bd) + (ad + bc)i

The real coefficient of the product is found by subtracting the product
of the imaginary coefficients from the product of the real coefficients of

3The general properties, which apply to real as well as complex numbers, are called the
field properties. They include requirements such as the distributive law: that the numbers
X,Y and Z obey the rule X (Y + Z) = X % Y + X * Z, for the operations % and + as
defined in the system.

“Be sure you understand that, although the distinctive signs will then no longer be used,
the differences between real and complex operations will remain.

142 CORDIC CALCULATION OF COSINE

the original numbers. The imaginary coefficient is most easily seen as the
“outer” product, ad, plus the “inner” product, bc.

When the operations are defined in this way, consider the product
(0,1) % (0,1). Here a =0,b=1,c =0, and d = 1. Substituting these
values in the product rule, we have

0, D)%, 1)=0%0—1%1,0%1+1%0)=(—1,0)
or
O+ 1) % 0+ li) = —1+0i

If we prune away those real O values from this last statement, we have
i*i=—1ori?=—1, that strange and unexpected result that underlies
computation in this system. Taking positive roots of each side of that
last equation, we also have the equation that contradicts all that has gone
before with real numbers: i> = —1 is equivalent to ~/—1 = i.

Don’t misunderstand this. We are not changing the rules for real num-
bers. Square roots of negative real numbers continue to be disallowed
when we deal only with reals. They are allowed only when we work with
complex numbers. You can at least justify this to yourself by thinking of
these complex numbers as newly defined on that Argand diagram and no
longer restricted to a single number line.

There is also a very happy result that these definitions of addition and
multiplication of complex numbers (including their attendant, i = —1)
give us. Those complicated rules for addition and multiplication turn into
straightforward algebraic sums and products, and we can work with them
in exactly the same way as we work with other algebraic binomials

(a+bi)+(c+di)=(a+c)+ b+di
and
(a + bi) x (c + di) = ac + adi + bci + bdi*

but since i2 = —1, this simplifies to ac + (ad + bd)i — bd, and further
to (ac — bd) + (ad + bc)i, which is exactly what our definition tells us
to expect.

Numerical examples will show how straightforward these rules are:

B+2))+(5—-7i)=8—-5i
and
B+20))x(5—=Ti)

=154 10i — 21i — 14i*
=15—11i — 14(-1)
=15—11i + 14

=29 —11i

COMPLEX NUMBERS 143

I have written out all of the steps in that multiplication example. If you
did many such calculations, you would soon omit at least the second and
fourth steps.

You can see how this applies by considering how division is accom-
plished for complex numbers. The result in the form of a definition appears
to be a complicated mess:

a—+ bi ac—l—bd_i_bc—ad,
= i
c+di 2 +d*? 2+ d?

However, we can understand this definition as it relates to an algebraic
“trick” we met earlier that is used to rationalize the denominator of
fractions containing square roots in the binomial that makes up that
denominator.

For example, consider the fraction

2+4/3
3-5

The trick is to multiply this fraction by another carefully chosen fraction
whose value is 1, thus giving a product equal to the original fraction.
To form this fraction, we choose the conjugate of this denominator. This
conjugate is the same binomial but with the sign of the second term
changed. We use that conjugate, in this case 3 + +/3, in both numerator
and denominator of our new factor, thus:

2+V3 _ 243 2443 3445
3-V5 3-45 3-V5 3445

This choice of the conjugate now takes advantage of the fact that the
product (a — b)(a + b) = a®> — b? has no middle term. As if by magic,
the radical in the denominator is eliminated (although in this case the
numerator becomes more complicated):

2+f 3++5 6+2V543V3+415
35 345 4

Having recalled how this works, we can apply this algebraic trick to carry
out division of complex numbers, because the i with which we are working
is a square root and thus will become real when squared. Consider first a
numerical example:

2-3i
3+5i

144 CORDIC CALCULATION OF COSINE

We multiply by that carefully chosen fraction formed by use of the con-
jugate of the original denominator:

2—-3i 2-3i 3-5i
= >k
345 3+5 3-5i

Calculate the algebraic products of numerators and denominators:

_ 6—10i —9i 4 15i*
B 9 — 252

And simplify, using the fact that i> = —1:
21190
34

Or, separating the real and imaginary parts:

2119,

~ 31 34

Thus, in summary, we have:

2—-3i 21 19

3450 34 34

(You can check this result against that complicated definition of division
by letting @ =2, b = —3, and so on and carrying out the computations.
You will see that you arrive at the same result.)

Having computed this example, we can follow the same procedure to
see the source of that division definition:

a+ bi _a+bi c—di _ac—aa’i—l—bci—ba’i2

= * —
c+di cH+di c—di c? — d??

ac + bd + (—ad + bc)i ac—i—bd_'_bc—ad,

— = l

C2+d2 C2+d2 C2+d2

This gives us exactly the formula we sought:

a + bi ac+bd+bc—ad_
= i
c+di F4d* A+d?

Do not miss the point of all that processing. What you have seen is
that it is not necessary to memorize those complex number definitions

POLAR COORDINATES 145

of addition, subtraction, multiplication, and division. You simply apply
standard algebra, only recalling to use when appropriate i> = —1 and that
conjugate trick.

We now turn to what will appear at the outset to be a completely
unrelated topic.

POLAR COORDINATES

The coordinates most familiar to us are rectangular coordinates. To locate
a point (a, b) in the plane, we introduce two perpendicular axes—real-
number lines meeting at 0 on each, that meeting point called the origin.
The axes are arbitrarily called the x axis and the y axis. It is usual to
have the x axis horizontal and the y axis vertical. New perpendiculars are
now drawn from the point (a, b) to these axes and the value assigned to
a is the number on the x axis, to b the number on the y axis at the feet
of those perpendiculars. Figure 9.3 locates the point (—3, 2).

Figure 9.3 should, of course, be familiar to you. It is almost exactly
like Figure 9.1, but with one difference. Here the numbers on both axes
are real.

This is, however, only one way to locate points. A useful alternate
location system involves what are called polar coordinates. To locate a
point in polar coordinates, we begin with a single ray—in this case a
positive number line in the horizontal direction of the positive x axis
of rectangular coordinates. A point (r, A) is then located at a distance
r from the initial point of the fixed ray, again called the origin, with

Figure 9.3 Rectangular coordinates.

146 CORDIC CALCULATION OF COSINE

N

NN

o

o

Y
i
S

Y

/
é(4,240°)

Figure 9.4 Polar coordinates.

(_312)

Figure 9.5

its positive angle, A, measured counterclockwise from that initial ray.
Figure 9.4 locates the point (4, 240°). Notice that alternatively we could
use a negative angle here and represent this point as (4, —120°).

We now have two distinct ways to locate points in the plane: rectangular
coordinates and polar coordinates. It is very useful to be able to convert
from one system to the other. Managing that conversion allows us to
utilize whichever system best serves our purposes.

Figure 9.5 shows the points that were introduced in Figures 9.3 and
9.4. We will address the problem of converting each to the other system.

Consider first the point (4, 240°) in polar coordinates. In Figure 9.6, a
perpendicular to the negative y axis forms a 30°—60°-90° triangle whose
legs are 2 and 2+/3.

POLAR COORDINATES 147

/ 243

Figure 9.6

(\V13,146,3°)

Figure 9.7

Thus (4, 240°) in polar coordinates is equivalent to (—2, —24/3) in rect-
angular coordinates, and, since the degree notation makes clear with which
system we are dealing, we can write (4,240°) = (-2, —2\/§). Using
radian measure, this equation could also be expressed as (4, 4w /3) =
(-2, —2«/§), the context making clear which coordinate system we are
using.

For the other point (—3, 2), on Figure 9.7 we again form a right trian-
gle, this time by drawing a perpendicular to the x axis. The distance from
the origin is the hypotenuse of that triangle and is easily calculated by use

148 CORDIC CALCULATION OF COSINE

Figure 9.8 Rectangular and polar coordinates.

of the Pythagorean theorem to be /32 4 22 = +/13. The acute angle in the
triangle at the origin is cos~!(3/+/13) & 33.7°.% Therefore the angle mea-
sured counterclockwise from the origin is 180° — 33.7° = 146.3°. Thus
we have (3, —2) ~ (13, 146.3°).6

We can summarize the relationships between rectangular coordinates
(x, y) and polar coordinates (r, A) in the first quadrant as follows (see
also Figure 9.8):

Polar to Rectangular Rectangular to Polar

X =rcosA VXi+yr=r

y=rsinA cos~l(x/r) = A

Programs for carrying out these conversions are presented next. The pro-
gram RECTPOL’ which converts from rectangular coordinates, is longer
because angle A must be adjusted (through use of S in the program)

SRecall from the last chapter that cos™! or arccos is the inverse cosine function. Thus

cos~1(2/3) is the angle whose cosine is 2/3.

5The more usual development is to use tan~'(y/x) = A. We adopt this alternate approach
by using cos~!(x/r) because, as you will see in the program we will develop, we avoid
the problem that arises when x = 0, which would cause y/x to be undefined. When r = 0,
it is easy in a program simply to report the origin, 0. (No angle is appropriate in that
case.)

"Many scientific calculators have keys that carry out this and the following POLRECT
tasks.

POLAR COORDINATES 149

to appear in the correct quadrant and to be between 0° and 360°. This
program appears first:

PROGRAM:RECTPOL
Prompt X,Y
1—S
IfY <O
“1->8
J(X2+Y2)+R
ITR#£ADO0
Then
Disp R
S*cos~!' (X/R)—A
IfA<O
A+360—A
Disp A
Else
Disp O
End (If)

And here is the simpler program for conversion from polar to rectangular
coordinates:

PROGRAM: POLRECT

: Prompt R, D
R*cos D—X

: R*sin D—Y

: Disp X,Y

Polar Coordinates for Complex Numbers

Having converted real numbers between rectangular and polar coordi-
nates, we now apply the same concepts to complex numbers. Recalling
our coordinate system for complex numbers with the point (a, b) located
to represent the number a + bi, we simply change the rectangular coordi-
nates of Figure 9.8 to the complex coordinates of Figure 9.9. As a result,
we have similar coordinate changes, modified only by replacing x with a
and y with b.

Polar to Rectangular Rectangular to Polar

r*CcosA =a Jaz+br=r

rxsinA=b cosl(a/r)=A

150 CORDIC CALCULATION OF COSINE

Imaginary

a Real

Figure 9.9 Rectangular and polar coordinates for complex numbers.

This seemingly insignificant change, however, carries with it a significant
result. We can plug those values for a and b of the polar-to-rectangular
conversion into a + bi, and we have a + bi =r xcos A + (r x sin A)i
and, factoring the right side, we have a + bi = r(cos A + i * sin A).

Because A appears twice in that second factor, the right side is usually
abbreviated

r(cosA+ixsinA) =rcis A D

and we have a 4+ bi =r cis A. The right side of that equation is read
“r sis A.”

While the r cis A abbreviation is useful, it is always important to recall
what the abbreviation represents as recorded in equation (I).

Now comes the payoff we seek from this representation.® Polar rep-
resentation provides a straightforward means of carrying out multiplica-
tion. We begin with the product of two points expressed in polar form:
(r cis A) x (s cis B).

To carry out the multiplication, we must first replace those abbreviations
to give us r(cos A +isin A) *x s(cos B + i sin B). Reordering the factors
produces rs(cos A + i sin A)(cos B + i sin B).

8There are other significant payoffs as well. For example, by methods not described
here, polar representation of complex numbers allows us to arrive at such results as

J—8 —8iv/3=1+i3,—1 —i/3,+/3—i,and —/3 +i; and ™ + 1 = 0.

THE CORDIC SIMULATION 151

Now we multiply the factors in parentheses:
rs(cos Acos B +isin Acos B +icos Asin B + i’ sin A sin B)

We know that i2 = —1, so we can represent the real and imaginary terms
in the following way:

rs((cos Acos B — sin Asin B) + i(sin A cos B + cos A sin B)) (II)

Here we recall two trigonometric formulas:’
cos(A + B) =cos Acos B —sin Asin B
sin(A + B) = sin Acos B + cos Asin B

We substitute those values in equation (II) to obtain rs(cos(A + B) +
i sin(A 4+ B)), and this may be abbreviated rs cis (A 4+ B).

This series of steps establishes the following very important formula
for multiplying complex numbers in polar form:

(r cis A)(s cis B) =rs cis (A + B)

What this formula tells us is that we can multiply the values of two
complex numbers expressed in polar form by multiplying their values'”
and adding their angles. Those points may be considered the arrowheads
of two arrows called vectors from the origin, so we have a developed a
means of multiplying such vectors.

THE CORDIC SIMULATION

Now we have the mathematical tools with which to address the problem
of developing a CORDIC simulation program to calculate the cosine of
an angle, we’ll call it D, entered in degrees.“

To accomplish this, we will build up angle D from a series of smaller
angles for which trigonometric values are stored in memory. The angles
that we will use are (all but the first one approximations; we will see the
exact value later) 45°, 5.7°, .57°, .057°, and so on. (I will explain why
those particular angles are chosen and how they will be used shortly.)

Suppose we have D = 63.5°. We can approach that angle with those
given angles as follows:

9These formulas are proved in elementary trigonometry texts. We do not offer those proofs
here.

10The r values are called moduli (singular modulus). The angles are called arguments.
To calculate the cosine of an angle given in radians, you would first convert it to degrees
by multiplying the angle by 180/x.

152 CORDIC CALCULATION OF COSINE

Angle Used Angles Remaining

45° 63.5°-45° = 18.5°
5.7° 18.5°-5.7° = 12.8°
5.7° 12.8°-5.7° = 7.1°
5.7° 7.1°-5.7° = 14°
57° 1.4°-.57° = .83°
57° 83°-.57° = 26°
.057° 26°-.057° = .203°
.057° 203-.057 = .146°
.057° .146°-.057° = .089°
.057° .089°-.057° = .032°

.0057° and soon ...

Notice that 45° was subtracted once, 5.7° three times, .57° twice, and
.057° four times, each time approaching the given angle until another
subtraction would pass it. This process would continue for a series of
smaller and smaller angles, always coming nearer to the given 63.5°. (At
this stage, for example, we are already within .032°.)

Now, where did those angles come from? They are angles whose tan-
gents are successively 1, .1, .01, .001, and so on:

tan"'1 = 45°
tan~'.1 = 5.710593137°
tan~1.01 = .5729386977°
tan~'.001 = .0572957604°
tan~'.0001 = .0057295779°

That still doesn’t explain much, however. It is reasonable to ask why we
are dealing with the tangent function here when the angle multiplication
we have introduced involves sines and cosines. There is a reason. If we
used sines and cosines, we would have to carry two functions from step to
step. We get around this through use of the basic trigonometric identity:

sin A

tan A =
cos A

Recall our polar point representation: »(cos A + i sin A). We multiply this
expression by cos A/cos A, multiplying r by the numerator and dividing
the value in parentheses by the denominator. This gives us:

cosA sinA)

i
cos A cos A

rcosA*(

THE CORDIC SIMULATION 153

which simplifies to 7 cos A * (1 4 i tan A). Since we’re concerned here
only with the angle, we replace r cos A with R to give us R(1 4 i tan A).
That series of steps establishes that, when we are concerned only with
angles, we can represent cos A +i sin A by 1 4 i tan A.

Okay, so now we have a new way to represent a rotation around the
origin of A degrees. In other words, so long as we are not concerned
about the value of R, multiplying by 1 4 itan A turns a ray through any
point A degrees counterclockwise around the origin.

This works for points expressed as complex numbers in rectangular
form as well as in polar form.!2 Consider, for example, the point (X, Y) =
X + Yi. What would be the result of turning this point A° counterclock-
wise around the origin? We form the product (1 4 i tan A)(X + Yi) and
simplify the product with the following steps:

l*X+Yi+iXtanA +i%Y tan A
X+i(Y+XtanA) —Ytan A
(X —YtanA) +i(Y + Xtan A)

and this represents the point
(X—YtanA,Y + Xtan A)

Here is what this means:

Original Point Turn Result
(X,Y) A° (X —YtanA,Y + Xtan A)

If we now let tan A = T, we can also write this as

Original Point Turn Result
(X,Y) A (X—-Yx*xT,Y+X=x*T)

Sincetan A = T, A = tan~! T and, as we have noted, we will use the val-
ues 7' =1, .1, .01, and so on in the program, knowing that they correspond
to the successive angles A =tan~!1 =45° tan~'.1 =5.710593137°,
tan~! .01 = .5729386977°, and so forth.

12 Alert readers may question this, because I have not established that this kind of “mixed”
multiplication is acceptable. It does work; I simply do not complicate matters further
justifying this claim.

154 CORDIC CALCULATION OF COSINE

Now we are almost ready to present the CORDSIM program. Before we
do so, however, we need to store those values of angle A in the computer.
We will do so in a matrix by use of the following program:!3

PROGRAM : CORDMAT

: {1,13}=dim([A])

1T

: For (N,1,13)
tan—!'(T)—[A] (1,N)

: AFTST

: End (For)

Once that program has been run, your calculator will have
[Al(1,1) =tan~'1 =145
[A](1,2) = tan"' .1 = 5.710593137

[A](1,3) = tan"! .01 = .5729386977
[A](1,4) = tan"!.001 = .0572957604

[A](1, 11) = tan~' .0000000001 = .000000005729577951
[A](1, 12) = tan~! .00000000001 = .000000000572957795
[A](1, 13) = tan~ ! .000000000001 = .0000000000572957795

Now we are finally ready for the CORDSIM program:

PROGRAM: CORDSIM

1 : Prompt D

2 1T

3 : 1->X

4 : 0->Y

5 : For (N,1,13)

6 [A](1,N)—A

7 D—A—D

8 While D > O

9 : X—K

10 : X=T*Y—X
11 Y+T*K—Y
12 : D—A—D
13 : End (While)

13See Appendix A to see how to set up and use a matrix to store values.

THE CORDIC SIMULATION 155

14 D+A—D

15 : AFT>T

16 : End (For)

17 @ Disp X/ /(X* + Y?)

We’ll examine this CORDIC-type program in detail, continuing with our
earlier example, cos 63.5°:

1. : Prompt D This program calculates the cosine of the angle D
in degrees entered here. Within the program D will represent the angle
remaining as it is reduced. For our example 63.5 would be entered here.

2. : 1T T represents the tangent of the current angle (A) to be
subtracted. After line 2, T = 1, which is tan45°, with 45° the first angle
we will be subtracting.

3. @ 1->X

4. : 0—Y These two lines set the initial coordinates of the point
(X, Y). Here they are (X,Y) = (1,0) =1+ 0i. This is a point on the
positive X axis, the initial side of the angle whose cosine we seek. Figure
9.10 depicts our situation for our example at this point

5. : For (N,1,13) All but the final line of the program will be
within this For loop. It will run from 1 to 13 because we have stored
13 values of angle A in the matrix [A]. Each time through this For loop
another angle will be processed.

6. : [A](1,N)—A The current angle A is retrieved from matrix [A].
The first time through the For loop [A](1, 1) = 45, the angle whose tan-
gent, 1, was set in line 2.

Figure 9.10

156 CORDIC CALCULATION OF COSINE

7. : D—A—D Now we attempt our first subtraction. In our example
this 1s 62.5 — 45 = 17.5, so D has now been reduced to 17.5.

8. : While D>0 This While loop represents the heart of the pro-
gram. First, notice that the control of this loop is based on D being
positive. As soon as it is negative, the loop will be terminated. In other
words, as soon as we have subtracted angle A too many times, we will
leave the loop. In particular, suppose that our original angle A had been
less than 45°. Then, subtracting 45° from it would have given us a neg-
ative value. As a result, this While loop would have been skipped and
the angle returned to its original value in line 14.

Now we need to see what is going on within that While loop when
the angle can be subtracted.

9. : X=K
10. : X — T*Y—=X
11. : Y + T*K—Y These are the lines that rotate the vector. They
apply the processing we developed earlier:

Original Point Turn Result
(X,Y) A (X—-YxT,Y+X=x*T)

There is a problem here, however. If we used just the two instructions, X
— T*Y—X and Y 4+ T*X—Y , to carry this out, the X in line 11 would
be the new X calculated in line 10 and not the old one that we should be
using. That is the reason for introducing the temporary value X = K in
line 9.

The result of these lines for our example is shown in Figure 9.11.

(X,Y)

(1,0)

Figure 9.11

THE CORDIC SIMULATION 157

The final line in the While loop is

12. : D—A—D This carries out the next subtraction. In our example
this line would produce 18.5 — 45 = —26.5, and we would be left with a
negative angle indicating that we have passed the angle whose cosine we
seek. This negative value of D pops us out of the While loop, and we
apply the next instruction.

13. : End (While)

14. : D+A—D This line returns the value we subtracted in line 12
just before we exited the While loop. In our example, this line would
have calculated —26.5 4+ 45 = 18.5, and we would proceed with the angle
left after processing the 45° angle.

Only one line is left in the For loop:

15. : .1*T—T This line readies us for the next pass through the
For loop. At this point in our example, we are ready to work with the
angle remaining to be processed, D = 18.5°and T =tan A = .1 x 1 = .1.
This will be the tangent of the new angle A, 5.710593137, which will be
retrieved from matrix [A] in the next pass through the For loop.

These values will be processed as was 45° and its tangent. A =
5.710593137 can be subtracted from D = 18.5 three times, leaving a posi-
tive value of D, 1.368220589. Each of those values would be processed in
the While loop. At the end of that third pass, D — A = —4.342372548,
the loop would be completed, and the value corrected in the following
step back to D = 1.368220589.

In the same way smaller and smaller angles would be passed through
the 13 For loops. At the end of all this processing, the point (X, ¥) would
be very close to the terminal side of the angle 63.5°.

Figure 9.12 illustrates our situation graphically when we complete the
For loop.

16. : End (for)

We can use the triangle that we have created in this diagram to report
the cosine value. The triangle legs are X and Y, so its hypotenuse, the
length of the vector from the origin to the point (X, Y) is v/ X% + Y2,
Thus the cosine of the angle at the origin is

X
c0s63.5° ~ ——— =~ 4461978131
VX2 +Y?

and that is the reason for the final program line:

17. : Disp X/+/ (X*+Y?) Notice that we could equally well have
displayed any of the other circular functions:

158

CORDIC CALCULATION OF COSINE

(X,7)

Small D

g
|
|
|
|
|
|
|
|
|
1Y
|
|
|
|
|
|
|
|

Figure 9.12

Disp Y/X for tangent

Disp X/Y for cotangent

Disp Y/v (X* + Y?) for sine
Disp + (X* + Y?)/Y for cosecant
Disp v (X* + Y?)/X for secant

I close this chapter with a few comments about this program:

. Readers should not think that this is the CORDIC program; rather,

it is an attempt to show some of the ideas used by the engineers
who have developed CORDIC.

. If you run this program, you will see that it is very slow. Clearly,

the real CORDIC program that is built into your calculator is far
faster. It gives a near-immediate response. Among the reasons the
program of this chapter is so much slower is the fact that we had to
store values in and retrieve them from a matrix. The actual CORDIC
values, on the other hand, are built into calculator memory, and for
that reason they are far more readily accessible.

. What I find interesting and even disturbing about the CORDIC algo-

rithm is that is used to program exponentiation, logarithms, and even
square root and multiplication through calculation of trig and even
hyperbolic trig functions. Perhaps that is why the extremely sim-
ple square root program of Chapter 4 gives you an answer about as
quickly as does the CORDIC routine wired into your calculator.

. For a detailed and carefully developed but intellectually demand-

ing summary of CORDIC programming, see the excellent paper by

THE CORDIC SIMULATION 159

Richard Parris, “Elementary Functions and Calculators,” available
on the web from math.exeter.edu/rparris/peanut/cordic.
pdf or www.swarthmore.edu/NatSci/smaureri/Math6B/
Readings/calculatorsParris-rev.pdf.

PART III

DISPLAYING INFORMATION

10

GRAPHING

A picture is worth more than ten thousand words.

—Chinese proverb

Graphic calculators offer users the opportunity to picture complex func-
tions and in the process to gain significant insights into their meaning.
Consider in this regard just one example. The fishlike collection of trigono-
metric function graphs in Figure 10.1 is easily drawn and modified.!

This chapter is not, however, about drawing complex graphs. It is
instead about how you can manage your calculator’s screen through simple
programs. In doing so, you will gain insight into how electronic engineers
program your calculator’s graphics keys to perform their tasks. Again we
will manage the screen of the TI-84 as an example, but the management
of other graphing calculators is similar.

THE CALCULATOR SCREEN

Like your television screen, your calculator screen is made up of hundreds
of little squares called pixels (picture elements). Everything that is reported
on your screen—numbers, program lines, graphs, and even words—is

"You can obtain this complex picture on a TI-84 calculator by adjusting your calculator’s
to0 < X <3.8and "1 <Y < I; changing your angle measure in to
Radian; setting ‘‘FORMAT’’ to AxesOff; keying 12 N; entering the following
three equations in : Y =sin(X), Y = ~sin(X) and Y = sin(X) sin(N X); and finally
keying [GRAPH]. To modify the striping on the “fish”, you can change the value of N by
storing a new value in that variable.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc. 163

164 GRAPHING

Figure 10.1

shown by darkening (and in some calculators as in computers and TV
screens, coloring) those pixels.

The TI-84 screen has 5985 of those pixels, 95 across by 63 down.
You can access those pixels by using the “DRAW” Points menu. We will
begin by using only the command Px1-0n from that menu, because that is
the tool that parallels what calculator engineers use to build increasingly
complex screen images. Px1-0n does just what it says: it darkens just
one of those 5985 pixels.

Unfortunately, in what a computer scientist friend calls one of the great
bloopers of calculator engineering, the pixels are referred to by (row,
column) and they are numbered from the upper left corner of the screen
down and to the right. In the TI-84 the rows are numbered from 0 to 62
down and the columns are numbered O to 94 across (see Figure 10.2).2
This is a near-complete mismatch with our usual (x, y) coordinate system.

Things would be easier if the screen conformed to our normal X, Y
orientation with the x axis running to the right and the y axis up. If we
locate our origin in the lower left corner, we would like the coordinates
to be in the format shown in Figure 10.3.

What this means is that a transformation is always necessary in order to
reorient the (X, Y) coordinates in order to place them on the pixel screen.
In almost everything you do with pixels, you need to convert from (X, Y)

20ther screens differ. For example, the CASIO CFX-9850 has 64 rows and 128 columns
numbered from (0,0) to (63,127); thus it has 8192 pixels. But it, too, is oriented (row,
column) and from top to bottom. The TI-92 screen is larger, 105 rows by 240 columns,
thus it has 25200 pixels.

THE CALCULATOR SCREEN 165

[] []
(0,0) (0,94)

.(62,0) (62,94).

Figure 10.2 Pixel coordinates.

°
(62,0) (62,94)

(0,0) (0,94)
° °

Figure 10.3 First quadrant (X, Y) coordinates.

to (R, C), with R for row and C for column. You can accomplish this by
two program lines:

X [STO>| C
and

62—Y R.

You can use these lines in a program that will allow you to place single
pixels on your calculator screen. Here is such a program:

PROGRAM: PLOTXY
Prompt X,Y
X—C
62—-Y—R
Px1-0n(R,C)

To place many pixels on your screen, simply use this program over and
over. If you wish to erase the screen, use “DRAW” C1lrDraw.

Clearly, however, it would take a long time to develop interesting dis-
plays by having to run that program to darken each pixel. It turns out that

3If you are following this discussion with a calculator, you should clear any graph
equations you have entered.

166 GRAPHING

we can accomplish what that program does by using the single instruction
Px1-0n(62-Y,X) without even writing a program.

What we have accomplished so far is to locate points on the screen as
though the screen represented the first quadrant of a graph. Suppose that
you want instead to plot the points with the origin at the center of the
screen. To do so, you can simply replace two lines of that program

: X—=C
: 62-Y—R

with

i 474+X—C
: 31-Y—R

or write that single instruction Px1—-0n(31-Y,47+X).

AXES AND SCALES

If you drew those graphs at the beginning of this chapter, you used “FOR-
MAT” AxesOff. Leaving that setting, you can program what corresponds
to the instruction AxesOn yourself, because you can use the Px1-0n com-
mand to draw those axes. You can also add scales. To carry out these tasks,
clearly you must turn on many pixels, and programming will accomplish
this. For loops prove useful here.

In doing this, you don’t have to bother with changing (X, Y) to (R, C)
coordinates. You can simply use the original row, column (R, C) format
of the screen.* What you want to do is to turn on the pixels in the middle
row and the middle column of the screen. The middle row is the 31st row
(31 lines, 0—30 above; 31 lines, 32—62 below), and the middle column is
the 47th column (47 lines, 0—46 to the left; 47 lines, 48—94 to the right).

Here is a program that will draw these axes:

PROGRAM: AXES

: ClrDraw
For(C,0,94)
Px1-0n(31,C)
End
For(R,0,62)
Px1-0n(R,47)
End

4This way you also don’t have to worry about what coordinates are set in your calculator’s

WINDOW|

AXES AND SCALES 167

Figure 10.4 AXES output.

That program turns on all 94 pixels across row 31 and all 63 pixels down
along column 48. Output of this program is represented in the screen
shown in Figure 10.4.

You can now space single pixels along each of these axes to mark off
a scale. These pixels are in the row above and therefore one less than
that of the X axis (thus the 30th row) and the column to the right and
therefore one more than the Y axis (thus the 48th column). You can add
two more For loops to the PROGRAM:AXES to do this. Here is the full
program

PROGRAM: AXSCALE

: ClrDraw
For(C,0,94)

: Px1-0n(31,C)

: End

: For(R,0,62)

: Px1-0n(R,47)

: End
For(C,0,18)

: Px1-0n(30,2+5C)

: End

: For(R,0,12)

: Px1-0On(1+5R,48)

: End

That program places a scale point every 5 pixels. Clearly, minor modifi-
cations of that program would space the scale differently.

168 GRAPHING

Figure 10.5 AXSCALE output.

BUILDING ON THESE BASICS

Quality programming relies heavily on efficiency. When you work at
the very basic level as you have in the last section, things begin very
inefficiently. For example, you would not want to have to add all those
lines of the program AXSCALE (see output graph in Figure 10.5) to every
graph on which you wanted axes and scales to appear. What programmers
do, then, is to make AXSCALE a subroutine to be called up automatically.

Program lines like those of AXSCALE are therefore built into “FORMAT”
AxesOn. The location of those axes, which you could have changed by
modifications of the AXSCALE program, is then controlled by changing
the ranges you choose for X and ¥ in [WINDOW]|. This menu also allows
modification of the scales on your axes.

You can make graphs appearing on your screen conform to the (X, Y)
pixel coordinates we have been using in the AXSCALE program by setting
“FORMAT” AxesOn and in setting 47 < X <47, 31 <Y <
31, and both X and Y scales to 5.

The command Pt -0n builds on the Px1-0n command as well as on the
scale you implemented (which was itself based on the Px1-0n instruction).
When you use the Pt-0n command, you are working with regular (X, Y)
coordinates. Just as the axes and scale are built into the AxesOn setting,
the translations from (row, column) that we have shown are built into the
Pt-0n instruction by your calculator’s internal use of a subroutine.

These represent, of course, only the first steps in this process of build-
ing complex structures from simpler basics. But you are seeing in these
development stages what goes on throughout calculator and computer pro-
gram development. Your word processor, for example, with all its bells

DRAWING GRAPHS 169

and whistles, is also built up in the same way—by turning on individual
screen pixels.

DRAWING GRAPHS

You have seen how that one primitive instruction provides the basis for
organizing your screen and plotting points with X—Y coordinates. Now
let’s see how graphs are drawn. Consider the following program that
draws the graph of ¥ = X /32

PROGRAM: LINE
: ClrDraw
For (X, 47,47)
X/3—=Y
Pt—-0n(X,Y)
: End (For)

To run this program as written, you must make the changes in
and “FORMAT” that were described near the end of the last section.

Now let’s see what that program will do. Each time the For loop is
run, it produces a point pair that is plotted. It does this rapidly, but you
can see the line being formed if you run the program. Here are a few of
those pairs:

X Y
47 153
“46 153
-45 15
—44 142
43 144

Clearly, those Y values pose a problem. You cannot plot a pixel with
coordinates (—47,” 15%). The coordinates must have integer values. If you
run the program, you will see that the graph isn’t the smooth line that you
should expect for the linear function, ¥ = X /3. Instead it is a collection
of short horizontal segments.

Look closely at those points in Figure 10.6, and you will see that they
are rounded to the nearest integer. Thus the plot is really:

SLeave your [WINDOW] settings ~47 < X <47, 31 <Y < 31 and both X and Y scales
to 5. However, you can change “FORMAT” to AxesOn.

170 GRAPHING

Figure 10.6 Y = X/3 graph.

X v
~47 ~16
-46 15
-45 ~15
~44 15
~43 ~14

You may see how this is working nearer the origin where you have values
like:

X Y
0O O
1
L3
2
2 3
3 1
1
4 1 3
2
5 1 5
which translate to
X Y
0 O
1 O
2 1
3 1
4 1
5 2

DRAWING GRAPHS 171

It should be clear that one program line that is built into the calcula-
tor’s graphics program is MATH| round. In fact, if you add the step to
PROGRAM: LINE

PROGRAM: LINE

: ClrDraw
For (X, 47,47)
X/3—=Y
round(Y)—Y
Pt-0On(X,Y)
End (For)

you will draw exactly the same graph, having done the calculator’s work
for it.

You can demonstrate to yourself that this is what your calculator does
by clearing your graph, using to enter the single equation, ¥ = X/3,
and keying [GRAPH]. Your resulting graph will appear just like what you
drew with your program.

Your calculator includes some additional smoothing routines. You can
see one of them if you first clear the ¥ = X/3 equation you have entered
in [Y=], then run the program:

PROGRAM: QUAD
: ClrDraw
For(X,~47,47)
X?/30—-25—Y
Pt-0On(X,Y)
End (For)

Now go back to [Y=|, enter the function ¥ = X?/30 — 15, and press
'GRAPH]. This will give you both parabola graphs on the same screen (see
Figure 10.7) for comparison with your programmed graph below the one
obtained by the calculator routine. Away from the Y axis your graph has
gaps between the plotted pixels. The calculator-produced graph has added
intermediate pixels to make it appear that you have a continuous curve.
When you don’t focus on the detail of this screen as we are, the graph
appears continuous. Your program has not done this because it cannot
produce two Y values for the same X. But look closely at the calculator-
produced graph and you will see that it fails the standard vertical line test
for a function when it displays several pixels vertically aligned.®

This test requires that any function be intersected in at most one point by any vertical
line. It is based on the requirement that, for every X belonging to a function f, its image,
f(X), is unique.

172 GRAPHING

Figure 10.8 Y =3X.

You will see this in even more extreme form if you use your calculator
to graph Y = 3X as in Figure 10.8.

You might think that this is simply solved by changing your scales.
You can test this by changing the coordinate system in [WINDOW|. You
might try, for example, changing to "5 < X <5 and "5 <Y <5 with
scales both 1. That would give the screen shown in Figure 10.9.

This not only doesn’t solve your problem but also distorts your screen.
The reason is that the screen is wider than it is high. Look at the scales on
the axes, and you will see that they differ. This is something that should
always concern you when you are graphing. Since the number of pixels
horizontally is 95 and vertically is 63, their ratio is close to 3 : 2. For that
reason we might better try "6 < X <6 and "4 <Y <4.

DRAWING GRAPHS 173

Figure 10.9 Y = 3X, scale changed.

Figure 10.10 Y = 3X, scale changed once more.

Surprise! You get exactly the same graph (see Figure 10.10) that you
obtained when you first drew Y = 3X—except for the scale markings.
But think about this. The graph ¥ = 3X has slope 3 and, as Figure 10.11
shows, that means that tan A = 3 and A = tan"'3 or A = 71°. Thus, so
long as you have equally spaced X and Y scales, you will always have
this kind of graphing problem at least with this equation. Only “nice”
equations like Y = X and Y = 5 avoid this kind of problem.

Be sure that you understand what is happening here. Whenever you
ask your calculator to graph an equation, your calculator does what you
probably did when you first studied graphing using graph paper. Internally
it forms a table of corresponding X and Y values and then plots the
individual points. Unlike you, however, the calculator constructs that table

174 GRAPHING

AJC

Figure 10.11

Figure 10.12 The graph of ¥ = +2/34/36 — X2.

for all 95 X values, no matter what the scale; calculates the corresponding
Y values; and plots each (X, Y) point, using rounding in the process to
make the points fit on whole-number pixels.

That is why, for example, you cannot ask your calculator to
plot the ellipse 4x2 4 9y? = 144 directly. Instead, you must solve
this equation for y to give y = £2/34/36 — x2 and then separately
plot ¥ = +2/34/36 — X2 as in Figure 10.12 and separately draw Y =
—2/34/36 — X2 as in Figure 10.13 to produce the single graph of the
ellipse in Figure 10.14.

Readers should not take these comments as criticisms of the engineers
who program these calculators, but rather as insights into the kind of
problems they face when dealing with the finite number of pixels on a
calculator screen. You are mistaken if you think that these problems are
solved simply by having bigger screens with more pixels. The problems
are the graphic equivalent of our inability to express irrational numbers

DRAWING GRAPHS 175

Figure 10.13 The graph of ¥ = —2/34/36 — X2.

Figure 10.14 The 4X> 4 9Y? = 144 ellipse.

by terminating decimals. The electronic engineers who devise the won-
derful programs that drive calculators and computers have had to adopt
occasional compromises like these.

APPENDIXES

APPENDIX A

A PRIMER ON PROGRAMMING

There are a number of programmable graphing calculators, each with
its own idiosyncrasies. The programs in this book are designed for the
Texas Instruments TI-84 series and the earlier TI-83 series (see also
Figure A.1),! all widely used calculators, but they differ in minor ways
even from other Texas Instruments calculators like the TI-89 and TI-92.

Despite those minor differences, programming a calculator, including,
for example, not only other TI calculators but also calculators such as
those of the Casio FX series, is a very straightforward task. Readers of
this book who use those other calculators will find their programs to be
essentially the same.”

What you need to do if you get stuck is look here or in your calculator
manual for guidance.

All the following instructions assume that you know how to use your
calculator to carry out operations—for example, 3 [¥ 5 to multiply
3by5,5 to square 5, and 5) to determine the

logarithm of 5.

IThe TI-84 series includes the the TI-84 Plus and the TI-84 Plus Silver Edition. The TI-83
series is similar. This appendix applies to all of these calculators.

2Supplements are available for free download to modify this appendix and
the programs of this text for other calculators. You may obtain them from
www.buffalo.edu/~insrisg/InsideYourCalculator.htm. This website also
includes other materials suitable for all readers of this book.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

179

180 A PRIMER ON PROGRAMMING

Figure A.1 The TI-84 Plus Silver Edition.

USEFUL KEYS

There are several keys that are of general use in working with your cal-
culator. Let’s get them out of the way first:

erases the screen or, when you are editing a program, erases
the current program line.

erases the current character or instruction. It also erases a blank
program line.

[(=)] This is a troublesome key. You must be careful to distinguish,
especially in programs, between subtraction, which uses the [—| key, and
negative numbers, which use the key. Thus you would write 5 —| 3,
but 353

The scrolling keys. Near the upper right area of your keyboard is a
group of keys marked with arrowheads or triangles pointing left, right,
up, and down. These keys are useful in moving from line to line and back
and forth within lines on your screen.

followed by a key gives you the left-hand instruction above the
key. Three examples: to access the instruction QUIT, press [2nd], then

MODE]; to write the value of 7 to your screen, press 2nd, then [; and

3Standard usage does not make this distinction. Only in programs will this book use the
raised minus sign, as in ~ 3, which is the way such numbers will appear on your calculator
screen, to indicate that this key is to be applied.

A FEW BASIC PROCEDURES 181

to turn your calculator off, press [2nd|, then [ON]. (Don’t press two keys at
the same time.)

is like [2nd], but it gives you the right-hand instruction above
the key. These are mostly letters, as you would expect given the name
of the key. If you want to type an “A”, for example, press then
MATH. This key works only for the current key, then reverts back to
normal operation. To shift to this form for several keys in succession,
press 2nd], then [ALPHA| for A-LOCK; then to shift back, press ALPHA|.

gives you access to the way your calculator is formatted. I
suggest that you leave all but one key in the leftmost column darkened.
The exception is Degree. To make a change, scroll to the desired key
and press [ENTER]. When you are finished with this screen, press “QUIT”
(2nd], then MODE)).

(Notation: From now on I will write a key value that is obtained by
2nd| or ALPHA| in quotes and no longer give the keys to obtain that value.
Thus in the remainder of this appendix I will write “A” and not provide
the ALPHA}-then{MATH-key route to obtain that value. Those boxes and
quotes found in the text will not appear in the actual programs.)

“INS” is a very useful key. In normal entry mode, you type over an
entry. For example, if you move your cursor to a 3 and type 2, the 2 will
replace the 3. To change to Insert mode, press the “INS” key. Now what
you type will be inserted. For example, suppose again that the cursor is
on a 3 and you press “INS” 2 7. The 3 would be moved to the right and
the 27 would appear in front of it as 273. To add a program line, use
“INS” at the beginning of the line you wish to create. You can
exit this mode by typing “INS” again or by moving the cursor.

“QUIT” is also useful as an exit or escape. Unfortunately it will take
you out of a program that you are editing. If you use it, then, you must
reaccess the program to continue. This instruction does not erase anything
and it does not turn your calculator off.

Now finally we’re ready to enter and run programs.

A FEW BASIC PROCEDURES

How to Begin Entering a Program

1. Press [PRGM]|.

2. Scroll right twice. That will darken the word NEW on your screen
and show below it 1:Create New.

3. Press [ENTER|. Now your screen reads PROGRAM and on the next
line Name=.

182 A PRIMER ON PROGRAMMING

4. Type a series of one to seven letters to designate your program.
Your calculator is automatically in A-LOCK mode, so you do not
need to press [ALPHA| In fact, if you want to include numbers in
your program name, press to exit that alphabet format.

5. When you have named your program, press [ENTER|.
6. The screen will now show your program name and below it will

display a colon, : .

7. Begin typing your program lines, pressing [ENTER| each time you
finish an instruction.

How to Leave a Program You Have Been Editing
1. Press “QUIT”.

How to Run a Program Entered in Your Calculator

1. Press [PRGM|

2. Scroll down until you darken the program you wish to run.

3. Press [ENTER| Now your screen reads prgmNAME, with NAME
replaced by the name of the program you will run.

4. Press again, and the program will run. If your program asks
you to enter a number by displaying X=?, type a number followed by
ENTER]. If your program stops to display information, to continue,
press ENTER|.

5. When the program is finished, it will display “Done”.
How to Enter Program Lines

1. For many entries, you merely press the appropriate keys and the
instruction will appear on the screen. For example, suppose that you want
to enter the program line v/ (3)/2)—A, you would type “v/ ” 3)/2
v

2. Do not spell out instruction names like While or For. These instruc-
tions and many others are found by pressing again. (Remember:
You are already in Program mode when you are entering program lines.)
Three categories appear: CTL, I/0, and EXEC. CTL allows you to select
control structures, which will be described later. Seven of them appear on
your screen. To choose one of them, scroll down to it (using the down
arrow on that ring of arrows) and press or simply type the num-
ber of that instruction. If you scroll beyond instruction 7 you will find still
more, including one used quite often: 8:Pause. If you scroll right, you

PROGRAM CONTROL STRUCTURES 183

will reach I/0. These are input and output commands. The only ones
used in this book are 2:Prompt and 3:Disp. The third group, the EXEC
instructions, are not used in this book.

3. Press the key to find some mathematical functions. In this
book we have only used those listed under NUM. They include 1:abs(
and 5:int(.

4. An important set of relations is to be found by typing “TEST”. The
items under TEST include =, <, >, and so on. Under LOGIC you will
find and and or, which are also useful.

How to Edit a Program

Press [PRGM|, scroll to Edit and scroll down to the program name, press
ENTER|.

PROGRAM CONTROL STRUCTURES

Unless otherwise instructed, a program proceeds line by line in the order
the lines were entered. Control structures (listed under CTL when you
press while editing) change this order of program operation in
specific ways, or stop program operation. In this book we will use many
of these keys.

End As you will see in the following examples, this instruction sends
control back to the preceding control structure. Ends are like closing
parentheses. When one loop is embedded inside another, that loop’s
End occurs first.

If This is followed by a test, for example, If X=5. When the test
is true (in this case if X does equal 5), then the following single
program line is performed. When the test is false, that line is skipped.
(No Then or End is necessary in this case.)

If
Then

<program lines>
End Sometimes you want the If test to govern more than one line

of code. In that case write those program lines between Then and
End.

184 A PRIMER ON PROGRAMMING

If
Then
<program line(s)>
Else
<program line(s)>
End When If is used in this way, the program performs the Then
instruction(s) when the test is true; the Else instruction or instructions
when the test is false.

For This is a counting instruction. It applies a series of steps one at a
time within indicated limits. Here is an example of a For loop:

0 [STOS] N

For (I,1,5)

N+I [STO>| N

End

In this example, before we enter the For loop N is set equal to 0. Here
there is only one instruction between For and End, but there could have
been many.

The For instruction of this example, For (I,1,5), establishes a vari-
able, I, that will take on the values successively between the numbers that
follow. In this case these are I = 1,2,3,4,5.* Each time one of these values
of I is set, the instructions that follow are processed. Thus the For loop
here is a short way of processing the following five instructions:

0 + 1 |[STO>| N (N is now 1)
1 + 2 [STO>| N (N is now 3)
3 + 3 |STO>| N (N is now 6)
6 + 4 [STO>| N (N is now 10)
10 + 5 [STO>| N (N is now 15)

At this point the program leaves the For loop. Any following statements
are processed with N = 15.

While is a loop that is processed until the test included in the While
statement fails. In other words, the While instruction is saying “While
this is true, do the following:.” Here is a simple example of a While loop:

“It is possible to modify this by including another number in the parentheses following
the For. Two examples: in For (N,1,9,2), N would jump 2 each time, performing the
loop for N = 1,3,5,7,9; in For (N,5,3,71), N would reduce one each time, processing
N =54,3.

INPUT AND OUTPUT IN PROGRAMS 185

0 [STO>| N

: While N < 5

N-+1 N
End (While)

The instruction in this loop will be processed until N is no longer less
than 5. Here are the lines that will be processed:

0 + 1 |STO>| N (N is now 1)
1 4+ 1 |STO>| N (N is now 2)
2 + 1 [STO>| N (N is now 3)
3 + 1 |STO>| N (N 1is now 4)
4 + 1 [STO>| N (N is now 5)

After this final step N = 5, and it is no longer true that N < 5. At this
point the loop is exited and any instructions following it are processed.

Lbl allows you to set a target line for a Goto instruction. Include a
number in this line as in Lbl 1.

Goto sends program control to the designated Lbl line. For example,
the line Goto 1 would send program control to Lbl 1. Although these
instructions are sometimes useful, they can also cause trouble, creating an
endless loop. In this case you must manually stop program operation by

pressing ON, then “Quit”.’

INPUT AND OUTPUT IN PROGRAMS

It is worth repeating here the instructions used in this book that allow the
user to enter and retrieve data.

Prompt is accessed when editing a program by again pressing [PRGM,,
scrolling to I/0, and pressing [ENTER]. If you want to have the program
user enter a number N at some point in the program (usually at or near
the beginning), enter the line

Prompt N

When the program is run, it will stop at that line and display N=?. The
user would then type a value and press ENTER|. The program would then
continue.

SEarly programmers used Goto instructions extensively. Then a computer scientist named
Dykstra severely criticized such use because they created programs that looked like spider
webs and were very difficult to interpret and debug. Since then this control structure has
been rarely used. There are, however, situations when it best serves the programmer’s
purpose. Goto is used only a few times in appropriate places in this book.

186 A PRIMER ON PROGRAMMING

Disp (also on the [PRGM| I/0 menu) gives a way to present informa-
tion. If you want to have the program show the value of N, simply enter
the line®

Disp N

This “output line” is useful for other purposes as well. For example,
you can use lines like this at various points in your program as an aid to
debugging, which is programmer’s lingo for finding and correcting errors.
When used in the middle of the program, however, you must remember
that the program will not stop unless you add another program line. You
should enter

Disp N
Pause

This will display the value of N and stop program operation so that you
can look at it. (If you fail to include the Pause, the program will display
N but continue operation, often so fast that you will miss the report.) To

continue, press [ENTER|. The instruction Pause is on the |PRGM| CTL

menu. It is number 8.

MATRICES IN PROGRAMS

How to Include a Matrix in a Program

First, let’s understand what a matrix is. It is an array of numbers arranged
in rows and columns.’” For example, you might have the following array:

This is a 3 x 4 matrix. Arbitrarily, we refer to matrix dimensions and
matrix entries in the order horizontal row, then vertical column. If we

50nce a program has been run, you can also access any value that occurred in that program
by typing its name followed by ENTER]. You could, for example, have omitted the Disp
N line from our example and after the program has been run, type N [ENTER]. Of course,
this gives the final value of N, which may differ from its value at the Disp N location.
"Matrices (that’s the plural of matrix) are very useful mathematical structures that can
be manipulated in many ways by well-established rules: by addition and multiplication,
for example. In this book we will be working only with single matrices used to store and
change value entries. Those matrix applications appear in Chapter 9 and Appendix L.

PROGRAM APPEARANCE IN THIS TEXT 187

name this matrix [A], we can refer to individual entries. For example,
[A](3,4) is 2, the number in the third row and fourth column.

We can also enter or change entries in a matrix. For example, the
program line

: 5 [A](1,4)

would replace the 3 in that matrix with 5.

We must be careful here, however. To write [A], you do not type “[”
“A” “].” Instead you press MATRIX], then scroll down (if necessary) until
you reach the name you want, in this case [A] and then press [ENTER|.
Your screen will now display [A] and, if you want to refer to a particular
array entry, you enter (row,column) with regular keys.

To work with a matrix, you must first establish how many rows and
columns you will use and enter the row and column values. When in
normal and not program mode, you would press [MATRIX], scroll right
to EDIT, scroll down to the matrix you wish to use, and press [ENTER].
You then can change the number of rows and columns you want and
change the numbers in the matrix, pressing after each change.
Press “QUIT” to finish.

How to Set up a Matrix in a Program

Using matrices in a program mostly follows what has already been
described. There is one important difference, however. To create a new
matrix within a program, you must proceed differently. To establish the
matrix [D] with three rows and four columns, for example, use the curly
brackets—entered as (and). Here is the program line:

: {3,4) dim([D])

After typing in that line, press MATRIX], scroll right to MATH,
and choose dim (. Then you would again press MATRIX]| and choose [D]

before closing with the final).

PROGRAM APPEARANCE IN THIS TEXT

In order to clarify the structure of programs in this book, they are presented
with minor differences from the format in which those programs will be
typed. For example, loop instructions are indented and, as noted above,
End instructions have the name of the loop included. Programs that you
type include none of these.

APPENDIX B

INTERPOLATION

Interpolation is the process of finding intermediate values. Given two
values, you seek a third that lies somewhere between them. Consider a
simple example. I live near the Canadian border, so I am often confronted
with temperatures in Celsius (formerly called centigrade and still abbrevi-
ated °C). Familiar from childhood with Fahrenheit (F) temperatures, I find
it difficult to “think in Celsius.” When, for example, a Canadian weather-
caster announces that the high in the North Country will be 16°, I have a
problem. If I had a thermometer handy, it would show both temperatures,
but I do not carry one around with me.

My solution has been to memorize a few corresponding values. Among
them are 0°C = 32°F, 10°C = 50°F, and 20°C = 68°F. My thermometer
sketch in Figure B.1 displays my situation. It doesn’t show the intermedi-
ate values on the Fahrenheit scale. Now if I want to know the Fahrenheit
temperature that corresponds to 16°C, I interpolate between these values.
As a teacher 1 would have students write a proportion, but it is just as
easy for me to think 16 as being six-tenths of the way from 10 to 20, so
I want six-tenths of the way from 50 to 68. Since .6 * 18 is about 11, I
add 11 to 50 to give the Fahrenheit temperature of 61°.

Although there are other forms of interpolation, the kind most often
used in math and science is called linear interpolation. This assumes that

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

188

INTERPOLATION 189

M)

C F
20° 4 |- 68°
10° |l - 50°

ool 32

)

Figure B.1 A thermometer.

Figure B.2 Linear interpolation on a curve.

the relationship being considered is either linear (as was the temperature
example) or “close to” linear.

When we interpolate between trig functions, for example, we know that
we’re dealing with nonlinear curves. For most curves, linear interpolation
between nearby values gives reasonable answers;' whereas, as the diagram
in Figure B.2 shows, errors increase in size when the distance between
values is larger.

For example, in Figure B.2 interpolating along the straight line between
points C and D might well produce a satisfactory approximation to the

Mathematicians consider a straight line a special kind of curve. For linear curves (to
mathematicians “linear” is a synonym for “straight line”), the interpolated value is exact.

190 INTERPOLATION

curve through those points. But interpolating between points A and B
would give results farther from the true values on the curve.
Unfortunately the point of interpolation is lost on those who seek to
eliminate it from our schools. The concepts of interpolating to find inter-
mediate values and extrapolating to find values outside the range of known
values are important well beyond the bounds of simple computation.

APPENDIX C

PRE-ELECTRONIC CALCULATION
TOOLS

Reckoning with numbers is one of the hallmarks of civilization. Through-
out history humankind has wanted to know answers to those familiar
questions—how many and how much. In seeking those answers our fore-
bears were led to develop numeration systems and calculating tools.

Quite remarkably, some of our finest early mathematicians worked
without the benefit of reasonable systems of numeration. Written in about
300 BCE, Euclid’s Elements, for example, relies on geometric arguments
for the simplest arithmetic operations like addition and multiplication,
partly because the numeration systems available to him were so rudi-
mentary.

NUMERATION SYSTEMS AND NUMBER REPRESENTATION

Those early mathematicians had the same built-in tools for calculation
that you and I have now: our fingers. Those 10 digits almost certainly
provided the motivation for the base 10 or decimal number system in use
worldwide today.

Of course, counting by tens is far from the only method of grouping
numbers. We find vestiges of other numeration systems in a variety of
sources. For example, our time in seconds and minutes and our angle
measure in degrees reflect an early number base of 60. And the French

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

191

192 PRE-ELECTRONIC CALCULATION TOOLS

Figure C.1 An abacus.

language, with numbers like vingt (20) and quatre-vingt (four 20s or
80), displays a number base of 20. Some wags have suggested that early
French mathematicians had to remove their shoes in order to carry out
their computations.

Likewise, many of our common measurements— 12 inches in a foot,
12 hours on a clock dial, 12 months in a year—and our grocery pur-
chases—by dozens and by the dozen dozen or gross—reflect duodecimal
(base 12) numeration, a system still encouraged by The Dozenal Societies
of Great Britain and America.!

Mathematicians paid little attention to alternate numeration systems
until the advent of modern computers, when binary numbers provided
a remarkably efficient means of associating numbers with electronic cir-
cuitry. Until the advent of electronic processing, however, the focus was
entirely on the decimal numbers with which you and I compute.

Of the variety of early calculating tools, the abacus (Figure C.1) or
counting frame is surely the most familiar. Abaci (also known as aba-
cuses) come in several forms. One different from that pictured has one
bead above the bar, four beads below. In all forms, however, they remain
essentially decimal tools, the rods representing base 10 values reading
from the right just as we do in our numeration: units, tens, hundreds,
and so on. The lower beads represent units; the upper beads, fives. Thus,
the number 158 would be displayed, as on the sketch of Figure C.2, by
pushing to the center bar one 5-bead on each of the two rightmost rods,
three unit-beads on the farthest right, and one unit-bead on the third bar
from the right.

The many rods allow temporary entries to the left while the num-
bers being calculated are at the right. It takes little experience to become

ISee “The Dozenal Society,” available at www.polar.sunynassau.edu/~dozednal/
contact.html.

NAPIER’S RODS 193

8 O

< O

O

==

Figure C.2 An abacus representation of 158.

;

adept at addition and subtraction with this simple tool, but multiplication
becomes more complicated and requires both skill and memorization.

We usually associate this device with China, where it was in use by
1200 CE; however, quite similar counting boards were employed by the
Babylonians as early as 500 BCE. That all of them were decimally based
suggests how universal is the influence of our 10 fingers.

Remarkably, place value notation—units, tens, hundreds, and so
on—was not widely adopted for written numbers until about 1500. Before
that, numerical calculation (by abacus) and number representation (by
clumsy systems like Roman numerals) were separate and oddly unrelated
activities.

You can, for example, see some relation between the 158 on the abacus
and the Roman numeral representation for that same number, CLVIII,
but numbers with 4s or 9s in them are represented very differently; for
example, 49 in Roman numerals is XLIX, nothing like the corresponding
abacus representation.

NAPIER’S RODS

The abacus was not the only early calculating device designed to short-
cut arithmetic processing. The Scottish mathematician John Napier is best
known today for his invention of logarithms, but he was far better known
during his time—in the early seventeenth century—for his multiplica-
tion tools, variously called Napier’s rods (Figure C.3) or Napier’s bones,
the latter name derived from the fact that expensive sets were often
made of bonelike ivory. The popularity of this simple device, widely
used by anyone performing calculations, suggests how primitive was the
users’ arithmetic.

194 PRE-ELECTRONIC CALCULATION TOOLS

Figure C.3 Napier’s rods.

The rods came in two forms, long flat sticks with printing on both sides
or rods with square cross section with printing on all four sides. Figure
C.3 shows a few of the second type.

Notice that each rod is designed quite simply. A single digit appears in
the top square, and beneath it in subsequent squares appear the successive
multiples of that digit. For example, under the 2 on the rod at the right
appear multiples of 2 with their tens digit and units digit separated by
a slanted line: 0/2, 0/4, 0/6, ..., 1/6, 1/8. Placed next to each other, the
single digits at the top represent multidigit numbers. When these four rods
are placed as in Figure C.4, for example, they support the multiplication
of 5276 by various factors.

Suppose, for example, that you wish to multiply 5276 by 57. In Figure
C.4 the rows that represent multiples of the digits by 5 and 7 are shaded.
It is straightforward to read the products from those rows. They have been
separated in Figures C.5 and C.6 to show how they are obtained.

The product digits are read by adding the numbers diagonally. For
example, in the 5 row pictured in Figure C.5 there are no carries, but the
7 times row of Figure C.6 has the sum 4 + 9 = 13 and the 1 is carried to
produce 4 +4 4+ 1 =9 in the next place.

Now the final product 57x5276 is obtained by adding

50 x 5276 = 263800

7 x 5276 = 36932
57 x 5276 = 300732

NAPIER’S RODS 195

5 2 7 6
5 2 7 6
1 1 1
0 4 4 2
1 2 1
5 6 1 8
2 2 2
0 8 8 4
2 1 3 3
5 0 5 0
3 1 4 3
0 2 2 6
3 1 4 4
5 4 9 2
4 1 5 4
0 6 6 8
4 1 6 5
5 8 3 4
Figure C.4
2 1 3 3
5 0 5 0
2 6 3 8 0
Figure C.5
3 1 4 4
5 4 9 2
3 6 9 3 2
Figure C.6

It should be clear that the only service this device provides is as a sub-
stitute for memorizing the multiples of single-digit numbers. Despite this,
the rods were widely used until well into the twentieth century—for over
300 years.

196 PRE-ELECTRONIC CALCULATION TOOLS

THE FIRST CALCULATING MACHINES

The abacus requires the user to make exchanges between ones and fives
and between columns to perform the familiar carrying of addition and
borrowing of subtraction. A mechanical calculator carries out the addition
process for you. Michael R. Williams has formally defined a mechanical
calculator for addition as

a device that has three properties: a mechanism that will act as a register to
store a number; a mechanism to add a fixed amount to the number stored
in that register; and an additional mechanism having the ability to deal
automatically with any carry, from one digit to the next, that is generated
during the addition process.?

At least two of these three are apparent to anyone who has used a
calculator. If you wish to add 67 and 85, for example, you press keys to
store 67, press + 85 = to add, the calculator performing

6 7
+_8 5
1 2
1 4 0
1 5 2

in this case two carries (the one in 7 + 5 = 12 from the units to the tens
column, and the one in 1+ 6+ 8 = 15 from the tens to the hundreds
column) to provide the answer 152. While this seems evident to us as it
is displayed in an expanded form emphasizing the units, tens, and hun-
dreds columns with those carried digits in italics, millennia passed before
humans produced such a mechanism.

The first apparatus to perform those seemingly simple tasks mechan-
ically was not invented until 1623, when Wilhelm Schickard responded
to a request from the astronomer Johann Kepler to manufacture such a
device. Although Schickard succeeded in making the calculator, Kepler
never got to use it for his calculations because it was destroyed in a fire.

Apparently independently in 1645, a young Frenchman, 21-year-old
Blaise Pascal, constructed a mechanism to assist his father, an accoun-
tant. This first surviving calculating machine is now called the Pascaline
(Figure C.7) after its inventor. Pascal went on to become a world-renowned
mathematician, physical scientist, and philosopher.

2See Michael R. Williams, “Calculating Machines,” in Encyclopedia of Computer Science,
Nature Publishing Group, London, 2000. It is this definition that excludes devices like
the abacus and Napier’s bones from being considered mechanical calculators.

THE FIRST CALCULATING MACHINES 197

Figure C.7 The Pascaline.

Mechanisms similar to but much simpler than the Pascaline may occa-
sionally be purchased in school supply stores today. They operate on the
same principle as the odometer or mileage indicator of your car or motor-
cycle. On the Pascaline the wheels on the top of the box represent decimal
digits and are turned by the operator using a stylus. Each of those six dials
is numbered with the 10 digits, O through 9. After the machine is set to
zero, an addend is entered by turning each dial the appropriate number
of digits. If, for example, you rotated the right-hand dial five clicks and
the next dial two clicks, 25 would be displayed in those top squares. The
dials snap back to their original positions after they are turned. Now if
you wish to add another number, its digits are dialed in the same way.
The key feature of the machine is the carry effected when the values in
any of the top squares pass from nine to zero.

Among those who also constructed early calculators was Gottfried
Wilhelm Leibniz, the German who is credited as coinventor with Isaac
Newton of the calculus. In the late seventeenth century he made improve-
ments on the gearing that performed the carries of addition and added a
feature that gave the operator the ability to multiply. This multiplication
procedure remains a feature of mechanical calculators to this day. How it
was designed to carry this out will be explained when you meet the Curta
calculator later.

Although theoretically Leibniz’ calculator (Figure C.8) represented a
major advance, it had, as Stan Augarten® so succinctly puts it, “one great
drawback, much more serious than its inability to carry or borrow numbers
automatically—it didn’t work. Leibniz’s ambition outran his engineering
skill, and the only surviving version of the calculator ... is an inopera-
tive relic.”

3In Bit by Bit: An Illustrated History of Computers, Ticknor & Fields, New York, 1984.

198 PRE-ELECTRONIC CALCULATION TOOLS

Figure C.8 Leibniz’ stepped reckoner.

THE SLIDE RULE

Like the abacus, however, only Leibniz’ device offered any even theoret-
ical help with multiplication and division. You could, of course, consider
multiplication as multiple addition and calculate simple products like
265x3 by adding 265 4+ 265 + 265, but few would wish to calculate
265x23 by adding 23 of those 265s with such primitive machines.

The slide rule (Figure C.9), invented by William Oughtred in 1620—in
fact, 3 years before Schickard constructed his adding machine—addresses
the problems of multiplication and division, but only by approximation.

A slide rule is simply a tool used to add lengths. To see how this
works, place two rulers next to each other as shown in Figure C.10. In
this case the beginning of the upper ruler (its zero) is placed at the 2
of the lower ruler, and the addition of lengths gives the sums 2 + 0 = 2,
24+1=3,2+2=4,24+3=5,2+4=06, and so on. If intermediate
markings were included, fractional values could be added as well. Of
course, such calculations as these do not say much for the slide rule.
Addition of small numbers like these is hardly a justification for such a
device beyond early elementary school.

Figure C.9 An engineering slide rule.

THE SLIDE RULE 199

Ruler 2
1 2 3 4
. : : : :
2 3 4 5 6
Ruler 1
Figure C.10 How two rulers add.
Ruler 2
2 3 4 5 6 7 8 9
|]]] 1 1 1
I I I I I LI
2 3 4 5 6 7 8 9
Ruler 1

Figure C.11 How a slide rule multiplies.

The power of Oughtred’s slide rule resides in the nature of the lengths
marked on the ruler scales. He chose markings proportional to the powers
of a common base (called logarithms by mathematicians—see Chapter 7)
to make a slide rule that multiplies.*

In Figure C.11 we see a simplified picture of a slide rule aligned to
multiply by 2. Unlike the ends in the addition rule, the ends of each
rule seen here represent 1 (or a power of 10). In the position displayed
we can read from the rule: 2-1=2,2-2=4,2-3=6,2-4=28, and
2.5 =10. Notice that we could then use the rules themselves to help
us place additional markings. Thus, for example, directly above the 3 on
ruler 1 we could mark 1.5 on ruler 2, since 2 % 1.5 = 3.

Over time slide rules became more and more complex and were marked
with many additional scales. Some scales are, for example, proportional
to the values of trigonometric and exponential functions.® Other scales
allow the user to divide, to square, and to take square roots directly.

“It is quite easy to construct a multiplying slide rule by reading log values from a calculator
or table. For simplicity, assume a rule 10 inches long. Since log2 = .301..., mark 2 at
3 inches (three-tenths of the 10-inch length) from the left end of the rule. Similarly, since
log3 = .477..., mark 3 at 4.8 inches. Continue by this means to mark the rest of the
rule. Two of these marked rules combine to make a slide rule. A way to do this without
reference to tables is described in Appendix P.

SAs well as 20 - 2 = 40, 20 - 400 = 4000, 0.2 - 0.004 = 0.0008, and so on. The user must
place the decimal point appropriately by observation or the application of rules learned
in elementary school.

6Log-10g scales—there are usually three of them, marked LL;, LL,, and LL;—give the
user direct calculation of x” for values of x between 1.001 and about 22,000. Some slide
rules provide still more log-log scales—marked LL/0, LL/1, LL/2, and LL/3—to allow
direct calculation of powers when x is between 0 and 0.999.

200 PRE-ELECTRONIC CALCULATION TOOLS

There is even a log scale on many slide rules; its units are simply equally
spaced, just as on the addition slide rule. For more accurate reading, the
scales were very finely marked and a sliding hairline cursor was added.
Meanwhile, circular and even cylindrical models appeared, all based on
the same principles. Despite these improvements, however, slide rules
remained limited to three or occasionally four-digit accuracy.

REFINEMENTS

What is remarkable about this survey is the fact that until World War
II, that is essentially the entire story of the mathematics involved with
mechanical calculating. For three centuries the only improvements in cal-
culating instruments were refinements of these devices made by a variety
of manufacturers, many of them American.

Although little new mathematical processing power was added by these
machines, they became increasingly complex, and many of them contained
beautifully machined internal parts. An excellent example of this is the
Curta universal pocket-size calculating machine that was developed and
manufactured in Lichtenstein.

mCURTA"

N CURT HERZSTARK
"o

Figure C.12 A Curta calculator.

REFINEMENTS 201

Although this beautiful instrument is still basically an adding—sub-
tracting machine, by careful manipulation it may also be used to multiply
and divide and even, through a very complex process, to take square roots.
(The technique is related to the first square root algorithm considered in
Chapter 4.)

To add 456 with the Curta, the digits are set by sliding down the keys
on the side of the instrument and then the crank is turned. To subtract the
same number, the crank is rotated in the opposite direction. To multiply
456 by 3, the crank is rotated three times—thus interpreting multiplication
as multiple addition:

456
456
+456
1368

To multiply your original number by 23, after multiplying by 3 the
dial is twisted one place and the crank then rotated two more times, thus
mimicking our standard algorithm but with multiple addition at each stage:

456
x 23
456
456
456

456

+ 456
10488

This was exactly the feature first introduced by Leibniz 300 years earlier.)
The results of these operations are represented around the edge of the top
of the Curta calculator. Rotating the machine with that circular lever then
zeroes any results and readies the instrument for a new calculation.
Division on the Curta is carried out by multiple subtraction, an algo-
rithm used today in some European countries and once proposed as a
standard method in the United States.” The quotient of 10488 divided

7Employed in some “new math” projects and by the Scott Foresman Company in ele-
mentary school arithmetic texts published during the 1960s.

202 PRE-ELECTRONIC CALCULATION TOOLS

by 456 is equivalent to the number of times 456 may be successively
subtracted from 10488 before a remainder of O is obtained. Thus, just as
multiplication may be interpreted as multiple addition, division may be
interpreted as multiple subtraction. You could, of course, simply subtract
456 again and again, keeping track of the number of times you had to
subtract it. But you can also shortcut your work just as you did with mul-
tiplication, first subtracting 456s ten at a time, thus subtracting each time
456x 10 or 4560. Here is this procedure worked out with the number of
times subtracted recorded in a separate column to the right:

10488

— 4560 10
5928

— 4560 10
1368

— 456 1
912

— 456 1
456

— 456 41

0 23

This delicate little Curta calculator indicates how any adding-subtracting
machine may be used through careful operation to perform at least mul-
tiplication and division as well.

BEHIND THE SCENES

This history brings us up to the 1960s in terms of public information
about computers. Although more was going on behind the scenes? in
offices around the world, including even industrial and university research
laboratories, calculation was carried out by instruments such as those
described in this appendix. Discrete calculations, that is, calculations with
digits, just reached the level of multiplication and division, and those

8During the nineteenth and early twentieth centuries, people like George Babbage and
Herman Hollerith were setting the stage for the coming computer revolution, but their
work was little known to the public.

BEHIND THE SCENES 203

operations only by mechanically repeating addition and subtraction. More
advanced calculations with trig functions, powers, roots, and logarithms
were almost always carried out only approximately through the use of
slide rules.

And so, the picture of calculating in 1960 we are left with is that
of clerks in offices bent over adding machines, and engineering students
on university campuses everywhere defined by their slide rules, usually
carried in leather holsters hanging from their belts.

But the stage was set for rapid change, partly by developments that
had not yet reached the public and partly by theoretical advances. The
scientific demands of World War II and the advent of rocketry and the
space age provided the impetus for a revolution in calculation. Electronics
would fuel that revolution.

APPENDIX D

FERMAT’S LAST THEOREM

To understand Fermat’s last theorem or, as it is probably more appro-
priately known, Fermat’s conjecture, recall from school geometry the
Pythagorean proposition that holds for legs x and y, and hypotenuse z
of any right triangle, x> + y? = z2.

An infinite number of positive integer solutions fulfill this equation.
For example, x = 3, y = 4, and z = 5 satisfy it since 3% 4+ 4% = 52, Other
solutions include x =5,y =12, and z =13; x =8, y =15, and z = 17;
and x = 65, y =72, and z = 97. You can easily check these values with
a calculator.

In the midseventeenth century, Pierre de Fermat wrote in the margin
of an ancient Greek mathematics text that a similar relationship does not
hold for higher integer powers, that is, for x" + y" =z7", n > 3; x, y, z,
and n positive integers.

For example, we cannot find whole-number triplets like those for the
Pythagorean equation, to satisfy equations like x* + y3 = 3.

Fermat also wrote in that margin: “I have discovered a truly mar-
velous demonstration of this proposition that this margin is too narrow to
contain.” Some mathematicians think that he wrote this as a tantalizing
joke because that “truly marvelous demonstration” or, in fact, any proof
was not discovered for over three centuries despite the efforts of many
mathematicians.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

204

FERMAT’S LAST THEOREM 205

One way of addressing the problem is to seek to prove the conjecture
false simply by displaying a set of four integers (x,y,z, and the power n)
that makes the equation correct. Computers were utilized to try such sub-
stitutions systematically up to extremely large values, but no solutions
were forthcoming. Unfortunately, this does not prove the theorem true; a
still larger number might have worked.

Of course, some numbers come close to satisfying Fermat’s conjecture.
For example, 6> + 83 =93 — 1 and 9° + 10° = 123 + 1.

Two equations have recently been suggested by jokers to prove Fer-
mat’s conjecture false.!

178212 + 18412 = 19222 and 6107° + 8919° = 9066°

If you test those on your calculator (for example, calculate 6107° 4+ 8919°
and compare the result with 9066°), you will find that the results are the
same. The problem is that the answers reported are in scientific notation
with many digits not displayed.

It is easy to show that the first equation is false even without doing any
calculating. The left side adds an even number and an odd number; thus
that sum must be odd. The right side is even. The second equation does
not contradict parity (odd-even) laws as an odd plus an odd does give an
even sum. A check with a computer providing many-digit accuracy shows
that the right side is 453127232314 less than the left, however. Not too
close!

Finally, in 1994 Andrew J. Wiles of Princeton University> developed
a proof of the theorem as Fermat stated it (i.e., that there are no possible
solutions), but his proof requires whole areas of mathematics unheard
of in Fermat’s time. If, indeed, Fermat himself had a “truly marvelous
demonstration,” no one has yet come upon it.

IThe first of these equations appeared on the television comedy The Simpsons, whose
writers include several highly trained mathematicians and computer scientists. They later
showed still another example: 3987'% + 43652 = 447212,

2Although Professor Wiles received many awards for his work, he never received the
Nobel Prize. The simple reason: There is no Nobel Prize for mathematics! Despite
this, Wiles’ Princeton mathematics colleague, John Forbes Nash, Jr., did win a 1994
Nobel Prize, but his was in economic sciences. The deeply troubled Nash, a paranoid
schizophrenic, is the subject of the acclaimed 2001 motion picture, A Beautiful Mind, and
an even better biography by Sylvia Nasar with the same title, which provided the basis
for the movie.

APPENDIX E

AN EXTENSION AND AN
APPLICATION OF INTEGER
DIVISION

Consider again those program lines for integer division:
int(N/D)—Q

and

N-D*Q—R

These program lines not only provide additional processing power but also
can give you further insight into how our standard long-division algorithm
works.

LONG DIVISION

One of the best things about even the simplest of calculators—those
four-bangers that include only the operations addition, subtraction, mul-
tiplication, and division—is that they save us from having to do long
division. Everyone knows the algorithm; it is the calculation that puts
us off. Now you can calculate 10 digits of the quotient of exercises
like 7987)21358.07639 or 21358.07639/7978 with no difficulty. You sim-
ply key in the dividend or numerator, the division key and the divi-
sor or denominator, and press ENTER|. Bingo, up pops that quotient:

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

206

LONG DIVISION 207

2.674104969. Just imagine carrying out that division even to two or three
digits with paper and pencil!

You can gain some insight into the long-division process, however, by
examining a program that matches it. Here is one that will do this:

PROGRAM: LONGDIV

: Prompt N,D

: Lbl 1
int(N/D)—Q
Disp Q
Pause
N-D*Q—R
R*10—N

: Goto 1

If you run that program for those same division exercises, it will provide
the quotient one digit at a time. It will report 2, then 6, then 7, and so
on. It does the processing in essentially the same way you would do it
(except for false trials) with paper and pencil.

In the first pass through the loop, integer division is performed in the
int(N/D)—Q line for 21358/7978, producing and reporting the Q = 2.

2.
7987) 21358.07639

Then the remainder, 5384.07639, is calculated:

2.
7987) 21358.07639
15974
5384.07639

You probably immediately notice that the whole rest of the dividend is
“brought down” by this process. In the long division algorithm you want
only the next digit. But you can deal with that one digit simply by mul-
tiplying this remainder by 10. Then you will have

2.
7987) 21358.07639
15974
53840.7639

and when you rename this as our new quotient, you have the divi-
sion 53840.7639/7987 to perform in the next pass through the loop. But

208 AN EXTENSION AND AN APPLICATION OF INTEGER DIVISION

since this is integer division the quotient of that will be the quotient of
53840/7987, just as in our algorithm.
That next pass through the loop gives us

2.6

7987) 21358.07639
15974
53840.7639
47922

5818.7639

You again multiply that remainder by 10 to give you the integer division
59187/7987 in the third pass.

That doesn’t seem like much since you could have obtained a 10-digit
quotient simply by using the division key. It does, however, enable you
to do something you could not do before: you can continue the division
beyond the 10 digits that the calculator reports. Running this program
for this same exercise, for example, would not only produce the quotient
you reported by direct division but your process would continue giving
digits: 2.67410496932515337 and so on until you press “QUIT” to
stop program operation.!

This simple program has then provided you a way to extend long divi-
sion to as many digits as you wish.

Producing just one digit at a time is rather slow going, and there
is an easy way to give yourself more than one in this process. For
example, merely change the seventh line in that program from R*10—N
to R*1000—N.

That changes the remainder by moving the decimal place three digits
to the right instead of one:

2

7987) 21358.07639
15974
5384076.39

Although that division (5384076/7987) in one step with paper and pencil
would—unless you are some kind of calculating savant—be beyond your
capability, it poses no problem for your calculator. And the quotient (674)
would give you the next three digits of your answer instead of just one.

By brute-force continuation of paper-and-pencil long division you could have calculated
all these digits as well. You would have affixed additional zeros to the dividend as you
did so. The program assumes those added zeros as well.

EXPLORING REPEATING DECIMALS 209

You can, in fact, use this division to more rapidly accumulate quotient
decimals. In the exercises, for example, you would record

2. 674 104 969 325 153 374 233 128 834 355 828...

Notice also that if multiplying by 1000 gives you three digits at a time,
multiplying by 100000 would give you five digits at a time. Sure enough,
changing that program line to R*100000—N would give you five quotient
digits at a time. For our exercise, you would record

2. 67410 49693 25153 37423 31288 34355 82822 08588...

Recall, however, that you do have an upper limit of digits to work with
here. You must avoid calculating products of more than the number of
digits that your calculator can handle. With a 10-digit display, you should
limit your multiplications of quotient * divisor to that number. Since in
our example we had a four-digit divisor, we should limit ourselves to
six-digit partial quotients.

EXPLORING REPEATING DECIMALS

The exercise you considered in the last section simply provided a rather
mundane example. There are, however, interesting explorations to be car-
ried out with the program you have been using.

It can be proved that rational numbers are those numbers that may be
expressed by repeating decimals. It is worth examining some fractions to
see what those decimal representations look like.

Some of them you already know: % = .333333333..., % =
.666666666 . .., and % = .50000000.... You can use the program we
developed to examine others. (If you use that program as you left it at the
end of the section, you can print out five digits at a time.)

Here are the decimal digits for some fractions that don’t come out even
(as did 3):

% 71428 57142 85714 28571 42857 ...
& =.06666 66666 66666 66666 66666 .. .2

ZWhen printing out in groups, you have to watch for initial zeros as in the first group
here. If your output displays fewer than five digits, you must fill in the first digits with
ZEeros.

210 AN EXTENSION AND AN APPLICATION OF INTEGER DIVISION

2
3
2
2

=.69230 76923 07692 30769 23076...
=3

3 9130 43478 26086 95652 17391 ...

Instead of writing out such expressions, it is common to abbreviate
them by writing a dot over the first and last digits repeated or by showing
a bar over them. You see, then, that you could write the first three of these
fractions as

3 = 714285 (or .714285)

>
1 _
2 = .692307

1

(98

but what about %? Does that 39 indicate that it is beginning to repeat?
Test it and see.

That and other questions are worth exploring, many of them simply
by trying many fractions. Are there fractions with especially long cycles?
(Cycle is a technical name for the digits repeated.) Is there something
interesting about the cycle for %? What do you notice about how many
of each digit appears in the cycle for 6—11? There is a relation between the
digits in the first half of any cycle and those in the second half. What is
it? Is there a relation between the number of digits in any cycle and the
denominator of the fraction generating it? These and other questions can
lead you to some interesting number theory.

APPENDIX F

BINARY ARITHMETIC

Just as we have algorithms for decimal calculations like 235 + 507 and
235 % 507, we need similar algorithms for binary calculations like 1101 +
1011 and 1101 x 1011.

This takes us back all the way to primary grades when we learned how
to add and multiply single-digit numbers. We had to learn what are often
called the “facts”: 3+ 5 =8, 3 x 5 = 15, and so on. If we include all the
single digits O through 9, there are 100 such facts for addition and the
same number for multiplication. Here they are organized into Tables F.1
and F.2.

When you think about it even now, those 200 facts were quite a bit
to learn. And here is where the great gain in binary processing is to be
found. We need only four facts for each of the binary tables, as shown in
Tables F.4 and F.5.

In the decimal addition table that 1 + 1 fact gave us 2 (see Table F.3),
but we have to recall that the number corresponding to decimal 2 is the
binary 10. Thus the corrected table should be as shown in Table F.4.

It turns out that the multiplication table is even simpler, as seen in
Table F.5.

You should immediately notice that, unlike the addition table, this mul-
tiplication table (Table F.5) involves only single digits.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

211

212

TABLE F.1. The Decimal Addition Table

BINARY ARITHMETIC

+ 10 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 100 11 12 13 14 15 16
8 8 9 0 11 12 13 14 15 16 17
9 9 1 11 12 13 14 15 16 17 18
TABLE F.2. The Decimal Multiplication Table
* 0o 1 2 3 4 5 6 7 8 9
0|0 0 O 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
210 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 | 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 | 0 O 12 18 24 30 36 42 48 54
7 0o 7 14 21 280 35 42 49 56 63
8§ 1 0 8 16 24 32 40 48 56 64 72
910 9 18 27 36 45 54 63 72 81

TABLE F.3. The Binary
Addition Table (Almost)

+ 0 1
0 0 1
1 1 2

TABLE F.4. The Binary

Addition Table

+ 0 1
0 0 1
1 1 10

The great power of these two binary arithmetic tables derives, how-
ever, not from their ease of recall but from their simple relationships
with electronic circuitry. In fact it is this relationship that is the second
essential (the first has been said to be binary numeration) of the computer

revolution.

BINARY ARITHMETIC 213

TABLE F.5. The Binary
Multiplication Table

% 0 1
0 0 0
1 0 1

Voltage
source

Figure F.1 An electric circuit.

This book is about algorithms and programs and not about calculator
circuitry, but some understanding of how that circuitry works will give
you a better sense of what takes place inside your calculator. You will see
that the statement, “Calculators calculate simply by converting numbers
to binary and working with them internally,” may be correct but it hides
a great deal in that phrase “working with them internally.”

You probably learned in a school science class about two basic kinds of
electrical circuits: series and parallel. Combinations of such connections
are what process binary arithmetic in your calculator.

At the simplest level we can create a circuit to turn on a lightbulb with
the connection of Figure F.1.

Here you have a power source, say, a battery, and wires connecting the
battery to a lamp.! Hooked up in this way, the light will remain on as
long as the battery charge and the bulb life last.

If we insert a switch in this circuit, we can turn the bulb on and off,
just as we do a flashlight as shown in Figure F.2.

This gives the following (not very interesting) result:

Switch Lamp

Off Off
On On

'You can easily create each of these circuits with a small battery, a lightbulb, and pieces
of single strand copper wire. You don’t even need to purchase switches, but they make the
operation a bit easier. If you use a small battery, you don’t have to worry about electric
shock.

214 BINARY ARITHMETIC

Off Lamp
/ Oon

Switch

Voltage
source

Figure F.2 An electric circuit with a gate.

on Lamp
/ Off

Switch

Voltage
source

Figure F.3 An electric circuit with a NOT gate.

If we let off be represented by 0 and on by 1, we have the following
table:

Switch Lamp

0 0
1 1

We can play a trick on this table simply by switching the labels on our
circuit as in Figure F.3, reversing the labels off and on.

The arrangement shown in Figure F.3 gives us (since we have not
switched the status of the bulb)

Switch Lamp

0 1
1 0

As we will see, this simplistic trick turns out to be very useful. For
what should be obvious reasons, it is given the name NOT. It is denoted
in electric circuit diagrams as in Figure F.4.

Now we consider the situation with two switches. In the first we have
the series circuit of Figure F.5.

BINARY ARITHMETIC 215

Figure F.4 A NoT gate symbol.

Voltage
source

Figure F.5 A series circuit.

Clearly we will only have a circuit when both switches are turned on
as in the following scheme:

Switch B
‘ off on
Lamp off Lamp off
Lamp off Lamp on

Switch A Off
On

which translates, again with off = 0 and on = 1, into

Switch B

| 0 1

Switch A 0 0 O
1 ‘ 0 1

This series circuit is called an AND circuit, which is designated in circuit
diagrams as in Figure F.6.

The reason it is called an AND circuit or AND gate is its relation to
the logic of the word “and” in our grammar. We could have substituted
“false” for off and “true” for on and obtained the following scheme:

B
anp | False True
A False | False False
True | False True

216 BINARY ARITHMETIC

Figure F.6 An AND gate symbol.

Lamp

Voltage
source

Figure F.7 A parallel circuit.

Consider in this regard the sentence: “If the fair is held today and the
weather is good, we will attend.” Both “fair is held today” and “weather
is good” must be true in order for “we will attend” to be true.

More important, you should recognize that the series table with binary
digits is exactly the same as that binary multiplication table. Thus we have
an electric circuit, the series circuit, that will, in effect, multiply binary
digits. This is a very powerful tool for binary processing.

But now we need a circuit that will add binary digits. It will turn out
that this is a good deal more complicated.

When I was a youngster, our strings of Christmas tree lights were
hooked up in series; that is, the bulbs were wired one after the other.2
The problem with this was that, when one bulb went bad or became loose,
the entire string of lights went out and much time was taken identifying
the bad bulb. To get around this, so-called parallel circuits were soon
employed. Figure F.7 is a diagram of a parallel circuit.

On this kind of connection, you need only one of the switches on to
have a complete circuit and a lighted lamp. Thus we have

Switch B

| off on
Switch A Off | Lamp off Lamp on
On | Lamp on Lamp on

2The bulbs themselves acted as switches.

BINARY ARITHMETIC 217

or, again with O for off and 1 for on:

Switch B
01
Switch A 0 0 1
1 ‘ 1 1

A parallel circuit is called an OR gate, again because of its relation to our
use of the word or in grammar.? This time the Scheme is

B
oR | False True
A False | False True
True | True True

If the weather is good or the fair is held inside, we will attend. The only
time you will not attend is when you face both bad weather and an outdoor
fair.

A parallel connection is shown in circuit diagrams with the symbol OrR
of Figure F.8.

Unfortunately, this is not the same as the binary addition table, or we
would have both binary multiplication and addition mirrored in simple
circuitry.

In fact, reconsider that binary addition table reprised in Table F.6.

Figure F.8 An or gate symbol.

TABLE F.6. The Binary
Addition Table Reprise

+ 0 1
0 0 1
1 1 10

3There are two different uses of the word “or” in our language when both phrases are
true. The inclusive or that we are using here is the one most commonly used in computer
science. An example of the exclusive or is in the phrase: win or lose. You cannot do both
at the same time, thus the exclusive or is false when both inputs are 1 or true.

218 BINARY ARITHMETIC

TABLE F.7. Binary
Addition: Two-Digit Sums

+ 0 1
0 00 01
1 01 10

TABLE F.8. Binary Addition: Sum and

Carry

Carry 0 1 Sum 0 1
0 0 0 0 1
1 0 1 1 1

It should be clear immediately that no circuit would produce that two-
digit result of the addition, 1+ 1 = 10, for our circuits deal only with
single digits.

This suggests breaking the binary addition table into two tables. We do
this by first making all the sums two-digit, as shown in Table F.7.

We have, of course, not changed the value of the sums by doing this.

Now we make separate tables for the left or carry digit and the right
or sum digit, as shown in Table F.8.

Notice immediately that the carry table is like the AND (series) table
and binary multiplication, so that is easily represented in circuitry.

The sum table is unlike either the AND gate or the ORr gate. It is, how-
ever, like a kind of switch pairing that appears in many households. It is
called by electricians a “double-pole double-throw switch” but I think of
it as the “upstairs-downstairs switch”.#

Recall how that kind of switch pair works. You come to the foot of the
stairs and turn the light on. Then, when you reach the top of the stairs,
you switch the light off. Unlike other switches, these are not marked “on”
or “off”; rather, they change the status of the circuit from on to off or
from off to on.

Accomplishing this task turns out to be a bit complicated. In fact, you
need five gates to carry out this seemingly simple task. Figure F.9 is a
circuit diagram for the upstairs—downstairs switch.

In the two diagrams of Figure F.10, you can trace the path of the inputs
A=0and B=1 and then A =1 and B = 1. You may wish to do the
same for O+ 1 and 0 + 0.

4You may also notice that it is the table that corresponds to the exclusive or of logic
mentioned in the previous footnote.

BINARY ARITHMETIC

Figure F.9 The upstairs—downstairs switch.

Input
values
NOT
A AND
L AND
NOT
B——
Input
values
o \Not
A=0 T AND
1
1
0
AND
1 NNoT
B=1+— 0
0
0+1
Input
values
1 NJNoT
A=1 oA
0
1
1
AND
1 NNoT
B=1+— 0
0
1+1

Output
value

Sum

Output
value

Sum=1

Output
value

Sum=0

Figure F.10 Upstairs—downstairs switch examples.

220 BINARY ARITHMETIC

Input Output
values values
Ae AND \
|\ * Carry
>—1)
NOT
AND
N
J
—e Sum
AND
NOT

Figure F.11 A half-adder.

All of this circuitry is then combined into what is called a half-adder
(shown in Figure F.11), which carries out in circuitry single-digit binary
addition.

That’s quite a complicated process simply to add two single digits, but
it turns out that the situation is still worse. Consider, for example, the
addition of 11 + 11. Our half-adder serves us well for the units column.
It will provide the sum 10. Following our usual addition algorithm, we
record the O and carry the 1 to the next column:

Now notice that we have the problem of adding three digits, not two! We
must find the sum of 14 1+ 1, and our half-adder will not accomplish
that. We need what is called a full-adder, which takes care of two addends
and a carry from the previous column. Figure F.12 shows that complex
circuitry.

Figure F.13 shows how 1 4+ 1 4+ 1 = 11 (the third one carried from the
previous column) would be processed by a full-adder.

You certainly must have noticed how much more complicated binary
addition is than binary multiplication. Binary multiplication took only one

BINARY ARITHMETIC 221

|
Sa?ry € OR New
H S ¢ " carr
A e y
H
B S Sum

Figure F.12 A full-adder the two Hs represent half-adders.

Oid
carry =1 1 oR
H 0 o |, New »
A=1 — carry =
H 1
B=1 Sum =1

Figure F.13 14+1+1=11

AND gate to accomplish, while binary addition took 6 AND gates (3 in each
half-adder), 4 NOT gates (2 in each half-adder), and 3 ORr gates (one in each
half-adder and one more in the full-adder), for a total of 13 gates. You were
probably brought up, as I was, thinking of multiplication (often introduced
as multiple addition) as a more complicated and therefore harder process
than addition. This reversal should then come as a surprise.

This appendix represents a simplified treatment of some of the elec-
tronics necessary to carry out binary arithmetic. You can see some inter-
esting aspects of how subtraction is handled in Appendix G. For a fuller
story of the electronics of calculators and computers, I recommend Henry
Jacobowitz, Computer Arithmetic (Hayden Publishing Company, 1962).

APPENDIX G

BINARY SUBTRACTION

There is an interesting parlor trick that will provide some insight into the
way computers subtract binary numbers. With a bit of practice you should
be able to use it to entertain your friends.

Tell your audience that you can add nine digit numbers just as fast as a
calculator. “Numbers like these,” you say, and write down any nine digit
number, such as 287,364,338.

Now you invite your audience to give you another nine-digit number.
Someone will provide you with a number that you write below the first:!
If someone offers 482,619,587, write it below your first number.

287,364,338
482,619,587
You add another number to the list:
287,364,338
482,619,587
517,380,412

ITf someone suggests a number that is too “regular”, like 333,333,333 or 123,456,789, say,
“No, those are too easy, anyone can add such numbers; we need tougher, more random
numbers.” You will see later that there is a reason for this.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

222

BINARY SUBTRACTION 223

“Give me another,” you say, and your audience will comply. Now your
list reads

287,364,338
482,619,587
517,380,412
823,546,734
Write a last number below this:
287,364,338
482,619,587
517,380,412
823,546,734
176,453,265

Immediately underscore the list, mark a plus sign, and write the answer.
Your final result should look like this:

287,364,338
482,619,587
517,380,412
823,546,734

+ 176,453,265
2,287,364,336

Of course, the numbers you have written down after the first, were not
chosen randomly. When you were given the number, 482,619,587, you
wrote what is called the nines complement of that number. The nines
complement of a digit is the given digit subtracted from nine. For example,
the nines complement of 7 is 2. The nines complement of any number is
easily written digit by digit. In this case, the pair of numbers are

Audience provides 482,619,587
You write 517,380,412

In the same way, you match that fourth addend:
Audience provides 823,546,734

You write 176,453,265

224 BINARY SUBTRACTION

You should notice the sum of those pairs of numbers. Because you have
chosen the nines complement for each digit, in each case the sum will be
999,999,999, or 1,000,000,000 — 1.

Your addition exercise then simply converts to

287,364,338 = 287,364,338
482,619,587 +
517,380,412 = 999,999,999 = 1,000,000,000 — 1
823,546,734 +

+ 176,453,265 = 999,999,999 = 1,000,000,000 — 1

2,287,364,336 <« <« 2,287,364,338 — 2

What you write for the sum is then almost entirely copied from your first
number. You begin with 2 billion, but then the rest of the digits except
the last are the same as that first addend. Your final digit is simply two 2
less than that first addend’s last digit.”

We can take this idea of the nines complement in another direction.
We can use it in a way that appears to give us a method of subtracting
by addition.

Suppose, for example, that we wish to calculate the difference:

683,456,125
— 479,983,512

We replace the number being subtracted (the subtrahend) with its nines
complement and add

683,456,125
+ 520,016,487
1,203,472,612

Now remove that 1 from the left end of that sum and add it to the units
digit. Your result—203,472,613—is the answer you seek, the difference
between those first numbers.

A bit of algebra will show how this odd method works. We are sub-
tracting two 9-digit numbers: let them be A — B. What we have done is
to replace B with its nines complement, 999,999,999 — B, thus we have:

A+ (999,999,999 — B) = A — B 4+ 999,999,999
= A — B +1,000,000,000 — 1

2You can, of course, use more addends, each time after the first matching with a nines
complement. Each pair will add another billion and subtract another unit.

BINARY SUBTRACTION 225

To correct for this and obtain the desired A — B, we subtract the
1,000,000,000 and add 1.
Now finally we are ready to see how all this applies to binary subtraction.

BINARY SUBTRACTION

As has been pointed out, calculators use binary-coded decimals (BCDs)
for computation. The remainder of this appendix applies in ways that are
at once more complicated and simpler. We will consider computer format,
which would have to be modified for calculator application.

Both calculators and computers contain storage registers of fixed length.
For example, if a computer calculates with up to 10 decimal digits, it
would need registers that would accept 34 binary digits.> The reason for
this is the largest 10-digit decimal:

9,999,999,999, = 1,001,010,100,000,010,111,110,001,111,111,111wo

That may seem like a great many binary digits to store, but two things
are important to remember here:

1. That 10-digit decimal number was large as well, so you need places for
only just over three times as many digits to store that binary number.

2. More important, you gain tremendously in processing capability
because each of the binary storage places has only two states, 0
or 1, off or on.

Notice that BCDs actually increase the necessary amount of storage.
Recall that you need four binary digits to represent each decimal digit.
Thus you would need 40 binary digits to represent a 10-digit number,
whereas straight binary representation used only 34.

I remark here that calculators and computers use various means to
avoid wasting space when storing small decimal values. For example, a
computer would avoid using 31 binary storage digits to store the binary
equivalent of 7:

00000000000000000000000000000001 1 Ly,

Similarly, a calculator would not want to use all 40 binary digits to rep-
resent a number like 13 that needs only eight of those digits: 0001 0011.

In any event, binary numbers are stored in registers having a certain
number of binary storage units or bits. So that we won’t have to write

3As we have indicated, most 10-digit calculators calculate with one or more additional
digits in order to provide more accuracy.

226 BINARY SUBTRACTION

out such lengthy strings to provide examples, I will restrict our registers
to eight binary digits or bits. That means that we will confine ourselves
to decimal numbers from 0 to 255, because 255, = 1111111 1y,.

Now we follow the process we used when we subtracted decimal num-
bers using the nines complement, except that we use the ones complement.
(Just as 9 was the largest decimal digit, 1 is the largest binary digit.) The
ones complement is even easier to form. Mathematically it is the binary
number subtracted from 11111111, but practically it involves only switch-
ing Os to 1s and 1s to Os. (Recall from Appendix F that this is easily done
digit by digit with single NOT gates.)

Let’s see how this works for 213 — 135. Here is the problem expressed
first in decimal and then in binary:

213 11010101
— 135 — 10000111

Now we change this to an addition exercise using the ones complement,
given in a third column. I have placed the + in quotes because, as we will
see, this is not quite true addition:

213 11010101 11010101
— 135 — 10000111 “4+701111000

We now add those ones complement binary values:

11010101
“4+701111000
101001101

You should notice immediately that there is an extra one at the left end of
this answer. We agreed to have only eight places in our register, and that
one is in what would be a ninth place. But recall what we did with that
one billion in the decimal subtraction with nines complement. We simply
remove that one from the left and add it to the rightmost digit:

11010101

“4+7 01111000
101001101

-1 41
01001110

BINARY SUBTRACTION 227

This answer, 1001110wo = 78ten, 1S just what we want.

Let’s see what is happening here. We seek A — B, both in binary nota-
tion. Instead we calculate A + (11111111 — B) = A — B + 11111111 =
A — B 4 100000000 — 1, so we only have to subtract that 100000000
(throw that leftmost digit away) and add 1 to correct our answer.

Notice that here, unlike decimal subtraction using the nines comple-
ment, you simply switch the digits in the subtrahend, add, throw away
that extra digit on the left, and add one. Thus the only operation you need
to accomplish subtraction is addition.

There is a refinement of this process called twos complement subtraction
that further simplifies it and avoids even the temporary use of an extra
digit of temporary storage.

APPENDIX H

THE RAPID CONVERGENCE OF
NEWTON’S METHOD

For the Newton’s method square root algorithm, we have proved that
E,. < %En, but our example in Chapter 4 showed that the convergence
can be much faster than that. For any N > 1/4, some further algebraic
manipulation will show that, once we have accuracy to n decimal digits,
each further step at least doubles the number of accurate digits. More
formally, when E, < 1077, E,,; < 10727, for any positive integer p.
Since both sides of the inequality 1/4 < N are positive, we can take
their square roots to give us 1/2 < +/N, and since we have shown that

VN <G, for all n > 1, we have 1/2 < G,. Multiply both sides of this
2

inequality by the positive quantity, (Gn - /N) /Gp, and you arrive at

(6= /¥)

3G, < (Gn —«/N)2

Notice that the right side of this inequality is E,%. Thus we now have

(0.)

< E>2
2G, "

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

228

THE RAPID CONVERGENCE OF NEWTON’S METHOD 229

We next want to show that the left side is E,+;. Here is the algebra:

(Gu— VW) G2 —2G/N+N

2G, o 2G,
G +N 26,V/N Gutg
- 2G, 2G, 2

_JN

This lastis G4 — VN = E, 1. Combining these results, we have shown
that £, < E,? is true for n > 1 and the square root of any N > 1/4.

As a consequence, when E, < 1077, for any integer p, then E, | <
E,? < (1077)? = 10727, Thus the number of digits of accuracy is at least
doubled. For example, for p = 1, once we have an error less than 0.1, we
would have a succession of errors for the following three steps less than
0.01, 0.0001, and 0.00000001, a rapid convergence, indeed.

APPENDIX I

HOW NEWTON’S METHOD APPLIES
TO THE SQUARE ROOT ALGORITHM
AND THE Rth ROOT OF N

Newton’s method provides a far more general procedure than the use we
have made of it in finding square roots. For finding a better approximation
G4 of the root of any equation f(x) = 0, given an approximation G,
Newton’s method tells us that G, = G, — [f(G,)/f'(G,)], with f’
representing the derivative of the function f.!

Suppose that we seek ~/N by Newton’s method. This is equivalent to
solving the equation x = /N, which implies x> = N and x> — N = 0.
Thus we have f(x) = x%2 — N, and its derivative is f'(x) = 2x.

Substituting these values in the formula for Newton’s method, we have

G2-N 2G2-G2+N G+
Gn+1 - Gn - - - =
2G, 2G, 2

In our calculation of square root, we let N/G,, = H,, so this is the same
as: Gpy1 = (G, + Hy) /2.

We have, of course, used this result in our square root program: the
arithmetic mean, (G, + H,)/2, serving as an approximation to ~/N =
G, Hy, the geometric mean of those same two numbers.

1

IThe only calculus required in this appendix is the derivitive of x”, which is nx"~! and

the derivative of a constant, N in each instance here, is 0.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

230

HOW NEWTON’S METHOD APPLIES TO THE SQUARE ROOT ALGORITHM 231

It will give us further insight into Newton’s method to apply it to the
problem of determining cube root. As with square root, we have x = /N,
x3 =N and x> — N = 0. Thus we have f(x) = x> — N. This time the
derivative f’(x) = 3x2.

Substituting these values in the formula for Newton’s method, we have

GlP—N 3G -G +N 2G3+N 26u+g:

Gpii =G, — = — =
+ 3G,2 3G,2 3G,2 3

We let N/G,* = H,,, which simplifies our result to:

2G, + H,
3
This procedure uses the more general arithmetic mean—geometric mean
theorem, which relates n quantities. We will consider it only for n = 3,

but the extension to more variables should be clear. For n = 3, it gives
us the following approximation:

b ——
a-i_S——i_CZ 3abc

In our calculation of cube root we are dealing with three quantities, two
G,s and one H,, and the arithmetic mean—geometric mean relationship

gives us G G "
DL > VGGt

Also, since H,, = N/G,,2, we have G, G,H, = N. Thus we have the
approximation

Gn+1 =

2G, + H,
7; > VN

We conclude with two more programs—first, a program based on this
algorithm that will compute cube root:

PROGRAM: CUBERT

: Prompt N

: 10—G

: O—H

: While G # H

: N/G2—H

: (2G+H) /3—G
: End (While)

: Disp G

232 HOW NEWTON’S METHOD APPLIES TO THE SQUARE ROOT ALGORITHM

Finally, extending the idea developed for cube root leads to a program to
calculate the Rth root of N:

PROGRAM: RTHRT

Prompt N,R
: 10—>G
: O—H
: While G # H

N/G*(R—1)—H
((R=1)G+H) /R—G
: End (While)
: Disp G

APPENDIX J

THE ANCIENT GREEKS
APPROXIMATE 2

The Pythagoreans believed that all numbers are rational, that is, that they
can be expressed as m/n, with m and n positive integers.! It came as
a major shock, then, when they discovered that some positive numbers
could not be so written.”> They may have reached this conclusion by the
following kind of reasoning.’

Beginning with square ABCD with sides n and diagonal m of Figure J.1,
they began with the assumption that the ratio m/n is rational, that is, that
m and n are positive integers.

On diagonal BD of Figure J.1, construct point F so that AB = BF,
as in Figure J.2. At point F a perpendicular to BD is then constructed,
meeting AD at E. Other segments are constructed to form a square with
diagonal ED. The sides of this square are each m — n. To determine the
length of its diagonal, BE is drawn, forming congruent right triangles ABE
and FBE. From these triangles we have AE = EF = m — n, and we can
determine the diagonal ED by ED = AD —AE=n — (m —n) = 2n — m.

1Zero and negative numbers were unknown to them.

2Tt is said that this upset the Pythagoreans so much that they drowned the discoverer.
Perhaps the treatment of scientists today is not so bad after all.

3Readers should recall that the Greeks had very poor numeration systems, that they usually
represented numbers in terms of the lengths of segments and that they had no algebra.
That makes their accomplishments all the more amazing.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

233

234 THE ANCIENT GREEKS APPROXIMATE +/2

A B
n

Figure J.1 Diagonal : side ratio in a square.

D c
m—n m—n
2n—m F
BD=m
/
m-—n /il
, n
’
</
E| ©~~_
/ S n
1 S o
m—n |/’ AR
1 ~ o
1 S~
g S
A B

Figure J.2 Diagonal : side ratio on a smaller square.

Thus we have a new square with diagonal : side ratio, (2n — m)/(m — n)
and, since all squares are similar, the ratios of their corresponding dimensions
are equal and we have

m 2n—m

n m—n

There is a problem with that equation. It is straightforward to show that,
since the diagonal of the original square is greater than its side, we have
m > n and from this, 2m > 2n and m > 2n — m. We also know that,
since the shortest distance between opposite corners of that square is
the straight-line diagonal, we have 2n > m and n > m — n. These two
inequalities, m > 2n — m and n > m — n, establish that the ratio of diag-
onal to side in the new square is a fraction with both numerator and
denominator smaller than the corresponding values in the original square.

THE ANCIENT GREEKS APPROXIMATE +/2 235

Figure J.3

The problem is that this construction can be repeated over and over as in
Figure J.3 with those positive integers getting smaller and smaller. There
is a limit to this progression that this procedure contradicts. You cannot
have a sequence of positive integers get smaller and smaller forever.* This
contradiction forces us to conclude that our original premise, that m/n is
rational, is false. Thus they were faced with a new kind of number, an
irrational number.

We can return to that equation, m/n = (2n — m)/(m — n), and sim-
plify it to obtain successively, m?2 —mn =2n% —mn,m? =2n?, and m =
n«/i, as we should expect in modern notation.

Having absorbed the fact that m/n, or to us /2, represented a new
kind of number, the Pythagoreans set out to explore how m/n might
be approximated. They modified the equation m? = 2n? to make it m? ~
2n? £ 1. Dividing by n? changes this to m?/n*> ~2 % (1/n?), and we have

m 1
—%,/2:&—2
n n

Clearly, increasing the value of 7 increases the value of n% and decreases
the value of 1/n?. This shows that, for increasing values of n, m/n is a
closer and closer approximation to /2.

We already know that

m 2n —m
n m-—n

but this is reducing the values of the numerator and denominator. We want
to reverse this process to increase rather than decrease those values. We
do this by replacing m by M and n by N in the right-side fraction and,
setting numerators and denominators equal, solving for those values. We
have m =2N — M and n = M — N, which lead by standard algebraic

4This limit is stated formally in mathematics as the well ordering principle. It states that
in any set of positive integers there is a least integer. This simple but remarkably powerful
principle is equivalent to mathematical induction.

236

methods to M = m +2n and N = m + n. As a result of this, we have
a new equation, M/N = (M 4+ 2N)/(M + N), with increasing integer
values in numerator and denominator, just as we wished.

To use this result, we need only choose seeds (initial values) for M
and N. Here is a program that will calculate successive values for M, N,
and M/N for any seeds you choose (you should recognize the use of a
temporary variable, T, to assist the calculation of new values of M and

N in lines 5-7):

PROGRAM:SQRT2FR
: Prompt M,N
: Lbl 1
: Disp M,N,M/N
Pause
M—K
M+2N—M
: K+N—N
: Goto 1

It turns out that any positive integers will serve as seeds.” A useful start,
however, is provided by setting both equal to 1. Here are the program

values obtained with these seeds:

THE ANCIENT GREEKS APPROXIMATE +/2

M N M/N

1 1 1

3 2 1.5

7 5 1.4

17 12 1.416666667
41 29 1413793103
99 70 1.414285714
239 169 1.414201183
577 408 1.414215686
1393 985 1414213198
3363 2378 1.414213625
8119 5741 1.414213552

19601 13860
47321 33461
114243 80782

SThis is justified in David Flannery’s delightful book, The Square Root of 2: A Dialog

1.414213564
1.414213562
1.414213562

Concerning a Number and a Sequence (Copernicus Books, 2006).

THE ANCIENT GREEKS APPROXIMATE +/2 237

This tells us that we can use the fraction, %, as an estimate of +/2

equivalent to a 10-digit decimal. Of course, remembering that fraction is
no easier than remembering the ten decimal digits.

Using different seeds simply lengthens the processing before converg-
ing on /2.

It can be shown that a minor change in the program will lead to cal-
culation of /X for any given integer X. For the program line M+2N—M,
simply substitute the value of X for 2. For example, to calculate fractions
converging on +/3, the program line would be M+3N—M.

Here, then, is a program that will calculate successive fractions
approaching the value of v/X, for positive integer X, using the arbitrary
initial approximation of %:

PROGRAM: SQRTXFR
Prompt X
1—>M
1—N
Lbl 1
Disp M,N,M/N
Pause
M—K
M+XN—M
: K-+N—N
: Goto 1

APPENDIX K

CONTINUED FRACTION
APPROXIMATIONS

In Appendix J you saw how to obtain rational fraction approximations to
square roots by means of a simple program. Continued fractions provide
a way of approximating any positive real number by another kind of
ever-improving fractions.

A continued fraction is an expression like this:!

1
1

1

t+—

u-+ -
v

xX=r++
s +

This expression breaks down a non-negative real number, x, in terms of a
series of integers, r, s, f, u, and v (and possibly more following the same
pattern), with all but the r positive integers—the integer r can be O as
well—and all those numerators equal to 1. The digits down the left side
of the continued fraction are called quotients, and a shorthand notation for
this one is a listing of those quotients with a semicolon after the integer.
For the example this would be (r; s, ¢, u, v).

! Although subscripts are useful in such expressions, I avoid them here in order to simplify
the ideas.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

238

CONTINUED FRACTION APPROXIMATIONS 239

Convergents for the same example are r, r + 1/s,r + 1/(s + 1/¢), and
so on. What is important about these convergents is that they do, indeed,
get closer and closer to the value of x. In fact, it can be shown that each
convergent provides the best fractional estimate of x for denominators of

that size or less.

In the case of rational numbers, the continued fraction will always end

as in the display shown. Consider, for example, é—g. Here is how it would

be changed to a continued fraction:

Thus we have 13 = (0; 2,4, 3).
Here is how the convergents would approximate %:

For (0;2) you have 0 + % = %
For (0;2,4) you have

0+

And, of course, for (0;2,4,3) you have %.

That is a great deal of work for little return when dealing with rational
numbers, but the idea also applies to irrationals, often with interesting
results. Consider, for example, V5. Using your calculator to find /5 and
to determine reciprocals, you would have

1
)
4.236067977 * 4 4 .236067977

1 1
Ay 44 ;

4.236067977 44
4.236067977

V5 = 2+ 2360679775 = 2 +

Notice what is happening here. A pattern has emerged and we have as
quotients: (2;4,4,4, ...), often displayed as (2; 4).

240 CONTINUED FRACTION APPROXIMATIONS

That this is not merely a chance result of calculation, consider the same
process algebraically. We know that 2 < /5 < 3 and that

1 1 V5+2 V542
52 V3-2 iz 5- 7=V

We can use those facts to change +/5 to a continued fraction:

1 1
V5=2+H5-2)=2+ =2+
1 V542
V5-2
=2+ ! =2+ ! =2+ ! =
4+(/5-2) P P
1 V342

V5-2

You should see that both lines end with the same expression to be changed.
Thus, more formally, we have once again V5= 2; Z).

While it is interesting that similar patterns occur for other radical
expressions, what is more useful is the fact that, as I pointed out earlier,
those convergents lead to better and better rational approximations.

Here is a rather complicated program that will calculate for any input
value, X, the successive quotients, O, together with the numerator, A,
and denominator, B, of the convergents, and the convergent value.

PROGRAM CONTFRX
1A
: 0—B
: 0—C
: 1-D
: Prompt X
: Lbl 1
int(X)—Q
A—>T
QA+C—A (I)
T—C
B—T
QB+D—B (II)
T—D
Disp Q,A,B,A/B
Pause
: (X—1int (X)) '=X
: Goto 1

CONTINUED FRACTION APPROXIMATIONS 241

This is another program with an infinite loop. To escape, use
“QUIT”.

I will not attempt to explain this program other than to point out that
the key lines are noted as (I) and (II). They process by multiplying the
current quotient by the numerator and denominator of two previously
reported fractions.

Here are two examples of the use of this program. First, consider /6.
Note that in the program the quotients are Q, the numerator A, and the
denominator B of the convergent:

Pass Quotient Numerator Denominator Convergent

1 2 2 1 2

2 2 5 2 2.5

3 4 22 9 2.444444444
4 2 49 20 245

5 4 218 &9 2.449438202
6 2 485 198 2.449494949
7 4 2158 881 2.449489217
8 2 4801 1960 2.449489796
9 4 21362 8721 2.449489737
10 2 47525 19402 2.449489743

and this is v/6 & %, to 10-decimal digit accuracy.

As a second example, consider the results when is run through this
program:

Pass Quotient Numerator Denominator Convergent

1 3 3 1 3

2 7 22 7 3.142857143
3 15 333 106 3.141509434
4 1 355 113 3.14159292
5 292 103993 33102 3.141592653
6 1 104348 33215 3.141592654

Notice several things about this series of converging fractions. First, you

should recognize that the second fraction, 27—2 = 3%, is a familiar approxi-

mation. But another approximation, which is easy to recall, gives far better

242 CONTINUED FRACTION APPROXIMATIONS

accuracy. It is the result of the fourth pass: %‘2 That value is accurate
to six digits, its error a remarkably small .0000085%. Notice how easy
it is to remember this fraction, starting from the denominator, you have
the sequence 113355, pairs of the first three odd numbers. That fraction
is not only much easier to remember than 3.1416 but it is also over 27
times more accurate.

2That is equivalent to = ~ 3 +

1
T+

APPENDIX L

MULTIPLYING NUMBERS
WITH MANY DIGITS

Most calculators display ten digits or less. While it is more than enough
for most calculations, this limitation prevents you, for example, from
finding directly all the digits in the product of two 6-digit numbers.
If you multiply 285694 % 786603, your calculator will display some-
thing like 2.247277575E11, which is equivalent to 2.247277575 * 10!
or 224727757500, whereas the answer with all of its digits expressed is
224727757482.

More advanced calculators and computers have programs that will dis-
play factors and products containing many more digits. In fact, you can
use them to obtain the product of 100-digit factors.

What those programs do is carry out algorithms similar to ours for
multiplication but with blocks of digits instead of individual digits. To see
what I mean, compare the following multiplications.

First is the product of 78 and 65 with individual digits.

7 8 7 8 7 8 7 8
¥ 6 5 * 6 5 * 6 5 ¥ 6 5
35 40 390 390 390

42 48 4 6 8 4 6 8 4 6 8
4 9 17 0 4 10 7 0 50 70

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

243

244 MULTIPLYING NUMBERS WITH MANY DIGITS

What I have done here is break down this process into its simple steps.
The first step records the products of the digits in their correct locations
but without carrying. The second step shows the result after carrying and
with the columns added. The last two steps show the result of carrying in
the product until the final answer is achieved.

Now I will mirror that processing but with pairs of digits in each
location. Here we want the product of 6728 and 5692:

67 28
* 56 92
6164 2576
3752 1568

In this first step the four products are formed (by calculator). For example,
92 x 28 = 2576, and the products are shifted just as in single-digit multi-
plication.

67 28

* 56 92

61 89 76
37 67 68

Here we have carried the 25 and then the 61 in the first partial product,
and the 15 and then the 37 in the second:

67 28

* 56 92

61 89 76
37 67 68

37 128 157 76

Here the resulting pairs of digits have been aligned and added:

67 28

* 56 92

61 89 76
37 67 68

37 128 157 76

MULTIPLYING NUMBERS WITH MANY DIGITS 245

And finally the ones in 128 and 157 are carried:

67 28
* 56 92

61 89 76
37 67 68
38 29 57 76

This gives us our final product, 38295776.
Here is a 29-line program to carry out this process for two factors, each
with many digits.!

PROGRAM:BIGMULT
1 : Prompt M,N

2 : M+N-1->T

3 : {3,T}—>dim([A])
4 : For (I,1,M)

5 : Prompt X

6 X—[A]1(1,I)
7 : End (For)

8 : For (I,1,N)

9 Prompt Y
10 Y—[A](2,I)
11 : End (For)

12 : For (I,1,T)

13 0—[A1(83,I)
14 : End (For)

15 : For (J,1,M)

16 : For(K,1,N)

17 J+K—-1->1

18 [A]1(3,I)+[A](1,d)*[A](2,K)—>[A](3,I)
19 End (For)

20 : End (For)
21 : For (I,T,2,71)

22 int ([A](3,1)/10%4)—C
23 [A](3,I)-C*10%4—[A](3,I)
24 [A](3,I-1)+C—[A](3,I-1)

25 : End (For)

26 : For (I,1,T)

27 Disp [A](S3,I)
28 Pause

29 : End (For)

'On the TI-84 calculator the product can have up to 200 digits.

246 MULTIPLYING NUMBERS WITH MANY DIGITS

To show how to use this program, I will consider how the product of
two large numbers would be processed. If we wanted to find the product
of the 17-digit number, 35448796577934447, multiplied by the 15-digit
number, 890038376249965, we would first break the factors down into 4-
digit groups, working right to left: 35448796577934447 would be 3 5448
7965 7793 4447 and 890038376249965 would be 890 0383 7624 9965.

You now count the number of groups in each factor. The first factor has
five groups and the second four. These are the values of M and N requested
when you run the program. Once you have entered those two values, you
are asked to enter the blocks in each number, left to right. Here is the way
the steps would appear when you have correctly entered these factors:

M? 5

N? 4

X? 3

X? 5448
X? 7965
X? 7793
X? 4447
Y? 890
Y? 383
Y? 7624
Y? 9965

If you do that correctly, the program should begin to display the product in
four-digit blocks: 3155, 789, 3462, 4009, 1078, 9414, 5604, 4355. (Press
after you record each four-digit block.) Being careful to fill out
any block with less than four digits (the 789 becomes 0789) you have the
product reported four digits at a time:

3155 0789 3462 4009 1078 9414 5604 4355

I will describe in only general terms how this program works.

In line 3, a matrix is established.? It has 3 rows and M + N —1 columns,
the number of columns determined by the possible size of the product.
In our example with M =5 and N =4, we need a 3x8 matrix, in the
program designated [A]. You can think of it as something like this:

2Appendix A provides guidelines on how to enter a matrix in a program.

CHECKING YOUR PROGRAM 247

Lines 4—7 enter the first factor groups in the first line and lines 8—11, the
second factor groups in the second line:

3 5448 7965 7793 4447
80 _383 7624 9965

Lines 12—14 enter Os in the 3rd line in case values reside there from
earlier programs:

3 5448 7965 7793 4447

— 890 _383 7624 9965

0 0 0 0 0 0 0

Lines 15-20 calculate the partial products and accumulate them in line
3. Notice that these partial products each have up to nine digits. Here are
the numbers that would appear in that third row:

2670 4849869 9198306 51551812 121957029
140488258 111561173 44314355

Lines 21-25 perform the carrying in order to leave only four digits in
each column except the leftmost. Note first that this section of the pro-
gram works from right to left, the ~1 in the instruction For(I,T,1,71)
indicating that the increment is ~ 1 rather than +1.

You can see how this is done by considering how that rightmost entry,
44314355, is processed. First, in line 22 it is divided by 10*. This gives
4431.4355, and C is the integer value of this number, 4431. In line 23
that number is multiplied by 10* to produce 44310000, and that number
is subtracted from the original 44314355, leaving the desired Four-digit
number, 4355. In line 24, C (still 4431) is added to the next value to the
left to change it from 111561173 to 111565604.

Lines 26-29 display the final answer in groups of four digits.

CHECKING YOUR PROGRAM

It is always good procedure to check to see if your programs produce
correct results. You could, of course, check the program offered here by
using the same numbers that served as an example. But these numbers
might have been wrong.

248 MULTIPLYING NUMBERS WITH MANY DIGITS

An example like 1,000,000,000 x 100,000,000 is not especially useful
because, even if the program did give the correct answer, it would not
have involved any carrying and thus would not test parts of the program.
Instead, I suggest an example like 999,999,999,999 x 999,999,999,999.
This will test (quite severely) those carrying properties, and we can still
work out the product for comparison.

999,999,999,999 x 999,999,999,999 is equivalent to

(1,000,000,000,000 — 1)2.

We can treat the number in parentheses as a binomial and square it to
give:

1,000,000,000,000% — 2 s 1,000,000,000,000 + 1
which is equivalent to

1,000,000,000,000,000,000,000,001
— 2,000,000,000,000

with the result: 999,999,999,998,000,000,000,001.
This is a nice result to check against your program.

APPENDIX M

FINDING EQUATION ROOTS BY
BINARY SEARCH

Many advanced calculators have equation solving routines built in.
However, once you know the general location of a root, you can also use a
binary search program to find most equation roots to considerable accuracy.

We will develop the idea of this process through use of a simple
equation, x2 — 8x + 13 = 0. This equation will serve us well because,
although its roots are irrational, we can find them to check our computation
through use of the quadratic formula.! But be sure that you understand that
the method will serve equally well for complicated equations involving
trig and exponential formulas. For example, you could use it (three times)
to approximate to many-digit accuracy the three roots of the equation
1.2 % In(x+1)—2 s cos> x = 0.

All we need to know in order to use this program are two x values
between which the graph of the function y = x> — 8x 4 13 that corre-
sponds to our equation crosses the x axis exactly once. With a graphic
calculator, such an interval is easy to find by graphing the function to give
a picture like the one in Figure M.1. Clearly, our example crosses the x
axis between 2 and 3 and again between 5 and 6. Since the equation of

IThe quadratic formula provides solutions to the general quadratic equation, ax? + bx +

c=0.1Itis
—b £ Vb? — dac
r=m—m-
2a

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

249

250 FINDING EQUATION ROOTS BY BINARY SEARCH

y=x2-8x+13

4 4

Figure M.1 The graph of y = x? — 8x + 13.

the x axis is y = 0, those crossings represent solutions of the equation
x2 —8x+13=0.

“Crossing the x axis” means that the y value of the function changes
from positive to negative or from negative to positive. In both cases the
value of the function changes sign. Notice that this means that the product
of the y values for the points x = 2 and x = 3 is less than zero. In function
notation, this requirement is written f(2) * f(3) < 0. For the other point
we also have f(5) % f(6) < 0. In both cases the product of two factors of
opposite sign is negative. This happens only when roots are between the
values. For other values, like f (1) * f(2) and f(4) * f(5), the products
are positive.> This is the key fact that will support our binary search.

Here is a program (not a very good one, but we will improve it later)
that finds the root of our equation. To use it, you enter the two x values
between which you wish to find a root. For example, you can let P =2
and Q = 3 to find one root and then run the program again letting P = 5
and Q = 6 to find the other.

PROGRAM:BISCH1
: Prompt P,Q
P—X
X?—8X+13—Y
Y—L
Q—X
X2—8X+13—Y

2Alert readers will notice that another situation can occur. It is possible that there is a
root at a point where the function is tangent to the x axis. To simplify this discussion, I
avoid this complication until the end of this appendix.

FINDING EQUATION ROOTS BY BINARY SEARCH 251

: Y—=R
: While Q@ # P
: (P+Q) /2—M
M— X
X2—-8X+13—>Y
Y—N
If L*N<O (I)
Then
M—Q
Else
M—P
End (If)
: End (While)
: Disp M

The line marked (I) is the key to this program. It represents the test to
see where the graph crosses the x axis.

Here is how the program works. Its first part determines the correspond-
ing y values for the entered x values. In effect, we determine the points
(P, L) and (Q, R). We know that the graph crosses the x axis between
those points, so we know that L %« R < 0.

Now we enter the While loop. In it we determine a new x value, half
way between P and Q. We plug it into our function to determine its y
value. This way we create the new point (M, N). With the If test, we
check the y value of this point against the y value of (P, L). If their
product is negative, we know that the root is between P and M, so we
assign to Q this M value. If not, we know the root must lie between M
and Q. In this case we assign M to P.

In our example, we would have calculated (P,L)= (2,1) and
(Q, R) = (3, —2) before we first enter the While loop. In that loop the
midpoint M is 2.5 and we calculate the corresponding y value to give
(M, N) = (2.5, —.75). Since L is positive and N is negative, we know
that the root is between P and M. For that reason we assign M to Q and
proceed. At that point we have the root between P and Q again, but P
and Q are only half as far apart.

If you run this program with P =2 and Q = 3, you will find the root
x = 2.267949192. If you run it with P =5 and Q = 6, you will find the
other root, x = 5.732050808. The quadratic formula tells us that the roots
of this equation are

8+ /(—8)2—4x1x%13
X = \/(;*1 i =443

These give us the same values for x.

252 FINDING EQUATION ROOTS BY BINARY SEARCH

So we have solved the problem, but suppose now that we want to use
the program to solve another equation. To do so, we would have to type the
new function into three separate lines (lines 3, 6, and 11). That’s not at all
efficient, and we will show in the following section how this can be avoided.

FUNCTIONS, SUBROUTINES AND PROGRAM CALLING

To accomplish our purpose, we will need to use one of several possible
programming tricks, not all of which are available on basic programmable
calculators. We’ll take them in order of sophistication.

First, let’s reinforce what the problem is. We have seen that our binary
search program works. All we want to do now is find a way to use it to
solve any equation simply by typing that new equation once.

The simplest way to do this would be to define a function, say,
FN(X) = X?> — 8X + 13. Then the program could read as follows:?

PROGRAM:BISCH2

: Prompt P,Q

: P—>X

: FN(X)=>Y

Y=L

1 Q=X

: FN(X)—=Y

: Y=R

: While Q@ # P

: (P+Q)/2—M
M—X
FN(X)—Y
Y—N
If L*N<O

Then
M—Q
Else
M—P

End (If)

: End (While)

: Disp M

Then, if you want to solve another equation, simply redefine the function
FN(X) and again run the program. Unfortunately, this method is not
available in many elementary calculators, including the TI-84.

3Depending on the calculator or computer, the definition could be included either in the
program or separate from it.

FUNCTIONS, SUBROUTINES AND PROGRAM CALLING 253

A second approach to this problem is through what is called a subrou-
tine. Here is how the program might appear:

PROGRAM:BISCH3
: Prompt P,Q
i P=>X
: Gosub FN
i Y=L
Q=X
: Gosub FN
: Y—=R
: While Q@ # P
: (P+Q) /2—M
M—X
Gosub FN
Y—N
If L*N<O
Then
M—Q
Else
M—P
End (If)
End (While)
Disp M

: Subroutine FN
1 X2—8X+13—>Y
: Return

What is happening in this program is that the key line evaluating the
given function is included just once in a separate program section called
a subroutine, in this case Subroutine FN. Whenever program operation
reaches a line instruction that says Gosub FN, control is sent to that
subroutine and the instruction is carried out. The Return command then
returns control to the next step after the Gosub instruction. Once again,
unfortunately, this structure is not available in elementary calculators,
including the TI-84.

There is third means, however, that is available. It involves establishing
another program that is just like the subroutine. Because this new program
is so much like the others, we will call it FN. Here is how its two steps
would appear:

PROGRAM: FN
X2—8X+13—Y
Return

254 FINDING EQUATION ROOTS BY BINARY SEARCH

Now we revise the original program to read

PROGRAM:BISCH4
: Prompt P,Q
P—X
: prgmFN*
i Y—>L
: QX
: prgmFN
: Y—R
: While Q@ # P
: (P+Q)/2—M
M—X
prgmFN
Y—N
If L*N<O
Then
M—Q
Else
M—P
End (If)
End (While)
Disp M

If you have another equation you wish to solve, you need only change
that single instruction in the program FN, then run BISCH4.

6 -
4
y=x?-8x+16
o
4
5

Figure M.2 The graph of y = x? — 8x + 16.

4The instruction prgm is found in the TI-84’s “CATALOG”.

FUNCTIONS, SUBROUTINES AND PROGRAM CALLING 255

Depending on the calculator or computer available to you, you can use
one of these methods to provide a binary search program to locate roots of
complex equations. Many calculators include built-in programs that solve
such equations, but now you have some insight into how that can be done.

I conclude this appendix by underscoring the reservation mentioned
earlier in footnote 2. There are equations with roots that cannot be found
by the method outlined here. A simple example is x> — 8x + 16 = 0 (see
Figure M.2). Since this is equivalent to the equation (x — 4)> = 0, inspec-
tion tells us that a root is 4.

The problem is that y = x?> — 8x + 16 does not cross the x axis, so we
cannot use the sign change test of the binary search technique. This graph
(and others) have what are called multiple roots, where they are tangent
to the x axis. Some other technique is necessary to zero in on such roots.

APPENDIX N

DERIVATION OF THE LOGARITHM
CHANGE OF BASE FORMULA

We set out to prove the logarithm change of base formula:

To do so, we let y =log, x and apply these as exponents on the base
b:bY = blow*

By log property (I) of page 87, the right side of this equation is sim-
ply x. Thus we have b = x.

We take log, of each side of this equation, which gives us log, b¥ =
log, x, and then we apply the log rule for exponents to the left side to
produce ylog, b =log, x.

Now we substitute the value of y that we established at the outset. This
gives us

log, x xlog, b =log, x

Dividing each side of this equation by log, b, we have the desired formula

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

256

APPENDIX O

THE RATIO OF DECIMAL TO
BINARY DIGITS

One of the tradeoffs in changing from decimal to binary representation
is an increase in the number of digits. For example, we have 93, =
1011101¢wo. In this case we trade two digits for seven; thus we have 3%
times as many digits. If we examine additional values, we can construct
the following table:

Binary Decimal Binary—Decimal = Increase

1 1 1-1 1

10 2 2-1 2

100 4 3-1 3

1000 8 4-1 4
10000 16 5-2 2.5

100000 32 6-2 3
1000000 64 7-2 3.5
10000000 128 8-3 ~3.7

100000000 256 9-3 3
1000000000 512 10-3 ~3.3

10000000000 1024 11-4 2.75

Although these values vary a good deal, it may be that they approach a
limit as they continue to increase. In exploring this problem, we will use

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

257

258 THE RATIO OF DECIMAL TO BINARY DIGITS

logarithms with bases 2, e and 10. In the discussion that follows, the usual
abbreviations will apply: log, = Ig, log, = In, and log,, = log.

Consider an integer D. Experimentation will show that the number of
decimal digits in D is 1 + int(log N). For example, the number of digits
in 8500 is 1 + int(log 8500) = 1 + int(3.929418926) =1+ 3 =4.

Also, the number of digits in the binary representation of D is
1 +int(lg D). For our decimal number 8500, this would give us 1+
int(lg 8500). We can calculate Ig 8500 by the change of base formula as

In8500 9.047821442

1 _ _
8300 === 16931471806

= 13.05324713

and substitute this in the previous line to give = 1 4 int(13.05324713) =
1413 =14.

We can check this result by converting 8500 to binary and simply
counting the digits: 8500, = 10000100110100y.

It is worth pointing out here that int(log N) and int(lg N) are in each
case the same as the characteristic of the logarithm. In any numeration
system the number of digits is one more than the characteristic of its
logarithm.!

In any case the limit we seek is?

1 + int(lg N)
m —kF—
N—oo 1 + int(log N)

in which we can substitute the change of base formulas using In to give:?

| 4ine (2

1 +intlgN) T\ 2

M T intlog Ny A InN
—oo 1 4 int(log N) —)ool-i-int()

In10

In this expression, as N gets large, the 1s become insignificant. So, too, do
the mantissas of the logarithms, because the characteristics get larger and

'T have extended the use of the word “characteristic” from base 10 logs to include the
integer part of any log.

2Those of you who are unfamiliar with the notation limy_, o can think of it informally
as indicating a number approached when N gets very large.

3 Alert readers will notice that we could continue here using log instead of In. It is an
interesting exercise to finish the argument in this way. The result will be (log 10)/log 2,
which is equal to (In10)/In 2.

THE RATIO OF DECIMAL TO BINARY DIGITS 259

larger while the mantissas stay between zero and one. For these reasons
we have a much simpler expression

InN
. n2 _ In 10
Ry LU e
In10

and, since this last fraction does not involve N, it is equivalent to

In10
— &332
In2

What this tells us is that, while the number of binary digits representing
numbers is greater than the number of decimal digits, even when the base
10 numbers get very large, their binary equivalents get closer and closer
to about 3% times as large. In fact, the most they ever get was back when
we had single digits. Then for two specific values the number of binary
digits is four times as great: 8in = 10004y, and 9en = 1001 y0.

APPENDIX P

CONSTRUCTING A LOG TABLE

The satisfaction of owning an electronic calculator and the fun of
experimenting with its buttons hardly measure up to the pride felt
possessing and mastering an advanced slide rule.

—Jan Gullberg

Shortly after the invention of logarithms, two English mathematicians
contributed to the construction of the first slide rules. In 1620 Edmund
Gunter developed a logarithmic scale and used compasses to multiply and
divide with it. A year later William Oughtred paired two of these scales
to construct the first slide rule.

It is an interesting exercise to develop a table of logarithms from which
a pair of scales can then be constructed to provide a simple slide rule.

We begin with the equally spaced decimal ruler of Figure P.1.

We will enter a log scale above these units, and, as a first step, we enter
the numbers whose logs are 0 and 1 above those numbers on the scale to
produce Figure P.2.

That was rather straightforward, but now we want to locate 2, 3, 4,
5, 6,7, 8, and 9 on that scale. We could do this by using log tables,

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

260

SEVERAL LOGARITHM VALUES 261

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.1 A decimal ruler.

1 10
O —— & ——— & —— O — O — O —O— 0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.2 Beginning the log scale.

but it is instructive to see how we can do this simply by using the basic
principles of logs. (This is one of those problems that you could address
when marooned on a desert island.)

The one other thing we have to work with is our knowledge of the
logs of powers of 10: log1 =0, log10 =1, log 100 = 2, log 1000 = 3,
and so on.

SEVERAL LOGARITHM VALUES
Log 2

What we can do is seek a power of 2 near one of those powers of 10.
We know 23 = 8, which is not very near 10; and 20 = 64 and 27 = 128,
neither of which is very close to 100. But 2! = 1024 is quite close to
1000. We can then write this relationship as 2'% = 1000 % 1.024, and we
can write the log equation for this: 10 log?2 = log 1000 + log 1.024.

We know log 1000 = 3, so we have 10 log2 = 3 4 log 1.024, and
dividing by 10 gives us

log 1.024
10

This tells us that log2 = .30 plus an error term. We know that log 1 = 0,
so log 1.024 will be small, and here even that is divided by 10. In fact,
for any positive x, since 1 + x < 10*, log(1 4+ x) < x. In this case that
means that log 1.024 < .024. When we divide that by 10, our error is less
than .0024.

Thus we have log 2 ~ .30 and we can place this on our scale as shown
in Figure P.3.

log2 = .30 +

1 2 10
O —— O —— & —— O — O — O —O— 0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.3 Placing 2 on the scale.

262 CONSTRUCTING A LOG TABLE

1 2 4 5 8 10
————e —0 —0 —0 —0 —o —0 —0 —0—=0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.4 Placing 4, 5 and 8 on the scale.

Log 4, Log S, and Log 8

Knowing the location of log 2, we can also locate log4 and log 8:
log4 = log2* = 2log?2 ~ 2 % .30 ~ .60
log8 = log2® =3log2 ~ 3 %.30 ~ .90

And
log5 =1log(10/2) =log 10 —log2 ~ 1 — .30 =.70

so we have Figure P.4.

Log 3, Log 6, and Log 9

In estimating log 3, we have the values that we have already calcu-
lated in addition to logs of powers of 10. We can write 3* = 81 = 80 x
81/80 = 8 % 10« 1.0125, and taking logs of the first and last of these,
we have 4 xlog3 =log8 4+ log 10 + log 1.0125 or 4 xlog3 ~ 9+ 1+
log 1.0125, and, dividing by 4:

log 1.0125
4

So we have log 3 ~ .48 and this time also our error term:

log 1. .
og 1.0125 - 0125 ~ 003,
4 4

From log3 &~ .48 we get other values:

log3 ~ 475 +

log6 =1log2 +log3 ~ .3+ .48~ .78
log9 = log 3% = 2 xlog3 ~ 2 % .48 = .96

Placing these on the scale, we have Figure P.5.

1 2 3 4 5 6 8 9 10
& —— 0 —— 0 —— 00— 00— — 06— 00— 00— 00
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.5 Adding 3, 6, and 9 to the scale.

SEVERAL LOGARITHM VALUES 263

1 2 3 4 5 6 7 8 9 10
—————0—0—0 —006—0 —0 —00—0—0—0—90
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Figure P.8 Using log scales for multiplication by 2.

Log 7

Finally, we begin with 7> =49 = 50 %+49/50 = 5 % 10 % 49/50. Taking
the log equation for the first and last members we have 2 x log7 = log5 +
log 10 +1log .98 = .70 + 1 4 1og .98 = 1.7 4+ log .98 and, dividing by 2,
we have

(log .98)
2

Thus we have log 7 &~ .85, with an error of (log.98)/2. This error estimate
is .02/2 = .01, so we have an error of less than 1%.

Placing this on our scale, we have Figure P.6.

Now we can take away the values below the scale line and we have
the log scale of Figure P.7.

If we make a copy of this scale, we can use it to perform simple mul-
tiplications. Figure P.8 shows multiplication by 2 by shifting the second
scale so that it begins at 2 on the first scale. (The scales are shortened
proportionally to allow this.)

Note that the multiples of 2 are read above the corresponding values
on the lower scale.

You can also multiply by 5 with the scale placed like this. Since the
5 is placed below the 10 (usually recorded as 1 on slide rules), you can
read products of 5 times numbers on the top scale below them. Of course,
5 % 6 is 30, not 3, but one of the tasks of the slide rule user is to place the
decimal point correctly. All this is because the slide rule is proportional
to log mantissas, and the characteristics must be taken into account by
the user.

log7 = .85+

264 CONSTRUCTING A LOG TABLE

Clearly, then, the rules as placed in Figure P.8 also provide products
like 20 * 300 and .05 * 70.

There are several interesting avenues to explore from here. It should
be evident that additional values can be added to the scales from their
current placement. For example, as the scales are placed in Figure P.8,
we can locate 2.5, 3.5, and 4.5 on the lower scale below their doubles on
the upper scale.

So far we have constructed a log table for the numbers from 1 to 10:

X Log X

.00
.30
48
.60
70
78
.85
.90
.96
1.00

[esRANoRNe SBEN Be N S S

p—

If you look at the scales already constructed, you should notice that few
values are filled in at the left end of the scales. You can continue to
calculate values from 11 through 19 (which correspond to 1.1-1.9) to fill
in many points there.

To do this, you can use:

112 = 121 =120 * 121/120 = 3 * 4 * 10 * 121/120
12 = 3%*4

13 = 40/3 * 39/40

4 = 2%*7

I5 = 3%*5

16 = 2¢

173 = 4913 =77 * 100 * 4913/4900

18 = 3%6

192 = 361 =6%* 10 * 361/360

APPENDIX Q

RELATIONS BETWEEN
SIDES OF INSCRIBED AND
CIRCUMSCRIBED POLYGONS

In this appendix we set out to establish those two formulas that relate the
lengths of sides of inscribed and circumscribed regular polygons as they
are doubled (Figure Q.1).

The formula for Figure Q.1 that we seek to establish for this process

is 8o =1/2 — V48,2
The corresponding formula for doubling the number of sides of cir-
cumscribed polygons as on Figure Q.2 is

2/T?+4—4

T, =
2n Tn

To accomplish these tasks, we must first review some relationships from
elementary geometry:1

1. In a circle two inscribed angles are equal if they intercept equal
arcs. In Figure Q.3, if arc @ = arc b, then angle A = angle B and
vice versa.

2. As we have pointed out before, an angle inscribed in a semicircle
is a right angle. In Figure Q.4, angle A is a right angle.

'This development follows Archimedes’ work according to Sherman Stein’s account
in Archimedes: What Did He Do Besides Cry Eureka? (Mathematical Association of
America, 1999).

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

265

266 RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS

T

Figure Q.1 Doubling the number of sides of inscribed regular polygons.

Figure Q.2 Doubling the number of sides of circumscribed regular polygons.

3. An angle bisector of a triangle divides the opposite side in the
same ratio as the corresponding sides of the angle. This theorem

tells us that on Figure Q.5, with angle BAC bisected, (BD/DC) =
(AB/AC).

o
I m
o >

Figure Q.3 Inscribed angles and their arcs.

RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS 267

Because this theorem is often omitted from geometry instruction
today, an outline of its proof is shown in Figure Q.6.

Construct a line parallel to DA through C and extend BA to meet
this line at E. Then parallel line relationships make all the angles
marked x equal. Thus AC = AE. From similar triangles ADB and
ECB, we have (BD/DC) = (BA/AE) and, substituting AC for
AE, this becomes (BD/DC) = (BA/AC), as we set out to prove.

4. In proportions, if a/b = c/d, then

a a—+c
b b+d

Figure Q.4 A right angle inscribed in a semicircle.

B

c

Figure Q.5 Triangle angle bisector theorem.

B

Figure Q.6 Triangle angle bisector theorem proof.

268 RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS

o]

Figure Q.7 Doubling sides.

Since (a/b) = (c/d), ad = bc. Adding ab to each member, we have
ab + ad = ab + bc, which may be written a(b +d) = b(a + ¢).
This last is equivalent to the desired

a_a—i—c
b b+d

Now we are prepared to prove those two formulas. First we address
the inscribed regular polygons.

In the semicircle of Figure Q.7, we have AC = S,, and AD = DC =
S2,. Because they are inscribed in the semicircle, angles ADB and ACB
are both right angles and inscribed angles ABD and DBC are equal
because they intercept equal arcs. Therefore, right triangles ADB and
PCB are similar, and we have proportional sides:

BD BC

— = M)

AD PC
Since B P bisects angle B in triangle ABC, the angle bisector theorem we
just proved gives us another proportion: AB/BC = AP /PC or, exchang-
ing means:

AB BC

- II
AP PC b

Now we apply that relationship (4) about proportions on page 267 to (II)
to give

AB AB+ BC
AP AP+ PC

and this is equivalent to
AB AB+ BC
— = (1I0)
AP AC

RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS 269

Since the right sides of the proportions marked (I) and (II) are the same,
their left members are equal. Thus BD/AD = AB/AP, and we can sub-
stitute this into (III) to obtain
BD AB+ BC
AD ~ AC
Archimedes can calculate all the terms on the right side of that equation,

because AC = S,,, AB = 2, and he can calculate BC by the Pythagorean
theorem. For that reason, at this point he knows the ratio BD/AD.

Again the Pythagorean theorem gives him AB = +/AD? + BD? and,
dividing by AD, he has

AB +AD? + BD?

av)

AD ~ AD

which may be rewritten as
AB _ [, (BD 2)
AD AD

He can insert that ratio BD/AD into this relationship to obtain AB/AD,
and knowing AB = 2, he can finally calculate AD = $,,.

You can just imagine his having to work out all those ratios without
having algebraic language to help him, and he had to do all those calcu-
lations over each time he doubled the side lengths! No wonder he quit
after doing so four times.

Here, then, is the algebra that backs up those calculations and allows
us to use a calculator to carry them out.

We begin with AB = 2 and AC = S§,,. From this we calculate, as above,
BC =4 - 8§,>

Now, we can evaluate equation (IV):

BD AB+BC 2++4-S,’
AD ~ AC Sn

and substitute this ratio into (V) to give us

2
AB BD\? 244 8,2
1+ = |1+ —
n

AD AD

Squaring and combining terms produces a somewhat simpler radical

AB 2y/2++4-5,2

AD Sy

270 RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS

Now recall from our diagram that AB/AD = 2/S,, and we have
2 2y2+V4-5,2

S S,

Inverting, multiplying by 2, and finally rationalizing that denominator by

multiplying numerator and denominator by /2 — v/4 — S,,% provides the
first of our formulas relating S, to S,, for inscribed regular polygons:

Son =12 — V4 - S,7

Although Archimedes used essentially this approach in his estimate
of m, there are problems with this formula, which will be discussed in
Appendix R. In that appendix a substitute for this formula will be deter-
mined that responds to those problems:

Sn
Szn_\/1+%"+\/1—%

For now, however, we turn to the second problem of this appendix, to
derive the equation for doubling the number of sides of circumscribed
regular polygons:

2/T2+4—4

T, =
2n Tn

Since the 6 sides of the circumscribed regular hexagon of the left side
of Figure Q.8 are intercepted by 60° central angles, AB = Tg and, since
the twelve sides of the regular dodecagon are intercepted by 30° angles,

a A
D D
° X
c 15 o c c
r=1 15° \ r=1
E

Figure Q.8 Circumscribed polygon angles.

RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS 271

DE = T;. The right figure generalizes this for half-sides of the circum-
scribed polygons. With the angle at O bisected, we let AC = T,,/2 and
DC = T,/2.

On this right-hand figure, at each stage of the doubling process,
Archimedes knows all three sides of triangle O AC. He knows OC =1,
the radius of the unit circle; AC = T,,/2; and he can calculate OA by the
Pythagorean theorem:

Once again we make use of that angle bisector theorem to get us started.
On triangle OAC, we have

OA AD
oC CD
Now we simply manipulate proportions, first adding one (in the form of

OC/OC and CD/CD) to each member. This is equivalent to adding 1
to each side of the equation, and thus equality is maintained:

0C+0A_CD+AD
oC OC CD CD

Then, combining fractions, we obtain

OC+0A CD+AD
oc CD

and finally substituting CA for CD + AD, we arrive at

OC+0A CA
ocC CD

Since Archimedes knows all the other values in this proportion, he can
now calculate CD.

We can replicate this algebraically by substituting the values we already
know in this last expression to obtain

1 =

NY P

ol
N

272 RELATIONS BETWEEN SIDES OF INSCRIBED AND CIRCUMSCRIBED POLYGONS

This we solve for T, and simplification (including rationalizing the
denominator) leads us to the desired formula:

2/T?+4—4

T, = Tn

APPENDIX R

CHANGE IN FORM OF A
POLYGON FORMULA

We showed in Appendix Q the derivation of the formula associated with
doubling the number of sides of inscribed regular polygons. That formula

is Son =4/2 — V4 - S,2

There are problems with this formula: (1) it has a square root within a
square root; and (2) when S, becomes small, calculating problems arise.
When you subtract a very small value from 4, you begin to lose accuracy.

To see how this happens, consider a trivial example. Suppose S, =
.0000001111111111. (Your calculator would carry all of those ten digits
in the form 1111111111E~7). But now when you subtract that number
from 4, and you get (again to ten-digit accuracy), 3.999999889, which
is the same as 4 — .000000111. The rest of those digits were lost in the
processing. (Even though your calculator probably carries a few extra
digits internally, this effect still holds but just at another level.)

We will address these problems by converting that formula to another

form:
2 Sn
2 \J4—52=
Sn Sn
Ji+s+ 1%

We show this in two steps. In the first step we use a little-known theorem
that, for a particular situation, “denests” a square root that occurs as a

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

273

274 CHANGE IN FORM OF A POLYGON FORMULA

term within another square root. It states: When a> — b = p? for some

p > 0, then
a+p \/a—p
vat~b= +
a [\/ 5 5

This theorem is proved by squaring that equation, making appropriate
substitutions, and simplifying the result.

We apply the theorem to our situation witha =2 and b = 4 — S,%, since
a’—b=4—(4—S2) =52 We then set S? = p* to get p = S,. Since
in this case the + of the theorem is negative, we arrive at the following

equation:
S, S,
2—,/4—S2=\/1 —"—\/1——"
\/ " +2 2

There is still more to do, however, since we are still subtracting two nearly
equal quantities when S, is small.

In the second step, we rationalize the numerator of the right side of
that equation by multiplying by

Sn Sn
\/14-7—1—\/1—7

Sn Sn
\/1_’_74_\/1_7

Here is the math:

n n Sn Sn
5 5 It e 1-% (1+7>—(1—7>
l‘l—?— 1 k =

2 Sn Sn_ Sn M
S

_ n
Sn Sn
Jits e 1%
These successive steps have shown that

2 — /4 — r%: Sn
A \/1+%+\/1—%

Substitution then gives us the alternate formula for S, that we sought:

Son = Sn
Jitg e 1%

CHANGE IN FORM OF A POLYGON FORMULA 275

Notice what happens in this formula when S, gets very small. At that time
the denominator gets closer and closer to V14 +/1 =2. Thus Son = S,/2.
However, we have twice as many sides in the new polygon and P, ~ 2 *
P,/2 = P,, the situation you should expect to be true when the number
of sides is large. As the polygon perimeters approach the circumference
of the circle, they change less and less each time the number of sides is
doubled.

APPENDIX S

AN AREA APPROACH
TO ARCHIMEDES’ PROBLEM

My colleague Donald Stover has brought to my attention an entirely
different approach to Archimedes’ problem of evaluating 7. Instead of
working with the circumferences of inscribed and circumscribed polygons,
Stover uses the reciprocals of their areas in the following program:

PROGRAM: STOVEPI
.51
.25—C
: While I # C
vV (IxC)—1I
(I4+C)/2—C
End (While)
Disp 1/1

This program is, I suggest, quite remarkable. It not only is brief but it also
involves two old friends, the geometric mean in line 4 and the arithmetic
mean in line 5. I consider the basis for this program the most remarkable
algorithm of this book.

It may be a short and seemingly straightforward program, but working
it out is not a trivial task. I will provide only an outline of that math here.!

'For a complete development, I refer you to Chapter 5 of Stover’s book, Precalculus
Problems and Projects, which is in the final stages of preparation.

Inside Your Calculator: From Simple Programs to Significant Insights By Gerald R. Rising
Copyright © 2007 John Wiley & Sons, Inc.

276

AN AREA APPROACH TO ARCHIMEDES’ PROBLEM 277
/ \
1

Figure S.1 Inscribed and circumscribed squares.

It is important to understand that in this program the variable I (for
inscribed) represents the reciprocal of the area of a polygon inscribed in
a unit circle and C (for circumscribed) represents the reciprocal of the
area of the corresponding circumscribed polygon.

The program begins with inscribed and circumscribed squares as shown
in Figure S.1. It should be evident from this diagram that the area of the
inscribed square is 2 and the area of the circumscribed square is 4. Thus
the program begins with their reciprocals, / = 1/2 and C = 1/4.

In the While loop these area reciprocals are recalculated as the num-
ber of sides of the polygons are doubled just as the perimeters were in
Archimedes’ approach.

Here are the corresponding formulas in which n represents the number
of sides of the polygon and x represents half the length of the side of the
inscribed polygon, in both cases before doubling the number of sides.

AREA FORMULAS

Inscribed Polygon Circumscribed Polygon

nx
n-sided nxv/1 — x2 _
V1 —x?
. 2nx
2n-sided nx

14+ +1—x2

Deriving the formulas for the n-sided polygon is a reasonable exercise,
but doing so for the 2n-sided polygon represents a challenging problem.
Once you have those formulas, however, forming their reciprocals to give
the following table is straightforward.

278 AN AREA APPROACH TO ARCHIMEDES’ PROBLEM

AREA FORMULA RECIPROCALS

Inscribed Polygon Circumscribed Polygon

1 V1= x2
nsided ———=—oldl YY" _osdc
nxv/1 — x2 nx
1 1++1—x2
2n-sided — =new [u = new C
nx 2nx

It is also straightforward to show that

1 1d C
vold I x0oldC =newI and % =new C

Those are the formulas that operate in each pass through the While loop.
It is important to notice that the arithmetic mean is calculated with the
new [. Thus you don’t have to create a dummy variable to retain the old
I for this calculation.

To show the convergence of values, you can modify the program to
this form:

PROGRAM STOVPIZ2

.51
.25—C
. 4—>N
: Disp N,2,4
: Pause
: While I # C
vV (IsC)— 1
(I+C)/2—C
Disp N,1/I,1/P
Pause

: End (While)

This algorithm may be used with computer algebra systems that allow
high-precision arithmetic to calculate = to many more digits. It does not
address the problem that our program that mirrored Archimedes’ method
did and when run on your calculator converges on the calculator’s 10-digit
value of . In the following scheme accurate digits are underscored.

AN AREA APPROACH TO ARCHIMEDES’ PROBLEM 279

I N 11 1/C Correct Digits
1 4 2 4 0
2 8 2.828427125 3.313708499 0
3 16 3.061467459 3.182597878 1
4 32 3.121445152 3.151724907 1
5 64 3.136548491 3.144118385 3
6 128 3.140331157 3.142223630 3
7 256 3.141277251 3.141750369 3
8 512 3.141513801 3.141632081 4
9 1024 3.141572940 3.141602510 5
10 2048 3.141587725 3.141595118 5
11 4096 3.141591422 3.141593270 6
12 8192 3.141592346 3.141592808 6
13 16384 3.141592577 3.141592692 7
14 32768 3.141592634 3.141592663 7
15 65536 3.141592649 3.141592656 7
16 131072 3.141592652 3.141592654 9
17 262144 3.141592653 3.141592654 9
18 524288 3.141592654 3.141592654 10

FURTHER READING:
A PERSONAL SELECTION

Benson, D. C. (1999). The Moment of Proof: Mathematical Epiphanies. New
York: Oxford Universiy Press. (A clear development of how mathematical
ideas are proved through many interesting and carefully explained examples.
A wonderful book that requires only school algebra. Sets a high standard for
science exposition.)

Berlinski, D. (2001). The Advent of the Algorithm: The Idea that Rules the World.
New York: Harcourt, Inc. (The development of logic over three centuries leads
to today’s computing languages and programs. A bit cute but generally enter-
taining and a useful history.)

Dantzig, T. (1930). Number: The Language of Science. New York: The Free
Press. (Long considered a classic. This book belongs in the library of everyone
interested in mathematics.)

Dijksterhuis, E. J. (1987). Archimedes. Princeton, NJ, Princeton University Press.
(A serious and demanding survey of Archimedes’ ideas.)

Dozenal Society of America. “The Dozenal Society,” available from
www.polar.synynassau.edu/~dozenal/contact.html. (If only our
hands had six fingers! There is a strong case for use of base 12, and it is rea-
sonable to consider it via this website. We are, however, too deeply invested
in base 10 to change.)

Dunham, W. (1990). Journey Through Genius: The Great Theorems of Mathe-
matics. New York: Wiley Science Editions. (Key theorems of mathematicians
from Hippocrates and Pythagoras to Euler and Cantor well presented and
placed in historical context. An excellent introduction to the nature of proof.)

Engel, A. (1984). Elementary Mathematics from an Algorithmic Standpoint.
Staffordshire, UK: Keele Mathematical Education Publications, University of

281

282 FURTHER READING: A PERSONAL SELECTION

Keele. (A remarkable German teacher gathered many algorithms in this book
written early in the time of calculators and computers. Anything this outstand-
ing expositor developed is worth study. Some of the algorithms of Inside Your
Calculator are modified from Engel’s ideas.)

Engel, A. (1993). Exploring Mathematics with Your Computer. Washington, DC,
Mathematical Association of America. (Another original presentation by this
brilliant teacher. Unfortunately, the programs are written in Pascal, a language
no longer in favor. Interpreting the programs is worth the effort, however.
Extends the ideas of Inside Your Calculator.)

Eves, H. (1964). An Introduction to the History of Mathematics. New York: Holt,
Rinehart and Winston. (Although this book is old, I know of no math history
that involves the reader as this one does. The exercise sets take you close to
the problems solved by historically important mathematicians.)

Flannery, D. (2006). The Square Root of 2: A Dialogue Concerning a Number and
a Sequence. New York: Copernicus Books. (A master teacher takes a serious
sudent through a series of discoveries related to root 2. An interesting and
comfortable way to learn a great deal about this interesting number.)

Gullberg, J. (1997). Mathematics from the Birth of Numbers. New York: Norton
& Company. (If you have the time to study just one math book, choose this
one. It is an encyclopedic survey of math well presented in historical order.
Heavier going toward the end (of over a thousand pages), but the learning
curve is reasonably inclined.)

Heath, T. L., Ed. (1897). The Works of Archimedes. London, Cambridge Univer-
sity Press. (An early survey of Archimedes’ writing by a world authority on
the mathematics of antiquity.)

Heath, T. L. (1963). A Manual of Greek Mathematics. New York, Dover Publica-
tions, Inc. (A world authority’s survey of the amazing work ancient mathemati-
cians accomplished with weak tools and rotten notation. Much is remarkably
applicable today.)

Hofstadter, D. R. (1999). Godel Escher Bach: An Eternal Golden Braid, New
York: Basic Books, Inc. (The 20th anniversary edition of a Pulitzer Prize
winner. Hofstadter introduces ideas from logic, science, and music from oddly
appropriate fictional dialogs. Not to everyone’s taste but careful reading will
pay off.)

Ifrah, G. (1985). From One to Zero: A Universal History of Numbers. New York:
Viking Penguin. (Another history of numeration, but an excellent one.)

Jacobowitz, H. (1962). Computer Arithmetic. New York: Hayden Publishing.
(There are many superficial surveys of computer arithmetic. This is one that
does a thorough job of presenting the concepts and how they are imple-
mented.)

Livio, M. (2003). The Story of Phi, the World’s Most Astonishing Number, New
York: Broadway Books. (Another irrational number that turns up in remarkable
places: from breeding rabbits to tree growth. Too many religious references
for my taste but still a good book.)

FURTHER READING: A PERSONAL SELECTION 283

Maor, E. (1998). e: The Story of a Number. Princeton, NJ: Princeton University
Press. (The base of the natural logarithms forms the basis of much science:
radioactive decay and continuous interest are only two examples. A good
story, well told.)

Maor, E. (1998). Trigonometric Delights. Princeton, NJ: Princeton University
Press. (An accurate title. Well presented examples make this a pleasant read.)

Maxfield, C. and A. Brown (2005). The Definitive Guide to How Computers Do
Math. Hoboken, NJ: Wiley. (This book takes you to the heart of a computer
to show how basic procedures are implemented. You learn how much is going
on just to arrive at the four basic operations applied to integer arithmetic.)

Menninger, K. (1969). Number Words and Number Symbols: A Cultural History
of Numbers. Cambridge, MA: M.LT. Press. (Another respected wide-ranging
survey of mathematical ideas.)

Nahin, P. J. (1998). An Imaginary Tale: The Story of i. Princeton, NJ: Prince-
ton University Press. (Another recent book about the “special” numbers of
mathematics. Extends the ideas of Inside Your Calculator, Chapter 9.)

Nahin, P. J. (2004). When Least Is Best: How Mathematicians Discovered Many
Clever Ways to Make Things as Small (or as Large) as Possible. Princeton,
NIJ: Princeton University Press. (Most of mathematics instruction is focused on
equations. This book takes another equally important route: to the inequalities.
A series of remarkable problems are addressed. Challenging.)

Parris, R. (2001). “Elementary Functions and Calculators.” available from
math.exeter.edu/rparris/peanut/cordic.pdf. (The best careful intro-
duction to CORDIC I have been able to find. Still heavy going, but well worth
your attention if you wish to explore this concept further.)

Posamentier, A. S. and I. Lehmann (2004). v: A Biography of the World’s Most
Mpysterious Number. Amherst, NY: Prometheus Books. (A straightforward and
up-to-date survey of ideas related to m accessible to general readers. If you
want to use—or memorize—thousands of digits in the decimal expansion of
7, you’ll find them here.)

Ralston, A., E. D. Reilly, and D. Hemmendinger, Eds. (2000). Encyclopedia of
Computer Science. London: Nature Publishing Group. (It is always a compli-
ment to say that a book is encyclopedic in scope. This one certainly earns its
name. Much history is included in this excellent resource for all aspects of
computing.)

Reid, C. (1964). From Zero to Infinity: What Makes Numbers Interesting. New
York: Thomas Y. Crowell Company. (Another accessible survey by a fine
science historian.)

Stein, S. K. (1999). Archimedes: What Did He Do Besides Cry Eureka? Washing-
ton, D. C.: Mathematical Association of America. (Sherman Stein is another
master expositor. Here he explains the key ideas presented by one of the
world’s finest mathematicians. A source for much of Inside Your Calculator
Chapter 7 and Appendixes Q and R.)

284 FURTHER READING: A PERSONAL SELECTION

Stein, S. K. (1999). Mathematics: The Man-Made Universe, New York: Dover
Publications. (A new edition of a fine collection of mathematical topics well
explained. Any trade book or textbook by Stein is worth studying. (A famous
comment about Stein’s calculus text: Use this book for teaching, assign to
your students anyone else’s.))

Stover, D. W. (2006). Precalculus Problems and Projects, in preparation. (When
published, this book should be on every school and college mathematics
teacher’s desk. Most of the ideas of Inside Your Calculator were derived
from Stover’s much more extended development of precalculus mathematics.)

Weisstein, E. (1999). “Fermat’s Last Theorem,” available from mathworld
.wolfram.com/FermatsLastTheorem.html. (If Fermat really could prove
the theorem that bears his name as he claims, he certainly did not take
this modern route. Worth exploring if only to see how esoteric is the math
involved.)

INDEX

Abacus, 192—-193

Absolute value, 52

Algorithm, 3, 281

Antilog, 5, 86, 105

Arccosine, 134—137

Archimedes, 106—116, 281-283. See
also

Argand diagram, 140

Argument, 151

Arithmetic mean, see Means

Augarten, Stan, 197

Babbage, George, 202f
Babylonians, 53
BCD(s), see Binary-coded decimal
Benson, Donald C., 281
A Beautiful Mind, 205f
Berlinski, David, 281
Binary
arithmetic, 211-221
decimal digit ratio, 257-259
electronics, 213-221
numbers, 192
numbers between zero and one, 75
numeration, 28—-39

Inside Your Calculator: From Simple Programs to Significant Insights

Copyright © 2007 John Wiley & Sons, Inc.

search, 96, 249-255
subtraction, 222-227
Binary-coded decimal(s) (BCDs), 27, 38,
39, 255, 335
Briggs, Henry, 85, 86
Brogan, Denis William, 51
Brown, Alvin, 283
Burgi, Joost, 86f

Calculating machines, 196—203

Calculation tools, pre-electronic,
191-203

Carroll, Lewis, 3

Casio calculators, 164f, 179

Circular functions, 119-121

Complex numbers, 139-151

Compound interest, 43

Conjugate, 143

Continued fraction(s), 238—242

Coordinate rotation digital computer, see
CORDIC

CORDIC, 90, 138-159

Cornish, Mary, 19

Cube root, 59, 231

algorithm, 59

By Gerald R. Rising

285

286 INDEX

Curta calculator, 197, 200-202 Hegel, Georg Wilhelm Friedrich,
73
Dangerfield, Rodney, 107 Hemmendinger, David, 283
Dantzig, Tobias, 281 Hewlett, William, 5
Decimals, repeating, 209-210 Hewlett-Packard, 3, 5
Dijksterhuis, Eduard J., 281 Hindu-Arabic numeration, 28, 31, 32,
Distance, 53 107
Divide and average square root algorithm, Hofstadter, David R., 282
59, 72 Hollerith, Herman, 202f
Division HP-35, 4, 5
integer, 206
long, 206-210 Ifrah, G, 282
Dozenal Society, 28f, 192, 281 Imaginary numbers, 139
Dunham, William, 281 Interpolation, 5, 188—190
Duodecimal system, 28 Interval bisection, 96
Duplation and mediation, 44 Irrational numbers, 73
e, 89, 282 Jacobowitz, Henry, 221, 282
Einstein, Albert, 40, 107
Engel, Arthur, 281-282 Kepler, Johannes, 84, 107, 196
Euler, Leonhard, 107
Eves, Howard, 282 Lehmann, Ingmar, 283
Exponent (def), 40 Leibniz, Gottfried Wilhelm, 197
Livio, Mario, 282
Fermat, Pierre de, 204—205 In, 89-90, 103, 105
Fermat’s Last Theorem, 20, 204-205, calculating, 103, 105
284 Logarithm(s), 4, 5, 84—-105, 198, 256,
Field properties, 141 260-264
Flannery, David, 236, 282 base 10, 87—-102
Full-adder, 220-221 calculating values, 260-264
Function(s) 6, 7, 252 change of base, 256
machine, 6, 7 characteristic(s), 88, 90
mantissa, 90
Galilei, Galileo, 107 natural, see In
Gauss, Carl Friedrich, 107
Geometric mean, 66, 92, 239, 276 Maor, Eli, 86f, 282
Global Positioning System, Matrix, 154, 155, 186187
see GPS Maxfield, Clive, 283
Gnomon, 55 Mean proportional, 66
GPS, 13, 14 Means, 66
Graphing, 163-177 arithmetic, 66, 92, 230, 276
Greatest integer function, 26 geometric, 66, 92, 239, 276
Guess and check, 63 harmonic, 66
Gullberg, Jan, 138, 260, 282 root mean square, 66
Gunter, Edmund, 260 Menninger, Karl, 283
Minuet, Peter, 43, 46, 49
Half-adder, 220-221 Modulo, 27f
Harmonic mean, see Means Modulus, 151

Heath, Thomas L., 282 Moulton, Lord, 84

INDEX

Multiplication with many digits,
243-248

Nahin, Paul J., 67, 283
Napier, John, 85, 86f, 193

bones, 193-195

rods, 193-195
Nasar, Sylvia, 205f
Nash, John Forbes Jr., 205f
Natural logarithm(s), see In
Newton, Isaac, 84, 107, 197
Newton’s method, 60-72, 228-232

for square root extraction, 60—72
Nines complement, 223-224
Number, see Numeration
Number Theory, 19, 20
Numeration, 28, 191-193

bases, 28

representation, 191-193

Ones complement subtraction, see
Subtraction
Oughtred, William, 198, 260

Pappus of Alexandria, 106
Parris, Richard, 159, 283
Pascal, Blaise, 196
Pascaline, 196-197
phi, 282
w, 107, 241-242, 283
Archimedes calculation, 106—116
calculation by area, 276-279
Pixel(s), 163, 164
Polar coordinates, 148—151
Posamentier, Alfred S., 283
Power (def), 40f
integer calculation, 40-50
rational calculation, 73—-83
Power series, 139f
Programming
basics, 179-187
calling, 254
control structures, 183—185
input and output, 185-186
Program(s)
ACOSDEG, 135
ACOSRAD, 137
AXES, 166
AXSCALE, 167, 168

BINDEC, 34
BINDEC2, 35
BISCH1, 250-251
BISCH2, 252
BISCH3, 253
BISCH4, 254
CONTFRX, 240
CORDMAT, 154
CORDSIM, 154
COSDEG, 9, 117
COSRAD, 124—-125
COSXDISP, 132—133
CUBERT, 231
DECBIN, 38
FN, 253
INTMULT, 42
INTPOW, 49
LINE, 169, 171
LOGBX, 104—105
LOGGRE1, 97
LOGX, 100—101
LONGDIV, 207
POLRECT, 149
POSIPOW, 41-42
QINTPOW, 47, 49
QUAD, 171
QUINTPOW, 44
RATPOW1, 79, 83
RATPOW2, 80
RECTPOL, 149
RPOWALL, 82, 83
RTHRT, 232
SQRT, 63
SQRT2FR, 236
SQRTG10, 65
SQRTXFR, 237
STOVEPI, 276
STOVPI2, 278
Pythagorean Theorem, 120, 126, 147

Quadratic formula, 249, 251

Radians, 121-125

Ralston, Anthony, 283
Rational numbers, 73

Rational powers, 73-83
Rationalization, 108f, 136, 143
Reading references, 281-283
Real numbers, 73

287

288

Reid, Constance, 283
Reilly, Edwin D., 283
Relative error, 65
Repeating decimals, 73
Roman numerals, 44
Rounding

decimals, 115

down, 26

Scales, 166
Schickard, Wilhelm, 196, 198
Scientific notation, 43
Search, binary, see Binary search
Slide rule, 86, 198-200
Square root, 51-72, 230
calculation by divide and average,
59-72
calculation by Newton’s method, see
Newton’s method
calculation by a school algorithm,
53-60
calculation by squaring, 62
Square root of 2, 233-237, 282
Stein, Sherman K., 107, 283-284
Stover, Donald W., v, xiii, 276, 284
Subroutine, 72, 253

INDEX

Subtraction
ones complement, 226
twos complement, 227
Synthetic substitution, 23-25

Texas Instruments, see TI calculators
TI calculators
TI-83, 179
TI-84, 163, 164, 179
TI-89, 179
TI-92, 164f, 179
Trigonometry, 117-159, 282
right triangle, 118—119
Twenty Questions, 96
Twos complement subtraction, see
Subtraction

Vieta, Francois, 117
Vitruvius, 107
Vlacq, Adriaan, 86

Weisstein, Eric W., 284
Well ordering principle, 235f
What’s My Rule?, 6, 7
Wiles, Andrew J., 205
Williams, Michael R., 196

