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PREFACE 

The aim of this book is to present a new theory of individual behavior, 
with emphasis on testable implications. Discussed first is individual eco- 
nomic behavior--roughly, the subject matter of utility theory and the theory 
of the firm. The book then widens its scope to formulate a theory of 
individual behavior in general. 

The mathematics is confined almost entirely to multivariate calculus and 
elementary linear algebra, both at a level that should be comfortable for 
all graduate students and many upper-level undergraduates. 

In preparation is a successor volume, A Theory of Social Behavior. That 
book, too, begins with economic behavior--social or interactive behavior 
this t ime--and ends with social or interactive behavior in general. Topics 
in social economic behavior, such as price formation, competition, and 
general equilibrium, are discussed in that book rather than this one. 

It is a pleasure to thank Cynthia Browning, Jim Cassing, Francis Chan, 
Ed Green, Jack Ochs, Phil Reny, and A1 Roth for helpful discussions and 
encouragement. Special thanks go to P. de Wolff and J. S. Cramer, of 
the University of Amsterdam, who back in 1967 and 1968 supervised the 
dissertation that became this book's Model Two. 

o o  

Vll  



This Page Intentionally Left Blank



I 
Introduction 

The aim of this book is to develop a new theory of individual behavior, 
economic and otherwise. Particular attention is paid to testable results. 

Presented first is a theory of individual economic behavior, to be called 
Model One. ("Model" and "theory" are used interchangeably throughout.) 
Generalization then leads to the main theory, concerning all individual 
behavior. The main theory is called Model Two. 

Individual economic behavior, the subject of Model One, includes both 
market behavior, the subject of utility theory, and producer behavior, the 
subject of the theory of the firm. You could thus view utility theory and 
the theory of the firm as the beginning point, Model Two as the endpoint, 
and Model One as the connecting bridge. Put another way, the primary 
purpose of Model One is to clarify where Model Two stands relative to 
traditional microeconomics. 

Once Model Two is begun, Model One is no longer needed, and dis- 
carded. 

As said, the emphasis is on testable results. Model One has nine, including 
the long-sought demand function; Model Two has ten. These being unusu- 
ally large numbers, some discusion is in order. 

In the two hundred years of its existence, traditional utility theory has 
produced only one (nontrivial) empirically verifiable result, namely, the 
Slutsky equation (1915). Apparently, searches for testable results are un- 
likely to bear fruit. This is why most theorists direct their attention else- 
where. Their books and articles rarely aim for testable results; typically, they 
seek to construct more and better mathematical descriptions of economic 
reality, or to enlarge the scope of economic theory, or to refine existing 
theories, or other things of this sort. Important though such goals may be, 
they should not be allowed to obscure that the chief purpose of positive 
economic theory remains the production of testable results. Failure to meet 
this objective may not always be a weakness, but it is never a strength. 

More than any other factor, it is the search for testable results that 
determines the organization and development of what follows. If now and 



2 1. Introduction 

then you wonder where the argument is going, most likely it is in the 
direction of some testable result. 

In case your interest lies with the art of model building, rather than with 
empirical verifiability, you may still get something out of this book. For 
example, you will encounter the first positive theory of behavior that suc- 
cessfully incorporates continuous time, and the first theory that fits consum- 
ers and producers alike. You will also find a demonstration that equilibrium, 
including general equilibrium, is both theoretically and practically irrele- 
vant; equilibrium is a will-o'-the-wisp whose introduction into traditional 
theory is the unfortunate consequence of a mistaken assumption. 

Some characteristics of the two theories follow. First, Model One. 

(i) Like neoclassical utility theory, Model One is based on a utility 
function, u, and a constraint. Like neoclassical utility theory, Model One 
takes u to be independent of time. Like neoclassical utility theory, Model 
One leaves u unspecified. Model One does not say, for example, that u is 
quadratic or has the Cobb-Douglas form. 

(ii) Yet, unlike neoclassical utility theory, Model One produces nine 
testable resultsmspecific, analytical forms of nine functions that economics 
has long sought. They are 

(a) The consumer's own-price demand functionme.g., the demand for 
bread as a function of the price of bread 

(b) The consumer's cross-price demand function~e.g., the demand for 
bread as a function of the price of butter 

(c) The consumer's own-price supply function~e.g., the labor-supply 
function 

(d) The consumer's cross-price supply function~e.g., the supply of labor 
power as a function of the price of housing 

(e) The producer's own-price demand function~e.g., the (derived) de- 
mand for steel as a function of the price of steel 

(f) The producer's cross-price demand function--e.g., the demand for 
steel as a function of the wage 

(g) The producer's own-price supply function--e.g., the supply of output 
as a function of the output price 

(h) The producer's cross-price supply function--e.g., the supply of out- 
put as a function of the price of capital 

( i)  The quasi-Engel function, which describes how the consumer's de- 
mand for a good depends on the consumer's wage. (In the traditional 
Engel function, the independent variable is the consumer's income.) 

Since the beginning of economic science, the Holy Grail of microeco- 
nomic theory, or at least one of its grand prizes, has been the consumer's 
own-price demand function. But the search has come to nothing; it is now 
well established that if u is unspecified, and given the assumptions of utility 
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theory, the analytical form of the demand function cannot be found. One 
therefore has to settle for second bes tmthe  Slutsky equation. 

It does not follow that the search for the demand function is bound to 
fail. What does follow is that so long as u remains unspecified and the 
assumptions of utility theory are left intact, the demand function cannot 
be derived. More positively put, if the demand function is to be found, you 
must either specify u (and, more important, justify the specification) or 
change the assumptions of utility theory. A search for a justifiable specifica- 
tion of u is likely to end in failure, seeing that two centuries of effort in 
that direction have brought no success. Model One therefore chooses the 
alternative. Model One deletes one assumption of utility theorymthe  "mis- 
taken assumption" mentioned a moment agomand  puts another in its place. 

The deleted assumption is that the consumer maximizes uti l i tymthe very 
cornerstone of utility theory. The replacing assumption is, quite loosely 
speaking, that the consumer tries to maximize utility. A little less loosely 
speaking, the consumer transacts so that his endowment, which is a point, 
at all times moves in the direction in which utility increases fastest, budget 
constraint permitting. The consumer thus does not choose a bundle. He 
chooses a direction. His main and never-ending business is steering~steering 
his endowment  in the direction he likes best. You could say that the consumer 
maximizes the slope of the utility function, rather than the utility function 
itself. The utility function is thus not a maximand but a crescend. 

Once the new assumption is in place, it is a simple matter to derive 
the consumer's demand function, thereby rendering the Slutsky equation 
obsolete. The function turns out to be 

B p + C  
(p _> 0). (1) 

Dp2 + Ep + l 

In (1), B, C, D, and E are parameters whose values differ from commodity 
to commodity and from consumer to consumer. Depending on those param- 
eter values, the demand curve either slopes downward, as in Figure 1, or 
has the backward-bending shape associated with Giffen goods, as in Figure 
2. Note that the p-axis is horizontal, in both diagrams. The reason for this 
break with tradition is explained later. 

All people are d i f f e ren t~Tom likes tofu, Tim likes tea. All goods are 
different too. It is often concluded that a single demand function, like (1), 
cannot possibly fit every consumer and every good. If that argument were 
sound, (1) would be of little or no use. Then again, if the argument were 
sound, Newton's theory of gravitation would be useless too, for it would 
follow, since all objects are different, and all objects behave differently, 
that no single theory can possibly fit every object in the universe. Actually, 
Newton never held that all objects behave the same way. Newton held that 
all objects behave according to the same principles. Similarly, this book 
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Figure 1. Downward-sloping demand curve. 

rests on the premise that all people behave according to the same principles, 
rather than in the same way. 

But is not all this a matter of opinion? Less so than you might think. 
For one thing, everyone's behavior is ruled by the mind, and the workings 
of all minds are governed by the same electrochemical laws. It is difficult to 
avoid the conclusion that all people behave according to the same principles. 

But suppose you are not convinced; suppose you believe there are at least 
two essentially different categories of people, and therefore two essentially 
different types of behavior, calling for two essentially different theories. 
By the rule that all concepts must be defined, it is then necessary to define 
the two categories, or at least the difference between them. In the absence 

Figure 2. Giffenesque demand curve. 
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of such a defini t ionmand to date, no adequate one existsmeconomic theory 
should treat all people with complete symmetry. Model One does so: what- 
ever it has to say for one person, it says for all. By the same reasoning, the 
set of all goods may be dichotomized only if one defines the resulting 
subsets, or at least the difference between them. In the absence of such a 
def in i t ion~and to date, no adequate one exis ts~economic  theory should 
treat all goods symmetrically. Model One does so: whatever it has to say 
for one good, it says for all. The premises of Model One thus imply that 
if (1) is a demand function, it is the demand function. 

Similar remarks apply to the other eight testable results. 
More features of Model One: 
(iii) The theory is positive, rather than normative. Model One uncriti- 

cally accepts that people lie, cheat, steal, make mistakes, lose money, stum- 
ble and fall. A normative theory might describe such forms of behavior as 
irrational or inefficient or suboptimal, but a positive theory does not have 
that option. To a positive theorist, the idea that a person can behave 
irrationally is as unacceptable as the idea that the moon can behave irra- 
tionally. 

(iv) Model One is dynamic. It treats time as a continuous variable, rather 
than as a sequence of periods. Model One is, even so, not an exercise in 
control theory. Control-theoretic models have a normative outlook; Model 
One does not. 

The shift from period analysis to continuous-time dynamics is more than 
a mere change in the theoretical treatment of time. It engenders a new 
way of looking at some issues of economic interest. It changes some answers. 
And it changes some questions. 

In traditional utility theory, the consumer begins each period with an 
initial endowment,  x(0), ends each period with a final endowment, x(1), 
and uses the time in between to transform the one into the other. We thus 
see him as undertaking a well-defined project, as having a well-defined 
task. Many of the questions asked by traditional theory implicitly view the 
consumer as an undertaker  of tasks and make sense only so long as one 
accepts both that view and its period-analytical matrix. 

At the instant where two periods abut, time is reset to zero, and x(1) is 
reset to x(0). Since x(0) and x(1) are usually taken to differ, this puts a jump 
discontinuity into the endowment 's  time path. It is a puzzling discontinuity, 
without counterpart  in the real world. 

When time is a continuous variable, there is no period, no period begin- 
ning, no period end, no final bundle, no theory-generated jump discontinu- 
ity. As periods disappear, so does the temptation to see the consumer as 
one who undertakes projects, a completer of tasks. This, more than anything 
else, accounts for the differences between questions posed by traditional 
theory and questions posed by Model One. An example follows. 
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Neoclassical theory asks what bundle the consumer will choose, given 
the utility function and the budget constraint. If the question sounds reason- 
able it is because neoclassical theory adopts period analysis and views the 
consumer as one who performs tasks, among them the choosing of a bundle. 
The question does not sound reasonable at all in the context of Model 
One, which knows no periods and, in virtual consequence, does not regard 
the consumer as a completer of tasks. Model One asks, instead, which 
direction the consumer will choose. Choosing direct ions~steer ing the en- 
d o w m e n t ~ i s  not a project with a start and a finish. It is a ceaseless job. 
Imagine yourself sailing around the world in a sloop and you have some 
idea: you have to steer, day in, day out. 

(v) In its approach and its methods, Model One is much closer to the 
natural sciences than to the social sciences. This is particularly true when 
it comes to definitions. Traditional theory as a rule defines its concepts 
interpretively; Model One defines them mathematically and makes a clear 
distinction between the definitions and the interpretations. It is customary, 
for example, to define a stock as a commodity quantity possessed, and an 
endowment as a collection of stocks. In Model One, a stock is interpreted 
as a commodity quantity possessed, but defined as a point with a single, 
nonnegative coordinate. Likewise, an endowment is interpreted as a collec- 
tion of stocks, but defined as a point with n coordinates, all nonnegative. 

(vi) Because Model One uses only mathematically defined terms, its 
vocabulary is much smaller than that of traditional theory. Apart  from 
"utility," the core notions are only four. Two of these are "stock" and 
"endowment ."  The other two are flow and action. By interpretation, a flow 
is the difference between two commodity stocks. By definition, a flow is 
the difference between two one-coordinate points; equivalently, a flow is 
a one-element vector ("l-vector") .  By interpretation, an action is something 
you u n d e r t a k e ~ a  transaction perhaps, or a production activity. By defini- 
tion, an action is the difference between two n-coordinate points; equiva- 
lently, an action is an n-vector. Just as each endowment coordinate is a 
stock, so is each action element a flow. "Undertaking an action" means 
adding an action to an endowment. The outcome of this undertaking is not 
fatigue, or satisfaction with a job well done; the outcome is another en- 
dowment. 

Mathematically, actions are indistinguishable from what activity analysis 
calls activities. Connotationally, there is a difference: "activity" suggests 
producer behavior; "action" refers to all economic behavior. But connota- 
tions do not matter. Mathematics is what counts. And mathematically, an 
action is the same as an activity. Each is a difference of two endowments. 

Undertaking an action whose ith element is positive will increase the 
stock of the ith good; undertaking an action whose ith element is negative 
will decrease the stock of the ith good. Take the action "buying a loaf of 
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bread." It is a vector with a negative money element, a positive bread 
element, and, if no other goods are involved, n - 2 zeros. Buying bread 
thus decreases the money stock, increases the bread stock, and leaves all 
other stocks unchanged. As is probably clear from this example, the term 
"action" covers not only all production activities and all transactions, but 
also all nonmarket  activities that affect commodity stocks, from paying 
taxes to baking cookies. 

Actions may have any number of positive elements, any number of 
negative elements, and any number of zeros. Suppose, for example, that 
gasoline is rationed and that you need a coupon for every gallon. "Buying 
a gallon of gas" is then an action with at least two negative elements, a 
money flow and a coupon flow. In the same way, any trade with nonmone- 
tary transaction costs is represented by a vector with two or more negative 
elements, and so is every production process that uses two or more inputs. 
A production process with two or more outputs is an action with two or 
more positive elements. So is every joint purchase. If, for instance, you buy 
the supermarket 's  Special Offer, a package consisting of a toothbrush and 
a tube of toothpaste, you undertake an action with two positive elements. 
If the Special requires not only cash but also a coupon, the transaction is, 
from your point of view, a joint sale as well. 

(vii) Among the nonmathematical  notions that Model One avoids are 
(a) all anthropic terms, (b) all institutional terms, and (c) all cognitive 
terms. Amplification follows. 

(a) Anthropic terms like "consumer,"  "producer,"  and "agent"  are 
used throughout the book, but only to enliven the story. They are not part of 
the model proper. Indeed, the protagonist of Model One is not a consumer, 
producer, agent, or person of flesh and blood, and the behavior that Model 
One seeks to describe is not that of a living being. The protagonist of  Model 
One is the endowment, which is a point, and the behavior of  interest is the 
behavior of  that point. Among the things we wish to know are the time 
path of the endowment; the time path of the actions that account for the 
endowment 's  motion; and, if at some instant there is a change in a price 
or some other parameter,  the effect of that change on the various time 
paths from that instant on. 

The endowment,  then, acts as the representative of its owner, and the 
owner himself is not involved. This is nothing new. Although interpreters 
of neoclassical utility theory have a great deal to say about the consumer, the 
theory itself mentions neither him nor his behavior. To be sure, neoclassical 
utility theory is interested in behavior. But the behavior of interest is not 
that of the consumer. The behavior of interest is that of the consumer's 
endowment,  or possibly his demanded bundle. 
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The endowment, an inanimate point, is not very good at representing 
its owner, a living being. In fact, it plays the role so badly as to cause what 
may be called the Problem of the Intrusive Consumer: intuition is constantly 
tempted to let the consumer himself come onstage. But the consumer has 
no business there. He should stay in the dressing room while the lead 
a c t o r ~ t h e  endowmen t~ i s  out in front saying his lines. 

The Problem of the Intrusive Consumer besets traditional economics as 
much as it does Model One. Traditional economics selects a proxy for the 
consumer (endowment or demanded bundle), but then keeps inviting the 
consumer himself into the story. It assumes the c o n s u m e r  capable of ranking 
bundles. It says that the c o n s u m e r  plans and chooses and decides and 
allocates. It holds that the c o n s u m e r  acts rationally. It asserts that the 

c o n s u m e r  is able to maximize utility. It depicts the c o n s u m e r  as plagued 
by uncertainty. In the end, however, none of these assumptions is given 
mathematical expression, and none finds its way into economic theory 
proper. In the end, the Intrusive Consumer's only contribution is an un- 
wanted one: he confuses the issues. He should leave the stage to his proxy. 
It is what proxies are for. 

Unfortunately, highlighting the Problem of the Intrusive Consumer is 
not going to make it go away. Nothing is going to make it go away so 
long as its causemthe huge gap between a living being and its inanimate 
representativempersists.  

Model Two resolves the difficulty by choosing as the agent's proxy not 
his endowment but his brain, thus reducing the width of the gap to nearly 
zero. But Model Two is still far away. Is there anything that will work 
right now? 

Neoclassical utility theory itself offers a solution. For an explanation, 
consider that living beings do not have utility funct ions~if  they did, medical 
science would have found them by now. Thus, when neoclassical theory 
says that the consumer has a utility function, it is not referring to a living 
being. What it is referring to is perhaps best regarded as a kind of robot, 
placed midway between the flesh-and-blood consumer and his endowment. 
The robot-consumer is neither as animate as the former, nor as inanimate 
as the latter; but he is just animate enough to serve as a proxy for the living 
consumer, and just inanimate enough that the endowment can serve as the 
proxy's proxy. 

The robot-consumer follows, at all times and to the letter, the rules that 
economic theory has programmed into him. It means, among other things, 
that he is incapable of acting either rationally or irrationally. (The only one 
who can conceivably be rational or irrational is the living c o n s u m e r ~ t h e  
intrusive one.) Nor does the robot-consumer have the ability to choose. 
True, we usually say that he chooses  the utility-maximizing bundle. But we 
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also usually say that he makes this choice every Monday, rain or shine; and 
that reduces "choice" to a mere figure of speech. 

Seeing how long the robot-consumer has been part of economic theory, 
he seems to be making himself useful. More to the point, the very fact that 
utility theorists have not yet abandoned him suggests that, in their eyes, 
his behavior adequately represents that of a living consumer, and the behav- 
ior of his endowment adequately represents that of the living consumer's en- 
dowment. 

In one way, however, the robot has not done so well. He has been largely 
unsuccessful in keeping the Intrusive Consumer out. The consumer is often 
said to predict, plan, optimize or fail to, act rationally or irrationally, behave 
consistently or inconsistently, allocate his time efficiently or inefficiently, 
anticipate the future, have expectations, have an aversion to risk, cope with 
uncertainty, have preferences, be capable of ranking bundles. Since robots 
do not have such abilities, the consumer being referred to can only be the 
intrusive one. 

In this book, the Intrusive Consumer does not intrude. When he is 
mentioned, as he is from time to time, it is only to put some realistic 
meat on the theoretical bones. His representative, the robot-consumer, is 
mentioned a bit more often, but he plays no role in the theory, either. 

Because the robot-consumer has no choice but to obey the rules of theory, 
the time path of the endowment is completely and uniquely determined. It 
is a path without forks. If there were a fork, the robot would have to choose 
whether to go right or left; and robots do not choose. 

(b) Model One avoids institutional terms for not one reason but two. 
The first was already mentioned: institutional terms are likely to be mathe- 
matically undefinable. The second reason is both more cogent and of greater 
scope: no theory of behavior should refer to institutional notions like con- 
tracts, banks, government, laws, rights, possession, property, ownership, 
country, state, border, financial instruments, or even cars, for the simple 
reason that there was behavior long before any of these things had been in- 
vented. 

An institutional concept of particular interest is money, which throughout 
this book means nominal money. Because there was behavior before there 
was money, no theory of behavior should refer to money. Indeed, Model 
One does not. Model One mentions (and mathematically defines) goods, 
of which money is one; but it does not mention money or any other good 
by name. 

Since money is an institutional concept, every monetary notion is too. 
Examples are income, profit, cost, revenue, expenditure, savings, taxes-- 
arguably even demand and supply. None of these terms is included in the 
formal vocabulary of Model One. What Model One does mention, and 
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define, and have something to say about, is a flow rate. Each of the just- 
listed notions is a flow rate. 

(c) Living beings play no role in Model One, and so cognitive notions 
do not either. Among them are knowledge, intention, purpose, decision, 
choice, preference, expectation, prediction, planning, rationality, optimiza- 
tion. The protagonist of Model One does not know "his" utility function, 
or "his" indifference curves, or the price of flour, or how much money he 
has in his pockets. After all, the protagonist is an endowment, and an 
endowment does not know anything. 

It may seem that stripping away all anthropic and cognitive and institu- 
tional elements will destroy the very essence of economic behavior, leaving 
nothing of economic interest. Actually, what is stripped away is a layer of 
terminological irrelevancies. The essence of economic behavior is not 
thereby destroyed; it is exposed. Witness the nine testable results. 

This is not to say that it is easy to learn to live with an economic vocabulary 
consisting of a mere handful of terms. To find out how hard it is, try doing 
a three-minute monologue on microeconomics without once mentioning 
consumers or producers, preferences or optimization, money or prices, 
profit or income, revenue or cost. It is difficult enough to make you long 
for a return to the traditional vocabulary. But then you would have to give 
up nine testable results. 

Still more features of Model One: 
(viii) The uniqueness of the endowment's time pathmthe  absence of 

forks in the roadmimplies that there are no multiple equilibria in Model 
One. If there were, the endowment would have to choose, which it does 
not know how to do. 

(ix) Uncertainty, being a cognitive notion, is among the concepts that 
Model One avoids. But there is something else. It is often argued that 
"randomness" is the mathematical equivalent of "uncertainty." Without 
necessarily subscribing to this idea, Model One does make room for ran- 
domness. It depicts the endowment as affected by exogenous factors and 
allows for the possibility that those are random. 

It is worth noting that "behavior under uncertainty" sounds a good deal 
more plausible in a period-analytical theory than in the continuous-time 
dynamics of Model One. At some point, after all, uncertainty becomes 
certainty, thus ending a period: sooner or later you find out whether the 
lottery ticket wins or loses, whether the bread you bought is flesh or stale, 
whether or not your car is stolen or your house burns down before the 
policy expires. Events like these are quite difficult to model in continuous 
time. Increasing the difficulty is that uncertainty often disappears gradually, 
rather than all at once. The main problem, however, lies in the meaning of 
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uncertainty. So long as uncertainty is mathematically undefined, a coherent 
mathematical theory of behavior under uncertainty remains out of reach. 

(x) Model One regards the utility function as neither cardinal nor ordi- 
nal. Cardinality and ordinality are properties of measures. Utility can there- 
fore be cardinal or ordinal only if it is a measu rema  measure of usefulness, 
for example. In Model One, utility is not a measure of anything. It is just 
a function, unrelated to anything found in the real world, unrelated to 
anything concrete enough to be measurable. (Chapter 6 drives the point 
home. You will find there that if u were taken to be a minimand, or a 
decrescend rather, the testable results of Model One would remain the 
same.) 

So, since u does not represent anything measurable, it would be meaning- 
less to characterize the utility function of Model One as cardinal or ordinal. 
The terms simply do not apply. 

(xi) Given that there are neither consumers nor producers in Model 
One, who does the consuming and the producing? According to Model 
One, actions do. An action is said to produce good i if its ith element is 
positive and to consume good i if its ith element is negative. Thus, buying 
bread consumes money and produces bread. 

(xii) Because people have no utility functions, it is futile to seek the 
analytical form of the utility function by observing the behavior of human 
beings. The only way to "find" the utility function is to specify it. And the 
only way to assess the realism of the specification is to see whether the 
implied behavior of the (utility-driven, theoretical) endowment resembles 
the behavior of an endowment belonging to a living being. 

Is it difficult to specify u? Not at all. What is difficult is justifying the 
specification. In his 1854 book, Heinrich Gossen took the utility function 
to be quadratic, his sole reason being that a quadratic u is algebraically 
easy to manipulate. Economists everywhere berated him for it, saying things 
like "Mathematical  convenience is no justification at all" and "Shame on 
you, Heinrich." Actually, if Gossen had taken the trouble to demonstrate 
that his specification had realistic implications, his choice of a quadratic 
utility function might well have been tolerated. After all, the Cobb-Douglas  
production function, too, was plucked out of thin air, but found acceptance 
because Cobb and Douglas showed that their function fitted actual observa- 
tions. On a more monumental  level, the same can be said about Newton's 
inverse-square law: at the time of its creation, its sole justification was that 
it applied so well to the real world. 

In conclusion of the outline of Model One, a few words about preferences. 
Over a hundred years ago, Vilfredo Pareto observed that he could always 
tell which of two endowments carried more utility; but he could not think 
of a way to measure how much more utility the winner carried. Actually, 
Pareto made a much stronger statement. He declaredmwithout  offering 
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proofmthat it is impossible to measure the utility difference. A few decades 
later, John Hicks took this one step further. Accepting Pareto's declaration 
on faith, he concluded that "utility" was a tainted notion, and should 
therefore be banned from economic theory. To see what this means, imagine 
a three-dimensional picture illustrating the consumer's adventures in a two- 
goods world. Utility is measured along the vertical axis; goods 1 and 2 are 
measured along the other two axes, which lie on the floor of the diagram. 
Hicks in effect proposed that economics do away with the vertical axis, fix 
its eyes on the floor, and never look up. Of course, once the vertical axis 
is removed, all statements involving utility become illegitimate and must 
be reformulated without mention of the word "utility." A statement like 
u(x) > u(y), for instance, becomes "Endowment x is preferred to endow- 
ment y." 

And so began a concerted effort to purge economics of "utility" in favor 
of "preference." From the beginning, the language of preferences consisted 
of a good deal more than just "Endowment x is preferred to endowment 
y." Theorists saw right away that if the preference ordering was to have 
realistic implications, it was necessary to impose a few restrictions, like 
transitivity and continuity. Over time, a small collection of such restrictions 
came to be generally accepted. 

Matters stood there, to everyone's satisfaction, until 1959. That year, 
Hirofumi Uzawa proved that if you are going to burden the preference 
ordering with that small collection of generally accepted restrictions, you 
might as well introduce a utility function--the two are equivalent. Utility 
immediately began a comeback, not least because utility functions are 
mathematically easier to manipulate than preference orderings. 

The preference apparatus has been central to economic theory for so 
long that it is easy to overlook the shaky premise on which it is built. The 
shaky premise is Pareto's unproved assertion that it is impossible to measure 
utility differences--impossible to give empirical content to the slope of the 
utility surface in any direction. 

Contradicting Pareto, this book gives empirical content to the slope of 
the utility surface in certain directions. Recall that Model One has the 
endowment move in the direction in which utility increases fastest, con- 
straint permitting. Model One also assumesmthis was not mentioned be- 
fore-- that  the speed with which the endowment moves is proportional to 
the slope of the utility surface in the direction of the endowment's motion. 
The consumer thus acts faster when the potential utility gain is larger. 
Or: the endowment's speed reflects "preference intensity." The two-goods 
picture must thus be given back its utility axis; events are no longer confined 
to the floor of the picture; the diagram is three-dimensional again. With 
that, the language of utility and the language of preference cease to be 
equivalent. No doubt it is possible to redefine the preference ordering so as 
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to restore equivalence, but nothing like that is attempted here. Preferences 
therefore play no role in what follows. 

Next, some features of Model Two. Most are the same as those of Model 
One. The main difference is in the objective function. 

All utility-based theories seek to condense the workings of the mind, 
and the way in which the mind drives behavior, into the single number u. 
Judging this too tight a corset, Model Two uses m numbers rather than 
just one, with m possibly very large. The m numbers are the coordinates 
of a point called the state o f  mind. The objective function of Model Two 
is defined over the set of all possible states of mind. Movements of the 
state of mind determine what the agent does. The determine, for instance, 
which goods he buys and sells over time, and at which rates. They also 
determine how these rates are affected by changes in prices and other pa- 
rameters. 

Note the difference with Model One. Model One is like traditional utility 
theory in that it effectively represents a living being by the endowment. In 
contrast, Model Two represents a living being by the state o f  mind. This is 
a good deal easier on the intuition. 

The objective function of Model Two is analytically specified (and a 
justification is given). Specifying the objective function is attractive in that 
it leads to more, and more detailed, testable results. There are ten. One 
of them is that the effects of a change in a price or other parameter wear 
off exponentially. The other nine are the dynamic versions of the testable 
results of Model One. The dynamic version of (1), for example, is 

B(t)p + C(t) 
Dp 2 + Ep + 1 (P -> 0). (2) 

In the most elementary case, B(t) and C(t) have the form 

B(t) = Boe -~t + B 
C(t) = Coe -~  ̀ + C, 

with y > 0. For an illustration, let p be the price of milk, and suppose p 
changes. Choose the instant of change as the origin of the time axis, t = 
0. At the instant of change, Bo e-~t and Co e-~t begin to converge to zero; 
B(t) and C(t) thus begin to converge to B and C; and the demand rate for 
milk begins to converge to constancy, its limiting value given by (1). Note 
that, although the demand rate begins to respond immediately to the price 
change, it never quite finishes responding: e -~t is never quite zero. 

The book concludes with a test of Model Two. The test uses 156 labora- 
tory-generated observations, each of which is a three-coordinate point. The 
three coordinates are time, price, and quantity. Fitted to the 156 points is 
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a surface with an equation closely related to (2). The fit is, by the standards 
of the social sciences, most satisfying (r 2 = 0.97). 

The rest of the book consists of three parts and an afterword. Part I 
deals with preliminaries. Part II presents Model One. Part III presents 
Model Two. Each part has three chapters. 

Questions 
(Answers are in the back of the book.) 

1. Sketch the demand function (1) if B = C = D = E = 1. 

2. (Continuation) Replace p with p - �89 recompute B, C, D, E, and 
sketch the result. 

3. Is inactivity an action? 

4. Write in mathematical symbols: "John's  endowment consists of 2 
bottles of beer and 5 dollars. Then he buys another bottle of beer, 
for a dollar." 

5. A utility-maximizing consumer works for the phone company by day 
and, to make some extra money, bakes cookies several evenings a 
week. Every Saturday he sells his cookies to a few local bakeries. 
Does his baking make him a profit-maximizing producer, at least in 
the evening, or does he remain a utility-maximizing consumer at 
all times? 

6. "The neoclassical consumer is able to rank all market  baskets that 
he can afford and then choose the best of these bundles." Discuss. 

7. "Consuming a good is the same as buying that good." Discuss. 

8. "Microeconomics is about decision making." Discuss. 

9. "The purpose of microeconomics is to show how scarce means should 
be allocated to maximize the satisfaction of desires." Discuss. 

10. 

11. 

12. 

"Property rights are prerequisite for market  exchange." Discuss. 

"The formal meaning of 'Consumer Jones is indifferent between 
bundles x and y' is that bundles x and y give the same satisfac- 
tion." Discuss. 

"Representing all actions by vectors is too simplistic. It does not, for 
example, allow us to distinguish between voluntary actions like buy- 
ing beer and involuntary actions like paying taxes." Discuss. 
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2 
Mathematical Preliminaries 

This book uses a good deal of linear algebra, a middling amount of 
calculus, and a very small bit of real analysis. Some of the mathematics 
used is assumed to be familiar. The rest is covered in this chapter. 

Regarding linear algebra, it is assumed that you know 

How to add and multiply two matrices; 
How to multiply a matrix by a scalar; 
How to add two vectors, both when they are columns and when they 

are arrows; 
How to multiply a vector, whether column or arrow, by a scalar; 
How to transpose matrices and column vectors; 
How to compute a determinant by expanding with respect to a row 

or column; 
How to determine the rank of a matrix; 
How to solve a simple linear system, both with and without Cramer's 

Rule; 
What the inverse of a (nonsingular) matrix is; 
That (AB) '  = B 'A '  (the prime denotes transposition); 
That (AB)-I  = B - 1 A - 1  if A and B are invertible; 
That (A-l)  ' = (A')  -1 if A is invertible; 
That the standard norm of a vector a is [[ a [[ = X/a'a; 
That the standard inner product of vectors a and b is a'b. 

Among the linear-algebra topics covered below are 

Vector spaces and subspaces; 
Point spaces; 
Linear combinations; 
Linear dependence and independence; 
Basis of a vector space; 
Dual space of a vector space; 
Nonstandard norms and inner products; 

17 
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Angles and orthogonality; 
Orthogonal projection. 

Regarding calculus, it is assumed that you know 

How to find the first- and second-order partial derivatives of a function 
of several variables; 

How to expand a function of one variable in a Taylor series around a 
given point; 

How to perform integration by parts. 

Among the calculus topics covered below are 

The Taylor expansion of functions of more than one variable; 
The directional derivative; 
The direction of steepest ascent, unconstrained and constrained; 
The differential-equation system it(t) + yy(t) = z(t); 
Delta functions. 

The very last topic of this chapter uses real analysis--just enough to prove 
a single result. Since you are likely to find that result intuitively obvious, 
you can skip the real-analysis part without harm to your understanding. 
And if you are altogether unfamiliar with real analysis, skipping it is very 
much the recommended course. 

Each Mathematical Topic has its own subsection. For ease of reference, 
the subsectionsm27 in al l--are labeled MT 1, MT 2, and so on. 

MT 1 

Algebra is built on three operations. They are multiplication (including 
division), addition (including subtraction), and multiplication by a scalar. 
Actually, since there are several ways to define addition, several ways to 
define multiplication, and several ways to define scalars, it would be more 
accurate to say that algebra is built on three classes of operations. In this 
chapter, each of the three operations has its most common meaning. 

MT 2 

First, multiplication. A set is called a set with multiplication if (a) any 
two of its elements, not necessarily different, can be multiplied and divided 
(provided the divisor is not zero), and (b) all thereby obtained products 
and quotients also belong to the set. Property (b) is usually expressed by 
saying that the set is closed under multiplication. 
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For an illustration, take the set U of measurement  units, such as the 
dollar, d, the erg, e, the foot, f, the gallon, g, the hour, h. Products of units, 
like f2 and kg-m, and quotients of units, like d/g and miles per hour, are 
themselves units. It follows that U is a set with multiplication. 

Among the elements of U is the quotient of a dollar and a dollar, that 
is, 1. Thus, 1 is a unit too. 

For uniformity, all quantities expressed in some unit (other than 1) will 
be written with the unit last. Three feet thus becomes 3f, and $5 becomes 5d. 

Quantities measured in the unit 1 are said to be dimensionless. Most 
quantities of economic interest are dimensioned, are measured in units 
other than 1. If, for instance, Smith buys 4 gallons of milk for 12 dollars, 
he buys not 4 but 4g, he spends not 12 but i2d, and the price of milk is 
not 12/4 = 3 but 12d/4g = 3d/g. 

Another  set with multiplication is the set of real numbers. Still another 
is the set of nonsingular 2 x 2 matrices. In the set of real numbers, multiplica- 
tion commutes: ab = ba. In the set of nonsingular 2 x 2 matrices, multiplica- 
tion does not commute: AB does not always equal BA. This illustrates 
something said a moment  ago, namely, that there are several ways to define 
multiplication. 

An example of a set without multiplication is the set of locations in the 
plane, like the point (3,4). The set of locations in the plane is traditionally 
denoted E 2. (The E is in honor of Euclid.) That E 2 is a set without multiplica- 
tion is obvious: multiplying locations is meaningless. Multiplying instants, 
like 3 P.M. and 4 A.M., is meaningless too. The set of instants is thus also a 
set without multiplication. The set of instants will be called the time line 
or time axis, and denoted T. 

MT 3 

Addition is next. A set is called a set with addition if (a) any two of its 
elements, not necessarily different, can be added and subtracted, and 
(b) all thereby obtained sums and differences also belong to the set. Prop- 
erty (b) is usually expressed by saying that the set is closed under addition. 

For an example, consider the set of dollar flows. The 4d you spent on 
apples yesterday is a dollar flow; so is the 5d you spent on pears; so is the 
4d + 5d = 9d you spent on fruit. Other dollar flows are the 50d you earned 
yesterday, the 10d you paid in taxes, and your after-tax earnings of 50d - 
10d = 40d. As these examples illustrate, sums and differences of dollar 
flows are again dollar flows. The set of dollar flows is thus a set with addition. 

What has just been said about money, measured in dollars, holds also 
for tuna, measured in cans, as well as for milk, measured in gallons, and 
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for salami, measured in feet. Thus, all tuna flows form a set with addition; 
all milk flows do too; all salami flows do too. 

Examples of sets without addition are the group U of units, the set E e 
of locations in the plane, and the set T of instants. It is easy to see why: 
you can't add 2 feet to 3 gallons; you can't add the location (3,4) to the 
location (5,1); you can't add 3 P.M. to 2 A.M. 

Although the plane E e is not equipped with addition, a closely related 
set is. Picture a man standing at the point x e E e, and then moving to the 
point Xl e E 2. His move, or displacement as it is called, can be represented 
by an arrow v beginning at x and ending at Xl. One naturally writes x + v 
= Xl. Suppose the man next moves to Xe, a displacement represented by 
arrow Vl. The sum of his two displacements, v + Vl, is a move in its own 
right, from x to Xe. More formally, the set of displacements in the plane is 
a set with addition. You know this set- - i t  is R e. 

The set T of instants is related to the set D of time flows in the same 
way that E e is related to R e. If it is t = 3 P.M. now and an hour passes (d 
= lh), the time will be tl = 4 P.M. The time flow d is thus a displacement 
on the time axis, satisfying t + d = tl. If two more hours pass ( d l =  2h), 
the time will be te = 6 P.M. The sum of the two time flows, d + all, is a 
time flow in its own right, from t to te. As this illustrates, D is a set 
with addition. 

MT 4 

The third and last algebraic operation is multiplication by a scalar. A set 
is called a set with scalar multiplication if (a) each of its elements can be 
multiplied by any scalar, and (b) all thereby obtained scalar multiples also 
belong to the set. Property (b) is usually expressed by saying that the set 
is closed under scalar multiplication. 

The sets of dollar flows, tuna flows, milk flows, and salami flows are all 
sets with scalar multiplication. For instance, the product of the dollar flow 
- 2 d  and the scalar 3 is -6d,  which is again a dollar flow. Another  set with 
scalar multiplication is Re: the product of the displacement v and the scalar 
2 is 2v, which is again a displacement. (As you know, 2v points in the 
same direction as v and is twice as long as v.) Still another set with scalar 
multiplication is D, the set of time flows: if d represents one hour from 
now, - 4 d  represents four hours ago. 

Examples of sets without scalar multiplication are the set T of instants 
and the set E:  of locations in the plane. It is, after all, meaningless to 
multiply the instant 3 P.M. by 2, and equally meaningless to multiply the 
location (5 , -4)  by 3. 
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MT 5 

An algebraic system is a set equipped with at least one of the three 
operations just discussed. There are thus seven main types of algebraic 
sys tem-- three  with only one operation, three with two operations, and one 
with three operations. Since each algebraic operation has several definitions, 
each of the seven main types has several subtypes. 

Some of the seven main types are important enough to have names of 
their own. A set with multiplication is called a multiplicative group. A set 
with addition is an additive group. A set with multiplication and addition 
is a ring. A set with addition and scalar multiplication is a vector space. A 
set with all three operations is an algebra. 

A set without any of the three operations is often called a point set, for 
emphasis. Its elements are called points. Thus, E 2 is a point set, and locations 
are points; T is a point set, and instants are points. 

In economics, the most important algebraic systems are vector spaces. 
Examples of vector spaces are the set of dollar flows, the set of tuna flows, 
the set D, and the set R 2. Dollar flows are thus vectors, as are tuna flows, 
time flows, and displacements in the plane. 

MT 6 

Because of their importance, vector spaces deserve a more detailed dis- 
cussion. 

In this book, every vector is either a column, of n -> 1 elements, or an 
arrow. To simplify, arrows will be treated as merely pictures of columns, 
rather than as vectors in their own right. Effectively then, every vector in 
this book is a column. 

Columns are often written as transposed rows, to save space. An example 
is (3f, 2g)', which looks like a row but is actually a column. 

You know how to add columns" (3f, 2g, - 3 h ) '  + (lf, -3g,  5h)' = 
(4f, - l g ,  2h)', for instance. Addition is possible here because the two 
column-vectors on the left have the same number of elements and every 
two corresponding elements on the left are dimensioned the same way. If 
either condition is not met, addition is impossible. Thus, the sum of a 2- 
vector and a 3-vector is undefined, and so is the sum of (3f, 2g, - 3 h ) '  and 
(lf, -4h,  5g)'. 

Some vector spaces are easy to visualize. Imagine a line, with origin O; 
all arrows that begin at O and end at some point on the line are pictures 
of 1-vectors forming a vector space. Imagine a plane, with origin O; all 
arrows that begin at O and end at some point of the plane are pictures of 
2-vectors forming a vector space. Imagine a universe like the one in which 
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we live, with origin O; all arrows that begin at O and end at some point 
of the universe are pictures of 3-vectors forming a vector space. 

The collection of all one-coordinate points is called a line, or the line. 
The collection of all 1-vectors is also called a line, or the line. Context will 
have to make clear which interpretation is intended. In the same way, 
context determines whether a plane is a collection of two-element columns 
(each pictured as an arrow) or a collection of points. In a world of dimen- 
sionless coordinates and elements, there is another way to put this: context 
determines whether "line" means R 1 or E 1, and whether "plane" means 
R 2 or E 2. 

When a line (or plane, etc.) is viewed as a set of points, it has an origin, 
O. When a line (or plane, etc.) is viewed as a set of vectors, it does not 
have an origin. Instead it has a null vector, written 0. It should be added, 
though, that a null vector is often called an origin. 

Is E 1 a subset of Ee? At first glance, the answer seems to be yes. The 
mind's eye conjures up a picture of E e, as a plane with an x-axis and a y- 
axis, and it is natural to think that the x-axis is E 1. But looking at the 
question algebraically shows otherwise. Every point in E 1 has only one 
coordinate. Every point in E e has two coordinates. (Even the points on 
the x-axis. They all have a zero second coordinate.) Evidently then, E 1 and 
E e have no points in common, so that E 1 cannot be a subset of E e. The 
same reasoning shows that R ~ is not a subset of R e. 

But there is something else. In a picture of R e, imagine a straight line L 
going through the origin (strictly: containing the null vector). It is easy to 
see, and easy to verify algebraically, that L is closed under addition and 
scalar multiplication. Thus, L is a vector space, like R~; and L is a line, like 
R 1. Yet L cannot be R 1, for R ~ consists of 1-vectors whereas L is made up 
of 2-vectors. One says that the line L is a subspace of R e. Here is the 
definition: W is a subspace of a vector space V if W is both a subset of V 
and a vector space. 

Every vector space has a dimension. (The term has nothing to do with 
the dimensioning of quantities.) The formal definition is surprisingly intri- 
cate, but the following informal description is good enough for our purposes. 
Every vector space pictured as a line is said to have dimension 1, or to be 
one-dimensional. Thus, R 1 has dimension 1. So does the subspace L de- 
scribed above. So does any line through the origin of R 5. Every vector 
space pictured as a plane has dimension 2, or is two-dimensional. Thus, R e 
has dimension 2. So does any plane through the origin of R 3, or of R 2~ The 
vector space R 7, which consists of all columns of 7 real elements, has 
dimension 7. A vector space V consisting of some columns of 7 real elements 
is a subspace of R7; its dimension is less than 7. If, for instance, V is 
congruent with R 3, its dimension is 3. 
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A vector space can consist of a single vector, but this is of mostly mathe- 
matical interest. In this book, all vector spaces have more than one vector. 

As soon as a vector space has more than one vector, it has infinitely 
many. There is no middle ground; vector spaces with just two or three 
vectors do not exist. Geometrically this is obvious: there are infinitely many 
arrows on a line, infinitely many arrows in a plane, and so on. For a less 
intuitive demonstration, let V be any vector space with at least two vectors. 
At least one of these two vectors is not 0 dollars, nor 0 cans, nor 0 f e e t ~ i n  
short, not null. Denote this vector by v. Next, since V is a vector space, 
and therefore closed under scalar multiplication, V also contains all scalar 
multiples of v, like 3v and - 2 v  and �89 and 0v (= 0). There are infinitely 
many such scalar multiples, and they are all different because v is not null. 
But then V contains infinitely many vectors. P.O.C. 

The preceding paragraph harbors an essential piece of information. It is 
that every vector space contains a null vector. Here is the reasoning again: 
if V is any vector space and v is any vector in V, all scalar multiples of v 
are also in V; one of those scalar multiples is 0v = 0; therefore V contains 
a null vector. The converse does not hold: a set containing a null vector 
need not be a vector space. For a proof, take a set consisting of 0 and one 
other object. 

Since every vector space contains a null vector, any line in R 2 that does 
not go through the origin (strictly: does not contain the null vector) cannot 
possibly be a vector space, let alone a subspace. Similarly, lines and planes 
in R 3 are subspaces of R 3 if and only if they go through the origin. 

Is 5d a vector? It depends. The answer is yes if the 5d is a dollar flow 
and no if the 5d is a dollar stock. A general point is illustrated here: Whether 
any given object is a vector is impossible to tell from its appearance. The 
only way to find out if some object is a vector is, first, to determine to what 
set the object belongs and, next, to determine whether that set is a vector 
space. The right question is thus not "Is this object a vector?" but "Is this 
set a vector space?" 

MT 7 

Algebraic systems and point sets are the theorist 's Lego blocks. By com- 
bining them in various ways, the model builder erects his theoretical edifice. 
A particularly potent combination is the point space. 

DEFINITION. A point space is a pair {X,V} in which X is a point set, V is 
a vector space, and the vectors in V are the displacements in X. 

The best-known point space is {EZ,R2}. Not surprisingly, {En,R ~} is a point 
space for every n >- 1. Another  point space is {T,D}, where T is the point 
set of instants and D is the vector space of time flows. 
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In the old days, points in X were often called "bound vectors." For 
contrast, vectors in V were "f lee  vectors." The terminology is no longer 
widely used. 

The heart  of Model  One is a point space, written {X,A}. To explain what 
X and A mean,  define E~ to be the nonnegative orthant  of E ~ (so that E 2 
is the nonnegative quadrant  of E2). It is easy to see that {E~,R ~} is a point 
space. When measurement  units are added, {E~,R ~} becomes our {X,A}. 
More  precisely, points in X, called endowments, have dimensioned coordi- 
nates ( interpretable as commodity  stocks) but are otherwise indistinguish- 
able from points in E~; vectors in A, called actions, have dimensioned 
elements  ( interpretable as commodi ty  flows) but are otherwise indistin- 
guishable from vectors in R ~. Of course, endowment  coordinates and action 
elements  must be dimensioned correspondingly. If, for instance, an endow~ 
ment ' s  third coordinate is measured in gallons, an action's third e lement  
must be measured in gallons too. 

Being a vector space, A contains a null vector. Since vectors in A are 
actions, 0 e A is an action, even if by interpretat ion it represents inactivity. 

Endowments ,  being points, cannot be added. Thus, if John and Joan 
decide to get marr ied and pool their possessions, we may not regard their 
combined endowment  as the sum of their individual endowments .  What  
we can say is that Joan views the combined endowment  as the sum of her 
endowment  (a point in X)  and what John contributed (a vector in A). 
John, of course, may view the couple's endowment  as the sum of his endow- 
ment  and Joan's contribution. 

Sets X and A will be called the endowment set and the action space. 
Endowments  are written x, Xl, and the like. Actions are written a, al, and 
the like. 

The reason that point spaces are the ideal mathemat ical  tool for our 
purposes lies in their joint emphasis on status quo (X) and change of status 
quo (V). It matches out joint emphasis on stocks and flows, endowments  
and actions. Later  chapters have further details. 

Consider again the man who makes the move v to get from x e E 2 to x~ 
�9 E 2. This was written as x + v = Xl. Strikingly, the left side calls for 
addition across sets: x, which is a point in E 2, is added to v, which is a 
vector in R 2. What  is more,  the sum, Xl, is again a point in E 2. 

Equivalent  to x + v = Xl is Xl - x = v. Subtracting one point from 
another  is thus apparently allowed. This is not to say that E 2 is a set with 
subtraction. For one thing, E 2 is not closed under  subtraction, seeing that 
the difference of two points is not a point but a vector (in this case, v). 

Points are traditionally written as rows. When points are added to vectors, 
as they are wherever  point spaces are found, it is handier to write them as 
columns, or transposed rows. The point x �9 E ~ is then (Xl,X2, . . . ,Xn)' 
ra ther  than ( X l ~ X 2 ,  . . �9 ~ Y n ) .  Of course, writing x as a column does not 
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make  it a vector. Whether  written as a row or as a column, upside down 
or in a circle, x continues to be a point, continues to belong to E n. Appear-  
ance does not matter .  The phrase "x belongs to E ~'' is the crucial thing. 

MT 8 

Many vector spaces play a role in this book. Most prominent  a r e  R n, A ,  

A ~ V, and V ~ You know what R n is. Discussion of the other four follows. 
First, A, the action space. Vectors in A, written a, al, and the like, 

are columns of dimensioned elements, each element  interpretable as a 
commodi ty  flow. If good 1 is beer, measured in bottles (b), if good 2 is 
tuna, measured in cans (c), and if good 3 is money,  measured in dollars 
(d),  a typical action would be (2b, 3c, - 7 d ,  . . .)'. If you would rather let 
good 1 be cornflakes, good 2 picture frames, and good 3 umbrellas, fine; 
but once you have arranged the n goods in the order you prefer, and once 
you have picked their measurement  units, be sure to stick to your choices. 
Changing either the order or a unit in the middle of the story creates all 
sorts of confusion and despondency. 

Being a vector space, A is closed under addition and scalar multiplication. 
The sum of any two actions is thus an action, and every scalar multiple of 
an action is an action too. For an illustration, suppose al is the action 
"buying a bottle of beer ,"  and a2 is "buying a can of tuna." Buying two 
bottles of beer is then 2al, which is a scalar multiple of al and therefore 
an action in its own right. Buying three cans of tuna is 3a2, also an action, 
and for the same reason. Buying two bottles of beer as well as three cans 
of tuna is the linear combinat ion 2al + 3a2, which, being the sum of two 
actions, is itself an action. "Buying beer"  is not an action/vector, its length 
being indeterminate.  (Should the need arise, you could identify "buy- 
ing beer"  with "ca1 for any c." This would make "buying beer"  a one- 
dimensional subspace of A, that is, a line.) 

Let the prices of beer, tuna, money,  . . . be measured in d/b ,  d/c,  d / d  

(=  1), . . . . Obviously, the price vector p does not belong to A. For one 
thing, you cannot add p to any a e A. What  you can do, however,  is "mult iply 
p into a," that is, form p'a.  The outcome, p l a l  + p2a2 + �9 �9 " ,  is a dollar 
amount.  Consider now all n-element  columns whose elements are dimen- 
sioned like those of p. It is easy to see that the set of such columns is a 
vector space. That  vector space is called a d u a l  s p a c e  of A. 

Another  dual space of A is the set of all n-element  columns whose 
elements are measured in g/b ,  g/c,  g /d ,  . . . . Any column of this type can 
be multiplied into any a e A. The outcome is a certain number  of gallons. 

You can see where this is going: the action space A has infinitely many 
dual spaces, one for each unit in the units group U. There is thus a dual 
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space associated with the dollar, another  dual space associated with the 
gallon, and so on. 

Since 1 is one of the units in U, there is a dual space associated with 1, 
as well. This is the main  dual  space of A, denoted A ~ Vectors in A ~ are 
written a ~ al ~ and the like. A typical vector in A ~ is a ~ = (2/b, - 3 / c ,  
5/d, . . .)'. 

Because of the differences in units, you will never find a picture showing 
both a vector in A and a vector in A ~ 

Remaining to be defined are V and V ~ Whereas  R n, A, and A ~ are specific 
vector spaces, V is a generic one. A s ta tement  concerning V is a s ta tement  
that holds for all vector spaces consisting of columns. The space V ~ is the 
main dual space of V. Thus, if v is any vector in V and v ~ is any vector in 
V ~ then v'v ~ is real. Linear-a lgebrais ts  use a more sophisticated definition, 
but this one is good enough for our purposes. 

It is easy to see that the main dual space of V ~ is V, and that the main 
dual space of R n is R n itself. 

Returning to A ~ suppose, for the sake of illustration, that A ~ has dimen- 
sion 2. A typical vector in A ~ is then a ~ = (2/b, - 3 / c ) ' .  For another  vector 
in A ~ a more important  one this time, let the utility function be u(x) = 
u(xl ,x2),  and suppose that u is real-valued, rather than measured in utils. 
As before, goods 1 and 2 are beer and tuna, measured in bottles (b) and 
cans (c). 

By definition, OIg(X)/OX 1 is the limit, as z~kx I goes to 0b, of [/,/(X 1 -Jr- Z~Xl, X2) 
- U(Xl, Xz)]/AXl. In this quotient,  the numera tor  is a real number  (since it 
is the difference of two real numbers),  and the denominator  is measured 
in b. The marginal utility of beer is thus measured in 1/b. It goes without 
arguing that the marginal utility of tuna is measured in 1/c. The vector of 
marginal utilities, called the gradient  of u and written Vu(x) or Vu, is thus 
a vector in A~ 

Ou/OX1) A o. 
~TU(X) = OU/OX2 ~" 

Another  way to put it is that a'Xru is real for every a ~ A. 

MT 9 

A matr ix  is by definition a rectangular array of dimensionless quantities. 
Strictly then, arrays of dimensioned quantities should not be called matrices, 
al though in economics they often are. Take the technology matrix A of 
activity analysis. Its columns are vectors in the action space A, so that its 
elements are dimensioned. But then A is merely an array, not a matrix. 
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The same conclusion holds for the Hessian matrix of the utility function 
u: since the second-order  partial derivatives of u are dimensioned,  the 
Hessian matrix of u is actually an array, not a matrix. The same holds again 
for the observation matrix X of regression analysis. Arrays like these behave 
like matrices in some ways, but not in all. 

Still, economic and econometr ic  experience convincingly demonstra tes  
that applying matrix algebra to nonmatrix arrays works very well, so long 
as you keep an eye out for possible existence trouble. With that proviso 
in mind, this book treats arrays as matrices. It also calls them ma t r i ces - -  
usually. When,  from time to time, a "mat r ix"  is called an array, it is to 
stress that its elements are dimensioned. 

MT 10 

To give some idea of the ways in which arrays do behave like matrices, 
and also of the ways in which they do not, let al, a2, and a3 be actions, 
vectors in A. Form the n • 3 array A with the three actions as columns: 
A = (al ,az,a3) .  The linear combination a lc l  + a2C2 -~- a3c3, with the C i real, 
can be writ ten as Ac. More  generally, the product of  an array (or matrix) 
and a column of  real numbers, in that order, can be viewed as a linear 
combination of  the columns of  the array (or matrix). This is not a deep 
mathemat ical  fact. It is merely a handy rule to remember .  

Setting Ac equal to some action b e A gives Ac = b, a linear system in 
e. Regarding the number  of solutions of Ac = b, there are three possibilities: 
the system has (i) one solution, (ii) no solution, or (iii) infinitely many 
solutions. In this respect, Ac - b is exactly like a linear system in which 
all quantities are dimensionless. 

System Ac - b is consistent if it has one solution or infinitely many 
solutions, and inconsistent if it has no solution. 

System Ac = b is homogeneous if b = 0 (that is, 0 e A, of course, not 0 
e Rn), and inhomogeneous otherwise. A homogeneous  system always has 
at least one solution, namely, c -- 0. A homogeneous  system is thus al- 
ways consistent. 

If Ac - 0 has exactly one solution (which must then be c - 0), vectors 
al, a2, and a3 are said to be linearly independent, and array A is said to 
have full column rank. If Ac - 0 has infinitely many solutions, the ai are 
linearly dependent. Thus, if you are given three numerically specified vectors 
al, a2, and a3, columns of A, and you are asked whether  they are linearly 
independent  or linearly dependent ,  you set up the homogeneous  system 
Ac = 0 and find out how many solutions it has. The solutions themselves 
do not matter.  Only their number  (1 or ~ )  is important .  
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Ordinarily it takes a good bit of work to solve a linear system. In particu- 
lar, it ordinarily takes a good bit of work to determine if the columns of 
a numerically given A, whether  matrix or array, are linearly dependent  or 
linearly independent.  But there is one case in which you know the answer 
right away. If A is " l o w " m t h a t  is, has more columns than r o w s ~ t h e  system 
Ac = 0 always has infinitely many solutions. The columns of such an A 
are thus always linearly dependent .  Or: a low A never has full column rank. 

MT 11 

The next two facts are given without proof. You probably know them. 
Let  A be a matrix, rather than just an array, and suppose its columns 

are linearly independent.  Then: 

(i) If A is square, A -1 exists. 
(ii) If A is tall (has more rows than columns), A -1 does not exist, but 

(A 'A)  -1 does. Also, the determinant  of A ' A  is positive in that case. 

If the columns of A are linearly dependent ,  A -1 does not exist, and 
neither does (A'A) -1. 

MT 12 

Let V be any vector space, of dimension n. A basis for V is a collection 
{Vl, v2, . . . , vn} of n linearly independent  vectors in V. For an intuitive 
explanation, take n = 2, so that V is a plane. Think of Vl and v2 as arrows. 
Both arrows can be extended infinitely far, in both directions, to become 
lines. Because Vl and v2 are linearly independent ,  the two lines do not 
coincide. T h e y m t h e  l ines - -can  thus be used as coordinate axes for the 
plane V, which is the whole idea behind the notion of a basis. You might 
say that a basis is a coordinate system in kit form. 

Given any plane, any two lines can serve as coordinate axes, so long as 
they do not coincide. They do not even have to be perpendicular.  A two- 
dimensional vector space thus has infinitely many bases. No basis is mathe-  
matically superior to any other. Sometimes you come across a basis that 
is unusually handy to work with, but that is a practical advantage, not a 
theoretical one. The way it usually goes is that you pick one basis and 
ignore the others. 

For an example, suppose you live in a world with only two goods, beer 
and tuna. If you measure beer in bottles and tuna in cans, an obvious basis 
is the one that consists of the two vectors ( lb,0c) '  and (0b,lc) ' .  Someone 
else, working on the same problem as you, could well prefer a different 
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basis. Suppose he regards tuna as the first good, beer as the second; suppose 
he measures  tuna in kilograms (k), beer in gallons (g). To him, it will 
probably seem most natural  to choose ( lk,0g) '  and (0k, lg) '  as basis vectors. 
The point is that his basis choice is as respectable as yours. After  you finish 
your research and he finishes his, you may find it cumbersome to compare 
results, but that is as bad as it gets. 

Be sure not to confuse vector spaces with their bases. A vector space 
consists of vectors, and so does a basis; but that does not make them the 
same. For one thing, the typical vector space has infinitely many vectors, 
and the typical basis has only a few. Every basis for R 2, for instance, has 
only two vectors in it, reflecting that if you want to impose order on a plane 
by putting a coordinate system on it, two coordinate axes are all you need. 

MT 13 

Back to the action space A. Let A have dimension n, let {al, a2, . . . , an} 
be a basis for A, and let A be the n • n matrix with the ai as columns. We 
shall call A a basis matrix for A. You won' t  find the term in linear-algebra 
texts, and with good reason: having dimensioned elements,  A is merely an 
array, not a matrix. 

Let  {al ~ a2 ~ . . . , an ~ be a basis for A's main dual space A ~ and let 
the ai ~ be the columns of a matrix A ~ Then A ~ is a basis matrix for A ~ 
Also, all elements of A~  are real. 

If A~  = I, the two bases are called dual bases, and A ~ A are dual- 
basis matrices. Had the elements of A been real, A ~ would have been A -~. 

MT 14 

Nonstandard  inner products are next. 
The standard inner product  of vectors a and b is a 'b. It is a definition 

that works well in some vector spaces, but not in all. For instance, it works 
well in R n, but if a and b belong to the action space A, a'b does not exist. 
We therefore need a more general definition, a nonstandard definition. 

As you will see, the definition below is uncommonly  generous: it says 
that there exist, for every vector space V, infinitely many inner products. 
And  so you will probably want to know, the next time that you tackle a 
concrete application, which of these infinitely many inner products you 
should choose. 

Mathematics  has only a partial answer to that question, but the partial 
answer is usually good enough. First, many theoretical results hold for 
every inner product,  saving you from the need to choose. Second, when 
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choosing cannot be avoided, there is often one inner product that stands 
out as the handiest choice, or the most natural choice. On R n, for example, 
infinitely many inner products are defined, but the obvious choice is the 
standard one. It is only when you must choose and there is no obvious 
choice that mathematics tells you you are on your own. 

To define nonstandard inner products we must go back, briefly, to R" 
and the standard inner product a'b. 

Let a, b, and c be arbitrary vectors in R ~, and let A be an arbitrary scalar. 
Then, as you probably know but can easily verify, 

(a) a'b = b'a 
(b) a ' (b + c) = a'b + a'c 
(c) (Aa)'b = A(a'b) for every scalar h 
(d)  a 'a  is zero if a = O, and positive otherwise. 

Writing down these four properties is the first step toward the definition 
sought: mathematics says that you can define "inner product"  any way you 
want, so long as properties (a)- (d)  hold. Formalization follows. 

DEFINITION. Let V be any vector space. A function (.,.): V x V -~ R is 
an inner product on V if for all a, b, c e V and all scalars A 

(a')  (a,b) = (b,a) 
(b')  (a,b + c) = (a,b) + (a,c) 
(c') (Aa ,b)=  A(a,b) 
(d') (a,a) is zero if a - 0, and positive otherwise. 

To illustrate, let H be a symmetric, positive-definite matrix. (Symmetry of 
H means H = H' .  Positive definiteness of H means that a 'Ha  is positive 
for all nonnull a.) To postpone worries about units, let V - R n for the 
moment.  Next, define (a,b) = a 'Hb.  We verify that the so-defined (a,b) 
has the four properties. 

(a') 

(b')  

(c') 

(d')  

To be proved is that (a,b) = (b,a) or a 'Hb  = b 'Ha.  Think of a 'Hb  
as a 1 x 1 matrix. Such a matrix equals its transpose, b 'H 'a .  By the 
symmetry of H, this equals b 'Ha.  
To be proved is that (a,b + c) = (a,b) + (a,c), or a 'H(b  + c) = 
a 'Hb  + a 'Hc. This is a familiar matrix-algebraic proposition. 
To be proved is that (ha,b) = h(a,b), or (ha) 'Hb = h(a 'Hb) .  This 
too is familiar. 
To be proved is that a 'Ha  is zero if a = 0, and positive otherwise. 
The first part is obvious. The second part follows from the positive 
definiteness of H. 

Shown next is that, with one proviso, every inner product (a,b) can be 
written in the form a 'Hb  for some symmetric, positive-definite H. The 
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proviso is that we must allow the inner-product matrix H to have dimen- 
sioned elements, to be an array rather than a matrix. (Linear algebra does 
not allow that, and so you won't  find the equation (a,b) = a 'Hb  anywhere 
in the mathematical literature.) For simplicity, we take V to have dimension 
n = 2, but the proof goes the same way for arbitrary n. 

When n = 2, any basis for V consists of two vectors. Suppose a basis 
has been chosen. Let the vectors in this basis be Vl and v2, columns of the 
basis matrix V. Then a = AlVl + A2v2 = VA for some real A = (A1, A2)', 
and b = /XlVl + /z2v2 = V ~  for some real tt = (/Xl, /x2)'. Now (a,b) = 
(a,bClVl + /&2u 

= (a,/xlVl) + (a,/x2v2) by property (b'), 
= (/XlVl,a) + (/x2v2,a) by property (a'), 
=/,~(v~,a) + tz2(v2,a) by property (c'), 
= /Zl(Vl,AlVl + A2V2) + /z2(v2,AlVl + A2u by substitution for a, 

-- ts165165 ) + jtZl(u + tlZ2(V2,/~lu + jt/~2(u165 
by property (b'), 

= /.~I(AlVl,Vl) + ~l(A2V2,u -t- ~2(AlVl,V2) d- ~2(A2V2,V2) 
by property (a'), 

-- /~.ltgZl(u165 ) q- /~2~Z1(u165 q- /~.ltlZ2(u165 -+- /~2ttL2(u165 
by property (c'), 

= A'K/,  with K = ((u165 (u165 
(V2,V1) (V2,V2)/' 

- 

(so that V 'V  ~ = I),  
= 

= a 'Hb,  say, with 

where V ~ is V's dual-basis matrix 

( 1 )  

H = V ~  ~ (2) 

By property (a'), (Vl,V2) = (u165 SO that K is symmetric. By (2) then, H 
is symmetric. Finally, by property (d ' ) ,  (a,a) - a 'Ha  is positive for all 
nonnull a, and so H is positive definite. P.O.C. 

The proof gives rise to three remarks. 
First, the argument is mathematically legitimate up to and including (1). 

Only after (1) do arrays enter the story. 
Second, because the inner product is real-valued, all elements of K are 

real. Not so the elements of H. Seeing that the elements of the columns 
of V ~ are measured in 1/b and 1/c, you can easily verify that the diagonal 
elements of H are measured in 1/b 2 and 1/c 2, and that the off-diagonal 
elements are measured in 1/bc. 

Third, if in some economic application you find that you need to specify 
H, it may seem that setting H = I is the most natural choice. Note, though, 
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that the diagonal elements of this I are d imens ioned  l 's  (they are l /b  2 and 
1/c2), and the off-diagonal elements are d imens ioned  O's (both are O/bc). 
Consider now what happens if we change the measurement  units from 
bottles (b) to gallons (g) and from cans (c) to kilograms (k). If lg  = 10.68b 
and lk  = 5.04c, the diagonal elements change to (10.68/g) 2 and (5.04/k) 2. 
The off-diagonal elements remain (dimensioned) zeros, but the harm has 
been done: the inner-product matrix is no longer I. Setting H = ! is thus 
not a natural choice after all. (Setting K = I is. But that does not specify 
I t  uniquely.) 

On V's main dual space V ~ too, we have infinitely many inner products 
to choose from. Given, however, that the inner product on V has matrix 
H = V ~ 1 7 6  ( 2 ) - - o n e  of those infinitely many choices immediately 
becomes the most natural one. It is the inner product with matrix I-I -1 = 
VK-1V '. To see what is so natural about this, let a and b belong to V. Then 
a ' H b  is real, implying Hb ~ V ~ Of course, Ha ~ V ~ too. With H -~ as the 
inner-product matrix on V ~ we find the inner product of Ha and Hb (in 
V ~ to be (Ha) 'H-A(Hb) = a 'Hb,  the same as the inner product of a and 
b (in V). 

Characterizing the array VK-IV ' as H -1 is a bit dubious. True, the so- 
defined H -~ satisfies H H  -~ = I; but the I on the right has dimensioned 
elements. It underscores that arrays are tricky and need to be watched. 

MT 15 

The s tandard n o r m  of vector v is [Ivll =  v'v. Clearly, if v belongs to A, 
the standard norm is meaningless. We need a nonstandard norm. 

Mathematics defines vector norms with great generality, but once an 
inner-product  matrix H has been chosen, the generality becomes a matter  
of indifference. The reason is that the very act of choosing H elevates one 
norm above all others. This anointed norm is Ilvll = V(v ,v ) ,  or 

I1 11 = X / v ' a v .  

MT 16 

Picture a triangle OAB. Let its sides have lengths OA = a, OB = b, 
and AB = c, and abbreviate ~ A O B  as 4~. A theorem in elementary geome- 
try says that c 2 = a 2 + b 2 - 2ab cos 4~. (When 4~ is a right angle, so that 
cos 4~ is zero, the theorem reduces to the Pythagorean theorem.) 

We can also construct A O A B  out of arrows: O A  = a, OB = b, 
and ~ = b - a. The theorem then becomes 
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lib - all 2 = Ilall 2 + Ilbll 2 - 21lall" Ilbllcos ~. (3) 

If a and b are vectors in R n, Eq. (3) can be written as (b - a ) ' (b  - a) = 

a ' a  + b'b - 211all" Ilbllcos ~. Since the left side equals a ' a  - 2a 'b  + b 'b,  

a'b - I l a l l  Ilbllcos ~. (4) 

If a and b are vectors in a vector space with inner-product  matrix H, Eq. 
( 3 )  can be written as ( b  - a ) ' H ( b  - a )  = a ' H a  + b ' H b  - 211all" Ilbllcos 6. 
Simplifying as before gives 

a'Hb - I l a l l  Ilbllcos 6. (5) 

Appearance  notwithstanding, the right sides of (4) and (5) are different. 
In (4), Ilall and Ilbll mean V'a 'a  and V'b'b; in (5), Ilall and Ifbll mean 
V 'a 'Ha  and V b ' H b .  

M T  17 

Equat ion (4) implies that if a e R n and b e R n are perpendicular  or 
or thogona l  (~b = 90~ a 'b  is zero. Equat ion (5) implies that if a e V and b 

V are orthogonal,  and the inner product  on V has matrix H, then a ' H b  
is zero. If, conversely, a 'b  - 0 (in R n) o r  a 'Hb  = 0 (in V), it could  mean 
that a and b are perpendicular;  but it could also mean that a - 0 o r  b = 

0 or both. By simplifying convention, mathematics  declare 0 to be orthogo- 
nal to every vector. With that, we can unambiguously say that a and b are 
orthogonal  whenever  a 'b  = 0 (in R n) or a ' H b  = 0 (in V). 

For most matrices H, vectors a and b satisfying a ' H b  = 0 do not look 
perpendicular  when sketched in a diagram. To illustrate, picture a two- 
dimensional V, and in it two arrows, a of length 2 and b of length 3, both 
affixed at 0 and forming a 45 ~ angle ~b. Or rather, picture a and b so that 
Ilall would be 2, and Ifbl[ would be 3, and ~b would be 45 ~ if the inner product  
on V were the standard one. Now use a and b as basis vectors for V, and 
specify K in (2) as I. Setting K = I means choosing (a,a) = (b,b) = 1 
and (a,b) = 0. In words, a and b both have unit length, and they are 
o r t h o g o n a l ~ e v e n  if they look anything but. 

The moral  of the story is that for vector spaces with nonstandard inner 
products, sketches are no longer quite the useful guides to intuition that 
they used to be. You will fare bet ter  if you put less faith in your eyes and 
more faith in your formulas. 

Let  S be any set of vectors in V. One says that a e V is orthogonal  to S if 
a is orthogonal  to every vector in S. To illustrate, picture a three-dimensional  
coordinate system, with a horizontal x-axis, a horizontal y-axis, and a vertical 
z-axis. If a lies along the z-axis and S is the floor of the diagram, a is 
orthogonal  to S. 
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Vectors belonging to different vector spaces are never orthogonal.  In 
particular, if a ~ V, a ~ ~ V ~ and a 'a  ~ = 0, it does not mean that a is orthogonal  
to a ~ One says, rather, that a and a ~ annihilate each other. The connection 
between annihilation and orthogonality is this: From a 'a  ~ = 0 follows 
a 'H(H-aa  ~ = 0, which shows that H-aa ~ belongs to A and is orthogonal  
to a. From a~ = 0 also follows a~ = 0, which shows that Ha 
belongs to A ~ and is orthogonal to a ~ 

M T  18 

If {X,A} is a point space (see MT 7), vectors in A can be orthogonal  to 
subsets of X. It goes like this. 

Let A be a matrix whose columns are vectors in A, let S be the fiat set 
{a: a = Ac for some c}, and let Xo + S be the flat set {x: x = Xo + Ac for 
some c}. There is a big difference between S and Xo + S, in that S is a 
subspace of the vector space A whereas Xo + S is a subset of the point set 
X. Vector  a e A is said to be orthogonal to Xo + S if it is orthogonal  to S. 
Note the novelty: so far, orthogonality has been a relation between either 
two vectors in the same vector space or a vector and a set of vectors, also 
in the same vector space. We now see that a vector can also be orthogonal  
to a set of points. Not just any set of points, however. The definition applies 
only if the point set X containing S and the vector space A containing a 
form a point space. 

It gets better. Let K be a curve or (hyper)surface in X, let Xo be a point 
on K, and suppose that K is smooth enough, near Xo, to ensure existence 
of a tangent line or (hyper)plane at Xo. Denote  that tangent line or (hyper)- 
plane by Xo + S. Vector a ~ A is said to be orthogonal to K at Xo if it is 
orthogonal  to Xo + S. What  that means was explained in the preceding para- 
graph. 

M T  19 

Orthogonal projection is next. In Figure 1 you see, among other things, 
a plane S in R 3 and a vector v. The linearly independent  vectors al and a2, 
columns of A, form a basis for S. Vector w is the orthogonal  projection of 
w onto S. Loosely, w is the shadow that v would cast if the sun were directly 
overhead. In this book, all projection is orthogonal  projection, and so the 
adjective "or thogonal"  will ordinarily be omitted. 

We want to express w in terms of al, a2, and v. Being a vector in S, w 
is a linear combination of al and a2. Equivalently, w = Ae for some column 
c consisting of two real numbers. 
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Figure 1. Vector w is the projection of v onto the plane spanned by al, a2. 

Vec to r  v - w = v - Ac is perpendicu la r  to S, and the re fore  to both  al 

and a2. Thus, a l ' (v  - Ac)  = 0 and a2 r(v - Ac) = 0. Combin ing  these two 
equat ions  gives A ' ( v  - Ac) = 0, or A ' v  - A ' A c  = 0, or A ' A c  - A'v .  
Premul t ip ly ing both  sides by A ( A ' A )  -1 gives Ac - w on the left and 

A ( A ' A ) - I A ' v  on the right. Equivalent ly ,  w = Pv, where  

p = A ( A ' A ) - I A  '. 

Matr ix  P is a projection matrix. 
In Figure 1, project ing w onto  S has no effect on w, since w is a l ready 

in S: Pw = w. Project ing repea ted ly  is thus equivalent  to project ing once: 
p = p2 = p3 . . . .  . One  says that  P is idempotent, meaning  that  P equals 
its own second,  t h i r d , . . ,  powers.  

The  definition P = A ( A ' A ) - I A  ' holds with far g rea te r  general i ty  than 

is ref lected in Figure 1. Let  A be any n • k matr ix  with full co lumn rank,  
and let S be the set spanned  by A's  columns. Thus, if k = 1, S is a line in 
Rn; if k = 2, S is a plane in Rn; in general ,  S is a k-d imensional  subspace 

of R n, with A as basis matrix.  The or thogona l  project ion of a vector  v onto  

the subspace S is Pv with P = A ( A ' A ) - I A  '. 

If A is square  (and still with full co lumn rank) ,  ( A ' A )  -1 = A - I ( A ' )  -1. 

In this case then,  P = A ( A ' A ) - I A  ' = A A - ~ ( A ' ) - ~ A  ' = I. That  stands to 
reason.  If A is square,  its columns form a basis for the ent i re  Rn; any v 

being pro jec ted  onto  R" is a l ready in R~; and so v stays the same under  

project ion,  mean ing  Pv = Iv = v. Most  applicat ions of project ion are of 

course not  this trivial. In most  applications,  A is not  square  but  tall, and 
P 4 = I .  

It is easy to verify that  A ' A  and ( A ' A )  -~ and P are symmetr ic .  
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In a vector space V with a nons tandard  inner product ,  the projection 
matrix looks a little different. Let the inner-product  matrix be H; then 

p = A ( A ' H A ) - I A ' H ,  

which, incidentally, is not symmetric. The proof  follows the same path as 
before.  See Figure 1: v - w = v - Ac is perpendicular  to S, and therefore  
to both al and az. Thus, a l 'H (v  - Ac) = 0 and a2'H(v - Ac) = 0. Combining 
these two equat ions gives A ' H ( v  - Ac) = 0, or A ' H v  - A ' H A c  = 0, or 
A ' H A c  = A 'Hv .  Premultiplying both sides by A ( A ' H A )  -1 gives Ac = 
A ( A ' H A ) - I A ' H v ,  that is, w = Pv. P.O.C. 

The just-found formula remains unchanged if A is n • k and has full 
column rank. 

We saw in MT 18 that if {X,A} is a point space, vectors in A can be 
or thogonal  to subsets of X. As you then expect, it is possible to project  
vectors in A onto subsets of X. Figure 2 tells the story. Figure 2 shows a 
plane P = Xo + S in X - E 3, a point  Xo in that plane, and a vector v affixed 
at Xo. It will be clear that S, which is not shown, is a plane in R 3, containing 
the origin of R 3 and "paral le l"  to P. Let  al and a2, columns of A, form a 
basis for S. In Figure 2, al and a2 are affixed at Xo. The or thogonal  project ion 
of v onto P is the same w = Ac = Pv as the or thogonal  project ion of v 
onto S, except that w is now affixed at Xo. 

Figure 2 could also be said to illustrate that the project ion of the point 
Xo + v onto P is the point Xo + w. More  generally, not just vectors in A 
but also points in X can be projected onto subsets of X. (The only restriction 
is that those subsets must be closed in X. MT 27 has fur ther  details.) 

Figure 2. Orthogonal projection of a vector in A onto a plane in X. 
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The  pro jec t ion  of  a point  on to  any subset  of X is, if it exists, always a 
point .  The  pro jec t ion  of a vec tor  on to  any subset  of  e i ther  X or A is, if it 

exists, always a vector.  

MT 20 

Let  V and W be two vector  spaces, and let f be a funct ion f rom V to W. 
O n e  says that  f is l inear if for all vectors  a and  ao in V and for all scalars c, 

f (a  + ao) = f (a)  + f(ao) (6) 

and  

f(ca)  = cf(a) (7) 

bo th  hold. 
W e  show that  f, be ing a l inear function,  can be r e p r e se n t e d  by a matrix.  

By this is m e a n t  that  there  exists a matr ix  M so that  f (a)  = Ma  for all a 
in V. 

To p rove  the result,  let {Vm,V2, . . . ,vn} be a basis for V. T h e n  every 
a in V can be wri t ten  as a l inear  combina t ion  of the vi. Take  a - alvi + 

a 2 v 2  + "  �9 �9 + anVn. T h e n  

' f ( a ) =  f(alv~ + a 2 v 2  + "  " " + anVn) 

= f ( a l V l )  + f ( a 2 v 2 )  + �9 �9 �9 + f(anVn), by (6) 
- a l f (vl)  + a2f(v2) + "  �9 �9 + a~f(v~), by (7) 
- mlal  + m2a2 + �9 �9 �9 + m~an, where  mi deno tes  f(vi) 
= (ml,m2, . . . , m~)a. 

Let t ing  M be the matr ix  of  the mi gives f (a)  -- Ma. P.O.C.  
If f is real-valued,  M consists of a single row. Call that  row m' .  T h e n  

f (a)  = re 'a ,  just  as you have always known  a rea l -va lued  l inear  funct ion to be. 

MT 21 

Topics  21 -26  all fall unde r  calculus. W e  begin  with the Taylor  expans ion  
of funct ions  of several  variables.  

Let  {X, V} be a point  space, and  let u : X  ~ E ~ be a funct ion with part ial  
der ivat ives  of all orders .  Th ink  of Figure  3 as depict ing a cave, with floor 
X and thin, t r anspa ren t  roof  u = u(x). Y o u  are s tanding at the point  Xo. 
The  height  of the roof  is U(Xo) there.  Y o u  now take  a small step away f rom 
Xo, in the di rect ion of some  vector  v = (Vm,V2)' ~ V. For  concre teness ,  let 
v be a unit  vector:  I1,11 = 1. Y o u r  m o v e  is a mul t ip le  of  v - - s a y ,  hv. A l t h o u g h  
h may be as large as you  wish, it helps to think of h as fairly small. 
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Figure 3. Illustrating the Taylor expansion in the direction of a vector v. 

Taking the step hv brings you to a new point, Xo + hv. Here the height 
of the roof is U(Xo + hv). The Taylor series concerns the difference between 
this new height and the old. Specifically, the Taylor series says that 

O• 1,2'~ "~ 02U(Xo) 
U(X o -k- hv)  -- U(Xo) a t- h~_..,,vi O F .  -+-~-n ~__.jviv j --}-. �9 �9 o) 

2 OXiOX j 
(8) 

Equation (8) can also be written in vector notation, as 

U(Xo + hv) = U(Xo) + h"  v'Vu(xo) + �89 2" v 'Uv + �9 �9 ", (9) 

where U is the matrix of u's second-order partial derivatives, all evaluated 
at Xo. 

For a special case of some interest, let v = el in (8). (Thus, if V = R 2, 
e l  = ( 1 , 0 ) ' ;  if V = A, el = (lb,0c)';  and so on.) Equation (8) becomes 

U(Xo + hea) = U(Xo) + h Ou(x~ + 1. 202U(Xo) 
0X1 ~h 

�9 �9 �9 

As you would expect, this is very nearly the Taylor expansion for a function 
of one variable, f(Xo + h ) =  f(Xo) + h df(xo)/dx + ~-h 2 d2f(Xo)/dx 2 + .  �9 .. 

M T  22 

A powerful tool, underused in economics, is the directional derivative. 
See again Figure 3. As you walk away from Xo, in the direction of the unit 
vector v, the point on the roof directly above your head describes a curve 
K. That curve has a slope at every point. At Xo itself, the slope is 
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limU(Xo + h v ) -  U(Xo) (llvll 1). 
h--->O h 

This limit is denoted Dvu(Xo) and called the derivative o f  u in the direction 
of  v, evaluated at Xo. By (9), Dvu(Xo) equals v'VU(Xo), as is easy to see. 
Dropping the emphasis on the specific point Xo we have, more generally, 

Dvu(X) = v 'Vu(x) (llvl] = a). 

For  a special case of interest, let V = R 2, and take v = el = (1, 0)'. Then 
Dvu = DelU = el'VU = Ou/Oxa. The slope of u in the direction of el (or: in 
the direction of the positive xl-axis) is thus the first of u's first-order partial 
derivatives. By symmetry,  De2u = e2'Vu = Ou/Ox2. 

M T  23 

A surface does not have a slope, but it does have a slope in every direction 
(if it is smooth enough). See again Figure 3: at Xo, the direction of steepest 
ascent is the direction in which the surface rises fastest. To find that direction, 
we need to maximize Dvu(Xo) over all unit vectors v; the direction of the 
maximizing v is the direction of steepest ascent (at Xo). 

Maximizing Dvu(Xo) over all unit vectors v is surprisingly easy. Suppose 
first that v and VU(Xo) belong to R n. Then Dvu(Xo) = v'Vu(xo) is an inner 
product,  and it equals ][vii. [[Vu(xo)[[cos 4~. Since [[vii = 1 and Vu(xo) is  a 
fixed vector, maximizing D,u(Xo) means maximizing cos 4~. In its turn, this 
means setting 4~ - 0 ~ The maximizing unit vector v is thus the one that 
forms a 0 ~ angle with Vu(xo). Moreover,  the value of D,u(Xo) for that v is 
the value of ]Iv[[. [[Vu(xo)[[cos 4~ when [[v[I = 1 and 4~ = 0 ~ That  value is 
IlVu(xo)ll. Seeing that the steepest ascent has both a direction and a norm, 
it is only natural  that we define it as a vector. Summarizing, we have 

DEFINITION 1. In R n, the steepest ascent of u(x) at Xo is the vector VU(Xo). 

Suppose next that v belongs to a vector space V other than R", and let 
the inner product  on V have matrix H. Vector  VU(Xo) belongs to the main 
dual space V ~ of course. Now D,u(Xo) = v'Vu(xo) = v'HH-1VU(Xo), which 
is the inner product  (in V) of v and H-1VU(Xo). It therefore equals 
tlvll- IlH-lVu(xo)llcos 4,. By the reasoning used above, this is largest when 
v forms a 0 ~ angle with H-1VU(Xo), in which case it equals IIH-1VU(Xo)l[. 
Summarizing, we have 

DEFINITION 2. In V, the steepest ascent of u(x) at Xo is the vector H-1VU(Xo). 

MT 24 

The definition of the steepest ascent allowed x to move away from its 
initial location Xo in any direction. Suppose now that the direction in which x 
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II I 

X o ~ p , .  // 

Figure 4. In R 2, the steepest constrained ascent of u at Xo is PVu. 

can m o v e  is c i rcumscr ibed in some (well-defined) way. Given  this constraint ,  
wha t  is the s teepes t  ascent  of u(x) at Xo? 

For  an il lustration, see Figure  4, which is set in R e. As x moves  away 
f rom Xo, it must  stay on the line L = {x: x = Xo + ca for some c}. It is clear 
that  the direct ion in which u increases  fastest,  const ra in t  permit t ing,  is that  
of  the  vec tor  labeled  PVu. This PVu  is of course  the pro jec t ion  of Vu on to  L. 

For  ano the r  i l lustration, see Figure  5, set in R 3. This t ime, the moving  x 
is cons t ra ined  to r emain  in the p lane  P = {x: x = Xo + C l a l  a t- c2a2 for some  
cl, Ce}. Y o u  can p robab ly  guess that  the di rect ion in which u increases  
fastest,  const ra in t  permit t ing,  is that  of PVu, the pro jec t ion  of Vu on to  P. 

Genera l i z ing  the p rob lem,  let al, ae, . . . , ak, co lumns  of A, be l inearly 
i n d e p e n d e n t  vectors  in a vec tor  space V, let S be the subspace  spanned  by 

o 2 

Figure 5. In R 3, the steepest constrained ascent of u at Xo is PVu. 
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A's columns, and let the inner product on V have matrix It. Orthogonal 
projection onto S is thus represented by P = A ( A ' H A ) - I A ' H .  Suppose 
the moving x is constrained to remain in the set {x: x = Xo + Ae for some 
c}. Define the steepest constrained ascent of u(x) at Xo as the vector whose 
direction is that in which u(x) increases fastest at Xo, constraint permitting, 
and whose length is the slope of u in that direction. It will be shown that 

The steepest constrained ascent of  u(x) at Xo is pH-1Vu(xo). 

If V is R n, and the inner product is standard, the steepest constrained ascent 
simplifies to PVu(xo), with P = A ( A ' A ) - I A  '. 

To prove the assertion, we need to maximize Dvu(Xo) over all unit vectors 
v that can be written as Ae for some e. As seen in MT 23, Dvu(Xo) equals 
[Ivll" IlH-lVu(xo)llcos 4~ - IIH-lVu(xo)lbcos 4,. This is largest when ~b is smallest, 
that is, when v points in the same direction as the projection of H-1Vu(xo) 
onto S. Cos 4~ then equals IIPH-lVu(Xo)ll/llH- Vu(xo)l[. The rest is obvious. 

MT 25 

Near the end of the book we meet the differential-equation system 
y(t) + Ty(t) = z(t). Suppose first that ~, y, and z are one-element vectors. 
The system can then be written as/9(0 + Ty(t) = z(t). Multiplying both 
sides by ert gives e~tp(t) + TeSty(t) = e ~ t z ( t ) .  The left side is the indefinite 
integral of e~ty(t), as you can verify by differentiation. Integrating from 0 

t o t  thus gives er'y(~')~ = f'oe"z(r)dr. The left side equals e r t y ( t )  - er~ 

f toe~'z('r)dT". that is, e~ty(t) - y(O), and so we have erty(t) = y(0) + Multiplying 

by e -rt produces the solution, 

y,,, e ty,O,+e t 

Sometimes it is handier to go one step further and integrate the last term 
by parts. The solution is then 

y(t) = e - ~ t y ( O )  + y-l[z(t) - e - ~ t z ( O )  - e -~t  ft^C/~dz('r)]. 
3 0  

If y, y, and z are vectors of n > 1 elements, the system y(t) + Ty(t) = 
z(t) consists of n differential equations, written underneath each other, and 
all of the form just solved. Writing the n solutions underneath each other 
gives, in obvious notation, 
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y(t): e  ty O) , e 

When the last vector on the right is integrated by parts, the solution becomes 

y( / )  = e-Y/y(0) + ' y - l [ z ( t )  - e -y tz (0)  - e -yt f teYrdz( 'r)].  (10 )  
j o  

MT 26 

Delta functions are used to represent events that are sudden, short, and 
out of the ordinary, like a spike in electrical current, or a photographer 's  
flashbulb going off in front of your eyes, or a phone call notifying you of 
an inheritance. Let such an event begin at time to and end at to + �9 
with �9 positive and very small. Figure 6 illustrates the corresponding delta 
function, written as 6(to). For t between to and to + �9 the value of the 
function is 1/�9 for all other t, the value of the function is zero. 

Actually, the definition just given is somewhat unauthorized. Mathemati-  
cians define 8(to) as the limit of our 6(to) as �9 goes to zero. Since that limit 
does not exist in the usual sense, the mathematicians'  definition of 6(to) 
calls for an excursion outside the bounds of traditional calculus. As it turns 
out, however, we do not need to go there. We do not need to go there 
because our use of 8(to) is confined to integrals of the form 

f ~ oooo 8(to- r)f( r)d r 

(any integrable f) ;  and no problems arise if we first evaluate this integral 
using our own definition of 8(to) and afterward let �9 go to zero. Here is 
how it goes. 

Since 8 is zero everywhere except between to and to + �9 

8(0 

1/e 

t o to+S 

Figure 6. A delta function. 
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f+s  6 ( t o -  "r)f('r)d'r = ( t~ 
- ./t o 

6 ( t o -  ~')f(~')dz. 

Now 6 = 1 /~  between to and to + ~, and so the integral becomes 

E -1 f t~ f (T)dT .  
J t  o 

By the mean-value theorem, this equals ~-I[Ef(T*)] for some r* between to 
and to + E. Lett ing e go to zero gives f(to). In all then, 

f+= 6(to - ~')f(r)dr = f(to). (11) 

M T  27 

Finally, a bit of real analysis. The t rea tment  is casual. 
Let {X,A} be any point space. 
A subset S of X is convex if for every two points Xo and x~ belonging to 

S, every point between Xo and Xl also belongs to S. 
What  "be tween  Xo and Xl" means is obvious geometrically, but it is not 

obvious analytically. To explore, let Xo be a point in X and a a nonnull 
vector in A. Then Xo + ca is for every real c a point in X. It is easy to see 
that the set of those points, {x: x = Xo + ca for some c}, is a line. The 
l ine--ca l l  it L - - g o e s  through Xo and is parallel to a. One of the points of 
L is Xo + a. Call it xa. Then L can also be described as the set {x: x = 
Xo + c(x~ - Xo) for some c}. It is geometrically clear that if c is any number  
between 0 and 1, then the point 

Xo + c(xl - Xo) 

lies between Xo and xl. Conversely, every point between Xo and Xl can be 
writ ten in the form Xo + c(xl - Xo), for some c between 0 and 1. This is 
the analytical version of "be tween"  that we were looking for. 

A subset S of X is closed if it contains its entire boundary.  For an example,  
let X be the plane E 2, and let S be the set of all points (x,y) with 
x 2 + y2 < 1. Its boundary  is the circle x 2 + y2 = 1. Since the boundary is 
part  of the set, S is closed. For an example of a set that is not closed, strip 
S of its boundary.  That  leaves the set of all points (x,y) with x 2 + y2 < 1, 
and this set is not closed. 

A subset S of X is bounded if there is some distance p, possibly very 
large, so that every x in S is less than p away from the origin of X. To 
illustrate, let X - E 2. For an example of a bounded set, think of any 
rectangle. For an example of an unbounded set, take the graph of y = e -x. 
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To see why this set is not bounded,  pick a number  p as big as you like. 
Now consider the point (x, y) = (p + 1, e -~p+l)). On the one hand, the point 
lies on the graph of y = e -x. On the other, its distance to the origin of X 
exceeds p, as is easy to see. 

A subset S of X is compact if it is both closed and bounded. 
Proof of the following theorem can be found in m o s t - - m a y b e  a l l - - tex ts  

on real analysis. 

THEOREM 1. Let the set S C X be closed, and let p ~ X be some point  
outside S. There then exists a point  q in S that is closest to p. 

The distance between p and q is also called the distance between p and S. 
If S is not closed, Theorem 1 does not hold. For an example, let X = 

E 2, let p be the origin, and let S be the set {(x,y): x > 1}. This S is not 
closed, for it does not contain its boundary (the line x = 1). It is easy to 
see that there is no point q in S that is closest to the origin p. On the other 
hand, if we define S as the set {(x,y): x -> 1}, which is closed, the theorem 
does apply. In that case, q = (1, 0), as you can verify from a diagram. 

Theorem 1 does not guarantee that q is unique. Indeed it need not be. 
For an illustration, take X = E 2, let S be the V-shaped graph of y = Ixl, 
and let p = (0, 2). If you make a picture, you will see that there is one q 
at (1, 1) and another  at ( - 1 ,  1). The distance minimum is unique, but the 
distance minimizer is not. 

In some cases, the minimizing q is unique. One of those cases is particu- 
larly relevant for Models One and Two. Theorem 2 describes it. 

THEOREM 2. I f  the set S o f  Theorem 1 is not only closed but also convex, 
q is unique. 

P r o o f  Suppose the theorem is fa l se- -suppose  there are two points in S 
with minimum distance to p. Call them eli and q2. The triangle with vertices 
P, ql, and q2 is then isosceles. It is easy to see that the point el = ~ql  + q2), 
which lies midway between qa and q2, is closer to p than is either ql or q2. 
Since S contains ql and q2 and is convex, S contains q as well. But then qa and 
q2 cannot be the distance minimizers we took them to be. The contradiction 
proves the theorem. P.O.C. 

Questions 
1. If f(t)  = e at, and t is measured in hours, in which unit is a measured? 

2. (Continuation) Expand e at in a Taylor series around to - 0. Does 
your answer to Question 1 still hold? 

3. If Yt = 3yt-1  for t = 1, 2, 3, . . . , and Y0 = 1, it is easy to see that 
yt = 3 t. In which unit is t measured? 
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4. Let S be the set of all functions of the form 

. 

. 

. 

8. 

o 

10. 

11. 

12. 

13. 

14. 

15. 

(Ap 2 + Bp + C)/(3p 2 + 2p q- 1), 

with A, B, and C real. In which unit is p measured? Is S a set with 
multiplication? Addit ion? Scalar multiplication? Is S a vector space? 

The set of columns of the form (x lbs., y gal.)', with x, y real, is a 
vector space. So is the set of columns of the form (x gal., y lbs.)'. 
Are the two vector spaces the same? 

As said, every vector space contains a null vector. How many null 
vectors can a vector space have, at most? 

If a vector space consists of a single vector, which vector is that? 

Let A and B be arrays, both 3 • 3. In both, the elements of the first 
row are measured in b, the elements of the second row are measured 
in c, and the elements of the third row are measured in d. Is A + B 
defined? A + B'? AB? A 'B?  AB'?  

Does a 2 • 3 matrix always have infinitely many solutions? 

Remember  the definition of a point space. What  can you say about 
Xm and x2 if xl + c(x2 - Xm) = (1 - c)xl + cx2? 

The proof of Theorem 2, in MT 27, defines q as �89 + q2). Strictly, 
this is meaningless, since ql and q2 are points. Rewrite l (q  I + q2) in 
a way that does not require addition of points or multiplication of 
points by scalars. 

Let x~, x2, . . . , x~ be points, in a point set S. The average of the x/ 

is (1/n)Xx~. Since addition and scalar multiplication have not been 
defined on S, the average of the x/is, strictly, a meaningless quantity. 
Rewrite (1/n)Xx/in a way that does not require addition of points 
or multiplication of points by scalars. 

Write alCl + a2c2 + a3c3 as Ac. Vectors al, a2, a3 are linearly indepen- 
dent if Ae = 0. True or false? 

(Continuation) If Ac = 0 has one solution, the a~ are linearly indepen- 
dent; if Ac = 0 has infinitely many solutions, the ai are linearly 
dependent;  if Ae = 0 has no solution, the ai are neither linearly 
independent  nor linearly dependent.  True or false7 

Are the columns of 

A =  4 7 

linearly dependent  or linearly independent? Does A -~ exist? Does 
(A 'A )  -1 exist? Does (AA ' )  -1 exist? Find de t (A 'A) .  
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16. (Continuation) Do the columns of A form a basis for R 2 o r  for R3.  9 

Do the columns of A '  form a basis for R 2 or for R37 

17. Let (lb, 0c)' and (0b, lc) '  form a basis for the action space A. What  
does the basis matrix look like in this case? Find the dual-basis matrix. 

18. What  is the transpose of ABC? Of a 'Be? Is a 'Be symmetric  when 
B is? Is a 'Bc  symmetric  when B is not? 

19. Prove that V~ ~ is symmetric  if K is. 

20. Let  u and I t  have the meaning in the text. The elements of the first 
row of V ~ are measured in 1/b; the elements of the second row are 
measured in 1/c. Verify that the diagonal elements of H are measured 
in 1/b 2 and 1/c 2, and that the off-diagonal elements are measured in 
1/bc, as the text says. How are the elements of 1-11-I -1 = I dimensioned? 

21. In V ~ the inner product  of Ha and Hb is ( H a ) ' H - l ( l t b ) .  What  is it 
in V? 

22. In the utility function U(Xl,X2), Xl is measured in b and x2 is measured 
in c. How are the elements of the Hessian matrix of u dimensioned? 
Can the Hessian matrix serve as an inner-product  matrix? 

23. Are (2b, 3c)' and (3/b, -2 /c ) '  orthogonal? 

24. Let  H and H -1 be the inner-product matrices on V and V ~ Suppose 
a e V annihilates b e V ~ if and only if a is orthogonal to x. What  is x? 

25. Vectors al, a2, and a3 are the columns of A. The linear span of al, 
a2, and a3 is the set of all linear combinations of the three ai, that is, 
the set of all vectors Ae (any e). Prove that, if Cl, e2, and c3 are 
linearly independent ,  the linear span of Ael, Ae2, and At3 is the 
same as the linear span of al, a2, and a3. (Hint: let C be the matrix 
with the three ei as columns. What  is the connection between C and 
the matrix whose columns are the Aci?) 

26. Prove that i fPv = A ( A ' A ) - I A ' v  for all v in  R 3, then P = A ( A ' A ) - I A  '. 
(MT 19 implicitly assumed this result.) 

27. Compute  A ( A ' A ) - I A  ' if A is the 3 • 2 matrix with columns al = 
(1, 2, 3)' and a2 = (0, 2, 3)'. (Hint: use Quest ion 25.) 

28. Let  al = (1, - 1 ,  2)', a2 = (0, 1, 3)', and a3 = (0, 0, 5)' be the columns 
of A. Compute  A ( A ' A ) - I A  '. 

29. Find the gradient of e 1-x2-y2. 

30. Find the derivative of e 1-x2-y2 in the direction of v = (3/5, 4/5)'. 
Evaluate  at the point (x, y) = (2, 1). 

31. Define the derivative of f(x) in the direction of v if it is known that 
v is nonnull but it is not known whether  v is a unit vector. 

32. Write the Taylor expansion of f(x) in the direction of a unit vector v. 
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X 3 

X 2 

X 1 

F i g u r e  7. The steepest constrained ascent is orthogonal  to the "constrained contour line." 

33. Find the steepest ascent of e 1.x2.y2 at the point (x, y) = (2, 1). 

34. Find the steepest constrained ascent of e 1-x2-y2 at the point (x, y )  = 
(2, 1), if (x, y) is constrained to remain on the line y = 3x + b. (Find 
b first.) Make a sketch, preferably three-dimensional.  

35. Let {X, V} be a three-dimensional point space, and let u(x) be a real- 
valued, differentiable function on X. Prove that, if x is constrained 
to remain in the plane x = Xo + alCl + a2c2, the steepest constrained 
ascent at Xo is orthogonal,  at Xo, to the intersection K of the constrain- 
ing plane and the contour surface u(x) = U(Xo). See Figure 7, where 
a represents the steepest constrained ascent. Vectors al and a2, which 
span the plane, are not shown. 

f' f'0 36. Verify that e -vt oeV~z(r)dr = y-l[z(t)  - e-Vtz(O) - e -vt e" 'dz(r)],  

as MT 25 implies. 

37. The origin of E 2 has distance 1 to every point on the circle x 2 + y2 
= 1. Does this not contradict Theorem 2 in MT 27, seeing that a 
circle is a convex set? 



3 
Methodological Preliminaries 

Building a model is sometimes likened to doing a jigsaw puzzle. Inaccu- 
rate though it may be, the simile is worth examining. 

The puzzle pieces needed for a model do not come out of a box. They 
are scattered throughout Reality, and it is up to the model builder to gather 
them. There are no edge pieces to reveal where the puzzle ends; there is 
no guarantee that the finished puzzle will have a pleasantly regular shape; 
the model builder cannot be sure that all the necessary pieces are on the 
table, nor that all pieces on the table are necessary. 

Some puzzle pieces are big and bright and colorful. They represent things 
that are important in everyday life. In economics, for example, Money and 
Price are bright pieces. So are Consumer, Producer, Market, Buying, Selling, 
Demand, Supply, Income, Expenditures, Profit, Taxes. 

It is natural to think that the brighter the piece, the more central it must 
be to the picture. It is also a fallacy. Importance in real life is a bad predictor 
of importance in theory. Almost all of the bright pieces will be shown to 
be peripheral, in that their disappearance would affect the picture barely 
or not at all. 

And some dull pieces are essential. Foremost among them are Stock, 
Flow, Endowment, and Action. What makes these four notions important 
is, in small part, their generality and, in much larger part, their mathemati- 
cal nature. 

Model building is governed by several principles. Five, in particular, steer 
this book. The first is by far the most important; the other four are arranged 
in no particular order. 

FIRST PRINCIPLE: DEFINE MATHEMATICALLY 

The first principle, a variant of the universally accepted recommendation 
that every model define its concepts, is that every mathematical model 

48 
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should define its concepts mathematically. A model will be designated 
"pure theory" if all its concepts are mathematically defined. 

According to the first principle, a mathematical model is a good deal 
more than just a theory with mathematics in it. For an example, take a 
statement from verbal economics: "People spend part of their incomes, 
and the rest they save." When rewritten as Y = C + S, the statement still 
belongs to verbal economics. The symbols Y, C, and S are mere abbrevia- 
tions, not definitions, of "income," "consumption," and "savings." 

To see the first principle at work, we accompany an aspiring mathemati- 
cal-model builder. Call him the Scientist. Having observed the real world, 
especially the part he wishes to model, the Scientist retires to his place of 
work, the Ivory Tower. He closes the door, locking out Reality, and begins. 

First he defines the necessary concepts, in mathematical terms. 
Foundation laid, he starts to build on top of it. The superstructure consists 

of statements. Some may be called theorems, or lemmas, or assertions, but 
that is only for variety or emphasis; they are still statements. 

The Scientist deduces all his statements from the definitions. In so doing, 
he is guided solely by the rules of logic, which we trust him to apply 
flawlessly. His model is thus logically coherent. Whether it is also realistic 
is, at this point, of no concern. 

And this is all there is. A model consists of definitions and statements, 
and nothing else. There is no room for axioms, for postulates, for assump- 
tions. Or rather, all axioms, and postulates, and assumptions are definitions 
in disguise. It is widely recognized, for example, that Kolmogorov's axioms 
are nothing but a definition of probability; the postulate that the consumer 
maximizes utility is actually a definition of final bundle ("The final bundle 
is the bundle that maximizes utility"); the assumption that all commodities 
are perfectly divisible amounts to a definition of commodity quantity ("A 
commodity quantity is the product of a real number~ra ther  than an inte- 
g e r - a n d  a measurement unit"). 

A qualification should be made here. There are two kinds of assumptions. 
Those of the first kind--assumptions of substance~affect the theory itself. 
They are definitions in disguise. Assumptions of the second k i n d ~  
assumptions of convenience--affect only the presentation of the theory. 
An example is, "All commodity quantities are assumed positive rather than 
nonnegative." This is merely an attempt to streamline the exposition, its 
message being, "Corner solutions are ignored, to keep things simple." 
Assumptions of convenience are housekeeping rules, not definitions in dis- 
guise. 

A comment in passing. A widely recommended goal for model builders 
is the axiomatization of their theories. If, as was argued above, mathematical 
models have no room for axioms, mathematization seems a better word. 



50 I. Preliminaries 

After the Scientist has been working on his model for a while, a friend 
drops in. The friend, to be called the Visitor, collects everything the Scientist 
has written and returns to the real world. There he interprets the model, 
by translating its (mathematical) statements into everyday language. Next 
he compares his interpretation with reality. Comparison completed, the 
Visitor pronounces on the model's realism. His judgment is subjective; it 
cannot be backed by proof, nor vitiated by disproof. Gauging the correspon- 
dence between model and reality is thus not a science. It is an art. 

In actuality, the typical model builder is both Scientist and Visitor, in 
that he keeps one eye on logic and one eye on realism. It is nevertheless 
useful to separate the two personae, for it underscores that model and 
reality are different worlds. 

Suppose the Visitor considers the model falsified, in that he finds it unreal- 
istic. He goes back to the Scientist and makes his objections known. The 
Scientist has two possible responses. 

First, he can disregard the Visitor's criticism. Lightning will not strike, 
and incarceration will not follow. But there is a penalty: the Visitor, finding 
his objections ignored, leaves in a huff and does not return. The Scientist 
thus loses his audience. He brings isolation on himself. His theory is still 
logically perfect, but it is unpopular. 

The Scientist's other response is to meet the Visitor's objections and 
change the model. "Changing the model," incidentally, does not mean 
patching up. Since the Scientist's logic is presumably flawless, every model 
change inevitably begins with the definit ions~an addition here, a deletion 
there, a modification elsewhere. After making those definitional changes, 
the Scientist rebuilds the entire theoretical edifice. He then hands his revised 
model to the Visitor, who takes it back to reality for further comparison, 
returns with comments, and so on. 

According to this picture, a theory cannot be falsified, in the sense of 
being proved wrong. (But the Visitor can regard a theory as falsified.) By the 
same token, a theory cannot be proved right, cannot be proved unrealistic, 
cannot be experimentally tested or confirmed or refuted. (When Chapter 
1 announced nine testable results, it was the Visitor speaking.) From this 
view also follows that a theory neither explains nor predicts. A theory can 
be used for explanation and prediction, but that is the Visitor's province. 
As far as the Scientist is concerned, his model is a purely mathematical 
world, parallel to and separate from the real world. 

Actually, a complete separation of model and reality is impossible, at 
least if the Scientist values his friendship with the Visitor. Were there no 
Visitor, the Scientist would be free to put together a theory consisting of 
statements like brglitt@. But there is a Visitor, and his visit awakens in the 
Scientist a desire to communicate. This is where reality comes in. Put 
differently, the only theories the world gets to see are the intelligible o n e s ~  
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the ones with a link to reality. The Model Builder's Canon merely asks 
that the link be as simple and basic as possible. 

It may be useful to illustrate the near separation of model and reality 
with actual cases. The social sciences do not appear to offer any, but the 
more rugged sciences do. Two examples follow. 

The first example is plane geometry. The original geometers were Egyp- 
tian priests charged with measuring the area of peasants' lands along the 
Nile. (Geometry's preoccupation with triangles comes from the serpentine 
course of the Nile: lands inside a bight had to be triangular to have enough 
riverine frontage. Lands on the other side were trapezoids, or at any rate 
quadrilaterals). Over time, geometry gradually distanced itself from its 
concrete beginnings, until Euclid attenuated the link to the point where 
for twenty centuries further improvement was believed impossible. 

The second example is probability theory. For many years, statisticians 
sought a mathematical definition of probability--just the sort of thing that 
the Scientist does after he enters the Ivory Tower. But unlike the Scientist, 
the statisticians left the door open. Keeping one foot in the real world, 
they tried to construct their mathematical definition out of nonmathematical 
notions like "coin" and "toss" and "repeated trials." The impossible quest 
ended in 1933, when Kolmogorov closed the door and defined probability 
in purely mathematical terms, unrelated to actual experiments or other 
real-life events. 

Obeying the first principle can be difficult. Saying that all concepts should 
be mathematically defined is one thing; doing it is another. What if the 
Scientist is unable to formulate a definition he needs? Can he expect better 
luck tomorrow? Can he be sure that the necessary mathematics has already 
been invented? Can he be sure that the concept he wants to define is 
"mathematical enough" to have a definition at all? 

Faced with uncertainties like these, the Scientist has to cut some knots. 
He first of all decides which notions are probably "not mathematical 
enough"mwill  probably never find a definitionmand he leaves those no- 
tions out of his model. This is precisely the reason that Models One and 
Two avoid anthropic terms like consumer, producer, and agent; cognitive 
terms like free will, choice, decision, preference, rationality, and uncer- 
tainty; and institutional terms like property, ownership, contract, law, and 
government. Although some of these notions may someday acquire mathe- 
matical definitions, this book, for one, gambles that it will not happen and 
keeps them out. 

Once the Scientist has discarded all concepts he believes mathematically 
undefinable, there may still be, among the remaining ones, some that he 
needs but does not know how to define. Presumably he will go ahead 
anyway, building his model and hoping for the best. It is at this point, when 
the Scientist begins to work with an incomplete collection of definitions, 
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that gremlins get their chance to creep into the model. The most common 
gremlins are the Bright Puzzle Piece Fallacymthe belief that importance 
in practice implies importance in theory--and its offspring, the false dichot- 
omy. This brings us to the second principle. 

SECOND PRINCIPLE: BEWARE DICHOTOMIES 

Any set with two or more elements can be partitioned into two or more 
nonempty subsets. The set of economic agents, for example, can be parti- 
tioned into consumers and producers; the set of human beings can be 
partitioned into females and males, or into men, women, and children; and 
SO o n .  

A partitioning of a set into two subsets becomes a dichotomy once the 
subsets receive different theoretical treatment. Absent such different treat- 
ment, there is no dichotomy. For example, economics does not have sepa- 
rate theories for the behavior of women and the behavior of men, and so 
the male-female distinction, when made at all, defines only a partitioning, 
not a dichotomy. The consumer-producer partitioning, on the other hand, 
is a dichotomy, at least in neoclassical economics (not in Model One), for 
neoclassical economics has one theory for the consumer and another for 
the producer. 

A dichotomy is either valid or false. If both subsets of a dichotomized 
set are mathematically defined, and the definitions differ, the dichotomy 
is valid, and it will remain valid so long as those definitions are left in force. 
If the two subsets are not well defined, the dichotomy stands a good chance 
of being false, no matter how plausible it may look. 

To model builders, the greatest strength of mathematics is the poverty 
of its vocabulary. Correspondingly, the greatest weakness of literary models 
is the opulence of the English language. A model builder who believes two 
concepts to be essentially different needs different terms to name them, 
and the Oxford English Dictionary stands ready to accommodate him with 
a flood of words. English thus facilitates, perhaps even promotes, specious 
dichotomization. Mathematics does the opposite. The very paucity of math- 
ematical terms forces the model builder to tighten and unify his theories, 
to cut superfluities, to turn away from the specific and toward the general. 

Turning away from the general and toward the specific, we examine some 
familiar dichotomies. A few pertain to social rather than individual behavior 
and so do not directly affect the theories in this book. 

It was submitted that "consumer" and "producer" are not definable. If 
this is indeed so, if it is impossible to make a (mathematical) distinction 
between consumers and producers, then it is also impossible to distinguish 
consumer goods from producer goods, consumption activities from produc- 
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tion activities, market behavior from nonmarket behavior, the household 
sector from the industrial sector, a pure-exchange economy from a produc- 
tive economy, demand from derived demand. Expectedly then, Models 
One and Two do not make any of these distinctions. 

Another familiar dichotomy is that between money and commodities. It 
has already been noted that money and monetary notions, being institu- 
tional concepts, have no place in theories of behavior. The same conclusion 
can be reached by the definitional route. In Chapter 4, "money" and 
"commodity" are (mathematically) defined, and the definitions prove to 
be the same. According to those definitions then, the money/commodity 
dichotomy is false: money is merely a commodity, no more different from 
tea than tea is from salt. 

The implications, some obvious and some not, are as momentous as they 
are underrated. An obvious implication is that if money is a commodity, 
barter is indistinguishable from monetary exchange. A not so obvious impli- 
cation is that if money is a commodity, monetary concepts are indistinguish- 
able from nonmonetary ones and so lose their status of fundamental notions. 
Words like profit, cost, revenue, income, and money prices are then dropped 
from the vocabulary of pure theory. And of course, if profit is no longer a 
theoretical term, profit maximization is not either. The neoclassical theory 
of the firm thus loses its footing. (Details are discussed in Chapter 4.) As 
for income, its demise as a theoretical concept pulls the rug out from 
under all income-related notions, among them the Slutsky equation and 
the consumer's budget constraint p 'q = y. Some of the very things com- 
monly taken to form the essence of economics thus turn out to be nothing 
but Bright Puzzle Pieces, either peripheral or irrelevant. 

Abandoning the money-commodities dichotomy is only the beginning. 
This book does not dichotomize the set of goods in any other way, either. 
No distinction is thus made between edible and inedible goods, perfectly 
divisible and imperfectly divisible goods, durable and nondurable goods, 
private and public goods, primary and nonprimary goods, intermediate and 
final goods, capital and other goods, human capital and other goods, finan- 
cial instruments and other goods. Of course, dropping all these distinctions 
may some day turn out to be a mistake. Perhaps some day a mathematical 
definition will be found for, say, private goods, and a different mathematical 
definition for public goods, and that will prove the distinction between 
public goods and private goods to be a legitimate dichotomy. But it is 
assumed here that this will not happen. 

Leaving the set of goods adichotomous has some surprising implications. 
For an example, we temporarily return to neoclassical utility theory and 
show that the neoclassical demand curve cannot be a straight line. Assume 
there is indeed only one type of commodity. Any theoretically derived 
demand function is then necessarily unique (it being understood that the 



54 I. Preliminaries 

function will have some unspecified parameters whose values vary from 
commodity to commodity and from consumer to consumer). Because the 
unique demand function must fit normal goods as well as Giffen goods, its 
graph must be capable of bending back. But then the demand function 
cannot be linear. 

A comment in passing. Some authors define goods  as c o m m o d i t i e s  plus 
money .  This presumes that money is not one of the commodities. But in 
this book it is. Accordingly, "goods" and "commodities" are used inter- 
changeably throughout. 

Whatever a theorist has to say about an element of an undichotomized 
set, he says about all elements of that set. Conversely, when a theorist fails 
to treat all elements of a set the same way, the very asymmetry is evidence 
that at some point he has dichotomized the set, wittingly or unwittingly. 
Illustrations follow. 

The neoclassical theory of the firm does not dichotomize the set of inputs. 
It therefore must treat all inputs the same way. Suppose there are three 
inputs, and let the production function be f(X1,X2,X3). Then f must be sym-  

metr ic  in its indices, meaning that every permutation of the subscripts 
1, 2, and 3 leaves the function unchanged (except for appearance, 
which is immaterial). For example, an acceptable production function is 
f(X1,X2,X3) - -  / ~ X ~ l X ~ 2 X ~ 3 :  if the order of the subscripts is changed from 1-2-3 
to 2-3-1,  the function becomes hx~2x~3x~'l, which is effectively the same 
as the original. Even f ( K , L )  = AK~L ~ is symmetric, although not in its 
indices. (There are none.) Rather, AK~L ~ is symmetric because interchang- 
ing K and a with L and/3, in that order, leaves the function unchanged 
except for appearance. Another way to put it is this: If capital and labor 
are the only inputs, all conclusions of the theory of the firm must remain 
the same if you interpret K as labor and L as capital. 

Suppose, on the other hand, that the Scientist says he has deduced from 
his definitions that, in a world with only two inputs, the production function 
is f ( K , L )  = K / L .  You then know, without any further information, that 
the Scientist must have begun by dichotomizing the set of inputs, one subset 
containing capital alone and the other subset containing labor alone. Had 
he not introduced that dichotomy, it would have been impossible for him 
to deduce an asymmetric production function. Even a magician cannot pull 
a rabbit out of a hat without putting it in first. 

For the next example, imagine a Hicksian consumer in a world with only 
three goods, bread, milk, and money. The budget constraint is Plql  + 

Paq2 = Y, where y is income. Whether good 1 is bread and good 2 is milk 
or the other way around is impossible to tell, for the constraint is symmetric 
in the indices 1 and 2. But the constraint does not treat all three goods 
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symmetricallymjust the first two. The asymmetry of the constraint is evi- 
dence that the set of goods has been dichotomized, with one subset contain- 
ing bread and milk and the other subset containing money only. Without 
such a dichotomy, the budget constraint would be symmetric in all three 
goods. It would be, say, p l q l  + P2q2 + P3q3 = Od. (Recall that d stands 
for dollar.) 

Continuing the illustration, suppose that the three prices Pl, P2, P3 were 
doubled or tripled. The left side of P l q l  + P2q2 + P3q3 -- Od would then 
double or triple; but the equation would still represent the same plane. 
The plane is thus unique but the prices are not. To make the prices unique 
we set one of them, P3 say, identically equal to 1. Doubling or tripling all 
three prices is thus now no longer possible. The equation 

Plqa + P2q2 + P3q3 = Od 

becomes 

plqa + pzq2 + q3 = Od, or Plqa + pzq2 = - q 3 .  

Even though symmetry in indices is now destroyed, symmetry in interpreta- 
tion remains preserved, for it has been left open whether good 3 is bread 
or milk or money. It is only when good 3 is specified as money, and -q3 
relabeled as y, that symmetry of interpretation, too, is lost, and a dichotomy 
is introduced. 

One more example. Consider a perfectly competitive industry, with a 
large number of identical firms all earning zero profit. Economic theory 
says that if a demand shift causes profits to fall below zero, some firms will 
drop out. That sounds plausible; in a real industry, something like that may 
indeed happen. But it won't  happen in a theoretical industry consisting of 
identical firms. Identical firms behave identically. If one drops out, all drop 
out. And of course, after dropping out they all notice immediately that 
there is now a great deal of unsatisfied demand, and therefore a chance to 
make a great deal of profit. They therefore all enter the industry again. 
And drop out. And come back. And drop out. And come back. Evidently, 
the assumption that all firms in the industry are identical is untenable. 

This concludes the discussion of the second principle. A few more dichot- 
omies are examined later in this chapter. 

THIRD PRINCIPLE: SMALL IS NOT ZERO 

A rich source of false dichotomies is the practice of equating "small" 
with "zero." Some fictitious quotes serve as examples. 

Quote 1: "The difference between 777.01 and 777 is so small that we 
might as well declare it to be zero, for simplicity." This is reasonable. 
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Rounding 777.01 to 777 is a practical step, the kind of thing the Visitor 
might do. 

Quote 2: "Earth attracts the apple, and the apple attracts Earth. But the 
force with which the apple attracts Earth has so little effect that we might 
as well declare it to be zero, for simplicity." Unlike the first quote, this one 
concerns theory, the Scientist's domain. This time, equating "small" with 
"zero" does not simplify anything. It complicates. It dichotomizes the set 
of all objects into "large" ones, like Earth, and "small" ones, like the 
apple; and in so doing it destroys an essential part of Newton's theory of 
gravitation, namely, the symmetry with which that theory treats all objects. 

Quote 3: "Fluctuations in the U.S. economy greatly affect the Liechten- 
stein economy--much more so than the other way around. Indeed, the 
influence of events in Liechtenstein on the U.S. economy is so small that 
we might as well declare it to be zero, for simplicity." This is like Quote 
2. Equating "small" with "zero" simplifies nothing if it destroys symmetry. 

Quote 4: "Capital flows easily across a nation's borders. For labor this 
is less true. So much less, in fact, that we might as well declare the cross- 
border labor flow to be zero, for simplicity." Again, symmetry is destroyed. 
The goal may be simplicity, but the outcome is complexity. 

Quote 5: "Many industries have a dominant firm, called the Leader; all 
other firms are Followers. The Followers use the Leader's actions as a 
given when they make their decisions. Perhaps the Followers influence the 
Leader, too, but if they do, their influence is so small that we might as well 
declare it to be zero." Here too, essential symmetry is thrown away in 
the mistaken name of simplicity. The destruction of symmetry marks the 
leader-follower partitioning as a false dichotomy. 

Quote 6: "In theory, every producer of widgets can influence the price 
of widgets. If, however, the number of firms in the widget industry is very 
large, each firm's influence is so small that we might as well declare it to 
be zero." This is the idea behind perfect competition. 

Consider one of those widget manufacturers, and suppose he produces 
under conditions of constant returns to scale. A doubling of all inputs 
will thus double the firm's output. Suppose further that there is perfect 
competition in the input markets as well. It means that input prices, too, are 
fixed. Suppose, finally, that the producer is making a profit of $1 per week. 

Would it pay the producer to double his inputs and thereby his outputs? 
Doubling the output will double revenue, for the output price is by assump- 
tion fixed. Doubling all inputs will double cost, for input prices are by 
assumption fixed. And since profit equals revenue minus cost, doubling 
both revenue and cost will double profit, to $2. The answer is thus, yes, 
doubling inputs and output is a good idea. 

But if doubling is a good idea when profit is $1, it must be a good idea 
also when profit is $2, or $4, or $8, or $16. More to the point, there is no 
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limit to the amount of profit the producer can make; all he has to do is 
expand and expand and expand. We have an example here of a producer 
who, while searching for a profit maximum, is delighted to discover that 
none exists. No one else is happy, though. Nonexistence of a profit maximum 
is disconcerting to the Scientist, absurd to the Visitor. 

We go through the argument again, but this time without equating 
"small" with "zero." There is thus now no fixed-price assumption, no 
perfect competition. 

Regardless of how insignificant his firm may seem initially, once the 
producer has doubled and redoubled his inputs and output twenty or thirty 
times, the insignificance is a thing of the past. Now the world is running 
out of workers he can hire, machines he can buy, and consumers he can 
sell his millions of widgets to. If he is to keep expanding, he will have to 
lower the widget price, pay more for what little capital is still available, 
offer higher wages to the few workers not yet in his employ. It means that 
the next time the producer doubles all inputs (and thereby output), he will 
find that cost more than doubles and revenue less than doubles. Profit, 
squeezed from both sides, thus stops expanding. And if the producer contin- 
ues his doubling, profit will eventually contract. Somewhere along the way, 
profit must reach a maximum. It is an outcome of both realism and simplic- 
ity. Worth stressing is that the simplicity is the result of rejecting perfect 
competition, of not  equating "small" with "zero." 

FOURTH PRINCIPLE: AVOID ARBITRARINESS 

Among physicists, the fourth principle is known as the Principle of Least 
Astonishment. Some illustrations follow. 

The first illustration comes from the life insurance business. Trying to 
construct mortality tables, two actuaries discover that they need to specify 
the maximum age of a human being. Smith thinks the maximum is 130 
years. Jones asks if it might be one second more. Smith concedes that it 
might. Jones asks if perhaps it could be two seconds more. Smith concedes 
that too. 

But Smith now sees that Jones will continue to propose increases of the 
maximum age until he, Smith, finally stops conceding. At that point, he, 
Smith, will have committed himself to a maximum age specified in seconds, 
which is sure to raise the eyebrows of his fellow actuaries everywhere. 
Rethinking the question, Smith decides that astonishment will be least if 
he chooses a nonarbitrary specification of the maximum age. 

That leaves only two possibilities, zero and infinity. Ruling out zero for 
obvious reasons, Smith declares infinity to be the maximum age. With that 
comes the understanding that the probability of living past 130 is very 
small, like 0.0000000001; but at least the probability is not zero, as Smith 
held originally. 
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The preceding story is not entirely fictitious. Actual mortality tables use 
infinity as the maximum human age. 

For the second illustration, suppose there are 5000 palm trees on Robin- 
son Crusoe's island. If Crusoe chops down all of them, the effects will be 
large and inescapable--no more coconuts for dessert, for one thing. If, on 
the other hand, Crusoe chops down only one or two trees, the consequences 
will be barely noticeable; his action will have little or no echo, so to speak. 
The question is, what is the critical number m, between 0 and 5000, so that 
cutting more than m trees has an echo and cutting m or fewer does not? 
Perhaps m = 100 sounds about right. But if m = 100 is plausible, it is 
difficult to defend that m cannot be 101. And if we make m = 101 our 
definitive choice, some skeptic is bound to ask why it cannot be m = 102. 

The Principle of Least Astonishment says that the only way to keep the 
skeptics quiet is to choose m nonarbitrarily. That leaves two possibilities, 
m = 0 and m = 5000. Of these two, m = 0 is the more plausible choice. 
Choosing m = 0 expresses the belief that felling even just one tree will 
have an echomwil l  change the environment enough to make Crusoe notice 
and respond. Of course, the change in the environment will be very small. 
But small is not zero. 

The third illustration concerns individual behavior, the topic of this book. 
A brief introduction is needed. 

Individual behavior can be defined as consisting of all actions without a 
perceptible echo. Other agents may respond to such actions, or Nature 
may; but the absence of a "perceptible echo" means that the original agent 
either does not notice those responses or finds them too insignificant to 
warrant a reaction. 

Social or interactive behavior consists of all actions with an echo, or, 
equivalently, all actions that are not classifiable as individual behavior. It 
is social behavior if Crusoe chops down all the trees, for Nature 's  response 
will noticeably affect his life from then on. 

Introduction completed, we ask, how many actions have echos? By the 
fourth principle, the answer is either all or none. The latter is implausible. 
We therefore take it that every action has an echo. All behavior is thus 
social behavior. 

Still, some actions have very faint echosmso faint as to be, for practical 
purposes, nonexistent. Those are the actions investigated in this book. They 
constitute "individual behavior." Individual behavior and social behavior 
are thus not at all the separate dominions that their names suggest. Rather,  
individual behavior is a province of social behav io r - -a  province with a 
very vague border. 

But if individual behavior is a subfield of social behavior, why bother 
with it? Why not build a model of social behavior and be done? The 
reason is practical: even if its boundaries are imprecisely defined, individual 
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behavior is easier to model than behavior in general. By studying individual 
behavior first, we confront the modeling problems in stages instead of all 
at once. 

A note in passing. Although "the theory of the firm" and "the theory 
of the producer" are generally used synonymously, the theory of the firm 
is by interpretation a theory of social behavior, whereas the theory of the 
producer is, also by interpretation, a theory of individual behavior. To 
emphasize the difference, "the firm" is from here on replaced with "the 
producer" whenever the demands of clarity permit. 

The fourth illustration concerns a particular form of social behavior. If 
all consumers in the United States double their bread consumption from 
today forward, the price of bread will go up. If, instead, only one consumer 
doubles his bread consumption, does the price of bread go up too? Suppose 
not. There must then be some critical number m, between 0 and 260 million, 
so that the bread price will go up if more than m people double their 
consumption and stay the same if m or fewer do. By the Principle of Least 
Astonishment, m must be either 0 to 260 million, with m = 0 the more 
plausible choice. That is to say, as soon as even one consumer doubles his 
bread consumption, the bread price is affected. Naturally, the effect will 
be very small. But small is not zero. 

The last paragraph implies that, in theories of social behavior, all eco- 
nomic agents are price makers. And since all behavior is, strictly speaking, 
social behavior, there is no such thing as a price taker. The partitioning of 
the set of agents into price makers and price takers is thus yet another 
false dichotomy. 

Price takers do appear in theories of individual behavior, like Model 
One. But as pointed out a moment ago, individual behavior does not 
really exist. What we call individual behavior is nothing but an imperfect 
approximation to social behavior. And the price taker is one of its imperfec- 
tions. 

The fifth and last illustration concerns the duration of the economic 
period. Period-analytical models typically leave that duration indetermi- 
nate. They thereby deprive their assertions of empirical content. A state- 
ment like "the consumer demands one loaf of bread per period," for 
instance, has no operational meaning when the period length is unspecified. 

Suppose then that we specify the length of the period, as one week, say. 
Right away Jones will ask if it cannot be a second longer, and you know 
where that leads. By the principle of least astonishment, the period length 
can only be zero or infinity. Logic expresses no preference, but a zero 
period length is a bit easier for the intuition to accept. Models One and 
Two treat time as a continuous variable, which is another way of saying 
that the period length is zero. 
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Worth noting is that if the period length is zero, there is no "next period," 
for the same reason that there is no smallest number greater than 3. Of 
course, if the period length is infinite, there is no next period either. 

F I F T H  P R I N C I P L E :  A V O I D  C I R C U L A R I T Y  

Perhaps the best-known principle of model building is that definitions 
must never be circular. So long as the Scientist sticks to mathematical 
definitions, circularities are unlikely to appear. But they may show up when 
the Scientist cannot think of a mathematical definition and settles for a 
literary one. Some examples follow. 

The formulation of the neoclassical budget constraint implies that every 
good has exactly one price. Yet two Shell gas stations will often charge 
different prices for a gallon of Regular Unleaded, and two supermarkets 
will often charge different prices for a jar of Taster's Choice instant coffee. 
In fact, it is not unusual for a single supermarket to sell one product at 
two prices; when the price of a jar of coffee goes up, alert shoppers will 
sometimes find, way back on the shelf, a few dusty jars with the old price 
tags still attached. How can these occurrences be reconciled with the one- 
good-one-price doctrine? 

The traditional solution declares that any good found to have two prices 
is actually two goods. Price thus becomes a defining characteristic of good, 
implying that price must be defined before good. On the other hand, a 
price is always the price of a good, and so we must define good before we 
can define price. The argument is clearly circular. But then the neoclassical 
budget constraint is untenable. (Model One ties prices to actions, not goods, 
and so avoids circularity. Of course this also means that the budget con- 
straint cannot be part of Model One.) 

Our next example concerns bads. Typically, a bad is defined as something 
with negative marginal utility. Bads thus belong in the domain of the utility 
function. But the domain of the utility function should be defined first, 
before utility. The definition of bads in terms of utility is therefore circular. 
(In this book, marginal utilities are not required to be positive, and "bad" 
is left undefined.) 

The third and last example concerns money. Money is often said to differ 
from (other) commodities in that it is the preferred medium of exchange. 
But to know what "exchange" means, one must first know what commodi- 
ties are, and what money is. Defining money in terms of exchange thus 
brings circularity. The same objection can be made against the assertion 
that money is wanted not for its own sake but for what it can buy: the 
definition of money logically comes before the definition of "buy." 
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SUMMARY 

According to the first principle, Define Mathematically, a mathematical 
model consists of mathematical definitions and statements derived from 
those definitions--nothing else. Tests and experiments can show a model 
to be plausible or implausible, persuasive or unpersuasive; but they cannot 
prove it right or wrong. 

The second principle, Beware Dichotomies, cautions against false dichot- 
omies, of which economics has many. Most consequential, and therefore 
most damaging, is the money-commodities dichotomy; were it abolished, 
all monetary notionsmprofit, money prices, income, and the l ike--would 
have to be banned from pure theory. Only slightly less injurious is the 
consumer-producer dichotomy. 

The third principle, Small Is Not Zero, holds that equating small with 
zero is a mistake if it destroys symmetry. 

The fourth principle, Avoid Arbitrariness, implies among other things 
that the period length should be either zero or infinity, and also that, strictly 
speaking, individual behavior does not exist. 

The fifth principle, Avoid Circularity, points out that some economic 
notions are vitiated by definitional circularities. An example is the bud- 
get constraint. 

Questions 
. Parmenides (ca. 500 B.C.) held that Earth is at the center of the 

universe. What mistake did Parmenides make, assuming that he 
made one? 

2. If a profit-maximizing producer discovers that he can make a bigger 
profit by doubling output, can he make a still bigger profit by tripling 
his output? 

3. Utility theory generally assumes that the consumer's tastes are con- 
stant. What does that mean? 

4. Farmer Bob refuses to grow anything other than wheat and corn. He 
owns one acre, on which he grows wheat. He will be able to sell the 
wheat for $800. Had he planted corn instead, he would have been 
able to sell the harvest for $700. According to traditional economic 
theory, what is his opportunity cost? 

5. The neoclassical consumer returns to the market at regular intervals, 
of duration r, say. Why does he not return one second sooner? 

6. The neoclassical consumer is a utility maximizer. The bundle he buys 
every Monday is thus exactly what he wants, given his budget con- 
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straint. Last Monday he bought a quart of milk and nothing else. Since 
his budget would have allowed him to buy one sip less than a quart, 
he has revealed, through his purchase, that he prefers a quart of milk 
to a quart of milk minus one sip. It follows that he will not drink even 
one sip of the milk he bought. But then why will he go back to the 
market next Monday, and all the Mondays afterward? 

7. Polykeynesia has 2000 utility-maximizing inhabitants. Of these, nl live 
in Big City, and the remaining n2 = 2000 - n l  live in Fat City. Goods 
are so plentiful that no one has a budget constraint. Everyone's utility 
function has the form u(x) = e -hi, with i - 1 for those who live in 
Big City and i - 2 for those who live in Fat City. The utility function 
thus measures congestion: the greater the number of people living in 
your city, the smaller the value of your utility function. It follows that 
if you migrate you improve the lot of those you leave behind, but you 
make everyone in your new city worse off. Suppose migration is 
instantaneous and costless. Is there an equilibrium, that is, a situation 
in which no one migrates? If there is no such equilibrium, why not? 
If there is, will it be attained? 



4 
Economic Preliminaries 

In this chapter we begin by formulating mathematical definitions of time, 
commodity, and money, and drawing some conclusions. By the light of 
those conclusions~which,  incidentally, are a good deal more consequential 
than the definitions themselves--we then examine five mainstream models 
of individual behavior. From that examination flow most of the features 
of Model One. The chapter concludes with a few remarks about demand 
and supply. 

Of the five mainstream models to be examined, three are based on utility 
maximization, two on profit maximization. The utility-driven models are 
Pareto's utility theory, Hicks's utility theory (often thought to be the same 
as Pareto's, but actually quite different), and the theory of labor supply. 
The profit-driven models are the neoclassical theory of the producer and 
the activity-analytical theory of the producer. 

Recall that the time axis T is the set of instants, and D is the one- 
dimensional vector space of time flows. 

DEFINITION 1. Time is the one-dimensional point space {T,D}. 

(See Chapter 2, MT 7.) Definition 1 says that time is a collection of instants 
and time flows, and has no other defining characteristics. 

Next to be defined are "commodity" and its synonym, "good." 
The endowment set X, a collection of n-coordinate points, can be written 

as the Cartesian product X1 x X 2 X �9 �9 �9 X X n. Here, X~ is the set of 
stocks of good 1, X2 is the set of stocks of good 2, and so on. 

The action space A, a collection of n-vectors, can be written as the 
Cartesian product A I  >( A 2  >( " " �9 • An. Here, A~ is the set of flows of 
good 1, A2 is the set of flows of good 2, and so on. 

Like {T,D}, the pairs {X1,A1}, {Xz,A2}, . . . are one-dimensional point 
spaces. But there is a difference" whereas points in T (instants) can be of 
any sign, points in X~, X2, . . . (stocks) must be nonnegative. To emphasize 
the difference, the {Xi, Ai} will be called nonnegative point spaces. 

63 
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DEFINITION 2. The ith commodity or good is the one-dimensional nonneg- 
ative point space {Xi, Ai}. 

Stripped of its intimidating verbiage, this merely says that every commodity 
quantity is either a stock or a flow, and that this defines "commodity" 
completely. Nothing else plays a role. Weight, size, price, importance in 
everyday l i femnone of these is a defining characteristic. Nor is location. 
Nor is time (or age). An apple leaving New York City at 10 A.M. is still the 
same apple when it arrives in Chicago at 2 P.M., and a rose at dawn is a 
rose at noon is a rose at dusk. 

Comparing Definitions 1 and 2, you see that time is not a good. "I have 
lots of time" is thus essentially different from "I have lots of oranges," and 
"production processes use up time" is essentially different from "produc- 
tion processes use up inputs." Put another way, of the n flows that make 
up an action, none is a time flow. 

Going a small step further, we shall say that no good is measured in units 
of  time. That concerns, in particular, two goods traditionally measured in 
hours, labor power and leisure. Labor power is from here on measured not 
in hours but in some unit of energy, like the erg, and renamed energy, to 
avoid confusion. Leisure plays no role in what follows, so that it needs 
neither another measurement unit nor another name. 

Money is next. 

DEFINITION 3. Money is a one-dimensional nonnegative point space. 

This says that every quantity of money is either a stock or a flow, and that 
there are no other defining characteristics. 

Putting Definitions 2 and 3 side by side shows that money is a commod- 
i tymis one of the {Xi, Ai}. Thus, although money is arguably the most 
important good in everyday life, and the brightest puzzle piece on the table, 
in the world of theory it is as insignificant as sausage. Its rightful place is with 
the other commodities, far from the center of the puzzle. Its contribution to 
the picture is the same as that of any other (specific) good: nil. 

The main consequence of treating money as a commodity was noted 
earlier but bears repeating: when money is an ordinary commodity, "money" 
cannot be a theoretical term, anymore than "tea" and "salt" and "strawberry 
jam" are theoretical terms. And of course, if money does not belong 
in the theoretical dictionary, then neither do monetary concepts: when 
money is an ordinary commodity, monetary notions like profit, revenue, 
cost, expenditure, income, consumption, savings, investment, taxes, imports, 
and exports have no place in pure theory. Where they do belong is in 
normative theory and in applications of pure theory. By implication, any 
theory in which monetary concepts appear is a normative theory, or an 
application of a (perhaps still unwritten) positive theory, or a bit of both. 
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Whether money is a commodity is widely held to be a trivial issue. But 
then, the meaning of "money is a commodity" is generally misunderstood. 
The usual interpretation is that if money comes to be regarded as a commod- 
ity, nothing changes except that money "enters the utility function." It 
would be more accurate to say that the utility function is not noticeably 
affected but almost everything else is. That the utility function is not notice- 
ably affected is because it is written u(x) either way. That almost everything 
else changes is because all monetary concepts--like income, profit, money 
prices, and money itself--cease to be theoretical terms when money is a 
commodity. The language of economic theory thus changes beyond recog- 
nition. 

So it turns out that what seems a trivial issue is actually of overriding 
importance. It raises the question of what the literature has to say on 
the subject. 

What the literature has to say on the subject is little. Mathematical 
definitions of money and commodity are altogether nonexistent. But there 
are some nonmathematical descriptions, all aiming to prove that money is 
essentially different from commodities. Five are examined below. Several 
others appear in the questions at the end of the chapter. 

1. Money is different from commodities in that it is used but not used up. 
By that criterion, ashtrays, mirrors, and jewelry would not be commodi- 
ties either. 

2. Money is different from commodities in that it is wanted not for its 
own sake but for what it can buy. When a pharmacist stocks a large supply 
of aspirin, he does not do so because he expects a headache. He does so 
because selling aspirin enables him to buy other things. Put differently, he 
enjoys having the aspirin not for its own sake but for what it can buy. Nor 
is this true just for money and aspirin. Every good offered in exchange for 
something else is a good that its owner enjoys having not for its own sake 
but for what it can buy. Statement 2 thus fails to separate money from 
commodities. It separates supplied goods from demanded goods. 

If statement 2 sounds plausible, it may well be because elementary utility 
theory tends to portray money as the only supplied good. The dividing line 
between supplied goods and demanded goods is then also the dividing line 
between money and commodities. 

Statement 2 is wrong for yet another reason, mentioned in the preceding 
chapter: it is circular. Its use of the word "buy" makes it so. 

3. Money is different from commodities in that it is the unit o f  account, 
a store o f  value, and the preferred medium o f  exchange. Although this 
argument is meant to prove that money is a noncommodity, it cannot 
possibly do so. Presenting a list of properties that money has and other 
goods do not have, or have only in part, serves to identify money as a 
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separate good, different from tea, say. But salt, too, is different from tea, 
and yet salt is a commodity. More generally, whether or not any thing is 
a commodity cannot be decided by a list of properties identifying that thing. 

Another  weakness of statement 3 is the circularity implied in the use of 
"exchange," commented on before. 

4. Money is different from commodities in that money buys commodities 
whereas commodities do not buy money. The appearance of the word "buy" 
marks this statement, too, as circular. Further, the assertion is false; as every 
store owner can attest, goods do buy money. Perhaps Webster disagrees, but 
economics need not take its cues from lexicographers. 

5. Money is different from commodities in that it can be exchanged directly 
(that is, without intermediation by another good) for all other goods. Com- 
modities may be directly exchangeable for some other goods, but never for 
all other goods. If a commodity were directly exchangeable for all goods, 
it would be money, or a money. 

Like its predecessors, assertion 5 is circular, since it refers to exchange. 
Also, it fails to furnish a proof that the set of commodities is nonempty, a 
proof that there indeed exist commodities that cannot possibly be directly 
exchanged for each other. Never mind that no one has ever acquired a 
submarine in exchange for geraniums; never mind that, absent a substantial 
grant, no one ever will. What is needed here is an example of two commodi- 
ties that are logically unexchangeable. Until two such commodities are 
found, we are forced to conclude that the set of commodi t i esn in  the sense 
of statement 5 h i s  empty. Every good is then a money. Or what amounts 
to the same thing, money is one of the commodities. 

Of course, the money/commodities dichotomy may well be valid. But a 
demonstration of its validity would take considerably more than arguments 
of the type just discussed. Specifically, one would need mathematical defini- 
tions of commodity and money, and those definitions would have to be 
different. Until such a two-step demonstration is found, there are no reasons 
to view the dichotomy as valid, and good reasons to view it as false. 

MAINSTREAM MODELS OF INDIVIDUAL BEHAVIOR 

Pareto's Utility Theory 

Pareto's utility theory presents the consumer as maximizing utility, u, 
subject to a budget constraint. Ut i l i ty~Pare to  called it oph~limit~, but that 
name never caught onmis  defined over the endowment set X. Pareto does 
not specify the length of the period, but talks about it as if it were positive 
and finite. 

The budget constraint is p 'x = p'x0 or 
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p l x a  + p2x2  + " �9 " + p~x~  : plXl0 + p2x20 + " " �9 + pnXno, 

in which x0 = (Xl0, x20, �9 �9 �9 , x,0)' is the initial endowment  and x generically 
represents all at tainable endowments .  All n prices Pi are positive. Both p 
and x0 are assumed given, making the budget  constraint an equation in x. 
Pareto regards (nominal) money as one of the commodities,  at least in his 
utility theory. For concreteness and specificity, he takes money to be good 
1, so that Pl -- 1. 

Discussion 
It will become clear later, in the discussion of Hicksian utility theory, 

that Pareto 's  finest contribution is his choice of the endowment  set X as the 
domain of u. After  examining whether  u should be a function of quantities 
consumed or a function of quantities "a t  the individual's disposal," Pareto 
decides that the latter is the right choice (1971, Sect. 4, p. 182). At  times 
his arguments  are baffling ("If  a woman has ten dresses, she need not wear 
them all at once . . ."), and in the conversational parts of his book he 
often confuses utility with usefulness, talking about utility as if it were a 
function of quantities ingested or otherwise consumed. When he turns to 
mathematics ,  however,  he invariably assigns utility to endowments.  

Some of Pareto 's  critics say that defining utility over endowments  is the 
wrong thing to do. They argue that "uti l i ty" connotes satisfaction, and that 
there is more satisfaction in acquiring than in possessing. They conclude 
that utility should be a function of demanded  bundles. 

This argument  has its priorities wrong. Pareto defined utility over X, 
rather  than over the set of demanded  bundles, because he found that it 
led to a more powerful theory. Next to this, connotations stand irrelevant. 
Their  irrelevance is particularly easy to demonstra te  in the case at hand: 
the critics' a rgument  instantly evaporates when "uti l i ty" is replaced with 
the connotat ion-f lee "objective function." 

Since Pareto 's  constraint is formulated in terms of endowments ,  the 
consumer chooses an x ~ X. On the other hand, to turn his initial endowment  
x0 into the chosen one, the consumer must under take  an action. Translated 
into our terminology, it means that he must choose an a ~ A. If the chosen 
x is the utility-maximizing x, is not the chosen a the utility-maximizing a? 
The answer has to be no, since a function of endowments  can be maximized 
only by endowments .  Still, a "util i ty-maximizing a"  sounds intuitively plau- 
sible. Some probing is in order. 

Under taking a will change the endowment  from x0 to x0 + a. As a result, 
the value of the utility function increases, from u(x0) to u(x0 + a). The 
increase, u(x0 + a) - u(x0), is a function of x0 and a. If x0 is regarded as 
fixed, the increase is a function of a alone. Call it v(a). It is this v(a) that 
the chosen a maximizes. But v(a) is not the utility function. It would 
therefore be wrong to say that the chosen a is the utility-maximizing action. 
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That Pareto regards nominal money as a commodity, and treats it the 
same as all other goods, there can be no doubt (Sect. 37, p. 411; Sect. 52, 
p. 421). Since he makes money good 1, the first coordinate of x0 is the 
amount of money that the consumer has at the beginning of the period, 
and the first coordinate of the x appearing in the utility function is a 
money stock. 

The two pa's in Pareto's constraint could be suppressed without harm, 
since they are identically equal to 1. But the equation looks nicer if they 
are left in. 

It is sometimes held that if money appears in the utility function, it ought 
to appear as real money. According to this opinion, Pareto's utility function 
must be changed from U ( X a ~ 2 ,  . . . , Xn) to U(Xl/P, X 2 ,  �9 �9 �9 , Xn) , where P 
is a price index. This would be an important change: u(x l /P ,  x2, . . . , Xn) 
is asymmetric in its indices, implying that money is not a commodity. 
Besides, the introduction of P would mean that money prices, which like 
all other monetary notions were so recently sent to the edge of the puzzle, 
belong in the center after all. A step that big requires strong justification 
indeed. 

The justification offered in the literature is that the consumer needs to 
determine whether he has enough money to meet future expenses, and, to 
do so, must let himself be guided by the real value of his money balances. 
This is a normative ideal. It has no place in positive theory. Utility theory 
declares the consumer to be a utility maximizer; utility theory therefore 
cannot declare the consumer to be, as well, an optimizer of spending pat- 
terns, or a rationer of cash, or a bookkeeper. 

For another look at the issue of nominal vs. real balances, let the utility 
function have its original, Paretian form, with nominal money as its first 
variable, and let all marginal utilities be positive. Suppose that the price 
of tea goes up. The tea-drinking consumer then sees his budget constraint 
tighten. It follows that the old utility-maximizing endowment is no longer 
affordable. It also follows that the new utility-maximizing endowment is 
less attractive than the old one. The consumer is thus worse off, even t h o u g h  
the utili ty f u n c t i o n  is unchanged .  But this means that, if the money stock 
appearing in the utility function were changed from nominal to real, from 
x~ to Xl/P, the increase in the price of tea would hurt the consumer twice: 
his new utility-maximizing endowment would (i) carry less utility than the 
old one and (ii) carry less utility than it used to. Putting real rather than 
nominal balances into the utility function thus leads to double counting. 

Nor is this all. The real-balance approach completely distorts the picture 
when the price of a good goes up and the consumer is a seller of that good. 
For an example, suppose the increased price is the wage, and the consumer 
is a seller of energy. To the consumer, the wage increase is a good thing. 
But the real-balance approach says it is a bad thing. 
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Linear-algebraically speaking, the two sides of Pareto 's  budget  constraint, 
p 'x  and p'x0, are undefined, since x and x0 are points. But x - x0 is a vector, 
in A, and so p ' (x  - x0) - 0 d - - t h e  d stands for dol la r - - i s  well defined. 
From here on, p 'x  - p'x0 is understood to mean p ' (x  - x0) = 0d or, 
equivalently, d- lp  '(x - x0) = 0. 

Since x and x0 are points, their coordinates must be positive or zero. By 
contrast, x - x0 is a vector; its elements may be negative. Because of this, 
Pareto 's  model  has no difficulty in dealing with supply. Whenever  and 
whatever  the consumer suppl iesmenergy  to his employer,  money to his 
creditors, his old car as part  payment  for a new o n e - - t h e  model  captures 
it effortlessly. 

Pareto 's  budget  constraint makes it impossible for the consumer to add 
as little as one penny to his wealth, even if he trades all day long, every 
day of his life. A more realistic constraint would be p 'x  --- p'x0; but conven- 
tionally defined utility does not attain a maximum over the set of endow- 
ments x satisfying that inequality. One way out of the di lemma is to replace 
utility maximization with another  behavioral  principle. Model  One chooses 
this exit. 

In conclusion, an intriguing remark of Pareto's.  At  one point Pareto 
says that prices are "auxiliary u n k n o w n s . . ,  which must in the end be 
e l iminated" (Sect. 152, p. 152). Thus, rather than merely banishing prices 
to the edge of the puzzle, Pareto actually pushes them off the table. Since 
he does not amplify, and since his theory is not noticeably free of prices, 
it is impossible to tell what sort of price-free theory he had in mind. Model  
One is formulated without reference to p r i c e smmaybe  he was thinking of 
something like Model  One. 

Hicks's Utility Theory 
Like Pareto, Hicks presents the consumer as maximizing utility subject 

to a budget  constraint. Unlike Pareto, Hicks defines utility over the set of 
demanded bundles. A demanded  bundle is a collection of flows. That  makes 
it an action, a vector in the action space A. More precisely, a demanded  
bundle is a nonnegative action. The domain of u is thus a rather limited 
subset of A, quite different from the domain X of Pareto 's  utility 
function. 

Like Pareto, Hicks does not specify the length of the period, but talks 
about  it as if it were positive and finite. Hicks does depict the consumer 
as going to the market  once a week, but stresses that "week"  should not 
be taken literally. 

How should demanded  bundles be denoted? Hicks uses x, which risks 
confusion with endowments .  (On one occasion, it trips up even Hicks 
himself. See the Discussion below.) Use of a would risk confusion too: 
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everywhere else in this book, a stands for any action, rather than just a 
nonnegative action. Probably safest is to use the textbooks' favorite, q. A 
q is thus a nonnegative a. 

The Hicksian budget constraint is p 'q  = y. 

Discussion 
Why did Hicks decide to define utility over demanded bundles? A plausi- 

ble guess is that it was not a deliberate choice; perhaps he viewed acquisition 
as more satisfying than possession and gave the matter no thought beyond 
that. Reading Value and Capital (Hicks, 1946), one comes away with the 
impression that Hicks thought his model to be fundamentally the same as 
Pareto's. Hicks does criticize Pareto, but only on the implications of ordinal- 
ity, a small point. 

Hicks's practice of denoting demanded bundles by x rather than q makes 
it easy to overlook the difference between his theory and Pareto's. Contrib- 
uting to the confusion is the resemblance between a demanded bundle and 
an endowment: both the elements (flows) of a demanded bundle and the 
coordinates (stocks) of an endowment are nonnegative quantities. 

For a graphical illustration of the difference between the two models, 
Pareto's and Hicks's, suppose the only goods are beer, tuna, and money. 
Figure 1, which illustrates Pareto's model, shows three axesmone  for each 
g o o d m a n d  a budget plane. Points on the axes represent stocks. The budget 
plane contains all endowments x that satisfy p 'x = p'x0, including the initial 
endowment x0 and the utility-maximizing endowment x*. No indifference 
surfaces are shown, but some indifference surfaces intersect the budget 

Figure 1. When money is a good: Pareto's model. 
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plane, and a few of those intersections, which may be called constrained 
indif ference curves, do appear in the picture. Arrow a* represents the action 
undertaken by the consumer. 

Figure 2 illustrates the Hicksian model. Points on the axes represent 
flows. Because Hicks views money as a nongood, there are only two goods 
here. The indifference contours are thus not surfaces but curves on the 
floor (that is, in the bee r - tuna  coordinate plane). The money axis, not 
strictly needed, is included to ease comparison with Figure 1. Also shown 
is a slanted plane whose intersection with the floor is the budget line. The 
plane itself has no name. Arrow a* represents the action undertaken by 
the consumer. Arrow q* represents a demanded bund lemin  fact, the utility- 
maximizing one. 

Suppose a Paretian consumer inherits a million cans of tuna from an 
eccentric uncle. That changes x0, and thereby u(x0), and induces the con- 
sumer to buy no more tuna for the next few centuries. It is a realistic 
outcome. Now suppose a Hicksian consumer inherits a million cans of tuna. 
Since Hicks assigns utility to demanded bundles, the change of x0 has no 
effect on the consumer's conception of optimality: any q* that maximized 
utility before the inheritance will still maximize utility afterward. If, for 
instance, the Hicksian consumer used to buy two cans of tuna per week 
before his uncle died, he will continue to do so now that he has a basement 
full of tuna. It is an unrealistic and implausible conclusion. 

And this is only the beginning. A far more crippling feature of the 
Hicksian model is that it knows only positive and zero flows. It is therefore 

Figure 2. When money is not a good: Hicks's model. 
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unable to deal with negative flows. That is to say, it lacks the theoretical 
apparatus to deal with supplying by the consumer. 

But does the consumer supply? Yes, he does, and quite a lot of it. He 
supplies money when he pays for his purchases. He supplies energy when 
he works. He supplies a sixpack when he accepts the barbecue invitation. 
And when his neighbor supplies him with apples, he, in exchange, supplies 
the neighbor with pears. Pareto would describe each of these events by 
saying that some coordinate in the final endowment is smaller than the 
corresponding coordinate in the initial endowment, but Hicks does not 
have that option. "Endowment"  is not in the Hicksian dictionary. 

Noting his model's inability to deal with the supplying of money, Hicks 
declares money to be a nongood. This implies that there is no money in 
the Hicksian wor ldmor  rather, that is what it ought to imply. But at one 
point, Hicks puts money on one of the axes of an indifference map (p. 39), 
and money remains firmly present in the budget constraint, as y. How Hicks 
sees the role of money is thus unclear. 

The supplying of energy or labor power is traditionally handled by viewing 
it as the demanding of leisure. More on that in a moment, when the third 
model is discussed. 

To deal with the supplying of goods other than money and energymthe 
sixpack, the apples, the pearsmHicks  offers this proposal: If the consumer 
"comes to the market not only as a buyer but also as a s e l l e r . . .  [w]e 
may suppose, if we like, that he exchanges [the stock he wishes to sell] into 
m o n e y . . ,  when he will find himself in exactly the same position as our 
c o n s u m e r . . . "  (p. 36). A flesh-and-blood supplier might act this way, but 
the model consumer will not. Since Hicks has declared money a nongood, 
his consumer is not going to accept any. Apart  from that, it is illegitimate 
to assume that the consumer starts by selling all he has. Selling is behavior, 
and behavior must be modeled, not assumed. 

Perhaps aware of the inadequacy of his proposal, Hicks advances another 
one. To deal with supply, he says, all one has to do is replace the budget 
constraint with p'x = p'x0. It is "the only alteration which has to be made 
to the system" (p. 313). This is where Hicks trips over his own notation. 
The constraint p'x = p'x0 is Pareto's, and the x in it is an endowment, a 
point in X; in the rest of the Hicksian model, x (our q) is a demanded 
bundle, a vector in A. Replacing p 'q = y with p'x = p'x0 thus cannot be 
"the only alteration." Everything changes. Utility, in particular, must change 
from u(q) to u(x), for Pareto's constraint will not grow in Hicks's utility 
domain. And of course, once the constraint is p'x = p'x0 and the utility 
function is u(x), Hicks's theory ceases to exist as a separate entity. It 
becomes Pareto's. 

In the light cast by these observations, Hicks's proposal to change 
p 'q  = y to p'x = p'x0 is probably best ignored. Of course, the return to 
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p'q  = y leaves the Hicksian model unable to deal with supplymany kind 
of supplymbut  at least the model's identity is preserved. 

The constraints p 'q  = y and p 'x = p'x0 have one thing in common: both 
keep the consumer from increasing his wealth by even a fraction of a cent. 
Unrealistic though such constancy of riches may be, it is nearly impossible 
to avoid so long as utility maximization remains the consumer's goal. 

In conclusion, some remarks about the marginal utility of money and 
about money illusion. 

To Pareto, the marginal utility of good i is Ou(x)/Oxi, and, since he regards 
money as good 1, the marginal utility of money is Ou(x)/Ox~. To Hicks, who 
takes money to be a nongood, the marginal utility of good i is Ou(q)/Oqi, 
and the marginal utility of money is undefined. 

But there does exist, in Hicksian utility theory, a "marginal utility of 
income." Judging by the sound of the term, you would expect it to be 
Ou(q)/Oy, but that is not it; u is not a function of y. The actual definition of 
"marginal utility of income" is Ou(q*)/Oy, where q* is the utility-maximizing 
bundle. Evidently this is not a marginal utility in the usual sense. 

Turning next to money illusion, suppose all prices and income are dou- 
bled, in the Hicksian model. That changes the constraint from p 'q  = y to 
(2p) 'q = 2y. Actually, this is no change at all. Since the two equations 
are equivalent they have the same solutions q. The model consumer thus 
necessarily chooses the same utility-maximizing bundle q* as before. One 
expresses this by saying that the Hicksian model consumer "does not suffer 
from money illusion." 

A flesh-and-blood consumer need not behave like the model consumer. 
When his income is doubled, and all prices are too, he may very well choose 
a bundle different from his customary one. If he does, he is said to "suffer 
from money illusion." It sounds as if he is castigated for being less sensible 
than the model consumer, but it is of course the other way around. The 
living consumer is free to behave any way he wants to, and it is up to the 
model consumer to do the imitating. In other words, that the model con- 
sumer is incapable of money illusion is a weakness of the Hicksian model, 
not a strength. "Money illusion" is merely a badly chosen term. 

What happens to Pareto's budget constraint, 

p l X 1  + p e X 2  + " " " + p n X n  = p l X l O  + p 2 x 2 0  + " " " + pnXnO, ( 1 )  

when income and all prices are doubled? The question needs some reword- 
ing. First, what Hicks calls income is the amount of money initially held; 
Pareto calls that Xl0. Second, doubling all prices is, to Pareto, impossible, 
for Pl will always be 1. The question thus becomes, What happens to 
Pareto's budget constraint if we double Xl0 and all prices other than pl? A 
look at (1) gives the answer: all terms except p~xl (= x~) will be doubled. 
Since Xl is a variable and cannot be manipulated, the postchange (1) is not 
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equivalent to the prechange (1). It follows that in all but the most unusual 
circumstances, the utility-maximizing endowment will change. Pareto's con- 
sumer is thus capable of money illusion. It makes him more flexible than 
the Hicksian consumer. 

Theory of Labor Supply and Leisure Demand 

In the theory of labor supply and leisure demand, leisure is measured 
in hours, as is labor (meaning labor power). Our version of labor p o w e r ~  
energy, measured in ergs~is  put on hold. 

In the simplest and most common form of the theory, utility is a function 
of demanded bundles of the form (L,y) .  Here, L is the number of hours 
of leisure demanded during the period, and y is income, the number of 
dollars demanded during the period. 

The period length ~-is positive and finite, and otherwise unspecified. 
(There is a temptation to set r = 24, that being the number of hours in a 
day. But then we could equally well take z = 12, that being the number 
of hours in a dozen.) 

Utility is maximized subject to the constraint y = w ( r  - L) ,  where w is 
the wage rate. 

Discussion 
The first thing to note about the labor-supply model is that it lists income 

y among the arguments of the utility function. It makes money a commodity, 
a utility carrier. The labor-supply model is thus inconsistent with Hicksian 
utility theory, which declares money a nongood. There is some irony in 
this--the theory of labor supply, designed to cure a weakness of Hicksian 
utility theory, winds up contradicting that theory. 

What makes the labor-supply model interesting is its approach to this 
modeling question: If a theory declares utility to be a function of demanded 
bundles, how can it possibly deal with supply? The straightforward answer 
is that it cannot, and that therefore utility should be assigned to endow- 
ments, not to demanded bundles; but the labor-supply model takes another 
route. It introduces the good "leisure," declares it to be the opposite of 
labor power, and so translates the theoretically vexatious "supplying of 
labor" into the theoretically manageable "demanding of leisure." 

It is a clever trick, clearly applicable to all forms of supply, rather than 
just the supplying of labor. Take a consumer who is paying for something 
he just bought. To avoid modeling difficulties we must not say that he is 
supplying money. We must say that he is demanding poverty. It should be 
no deterrent if the phrase sounds strange at first. If "demanding leisure" 
is acceptable, "demanding poverty" is too. 

But now another problem emerges. Money is not only supplied, it is also 
demanded. It is demanded when the consumer sells his labor power to an 
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employer, or his old refrigerator to a neighbor. The "clever trick" thus 
does not work for money. More generally, it does not work for any good 
that is both supplied and demanded. It works only for goods that are just 
supplied, never demanded. Apparently, labor power is such a good. 

But it is not. The consumer who supplies labor power demands it as well. 
He has to; if he is to go back to work tomorrow, he must replenish his 
stock of labor power today. And he does. He replenishes his stock of labor 
power by eating. It is at this point that a remarkable controversy arises. 

Economic behavior is plausibly regarded as behavior that affects the 
stock of at least one good. By that informal standard, economic behavior 
includes more than just market-related, price-governed activities like buying 
and selling. It also includes manufacturing, destroying, borrowing, lending, 
stealing. And it includes eating. 

Not everyone regards eating as economic behavior. Economics, it is 
sometimes said, has no business in the dining room. Why this should be 
persuasive is not clear, seeing that economics has always been quite nosy 
in the pantry. Besides, there is this weightier argument: eating is the only 
action that produces labor power. Thus, if theory declares that eating is 
not an action, theory is bound to conclude, first, that labor power is not 
produced and, next, that labor power must be a "primary good," magically 
springing from nowhere. Procrustes invented more elegant fits. A much 
simpler solution is to admit economics to the dining room. Eating thereby 
becomes economic behavior. More precisely, eating becomes a collection 
of actions, each with one or more negative elements pertaining to foods, 
and each with a positive element pertaining to labor power. It will be clear 
that this approach works only if we follow Pareto and assign utility to 
endowments. And of course, once we adopt Pareto's version of utility 
theory, supplying by consumers is easy to model. Leisure instantaneously 
becomes superfluous, and the need to regard money as a nongood disap- 
pears. Whatever the theory of labor supply does, Pareto's utility theory 
does it better. 

A parenthetical note. Labor, short for labor power, is reasonably consid- 
ered a good. But it is sometimes confused with laboring, and then is called 
a bad. Laboringmgiving up labor power--is painful, of course, but that 
does not make labor a bad, anymore than money becomes a bad when you 
discover that it is painful to pay for the groceries. Every transaction has a 
painful side; bads have nothing to do with it. 

We now bring back energy, our temporarily shelved substitute for labor 
power. Unlike labor power, energy is measured in energy units. 

Neoclassical Theory of the Producer 

In the neoclassical theory of the producer, the objective function is profit, 
rr. During each period, of unspecified duration, the producer seeks to max- 
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imize profit by undertaking some action a ~ A. The domain of 7r is thus a 
subset of A. To the domain belong manufacturing activities, like "making 
widgets," and some transactions, like "hiring a worker" and "selling a unit 
of output." But the domain does not contain transactions undertaken by 
supermarket shoppers, like "buying a can of tuna." This is an unattractive 
state of affairs, considering that "buying a can of tuna" is mathematically 
indistinguishable from "making widgets." In effect it means that the domain 
of rr is a very fuzzy set, its boundaries determined not by mathematics but 
by connotations. 

Unlike utility, profit is a precisely specified function of its arguments. 
Let a be any vector in the domain of 7r, and let w be a vector of prices. 
Then ~r = rr (a) = w'a, a dollar amount. If a is interpretable as a production 
process, its positive elements are outputs, and its negative elements inputs. 
In that case, adding all positive terms in w'a = W l a l  + �9 �9 �9 + Wnan gives 
the market value of the output or outputs, and adding all negative terms 
gives explicit cost, except for sign. A traditional assumption is that the 
producer sells everything he makes and uses up everything he buys as 
inputs. Given that assumption, the market value of the output or outputs 
identically equals the producer's revenue. Without that assumption, w'a 
would merely be value added. 

Profit is maximized subject to at least one constraint, a technologically 
determined relation between inputs and outputs. That relation is repre- 
sented here by g(a) = 0, with the function g regarded as unknown. If the 
producer manufactures only one product (in quantity al, say), and if the 
constraint can be solved for that quantity, to give al = f ( a 2 , a 3 ,  . . . ) ,  then 
f is the producer's production function. The producer has no production 
function if he makes more than one output. 

When f does exist, its form is unknown (since g is unknown). Theorists 
often improvise, however, by specifying f in one of several ways widely 
considered plausible. Best known among these specifications are the Cobb- 
Douglas and CES (Constant Elasticity of Substitution) production func- 
tions. 

Discussion 
As several authors have pointed out, producers rarely maximize profit, 

and often do not even try. But then the neoclassical theory of the producer 
should be considered a n o r m a t i v e  theory, a manual for those who wish to 
maximize profit. (Its dependence on a monetary notion--namely, profit-- 
points to the same conclusion.) It means there exists no p o s i t i v e  theory of 
producer behavior. Model One seeks to fill the void, but that is still a 
chapter away. 

Its focus on flows leaves the theory of the producer little to say about 
stocks. By assumption, the producer's customers snap up every widget as 
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soon as it comes off the production line, so that the widget stock is always 
zero; but the theory understandably plays down this unrealistic implication. 

For all its popularity, the production functionfis an implausible construct. 
Suppose that it is technically possible to make a 3-lb. boffle out of 3 lbs. 
of carrots and a certain quantity of energy. According to neoclassical theory, 
the producer can make a 3-lb. boffle also out of 2 lbs. of carrots, provided 
he uses enough extra energy. This is less than believable. 

Another drawback of the production function is that it concerns manufac- 
turing activities only. Many putative profit maximizers do not manufacture 
anything. Wholesalers and retailers, for instance, typically confine their 
activities to trading. As for profit maximizers who do manufacture, an 
important part of their business consists of nonmanufacturing activities. 
Buying inputs and selling outputs are obvious examples. The neoclassical 
theory of the producer does recognize the existence of these activities, but 
only indirectly, through its assumption that all inputs bought are also used 
up and all output produced is also sold. 

The Activity-Analytical Theory of the Producer 

The activity-analytical theory of the producer also presents the producer 
as a profit maximizer. It too should therefore be considered a normative 
theory. But it has something we need: a superior constraint. With only 
slight changes, the activity-analytical constraint is adopted as one of the 
core ingredients of Model One. An outline follows. 

By interpretation, an activity is a production process. By definition, an 
activity is an n-vector of flows, indistinguishable from vectors in the action 
space A. Suppose, for example, that a producer knows how to make widgets 
out of plastic and green ink. Let a e A represent "making one widget"; 
then a has a negative plastic element, a negative green ink element, a 
negative energy element, and a widget element equal to +1. The other 
n - 4 elements are all zero. "Making two widgets" is 2a. 

Activities can have two or more positive elements. Activity analysis is 
thus well suited to describe the behavior of producers who make two or 
more products. 

An activity is either feasible or infeasible. By interpretation, an activity 
is feasible if it can actually be undertaken, or at any rate could be undertaken 
by a producer with large enough stocks. By interpretation, an activity is 
infeasible if it is impossible. 

Given enough time, the widget producer can make any number of widgets 
he wants. He can undertake 7a, or 33a, or 5000a. All those scalar multiples 
of a are thus feasible also. 

Activities are assumed irreversible, that is, impossible to undo. Once the 
producer has turned quantities of plastic and green ink into widgets, he 
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cannot turn widgets into quantities of plastic and green ink. Formally: if a 
is feasible, - a  is not. 

If making widgets is the only thing the producer knows how to do, his 
feasible set consists of just the vectors ca with c -> 0. Those vectors form a 
hairline or ray. 

Figure 3 illustrates this. Shown there is the producer 's endowment set 
X, his initial endowment x0, and the feasible set affixed at x0. It looks like 
the producer can make only about four widgets before he runs out of 
plastic, but that means nothing. What matters is that he could make any 
number  of widgets if only his stocks were large enough. In other words, 
ca is feasible for all nonnegative c, no matter how large. 

Suppose there were another way to make widgets. To distinguish the 
two production processes, relabel a as al, and let the other activity be a2. The 
producer can now undertake any nonnegative multiple of either activity. He 
can also do a bit of both. His feasible set thus contains not just Clal for all 
C 1 ~> 0, nor just c2a2 for all c2 -> 0, but Qal + c2a2 for all C 1 ~> 0 and all 
c2 -> 0. Letting A be the matrix with columns al and a2, you can also say 
that the feasible set consists of all vectors Ac with c -> 0. (See Chapter 2, 
MT 10.) Figure 4 illustrates this. 

If there are three ways to make widgets, you get a picture like Figure 5. 
This time, A has three columns. The feasible set again consist of all vectors 
Ac with c -> O. 

Not counting 0, every feasible activity in Figures 3, 4, and 5 "points 
downward," that is, has at least one negative element. This is no accident; 
it is part of how activity analysis defines its constraint. To see why, suppose 
there were a feasible activity with at least one positive element and no 
negative elements. The feasible set would then be unbounded, rendering 
a constrained profit maximum nonexistent. 

An activity with at least one positive element and no negative elements 
represents "production ex nihilo" or, as it will be called in this book, free 
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access. Its opposite, an activity with at least one negative e lement  and no 
positive elements,  represents free disposal. Activity analysis rules out free 
access but allows free disposal. 

Activity analysis captures all this and more in a few definitions, as follows. 
Given is a matrix A, the technology matrix or technology. Its columns 

are the basic activities. Their  nonnegative linear combinations,  that is, the 
vectors Ac with c >- 0, are the feasible activities. They form the feasible set. 
Free access is impossible, meaning that every feasible activity, except 0, 
has at least one negative element.  (This constitutes a restriction on the 
technology matrix A.) Finally, and expectedly, the activity-analytical con- 
straint says that when the producer  chooses an activity, it must be a feasi- 
ble one. 
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Figure 5. A feasible set with three basic activities. 
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In Figure 5, the three basic activities are linearly independent. The same 
is true for the two basic activities in Figure 4, and even for the single basic 
activity in Figure 3. You might think that this is a general rule, but activity 
analysis is not quite that strict. Activity analysis allows the ai to  be linearly 
dependent. It means that many feasible activities, maybe even all feasible 
activities, can be written as linear combinations of the ai in infinitely many 
ways. Thus, when the producer chooses a particular feasible a*, there are 
likely to be many e's for which a* = Ae; and so he has to choose one of 
those e's as well. It is a case of multiple equilibria. How the producer finds 
the best e does not matter here. 

The prism-like feasible set of Figure 5 is an example of a pointed, convex, 
polyhedral  cone. The feasible set of Figure 4 is a pointed, convex, polyhedral 
cone too. Even the ray in Figure 3 is one. Here is the definition: a pointed, 
convex, polyhedral cone is any set of vectors a that can be written as Ae 
for some c -> 0. 

Discussion 
Model One adopts the activity-analytical constraint, except for two fea- 

tures (and some inessential terminological differences). The excepted fea- 
tures follow. 

First, Model One requires A's columns to be linearly independent. You 
already know why: were the ai linearly dependent,  there would be multiple 
equilibria, and the endowment would then have to choose among them. 
Since endowments do not know how to choose, Model One is forced to 
rule out linear dependence of the ai. It goes to show that positive theories, 
like Model One, cannot be quite as liberal as normative theories, like 
activity analysis. 

Second, Model One permits free access, unlike activity analysis. In this 
respect then, Model One is the liberal theory. 

When free access is allowed, the feasible set is unbounded. Effectively 
this means that infinite wealth is attainable. It is not as unrealistic as it 
sounds. For as will be seen in the next chapter, Model One is set up so 
that the endowment always travels with finite speed. Given that, attainment 
of infinite wealth takes an infinitely long time. And that is not unrealistic 
at all. 

The discussion of the five traditional theories of individual behavior is 
now over. We conclude the chapter with a few remarks about demand 
and supply. 

An agent's demand for good i is sometimes defined as the sum of a stock 
and a flow, the stock being the agent's holdings of good i at the beginning 
of the period, and the flow being what the agent buys, or is willing to buy, 
during the period. The flow part is then called "excess demand." Demand 
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itself is a stock according to this definition, for the sum of a stock and a 
flow is always a stock. 

Staying closer to custom, this book takes "the demand for a good" to 
mean the demand rate for that good- - the  rate at which the commodity is 
demanded at a particular instant. Demand is thus a flow rate, that is, the 
time derivative of a flow. If some flow is measured in bottles, cans, or 
dollars, the corresponding flow rate is measured in bottles per hour, cans 
per hour, or dollars per hour. 

For more detail, consider the Marshallian price-quantity diagram, with 
its vertical p-axis, its downward-sloping demand curve, and its upward- 
sloping supply curve. Let E = (~r pE) be the point at which the curves 
intersect. If (//, p) is a point on the demand curve other than E, then q is 
the rate at which the demander would be willing to buy if the price were 
p. The demander is also unable to buy, at that rate and at that price, not 
because he lacks money but because the supplier refuses to accommodate 
him. A similar interpretation fits any point (q, p) on the supply curve 
except E. With the exception of/ /E then, every / /  is a rate at which the 
demander offers to buy but does not buy, and the seller offers to sell but 
does not sell. 

Only some of this affects us here, not all of it. After all, the Marshallian 
model concerns social or interactive behavior, whereas our concern lies 
with individual behavior. We are thus not bound by the Marshallian inter- 
pretation of demand and supply. In particular, we are free to view the 
demand curve as measuring the rate at which the agent actually buys, at 
various values of the price. And we are free, by symmetry, to view the 
supply curve as measuring the rate at which the agent actually sells, at 
various values of the price. With these interpretations, followed from here 
on, not only demand curves but also supply curves will customarily slope 
downward. The higher the price, the more slowly you buy; the higher the 
price, the more slowly you sell. 

A small point should be made here. Although supply rates are negative, 
we tend to think of them as positive. That is to say, the supply rates of 
ordinary conversation are not really supply rates. They are the absolute 
values of supply rates. It is only when supply rates are interpreted in this 
way, as absolute values, that the supply curve slopes downward. 

SUMMARY 

The chapter began with definitions of time, commodity, and money. From 
these definitions follows that money is a commodity and time is not. Armed 
with these conclusions, the chapter discussed the highlights of five main- 
stream theories: Pareto's utility theory, Hicks's utility theory, the theory of 
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labor supply, the neoclassical theory of the producer, and the activity- 
analytical theory of the producer. 

Pareto's model almost completely dominates the other two utility-based 
theories. Its dominance is the result of its practice (which Model One 
adopts) of assigning utility to endowments rather than to demanded 
bundles. 

The activity-analytical model almost completely dominates neoclassical 
producer theory. The reason is its superior constraint (which, with small 
variations, Model One adopts). 
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Questions 

1. Someone says that, to him, the utility of two steaks is 1.3 times the 
utility of one steak. Is it possible to verify this statement (i) in prac- 
tice? (ii) in theory? 

2. "If the Hicksian consumer wants a $15 CD and a $15 book but 
has only $15, he will buy the CD now and the book later, or vice 
versa." Discuss. 

. 

. 

. 

"Most people get sick if they eat too much ice cream. It illustrates 
that the marginal utility of ice cream diminishes." Discuss. 

"The Paretian consumer's final endowment maximizes utility. Pre- 
sumably then, any endowment he has before he reaches the final 
endowment does not maximize utility. And that violates the utility- 
maximization postulate." Discuss. 

At the utility-maximizing endowment (Pareto) or at the utility- 
maximizing demanded bundle (Hicks), the gradient of u points in the 
same direction as the price vector: Vu = Ap. Equating corresponding 
elements shows that the marginal utility of good i equals Api, for all 
i. When written in the form MUa/Pl = MU2/P2 = . . .  , this is known 
as the Equimarginal Principle. Now for the question. The Equimargi- 
nal Principle is sometimes said to express that marginal utilities per 
dollar are equal. Check units to find out if this is an accurate de- 
scription. 
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6. Theorists customarily assume marginal utilities to be positive. What  
do you think is their reason? 

7. "Consider a world with just two goods, money and beer, As the 
consumer buys beer, which he loves, his endowment slides down the 
budget line toward the point at which utility is maximized. The fact 
that trading then comes to a halt is evidence that the marginal utility 
of beer diminishes." Discuss. 

8. Figure 6 purports to illustrate the Hicksian consumer's actions in a 
world with more than two goods. The quantity of beer demanded 
per week is measured along the horizontal axis; the quantity of money 
spent on all goods other than beer is measured along the vertical 
axis. Utility is maximized, subject to constraint, at M. If you write 
the budget constraint as p l q l  + ~ , P i q i  - -  Y, the summation being over 
all i > 1, you will have no trouble verifying that OA represents income 
y, that weekly beer demand is OB, and that weekly expenditure for 
all goods other than beer is OC. Apparently, CA represents weekly 
expenditure for beer. Does the picture do what it is meant to do? 

9. "That  Hicksian utility theory cannot deal with supply is of no conse- 
quence. After all, the consumer is ultimately a demander; everything 
he does serves but one purpose: consumption." Discuss. 

10. "The distinction between consumers and producers is not quite the 
dichotomy that this chapter makes it out to be. True, economics has 
different theories for consumers and producers. But there is, on the 

weekly expenditures for 
all goods other than beer 

A 

- M 

B 

weekly demand 
for beer 

Figure  6. What is wrong with this picture? 
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other hand, nothing in traditional economic theory to prevent firms 
from being wholly owned by a single household. Traditional theory 
thus includes as a special case the setting in which there is no formal 
distinction between producers and consumers." Discuss. 

11. "Contrary to what traditional theory says, consumers get their utility 
not from goods but from the characteristics of those goods-- the 
coffeeness of coffee, the breadness of bread, the vinyl-slipcoverness 
of vinyl slipcovers." Discuss. 

12. Is money an input? If yes, does that imply an asymmetry in the 
behavior of the profit-maximizing producer? If no, then what is the 
role of money in a business firm? 

13. "The utility embodied in a dollar is the utility of the commodities 
we can buy for that dollar. Putting both money and commodities 
into the utility function is thus a form of double counting." Discuss. 

14. "Putting money into the utility function is unacceptable if utility 
theory does not at the same time offer an explanation of why people 
hold cash balances." Discuss. 

15. "One of the functions of money is to serve as a medium of exchange. 
Pareto's theory completely ignores that intermediary function when 
it introduces money directly into the utility function and treats it the 
same way as tea and salt. As a result, Pareto's theory is useless when 
it comes to explaining such things as the properties of the demand 
for money and the process of monetization of an economy." Discuss. 

16. "A satisfactory analysis of the role of money, and therefore the right 
theoretical treatment of money, requires explicit consideration of 
the technology and network of exchange." Discuss. 

17. "If the nominal money stock were suddenly doubled, the real money 
stock (measured in commodity units) would less than double. This 
sort of thing is not true for, say, cars. It follows that money is different 
from commodities." Discuss. 

18. "Imagine an economy in which information is costless. Such an econ- 
omy has no justifiable use for money; but it does have as much use 
for commodities as the kind of economy in which we live. It follows 
that money is different from commodities." Discuss. 

19. "Barter transactions, in which commodities are exchanged for com- 
modities, involve substantially higher costs than do trades in which 
commodities are exchanged for money. It follows that money is 
different from commodities." Discuss. 

20. "The selection of a numeraire cannot be treated as a mere formality; 
the numeraire should have a certain moneyness. Because commodi- 
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ties like tea and salt lack that property, they are unsuitable as numer- 
aires. In fact, only money has that property to the required degree, 
and so money is the logical numeraire." Discuss. 

21. "Money differs from commodities in that it is the only good whose 
value is fixed in terms of the unit of account." Discuss. 

22. "Of  course money is an ordinary commodity. Most people hold 
positive money balances; this in itself proves that money is a utility- 
yielding good." Discuss. 

23. "Economics is not mathematics." Discuss. 
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5 
Introduction 

Part II consists of three chapters. The starting point is Pareto's utility 
theory. Utility is thus a function of endowments, u = u(x), and the budget 
constraint is p 'x = p'x0. In the course of this chapter, which uses as little 
mathematics as possible, Pareto's theory is gradually molded and bent and 
shaped into an outline of Model One. Chapter 6 adds mathematical details, 
polishes rough spots, and presents the complete theory. Chapter 7 derives 
the nine testable results mentioned in the beginning of the book. 

The road to Model One takes the form of five elementary questions 
concerning the neoclassical consumer. The questions are these: 

1. How does the consumer maximize utility? 
2. Once the consumer arrives at the market,  how long does it take him 

to maximize utility? 
3. Once the consumer has done his shopping, what does he do the rest 

of the week? 
4. How is the consumer constrained between trips to the market? 
5. Every producer becomes a consumer now and then, and goes back 

to being a producer a while later; when does he make these changes? 

QUESTION 1. How does the consumer maximize  utility? 

To maximize utility, must the consumer know "his" utility function? Or 
is it enough if he knows "his" indifference map? Does he use advanced 
calculus to buy lettuce? 

None of the above. Consumers no more maximize utility than a school- 
boy, doing his algebra homework, maximizes functions. A function of x 
can be maximized only by a value of x; utility, a function of endowments, 
can be maximized only by an endowment. The protagonist of Pareto's 
utility theory is thus not a consumer at all. It is, rather, an endowment, a 
moving point. In the same way, the protagonist of Hicksian theory is a 
demanded bundle q ~ A; that of the theory of labor supply is the pair (L,y); 
that of producer theory is an action a ~ A; and so on. 

We briefly discuss the nature of the endowment 's  motion. 

89 
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Commodities are customarily assumed perfectly divisible, meaning that 
every commodity quantity is the product of a measurement unit and a real 
number, rather than an integer. This might be called weak divisibility. Model 
One calls for strong divisibility. By this is meant that the endowment's path 
is differentiable with respect to time. 

In the everyday world, actions are undertaken either sequentially or 
simultaneously. When you drive to the market and, once there, buy an 
apple, you undertake two actions sequentially. When you eat the apple 
while driving home, you undertake two actions simultaneously. 

The world of theory is different, or at least Model One is. Whereas a 
living consumer can do first this and then that, the consumer of Model One 
undertakes his activities both simultaneously and all the time. A living 
consumer can buy an apple and be done; the model consumer buys a thin 
trickle of apple every second, pays for his purchase with a thin trickle of 
money every second, eats a thin trickle of apple every second, drives a few 
feet every second, and so on. Absurdities like these are hard on the intuition, 
but they are the price of admission to the House of Calculus. One way to 
salvage a semblance of normality is to monitor the consumer's doings 
intermittently, rather than continually. Integrated over one week, for in- 
stance, those unrealistic trickles of fruit and money become a realistic apple 
and a realistic dollar. 

Figure 1 illustrates the time path of someone's (gradually rising) stock 
of milk. The thin line, showing the actual path, reflects the unremitting 
pulse of household life; you can almost hear the opening and closing of 
the refrigerator door. The thick line shows Model One's version of the 
actual path. 

When time is a continuous variable, as it is in Model One, the length of 
the economic period is zero. Words like velocity and speed then enter the 

Figure 1. Smoothing the time path of a stock. 
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theoretical vocabulary. For an example, suppose apples are a normal good 
and the price of apples goes down. The neoclassical consumer then buys 
more apples per period. Not so the consumer of Model One: when the 
period length is zero, "buying more apples per period" is a meaningless 
phrase. But it is quite acceptable to say that the reduction of the apple 
price swells the trickle of apple that the consumer is in the habit of acquiring. 
In other words, the consumer responds to the price reduction by buying 
apples faster. 

To sum up, utility can be maximized only by an endowment,  not by a 
consumer. And: over time, the endowment travels along a smooth path. 

QUESTION 2. Once the consumer arrives at the market, how long does it 
take him to maximize utility? 

It takes h i m m o r  rather, his endowmentmless  than an instant. Neoclassi- 
cal theory says that the consumer maximizes utility; by definition then, 
there never is a moment  at which utility is not maximized. Even when there 
is a change in a price or some other parameter,  the consumer adjusts his 
endowment instantaneously. If he were to take as little as one second to 
make the adjustment, the utility-maximization postulate would be violated 
during that second. 

Actually, it is only the mathematical version of neoclassical theory that 
is this strict. The literary version, less formal, inhabits a more believable 
world. In that world, the consumer is not said to maximize utility. More 
accurate would be to say that he is presented as trying to maximize utility. 
He enters the market  with a bundle of submaximum utility, which he then 
transforms, in the course of the day, into the utility-maximizing bundle. 

Unfortunately, "the consumer tries to maximize utility" is not suitable 
as a guiding principle. A theory that has the consumer try, without saying 
whether he succeeds or fails, is too indeterminate to be useful. Apart  from 
that, the behavior of the consumer does not matter. What matters is the 
behavior of the endowment,  and endowments do not try. 

But if "trying to maximize utility" is a phrase without a future, there is 
promise in its implication that utility can be, at times, less than the maxi- 
mum. The following informal discussion builds on this idea. Out of it comes, 
eventually, the motion law for Model One. The motion law is a rule dictating 
how the endowment moves. Unlike the postulate of utility maximization, 
the motion law allows the endowment to carry submaximum utility. Implic- 
itly then, the motion law gives the consumer time to adjust to changes. 

For the time being, all quantities are assumed dimensionless. 
Figure 2 illustrates the case n = 2, with beer as good 1 and money as 

good 2. The constraint shown is the traditional budget line. The price vector 
is p = (p, 1)', with p the price of beer. Figure 2 also shows the gradient 
Vu (Chapter 2, MT 8) and its projection PVu onto the budget line (Chapter 
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Figure 2. In R 2, the steepest constrained ascent of u at Xo is PVu. 

2, MT 19). For clarity, both p and Vu have been affixed at the endowment 
x0. Utility reaches its constrained maximum at M. 

As was shown in Chapter 2, MT 24, the vector PVu is the steepest 
constrained ascent of u at x0. That is to say, the direction of PVu is that 
in which u increases fastest, constraint permitting, and the norm of PVu is 
the slope of the utility surface in that direction. 

We now discard the postulate of utility maximization. In its place comes, 
temporarily, a definition of the endowment 's  velocity. According to this 
definition, which is only a first and very provisional step toward the motion 
law for Model One, the endowment 's  velocity is yPVu, where 3' is a positive 
constant. Thus, as the endowment x moves away from its current location 
x0, it travels in the direction in which utility increases fastest, constraint 
permitting, and with a speed proportional to the slope of u in that direction. 
The steeper the utility surface (in the chosen direction), the faster x moves. 
It is as if the endowment perceives that when a small step along the budget 
line will earn a large utility increase, it pays to take that step quickly. If u 
is shallow (in the chosen direction), so that the same small step will bring 
only a small utility increase, the endowment acts blas6. 

What has just been described is obviously unrelated to utility maximiza- 
tion. "Utility slope maximization" is closer to the mark. 

Figure 2 can serve as an illustration, if you are willing to pretend, tempo- 
rarily, that 3' = 1. Vector yPVu, then the same as PVu, is a vector with 
two elements. Its first element, which is positive, measures how fast x moves 
east. Its second element, which is negative, measures how fast x moves 
south. The first element of yPVu is thus the demand rate for beer, and the 
second element is the supply rate of money- - the  rate at which the consumer 
gives up money in exchange for the beer he buys. That the supply rate is 
negative could lead to misunderstanding, since it is customary to talk about 
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supply rates as if they were positive, as if they were their own absolute 
values. In the few places below where this kind of confusion threatens, the 
text will sound an alert. 

Time to take stock. We started with Pareto's utility theory, took out the 
utility-maximization postulate, and put in the provisional definition of the 
endowment 's  velocity, as yPVu. The resulting model is still close to the 
Paretian original, still nearly neoclassical. It is all the more striking, there- 
fore, that some of the testable results promised earlier can already be 
derived at this point, and by very elementary reasoning at that. Examples 
follow. Chapter 7 derives the results again, but in a more general way. 

We return to Figure 2. Suppose that the price p of beer goes up. The 
budget line then rotates, with x0 as the pivot, to become steeper. The 
gradient, Vu, stays the same. Vector yPVu does not. Its first element be- 
comes smaller, in Figure 2. As is easy to verify graphically, its second 
element becomes larger, in absolute value, provided the price increase is 
not too great. The smaller first element means that the consumer buys beer 
more slowly now. The larger absolute value of the second element means 
that the consumer increases his expenditure rate for beer. His demand rate 
for beer is apparently inelastic. 

Exactly how do the beer-demand rate and the money-supply rate depend 
on p? There are two ways to find out, one direct and one indirect. We do 
the direct way first. Recall that, by simplifying and temporary assumption, 
all quantities are real. 

Writing the constraint as p ' (x - x0) = 0 shows that p is perpendicular 
to the budget line. Abbreviate x - x0 to a. Then p 'a  = 0. To reduce clutter, 
a has been omitted from Figure 2. It will be obvious that a is parallel to 
the budget line, and would lie on the budget line if it were affixed at x0. 

From p 'a  = 0 follows, since p = (p, 1)', that a can be any scalar multiple 
of (1, - p ) ' .  Taking the simplest possibility, we choose a = (1, - p ) ' .  

Shorten Ou/Oxi to ui. Since a is parallel to the budget line, P = a (a 'a ) - la  ' 
(Chapter 2, MT 19). The endowment 's  velocity is thus TPVu = 
ya(a'a)-la'Vu. Now a = (1, - p ) ' ,  and so TPVu = y(1, _p),(p2 + 1)-1(ul _ pu2). 
The first element of TPVu, the demand rate for beer, is 
y(Ul - p u Z ) / ( p  2 + 1) = (Bp + C) / (p  2 + 1), with B = - yu2  and C = yua. 
Multiplying by - p  gives the second element, which is the supply rate of 
money. (If you would rather view supply rates as positive, take the absolute 
value instead.) 

Since u has not been specified, B and C are neither known nor comput- 
able. If, in some application, their values are needed, they will have to be 
found through estimation. 

Next, the indirect route. In Figure 2, imagine a line drawn through 
p. Projecting Vu onto this line gives p(p 'p)- lp 'Vu.  But then the projec- 
tion of Vu onto the budget line must equal Vu - p(p 'p)- lp 'Vu,  that is, 
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(p'p)-l[p'p~Tu - pp'~Tu]. The projection of ~Tu onto the budget line is also 
P~'u. Equating the two expressions easily leads to the conclusion that the 
demand rate for beer is (Bp + C)/(p  2 + 1) and the supply rate of money 
is - p  times that (or +p times, if you prefer to interpret supply rates as 
their own absolute values). Reassuringly then, the indirect route ends in 
the same spot as the direct one. 

Early in the book it was said that the demand function is (Bp + C)/ 
(Dp 2 + Ep + 1). What we just found, (Bp + C)/(p 2 + 1), is thus too 
specific. The reason sits in the too-specific assumption that all quantities 
are real numbers. So we go through the argument again, but this time with 
measurement units taken into account, and with A replacing R 2. Let the 
matrix of the inner product on A be H (Chapter 2, MT 14). 

Since ~Tu ~ A ~ and a ~ A cannot appear in the same picture, Figure 2 is 
no longer right. To make it almost right, change p and ~ru to H-lp and 
l-l-~Tu. To make it completely right, divide all prices by one dollar. This 
changes H-~p to d-ll-l-lp, which is a vector in A. 

We use the direct route. The steepest constrained ascent, formerly P~ru, 
is now pH-I~Zu (Chapter 2, MT 24). The endowment's velocity, formerly 
"yP~u, is now ~,pH-1Vu. A unit check will verify that if time is measured 
in hours h, the parameter ~/is measured in 1/h. 

Since P is now a(a 'Ha)- la 'H (Chapter 2, MT 19), the endowment's 
velocity, 7pH-I~Tu, equals 7a(a'l-la)-la'~Tu. Arguing as before gives almost 
the same beer-demand function and money-supply function. The only sa- 
lient difference lies in their common denominator. Before, that denomina- 
tor was a'a = p2 + 1. This time it is a 'Ha = Dp 2 + Ep + F, with D, E, F 
unspecified constants. Since a 'Ha is positive definite, F is not zero. We 
may therefore, in both the beer-demand function and the money-supply 
function, divide the numerator and denominator by F. Equivalently, F may 
be set equal to 1. With that, the demand function for beer takes on its 
promised appearance. 

For three goods, the reasoning is the same but the harvest is bigger, and 
the indirect route is quicker. Let the goods be beer, tuna, and money, in 
that order. The price vector is p = (pl,p2,1)'. Suppose that pl, the price of 
beer, is the only variable price. For simplicity and emphasis, Pl is shortened 
to p. The following results will be proved, if somewhat sketchily: 

(a) The demand rate for beer as a function of p (own-price demand 
function) is the quotient of a linear numerator, Bp + C, and a 
quadratic denominator, Dp 2 + Ep + 1 

(b) The demand rate for tuna as a function of p (cross-price demand 
function) is the quotient of a quadratic numerator and a quadratic de- 
nominator 

(c) The supply rate of money as a function of p is the quotient of a 
quadratic numerator and a quadratic denominator 

(d) The quadratic denominators in (a), (b), and (c) are the same. 
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Rather  than going through the argument twice, once without units and 
once with, we right away assume that all quantities are dimensioned. To 
see how the argument would run if all quantities were dimensionless, all 
you have to do is set H = I. 

Recall that d stands for dollar. Writing the budget constraint as 
d- lp 'H-1H(x  - x0) = 0 shows that d - lH- lp  is orthogonal to the budget 
plane (Chapter 2, MT 17). Imagine a line L drawn so that d - lH- lp  lies 
on it. 

Vector H-aVu is the sum of two orthogonal projections. One is its projec- 
tion onto the budget plane; this is PH-1Vu. The other is its projection onto 
L; this is H-lp(p 'H-lp)-~p 'H-1Vu.  (The factor d -1 drops out). In all then, 
H-1Vu = pH-1Vu + H- lp (p 'H- lp ) - lp 'H-1Vu.  Rearranging gives PH-1Vu 
= [I - H- lp(p 'H- lp) - lp ' ]H-1Vu.  The endowment 's  velocity is y times 
that, i.e., 

y ( p , H - l p ) - l [ p , H - l p H - 1 V u  - H - l p p , H - a V u ] .  

Shorten the 3-vector in brackets to v, with elements v~, V2, V 3. Shown first 
is that v~ is linear in p and v2, v3 are quadratic in p. 

Premultiplying v by e~' = (1, 0, 0) gives vl = p 'H- lp(e l 'H-1Vu)  - 
e l 'H- lp(p 'H-~Vu) .  This appears to be a quadratic form in p, but it is not: 
the coefficient of p2 is e l 'H- le l (e l 'H-1Vu)  - e l 'H- le l (e l 'H-1Vu)  - 0. It 
follows that Vl is linear in p. Next, premultiplying v by e2' and e3' gives v2 
and v3, both appearing to be quadratic forms. In both, the coefficient of p2 
is easily seen to be nonzero, or at least not necessarily zero. It follows that 
v2 and v3 are indeed quadratic in p. Assertions (a), (b), and (c) now follow 
right away, seeing that p 'H- lp  is quadratic in p. P.O.C. 

To summarize, an examination of Question 2 ~ " O n c e  the consumer has 
arrived at the market,  how long does it take him to maximize u t i l i t y?"~  
made it clear that the implications of utility maximization are unacceptably 
unrealistic. A substitute (roughly, utility slope maximization) was proposed. 
Although the complete motion law has not yet been formulated, the illustra- 
tions above have already shown its promise, in the form of some testable 
consequences. 

QUESTION 3. Once the consumer has done his shopping, what does he do 
the rest o f  the week? 

If the consumer were a person, he would do the commonsensical thing 
and use up, during the week, all or part of what he bought on Monday. 
But he is not a person, and he is not guided by common sense. He is a 
robot, guided by the utility-maximizing urge that neoclassical theory has 
built into him. And just as a windup doll, programmed to maximize altitude, 
will climb to the top of Mount Everest and stay there, so will the neoclassical 
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consumer, programmed to maximize utility, acquire his utility-maximizing 
endowment and keep it. 

The implications of utility maximization thus prove even worse than the 
discussion of Question 2 found them to be. After his initial visit to the 
market, the neoclassical consumer goes back only when a change in a price 
or some other parameter forces him to adjust his endowment (which he 
does instantaneously, yet). At all other times he stays home, contentedly 
guarding his utility-maximizing bundle and constitutionally incapable of 
changing it. If that seems irrational behavior, it should again be remembered 
that the consumer is a robot, a creature of theory; whenever the consumer 
happens to behave in unacceptable ways, theory deserves the blame. And 
if that still seems unconvincing, it should be further remembered that the 
robot-consumer is merely an expository device. It is the endowment that 
does the behaving. 

Does utility slope maximization perform better? Barely. For an illustra- 
tion, consider again Figure 2. Utility slope maximization makes the endow- 
ment gradually move toward the point M at which utility takes on its 
constrained maximum. It is easy to see that the endowment will never quite 
reach M, although it comes arbitrarily close, given enough time. By contrast, 
a model based on utility maximization puts the endowment at M right 
away. Under utility slope maximization, therefore, the consumer is never 
wholly inactive, as he would be under utility maximization; but he gradually 
becomes inactive, which is almost as bad. It should perhaps be stressed 
that "the consumer gradually becomes inactive" does not mean that his 
transacting slows to a crawl near the period's end: there are no periods in 
Model One. It means that as the years go by, the quantities the consumer 
buys and sells dwindle to zero. Apparently, the motion law is not yet com- 
plete. 

To get an idea of what kind of modeling feature might solve the problem, 
picture a flesh-and-blood consumer sitting on the porch, doing nothing. If 
he expects his endowment to remain constant, he is in for a surprise. As 
he sits and daydreams, the tomato plants in the backyard keep increasing 
his stock of tomatoes, the oil well in the front yard keeps increasing his 
stock of oil, the mice in the pantry keep reducing his stock of cheese, and 
the very act of living keeps draining his stock of energy ("labor power"). 
In short, even though the man does nothing, his endowment is changing 
left and right. 

Of particular interest is the autonomous energy drain. It makes the 
consumer hungry, thus forcing him to eat. Eating depletes his food stocks, 
and so he must buy food. Since that reduces his money stock, he must sell 
some of his oil, sell some of his tomatoes, get a job, or all three. In short, 
he must work. Since that diminishes his energy stock, he must eat. In fact, 
he must eat enough to make up for the exogenous energy loss caused by 
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living and the endogenous energy loss caused by working. With good luck, 
the entire cycle leaves him with a surplus of money, a surplus of food, a 
surplus of energy (in the form of increased ventricular convexity), or all 
three. With bad luck, he comes out of the cycle with an energy deficit, 
eventually to die of hunger. In between is the break-even case characteristic 
of stagnant societies. A perfect model of individual behavior should cover 
all of this. 

Model One is not perfect, and it does not cover all. But it covers most. 
In fact, it covers everything except the sequentiality of the cycle. (According 
to Model One, whatever the consumer does~ea t ing ,  buying, working, and 
the l ikemhe  does simultaneously rather than sequentially.) Model One 
captures, in particular, the exogenous influences affecting the consumer's 
s tocks~l ike  the autonomous energy drain. The exogenous influences are 
represented by a vector to be called the driver. It is the driver that keeps 
the consumer from lapsing into inactivity. 

You could think of the endowment as a rowboat on a river, its motion 
determined jointly by the force of the current (the driver) and the oarsman's 
efforts (the consumer's actions). Even if the rower wants merely to stay 
stationary with respect to the riverbanks, he will still have to row, to offset 
the pull of the current. Or in economic terms: even if the consumer wants 
merely to keep his endowment constant, he will still have to keep busy. 
Just like his living counterpart.  

The motion law for Model One is beginning to take shape. From here 
on, the velocity of the endowment x is the sum of two vectors, one represent- 
ing the effect of the exogenous influences and the other representing the 
effect of what the consumer himself does. Further,  what the consumer does 
is defined this way: if there were no exogenous influences, the velocity of 
x - - t h e n  due to the consumer's actions a lonemwould  be TpH-1Vu. All of 
this does not yet quite add up to the motion law, but it is getting close. 

Figures 3 and 4 serve as illustrations. In Figure 3, the consumer's action, 
a, exactly offsets the exogenous influences, b. The endowment is thus for 
the moment  stationary and will continue to stay where it is so long as b 
changes neither its direction nor its length. In Figure 4, the consumer 
does not quite manage to offset the exogenous influences. As a result, the 
endowment drifts away. If both marginal utilities are positive, the direction 
in which the endowment drifts away (in Figure 4) is unattractive. Since the 
endowment always lies on the budget line, the budget line, too, drifts away, 
parallel to itself. 

Introduction of a driver is less of a novelty than it may seem. True, 
Pareto's and Hicks's utility theories have none, and neither does the theory 
of labor supply and leisure demand; but some other economic models do. 
An example is the theory of the monopolistic firm. In that theory, the 
driver takes the form of exogenously given consumer demand. It is through 
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Figure 4. Since the action does not quite offset the exogenous influences, the endow- 
ment drifts. 

ceaselessly, his stock of finished product will soon be depleted. 
Worth noting is that, thanks to the presence of a driver, the theory of 

the monopolistic firm is very nearly dynamic. To make it fully dynamic, all 
one has to do is choose the period length zero. That may not be customary, 
but it does not contradict any part of the theory, either. 

Exogenously given consumer demand i s  also the driver in the open 
input-output model. Comparison with the closed input-output model is 
illuminating, The closed model has no driver. As a result, it has infinitely 
many solutions, each representing an equilibrium. Those infinitely many 
equilibria leave the closed model with little usefulness. 

A striking feature of the motion law is that the future plays no role in 
it. According to the motion law, the endowment behaves Like a sightless 
bug, scampering about in unfamiliar temtory, its every move dictated by 

this demand that the producer is kept on his toes: unless he prmluces 



5. Introduction 99 

the shape of the ground under its feet. Of course, this is precisely how a 
choiceless, planless point can be expected to behave. But is it realistic? Do 
endowments found in the real world act this way too? One would not think 
so. Since a real-life endowment is under the control of its real-life owner, 
and since the future affects the owner's behavior, the future indirectly 
affects the behavior of the owner's endowment. Realism thus demands that 
Model One take account of future pleasures, suitably discounted. 

Or so its seems. But the argument is wrong. The future cannot possibly 
affect today's behavior, for the simple reason that it is not here yet. What 
the (living) consumer acts on is not the future but his perception of the 
future; and that perception is itself a thing of the present. The consumer 
thus gets his marching orders from his immediate environment, from the 
here and now. A happy implication is that there is nothing wrong with 
keeping the future out of the motion law. There is, in particular, no need 
to encumber the objective function with a discount factor. The idea that 
present utility is nicer than future utility may be appealing, but only if one 
identifies utility with usefulness. Even then its applicability would seem 
limited to normative theory. 

If there were no exogenous influences, the endowment would move in 
the "right" direction, that is, the direction in which utility increases fastest, 
constraint permitting. Ordinarily, though, the driver will be nonnull. Ordi- 
narily then, x will move in the "wrong" direction, knocked off course by 
the driver. And although the endowment immediately sets about to counter 
the driver's push and pull, it is always catching up, always slightly behind the 
times. You might say that the motion law, as it now stands, is a Myopic Law. 

The Myopic Law has an obvious alternative, suggesting a shrewder con- 
sumer. This alternative, the Rational Law, is based on the idea that it is 
more efficient for the consumer to take the exogenous influences into 
account ex ante rather than ex post. By anticipating the exogenous influ- 
ences, the consumer will always be able to send his endowment in the best 
direction that his constraint permits. Figure 5 illustrates this: given b and 
Vu, the consumer makes a so long that a + b points in the direction of Vu. 

Although the Rational Law sounds promising, the solution it proposes 
does not always exist and can lead to absurd behavior when it does exist. 
See Figure 6. Because Vu is nearly parallel to the budget line, the consumer 
will have to make a very long--meaning  that he has to act very fast - - i f  
a + b is to point in the direction of Vu. And if Vu is exactly parallel to 
the budget line (a possibility that Model One permits), the Rational Law 
is impossible to obey. 

Nor is this all. It is shown later, in Part III, that the Rational Law is 
based on faulty logic. The Myopic Law is thus the right one, notwithstanding 
its apparent inefficiency, and notwithstanding its connotations. Judging by 



100 11. Model  One 

Figure 6. Illustrating why rationality does not work, after all. 

Figure 5. Illu\lrating 1hc hunciits W E  ratiunaliiy 

connotations. thc Myopic Law should be inferior to the Rational 1 . a ~ ;  
actually. it is  thc otbcr way around. Ratianal is had. myopic is good. 

From h c r t  on, “thc motion law“ means the Myopic Law. 
Thc motion law implics that rlir sprerl o f x  is nhvnys,finirc, (and typically 

positive rather than zero). It is a thoroughly uatradilional k i t t m ,  absent 
from nctrlassiwl utilily lhcory. In fact. i t  is absent from every pcriod- 
analytical model that leavcs thc period lcnglh unyxcilied. The reason is 
rhac. whcn thc period Icngh is indeterminate. the only mcaningful spccds 
are zero and infinity. ‘.Six widgcts per pcricd” sounds admirably precise, 
hut il rncans nothing if we do  nnt know how long ltic pcriod is. Not 
coincidcntally. w r o  and infinity arc the only speeds found in neoclassical 
utility theor?;: the Paretian endowment either does not m a w  a t  all (zero 
speed) or adjusts inslnnlancously to parametric chaiyc (infinite spcod). 

Thc biggest drawback of period-analytical modcls, ;It lcast of those that 
do not  spccil‘y the period length. is that they need a slrrricjtiriry cyrtilihrittrii 
to survive. 
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For an illustration, consider Pareto's utility theory once more. Its protago- 
nist, the endowment,  moves with either zero speed or infinite speed. To 
preserve at least a semblance of realism, the model must rule out explosive 
behaviormmust  see to it that when the endowment moves with infinite 
speed, it covers no more than a finite distance. In other words, the model 
must guarantee the existence of a stationary equilibrium. In this undertak- 
ing, the model 's main tool is the budget constraint. It is the budget constraint 
that keeps the consumer from attaining infinite wealth in finite time. Of 
course, the budget constraint also keeps the consumer from attaining even 
the slightest wealth increase (beyond what may fall into his lap through 
price changes and the like), but that cannot be helped. For if the consumer 
were allowed to gain from any particular trade, the postulate of utility 
maximization would compel him to carry out that trade infinitely often, on 
the instant, thus making him infinitely wealthy in the blink of a rapacious 
eye. Since such explosive behavior is unacceptable, the budget constraint 
must remain in place, unrealistic though it may be. 

When the endowment moves with finite speed, as it does in Model One 
(and in the real world), explosive behavior is ruled out from the start. 
Model One can thus afford to relax or abolish some neoclassical constraints, 
gaining realism as it does so. Best of all, stationary equilibrium ceases 
to be a theoretical mainstay and a theoretical necessity. An endowment 
governed by Model One behaves plausibly even if there is no equilibrium. 
Depending on how the driver is specified, the endowment may approach 
a static or moving or stochastic equilibrium; but it does not have to. 

QUESTION 4. How is the consumer constrained between trips to the market? 

Between trips to the market,  the budget constraint does not operate. 
What takes its place? 

As noted in Chapter 4, a better, more general constraint is that of activity 
analysis. Of course, activity analysis concerns the doings of producers rather 
than consumers, but that is merely a matter  of connotations. The important 
thing is that actions are mathematically indistinguishable from activities. 
Connotational differences are irrelevant. 

Chapter 6 has the mathematical details. Meanwhile, if you have forgotten 
what the feasible set of activity analysis looks like, you may want to take 
another look at pp. 78-79. Three possible shapes are sketched there. 

QUESTION 5. Every producer becomes a consumer now and then, and goes 
back to being a producer a while later; when does he make these changes? 

The traditional answer is that the changes are probably made sometime 
between Mondays, when neoclassical theory is taking a break. Implied is 
that any search for a more precise answer is bound to fail. 



102 II. Model One 

But there is no period analysis in Model One, no break between Mondays, 
no gap in theoretical coverage. Model One puts the consumer under perma- 
nent surveillance. And that closes some easy but illegitimate exits. Many 
modeling questions that could earlier be swept under the neoclassical rug 
now refuse to go away. One of them is Question 5. 

It may be useful to recall that the consumer of theory is a robot, who 
does only as he is told. When the consumer switches roles and becomes a 
producer, it is not because he wants a change of scenery. It is because 
theory says that this is what he should do. Or, more precisely, when the 
endowment stops obeying utility theory and starts obeying producer theory, 
it is because utility theory says so. Later, when the endowment goes back 
to behaving according to utility theory, it is because producer theory says so. 

With all that established, we ask again, when does role switching happen? 
Intuition has no answer. But logic does. 

The logical answer, due to Scitovsky, is that role switching never happens. 
It means that there is no room for two model-robots, the consumer and 
the producer. They cease to exist. All the things that the two of them used 
to do are now done by a single model-robot. This versatile newcomer is 
the neutrally named agent. Before, the consumer used to buy apples and 
sell oranges; now it is the agent who does that. Before, the producer used 
to build cars and repair shoes; now it is the agent who does that. And 
strong divisibility implies that the agent does all these things both simultane- 
ously and continually. Every second of every day he is busy buying apples, 
selling oranges, building cars, repairing shoes. 

If there is to be only one theory of individual economic behavior, there 
can be only one objective function and only one constraint. Except for a 
few small changes, the activity-analytical constraint is universal enough to 
fit all behavior. That leaves the objective function. 

We take the objective function to be utility. Insofar as the agent acts as 
a consumer, this is an unremarkable choice. What if he acts as a producer? 

As argued earlier, the neoclassical theory of the profit-maximizing pro- 
ducer is normative; it explains what producers should do if they want to 
maximize profit. Our interest, on the other hand, lies with positive theory. 
We want to know how producers behave, not how they ought to behave. 
It is in this light that the following arguments are meant to be seen. 

Some writers have pointed out that the best of all monopoly profits is a 
quiet life. Others have said that what producers really want is to keep the 
stockholders happy. Still others hold that producers are mere satisficers, 
meaning that they aim for satisfactory results rather than optimum results. 
What these views amount to is that producers pursue happiness, like every- 
body else. But then it is reasonable to let the producer's objective function 
be the same as everybody else's. It is reasonable, in other words, to let the 
agent's objective function be utility. 
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If the idea that producers are driven by utility seems at first absurd, it 
is because the connotations of "utility" and "producer"  clash. "Utili ty" 
suggests usefulness, markets, commodities. "Producer"  conjures up images 
of industrial production, the boardroom, the factory floor. All these conno- 
tations might have some relevance if the producer of theory were a living 
being, a man in a three-piece suit and a hardhat. As it is, the producer of 
theory is a robot. He is, moreover, an unimportant robot. It is the endow- 
ment that runs the show. And the endowment is just a moving point, 
virtually connotation-free. 

As for "utility," its associations do not matter either. Utility is merely a 
function guiding the endowment 's  behavior. It is not a reflection of prefer- 
ences; endowments do not have preferences. Nor is utility another word 
for usefulness; endowments do not know what usefulness means. In fact, 
that the objective function carries the name "utility" is entirely unimportant. 
What  matters is that there is only one objective function, not two. 

As said, the irrelevance of the connotations of "utility" is demonstrated 
in the next chapter, where the nine testable results are derived. All nine 
would be unchanged if utility were redefined as a minimand. 

If, after all this, it still seems that producers differ from consumers, 
consider the following. 

The interpretation of neoclassical theory carries the suggestion that all 
individual economic behavior falls under either utility theory or producer 
theory. This is misleading. Some behavior falls under both, and some under 
neither. For example, a restaurant owner who dines in his own establishment 
while keeping an eye on the staff is acting as both a consumer and a 
producer. The same can be said for the house painter who, when ordering 
paint from a wholesaler, includes a gallon or two to spruce up his own 
kitchen. As for behavior not covered by either theory, an example is eating. 
It is not a trivial example~ea t ing ,  it was pointed out, is important because 
it is the only action to produce energy. 

That the two theories are neither mutually exclusive nor exhaustive in 
their coverage is unsurprising. After all, they evolved from entirely different 
eighteenth-century beginnings and remained apart as they matured. Given 
such uncoordinated development, an occasional imperfection is to be ex- 
pected. 

The purpose of these remarks is to underscore that the producer~consumer 
dichotomy is a historical accident. It is not a carefully reasoned piece of  
model building. It is a product o f  chance, rather than logic. Had logic taken 
a hand, two centuries ago, it could very well have produced the argument 
that, since all people are constructed according to the same physiological 
principles, there is neither need nor room for two theories of individual 
economic behavior, each with its own objective function and its own con- 
straint. And that argument might then have led to a theory like Model 



104 lI. Model One 

O n e m a  single, unified theory, with a single objective function and a sin- 
gle constraint. 

SUMMARY 

The agent is a consumer and a producer and a little more. His role in 
Model One is minimal. What  matters is his endowment. 

The endowment travels along a smooth curve, its behavior dictated by 
a law of motion. This motion law involves (i) a unified objective function 
called utility, (ii) exogenous influences embodied in a vector called the 
driver, and (iii) a unified constraint that is very nearly the constraint of 
activity analysis. 

Actions produce and consume; the agent does not. 
According to the utility-maximization postulate, utility is always a maxi- 

mum, and adjustment to changes in prices and other parameters is instanta- 
neous. According to the motion law of Model One, the endowment can carry 
submaximum utility and may adjust to parametric changes at its leisure. 

The motion law implies that the endowment always moves with finite 
speed. This makes it unnecessary to postulate the existence of any kind 
of equilibrium. 

Questions 

1. In connection with Figure 2 it was said that if the increase of the 
beer price p is not too large, the second element of PVu becomes 
larger in absolute value. Demonstrate  this graphically. 

2. (Continuation) It was also said that, in the circumstances just de- 
scribed, the consumer's demand rate for beer is inelastic. Prove 
this algebraically. 

3. (Continuation) "If the increase of the beer price is large enough, the 
second element of PVu will become smaller in absolute value. In that 
case then, the consumer's demand rate for beer is elastic." Discuss. 

4. For the function g(p)  = (2p 2 -  5p + 4 ) / ( p  2 -  3p + 3), find the 
extrema and corresponding extremizers, if any. Find the horizontal 
asymptotes, if any. Find the zeros of the function, if any. (A zero of 
g is a value of p for which g(p)  = 0.) Sketch the graph of g(p). 

5. Define g(p)  = (Ap 2 + Bp + C)/(Dp 2 + Ep + F), with 
Op 2 -+- Ep  + F positive definite. Prove that g has at most two extrema. 
Prove also that if g does have two extrema, one is a maximum and 
one is a minimum. 
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6. The own-price demand function for beer is 

t i p )  = ( B p  n t- C ) / ( D p  2 -}- E p  -1-- 1), p - O. 

. 

o 

. 

10. 

11. 

12. 

13. 

Show that its graph bends backward if and only if all three of B, C, 
and B - CE are positive. 

(Continuation) As p ~ oo, what is the limit of the demand rate for 
beer, and what is the limit of the expenditure rate for beer? 

(Continuation) As p ~ oo, what is the limit of the p-elasticity of the 
demand rate for beer, and what is the limit of the p-elasticity of the 
expenditure rate for beer? 

(Continuation) Since supply and demand differ only in sign, the own- 
price supply function of money should have the same form as the 
own-price demand function for beer. That is to say, it should be the 
quotient of a linear numerator  and a quadratic denominator. On the 
other hand, the rate at which the consumer pays for the beer he buys 
is p times the demand rate, meaning his money supply function is 
pf(p) ,  and pf (p )  is the quotient of a quadratic numerator  and a 
quadratic denominator. How can this be? 

(Continuation) Show that, if there are only two goods and marginal 
utilities are positive, the own-price demand function can bend back- 
ward only if measurement  units are present. 

The motion law says that, in the absence of exogenous influences, 
the endowment 's  velocity is ypH-1Vu. Seeing that Vu is unknown 
anyway, why can we not submerge 3' in Vu, thereby simplifying 
3,pH-1Vu to PH-1Vu? 

"It has long been known that there is a certain amount of overlap 
between the theory of the consumer and the theory of the producer; 
think of household production functions, for example. The area of 
overlap has been thoroughly analyzed. There is thus no reason to 
make a fuss over the unification of consumer theory and producer 
theory; it has been done." Discuss. 

"So perhaps utility maximization has no place in positive theory. 
Normative theory is different, though. Suppose that people were to 
ask some academic for the best way to maximize utility. The answer 
would be a normative theory of utility maximization." Discuss. 
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Model One 

This chapter translates into mathematics what Chapter 5 had to say about 
six model ingredients: endowment, action, driver, utility, feasible set, and 
motion law. 

The endowment, also called the current endowment and the endowment 
at time t, is written x(t) or, sometimes, x. It is, roughly, Model One's 
version of "initial endowment." Model One has no equivalent of "final 
endowment." Traditionally, the final endowment is what the agent has at 
the end of the period, but since there is no period analysis in this book, 
there is no such thing as "the end of the period," and therefore no final 
endowment in the traditional sense. Nor, it will be seen, does Model One 
assume or imply that the agent's endowment ever reaches a state of rest, 
and so there is no final endowment in that sense either. 

The endowment 's  time path is continuous everywhere, and differentiable 
everywhere except perhaps at those instants at which (a) a parameter 
change occurs, or (b) the time path enters or leaves a coordinate (hyper)- 
plane. Case (b) means of course that a zero stock becomes positive or a 
positive stock becomes zero. 

Wherever its time path is differentiable, the endowment moves with a 
well-defined velocity. That velocity, written dx(t)/dt, dx/dt, or i ,  is found 
as follows. 

At time t the endowment 's  location is x(t). A little later, at t + At, the 
location is x(t + At). The endowment 's  displacement between t and t + At 
is therefore x(t + At) - x(t), commonly shortened to Ax(t) or Ax. Division 
by At gives the average velocity of x during the interval from t to t + At. 
If we next let At go to zero, Ax(t)/At becomes dx(t)/dt, the velocity of x at t. 

Elements of dx are flows, measured in bottles (b), cans (c), dollars 
(d),  and so on. The differential dx is thus a vector in the action space A. 
Elements of i are flow rates. It means that i belongs to the space of vectors 
whose elements are measured in b/h, c/h, d/h, and so on. That space--which 
is not A ~ p l a y s  so small a role that we will not bother giving it a name 
and a symbol of its own. 

106 
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Because x does not lie in A, vectors x and x cannot appear in the same 
picture. Vectors dx and x can. 

The motion of x is due in part to the agent's own actions and in part to 
the exogenous influences. The part of ~ that is caused by what the agent 
does is the action rate at time t, written da(t)/dt or da/dt or a. The part of 

that is caused by exogenous influences is the driver rate at time t, written 
db(t)/dt or db/dt or b. In all then, 

i = a + 6 .  

Multiplying the action rate by dt gives da(t) or da, the action at time t. 
Integrating the action rate from 0 to t gives the action between times 0 and 
t, written a(t) - a(0). We define a(0) = 0, as interpretation suggests. With 
that, the action between times 0 and t simplifies to a(t). 

Multiplying the driver rate by dt gives db(t) or db, the driver at time t. 
Integrating the driver rate from 0 to t gives the driver between times 0 and 
t, written b(t) - b(0). We define b(0) = 0, as interpretation suggests. With 
that, the driver between times 0 and t simplifies to b(t). 

Vectors da and a(t), whose elements are flows, belong to the action space 
A. Not in A is/D: its elements are flow rates. A diagram with x(t) in it can 
thus depict da and a(t), but not a. 

Vectors db and b(t), whose elements are flows, belong to the action space 
A. Not in A is 6: its elements are flow rates. A diagram with x(t) in it can 
thus show db and b(t), but not b. 

(In last chapter's Figures 3 through 6, the vectors a and b should have 
been da and db. But at the time, labeling them that way would have 
been mystifying.) 

Equivalent to ~ = a + 6 are dx = da + db and x(t) = x(0) + a(t) + b(t). 
The driver's elements are functions of time, specifiable in several ways. 

Simplest is to take db(t) constant. Less simple, but more realistic, is to 
define the elements of db(t) as periodic functions, or as sums of periodic 
functions, to reflect the rhythms of everyday life. Still another possibility 
is to make db(t) a stochastic process, meaning that the elements of db(t) 
are taken to be irregular ( " random")  functions of t. Choosing this last 
option will add some realistic caprice to the endowment 's  time path. 

A useful interpretation of i = /I + 6 is that, given b, knowledge of/I  
implies knowledge of ~, and vice versa. In fact, given 6, knowledge of a or 
a(t) or x or x(t) implies knowledge of the other three. 

So much for endowment, action, and driver. The fourth model ingredient 
is utility. 

Utility is defined as a differentiable function u : X - ~  E 1, independent of 
time. Differentiability of u means that the first-order partial derivatives of 
u not only exist but are continuous. Those first-order partial derivatives do 
not have to be positive; second-order partial derivatives need not exist; 
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strict quasiconcavity is unnecessary. Even the derivation of the nine testable 
results, in the next chapter, asks no more than differentiability. 

It is important to distinguish between the utility function and its value. 
Think of the utility surface as the curved roof of a cave, and of the endow- 
ment as a point moving about on the floor. As the endowment moves, the 
height of the roof above i t - - tha t  is, u(x(t))--changes. The value of u thus 
varies with time. But u itself does not: the roof stays where it is. 

Two model ingredients remain to be discussed. One is the feasible set. 
The other is the motion law. 

The constraint of Model One says that da(t) must belong, for all t, to 
the f ea s ib l e  set, denoted F. Rather than simply defining F and moving on 
to the next topic, we start with the neoclassical constraint, p 'x -- p'x0, and 
gradually transform it into F. Doing so helps to bring out that the gap 
between Model One and neoclassical utility theory is much smaller than 
it might otherwise seem. 

As a first step, replace the initial endowment, x0, with the current endow- 
ment, x(t). This turns the Paretian constraint into 

p'x  = p'x(t) .  (1) 

Equivalent is d- lp ' (x  - x(t)) = 0, where d stands for dollar, as before. 
Being the difference of two endowments, x - x(t) is an action. Call it a. 
(By interpretation, a is of course a transaction.) Equation (1) now becomes 
d- lp ' a  - 0. Economically interpreted, d- lp 'a  - 0 means that undertaking 
a makes the agent neither richer nor poorer. 

For further detail, suppose there are only two goods, tuna and money, 
in that order. The price of tuna is Pl. The price of money is P2 =- 1. Of the 
two, only P2 is a real number; p~ is the product of a real number and a 
measurement unit, the unit being dollars per can. 

From here on, and until further notice, measurement units are sup- 
pressed. It is easier on the eyes. 

Define a - (1, -P l ) ' .  By interpretation, a is "buying one can of tuna," 
and ca - (c, - c p l ) '  is "buying c cans of tuna." Since p 'a  is zero, a is 
feasible; since p'(ca) - cp'a is zero, all scalar multiples of a are feasible too. 

Figure 1 illustrates the argument. When there are only two goods, as 
here, (1) represents a line. The current endowment is depicted, rather 
arbitrarily, as a point on the vertical axis. At time t therefore, the agent 
has money but no tuna. Arrow a represents action a. All scalar multiples 
of a lie on the budget line, at least when they are affixed at x(t). 

Equivalent to (1) is 

= x(t) + ca. (2) 

Note that x in (2) forms the entire left side, whereas x in (1) is part of the 
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Figure 1. Transaction interpretation of the budget line. 

left side. More formally, x is written implicitly in (1), explicitly in (2). 
Equation (2) can thus be seen as the general solution of (1). 

Because of its dependence on prices, (1) fits market behavior only, and 
so is inapplicable to Model One. Equation (2) comes closer to the ideal, 
in that it avoids all reference to prices. Prices continue to exist, of course. 
They are merely no longer mentioned. Already they have begun their 
march to the periphery of the puzzle. 

In the situation to which (2) refers, the feasible set is the set of a's scalar 
multiples. At this point then, F is not yet the pointed, convex, polyhedral 
cone it will eventually become. 

The set of endowments defined by (2) can be written x(t) + F. It is a 
useful (and standard) piece of notation, reflecting that every x in the set 
is the sum of x(t) and some action in F. The notation was used before, in 
Chapter 2, MT 18. 

Arrow a in Figure 1 has both length and direction. Its direction is impor- 
tant but its length is not: the budget line would be unaffected if a were 
replaced with any nonzero scalar multiple ca. Put differently, every nonzero 
scalar multiple of a can be a basis vector for F, can serve as the basic action. 
The most natural choice is a, but it would be perfectly acceptable to let 
the basic action be 3a, say. 

The next example is like the preceding one, except that it concerns three 
goods. Instead of a budget line we thus now have a budget plane. See 
Figure 2. The three goods are beer, tuna, and money, in that order. Let 
the prices be p~ = 3, P2 = 2, and P3 --- 1. This time there are two basic 
actions. One, "buying a bottle of beer," is al = (1 ,0 , -pl ) '  = (1,0,-  3)'. The 
other, "buying a can of tuna," is a2 = (0,1,-p2)'  = (0,1,-2) ' .  It is easy to 
verify that p'a~ - p'a2 = 0. Both a~ and a2 are thus feasible, are vectors in 
F. Also easy to see is that al and a2 are linearly independent. (If they were 
not, it would be misleading to call them "basic actions.") The current 
endowment is again put on the vertical axis, implying that at time t the 
agent has money but neither beer nor tuna. 
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Figure 2. Transaction interpretation of the budget plane. 

Suppose the agent buys c~ bottles of beer and C 2 cans of tuna. It means 
that he undertakes the action a = claa + c2a2, a linear combination of the 
two basic actions. (In Figure 2, Cl = 2 and c2 = 1.) From p'a = p'(caal + 
C2112) = cl(p'al) + c2(p'a2) = 0 + 0 = 0 follows that a is a feasible action. 
Of course the proof holds in general: every linear combination of the basic 
actions is feasible. In the situation of Figure 2, therefore, the feasible set 
F is the set of all linear combinations of al and a2. Evidently, F is still not 
a pointed cone. It is a plane. 

The budget plane in Figure 2 is given by both (1) and 

x = x(t) + clal + c2a2. (3) 
Every point x satisfying (3) for some C1 and C2 is an attainable endowment,  
a self-explanatory term. 

Because the vectors clal + c282 make up the feasible set F, the set of 
attainable endowments can also be written, again, as x(t) + F. 

The next step is a slight generalization. In Figure 2, each basic action 
has a zero element, is parallel to a coordinate plane. This condition is now 
dropped; from here on, the two basic actions may be any two vectors in 
the budget plane, so long as they are linearly independent. Equation (3) 
is unaffected. So is its interpretation: x still represents any attainable en- 
dowment. 

For an example, suppose a store sells beer and tuna, but only in the form 
of Party Paks and Family Paks. A Party Pak consists of one bottle of beer 
and one can of tuna, and costs $5. A Family Pak contains two bottles of 
beer and three cans of tuna, and costs $12. "Buying a Party Pak" is al = 
(1,1,-5) ' .  "Buying a Family Pak" is a2 = (2,3,-12) ' .  Vectors a~ and a2 are 
easily seen to be linearly independent (and not parallel to any coordinate 
plane). Further, solving p'al  = p'a2 = 0 gives Pl = 3 and P2 = 2. The price 
of beer is thus $3 per bottle, and the price of tuna is $2 per can. Those are 
also the prices of beer and tuna in the preceding example, the one that 
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Figure 2 illustrates. Apparently then, the budget plane is unchanged: if 
al = (1 ,1 , -5) '  and 112 = (2,3,-12) '  were depicted in Figure 2, as arrows 
affixed at x(t), both would lie in the budget plane shown there. 

In the just-completed example, beer and tuna cannot be bought sepa- 
rately. Neither therefore has a market price. Only Party Paks and Family 
Paks have market prices. Prices found by solving p'a~ = p'a2 = 0 are 
imputed prices. The imputed price of beer is Pl - 3, and the imputed price 
of tuna is P2 - 2. 

Suppose the agent wishes to undertake some feasible action a. Because 
the basic act ions--al  and a2~a re  linearly independent, there is only one 
way to write a as a linear combination of the ai. Or: the equation a - a~cl 
+ a2c2 has only one solution c~, c2. This uniqueness is essential. For suppose 
the a~ were linearly dependent. Then a = a~cl + a2c2 would have infinitely 
many solutions Cl, c2. Since Model One has no mechanism to decide which 
of those solutions the agent should actually select, the theory would be so 
ambiguous as to be useless. Linear independence of the a; is thus necessary. 

Necessary, but not sufficient. Suppose John buys a toaster, reconsiders, 
and takes back his purchase for a refund. Meanwhile, Joan neither buys 
nor sells a toaster but otherwise behaves exactly like John. Since Joan and 
John act differently, theory should describe them as acting differently. But 
it does not. If "buying a toaster" is a, theory depicts both John and Joan 
as having undertaken 0a. In John's case, that 0a is the sum of a and - a .  

The root of the problem is that John is being allowed to reverse his 
purchase. If the theory is to produce unique behavior, it must take away 
the agent's ability to undo his actions--i t  must make all feasible actions 
irreversible. You remember what that means: ca is feasible for every 
c -> 0 and infeasible for every c < 0. 

Is it realistic to declare feasible actions irreversible? Strictly, the question 
is academic. After all, even if irreversibility were utterly unrealistic, it still 
would have to be imposed, to guarantee uniqueness of behavior. It is 
therefore more to the point to ask whether irreversibility can be made to 
look realistic. Here the answer is yes. Every feasible action requires some 
effort, uses up some energy; and that energy is permanently lost. It is the 
reason, or one of the reasons, that feasible actions are irreversible. John 
can take the toaster back to the store and have his money cheerfully 
refunded, but he will not regain the energy he spent in making his original 
purchase. (Quite the contrary. Returning the toaster consumes still more 
energy.) Thus, if "buying a toaster" is a, "returning the toaster" is not -a .  

Figure 3 illustrates the effect of irreversibility. The feasible set F, formerly 
a plane, is now a pointed cone. Figure 3 shows x(t) + F. Vectors a~ and 
a2, the basic actions, span the edges of F. Every feasible action can be 
written as claa + C282 for some Cl -> 0 and C 2 ~ 0. Conversely, every action 
that can be so written is feasible. 
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Figure 3. What is left of the budget plane when transactions are irreversible. 

An important difference between Figures 2 and 3 is this. Suppose, for 
the duration of this paragraph, that the driver is null. The budget plane of 
Figure 2 then remains motionless throughout, and the current endowment 
moves within it. Also, all endowments in the plane are attainable. In Figure 
3, on the other hand, the entire set x(t) + F moves whenever x(t) moves. 
This is because Fis  attached to x(t), like a beam to a flashlight. A parentheti- 
cal note: if the beam-and-flashlight simile is to be accurate, the flashlight 
must always point in the same direction, even when moving, for the edges 
of F always shift parallel to themselves. 

We stay with Figure 3 a little longer. Since the entire set x(t) + F moves, 
an endowment that is attainable one moment  (illuminated by the beam, 
so to speak) may well be unattainable (in the dark) the next. Attainability 
thus ceases to be a useful notion. This is particularly true if the driver is 
not parallel to the plane containing x(t) + F; for then that plane will shift, 
over time, parallel to itself. No endowment is then attainable for more than 
the merest fraction of a secondmno endowment spends more than a single 
instant in the glare. 

Now that attainability has become irrelevant, the x on the left in (3) has 
no longer an economic interpretation. Its role is purely mathematical. 

The following piece of notation will smooth the rest of the road to the 
definition of F. Figure 3 serves as an illustration. 

Let A be the action matrix, that is, the 3 x 2 matrix whose columns are 
the basic actions. Further, let e = (Cl, c2) ' .  Then Clal + c2a2 = Ac. The set 
F thus consists of all vectors of the form Ac with c -> 0. Equation (3), which 
is x - x(t) + Clal + c2a2, can also be written as 

x = x ( t )  + A c ,  w i t h A c - > 0 .  

As in (3), x is without economic interpretation. 
The final definition of F is now only three quick generalizations away. 
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First, moving  f rom the th ree-goods  case to the n-goods case, we take  A 
to be n • (n - 1), r a ther  than just 3 • 2. The  action space A now has 
d imens ion  n, and the po in ted  cone F is a subset  of a hyperp lane  in A. 
Every  feasible action can be wri t ten as clal + c2a2 q t _  . . . q t _  Cn_llln_ 1 for 
certain scalars cl, c2, . . . , cn-1, all nonnegat ive .  Equivalent ly ,  every feasi- 
ble act ion can be wri t ten as Ac for some c - 0. 

As a m o m e n t ' s  reflection will show, the r e q u i r e m e n t  that  the n u m b e r  
of basic actions be n - 1 is mere ly  a neoclassical legacy, a relic left by the 
(n - 1)-dimensional  budget  hyperplane .  Ne i ther  economic  in te rpre ta t ion  
nor  methodolog ica l  rec t i tude asks that  A have exactly n - 1 columns. So 
long as the columns of A are l inearly independen t ,  we have all we need.  

This then is the second general izat ion:  A is n x k and has rank k. A 
familiar  implicat ion is k -< n. We also take  k > 0, ra ther  than k -> 0. Taking 
k > 0 is an insignificant restriction,  whose sole purpose  is to shor ten  and 
simplify the exposit ion.  

Formal ly  the same as before  is that  every feasible action can be wri t ten 
as Ac with c -> 0. This t ime, of course,  Ac means  clal + c2a2 + " " " + 

c~,ak. Figure 4 sketches  the case n = k = 3. The case n = 3 and k = 2 was 
a l ready i l lustrated in Figure 3. If n - 3 and k = 1, F is a ray. In fact, F is 
a ray wheneve r  k = 1, regardless  of n. 

Before  turning to the third general izat ion,  we need  a few remarks  about  
the jus t - redef ined action matr ix A. That  A may have fewer  than n - 1 
columns has a consequence  of considerable  interest  and scope. To illustrate, 
let n = 3 and k = 1. The  action space A is thus th ree-d imens iona l  (since 
n = 3), and the feasible set F is a ray in A (since k = 1). Let  the three  
goods be beer ,  tuna, and money,  in that  order .  A Family Pak consists of 
two bott les  of bee r  and three  cans of tuna, and costs $12. "Buying  a Family 
P a k "  is thus the action a = (2 ,3 , -12) ' .  Suppose  a spans F. Wha t  are the 
prices of beer  and tuna? 

For  an answer  we solve a 'p  - 0 for p. Because  a 'p  = 0 is only one 
equa t ion  and p has three  unknowns,  there  are infinitely many  solutions. It 

Figure 4. A three-dimensional feasible set when actions are irreversible. 
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is easy to verify that those solutions are the vectors p that can be written 
as A(-3,2,0)' +/x(6,0,1)'. To normalize, let P3 = 1. Since P3 = h(0) +/z(1)  - 
/x, setting P3 - 1 is the same as set t ing/z = 1. With that, p simplifies to 
A(-3,2,0) '  + (6,0,1)'; but this still describes infinitely many vectors. Setting 
h = 1, for example, gives Pl = 3 and p2 = 2; setting h = 1/2 gives pa = 
9/2 and P2 = 1; setting h = 1/3 gives p~ = 5 and p2 - -  2/3; and so on. 

Finding an infinity of prices is disconcerting only if you believe that every 
good must have one and only one price. It is not disconcerting at all if you 
accept the earlier assertion that, from a theoretical point of view, prices 
are insignificant, are Bright Pieces that belong near the edge of the puzzle. 

Finally, the third generalization. It is one of interpretation: from now 
on, the ag need no longer represent transactions only. Some basic actions 
may represent production processes, for example. 

A difficulty arises here. Suppose that tuna, energy, and money are the 
only goods, so that n = 3. There are then at most k - 3 basic actions. 
Consider an agent who is able to buy tuna (a~), to turn tuna into energy 
by eating (a2), and to sell his energy for money (a3). That exhausts his 
basic-action allotment. Should he develop a desire to expend energy in 
fishing for tuna (a4), or to buy energy (that is, pay someone to help him, 
as), or to sell tuna (a6), theory would have to disappoint him: the six vectors 
a~ cannot possibly be linearly independent. It is an unsatisfactory state of 
affairs, to remain without remedy until Part III. 

While we are highlighting flaws in Model One, here is another. Nothing 
said so far prevents the driver from being, at times or always, a nonnegative 
linear combination of the basic actions. It is thus possible for the driver to 
be a feasible action. This spells grief, for it means that some actions can 
be both exogenous and endogenous. Evidently, what is needed is a mathe- 
matical distinction between the driver and a feasible action, between exo- 
geneity and endogeneity. Model One is too primitive to permit such a 
distinction. Model Two does better, however. Part III has details. 

The feasible set, whose discussion is now completed, is formally described 
in Definition 1. Measurement units are reinstated. 

DEFINITION 1. Given are k linearly independent vectors, the basic actions, 
all belonging to the action space A. The basic actions are the columns of 
the n • k matrix A, the action matrix. A feasible action is a nonnegative 
linear combination of the basic actions. The feasible set is the set of feasible 
actions, F = {a: a = Ae for some e >- 0}. 

The basic actions are constant over time, except perhaps for occasional 
parametric changes. 

As already hinted in Chapter 4, the here defined F differs in two ways 
from the feasible set of activity analysis. First, our A has full column rank; 
activity analysis allows the columns of its A to be linearly dependent. 
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Second, Definition 1 permits free access, meaning that F may contain 
nonnegative vectors other than 0; activity analysis prohibits free access. 

Both activity analysis and Model One keep the agent from becoming 
infinitely rich in an instant. Activity analysis does so by ruling out free 
access. Model One does it by ensuring, through its motion law, that the 
endowment always moves with finite speed. 

The activity-analytical term for free access is "production ex n ih i lo . "  

Now that producers no longer form a separate category, the term sounds 
inappositely narrow. It is the reason that Model One uses "flee access" in- 
stead. 

Figures 1 through 4 could suggest that the feasible set F ends where 
it meets a coordinate plane of X. This is not so. In fact, the set depicted 
is not even F. It is x(t) + F, in all four diagrams. The main difference 
between F and x(t) + F is that F is a subset of A whereas x(t) + F 
is a subset of X (since endowment + action = endowment).  And F is 
always unbounded, for if a is feasible, all nonnegative multiples of a 
are feasible too. 

Figures 1 through 4 could suggest that the set x(t) + F is always bounded. 
Even that is not true. Free access is possible, after all, and where free access 
exists, x(t) + F is unbounded. 

It should be added that whenever x(t) + F happens to be bounded, its 
boundedness is virtually irrelevant. The reason is that only a small part of 
F has theoretical significance, namely, the part in the immediate vicinity 
of F's  vertex, 0. As some reflection will show, this is just another way of 
saying that the important thing about a feasible action is its direction, not 
its length. 

The last paragraph drives home that the right way to look at Model One 
is to look at x(t) in extreme close-up. After all, the essence of Model One 
is concentrated in and near x(t). There is not even a utility-maximizing 
location, nearby or far away, to distract your eye, for utility maximization 
is no longer relevant. At every instant, the endowment is made to move 
by the action at that instant and the driver at that instant, and nothing else; 
consequently, what you want to observe is the push and pull of those two 
forces, and nothing else. 

That the essence of Model One is concentrated in and near x(t) can 
also be expressed this way: If you knew the endowment 's  location and vel- 
ocity at time to, if you also knew the driver's time path for all t -> to, and 
if no parametric changes of any kind were to occur after to, you would be 
able to compute the entire time path of the endowment from to until 
doomsday. 

Finally, the m o t i o n  law. 
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Figure 5. The motion law at work: comparing x(i) with x(t + dr). 

DEFINITION 2 (MOTION LAW FOR MODEL ONE). 

(i) dx(r) = da(r) + db(t). 
(ii) The direction of da(t) is that in which u increases fastest, constraint 

permitting. The length of da(r) is proportional to the slope of u in 
that direction. Vector db(t) is exogenously given. 

The proportionality factor will be written ydt. 
Figure 5 illustrates the two-goods case. The cone F is a ray. Adding 

dx(r) - da(r) + db(t )  to x(E) gives x(t  + df). As the diagram reflects, the 
direction of da at t + dc is the same as the direction of da at I. Not so the 
length: the length of da(r + dt) may differ from the length of da(t). Vector 
db(t + dr) can differ from db(r) in direction, length, both, or neither. 

Figure 6, too, illustrates the two-goods case. To keep the picture simple, 
the driver is assumed permanently null: db(f)  = 0. Also for simplicity, the 
situation depicted is that at time 1 only, not at time r + dt. The novelty 

\+--- L X I  

Figure 6. Existence of a constrained utility maximum is no longer necessary. 



6. Model  One 117 

here is that x(t) + F is unbounded. Figure 6 makes the point that a utility 
maximum, even a constrained one, need not exist. The endowment set X 
is the floor of the diagram. Utility is measured along the vertical axis. Since 
the driver is for all t null, x(t) + F lies for all t on the same line. Suppose, 
additionally, that all marginal utilities are positive. Utility then reaches no 
maximum on that line. Yet this poses no problem. The endowment 's  loca- 
tion is at all times determinate, and the endowment 's  speed is at all 
times finite. 

By the motion law, and since the driver is by assumption identically null, 
the endowment in Figure 6 moves at forever declining speed as time goes 
on. This is because the curve K climbs at a forever decreasing rate. But K 
does not have to have this form. Both neoclassical utility theory and Model 
One allow r to climb at an increasing rate, for instance. If K does so, 
the endowment will travel at forever increasing (but always finite) speed. 
Although such behavior seems implausible, nothing is gained by ruling it out. 

Figure 7 depicts the three-goods case, again with db(t) -- 0. Each good 
has its own coordinate axis, leaving no room for a utility axis. There are 
three basic actions. In the diagram, da(t) is a linear combination of al and 
a2 alone, implying that a3 is unhelpful. Apparently, if the agent were to 
undertake all three basic actions, instead of just the first two, his endowment 
would not move in the direction in which utility increases fastest, feasible 
set permitting. 

We continue with Figure 7. The triangular facet containing da(t) is part 

a 3 

x(t) 

x2 

Figure 7. At x(t), the action is perpendicular to the constrained indifference curve 
through x(t). 



118 II. Model One 

of a plane. That plane intersects some indifference surfaces along closed 
curves. A few of these constrained indifference curves are shown. 

Vector de(t) is orthogonal, at x(t), to the constrained indifference curve 
through x(t). (See Chapter 2, Question 34.) More generally, if the driver 
were null, the endowment 's  path would cross the constrained indifference 
curves-- those that it does cross- -a t  right angles. 

Near x(t), the constrained indifference curves are relatively dense, in 
Figure 7. It signifies that utility increases quickly there (in the direction of 
de(t), of course). Arrow de(t) is thus relatively long. If the driver were null, 
the endowment would move roughly in the direction of M, where the 
constrained indifference curves are shown as less dense. Near M, therefore, 
de(t) is shorter. 

In the n-goods case, the mechanism is the same as in the three-goods case. 
Two more comments. 
First, traditional utility theory, too, has a motion law, which is a special 

case of ours. To see this, consider that traditional theory has no driver and 
declares the endowment to be the utility-maximizing one, at all times. That 
there is no driver means I~ = 0. That the endowment always maximizes 
utility means two things. First, it means that the endowment does not move: 

= 0. Second, it means that the steepest constrained ascent is always 
perpendicular to the budget (hyper)plane: pH-1Vu = 0, therefore ~i = 0. 
Thus, since/~ = li = i = 0, it is indeed true that i = /~ + li. 

Second, it is tempting to regard de(t) as the utility-maximizing action, 
and crucial to see that there is no such thing. For, since utility is a function 
of endowments, it can be maximized only by an endowment. It is thus 
mathematically impossible for de(t), or any other action, to maximize utility, 
regardless of what intuition says. Besides, utility maximization has stopped 
playing a role. In fact, we saw that even a constrained utility maximum 
need no longer exist. 

The next order of business is to express de(t), the action at time t, in 
terms of the ag, the basic actions. 

In the preceding chapter, the action rate at twas/i  = 3,PIt-~Vu. The action 
at t was therefore de(t) = 3,PH-~Vudt. In these formulas, P represented 
projection onto the budget (hyper)plane, p 'x - p'Xo. Vector PIt-~Vu is of 
course the steepest constrained ascent (Chapter 2, MT 24). 

Under  Definition 2 (the motion law), the action rate at t is still /~ = 
TpH-1Vu, and the action at t is still de(t) = ypH-1Vudt. But P now has a 
different interpretation. This time, P represents projection onto the feasible 
set F. Vector PH-~Vu is thus, of all vectors in F, the one closest to l t- lVu. 
If H-~Vu lies in the set F, this is obvious, for PI t - IVu and H-1Vu are then 
the same vector. If l t - lVu does not lie in F, your intuition probably tells 
you that, indeed, F contains a vector closest to H-1Vu. Your intuition 
probably also tells you that this vector is unique. If you want proof rather 
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than intuition, note that F is closed, and use Chapter  2, MT 27, Theorem 
1, to prove existence; next, note that F is convex, and use Chapter  2, MT 
27, Theorem 2, to prove uniqueness. 

To find out how P depends on the basic actions, we need some notation. 
Because the action at t must be feasible, da(t) is a nonnegative linear 

combinat ion of the basic actions. The scalar weights in this linear combina- 
tion will be written dci( t) ,  elements of de(t): 

da(t) = aldCl( t )  + a2dc2(t) + �9 �9 �9 + akdc~(t)  for certain dci( t )  >- O. 

Equivalently,  da(t) = Ado(t) for some de(t) -> 0. When there is no risk of 
misunderstanding,  we leave off the argument  t and write da = Ado for 
some de -> 0. 

The action rate at t is d a ( t ) / d t  - A d c ( t ) / d t ,  or d a / d t  - A d c / d t ,  or/ i  = A~. 
The action between 0 and t is a(t) = At( t )  or a = Ac, with c(0) = 0. 
Each dci may vary over time. If, for instance, the driver varies from one 

moment  to the next, the agent 's  response does so too. It is thus possible 
for the direction of da to vary, not only now and then, but continually. 

Basic action ai will be called at trac t ive  (at time t) if its coefficient dci is 
positive, and una t t rac t i ve  if its coefficient is zero. Attractive basic actions 
are thus actually undertaken,  and unattractive basic actions are not. In 
Figure 7, da lies in the side of F that is spanned by al and a2; apparently,  
al and a2 are attractive and a3 is unattractive. (It gives you some idea of 
the whereabouts  of Vu.) The side of F containing da is the at trac t ive  f a c e t  

of F. More generally, the attractive facet of F is the set of nonnegative 
linear combinations of the attractive basic actions. 

In practice, Vu is unknown. In practice, therefore,  it is impossible to 
determine which basic actions are attractive and which are unattractive. 
This is not the drawback that it appears to be. For suppose we specified 
u. In theory we could then compute Vu and, next, find out which of the 
basic actions are attractive. Actually carrying out this program is another  
matter.  Merely specifying someone 's  action matrix A in complete,  numeri- 
cal detail can be expected to require a prodigious effort, with the payoff 
unlikely to be worth the cost. And that would be only half the job. What  
all this adds up to is that even if Vu were known we would not be able to 
use the information. 

Let the number  of attractive basic actions be ko. To avoid trivialities we 
assume ko -> 1. The attractive a i are the columns of Ao, an n • ko submatrix 
of A. The corresponding dci, all positive, form dco. Clearly, Ado - Aodco, 
from which, in obvious notation, A/~ = Ao~o. The attractive facet is Fo. If 
ko = k, all basic actions are attractive. In that case, da lies in the interior 
of the cone F, and Ao = A, and dco = de, and Fo is the entire cone F. In 
Figure 7, the triangular facet closest to you is x(t) + Fo. 
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Figure 8. Illustrating the motion law. 

Define P through 

p = Ao(Ao'HAo)-IAo'H. 

Matrix P thus represents projection onto the attractive facet (Chapter 2, 
MT 19). The original definitions, P = A ( A ' H A ) - I A H  and P = A(A 'A) - IA ,  
are discarded. 

Definition 2 can now be reformulated, more specifically, as 

DEFINITION 2' (MOTION LAW FOR MODEL ONE). 

dx(t) = da(t) + db(t), 
with da(t)= Aodco = 7PH-1Vudt and rib(t) exogenously given. (4) 

Figure 8 summarizes the motion law graphically. 
Definition 2' is the core of Model One. In fact, it is only a slight exaggera- 

tion to say that Definition 2' is Model One. 

S U M M A R Y  

Endowments are points x in a point set X. Actions are vectors a in a 
vector space A. The connection between the two is that the difference of 
two endowments is an action. Utility is a real-valued, differentiable function, 
defined over X. 

The endowment owes its velocity in part to what the agent does and in 
part to exogenous influences: i =/~ + b, or dx = da + db. Vector da, the 
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action at time t, belongs to the feasible set F = {a: a = Ac for c >- 0}. More 
precisely, da is a constant multiple (ydt) of the vector in F that is closest 
to H-l~'u. You can also say that da is the vector in F that is closest to 
yH-~ud t .  See Figure 8. 

Q u e s t i o n s  

1. Seeing that the driver is determined by reality, do we have the 
freedom to specify the functional form of its elements? Or does 
Nature take care of that? 

2. Suppose all quantities are real. Show that if (1 !) 
A =  - 1  

2 - 

10. 

11. 

then at least one (imputed) price is negative. 

3. (Continuation) It follows that A cannot be an action matrix. True 
or false? 

4. (Continuation) Find at least one feasible action with all elements pos- 
itive. 

5. Suppose all quantities are real. It was said that "buying a Party Pak," 
(1, - 1 ,  5)', and "buying a Family Pak," (2, 3, - 1 2 ) ' ,  are linearly 
independent.  Prove this algebraically. 

6. Describe the attractive facet of F if Vu = (2/b, 2/f, 7/k)' and ko = 0. 

7. Use Eq. (4) to express ~o in terms of Ao, H, ~u, and y. (Do not 
assume that Ao is square.) 

8. Suppose all quantities are real. Let the action matrix be (! 1 !) 
A =  0 . 

1 - 

Is vl = (1, 2, 2)feasible? Is v2 = (2, 4, 1)' feasible? Is u = (1, 2, 1) '  
feasible? 

9. (Continuation) Replace al, the first column of A, with -a~. Now 
which of the three vi is or are feasible? 

Figure 5 appears to imply that x(t) + da(t) + d b ( t ) =  x(t + dt). Does 
this equation indeed hold? 

If the cone F has three edges, how many feasible actions are there? 
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The Short-Response Function 

The purpose of this chapter is to find out how certain dependent variables 
respond to parametric changes of some basic-action element. 

Recall that the action at time t is da = Ado = ~aidci. 
Every dependent variable to be considered is either a flow or a flow rate. 

If a flow, it is either an element of an a~dci or the sum of several such 
elements. If a flow rate, it is either an element of an aidc~/dt or the sum of 
several such elements. Since flows and flow rates differ only by a factor dr, 
there is no need to examine both. We concentrate on flow rates. Effectively 
then, all dependent variables in this chapter are flow rates. 

The function describing how any flow rate reacts to a parametric change 
of a basic-action element will be called the short-response function. Among 
its special cases are the nine testable results promised earlier: all four 
demand functions (consumer/own-price, consumer/cross-price, producer/ 
own-price, producer/cross-price), all four supply functions (consumer/own- 
price, consumer/cross-price, producer/own-price, producer/cross-price), 
and the quasi-Engel function, which describes how the demand rate for a 
good depends on the wage. 

If some basic-action element changes at time to, the short-response func- 
tion describes how the dependent variable is affected at to, and only at to. 
Part III introduces the long-response function, which describes how the 
dependent variable reacts not only at to but also afterward. 

The short-response function is given by the equation i/ - f(p). We 
interpret first p and then t). After that, the form of f(p) is derived. 

All but one of the basic actions are assumed constant. To streamline the 
exposition, suppose the basic actions have been ordered so that the variable 
one is a~. 

All but one of the elements of a~ are assumed constant. To streamline 
the exposition, suppose the commodities have been ordered so that the 
variable element of al is the first, a~l. 

For notational simplicity, all is written p. This p, which may be negative, 
is the independent variable in the short-response function. There is no need 
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for p to be a price; p can be any basic-action e lement - -any  input in a 
production process, for instance. 

Strictly, p cannot be a price�9 A price is a quotient of two action elements, 
with sign suppressed, whereas p is a single action element. To illustrate, 
let a~ be "buying a gallon of milk," with a milk element of lg and a money 
element of -2d .  The price of milk is thus (2d)/(lg). When - 2 d  is 
abbreviated to p, and 2d to -p ,  the price of milk becomes -p/( lg);  which 
is still a far cry from p. But it is accurate to say that changes of the milk 
price are represented by changes of p. From here on, references to "the 
price p"  are meant to be interpreted in that sense. 

With one exception, the diagrams of economics follow mathematical 
practice by measuring independent variables along the horizontal axis. The 
exception is when the independent variable is a price; economics then 
follows Marshallian practice by putting price on the vertical axis. All this 
works very well so long as it is clear whether one's independent variable 
is a price or not. But that has ceased to be clear: p may or may not be 
a price. It is thus no longer possible to obey both mathematical custom 
and Marshallian custom. Forced to choose, we go with the mathematicians. 
In this book then, the p-axis is always horizontal. 

So much for the interpretation of the independent variable, p. The inter- 
pretation of the dependent variable,//,  is next. 

The action rate at time t is ~i = A~ = b~a~ + C 2 a  2 -+- �9 �9 �9 q -  Ckak . Its 
elements are 

a 2  = b~a~2 + c 2 a 2 2  + �9 �9 �9 + Ckak2 

hn = blain + beae~ + "  �9 �9 + bkak~. 

Each of the n right-hand sides consist of k flow rates, all of the form cia 6 
for some i and j. The general flow rate cia6, with i and j unspecified, is the 
/ / in  ~/ = f(p).  

In the field of economics , / / i s  the dandelion. As the following examples 
illustrate, almost every rate of economic significance is either a flow rate 
of the form cia 6 or the sum of several such flow rates. 

Demand and supply, perhaps more accurately called demand rate and 
supply rate, are either flow rates or sums of flow rates. If apples are good 
3, if you get all your apples by buying them at FoodPlace, and if "buying 
an apple at FoodPlace" is a i ,  your demand rate for apples is ciai3. If you 
buy apples not only at FoodPlace (ai) but also at FoodCorner  (aj), and if 
in addition you borrow apples from one neighbor (a~) and steal apples 
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from another (az), your demand rate for apples is ciai3 n t- c ja j3  n u Ckak3 + 
Clal3. If money is good 1, your expenditure rate for apples is ~'iail nu cjajl. 
This rate is negative; you may prefer to follow custom and define the 
expenditure rate for apples a s  Iciail + c.jajll. 

More examples: If you have both a day job (as) and a night job (ag), and 
if energy is good 7, your supply rate of energy is t?faf7 + bgag7, or its absolute 
value if you prefer. Being paid wages in both jobs, you have an income 
rate of byafl + l~gagl, assuming that money is still good 1. If you pay taxes 
(ah) on your earned income, the rate at which you do somyour  tax payment  
ratemis  Chahl, o r  its absolute value if you prefer. Your disposable-income 
rate is then ~fafl + ~gagl + Chahl .  

Still more examples: If chairs are good 4, and "making a chair" is ap, 
and you make chairs, your output rate is bpap4. The corresponding revenue 
rate is Cpapl, assuming that you sell the chairs you make, and assuming that 
money is still good 1. If cars are good 8, and "selling a car" is aq, and you 
sell cars, your sales rate is Cqaq8 , o r  its absolute value if you prefer. 

And so on. 
Every own-price demand function is of the form ~ = f(p),  with p repre- 

senting a price and ~ being both a demand rate and an element of altO1. Every 
cross-price demand function is of the form t) - f(p) ,  with p representing a 
price and ~ being both a demand rate and not an element of a~t?~. 

Every own-price supply function is of the form ~ = f(p),  with p represent- 
ing a price a n d / / b e i n g  both a supply rate and an element of altO1. Every 
cross-price supply function is of the form t) = f(p) ,  with p representing a 
price and q being both a supply rate and not an element of alt~l. 

It should be amply clear by now that f ( p )  is a good deal more than a 
demand or supply function in the traditional sense, whether own-price or 
cross-price. The short-response function also describes how the income rate 
depends on the wage p, or on the price p of tea. And it describes how the 
output rate of cars varies with the labor input (that is, the quantity p of 
energy needed to make one car). And it describes how the agent's consump- 
tion rate of peanut butter sandwiches varies with the quantity p of peanut 
butter on each sandwich. In brief, f ( p )  describes how any flow rate responds 
to changes in any basic-action element. 

The derivation of f ( p )  is next. A numerical example serves as introduc- 
tion. For simplicity, all quantities are temporarily assumed dimensionless. 
Both A and A ~ are thus R 3, for the time being. 

The numerical example involves k = 2 basic actions and n = 3 goods. 
The basic actions are al = (2, - 1 ,  3)' and a2 = ( - 1 ,  1, 2)', columns of 

A ~ .  

2 - 1 )  
- 1  1 . 

3 2 

Also given is yVu = (6, 7, 4)'. In real life, of course, you never have this 
kind of information. 
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For a picture, see Figure 8 in Chapter 6 (with H = I). 
Projecting y V u  onto the plane spanned by a~ and a 2 gives P(TVu) = 

A(A'A)-IA'(TVu).  Gambling that both basic actions are attractive (and 
prepared to start over if it turns out otherwise), we set this equal to A~, 
to get A~ = A(A'A)-IA'(TVu).  To simplify, premultiply both sides by A'. 
This gives A'A~ = A'(TVu), which is a linear system in the unknowns b~, 
c2. Using the givens turns the system into 

1461 + 3c2 = 17 

3i:1 + 6c2 = 9. 

Its solution is bl = c 2  --- 1. AS hoped, both/:i are positive. Both basic actions 
are thus attractive. Equivalently,/: = ~0. 

For the next step toward the short-response function, we change al from 
(2, -1 ,  3)' to (p, -1 ,  3)'. The system A'A~? = A'(yVu) thereby becomes 

(p2 + 10)bl + (5 -p )b2  = 5 + 6p 
(5 - p)bl + 6c2 = 9. 

Solving by Cramer's Rule gives 

from which 

~72 

5 + 6 p  5 - p  
9 6 

p 2 + 1 0  5 + 6 p  

5 - p  9 

p 2 +  10 5 - p  

5 - p  6 

p2 + 10 5 - p  

5 - p  6 

z ~:1 = Cl(p) p2 9p 3 
+ 2 p + 7  

C2 = c2(p) = 3p2 -- 5p + 13 
p 2 + 2 p + 7 "  

For a quick description, let Q, L, and K stand for "a quadratic form in p," 
"a linear form in p," and "a constant." Also, let Qo represent the quadratic 
form that is the common denominator of the hi. Then bl = L/Qo and 

b2 = Q/Qo. 
The results just found are typical, in the following sense. Suppose the 

variable basic action (in the example, a~) is attractive. As will be shown in 
a moment, the element of ~o that is associated with the variable basic action 
(in the example, b~) is a quotient of a linear form and a quadratic form, 
not just here but in general. All other elements of/:o are quotients of two 
quadratic forms. Further, all elements of ~o have the same denominator, 
Qo. Elements of ~ not in ~o are, as you know, zero. 
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Now that we know how the b i depend on p, it is easy to find out how 
the various flow rates i:iaq depend on p. First, i - 1: since the three elements 
of al are p, -1 ,  and 3, the three flow rates in blal have the form pL/Qo, 
L/Qo, and L/Qo. Next, i - 2: since the three elements of a2 are constants, 
all three flow rates in b2a2 have the form Q/Qo. 

Note that p L  is a Q with its constant term lopped off. You might say 
that all flow rates have the form Q/Qo, except that the flow rates in blal 
have "deficient numerators": the numerator of t~lall is a Q without a con- 
stant term, and the numerators of the other i:lali are Q's without a qua- 
dratic term. 

This completes the example. Generalization follows, in the form of Theo- 
rem 1. Measurement units are reinstated. 

THEOREM 1. Let q = c i a i j .  The short-response function is 

il = f (p )  = Q/Qo Ap2 + Bp + C 
= D p  2 + E p  + 1' (1) 

where A,  B, C, D, and E are parameters. For flow rates that are elements 
o f  61a1, the function simplifies: if  q = Clall (= 61p), the numerator lacks a 
constant term (C = 0), and if q is any other element o f  61al, the numerator 
lacks a quadratic term (A = 0). 

Parameters A,  B, and C vary with i and j. Parameters D and E are the 
same for all i and j. 

Proof  First, a refresher. Recall that basic action aj is attractive (at t) 
if it appears with positive weight dcj in da = aldCl + f l z d c 2  -k- �9 �9 �9 -k- 

akdC~ = Ade. The attractive basic actions form Ao. The positive dci form 
deo. The action at t, which is da, thus equals not only Ade but also Aodeo. 
Division by dt gives the action rate at t:/n = Aoio. 

By the motion law for Model One- - see  Chapter 6, Definition 2 ' ~ w e  
have ~i = Ao~o = ypH-1Vu = yAo(Ao'HAo)-~Ao'Vu. Premultiplying by 
Ao'H gives 

Ao'HAoeo = yAo'Vu. (2) 

Equation (2) is a linear system of ko equations in the ko unknown elements 
bi of Co. (Elements of ~ not in/:o are known: they are all zero.) To make 
the argument easier to follow, we take ko = 3 and let the three attractive 
basic actions be al, a2, and a3. Nothing essential is lost by these assumptions: 
as the story unfolds, it will become clear that the reasoning is quite general 
and applies equally well to all other possible values of ko and to all other 
possible collections of attractive basic actions. 

The coefficient matrix in (2), which is Ao'HAo, has general element 
a / ' H a y .  This is quadratic in p if i - j = 1, linear in p if either i = 1 or 
j = 1, and constant otherwise. On the right, the ith term is Tai'Vu. This 
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is linear in p if i = 1 and constant otherwise. System (2) can thus be written, 
symbolically, as 

L K /:2 - �9 

L K /:3 
(3) 

When (3) is solved by Cramer's Rule, each/:~ emerges as a quotient of 
determinants. The three denominators are the same; each is the determinant 
of the coefficient matrix. To see how this determinant depends on p, expand 
with respect to the first row. You find that 

K K  L K  L K  
det(Ao'HAo) = Q K K  + L L K  + L L K  

= Q + L(L)  + L(L)  = Qo. 

The three numerators are handled the same way. They are 

L L L  
K K K  

K K K  

= L ,  
Q L L  

K K  

L K K  

= Q, and 
Q L L  

K K  

L K K  

=Q. 

In all then, 

bl = L/Qo, and / :2  = Q/Qo, and i:3 = Q/Qo. 

The first element of ltl I is p, and the other elements are constant. The 
flow rate/:1all thus has the form pL/Qo, and all other flow rates/:lali have 
the form L/Qo. 

The elements of 112 and a3 are constant. All flow rates/:2a2i and/:3a3~ thus 
have the form Q/Qo. 

Let Qo = O P  2 -nt- E p  n t- F. Since Qo = det(Ao'HAo) is positive, F cannot 
be zero. (Nor, for that matter, can D.) It is thus permissible to divide all 
numerators (L or Q) and all denominators (Qo) by F. Equivalently, we 
may set F = 1, as is done in (1). P.O.C. 

Discussion. (i) Figure 1 shows a sample graph of (1). Figure 2 shows 
a sample graph of (1) with A = 0. Figures 3 and 4 show sample graphs of 
(1) with A = 0 and p - 0. Note that Q/Qo can be written as L/Qo + K, 
so that every graph of (1) is a vertical translate of the graph of some L/Qo. 
It means that you can get a good idea of the possible graphs of Q/Qo by 
inspecting graphs of L/Qo, like Figures 2, 3, and 4. 

(ii) For an illustration of Theorem 1, let a~ be "buying a gallon of milk." 
Let its milk element be + lg and its money element p. Milk is good 5, say. 
Since p = a11, by convention, money is good 1. Suppose that "buying a 
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Figure 1. A short-response function. 

Figure 2. A short-response function with A = 0. 

loaf of bread" is one of the basic actions. The r a t e / / a t  which the agent 
buys bread depends on the price of milk according to (1). In fact, every 
cross-price demand function has the form Q/Qo. 

The flow rate b~am5 is the rate at which the agent buys milk, at time t. 
Since blab5 is an element of blam other than bia11, its dependence on p is 
given by L/Qo. The own-price demand function for milk is thus of the form 
(1) with A = 0. Obviously, every own-price demand function will be of 
that form. 

The flow rate b~a~ - b~p, or its absolute value, is the rate at which the 
agent pays for the milk he buys. By Theorem 1, this expenditure rate obeys 
(1) with C - 0. 
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Figure 3. 

P 

A short-response function interpretable as a demand function. 

Figure 4. A short-response function interpretable as a Giffenesque demand function. 

(iii) For another illustration, let al be "working for a wage." Let its 
energy element be - l e  (= 1 erg) and its money element p. A change of 
p thus represents a wage change. Energy is good 6, say. Money is good 1, 
as before. Noted again is that this book interprets supplying as selling, 
rather than as merely offering for sale. 

The flow rate cla16, or its absolute value, is the rate at which the agent 
supplies energy, at time t. Since cla16 is an element of b~a~ other than cla11, 
its dependence on p is given by L/Qo. The own-price supply function of 
energy, more commonly called the labor-supply function, is thus of the 
form (1) with A - 0. The labor-supply curve can bend backward, or down- 
ward rather (now that p is on the horizontal axis). As you saw in 



130 II. Model I 

Question 6 at the end of Chapter 5, the labor-supply curve bends downward 
if and only if all three of B, C, and B - CE are positive. 

The flow rate blall = blP is the rate at which the agent receives money 
for the energy he sells--his income rate, in other words. By Theorem 1, 
this income rate depends on the wage according to (1) with C = 0. 

(iv) For yet another illustration, let al again be "working for a wage," 
and let a2 be "buying a loaf of bread." Bread is good 8. Money is again 
good 1. As before, a change of p represents a wage change. 

The quasi-Engel function for bread describes how the demand rate for 
bread, b2a28, varies with the wage--varies with p, that is. The quasi-Engel 
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Figure 5 .  A quasi-Engel curve through the origin; p is the wage. 
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Figure 6. Quasi-Engel curve for a good bought even if the wage p is zero. 
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Figure 7. Quasi-Engel curve for a good bought only when the wage p exceeds a certain level. 
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Figure 8. Quasi-Engel curve for a wage-inferior good, like cheap wine. 

function is thus nothing but a cross-price demand function, of the form 
Q/Qo. Figures 5 -7  show three possible graphs. 

Define a good as wage-normal or wage-inferior depending on whether 
the demand rate for it increases or decreases when the wage goes 
up. For contrast, normal and inferior goods will be called income-normal 
and income-inferior. Figures 5 -7  concern wage-normal commodities, 
like expensive wine. Figure 8 shows a quasi-Engel function for a wage- 
inferior good, like cheap wine. Figure 9 shows a quasi-Engel function for 
a good that is initially wage-normal but eventually wage-inferior, like mid- 
priced wine. 
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Figure 9. Quasi-Engel curve for midpriced wine. 

(v) Introduction of the quasi-Engel function raises the question of where 
the ordinary Engel function fits in. The answer is that it does not. In Model 
One, the income rate is a flow rate of the form (.iaij, o r  a sum of several 
such flow ra tes - - in  short, a dependent variable. But the definition of the 
Engel function treats the income rate as an independent variable. By the 
standards of Model One, therefore, the Engel function is an illegiti- 
mate construction. And not just according to Model One, either. It is well 
known that the Engel function is not single-valued, meaning it is not a 
function. 

Still, for many workers, the income rate is nearly proportional to the 
wage. Thus, if one of those workers'  income rate were plotted against that 
worker 's  demand rate for some commodity, the resulting graph would 
closely resemble that of the quasi-Engel function. In particular, graphs 
concerning income-normal goods would likely have the sigmoid shape 
you see in Figures 5-7. This is of more than passing interest: many empiri- 
cal studies have found Engel curves for income-normal goods to be sig- 
moidal. 

(vi) A parenthetical note: Because this book views income as a dependent 
variable, it has no way of dealing with any notion that treats income as an 
independent variable. The Engel function is of course one of these. The 
income elasticity of demand is another. The income effect is a third. 

(vii) Parameters A through E in (1) are dimensioned. To see how, we 
note first that since the inner product on A is real-valued, all elements of 
Ao'HAo are real. Det(Ao'HAo) = Qo is thus real too. It follows that if p 
is measured in bottles (b), parameters D and E are measured in 1/b 2 and 
1/b. As for the numerator,  Ap  2 + Bp + C, suppose t h a t / / i s  measured in 
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cans per hour, c/h. Then all three of Ap 2, Bp, and C must be so measured. 
In consequence, the unit of A is c/bZh, and that of B is c/bh. 

(viii) Because the five parameters in (1) depend on unknown quantities, 
like the marginal utilities and the elements of I-I, their values should be 
considered obtainable solely by estimation, rather than by computation or 
direct observation. To see how such estimation might be performed, sup- 
pose, for concreteness, that 0 = f(P) is an own-price demand function. In 
neoclassical utility theory, observations on p and 0 would be made on 
Mondays only, and the agent would have to have the same initial endow- 
ment each time. But for two slight differences, it is the same here. First, 
there is no need to limit the observing of p and 0 to Mondays, or even to 
regularly spaced instants. Second, at all observations the endowment x must 
be the same (or else Vu will differ at different observations, affecting the 
parameter values to be estimated). Incidentally, the x here referred to can 
be any endowment. It does not have to be the initial endowment. In fact, 
there is no such thing as an initial endowment in Model One. 

The requirement that x be the same at all observations needs a small 
modification. Flow rates, l ike// = dq/dt, cannot actually be observed. But 
you can observe Aq/At. Doing so requires that the commodity stock of 
interest be measured twice, once at some instant t and once a little later, 
at t + At. Barring exceptional circumstances, x(t + At) will differ from x(t), 
and Vu(t + At) will differ from Vu(t). Since the endowment 's  time path is 
continuous, the difference between x(t + At) and x(t) is small if At is. 
Further, u is differentiable, meaning that all marginal utilities not only exist 
but are continuous; this implies that the difference between Vu(t + At) and 
Vu(t) is small if At is. In all then, Aq/At will be a reasonable approximation 
of dq/dt so long as At is small. 

Continuity of the marginal utilities plays no role in Model One itself. It 
is only when Model One is put to the test, and actual observations are 
needed for parameter estimation, that continuity becomes important. Exis- 
tence of the marginal utilities is essential, however. Without it, there would 
be no Vu. 

More on estimation in Part III. 
(ix) If two flow rates, 01 and 02, are measured in the same units, they 

can be added. Suppose that both are written as functions of p, and 01 + 
t)2 is tOO. Since 01 and ~/2 have the same denominator Qo, the denominator 
of l)1 n t- 02 will be that same Qo. Further, since the numerators of 01 and 
~/2 a re  polynomials of degree 2 or less, the numerator of//1 + t)2 is too.  It 
follows that ql + 02 is a flow rate in its own right, its dependence on p 
given by (1). For example, if wine and milk are both measured in gallons, 
and if p is the price of milk (or rather, the number of dollars you need to 
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buy a gallon of milk), the demand rate for wine plus the demand rate for 
milk depends on p according to Q/Qo + L/Qo = Q/Qo. For another example, 
let al be a production process producing two goods, botti measured in tons. 
If the goods are 2 and 3 n m o r e  to the point, if neither is good l m t h e  sum 
of the output rates, t~lal2 + /~1a13, will depend on a l l  = p according to 
L/Qo + L/Qo = L/Qo. 

(x) A few comments about the domain of f (p) .  The domain is not neces- 
sarily the entire p-axis. There are two reasons. 

First, it is possiblenrather  easy, in factmto construct an example in 
which the basic actions lose their linear independence once the change of 
p is big enough. When that happens, Qo vanishes, and f (p )  ceases to 
be defined. 

Second, as p varies, an attractive basic action may become unattractive, 
and vice versa. At isolated moments then, Ao may gain or lose a column, 
changing the value of ko. The model continues to apply, and f (p )  retains 
its analytical form; but some postchange parameter values will differ from 
the prechange ones. Interpretation suggests that, in the real world, changes 
of ko are infrequent. 

Since the basic actions are observable, it is possible, in principle, to find 
the p-values (if any) at which the ai become linearly dependent. But it is 
unlikely that this can be done in practice. There exist hundreds of thousands 
of goods, making it next to impossible to specify someone's action matrix 
A, let alone manipulate it in computations. 

It is even more difficult to find the p-values at which ko changes. In fact, 
it is impossible, for Vu determines which basic actions are attractive, and 
Vu is unknown. 

What all this adds up to is that both the domain off (p)  and the specifica- 
tion of Ao should be considered unknowable. 

(xi) Supppose al is unattractive, and p varies so little that al remains 
unattractive. Changes in p then have no effect. For instance, an agent who 
dislikes broccoli is unlikely to respond if the broccoli price p drops a bit. 
The demand rate for broccoli still follows (1), but with A = B = C = 0. 
Of course, if p goes down a lot the agent might reconsider and start buying 
broccoli. In that case he adjusts all other flow rates too. 

(xii) Suppose that two or more elements of a~ are variable~say, all = 
Pl and a15 = P2. Tracing the proof of Theorem 1, you find that, with one 
proviso, bl still has the form L/Qo, and all other bi still have the form 
Q/Qo. The proviso is that L and Q must be reinterpreted as linear and 
quadratic forms in two variables, Pl and P2. It follows immediately that 
t~ = C l a l l  has the form plL/Qo, that q = bla15 has the form p2L/Qo, that all 
other elements of Clal have the form L/Qo, and that all elements of all 
other biai have the form Q/Qo. 
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(xiii) Now that the individual own-price demand function is known in 
explicit analytical detail, the Slutsky equation has lost its relevance. Still, 
it is only natural to be curious about what the Slutsky equation would look 
like when recast in the terminology of Model One. 

Because income is not in Model One's vocabulary, a precise parallel 
does not exist. There are, however, several formulations that more or less 
resemble the Slutsky equation. Probably the simplest of these is: If a basic- 
action element changes, and if at the same time one or more other basic- 
action elements are made to change so that da is again possible (compensa- 
tion), then the postchange II da II exceeds the original II da II. A proof follows. 
Since the result is of less than vital importance, the proof considers only 
the case of three goods and two basic actions. To simplify further, both 
basic actions are assumed attractive. The feasible set's attractive facet is 
thus the feasible set itself: Fo - F. 

See Figure 10. The action at time t is da = XB, found by projecting 
7 ~ u d t  - XA onto F. Suppose that a basic-action element changes, at time 
t, and that as a result da is no longer feasible. The set F thus changes its 
tilt. The new F u c a l l  it F l u i s  not shown in Figure 10. 

Also at time t, one or more basic-action elements are made to change 
so that da is again feasible. The feasible set thus changes once more, from 
F1 to F2. Figure 10 does show F2. 

Figure 10. Illustrating a Model One version of the Slutsky equation. 
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Figure 10 also shows da* = XB*, which is the projection of ~/Vudt onto 
F2. Since XB lies not only in F but also in F2, vectors AB* and XB are 
perpendicular. Since vectors AB and XB are also perpendicular, XB is 
perpendicular to the plane through AB and AB*. It follows that XB is 
perpendicular to BB*. Triangle XBB* thus has a right angle at B. This 
implies that II XB* [I > II XB It, or II da* II > II da II. P.O.C. 

SUMMARY 

Almost all rates of economic interest are flow rates, of the form 0 = c.iaij. 
By the law of motion, the action rate at time t satisfies /t = Ao~o = 

7pH-1Vu. From this can be inferred how the elements Ci of Co, and therefore 
all flow rates, depend on the basic-action element p. 

Theorem 1 says that flow rates depend on p according to the short- 
response function, f (p )  = (Ap 2 + Bp + C)/(Dp 2 + Ep + 1). Among the 
interpretations of f (p)  are all demand and supply functions, both own-price 
and cross-price, as well as the quasi-Engel function. In fact, the quasi-Engel 
function is a cross-price demand function. 

In certain special cases, f (p )  simplifies. All own-price demand functions, 
for example, obey f (p )  with A = 0. So do all own-price supply functions, 
if supplying is interpreted as selling. 

Questions 

1. Are preferences transitive, in Model One? 

2. You just found out that there is a new theory of behavior claiming 
that consumers never destroy money. To falsify the theory, you burn 
a dollar bill, something you would not have done if you had not heard 
about the new theory. Compare this with the law of gravity, which 
you obey regardless of whether you know it or not. Now for the 
question: give an example of behavior that will falsify (a) Pareto's 
utility theory, (b) Model One. More on this subject in Chapter 8, when 
the falsifiability of Model Two is examined. 

3. Suppose John's Ao never gains or loses a column. Roughly how many 
actions does John carry out during his lifetime? 

4. A permutation matrix is what you get when you permute the columns 
of an identity matrix. For example, if I = (el, e2, e3), then M = 
(e2, e3, el) is a permutation matrix. Prove that if M is a permutation 
matrix, M 'M = MM' = I. 

5. If you postmultiply Ao by a permutation matrix M, what is the effect 
on Ao, and what is the size of M? 
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6. (Continuation) What, if anything, must you do to It, ][-I -1, Co, P, Vu, 
the system Ao'ltAo~o = 7Ao'Vu--which is Eq. (2) - -and Theorem 1 
if all results derived so far are to retain their economic interpretation? 

7. If you premultiply Ao by a permutation matrix M, what is the effect 
on Ao, and what is the size of M? 

8. (Continuation) What, if anything, must you do to It, It  -1, Co, P, Vu, 
the system Ao'ltAo~o = ),Ao'Vu--which is Eq. (2) - -and Theorem 1 
if all results derived so far are to retain their economic interpretation? 

9. Show that Theorem 1 would be unchanged if the utility function were 
a minimand rather than a maximand. 
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8 
Model Two 

After a sketchy and nonmathematical outline, this chapter formulates 
Model Two. Chapter 9 derives the long-response function. Chapter 10 
tests it. 

In the course of the argument, it will become clear that Model Two 
outperforms Model One in every way. For one thing, Model Two concerns 
all individual behavior, not just economic behavior. For another, Model 
Two has ten testable results, against Model One's nine. What is more, the 
testable results of Model Two are more detailed than those of Model One, 
in that they describe the effects of parameter changes not only at the time 
of their occurrence but also afterward (the "long response"). 

Individual behavior is governed by the mind. Neoclassical utility theory 
and Model One reflect it, if skimpily: both theories condense the mind's 
influence into a single number, u(x). 

Starting from the belief that the mind is too complex to be captured by just 
one number, Model Two uses m numbers, with m possibly very large. The m 
numbers are the coordinates of a point, called the state ofmind (at time t). It 
is the state of mind, not the endowment, that acts as the model's protagonist. 
Model Two does have a place for the endowment (or rather, something like 
it), but it is a much smaller place than before. In Model One, the endowment 
came first, the mind second; in Model Two it is the other way around. 

Whatever goes on inside the agent's mind (or brain-- the terms are used 
interchangeably here) is assumed unobservable. This is a little stronger 
than necessary--it  would be enough not to assume observability, rather 
than to assume unobservability--but it simplifies the language. 

The mind constantly receives and processes information. Everything the 
agent perceives, through any of his senses, serves as input. The mind trans- 
forms the input into output, by ordering the mouth to eat, the feet to walk, 
the hands to move. Taking a guess at how the transforming mechanism 
works, Model Two postulates a motion law for the state of mind. Mathemati- 
cally, the chosen motion law closely resembles that of Model One: input 
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from the outside serves as the driver, pulling or pushing the state of mind 
this way and that; the state of mind counters by giving orders meant to make 
i t - - the  state of mind--move in the direction of quickest improvement, 
constraint permitting, and with a speed proportional to the objective func- 
tion's slope in that direction. 

Much of what goes on inside the mind is linked to the outside world, in 
that it has concrete, observable consequences. One of the things Model 
Two must do is guess how the link works--how the visible tail is affixed 
to the unobservable dog. A sample question: If, as a result of a sudden 
parameter change, the state of mind were to start moving twice as fast, 
would the endowment also start to move twice as fast? 

The connection between the mind and the outside world is actually two 
connections, an input link and an output link. 

When the agent observes some exogenous event, his observation is trans- 
formed into stimuli affecting the state of mind. The transformation is the 
input link. 

Right after the mind orders the mouth to eat, the mouth goes to work. 
We cannot witness the giving of the order, but we can see the soup disappear, 
and we know that the agent's hunger abates. The output link describes 
how the dwindling of the hunger is tied to the dwindling of the soup. 

A picture is beginning to emerge. See Figure 1. In the center is a Black 
Box- - the  mind. Events occurring in the outside world are observed at the 
entrance of the Box, marked "input link," and translated into stimuli the 
mind can understand. The mind then processes the stimuli (which it does 
according to the motion law), turning them into instructions to various 
parts of the body. When those instructions are carried out, some of the 
consequences emerge on the right, where it says "output link," in the form 
of observable events. In all then, there is observable input at the beginning, 
observable output at the end, and, in between, the unobservable mechanism 
that turns input into output. The mechanism has three parts-- input  link, 
motion law, and output l ink--whose workings we must guess. Given the 
input and the three guesses, we can predict the output. If the guesses are 

Figure 1. The Black Box for Model Two. 
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good, the prediction will be borne out by the facts. If the prediction is not 
borne out by the facts, at least one of the guesses must be bad. 

The outline is not yet complete. Consider again the changes in the outside 
world that act as input to the agent's mind. So far, the discussion has 
implicitly taken for granted that those changes are wholly exogenous, form- 
ing what Model One called the driver. But there are other, not quite so 
exogenous changes, which the agent also perceives. They are the changes 
brought about by what he himself does. 

For an example, suppose the agent is, once again, eating soup. As he does 
so, the stock of soup diminishes. The disappearing of the soup constitutes a 
change of the real world. The change is visible not only to you and me but 
also to the agent. Now when the agent observes any change in the real 
world, his state of mind is affected. In particular then, his state of mind is 
affected when he perceives the vanishing of the soup. 

The soup example illustrates that output emerging from the Black Box- -  
that is, observable consequences of the agent's own actions--acts as input. 
This phenomenon is known as feedback, and the information being fed 
back is the feedback. 

Is the feedback endogenous or exogenous? You could argue either way. 
On the one hand, the news that the soup is disappearing enters the brain 
from the outside, through the eyes, suggesting that the change is exogenous. 
Then again, since the soup vanishes as a consequence of the agent's own 
actions, the change is plausibly considered endogenous. 

Some reflection will show that the feedback is best regarded as endoge- 
nous. The argument is this. Suppose that for some reason the mind goes 
into higher gear, handing out orders for faster actions. The production of 
visible consequences--via the output l ink-- then speeds up as well. In its 
turn, this increases the feedback volume. Information being fed back thus 
moves more or less in lockstep with the agent's own actions, and this makes 
the feedback endogenous. A useful implication is that when actions are 
(re)defined, as they shortly are, they can be made to include the feedback 
as a constituent part. 

The following account of how the mind operates is fictional. It is not 
meant to be subjected to expert scrutiny, and would not survive if it were. 

Sensations, like hunger and thirst, reach the brain in the form of electro- 
chemical signals. Each signal puts one or more neurons into a stimulated 
state. Every neuron has its own wavelength, so to speak: some neurons 
react to hunger signals only, others react to thirst signals only, and so on. 
Thus, if there are m distinguishable sensations, there are, correspondingly, 
m distinct groups of neurons. These groups will be called registers. At every 
instant t, every register contains a possibly very large number of activated 
neurons. It is not assumed that m is observable, that the m register values 
are observable, or that the m sensations are identifiable by name. 
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Suppose that, if there are more than 50,000 activated neurons in the 
hunger register, the agent is h u n g r y ~ a  little bit hungry if the number of 
activated cells is barely above 50,000, very hungry if it is much greater than 
50,000. (The number 50,000 is chosen for the sake of illustration only; no 
factual accuracy is implied.) Suppose further that, if there are fewer  than 
50,000 activated neurons in the hunger register, the agent feels the unpleas- 
ant sensation resulting from overea t ing~a  little bit if the number is barely 
less than 50,000, a lot if the number is much less than 50,000. We now 
subtract 50,000 from the actual number, thereby replacing the old hunger 
quantity with a new measure. The old quantity was a nonnegative integer; 
the new one, still an integer, is positive, negative, or zero. 

Let the new hunger measure be divided by 10,000 (also chosen arbi- 
trarily). The result is a rational number. This number changes every time 
the agent's hunger varies, and each of those changes is a multiple of 
1/10,000. Increments of that size are small enough to take the daring out 
of the next step: in what follows, the value of the hunger register is assumed 
to be a real number. 

Applying the same procedure to the other registers (possibly with key 
numbers other than 50,000 and 10,000) yields, in the end, a collection of 
m real numbers, one for each register. 

Simplifying further, we ignore from here on that the value of a register 
has a maximum and minimum. The value of any register is thus now a real 
number between -oo and + oo. For the ith register, that number is written 
s~i(t) or ~i. 

The state of mind at time t is (~l(t),~2(t), . . . ,~m(t))', also written g(t) 
or g. Although a column, g is a point, in E m. (Chapter 2, MT 5 and MT 7.) 

The time path of g is taken to be continuous everywhere and, except 
perhaps at a few isolated points, differentiable as well. Each of the m 
functions ~i(t) is thus almost everywhere differentiable with respect to t, 
for all t. 

Of all possible states of mind, g = 0 is the most attractive. When g is 
null, no desire is overfilled, none underfulfilled. The point g = 0 is a cousin 
of what utility theory calls the bliss point. It is a distant cousin: whereas 
the coordinates of the bliss point represent commodity stocks and are thus 
dimensioned quantities, the coordinates of g are real numbers. More briefly 
put, the bliss point belongs to X, and the state of mind belongs to E m. 

We assume that the key numbers~ l ike  the 50,000 and 10,000 in the 
example above- -can  be and have been chosen so that a thirst of 3 is as 
(un)pleasant as a hunger of 3. More generally, we assume that the key 
numbers can be and have been chosen so that two states of mind, gl and 
g2, are equally (un)pleasant if and only if they are equally far removed 
from the origin-- if  and only if II gl II - II g= II. 
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Strictly speaking, I[ g II is undefined, for g is a point, not a vector. On the 
other hand, the difference between the point g and the point 0 is a vector, 
in R m, so that II g -  0 II does exist. We shorten g -  0 to g. From here on 
then, g is either a point in E m or a vector in R m, context deciding which 
is which. 

The inner product on R m is  taken to be standard. By II g II is thus meant 
X/g'g. Taking the inner product to be standard simplifies the formulas but 
is otherwise inessential. More to the point, if we were to define II g II not 
as X/g'g but as X/'g'l-lg, with H an unspecified inner-product matrix of 
constants, all results derived below would remain the same. We therefore 
might as well keep things simple and choose t t  = I. 

The objective function, to be called the stress, is 

s(g  = I[ g IF = Cg. 

The stress is a decrescend: its slope, rather than s itself, is to be minimized. 
Loosely speaking, the state of mind seeks to reduce stress, in the same 
sense that the endowment in Model One tried to increase utility. Details 
come later, when the motion law is introduced. 

The contour surfaces of s(g) are given by s(g) - constant. They are 
circles if m = 2, spheres if m = 3, and hyperspheres if rn > 3. They are to 
s(g) what indifference curves or (hyper)surfaces are to u(x). Of course, the 
equal-stress contours are collections of points in E m, whereas indifference 
surfaces are collections of endowments, points in X. 

Figure 2 illustrates the case rn - 2. For concreteness, the two registers 
are called hunger and thirst. At every point of the circle, the stress is the 
same. At g(~), hunger has the value 4, thirst has the value 3, and the stress 
is 3 2 + 4 2 = 25. At g(2), hunger is - 5 ,  thirst is 0, and the stress is 25. At 
g(3), hunger is 3, thirst is - 4 ,  and the stress is again 25. 

Specifying the objective function brings a vital benefit, in that it enables 
us to derive the analytical form of the long-response function. Details are 
given in the next chapter. 

Why is it so easy to devise a justifiable specification of s(g) when it is so 
hard to do the same for u(x)? The answer does not lie in the difference 
between stress and utility. It lies, rather, in the difference between a mini~ 
mand and a maximand. As scientists have demonstrated time and again, 
minimands tend to be easily specifiable. The reason is that they can often 
be given an elementary, physical interpretation, namely, that of a distance, 
or maybe a simple function of a distance. Maximands lack an attractive 
feature of this sort. Nature abhors a maximand. 

A misunderstanding could arise here. Since the slope of s(g) is a mini- 
mand, the slope of - s (g )  is a maximand. This might suggest that the stress 
is an unnecessary addition to the list of concepts. More to the point, it 
might suggest that the need for an analytically specified objective function 
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thirst 
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{(3)=(3,-4) 

hunger 

Figure 2. A stress contour. 

can be met without introducing the stress: all we have to do is, first, redefine 
utility as a function of states of mind rather than endowments, and, second, 
choose u = -~:'~. But it is not that simple. As said earlier, specifying the 
objective function is only half the job. Justifying the specification is the 
other half. And how the choice u = -~:'~: might be justified is a question 
for which this book has no answer. 

To define the output and input links, the feedback, and the motion law, 
we need some terminology and notation. 

When the agent has a cup of soup, the value of his hunger register 
declines. His state of mind, ~:, is thus affected. His endowment, x, is affected 
too, because the soup stock shrinks. Having a cup of soup is thus plausibly 
represented by two vectors, one to be added to ~: and the other to be added 
to x. If we write the former as a and the latter as a, having a cup of soup 
can be said to turn ~: into ~: + a and x into x + a. Equivalently, (~, x) is 
turned into (g + a, x + a) = (g, x) + (a, a). 

The pair (g, x) or, more fully, (g(t), x(t)), is the state at time t. The state 
is a point, in the point set E m x S .  

Ac t ions ,  which so far have been vectors in A, now become pairs of 
vectors, (a,  a), with a i n  R m and a in A. If (a, a) is any action, its unobservab le  
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part  is a,  and its observable part  is a. The shortly defined output  link 
describes the connection between a and a. 

The set of actions, R m • A,  is the action space. 
The driver, formerly db(t) or db, becomes the pair (dfl,  db). Its unobserv-  

able part  is dfl. Its observable part  is db. Connotat ions notwithstanding, the 
driver is an action, an element  of the action space. The shortly defined 
input link describes the connection between df l  and db. 

First, the output  link. There is no need, at this stage, to worry about the 
feedback. 

DEFINITION 1 (OUTPUT LINK). Let (a,  a) and (ao, ao) be any actions, 
and let c be any scalar. Then (a,  a) + (ao, ao) = ( a  + ao, a + ao), and 
c(a,  a) - (ca, ca). 

The set of actions, R m • A,  is thus closed under addition and scalar multipli- 
cation. It makes R m • A a vector space, and {Em • X, R m • A} a point space. 

Because the set of actions is a vector space, an action is not just a pair 
of vectors but also a vector in its own right. (Recall that a vector need not 
be a column.) 

To illustrate the output  link, let (a,  a) and (ao, ao) be "having a cup of 
soup" and "eat ing a sandwich." Suppose that having a cup of soup reduces 
hunger by 7 and eating a sandwich reduces hunger by 10. Under taking 
both actions then reduces hunger by 7 + 10 - 17, and consuming two cups 
of soup reduces hunger by 2 • 7 - 14. 

A word of caution may be in order. Because the two cups of soup contain 
the same number  of calories, they are equal in their ability to lessen hunger. 
It should not be concluded that they are equal in their ability to give 
pleasure. Near  the end of the chapter  it is shown that the first cup of 
soup- - indeed ,  the first s ipmwil l  ordinarily cause a bigger reduction of the 
stress than does the second. The first cup, or sip, is thus more enjoyable. 
It is the Model  Two version of the Law of Diminishing Marginal Utility. 

More terminology and notation: 
The basic actions, formerly the given vectors al, a2, . . . , ak in A, are 

now the given vectors (al ,  al), (a2, a2) . . . .  , (ak, ak) in R m x A.  For 
reasons to become clear later, the ai must be linearly independent ,  but the 
ai need not be. In particular, one or more ai may be null, reflecting that some 
actions have no visible consequences, have no effect on the endowment .  
"Thinking"  and "planning"  can serve as examples, if you are willing to 
ignore the small amounts  of energy that these actions consume. 

The unobservable parts of the basic actions are the columns of the 
m • k matrix A ("a lpha") .  The observable parts are the columns of the 
n • k matrix A. Thus, A = (al ,  . . . ,ak) and A = (al, . . . ,ak). Linear 
combinations like ~,Otir i and ~,aici can be written Ac and Ac. The definition 
of the output  link implies that if an action's observable part  is Ac, its 
unobservable part  must be A c m t h e  same c ~ a n d  vice versa. 
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The feasible actions, formerly the actions Ac with c >- 0, are now the 
actions (__Ae, Ac) with e >- 0. 

The action at time t, formerly da(t) or da, is now (da(t), da(t)) or (da, da). 
The constraint of Model Two is the same as that of Model One: the action at 
time t must be feasible. It means that (da, da) = (Ade, Ado) for some de -> 0. 

The action rate at time t, formerly da/dt or/i, is now (da/dt, da/dt) or (&,/0. 
The action between times 0 and t, formerly a(t) with a(0) = 0, is now 

(a(t), a(t)) with (a(0), a(0)) = (0, 0). (The second 0 consists of dimensioned 
zeros.) Equivalent is (At(t),  At(t))  with e(0) = 0. 

The driver rate at time t, formerly db/dt or I~, is now (d~/dt, db/dt) or (/), I~). 
The driver between times 0 and t, formerly b(t) with b(0) = 0, is now 

(/3(t), b(t))  with (/3(0), b(0)) = (0, 0). The second 0 consists of dimen- 
sioned zeros. 

The feasible set, formerly a convex cone in A, denoted F, is now a convex 
cone in R m, denoted q~. This q~ consists of all Ae with c - 0. 

This brings us to the input link. Recall that the driver is (dfl, db). 
The agent observes all changes of his endowment. He observes, in particu- 

lar, the exogenous changes that make up db. Formally, "observing" is a 
transformation, one that turns vectors in A ~ i n  particular, d b ~ i n t o  vectors 
in R m. The transformed db is dfl. The transformation itself is denoted by 
to, for "observation." (Using o would be more accurate but also more likely 
to confuse.) Thus, dfl = to(clio). 

We take to to be a linear function; see Chapter 2, MT20. Should the 
"real"  to--if there is such a t h i n g ~ b e  nonlinear, our 60 can always be 
viewed as a linear approximation. 

Because to is linear, to(a) can be written as f l a  for some matrix I I  of 
constants. Matrix I~, left unspecified except for its fixity and its size, is the 
observation matrix. 

DEFINITION 2 (INPUT LINK). The input link is defined through dfl = 
o J ( ~ )  = ~ :  

d/~ = D.,db. (1) 

We temporarily step out of the argument, for a brief sketch of how this 
apparatus can be used to model social or interactive behavior. When Smith 
takes the action (da, da), the observable part, da, becomes part of Jones's 
db. Jones observes his db, meaning that his db is transformed into dfl. 
Jones responds to his observation by taking an action--call  it (da, da)j. 
Smith observes Jones's da, meaning that Jones's da becomes part of Smith's 
db; and so on. The story generalizes easily to any number of agents: every- 
one observes the doings of all agents around him and responds by taking 
an action; everyone observes all those actions and responds; and so on. 
Since all velocities are finite throughout, there is once again no need to 
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postulate,  through the imposition of special assumptions, the (unrealistic) 
existence of equilibrium. 

Detour  completed,  we return to the main road. The feedback is next. 
If the agent observes exogenous movements  of x, he surely also observes 

endogenous movements  of x. In particular, if he under takes  basic action 
( t l t i ,  ai), he is bound to observe ai, assuming that ai is nonnull. His observing 
transforms ai into to(a/) -- [~ai, a vector in R m. This vector is the feedback. 
It is convenient  to define l'~ai as the feedback even if ai is nu l l - - even  if 
there is nothing to observe. In that case, the feedback is also null. 

As noted earlier, ai and l'~ai move in tandem, because s i and ai do: 
multiplying tlt  i by any scalar will also multiply ai, and therefore llai, by that 
scalar. We can thus take the feedback to be an integral component  of ai, 

and will do so from now on. Concretely, this means that s i now consists 
of the feedback and a remainder.  That  remainder  will be called the core 

of ai, denoted ai  c. In all, 

l~lfi : r c -'[- [~ai. 

The ai c, i = 1, . . . , k, are taken to be linearly independent ,  like the cei. 
Not just r i but every feasible action's unobservable part  consists of core 

and feedback. Definition 3 summarizes. 

DEFINITION 3 (FEEDBACK AND CORE). Let (Ac, Ac) be any feasible action, 
and define A c = (al  c, a2 c, . . . , cenC), an m • k matrix. Vector Ac is the 
sum of its core, ACc, and the feedback, l lAc .  Thus, 

Ac : ACc + [IAc.  (2) 

The ai c are linearly independent ,  and constant under  all pa rameter  changes. 

A feasible action of particular interest is (da ,  da), the action at t ime t. 
Since dee = Adc and da = Adc, we have, by (2), that Adc = ACdc + f lAdc .  
Writing ACdc as da/= gives, equivalently, 

d a  = d ~  + f lda ,  (3) 

with core da/= and feedback l lda .  
Breaking up a feasible action's unobservable part  into core and feedback 

has operat ional  consequences only when there is some parametr ic  change 
in some basic action. For I I A  then may change (since A changes), whereas 
A c stays the same. At  all other t i m e s - - t h a t  is, when all basic actions are 
cons t an t - - t he  analysis of Ac into its constituent parts serves no practical 
purpose. 

The motion law is next. We begin with a memory  freshener, in the form 
of a brief trip back to Model  One. 

The motion law of Model  One consisted of two equations. One was 
dx = da + db, the other, da = ~,PH-~Vudt .  In the last equation, 3/, P, and 
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n - l ~ T u  had these meanings: 3/is a proportionality constant, P is a projection 
matrix, and H-1Vu is the steepest ascent. The role of dt is merely to make 
the units come out right. 

You remember that the steepest ascent is the vector whose direction is 
that in which utility increases fastest and whose length is the slope of the 
utility function in that direction. Interpretation suggests that the direction 
of the steepest ascent is, as a rule, not feasible. If indeed it is not, the best 
direction is that of the steepest constrained ascent, which is the projection 
of the steepest ascent onto the feasible set. That projection is P(H-1Vu). 
The direction of pH-1Vu is that in which utility increases fastest, constraint 
permitting, and its length equals the slope of the utility function in that di- 
rection. 

The motion law for Model Two is based on the same ideas. It too consists 
of two equations. The first one is d~: = d t e  + dl3. The second one says that 
the direction of da  is that in which the stress s decreases fastest, constraint 
permitting, and the length of d a  is, but for sign, proportional to the slope 
of s in that direction. Letting the proportionality constant be b/dt (the reason 
for the factor ~ which is purely cosmetic, will become clear in a moment), we have 

d a  = -b / I IVsd t .  (4) 

Here, dt has its usual meaning, Vs is the gradient of the stress, and II is 
the matrix of projection onto the feasible set ~. (Matrix II is thus to q~ 
what, back in Model One, P was to F.) To explain the minus sign in (4), 
consider that Vs points in the direction in which the stress increases fastest. 
The direction in which the stress decreases fastest is thus that of -Vs.  And 
this is precisely the direction that the state of mind would like to take. 

We have reached the point at which Model Two begins to pull ahead of 
Model One. The reason is that, unlike the Utility function, the stress is 
specified, as s(~:) = l] s ~ 112 -- ~'~" The gradient of s is thus also specified, 
where that of u was not; in fact, Vs = 2~:, as is easy to see. It means we 
can take (4) one step further: 

d a  = -�89 = -T l l~dt .  (5) 

Note how the inelegant factor �89 makes itself useful here. Had it not been 
present in (4), there would now be an inelegant factor 2 in (5). 

Definition 4 summarizes, and Figure 3 illustrates. 

DEFINITION 4 (MOTION LAW FOR MODEL TWO). 

dgr-(t) = da(t)  + aft(t), 

with da(t)  = - y I I ~ d t  and dfl(t) exogenously given. 
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Figure 3. Illustrating the motion law for Model Two. 

Vectors d~:(t), da( t ) ,  and d~( t ) . be long  to R m. Definition 4 can also be 
expressed in terms of velocities ~, &, f lmall  it takes is to divide through 
by dt. Of course the setting is then no longer R m. 

Recall that II represents projection onto q,. It should thus be possible 
to express II in terms of the basic actions. More precisely, it should be 
possible to express II in terms of the ai. Indeed it is. Details follow. 

The action at time t, (da,  da) or (Ado, Ado), must be feasible. It means 
that de must be nonnegative. Let ko be the number of elements of de that 
are actually positive. To rule out trivialities, we take ko -> 1. 

As in Part II, dco is defined as the ko-vector that remains after the zero 
elements of de have been cast out. Casting out the corresponding columns 
of A and A leaves Ao and Ao, each with ko columns. Those columns 
are the attractive cr i and the attractive ai. Pairing them gives the attractive 
basic actions. Matrix H can now be described in greater detail" II - 
Ao(__Ao'Ao)-lA_o'. All elements of II are real, as is easy to see. Existence 

A '  of (_o Ao) -1 is guaranteed by the linear independence of the a~. 
It will be clear that (Ado, A d c ) =  (Aodco, Aodco). Division by dt gives 

(A~, A~) - (Ao~o, Ao~o). 
The attractive facet  of q), written q)o, is the set of nonnegative linear 

combinations of the attractive ai. 
If ko = k, all basic actions are attractive. In that case then, (__Ao, Ao) = 

(__A, A), and dco = dc, and q)o is all of q). 
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As a mathematical construct ion-- the kind of thing the Scientist wan t s - -  
Model Two is now finished. But the interpretation of Model T w o - - t h e  
kind of thing the Visitor cares about--st i l l  needs some comment. 

Each model term comes out of the dictionary. Inevitably then, each 
carries some connotations. In some cases those connotations are harmful, 
in that they suggest something far more specific than what the term's 
mathematical definition allows. Probably the worst offender is endowment.  
By connotation, an endowment is a collection of commodity quantities in 
the agent's possession. This is an unnecessarily narrow interpretation of 
what an endowment really is: a point. 

From here on, x will be called the surround. Its coordinates are aspects. 
Connotationally speaking, "surround" and "aspect" are nearly empty ves- 
sels, which is of course the reason for their introduction. How the vessels 
are filled is up to the Visitor; anything that fits the definition of a point 
can serve as the surround, or as part of the surround. More generally, 

~/Iodel Two is a purely mathematical construction, and the Visitor is free 
to interpret all of its mathematical notions in any way he likes. 

Here are some examples of things that until now did not seem to fit 
Model Two, but which do fit now that "endowment"  has been changed 
to "surround." 

(i) A man used to running an hour every day wakes up one morning to 
find that his leg hurts. He therefore decides to run only half an hour that 
day. Model Two applies, assuming that there is some way to quantify "hurt ."  

This example is a special case of a much more general phenomenon: 
when some action becomes less pleasant, you reduce the rate at which you 
undertake that action. An equally special case of that same phenomenon 
is the Law of Demand: when the price of widgets goes up and you regard 
that as unpleasant, you reduce the rate at which you buy widgets. 

(ii) A child likes to play outside for long hours on balmy days, but not 
quite so long when it is cold, and also not quite so long when it is hot. If 
this were described graphically, with the temperature as p, the result would 
be what psychologists call a preference-aversion curve, and what econo- 
mists call a Giffen curve. As this example illustrates, Giffen behavior is 
not rare at all. Admittedly it is rare in the marketplace (at least on the 
demand side). But not all behavior is economic behavior, p is not always 
a price, and an increase of p is not always unpleasant. 

(iii) A worker is most productive when his workplace is lit just right 
and less productive when the place is either too dim or too bright. If p is the 
amount of light, this example has the same structure as the preceding one. 

(iv) A baby drinks only a little bit when its formula is cold, more when 
it is the right temperature,  and less again when it is too warm. This too is 
like (ii), if p is the temperature of the formula. 
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(v) Thanks to the new interpretation of x, Model Two can now deal 
with issues involving (changes of) location. Traveling, for example, is natu- 
rally and plausibly described as an action affecting most or all coordinates 
of the surround. Earlier, when x was the endowment, such a description 
would not have been plausible at all. 

In the travel example, and indeed in all instances of locational change, 
it is probably easiest on your intuition if you treat the location of the agent's 
mind as fixed and the world as moving. 

(vi) Now that the endowment - - in  the sense of a collection of assets--no 
longer plays a role, Model Two fits animal behavior as well. This is important 
for testing. See Chapter 10 for details. 

Three pieces of unfinished business are left. First, Part II pointed out 
some weaknesses of Model One and said that Model Two would do better. 
Details remain to be supplied. Second, Part II showed that the alternative 
motion law, called the Rational Law, is untenable and said that Part III 
would present another argument leading to the same conclusion. That 
argument is still to come. Third, earlier in this chapter it was claimed that 
the first soup sip will as a rule be more enjoyable than the second, the 
second more than the third, and so on - - t he  Model Two version of the 
Law of Diminishing Marginal Utility. A proof was promised, but has not 
yet been delivered. 

The first weakness of Model One is this. Model One demanded that 
the k basic actions (which back then were al, a 2 , . . .  , ak) be linearly 
independent. The requirement implied k -< n, meaning that there cannot 
be more basic actions than there are goods. As was shown in Chapter 6, 
just before Definition 1, this is unacceptably limiting. 

Model Two takes the a~ to be linearly independent and allows the ai to be 
linearly dependent. It follows that k cannot exceed m, but may exceed n. Or: 
there cannot be more basic actions than there are registers, but it is possible to 
have more basic actions than goods. The earlier problem is thus resolved. 

The second weakness of Model One is that its definition of the driver, 
as db, partially overlapped the definition of a feasible action. Model One 
thus left open the possibility for an action to be, unacceptably, both exoge- 
nous and endogenous. 

To see whether Model Two does better, we assume that the driver is a 
feasible action and see whether a contradiction will emerge. Our starting 
point is thus (dfl, db) = (Ac, Ac) for some c -> 0. 

Since dfl = l~db, by (1), we must have Ac = flAc. Now by (2), the 
difference between Ac and f lAc  is the core ACc, and so the core is null in 
this case. By assumption, A c has full column rank, implying that the core 
is null if and only if c is null. It is thus still possible for the driver to be a 
feasible action, but only if it is (0, 0). Even that small ambiguity could be 
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removed, by defining the driver as nonnull. But it does not seem worth the 
trouble: a driver that is a feasible action only when it is null is not going 
to cause methodological difficulties. 

Another weakness of Model One, not mentioned before, is that i t--Model 
Onemis at times forced to represent two or more quite different actions by one 
and the same a. For example, although "losing a dollar" is different from "giving 
a dollar to a beggar," which in turn is different from "paying a child its $1 allow- 
ance," Model One represents each of these three actions by the vector a whose 
money element is - l d  and whose other elements are all zero. Model Two does 
better. In Model Two, actions that are different in interpretation are also differ- 
ent in representation. The reason for the increased flexibility is of course that 
actions now have an unobservable part. 

Next, the Myopic Law/Rational Law controversy. 
Models One and Two are both governed by the Myopic Law, which 

portrays the agent as short-sighted, always forgetting to take the effects 
of the driver into account, never learning from the experience, forever 
scrambling ex post  to adjust and correct. The alternative is the Rational 
Law, which depicts a wilier agent, capable of anticipating the effects of the 
driver and adjusting for them ex ante. As shown in Part II, however, the 
Rational Law does not always workmin certain circumstances, the recipe 
it prescribes is mathematically impossible. 

The Rational Law has another, much more basic flaw: its very rationality. 
The law implicitly depicts the agent as examining the stimuli coming into 
his brain and making a quick calculation to see what is his best course of 
action, his best response. For the agent to do so, however, requires that 
he be able to step back, putting some distance between his observing self 
and the brain he wishes to observe. And stepping away from his brain is 
precisely what he cannot do. The agent is his brain. 

To put it another way, the Rational Law depicts the agent as thinking 
before every action. This means, since thinking is itself an action, that the 
agent thinks before he thinks, and thinks before he thinks before he thinks, 
and so on. It is an impossible picture, similar to the one you get when you 
hold that everything we do is the outcome of a choice or decision. Since 
choosing and deciding are among the things we do, it follows that we choose 
to choose, decide to decide, choose to choose to choose, decide to decide 
to decide, and so on. Meanwhile, dinner is getting cold. 

Just as rationality is the weakness of the Rational Law, so is unrationality 
the strength of the Myopic Law. According to the Myopic Law, there is no 
essential difference between the mind and a physical particle. The particle's 
motion is completely determined by natural laws, and so are the goings- 
on inside the brain. The particle does not choose or decide or think, and 
neither does the brain. Of course, we are used to saying that people can 
think, choose, and decide, just as we are used to saying that people have 
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souls, egos, beliefs, ideas, abilities, and free will. But this does not mean 
that all these things are concrete enough to play a role in social science. 
Our forefathers were certain that light was carried by "the ether," that 
physiology was largely a matter of "humors," that unhappiness was caused 
by "the vapors." Ideas like these we now regard as archaic. But "soul," 
"free will," and the like are just as antiquated. If they have a place at all, 
it is in everyday conversation. They do not belong in any theoretical vocab- 
ulary. 

Viewing people as automatons, wholly driven by electrochemical laws, 
does not come easy. If you wish to think some more about this issuema 
contradiction in terms?--the first thing to keep in mind is that the agent 
and his brain (or you and your brain) are not separate entities. A corollary 
recommendation is therefore, Never use "I" and "my brain" in the same 
sentence. Except this one. 

Finally, the Model Two version of the Law of Diminishing Marginal 
Utility. 

Let "having a cup of soup" be (re, a), and suppose, for simplicity, that 
the driver is null. When the agent undertakes (a, a), the stress changes 
from s(g) = g'g to s(g + a) = (g + a ) ' ( g  + a). The very fact that the 
action was undertaken implies that the stress has declined. Thus, s(g) - 
s(g + a) = g'g - (g + a ) ' ( g  + a) = - 2 a ' g  - a 'a  is positive. Now if 2a'g 
were positive or zero, - 2 a ' g -  a 'a  would be negative (since - a ' a  is 
negative). Evidently then, 2a'g must be negative: g and a must form an 
obtuse angle. Figure 4 shows that this is plausible. Note that, in Figure 4, 
eating soup not only reduces hunger but also increases thirst. Perhaps the 
soup is too salty. 

Suppose the agent has a second cup of soup. The stress then changes 
again, this time from s(g + a) = (g + a ) ' ( g  + a) to s(g + 2a) = 
(g + 2a) ' (g  + 2a). The difference, s(g + a) - s(s  e + 2a) = - 2 a ' g -  3a 'a ,  
must be positive, for the same reason as before. 

Eating the first sandwich has reduced the stress by - 2 a ' g -  a 'a ;  eating 
the second sandwich has reduced the stress by - 2 a ' g -  3a 'a .  The first 
reduction exceeds the second (by 2a ' a ,  in fact). Or as it was expressed 
earlier, the agent enjoyed the first cup of soup more than the second. 

Reinterpreting (a, a) as "having a spoonful of soup" shows that the 
agent enjoyed the first spoonful more than the second. 

So far, the driver has been assumed null. If the driver is not null, the 
superiority of the first cup of soup (or spoonful) ceases to be a certainty. 
Indeed, if the driver is erratic enough, the second cup might become more 
enjoyable than the first, particularly if the agent takes a long break in 
between. An unambiguous conclusion is thus impossible in this case. Blame 
the passage of time. 
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thirst 

hunger 

Figure 4. Illustrating the Model Two version of the Law of Diminishing Marginal Utility. 

But there is a way to keep the passage of time from confusing the issue. 
All it takes is to recast the story in calculus terms. Details follow. For 
simplicity, and without loss of generality, we normalize a by setting 
[L , ,  [L - 1.  

Undertaking (a, a) decreases the stress. By Chapter 2, MT 22, the rate 
at which it does so is D~s(~) = a 'Vs  - 2a'~:. This quantity is thus negative. 
See again Figure 4. 

To be shown is that as the agent continues to undertake (a, a), the stress 
decreases at a decreasing rate. Informally put, "the stress decreases at a 
decreasing rate" means that the negative quantity D~s(~) becomes less 
negative. Formally put, it means that D,,D~s(~) is positive. It is not difficult 
to verify that DdD~s(~) = 2 > 0. P.O.C. 

SUMMARY 

Model Two concerns all individual behavior, not just individual economic 
behavior. At its center is the state of mind, ~(t). Much less important is 
the endowment,  x(t); goods are no more than instruments allowing the 
agent to carry out his actions. Toward the end, goods lost even that small 
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role, when "endowment"  became "surround"  and "commodity  stock" be- 
came "aspect." 

The state at time t is (sc(t),x(t)), or (~:, x) for short. Its change at time t, 
(d~:, dx), is the sum of two components,  the action (da,  da) and the driver 
(dfl, db). Action (da,  da) must be feasible, meaning that it must be a linear 
combination of the basic ac t ionsmthe  ( a  i, a / )mwith nonnegative weights. 

The agent observes both da and db. His observing is a transformation, 
changing da and db into ~ d a  and ~ d b ,  vectors that are unobservable to 
the outsider. Vector ~ d b  equals dfl, but vector ~ d a  (the feedback) does 
not equal da. Rather,  ~ d a  is only part of da,  the remainder being the 
invariant core, daf. 

The objective function is the stress, s(~:), specified as ~:'~:. Since s is a 
minimandmstr ict ly ,  a decrescend-- the  state of mind's preferred (but gen- 
erally infeasible) direction is that of - V s  = - 2 s  ~. The motion law says that 
d a  is a constant multiple of II(-2sr the feasible action closest to -2~.  
More precisely, d a  = - y I I~d t .  

Questions 
1. Prove that ds r = d a  c + ~ d x .  

2. Let (a, a)  and (ao, ao) be feasible actions, and let c be any scalar. 
Show that ( a  + ao) c = a c + ao c and that (ca) c = c(aC). 

3. Suppose that, instead of postulating that to is a linear function, we 
were to stipulate that ( a  + ao) c = a c + ao c and (ca) c = c (a  c) for any 
feasible actions (a, a) and (ao, ao) and any scalar c. Would it follow 
that to is linear? 

4. Is Model Two falsifiable? That is, now that you know what the theory 
says, could you change your behavior so as to contradict Model Two? 

5. The specification of the stress as I[ ~: [12 is to some extent arbitrary; 
other specifications could conceivably perform as well. One of these 
is [[ s r [[. Analyze. 

6. Prove that da and daF are linear functions of da. 
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The Long-Response Function 

Let basic action (r al) be attractive. As before, all is abbreviated to p. 
Suppose that p changes, parametrically, at some instant. It is convenient 
to let that instant be the origin of the time axis, t = 0. The long-response 
function, it = f(p,t), describes how the change affects any flow rate ~, not 
only at t = 0 but also afterward. 

Figure 1 offers an illustration. The surface shown is the graph of the 
long-response function. Curve AB, which depicts ~ = f(p,O), is the graph of 
the short-response function. (With hindsight, Model One's short-response 
function should have been written f(p,O), or perhaps f(p, to), rather than 
f(p).  But confusion seems unlikely at this stage, particularly because Model 
One has been discarded.) Suppose that p = Po during the entire interval 
from t = 0 to t = 7 > 0. Curve CD depicts ~ = f(po,t) for all t in that 
interval. The time coordinate of point D is 7. 

This chapter derives f(p,t). Part II could not do so because derivingf(p,t) 
requires an analytically specified objective function, which Part II lacked. 

Integrating ~ = f(p,t) from 0 to t gives q = F(p,t) - F(p,O), the 
cumulative-response function. Define F(p,O) = 0, as interpretation suggests. 
The cumulative-response function thereby simplifies to q = F(p,t). Whereas 

is a flow rate, q is a flow. All information contained in f is of course also 
contained in F, and vice versa. For an illustration of q = F(p,t), see Chapter 
10, Figure 1. (In that diagram, the t-axis is hidden behind the surface, and 
the q-axis has been omitted, to minimize clutter.) 

Remember  that the action at t is (da, da) = (Ado, Ado), a linear combina- 
tion of the basic actions (a i, a i ) ,  with nonnegative weights dci. Differentia- 
tion gives (&,/i) = (__A~, A~), the action rate at t. 

As before, the general flow rate is ~ = ciaij, where Ci is an element of 
and aq is an element of ai. Except for all = p, all aq are constant. The hard 
part of deriving f(p,t)--that is, finding out how iziaij depends on p and t-- is  
thus to find out how bi depends on p and t. Which is why most of the proof 
of Theorem 1, below, concerns just that question. 

158 
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Figure 1. A long-response surface. 

The starting point for the proof of Theorem 1 is the motion law for 
Model Two, 

a( t )  = (1) 

Recall that II = A__o(Ao'__Ao)-lAo ' represents projection onto q~o, the attrac- 
tive facet of the cone q~. 

Matrix II can vary in several ways. First, II varies (continuously) with 
p. To see this, consider that II depends on A__o; which depends on its own 
first column, al; which equals al  c + ~ a l  and so depends on aa; whose first 
element is all = p. Second, II varies (abruptly) when the collection of 
attractive basic actions gains or loses a member. Such an event, if it occurs 
at all, is caused by the wanderings of the driver. Third, II varies (abruptly) 
if the changes in p are so large as to make the ai lose their linear indepen- 
dence. When this happens, II ceases to be def inedma rather extreme form 
of abrupt variation. 

Every time II changes abruptly, the values of some parameters of f (p , t )  
vary too. Which parameters vary, and when, is most plausibly regarded 
as unknowable. 

Throughout this chapter, it is assumed that II undergoes continuous 
changes only, through variations in p. Abrupt  changes are thus ruled out: 
the collection of basic actions stays the same, and changes of p are modest 
enough for the a~ to remain linearly independent. 

Certain functions of t play an important role. They will be called t- 
functions. 
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DEFINITION. Let K0, K 1 , .  �9 �9 , K m  be any constants. A t-function is a 
function of the form 

e-vt[K~ + f 'o eW~'igibi(7)dT]" (2) 

As before, Q, L, and K mean "a quadratic form in p," "a linear form 
in p," and "a constant" (or, more fully, "a constant function of p").  By 
Q(t) is meant a quadratic form in p whose coefficients are t-functions. 
Analogously defined are L(t) and K(t). The typical Q(t) thus has the form 
A(t)p 2 + B(t)p + C(t), the typical L(t) is B(t)p + C(t), and K(t) is itself a 
t-function. 

THEOREM 1. Let / t  = c ia i j .  The long-response function is 

A(t)p 2 + B(t)p + C(t) (3) 
il = f(p,t) = Q(t)/Qo = Dp 2 + Ep + 1 ' 

where A(t), B(t), and C(t) are t-functions. All three of  A(t), B(t), and C(t) 
vary with i and j. (In fact, all constants K0, K1, K 2 , . . .  in A(t), B(t), and 
C( t )~see  (2)~vary with i and j.) Parameters D and E, which are indepen- 
dent of  time, are the same for all i and j. 

For flow rates that are elements of  Clal, the long-response function simpli- 
fies: if Cl = Clall (= clp) then C(t) -= O, and if (:l is any other element of  Clal 
then A(t) = O. 

The cumulative-response function, F(p,t), is found from f(p,t) by re- 
placing the t-functions A(t), B(t), and C(t) with their integrals 

f t  A(,r)d,r, f t  f t  B (7")d ~', and C(r)d ~'. 
0 0 0 

Proof Using ~(t) = ~(0) + a(t) + f l( t) in (1) gives &(t) = -yII[~:(O) + 
a(t) + /3 (0 ]  or 

&(t) = - e l l a ( t )  - yIl[~:(0) + fl(t)]. (4) 

This is a differential e q u a t i o n ~ o r  a system of differential equations, if you 
p r e f e r ~ i n  a(t). 

You can see where the argument is going. First, (4) is solved for a(t). 
Differentiation then gives &. Better still, it gives ~o, for & = __Ao~o. (Elements 
of / :  not in/:o are zero.) After that, all we have to do is figure out how 
those elements of ~o depend on p. 

There is a small shortcut. Premultiplying (4) by Ao' and using Ao' l l  = 
Ao'Ao(A__o'Ao)-~a__o ' =  Ao' gives 

__Ao'b(t) = - T A o ' a ( t )  - 7Ao'[Sr + /~(t)], 

which is a differential equation in Ao' a(t). By Chapter 2, MT 25, its solu- 
tion is 



9. The Long-Response Function 161 

Ao'a(t) - e-rtAo'a(O) - (1 - e-yt)A___o'~(O) - A___o'lJ(t ) 

+ e  - r t f t  ~ e~Ao'fl(~')d~ ". 

Since a(O) = O, the first term on the right drops out. Differentiation gives next 

__Ao'& = -Te-rt[Ao '~:(0) + f t  
0 

e~Ao' fl(~-)d~-]. 

Equivalently, 

Ao'Ao/:o = Ao' or, with o" = -ye-~'t[~(O) + ft~ e~'j3('r)dr]. (5) 

Neither A nor _A appears in or. Vector or is thus independent of al, and 
hence of p. 

From here, the argument  is nearly the same as in Part II. Suppose, for 
notational simplicity, that there are only three attractive basic actions. Let 
these be (al,  al), (a2, a2), and (a3, a3). System (5) can then be written as 

a 2  p a l  a 2  r a 2  a 2  P a 3  /:2 = a 2  

a 3  pa l  a 3  p a 2  a 3  t a 3  /:3 a 3  

!) (6) 

Recall that ai is the sum of its invariant core ai c and the feedback: ai = 
ai c + D.ai. Since all = p, each element of D~al is an L, and all elements of 
~'~ltl 2 and ~a3 are K's. But then each element of al is an L, and all elements 
of a2 and a3 are K's. It follows that a l 'a~ is a Q, that a~'aj  = aj'a~ is an 
L for j = 2, 3, and that all other a i 'a j  are K's. Denote  the elements of al 
by L~, L 2 ,  �9 �9 �9 ; then al'Cr = Ec~ko-~ = EL~o-~. In now obvious notation, 
the other two a /o r  have the form ]s So (6) is 

L K /:2 = |EKkok  

L K i:3 \EKko-~/ 

Solving by Cramer 's  Rule shows that Cl, C2, and b3 have the form 
"s EQk~rflQo, and EQk~rflQo, where Qo is the determinant  of the 
coefficient matrix. 

Consider one of the n u m e r a t o r s l s a y ,  EQ~rk. Define Ak, Bk, and C~ 
through Qk = Akp 2 + Bkp + Ck. Then EQko-k = ~,(Akp 2 + Bkp + Ck)~r~ = 
(]~AkO'k)p 2 + (]~BkO'k)p + (]~CkO'k). Since all Ak, Bk, and Ck are constants, 
and all ~r~ are t-functions, the coefficients "s EBkcr~ and EC~o-k are 
t-functions too. Call them A(t), B(t), and C(t). We have now proved that 
both/:2 and b3 have the form 
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Ci--  Q(t)/Qo = A(t)p2 + B(t)p + C(t) 
Dp2 + Ep + l 

By the same reasoning, 

i = 2, 3. (8) 

B(t)p + C(t) (9) 
ba = L(t)/Qo Dp 2 + Ep + 1" 

The rest of the theorem, concerning the cumulative-response function, is 
obvious. P.O.C. 

Discussion. (i) The short-response function of Part II had, among its 
special cases, the own-price and cross-price demand functions as well as 
the own-price and cross-price supply functions, both for the consumer and 
for the producer. One of those cross-price demand functions was the quasi- 
Engel function. The long-response function of Theorem 1 includes, among 
its special cases, the dynamic versions of the same nine testable results. 

For an example, let (al, al) be "buying a gallon of milk." Let the milk 
element of al be +lg, and the money element, p. Milk is good 5. Since 
p = a11, by convention, money must be good 1. The rate 0 =/:1a15 at which 
the agent buys milk depends on the price of milk according to a function 
of the form L(t)/Qo, for every t. This L(t)/Qo is thus the own-price demand 
function (dynamic version). So long as p is fixed, L(t)/Qo is just a t-function. 
In that case then, the agent's demand rate for milk obeys a t-function from 
t = 0 on. (See curve CD in Figure 1.) If p does change at some to > 0, and 
retains its new value for all t > to, the demand rate will again obey a t- 
function, provided time is reset to zero at to. The postchange t-function will 
ordinarily differ from the prechange one. 

For another example, let p have the same meaning, and suppose that 
"buying a loaf of bread" is one of the basic actions. The rate at which the 
agent buys bread depends on the price p of milk according to a function 
of the form Q(t)/Qo, for every t. So long as the milk price remains fixed, 
every Q(t)/Qo is just a t-function. 

(ii) What has just been said about the milk-price demand for bread 
applies of course to all cross-price demand functions. It applies, in particular, 
to all quasi-Engel functions (i.e., all cross-price demand functions in which 
p represents the wage). 

(iii) Coefficients A(t) through E in (3) are dimensioned. For particulars, 
see Question 6 at the end of this chapter, and also Chapter 7, Discussion of 
Theorem 1, point (vii). 

(iv) Because the parameters in (3) depend on unobservable quantities, 
like the elements of g(0) and of 1~, their values should be regarded as 
obtainable solely by estimation, rather than by computation or direct obser- 
vation. Chapter 10 illustrates how such estimation might be performed. 
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(v) Suppose that two or more elements of al are variable. With only 
small and obvious changes, Theorem 1 remains true. Details are like those 
in Chapter 7, Discussion of Theorem 1, point (xii). 

(vi) The long-response function's denominator, Qo = Dp 2 + Ep + 1, is 
the same for all flow rates. Because of it, every sum of flow rates obeys 
the long-response function too. Of course, the sum must be definedmthe 
flow rates in the sum must all be measured in the same units. These remarks 
hold also for sums of flows, since the cumulative-response function has for 
all flows the same denominator Qo = D P  2 at- E p  n t- 1. 

Adding a flow rate to a flow will always be impossible, because the units 
do not match. 

(vii) Many of the formulas derived could be taken further if the driver 
rate were specified. We examine two possibilities: a constant driver rate, 
and a driver rate that is constant except for a sudden, momentary spike. 

A constant driver rate means (/)(t), 6(t)) -- (~(0), 6(0)). Note that 
6(0 - 6(0) impl ies / ) ( t )  = / ) (0 ) ,  s ince/)  = 116. 

Assuming a constant driver rate is not as unrealistic as it may seem. 
Many people lead a routine existence, with each week resembling the 
next. To them, b(t) fluctuates about a constant mean, implying that the 
assumption of a constant 6(0 paints a fairly reliable picture of their lives. 

- b(0), the t-function simplifies, from e-~'[K ~ + / '0  e~"~iKiDi(r)d'r] When 6 

to e-~'t[Ko + ~.,iKiDi(O) I',~ e~'"dr]' easily seen to be of the form e-~'tK1 + K2. 

Tracing the proof of Theorem 1, you find that if 6 - 6(0), Eqs. (8) and 
(9) simplify to 

e-~'tQ1 + Q2 
hi= , i =  2,3,  (10) 

Qo 

e-~tL1 + L2 
cl = Qo " (11) 

All Q's and L's in (10) and (11) are independent of time. 
From the second paragraph of Theorem 1 follows, given (10) and (11), 

that the general flow ra te / /obeys  f(p,t)  - (e-r'Q1 + Qz)/Qo. It also follows 
that i f / /=  b~a~ ( -  dip), the Q's in the numerator lack a quadratic term. And 
it follows that if / / is  any other element of b~a~, the Q's lack a constant term. 

Integrating (10) and (11) from 0 to t gives 

(1 - e-~t)Q1 + tQ2 
C i = , i - 2, 3, (12) 

Qo 

and 
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C l _  (1 - e-et)L1 + tL2 (13) 
Oo 

Differentiating (12) and (13) with respect to t will show that the Q1 in 
(10) and the L1 in (11) are T times the Q1 in (12) and the L1 in (13). 

Back to (5), copied here for convenience: 

f ,  
Ao'A__o/:o A '  - | ee'/)('r)dr]. = _o  or, with or = ye-~t[~:(0) + 

3 0  

When li = I~(0), this equation becomes 

Ao'Ao/:o = A '  . . . .  �9 __o~r, wi ther  Te-e/~(0) ~(0)(1 e -el) 

Premultiplication by Ao(Ao'Ao) -1 gives Ao/:o = Ho-, that is, 

_Aoeo = a : e-~'t[-'yH~(O) + H~(O)] - H,8(O). (14) 

As t goes to infinity, e -et goes to zero, implying that & goes to -Hf l (0 )  and 
= & + /~ goes to -H/~(O) + 1~(0)" 

~(oo) = (I - II)/3(0). 

The asymptotic velocity of the state of mind is thus constant, and perhaps 
null. It is null if /)(0) = llfl(0), in which case ~: converges to stationarity. 
Matters are more interesting if/)(0) 4= Hfl(0). What happens then is illus- 
trated in Figure 2, except that all velocities have been multiplied by dt. 
When 13(0) 4: Hfl(0), the path of ~: converges to a line; asymptotically, ~: 
travels along that line with uniform velocity (I - H)/)(0). In this last case, 

Figure 2. Illustrating the asymptotics of Model Two. 
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the agent's actions nullify only part of the exogenous/)(0),  namely, II/)(0). 
The rest, (I - II)fl(0), goes uncountered. All of this makes solid intu- 
itive sense. 

Equation (14) is set in the unobservable world of the mind. To find its 
observable counterpart, recall t ha t / )  = 1~6, and define 

p = Ao(Ao'___Ao)-l___Ao '. 

This P looks like a projection matrix, but is not. It would be a projection 
matrix if its right side began with Ao, rather than Ao. 

Premultiplying (14) by P gives Ao/:, that is,/l: 

il = e-~'t[-yPIIg(O) + PIIl~(0)] - PUb(0). 

Asymptotically,/D - -P I lb (0 ) .  
Some stock-taking is in order. We are in the middle of the seventh (and 

last) point of the Discussion to Theorem 1. As said at the beginning of 
point (vii), many of the formulas derived earlier could be taken further if 
the driver rate were specified. One possibility is to specify the driver rate 
as constant. The analysis of that case is now done. A second possibility is 
to assume the driver rate constant except for a sudden spike. The analysis 
of that case is next. 

Suppose that at some instant to the agent experiences an abrupt change 
in his surround. Maybe he receives an inheritance; maybe he is involved 
in an accident or some other traumatic event; maybe he attends a play that 
moves him deeply. How is his behav io r~ tha t  is, ~i~affected? It will be 
shown that the effect of the sudden change wears off at a negative-exponential 
rate. This is the last of the ten testable results promised. 

The proof involves the delta function 6(to) discussed in Chapter 2, MT 
26. More particularly, it involves Eq. (11) of that chapter, which is 

f ~ 6( to-  z)f(z)dz= f(to). (15) 

At time to, the vector I~, constant until then, suddenly and briefly increases 
by Ab = 6(to)Z, with z belonging to A. All elements Zi of Z are constant. 
Some zi may be zero. The scalar 6(to) equals 1/e for all t between to and 
to + e, and is zero for all t outside that interval. 

Consider again (5), 
/ .  

__Ao Aoeo _o  or, with ~r -ye-~t[g(O) + 

Premultiply by Ao(Ao'Ao) -~, to get 

A o ~ - / I  = -ye-~ 'P[g(O)+ I'e~fl(r)dr]. 
/ .  

ao 
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To bring in the changing 6 and get rid of the unobservable ~1 at the same 
time, use / )  = II6. This gives 

/I = - 3 ' e - V / P [ ~ 0 )  + / t - eV~l~6 (r)dr], 
/ -  

.1o 

o r  

~i : - 3 " e - V / P ~ 0 )  - 3"e-VtPg], f t  ~ eV~6(7" )d r .  (16) 

When 6 changes (at to) to fl + 6(to)Z, the action rate (&, ~i) changes also. 
Our interest lies, this time, with ~i rather than &;/~ becomes ~i + A~i, say. 

By (16), A~i = -3"e-~/tPl),z Jt  0 e~'rt~(to - "r)dT". By (15), this equals 
/ I .  

--3"e -~t Pl~,ze ~/o if to < t, and 0 if to > t. (That A/i = 0 if to > t should be 
obvious on interpretation: events still to happen do not affect current 
behavior.) Shortening the constant vector -3,Pl~z to ~" puts the conclusion 
in the form 

A~I = e-~/(t-to)~ for t > to, (17) 

completing the proof. P.O.C. 

Worth nothing is that the rate 3, at which the effect of a sudden event 
wears off is the same 3, that appears in the motion law. Roughly, an agent 
with a relatively large 3"ma Type A personality, saymacts faster but also 
forgets faster. It is of course possible that Type A personalities have more 
to forget in the first place. Whether they do depends on the relation between 
3' and the observation matrix II. The argument goes as follows. Suppose 
two agents, equipped with different l~'s, have the same 6 and observe the 
same spike ~(to)Z in b. Each thus experiences a spike ~(to)flz in his ft. And 
it may well be that the agent with the larger 3' is also the one who is more 
affected, in the sense that his induced spike, ~(to)l~z, has larger elements. 

SUMMARY 

Let (tltl, al)  be attractive, and suppose that al l  = p can vary parametrically. 
A change of p, occurring at time 0, affects the general flow rate ~ for 
all t -> 0. The long-response function, // = f (p , t ) ,  says how: f ( p , t )  = 
Q(t) /Qo,  the quotient of two quadratic forms in p. Its numerator, Q(t)  = 
A ( t ) p  2 + B( t )p  + C(t),  is different for different flow rates. Its denominator, 
Qo = DP 2 + g p  + 1, which is positive-definite, is the same for all flow 
rates//. 
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If 0 = alldl (for instance, if 0 is an own-price demand rate), A(t )  - O. 
If 0 is any other element of a1~1 (for instance, if 0 is the rate at which the 
agent pays for a11~1), C(t) - O. 

Coefficients A(t) ,  B(t),  and C(t) are functions of t. Except for the two 
special cases in the last paragraph, their analytical form is unknown unless 
the driver is specified. Two specifications were examined. First, if the driver 
rate is constant, each of A (t), B(t),  and C(t) is the sum of a constant multiple 
of e -~t and a constant. Second, if the driver rate has a sudden spike at time 
to, the effect on the action rate wears off at a negative-exponential rate. 

The cumulative-response function, q = F(p, t)  with F(p,O) = 0, is the 
integral from 0 to t of the long-response function. 

Questions 
1. Why does the tenth resul t - -Eq.  (17)- -not  follow from Model One? 

2. Verify that each element of ~r is indeed a t-function. 

3. Does ~r belong to A? X?  A~ Rm? Em? 

4. Prove that if k is a vector of constants, k'~r is a t-function. Find the 
place in the text where this was used. 

5. See the Discussion of Theorem 1, point (ii). Describe in general terms 
what the graph of the quasi-Engel function looks like. 

6. How are the coefficients in (3) dimensioned? 

7. Find the time paths of / i  and i if 6 is constant (6 = 6(0)). What do 
the paths look like asymptotically? 



/0 
A Test 

This chapter tests the cumulative-response function. Indirectly, it also 
tests the short- and long-response functions, for the long-response function 
is the time derivative of the cumulative-response function, and the short- 
response function is found from the long-response function by fixing t. 

As with all testing, the big question is where to get the data. The variable 
p needs to take on quite a few different values; while it does so, none of 
the parameters may change. Such demanding requirements are likely to 
be met only in the laboratory. Even then, few human subjects are willing 
to cooperate for as long as it takes. Will animal subjects do? 

Intuition says no. Intuition says that animals do not have enough in 
common with people and bolsters that judgment with arguments from 
physiology, ethology, philosophy, and perhaps an extra science or two. 
Logic, on the other hand, says yes. Logic says that whether people and 
animals have enough in common is not a physiological or ethological or 
philosophical issue, at least not to a model builder. To a model builder, 
the issue is mathematical, and the conclusion obvious: human behavior 
and animal behavior have the same mathematical s t ruc tu ren tha t  is, are 
captured by the same mathematical mode lnun les s  there is a mathematical 
distinction between the two. 

There is, to date, no mathematical distinction between human and animal 
behavior. It seems fair to predict that there never will be. And if that is 
indeed so, then tests with animals say as much about human behavior as 
do tests with homo sapiens. If a model fits the behavior of pigeons, it is as 
encouraging as when it fits the behavior of people; if a model fails for mice, 
it must fail, sight unseen, for men. 

Logic has now made its point, but intuition is still protesting. Intuition 
imagines a human being and an animal, inspects the two, and finds them 
so different as to sweep logic aside. Does intuition have a case? 

Not really. Intuition is looking at living beings, which is the wrong thing 
to do. The one who matters is the model agent. And the model agent is 
not a living being. He is a robot. If we had set out to construct a theory 

168 
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of animal behavior, the model animal would have been a robot too. The 
question is thus, Is the agent-robot constructed according to the same 
principles as the animal-robot, or are there some essential engineering dif- 
ferences? 

Maybe you find the idea that people and (other) animals are robots not 
entirely convincing. Maybe, when the agent-robot was first introduced, back 
in Model One, your intellect perceived him as the windup doll he really 
is, but your mind's eye saw him checking out power tools at Sears. If so, 
there is a more convincing argument. It comes from Model Two. 

In Model Two, the central character is not the agent but the brain. The 
mind's eye is thus much less inclined to conjure up either living beings or 
robots, and much more inclined to see the protagonist as an organ of the 
sort you find depicted in biological or medical handbooks. A side benefit 
of this shift of focus is that it undercuts the belief that people have free 
will, or the ability to choose, or a utility function: pictures of the brain 
show no evidence that there exists a lobe in which free will originates, or 
a place where you might find the ability to choose, or a location where a 
utility function could be hiding out. 

Back to the issue that started all this: do tests of animal behavior tell us 
anything about human behavior, and vice versa? The answer is now much 
more clear-cut: so long as there is no mathematical definition of the differ- 
ence between human brains and animal brains, we must regard the two as 
operating according to the same principles. This means that hypotheses 
about human behavior can validly be tested on animals, and vice versa. 

A 1951 article by two biologists, Israel Weiner and Eliot Stellar, describes 
an experiment involving the consumption of salt water by rats. Six rats 
were suddenly deprived of food and tap water. After a 15-hr fas tmno 
breakfast, no lunch-- they were given access to water with some salt in it 
("test fluid"). For one hour, (the "test period"), the rats could drink all 
they wanted. Food remained out of reach. 

At the end of the test period began another fast, without food, water, 
or test fluid. The purpose of this second fast, which lasted for 2 hr, was to 
keep the rats from learning to ignore the salt water and wait for Prime 
T imemthe  day's final 6 hr, when food and water were again freely available. 

The experiment lasted 52 days. Each day was the same as the next, except 
for variations in the salt concentration in the test fluid. The salt concentration, 
p, measured in centigrams of salt per cubic centimeter of water, was changed 
every four days. In all then, p took on 13 different values, ranging from an 
insipid 0 cg/cc to a pleasant 0.8 cg/cc to an odious 3.5 cg/cc. 

During the daily test periods, Weiner and Stellar measured every 5 min 
how much each rat had drunk. The observed quantit ies--which were flows 
q, not flow rates ~ - -were  rounded to the nearest 0.5 cc, and then averaged 
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over each 4-day period and over the six rats. In this way, the researchers 
found 156 values of q: 13 sequences (one for each p) of 12 intake figures 
each (one for every 5-min period). 

Figure 1 shows 156 points, depicted as little circles. Each point has a p- 
coordinate, a t-coordinate, and a vertically measured q-coordinate. For 100 
of the 156 points, the coordinates can be inferred from diagrams in the 
Weiner-Stel lar  article. For the remaining 56 points, the coordinates came 
from Professor Stellar, who was kind enough to send me all the original 
observations and give me permission to use them. 

In the experiment, the "average rat" is the agent. Time begins at the 
start of the first test period. Every 24 hr after that, time is reset to zero. 
Implied in that practice is the assumption that every time a test period 
begins, the agent's state is the same point as it was 24 hr earlier: 
(~0h) ,  x(0h)) = (~:(24h),x(24h)) = (~48h),x(48h)) . . . .  . The assump- 
tion is probably not met, which damages the fit. On the other hand, the 
data were averaged over every four days, which improves the fit. The data 
were also averaged over the six rats; whether that helps or hurts the fit 
depends on the six y's and the six Qo's. It helps if 3' and Qo are about the 
same for all rats. Otherwise it hurts. 

Let salt be good 1, measured in cg.  Water, measured in cc,  is good 2. 
Time is from here on measured in minutes. The variable basic action, 
"drinking test fluid," is (s al); its observable part is aa = ( p ,  - l c c ,  . . . ) ' .  

Figure 1. Cumulative-response surface, fitted to 156 observations. 
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Since (al ,  al) is a t t rac t ivemal l  rats drank test f lu idmthe  first e lement  of 
Co is Cl. Assume, for simplicity, that the driver rate is constant. 

By last chapter 's  Eq. (13), Cl depends on p and t according to 

Q(p,t) = (1 - e-rt)Ll + tL2 
Qo 

_ (1 - e-rt)(Ap + B)  + t(Cp + D) (1) 
m 

EpZ + Fp + l 

When rats drink test fluid, the quantity of salt they inges t~ca l l  it q ' ~ i s  
p �9 cl(p,t), and the quanti ty of water they inges t~ca l l  it q " ~ i s  1 �9 cl(p,t)cc. 
This observation suggests three ways to test Model  Two. 

The first way is to compute how much salt there is in every consumed 
quantity of test f l u i d ~ t h e  q ' - v a l u e s ~ a n d  then fit the function p �9 cl(p,t) 
to the points (p,t,q'). 

The second way is to compute how much water there is in every consumed 
quantity of test f l u i d ~ t h e  q" -va lues~and  then fit the function 1 �9 cl(p,t) 
to the points (p,t,q"). 

The third way is to use the given test fluid intake f i gu re s~ the  q - v a l u e s ~  
and fit the proper  function to them. This is the most accurate method,  because 
it requires no manipulat ion of the original data. But what is " the  proper  func- 
t ion"? Although test fluid consists of salt and water, q is not the sum of q' 
and q". It cannot be: q' is measured in cg and q" is measured in cc. 

There is, fortunately, an easy answer. To be able to add quantities of 
salt to quantities of water, all we have to do is express them in the same 
unit. The preferred unit is the cc, since Weiner  and Stellar measure test 
fluid that way. It goes as follows. 

The specific gravity of salt is 2.16, meaning that the weight of lcc of salt 
is 2.16g, or 216cg. Equivalently,  the volume of lcg of salt is (1/216)cc. The 
quanti ty of salt ingested, which has a weight of q' (cg) thus has a volume 
of q'/216 (cc). Adding the salt volume to the water volume gives the test 
fluid volume: (q ' /216) + q" = q. From q' = p �9 Cl and q" = 1 �9 Cl now 
follows that q = (1 + p/216)Cl, with Cl = cl(p,t) given by (1). The function 
to be fitted is thus 

p/216,(lj - e-~t)(Ap + B)  + t(Cp + D) q(p,t) (1 + (2) 
Ep2 + Fp + l 

Equat ion (2) expresses the cumulative demand for test fluid as a function 
of salt concentrat ion and time. 

A parenthetical  note: although (2) could be written as 

q(p,t) = (1 - e-~t)Q1 + tQ2 (3) 

Qo 

it would be misleading to do so; for it might suggest that (3), and therefore 
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(2), is an example of the usual cumulative-response function, F(p, t ) .  It is 
not. If (3) were a representation of (2), we would be able to conclude that 
Q1 and Qe have the factor 1 + p/216 in common, which would probably 
be false. It would probably be false because the Q1 and Q2 appearing in 
the cumulative-response function have no common factor, at least not neces- 
sarily. 

Equation (2) can be fitted to the observations by the least-squares 
method. This requires finding the parameter  values that minimize the sum 
of squared residuals, 

S 1 = E[q - q(p, t)]  2. 

Calculus is no help here, but the computer is. The estimated (2) is found 
to be ~ 

p/216,(1) - e-~ + 8.23) + t(O.OOp + 0.07) 
q(p , t )  (1 + 

1.08p 2 -  1.12p + 1 
(4) 

To see how well (4) fits the observations, define the goodness-of-fit 
measure r 2 = 1 - $1/$2, where $2 is the "total variation," E( q - qavg) 2. 
One finds that $1 = 170.38, $2 = 5151.67, and r 2 = 0.97. 

Of the seven coefficient estimates in (4), only 8.23 seems unusually large. 
To find out if there is an identifiable reason, we take p = 0, with an 
eye to isolating the offending coefficient. This leaves the flow q(O,t) = 
(1 - e-~ + t0.07. Differentiation with respect to t gives the 
flow rate O(O,t) = (0.15e-~ + 0.07. Comparing now 0(0,0) = 
(0.15)(8.23) + 0.07 with 0(0,oo) = 0.07, you see that the rats drink fast 
initially, but not eventually. The relatively large 8.23 thus reflects that the 
rats were thirsty at the beginning of the test period. No wonder - - in  the 
preceding six hours they had had nothing to drink. 

In conclusion, a story of disappointment. 
Equation (2) used that the specific gravity of salt is known. Suppose, 

however, that its value--cal l  it g - - i s  unknown. The number of unknown 
parameters then goes from seven to eight, g being the eighth. Naturally, 
we should be able to estimate not only the original seven parameters but 
also g. That is to say, it should be possible to estimate the specific gravity 
of salt by observing how much a rat will drink when given a salt-and-water 
mix of varying concentration. 

It should be, but it was not. Or rather, the Weiner-Stel lar  data did yield 
an estimate ~, but it was as good as useless: it took only minuscule changes 
in the estimated coefficients of Q1 and Qe to make ~ a hundred times as 
large, or a hundred times as small. 

Disappointing though the outcome may be, it should not be allowed to 
obscure the message underneath. The message is that physical constants 
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like g can in principle be found through experiments like Weiner and 
Stellar's. More generally, the natural and social sciences have a non- 
empty intersection. 
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/ I  
Aflerword 

This chapter reviews, looks ahead, compares, contrasts, and ruminates. 
Two models were discussed. Model One, concerning individual economic 

behavior, is an introductory theory, designed to span the gap between 
traditional economics and Model Two. Model Two, the main theory, con- 
cerns all individual behavior, and is thus of much greater scope. Both 
models are positive rather than normative. 

Central to Model One are the motion law and the driver. Together, these 
two model ingredients determine how the endowment moves. The motion 
law depicts the agent as choosing not a bundle but a directionmthe direction 
in which he wants his endowment to go. The driver is a vector embodying 
the exogenous influences that affect the endowment. 

Like Model One, Model Two is governed by a motion law and a driver. 
The difference is that, this time, the two model ingredients determine the 
movements of the state of mind, rather than of the endowment. Except 
for interpretation, the motion law of Model Two is identical to that of 
Model One. 

Model Two outperforms Model One in every way. Model One outper- 
forms traditional theory in every way. For instance: 

(i) Model One offers nine testable results. More precisely, Model One 
produces the short-response function, whose special cases include the con- 
sumer's and producer's demand and supply functions, both own-price and 
cross-price. Among the cross-price demand functions is the quasi-Engel 
function, which describes how the agent's demand for a good depends on 
the wage. (The Engel function in the traditional sense was found to be a 
misconception, for two reasons: first, it is not a function; second, its indepen- 
dent variable, income, is a monetary concept and so does not belong in 
the vocabulary of theory.) Encouragingly, all these special cases of the 
short-response function have graphs of the form that neoclassical theory 
says they ought to have. Even more encouraging is that at the moment 
when Model One introduced its motion law, neither the analytical form of 
these functions nor the shapes of their graphs could be anticipated. 

174 
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Model Two generalizes the nine testable results, and adds a tenth. It 
manages to do so by choosing as its objective function a minimand, which 
it then specifies. Most of the testable results are special cases of the long- 
response function, f(p, t), itself a generalization of the short-response func- 
tion, f(p,O). Model Two also finds that the effect of a sudden change 
wears off--is forgotten--at  a negative-exponential rate, in agreement with 
longstanding belief. 

(ii) Model One captures most individual economic behavior in one the- 
ory. Traditional economics, by contrast, offers several theor ies~a  few for 
the producer, a few for the consumer-as-demander, and a separate theory 
for the consumer-as-supplier-of-labor-power. Model Two does still better: 
it captures most individual behavior, including behavior commonly viewed 
as noneconomic. 

(iii) Models One and Two are dynamic, made so by the combination of 
motion law and driver. Continuous-time dynamic models are no novelty, 
of course. Some can be found in the older literature (Tintner, Klein, Koop- 
mans); more recently, several have appeared in game theory and in the 
literature on adaptive economics. But mostmperhaps al l --of  these theories 
have strong normative overtones, or are too hospitable to the Intrusive 
Agent, or both. Also mostmperhaps al l --of  these theories are barren of 
testable results. 

Worth noting is, further, that time does not appear in the objective 
functions of Models One and Two. This is a desideratum for all positive 
theories of behavior: a time-dependent objective function is an almost sure 
sign of normativity. 

(iv) Model Two uses the state of mind as proxy for the living agent. 
Since the gap between the two is quite small, Model Two has no difficulty 
in concentrating on the proxy and keeping its animate owner out of the 
discussions. Model One manages to do the same, although not as easily. 
Traditional theory performs still worse: it fails to keep the Intrusive Agent 
out. More on this below. 

(v) In both models, the motion law and the driver are defined so that 
the protagonist (Model One's endowment, Model Two's state of mind) 
always moves with finite speed. Neither model therefore has a need for 
stationary equilibrium. Both allow the agent to become richer, for example. 
Traditional utility theory is different. As was shown, traditional theory has 
the endowment move either not at all or with infinite speed. To put on the 
brakes and avoid explosive behavior, therefore, it must impose stationary 
equilibrium. Since actual behavior rarely if ever converges to stationarity 
(not counting death), Models One and Two substantially outperform tradi- 
tional theory in this respect. 

(vi) Models One and Two define all their terms mathematically. Not 
surprisingly t h e n ~ a n d  underscoring the essential simplicity of the behav- 
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ioral mechanism--both theories have very small vocabularies. Some exam- 
ples of terms found in traditional theory but not in Models One and Two: 
consumer and producer, both left out for lack of definition; price, which 
was replaced with "basic action element"; money, found to be an ordinary 
commodity and therefore not a theoretical notion; monetary concepts like 
income, revenue, profit, and cost, all of which are merely flow rates; and all 
cognitive terms. Cognitive terms were left out in part because they appear 
to be mathematically undefinable and in part because they tend to summon 
the Intrusive Agent. 

Also absent from both vocabularies are all institutional notions. Of 
course, institutions affect the driver and so influence what the agent does; 
but they do not affect the mathematical structure of behavior. Physics offers 
a parallel: the sun affects the earth's path, but not the laws of gravity. 

As few traditional notions as Model One has, Model Two has even fewer. 
In fact, Model Two begins with only two (endowment, commodity stock), 
then replaces "endowment" with "surround" and "commodity stock" with 
"aspect," and so winds up with no familiar economic terms at all. In the 
course of the book, therefore, we have been drifting steadily away from 
the traditional economic idiom. 

If that seems undesirable, consider the benefits. Accompanying the disap- 
pearance of familiar terms has been the appearance of usable, testable 
results, many of them the object of decades or even centuries of largely 
fruitless search. It is hard to escape the conclusion that economic theories 
of individual behavior have been hampered in their development by their 
own language. It is equally hard to avoid the suspicion that the same is 
true for economic theory in general. 

Model Two still needs a good bit of work. Perhaps its biggest weakness 
is the assumption of perfect divisibility, which is too hard on the intuition. 
To illustrate the point, compare a student who has one beer every day with 
a student who drinks 365 beers every January 1 and none at other times. 
Model Two cannot tell the two apart. It depicts both as drinking a steady 
trickle of beer, every second. Another example: as observed in the answer 
to Question 3 of Chapter 7, an agent living in a perfectly divisible world 
will undertake, during his lifetime, very few actions, possibly just one action. 
(If it were not for its period-analytical approach, neoclassical theory would 
reach the same conclusion.) 

Allowing divisibility to be imperfect can be expected to produce addi- 
tional testable results. But even if that were to prove false, benefits should 
still be substantial. Since imperfect divisibility is standard in the real world, 
many questions of interest to economists, and to social scientists in general, 
presume imperfect divisibility in their formulation. If Model Two were to 
assume imperfect divisibility, it should be able to handle such questions. 
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At present it cannot. (Neoclassical theory cannot handle them either, since 
it too is based on perfect divisibility; but because of its greater informality, 
it at least appears to have some of the answers. The economics of uncertainty 
offers a case in point, at least to the extent that it it a positive theory.) 

Another weakness of Model Two is that it says nothing about learning, 
and very little about how the agent processes information. According to 
the theory, information reaches the agent as part of his db, and is next 
transformed into dfl. Perhaps so. But what if the agent hears a piece of 
information, and an hour later hears it again? The second message presum- 
ably has less effect than the first, but there is nothing in Model Two, as it 
now stands, to reflect that. Or take a tourist who visits a city he has not 
seen before. His first day will be full of new impressions. His second day 
will be full of old hat. According to Model Two, however, the two days 
affect him the same way. One solution to the dilemma is to stipulate that 
the register va lues~the  ~ ( t ) ~ b e  finite, so that incoming information is 
deposited in registers only if they are not yet full; but that would require 
a complete overhaul of Model Two. 

In comparing the performances of Models One and Two with standard 
theories of individual economic behavior, you may want to keep in mind 
that those standard theories do not perform quite so well as is commonly 
believed. The following three arguments are offered in support of this as- 
sertion. 

First, the standard theories, which for present purposes are taken to be 
utility theory, the theory of the producer, and the theory of labor supply, 
are neither mutually exclusive nor exhaustive in their theoretical coverage. 
Nor are they well integrated. Hicksian utility theory, for instance, cannot 
handle supply and deals with the attendant difficulties by, among other 
things, stipulating that money is a noncommodity; but the theory of labor 
supply, although designed to resolve at least part of the problem, contradicts 
this by declaring money to be a carrier of utility. 

Second, since the traditional consumer has no driver to spur him on, he 
rarely does anything. In fact, the only time he acts is when there is a change 
is the value of some parameter, in which case he adjusts his endowment 
instantaneously. Except for those moments, he does nothing at all. What 
causes this unrealistic behavior is that he is a utility-maximizing robot, and 
as such is incapable of changing his endowment so long as it maximizes 
utility. It follows that when neoclassical theory describes the consumer as 
buying and selling and working, it is not talking about its robot-consumer, 
the one with the utility function. Instead, it is talking about a living b e i n g ~  
the Intrusive Agent. Small wonder then that the neoclassical picture of the 
consumer and his behavior seems so realistic. The never-shown true picture, 
which displays the behavior of the robot-consumer rather than the living 
one, does not look realistic at all. 
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A third imperfection of traditional theory is that it divides the time axis 
in periods but does not specify the period length. As a result, assertions 
like "The consumer buys two quarts of milk during the period" have no 
operational content. And this is not the only problem. According to period 
analysis, the endowment at the end of each period differs from that at the 
beginning of the next period. (Were this not so, there would be no need 
for period analysis.) The endowment's time path thus has discontinuities 
at every point where two periods meet. Those discontinuities have no 
counterpart in the real world. 

Finally, a few examples to give you some idea of the practical, applicable 
side of Model Two. 

Suppose you are the President of the United States and you wish to raise 
taxes. The time to do so is right after your election: since the effects of a 
traumatic event wear off at a negative-exponential rate, the voters are less 
likely to be still incensed by the time the next election comes around. 

Or suppose you are a businessman. You may be able to use your knowl- 
edge of the theory to organize, interpret, and exploit information that you 
receiveminformation about, say, the short- or long-response function of a 
competitor or an important customer. Of course, observations made in an 
uncontrolled setting are not likely to give you enough information to com- 
pute anything as detailed as a response function's parameter values. But 
with luck, even vague and unspecific information can be useful. It might 
lead to, for instance, rough interval estimates of those parameter values. 

Or suppose you are concerned about overpopulation and want to per- 
suade people to have fewer babies. An economist's approach might be to 
raise pricesmof diapers, say, or of baby food. A politician's approach would 
depend on where he lives. If he lives in a democracy, he might advocate 
tax increases~so much for the first child, so much for the second. Under 
an authoritarian regime, he would more likely propose that large families 
be outlawed and transgressors tossed in jail. Which way is best? Model 
Two offers a systematic way to go about the issue: if we want people to 
do anything, we must manipulate their db's. Raising prices is a form of 
such manipulation. So is imposition of taxes. So is threatening with impris- 
onment. But there may be other, more efficacious ways, and it may not 
even occur to us to look for those unless we recognize db as the crucial 
access road to people's minds. 

A recent flier from Population Communications International (PCI), a 
United Nations affiliate, drives the point home. Seeking to halt the runaway 
growth of human population, PCI began, some years ago, to work with 
radio and television officials in several countries to produce soap operas 
with family-planning themes. According to PCI, the programs motivate 
audiences to have fewer children. In Mexico, Brazil, and Kenya, for exam- 
ple, fertility rates dropped between 24 and 34 percent when the soap operas 
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were broadcast. Although PCI is careful not to claim a causal connection, 
its data strongly suggest that there is one. Which, in view of Model Two, 
is plausible: manipulating db's, as those soap operas did, can be expected 
to have an effect. 

There are other, similar examples. Advertising manipulates db. So does 
brainwashing. So does TV news. Journalists like to say that they do not 
make the news~ they  just report it. Model Two has little sympathy for this 
claim. To report the news is to manipulate the dla's of readers and viewers, 
and a manipulator is no idle bystander. It is well known, for example, 
that newspaper reports of suicides trigger more suicides. Conversely, when 
newspapers stop printing news about suicides~as they agreed to do in the 
Netherlands, many years a g o ~ t h e  number of suicides drops markedly. In 
the same way, Model Two implies that violence in movies affects the 
moviegoer. Model Two does not say, however, that violence begets vio- 
lence~merely  that it has an effect. As far as Model Two is concerned, 
violence may just as well beget antiviolence. 
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ANSWERS 

CHAPTER 1 

The function is q = (p  + 1)/(p 2 + p + 1). E lementary  calculus 
shows that p = 0 is a maximizer and p = - 2  is a minimizer. 
The maximum is 1; the minimum is -1/3 .  Letting p go to + ~  
and -oo shows the p-axis to be a horizontal asymptote.  See Figure 
1. Since the domain is limited to p -> 0, everything to the left of 
the vertical axis is irrelevant. 

2. You find that B - 4/3, C = 2/3, D = 4/3, and E -- 0. For a graph, 
move the vertical axis in Figure 1 to the point p = -�89 and then 
make that point the origin of the p-axis. 

3. A mat ter  of definition. A plausible approach is to regard inactivity 
as leaving the endowment  unchanged. If the endowment  is x before 
the inactivity begins and x when it ends, inactivity is reasonably 
defined as x - x = 0. Inactivity is then the difference of two endow- 
ments, and that makes it an action. 

4. When  units of measurement  are ignored, John's  initial endowment  
is the point (2, 5); his action is the vector (1, - 1 ) ' ,  where the prime 
signifies transposition; and the endowment  resulting from his action 
is the point (2 + 1, 5 - 1) = (3, 4). Al together  then, (2, 5) + 
(1, - 1 ) '  = (3, 4). Taking measurement  units into account (b for 
bottle, d for dollar), the equation becomes (2b, 5d)  + (lb, - l d ) '  = 
(3b, 4d ). 

5. This book's  answer is given only in Chapter  5, but you may want to 
give it some thought now, and argue your opinion. 

6. A midsize supermarket  carries about 20,000 products. If a midsize 
supermarket  is where you shop, a basket is a list of 20,000 
quantities. Before you can rank all the market  baskets that you 
can afford, you have to find out which baskets you can afford. 
This means that you must first find out the prices of all 20,000 
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(-2,-1/3) 

Figure 1 

. 

. 

. 

10. 

11. 

12. 

products (bring pencil and paper); next you must compute all 
affordable baskets (bring a calculator); finally, you must rank those 
baskets (bring lunch). None of this comes even close to what 
happens in the real world. If the thesis nevertheless seems plausible 
it is because we tend to think of flesh-and-blood consumers as 
decision makers. The consumer of theory, however, is not made 
of flesh and blood, and does not decide anything. He simply 
follows the dictates of theory. And theory equips him with neither 
the ability nor the need to rank baskets. 

In this book, consuming a good is virtually the opposite of buying 
that good. Buying is an action. Actions produce and consume; they 
produce when they add to stocks and consume when they take away 
from stocks. Since buying adds to stocks, buying is producing. 

Arguably, normative microeconomics is about decision making. Posi- 
tive microeconomics is not. 

Possibly true for normative microeconomics, false for positive micro- 
economics. 

False. Market exchange predates property rights. Property rights 
make market exchange go more smoothly, but that is all. 

The formal meaning of "Consumer Jones is indifferent between 
bundles x and y" is u(x) = u(y). Satisfaction is an undefined term, 
not a theoretical notion. 

We like to think of our actions as sometimes voluntary, sometimes 
involuntary; but the fact is, in the end we undertake them all. 
Absent a formal definition of free will (or an equivalent cognitive 
notion), the distinction between voluntary and involuntary actions 
is specious. 
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CHAPTER 2 

. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

1. 1 /h .  

2.  e ~t = 1 + a t  + �89 a2t  2 + �9 �9 �9 . If a is measured in 1/h ,  each term on 
the right is real, and so the entire right side is well defined and real. 
If a is not measured in 1 / h  (and t is measured in h), the right side 
is undefined. 

3. Notat ion suggests that t is measured in units of time, but this is 
misleading; 3 ~ is defined only if t is real. 

4. The function exists only if p is real; everything else leads quickly to 
contradiction. Multiplying two functions of the type described does 
not, as a rule, lead to a function of the type described. It follows that 
S is not a set with multiplication. But S is a set with addition and 
multiplication. This makes S a vector space. 

5. They are different. For one thing, you cannot add (3 lbs., 4 gal.)' to 
(2 gal., 7 lbs.)'. 

One. 

The null vector. 

A + B and AB'  are, and the others are not. 

Matrices don' t  have solutions. 

You cannot multiply points by scalars (like c and 1 - c), so x~ and 
x2 must be vectors. (Alternatively, you can regard x~ and x2 as points, 
and combine that with an agreement that (1 - c)x~ + cx2 is to be 
interpreted as meaning Xl + c(x2 - x~). This is the traditional ap- 
proach.) 

q~ + 1 (q2 - q~). This is of the form point + vector, and so represents 
a point. (But see the parenthetical remark in the answer to Ques- 
tion 10.) 

X l  -~- 1/n(x2 - X l )  -a t- 1/n(x3 - X l )  + . . . --t- 1/n(x, - xl). (But see the 
parenthetical remark in the answer to Question 10.) 

False. You s e t  Ac = 0 (and then you count solutions). 

The first two parts are true. The third one is absurd: Ac = 0 a l w a y s  

has a solution. (Or: every homogenous system is consistent.) 

The columns of a low matrix, like A, are always linearly dependent.  
Of the three inverses, only (AA' )  -~ exists. D e t ( A ' A )  = 0. 

The columns of A have two elements each. They therefore belong 
to R 2, and so they certainly cannot form a basis for R 3. Since every 
basis for R 2 has two vectors in it, the columns of A do not form a 
basis for R 2 either. The two columns of A'  have three elements each. 
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They thus belong to R 3. But they do not form a basis for R 3, because 
every basis for R 3 needs three vectors. (Since the two columns of A' 
are linearly independent, they do form a basis for a plane P, planes 
being two-dimensional. If you conjure up a picture, you'll see that 
P is a plane in R 3, containing the origin of R 3. Put differently, P is 
a two-dimensional subspace of R3.) 

17. Basis matrix, 

Dual-basis matrix, 

( A =  lb 
0c lc " 

A 0 = (  1/b O/b I 
O/c 1/c/" 

18. C 'B 'A' .  c'B'a. Every 1 • 1 matrix is symmetric. 

19. The transpose is V~ ~ Since K' = K, this equals V~ ~ 

20. The diagonal elements of I are dimensionless ones. The off-diagonal 
elements are O(c/b) (first row) and O(b/c) (second row). 

21. Nonsense question; Ha and l ib  do not belong to V. 

22. The elements are dimensioned like those of I t  in Question 20. If 
nonsingular, the Hessian matrix can serve as an inner-product matrix. 
Of course, it means that the inner product of two given vectors will 
vary from point to point, unless u is quadratic. 

23. No, they belong to different spaces. 

24. x can be any scalar multiple of It-lb. 

25. (Aea, Ae2, Ac3) = A(Cl, c2, c3) = AC. To be shown is that every 
linear combination of the columns of AC is a linear combination of 
the columns of A, and vice versa. 

Every linear combination of the columns of AC has the form ACtt  
for some It. This is a linear combination of the columns of A, as you 
can see by writing ACtt  as A(CIt). 

Every linear combination of the columns of A has the form Av 
for some v. This is a linear combination of the columns of AC, as 
you can see by writing Av as AC(C -a 1). (The linear independence 
of the ci ensures that C is nonsingular.) P.O.C. 

For a more intuitive argument, consider that performing column 
operations on A is equivalent to postmultiplying A by a nonsingular 
matrix (like C). Performing column operations on A does not 
affect the linear span of the a~, any more than performing 
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row operat ions on a system of equations affects the solutions of 
the system. 

26. Since the equality holds for all v in R 3, it holds, in particular, for 
v = el = (1,0,0)', for v = ee = (0,1,0)', and for v = e3 = (0,0,1)'. 
Thus, Pei -- A ( A ' A )  -1 A'ei  for i = 1, 2, 3. Now if M is any matrix, 
Me/ i s  the ith column of M. It follows that P and A ( A ' A ) - I A  ' have 
the same ith column, i = 1, 2, 3. 

The result would not hold if it were merely given that Pv = 
A ( A ' A ) - I A ' v  for s o m e  v .  

27. First do a column operat ion on A: replace the first column with itself 
minus the second column. The resulting matrix is B, say: 

(! !) B - -  . 

The columns of B span the same plane as do the columns of A, so 
that A ( A ' A ) - ~ A  ' = B(B 'B)-~B ' ;  but B ( B ' B ) - I B '  is a lot easier to 
calculate than A ( A ' A ) - I A  '. You find that 1 (10 0) 

B(B'B)-ZB '=  0 4 6 . 
0 6 9 

28. The three vectors are linearly independent;  therefore, 
A ( A ' A ) - I A  ' =  I. 

29. ( -  2 x e  I - x2 _ y2 _ _  2 y e l  _ x2 _re), 

30. - (2 /5) (3x  + 4y)e 1- x2_ ye., _4e_4. 

31. Multiply v by 1/II v II. This  is a l lowed,  for II v II is a scalar,  and so 
1/11 v II is too.  The result is a unit vector with the same direction as 
v. The desired definition is now 

Dvu(X) = v 'Vu(x) 
II v II 

32. f(x + hv) = f(x) + Ovf(x) + 1/2! O , , O , , f ( x )  + 1 / 3 ! O , , O , , O , , f ( x )  + �9 �9 .. 

33. (--4e -4, --2e-4) '. 
34. b = - 5 .  The constraining l inemcal l  it L m i s  spanned by a = (1, 3)'. 

Projection onto L is represented by 

P =  a(a'a)-la' = 1-~ ( l  3) 
3 9 "  

Let the given function be f ( x , y ) .  The steepest constrained ascent is 
PVf  = ( -  e -4, - 3e-4) '. 
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35. (You may find it helpful to view the contour surface u(x) = U(Xo) 
as an indifference surface.) Abbreviate ~'U(Xo) to ~'u. From u(x) = 
U(Xo) + (x - Xo)'Vu + �9 �9 �9 (Taylor) follows that the plane touching 
the surface u(x) = U(Xo) at Xo is given by (x - Xo)'~u = 0. To be 
shown is that pH-I~Zu is orthogonal to the intersection of the planes 
x = Xo + Ae and (x - Xo)'~'u = 0. That intersection, which is a line, 
is given by x = Xo + Ae*, say, with e* satisfying e* 'A'~ 'u = 0 (or 
else the line won't  lie in (x - Xo)'~'u = 0). To be shown is thus that 
Ac* is orthogonal to  pH-lVu,  or c* 'A 'H(PH-1Vu)  = 0 for all c* 
satisfying c*'A'Vu = 0. Writing P as A ( A ' H A ) - I A ' H  furnishes the 
proof. 

If the two planes coincide, their intersection is not a line but a 
plane. In this case, the vector pH-1Vu both lies in the plane spanned 
by the columns of A and is orthogonal to that plane. That can happen 
only if PH-1Vu = 0. 

Note. Imagine a two-dimensional diagram showing an indifference 
curve and a point Xo on it. At Xo the indifference curve has a cer- 
tain slope. You can characterize that slope (i) directly, as dx2/dx~; 
(ii) somewhat indirectly, as minus the MRS of good i for good 2; and 
(iii) indirectly, by describing the direction of Vu. The indirect way might 
be called the umbrella method: you described the tilt of the umbrella's 
canopy by describing the direction in which the handle points. 

Imagine next a three-dimensional diagram, with an indifference 
surface and a point Xo on it. At Xo, the indifference surface has a 
certain tilt, a certain slant. You can characterize that slant (i) directly, 
by listing dx3/dXl and dx3/dx2, assuming both exist; (ii) somewhat 
indirectly, by using the MRS of good 1 for good 3 and the MRS of 
good 2 for good 3 - - tha t  is to say, I dx3/dXl l andldx3/dxa I--assuming 
both exist; and (iii) indirectly, by describing the direction of Vu. 

If there are n goods, you can characterize the slant of an indiffer- 
ence hypersurface (i) directly, by listing n - 1 differential quotients, 
assuming they all exist; (ii) somewhat indirectly, by listing n - 1 
marginal rates of substitution, assuming they all exist; and (iii) indi- 
rectly, by describing one Vu. The choice seems clear. 

37. A circle is not a convex set. The disks x 2 + y2 < 1 and x 2 + y2 < 1 
are convex, but that is a different matter. 

C H A P T E R  3 

1. The Bright Puzzle Piece Fallacy. 

2. The premise contradicts itself. Being a profit maximizer, the producer 
is already making the biggest possible profit, by definition. Doubling 
output thus will not increase profit. 
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, 

It is a purely mathematical assumption, meaning that the utility func- 
tion is independent of time. 

All other uses of his land consist of planting 0 acres (0 -< 0 < 1) with 
wheat and 1 - 0 acres with corn. Given what he is doing now, the 
next-best option is to let 0 be the largest number less than 1. Since 
no such number exists, opportunity cost is undefined, at least in theory. 
In the real world, divisibility is not perfect; there, the next-best option 
is to plant one ear of corn and for the rest wheat. The opportunity 
cost is then a fraction below $800. 

See Part II. 

He will not. To make him drink, the theory needs an extra ingredient. 
See Part II. 

If nl = n 2  = 1000, no utility maximizer will migrate. If nl :~ n 2 ,  

everyone shuttles back and forth between the two cities, and does so 
infinitely often in every arbitrarily small time interval. Equilibrium 
cannot be attained; it has to be there from the start. And there had 
better be not a single birth or death. Note that the Polykeynesians 
would behave more realistically if they were not all identical. 

CHAPTER 4 

1. Neither. A steak is not an endowment; nor is it a demanded bundle. 
There is thus no such thing as the utility of a steak. 

2. The Hicksian consumer lives in a world in which commodities are 
perfectly divisible. He thus buys a fraction of the CD and a fraction 
of the book. 

. That eating too much ice cream makes you sick has nothing to do 
with utility. Utility is a function of endowments or demanded bundles, 
not of quantities eaten. Nor is utility another word for pleasure, 
gastronomic or otherwise. 

Discussed in the next chapter. 

Suppose u is real-valued. Let goods 1 and 2 be beer, measured in 
bottles (b), and tuna, measured in cans (c). The marginal utility of 
beer is then measured in 1/b, and its marginal utility per dollar d is 
measured in 1/bd. Arguing the same way for tuna, you find that its 
marginal utility per dollar is measured in 1/cd. The marginal utilities 
per dollar thus cannot be equal. The Equimarginal Principle remains 
valid, of course. It is its description in terms of marginal utilities per 
dollar that is wrong. 
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6. The Equimarginal Principle says that, in equilibrium, marginal utili- 
ties are proportional to prices. Since all prices are positive, all mar- 
ginal utilities must have the same sign. Nothing is lost by taking that 
sign to be positive. 

(That more is better than less is not the reason that marginal 
utilities are specified as positive. It is the interpretation of the posi- 
tivity.) 

7. Let "buying a bottle of beer" be a. A slide along the budget line is 
a slide in the direction of a. In that direction, the derivative of the 
utility function is D,u = a'V~/llall. The consumer loves beer, meaning 
a'Vu is positive at first. The slide comes to a halt when a'Vu is zero. 
It is thus D~u that diminishes, not D~lU. 

8. In the Hicksian world, money is not a good, and so should not be 
on the vertical axis. Besides, it is hard to see how the points in the 
diagram might represent demanded bundles. 

9. If it seems that the consumer is ultimately a demander, it is because 
Hicksian theory depicts him that way. (Being unable to deal with 
supply, Hicksian theory has no choice.) You could indeed argue that 
everything the consumer does has but one purpose, but it is not 
consumption. It is utility maximization. 

The idea that the consumer is ultimately a demander is a cousin 
of the idea that there are such things as final goods (in addition to 
primary goods and intermediate goods). The thought behind these 
notions is that life is a sequence of tasks, each with a well-defined 
end; once a task is done, we begin the next one. According to this 
view, the time axis is divided into a sequence of periods, one for 
each task. But such a subdivision is too arbitrary. It goes against the 
Principle of Least Astonishment. This is why Model One leaves the 
time axis unpartitioned and treats individual behavior as a journey 
without stops, without milestones, without an "ultimate goal." This is 
also why Model One makes no room for primary goods, intermediate 
goods, and final goods. 

The distinction between consumers and producers is a theoretical 
issue. Theoretical issues should be settled on theoretical grounds. 
Any appeal to a legal notion like ownership is wholly beside the 
point. It is similar to the Scientist's having trouble defining "industry" 
and calling the Internal Revenue Service for help. 

The argument confuses utility with usefulness and is thus wrong; but 
its conclusion may be right. Whether it is depends on the definition 
of "characteristics." If a characteristic is a point, Pareto's model 
applies with only a change in interpretation. If a characteristic is a 

10. 

11. 
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nonnegative vector, Hicks's model applies with only a change in 
interpretation. If a characteristic is neither a point nor a nonnegative 
vector, it may be possible to build a new model on it. 

12. Most economists would probably regard money as an input. The 
profit-maximizing producer maximizes the inflow of that input. Since 
he does not maximize the inflow of any other input, like capital or 
labor, the asymmetry is obvious. The conclusion is not affected if 
you regard money as part of capital. 

13. Apart  from the obvious .confusion of utility with usefulness, this is 
merely a rewording of the argument that money is wanted not for 
its own sake but for what it can buy. 

14. Not true; utility theory is not asked to offer an explanation of why 
people have milk in their refrigerators, either. (And if asked, it would 
not give one. Theories describe; they do not explain.) 

15. One of the functions of a car is to transport its owner from A to 
B. One of the functions of the telephone is to pass along informa- 
tion. One of the functions of orange juice is to quench thirst. One 
of the functions of money is to serve as a medium of exchange. If 
we find it acceptable that Pareto's theory ignores the functions of 
cars, telephones, and orange juice, we should find it acceptable that 
it ignores the functions of money. 

As for the uselessness of Pareto's theory when it comes to explain- 
ing such things as the properties of the demand for money and the 
process of monetization of an economy, this is as it should be. Theo- 
ries describe; they do not explain. 

16. The "therefore" is misplaced. Describing and analyzing the role of 
money is a technical task, just as describing and analyzing the role of 
cars is a technical task. The latter is probably best left to an engineer, 
the former to a banker. But determining the right theoretical treatment 
of money calls for different skills. The right theoretical treatment is 
based on the right defini t ion--the right mathematical definit ionmof 
money, and that makes it the economic theorist 's province. 

The fictitious quotes in Questions 15 and 16 present a theoretical 
issue as if it were a practical one. But those are very different things. 
A theorist who seeks to define money needs a bit of logic, a bit of 
theory, a bit of methodology; but he does not have to know how a 
bank works. Some physicists know everything about electricity but 
cannot find the fuse box. 

17. It is true that if the money supply were suddenly doubled, every 
dollar would just as suddenly be worth less: you, the car buyer, would 
have to give up more dollars to buy a car. But it is also true that if 
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the stock of cars were doubled, car sellers would have to lower their 
prices to sell the sudden flood. It means that every car is now worth 
less: you, the car seller (and money buyer), must give up more car 
to buy a dollar. The statement in quotes is thus wrong. 

18. To see what the argument is worth, consider the following parallel: 
"Imagine an economy in which everyone communicates telepathi- 
cally. Such an economy has no justifiable use for telephones; but it 
does have as much use for commodities as the kind of economy in 
which we live. It follows that telephones are not a commodity." 

19. The conclusion that money is different from commodities does not 
follow. What does follow is that money makes certain actions go 
more smoothly. Money is thus well-equipped to perform a certain 
task. The same can be said for just about every commodity. 

It is, incidentally, not always true that barter transactions involve 
substantially higher costs than do trades in which commodities are 
exchanged for money. If that were so, barter would be a bit of a rarity. 
But I remember reading, several years ago, that barter accounts for 
as much as 40% of world trade. 

20. Circular. Besides, the statement mistakes a theoretical issue for a 
practical one. From a theoretical point of view, the sole reason for 
selecting a numeraire is mathematical: it normalizes the price vector, 
by setting one of its elements equal to 1. 

Model One is formulated without reference to prices. After this 
chapter, therefore, the selection of the right numeraire is academic. 

21. This is another attempt at basing a theoretical definition of money 
on the role of money in the real world. Apart  from that, the statement 
is false: if the unit of account is a pound of salt, then the value of a 
pound of salt, expressed in terms of the unit of account, is fixedmit 
will always be a pound of salt (Assuming that this is the right interpre- 
tation of the antiquated and undefined term "value"). 

22. Confuses utility with usefulness. Besides, whether money is a com- 
modity is a theoretical issue; it cannot be settled by something as 
concrete as the observation that people hold cash. 

23. True, but do not despair. One day it will be. 

CHAPTER 5 

1. See Figure 2, below. 

2. Let e be the p-elasticity of the demand rate for beer. To be shown is 
that - 1  < e < 0. Since pq increases, d(pq)/dp > 0 or q + p(dq/dp) 
> 0. Division by q gives 1 + e > 0, etc. 
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ACI>AB 

Figure 2 

3. The definition of E is (p/q)(dq/dp), not (p /q) (bq/Ap) .  

4. The extremizcrs arc p = 1 and p = 3. The exttema arc g(l) = 1 and 
g(3) = 7/3. The horizontal asymptote is given by g ( p )  = 2. There 
are no zeros. See Figure 3. 

5. It is easy to verify the handy formula 

] A  B C 
Ap2 + Bp + C - 1 
Dp2 + E p  + F) - ( D p 2 +  E p  + F)' 

Expanding the determinant with respect to the third row gives 

p 2 ( A E  - B D )  + 2p(AF - C U )  + (BF - C E ) .  (*) 

This quadratic form has at most two zeros, unless A€ - BD = A F - CD 

Figure 3 
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= B F  - CE = 0. In this last case, g is constant, so that g has a unique 
extremum and infinitely many extremizers (namely, every value of p), 
and, if g ---- 0, infinitely many zeros. 

Because its denominator is positive definite, g is continuous every- 
where. The continuity implies that if g has two extrema, they cannot 
be both maxima, nor both minima. 

6. Being a demand function, f (p )  must be positive for all p -> 0. Since 
the denominator is positive definite, this means Bp + C > 0 for all 
p -> 0. Taking p = 0 gives C > 0; taking p large gives B > 0. Further, 
if the demand curve is to bend backward, f '  (0) must be positive. By 
(*), in the answer to the preceding question, this means B - CE > O. 

7. The limit of f (p )  is O/D = 0. The limit of pf(p)  is B/D. 

8. Since pf(p)  converges to constancy (Question 7), e goes to -1 .  The 
p-elasticity of the expenditure rate for beer, being 1 + e, goes to 0. 

9. The function pf(p)  = (Bp 2 + Cp)/(Dp 2 + Ep + 1)~ca l l  it h ( p ) ~ i s  
not the own-price supply function of money. It is a cross-price supply 
function, for p is the price of beer (in terms of money), not the price 
of money (in terms of beer). The price of money (in terms of beer) 
is 1/p. The own-price supply function of money is thus h(1/p) = 
(Cp + B ) / ( p 2  + Ep + D), which is indeed the quotient of a linear 
numerator  and a quadratic denominator. 

10. Let H -1 = (k/y). You find that B = ) t ( k l z U l  - k l l U 2 )  , which can be 
positive. Without units, H -1 = I and B = -'yu2, which is negative. 

11. 3' is not a real number. It is a real multiple of 1/t. 

12. It is integration that has been done, not unification. When you inte- 
grate, you accept that there are two theories, and ensure that they 
do not contradict each other. When you unify, you reject the existence 
of two theories, and instead construct a single theory. 

13. A living being has no utility function. The consumer-robot of theory 
does, but he does not talk to academics. 

CHAPTER 6 

1. The Scientist has the freedom to construct his world as he sees fit. The 
idea that reality determines the driver would occur only to the Visitor. 

2. The solutions p of A 'p  - 0 are the vectors of the form A(-1,  7, 4)', 
with A nonzero. If A > 0, Pa is negative. If A < 0, P2 and P3 are negative. 

3. False. A meets Definition 1. 

4. There are infinitely many such actions. One of them is 2al + 3a2 = 
(11, 1, 1)'. 
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10. 

11. 

5. Let the two actions be the columns of A, set Ae = 0, and solve. 
Actually, solving is not strictly needed. Showing that there is only 
one solution is enough. 

6. If ko = 0, the attractive facet is the origin of the action space A. In 
this case, the origin is (0b, Of, Ok)'. 

7. By (4), Ao/:o = 7Ao(Ao'HAo)-IAo'VU. Premultiply both sides 
by (Ao'HAo)-IAo'H. Alternatively, write the equation as 
Ao[~o - 7(Ao'HAo)-IAo'VU] = 0, and then conclude from the linear 
independence of the columns of Ao that/:o - 7(Ao'HAo)-IAo 'Vu = 0. 

8. Solving Ae = Vl gives e = (1/2, 3/2, 1)', so Vl is feasible. Solving 
Ac = v2 gives c = ( -1 /2 ,  15/2, 5)', so v2 is not feasible. Solving 
Ae = v3 gives e = (0, 3, 2)', so v3 is feasible. 

9. Solve Ac = u  again. Using aicl + a2c2 + a3c3 = ( - a l ) ( - C l )  + 

a2c2 + a3c3 produces the three solutions without hard labor; they are 
( -1 /2 ,  3/2, 1)', (1/2, 15/2, 5)', and (0, 3, 2)'. This time then, v2 and 
v3 are feasible, and Vl is not. 

No, dt is not the same as At, and dx(t) is not the same as Ax(t). In 
fact, Ax(t) = dx(t) + d2x(t)/2! + d 3 x ( t ) / 3 !  + "  �9 �9 (Taylor). 

Infinitely many. (There are only three basic actions.) 

CHAPTER 7 

1. There are no preferences in Model One. 

2. Both Pareto's utility theory and Model One say that in certain circum- 
stances your demand curve for apples slopes downward. As soon as 
you are told this, you can Oust to be contrary) disprove the assertion 
by buying apples faster when their price goes up. 

3. One. It is only if John's Ao were to lose a column that you might be 
able to argue that John had completed an action. 

4. To prove M ' M  = I, use e i ' e j  = ~ij. From M ' M  = I follows that M and 
M' are each other's inverse, proving MM' = I. 

5. Matrix M is ko x ko. The columns of Ao are permuted. In fact, they 
are permuted in the same way that the columns of I were permuted 
in the formation of M. For an example, take Ao = (al, a2, a3) 
and M = (e2, e3, el); then AoM = (a2, a3, al), as you can easily 
verify. 

6. Since postmultiplication by M merely reorders the columns of Ao and 
does not affect the action space itself, H and H -1 stay the same. But 

must be premultiplied by M -1 (or M',  which is the same thing) if 
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Ao~o is to stay the same (AoMM'/:o = Ao/:o). The subspace spanned by 
the columns of Ao is unchanged if you merely reorder those columns/ 
vectors, so P stays the same. Alternatively, replace each of the four 
Ao's in Ao(Ao'HAo)-IAo'H with AoM; you will see that all four M's 
drop out. Since A is unaffected, A ~ is unaffected; Vu thus stays the 
same. Both sides of (2) are premultiplied by M'. To see the effect on 
Theorem 1, suppose the permutation turns al into as. The only change 
in Theorem 1 is that C = 0 if ~ =/:5a51 (= bsp) and A = 0 if ~ is any 
other element of bsas. 

7. Matrix N is n • n. The rows of Ao are permuted. 

8. Permuting the rows of Ao means permuting the n goods. Change H 
to NHN' ;  that way, Ao'HAo becomes Ao 'N 'NHN'NAo = Ao'HAo. 
Change H -1 to NH-1N';  that will turn H H  -1 = I into NHN'NH-1N ', 
which is I. Nothing happens to /:o. Matrix P becomes NPN' .  The 
elements of Vu must be permuted in the same way as the elements 
of vectors in A, so Vu is premultiplied by N. Equation (2) changes to 
Ao'N'NHN'NAo~o = yAo'N'NVu, which on simplification becomes 
(2) again. To see the effect on Theorem 1, suppose the permutation 
turns good 1 into good 4. The only change in Theorem 1 is that C - 
0 if ~r = Clal4 (-- clp) and A = 0 if ~ is any other element of Clal. 

9. The proof of Theorem 1 did not involve the sign of the marginal 
utilities; each d u ( x ) / d x i  may be positive, negative, or zero. Theorem 
1 would thus remain the same if ~ru were changed to -T'u. 

CHAPTER 8 

d ~  = dee + dj8 = ( d a  ~ + l~da) + ~ d b  = dot c + ~ ( d a  + db) = 
d a v + l~dx .  

2. a + ao equals both ( a  + ao) c + l~(a + ao) and ( a  c + l~a) + 
(ao c + ~ao). Using l~(a + ao) = l~a + l~ao completes the proof of 
the first part. The second part is handled similarly. 

3. Yes. To see why, reverse the proof of Question 2. 

4. I believe it is not. Learning about Model Two constitutes input; this 
is part of db, and therefore part of the model. Reading Model Two 
changes you, and it is possible that, as a result, your behavior changes. 
But there is no reason to believe that Model Two describes only your 
old behavior, not the new. Nor then is there reason to believe that 
through your new behavior you have falsified Model Two. 

5. For the purposes of this problem only, redefine the stress as s(g) - 
l[ ~ I[. It is easy to verify that Vs = r s ~ [[, a unit vector. Thus, if a is a unit 



Answers 195 

vector, D,,s(g) - cos ~b(a,g), regardless of the stress. Put differently, 
D~s(hg) is the same for all h > 0. For an illustration, let a be the 
unobservable part of "drinking a glass of water." Then D,,s(g) is the 
same everywhere along a ray through the origin of E m. Thus, if your 
thirst doubles, and redoubles, and redoubles again, the rate at which 
a glass of water reduces the stress remains the same. Give the connota- 
tions of "stress," this is implausible. It does not follow that 1[ g [1 is the 
wrong objective function. What does follow is that, were [[ ~ I[ chosen 
as the objective function, it had best be called something other than 
"the stress." 

CHAPTER 9 

1. Equation (17) is derivable only if the objective function is analytically 
specified. The objective function of Model One- -u t i l i t y - -was  not 
specified. 

2. The ith element of Or is e l ' o r  = -ye-V'[ei'~(O) + I taev~ei'~~,(a(7)dT]. All 

elements of the row ei ' f l  are constant, as is ei'g(0). 

3. Since g(0) and 1~1~ belong to R m, or does too. 

4. All elements of the row k' l~ are constant, as is k'g(0). This was used 
just before (8). 

5. The graph is a surface, in a diagram with a horizontal p-axis, a horizon- 
tal t-axis, and a vertical//-axis. Keeping the wage fixed, at p = po say, 
amounts to cutting the surface with the vertical plane p = Po; the 
intersection is the graph of a t-function. Keeping not p but t fixed, at 
to say, amounts to cutting the surface with the vertical plane t - to; 
the intersection is the graph of a function of the form Q/Qo. In Part 
II, this Q/Qo would have been the quasi-Engel function. 

6. Suppose that p is measured in bottles (b) and ~ is measured in cans 
per hour (c/h). Since Qo is real, D is measured in 1/b 2 and E is measured 
in 1/b. Further,  A(t) is measured in c/(hb2), B(t) is measured in c/(hb), 
and C(t) is measured like ~. 

7. From (5), /:o = (__Ao'__Ao)-IA ' _o  or. Premultiply by Ao to get Ao~o = 
/D. Adding I~ = 6(0) gives /~. The rate /I converges to 

'A - 1 A '  -Ao(Ao _o)  _o  D,b(O). 
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1-vector, 6 
Ability to choose, 8, 9 
Ability to rank bundles, 8, 9, 14 
Accident, 165 
Action, 6, 24, 106, 107, 146, 157 

between 0 and t as a pair of vectors, 148 
as a pair of vectors, 146, 157 
at t, 107, 118, 119, 121,122, 126, 135, 148, 

149, 151,158 
at t, as a pair of vectors, 148, 149, 151 
between 0 and t, 107, 119, 148 
core of, 149, 153, 157, 161 

Action element, 6 
Action, feasible, 108, 110, 111, 113-115, 

121, 148, 149, 153, 154 
Action, involuntary, 14 
Action matrix, 112, 114, 119, 121, 134 
Action matrix unspecified, 119 
Action, nonnegative, 70 
Action rate, 107, 118, 119, 123, 136, 148, 

158, 167 
at t as a pair of vectors, 148 

Action space, 24, 63, 106, 113, 147 
Action, voluntary, 14 
Action without visible consequences, 147 
Actions consume, 11 
Actions produce, 11 
Activity, 6, 78-80 
Activity analysis, 6, 26, 63, 78-80, 101, 102, 

104, 114, 115 
Activity-analytical constraint, 78-80, 102, 

104 
Activity-analytical feasible set, 114 
Activity, irreversible, 78 
Activity, nonmanufacturing, 78 
Activity, nonmarket, 7 
Actuaries, 57 

Adaptive economics, 175 
Adding endowments, impossibility of, 24 
Addition, 18 
Additive group, 21 
Adjusting 

ex ante, 154 
ex post, 154 

Advertising, 179 
After-tax earnings, 19 
Agent, 102 
Algebra, 21 
Algebraic operation, 18, 21 
Algebraic system, 21 
Animal behavior, 153, 168, 169 

vs. human behavior, 168 
Animate consumer, 8 
Annihilation vs. orthogonality, 34 
Anthropic, 7, 10, 51 
Approximation, linear, 148 
Array vs. matrix, 26 
Aspect, 152, 157, 176 
Assertion, 49 
Assumption, 49 
Asymmetric production function, 54 
Asymmetric projection matrix, 36 
Asymmetry in a theory, 54 
Asymptotic velocity, 164 
Attainable endowment, 67, 110, 112 
Attractive ai, 151 
Attractive a, 151 
Atttractive basic action, 119, 125, 126, 134, 

135, 151, 158, 159, 161,166, 170, 171 
as a pair of vectors, 151, 158, 159, 161, 

166, 171 
Attractive facet, 119, 121,135, 151,159 
Autonomous energy drain, 96, 97 
Average velocity, 106 
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Axiom, 49 
Axiomatization vs. mathematization, 49 

Backward-bending demand curve, 3, 105 
Backward-bending labor-supply curve, 128 
Bads, 60 
Baking cookies, 7 
Banks, 9 
Barter, 53, 84 
Basic action, 109-111, 114, 117-119, 122, 

124, 128, 134, 135, 149, 151,153, 158, 
162 

attractive, 119, 125, 126, 134, 135, 151, 
158, 159, 161, 166, 170, 171 

as a pair of vectors, 147-157 
unattractive, 119, 134 

Basic-action element, 122, 123, 134 
variable, 134 

Basic actions, dependent, 134 
Basic activity, 79, 80 
Basis, 28 
Basis matrix, 29, 35 
Beam-and-flashlight, 112 
Behavior under uncertainty, 10, 11 
Behavioral mechanism, 175, 176 
Belief, 155 
Between, analytical meaning of, 43 
Big City, 62 
Black Box, 142, 143 
Bliss point, 144 
Border, 9 
Bound vector, 24 
Boundary, 43 
Bounded set, 43 
Brain, 8, 141,143, 154, 155, 169 
Brainwashing, 179 
Bread consumption, doubling of, 59 
Bright Puzzle Piece Fallacy, 48, 52 
Budget (hyper)plane, 70, 109-113, 118 
Budget constraint, 3, 6, 53-56, 60, 61, 66, 

69, 70, 72, 95, 101, 108 
asymmetry of, 54, 55 
circular definition of, 60 
Hicks's, 54, 55, 70 
Pareto's, 66, 69, 108 
symmetry of, 54, 55 

Budget line, 71, 91-93, 97, 109 
Buying faster, 91 
Buying inputs, 78 
Buying the opposite of consuming, 14 

Capital, 2 
human, 53 

Capital and labor, symmetric treatment 
of, 54 

Capital flow, cross-border, 56 
Capital goods, 53 
Cardinality, 11 
Cartesian product, 63 
Cash balances, 84 
Cave, 37 
Certainty, 10 
CES production function, 77 
Choice, 9, 10 

as figure of speech, 9 
Choice of basis, 29 
Choosing 

a bundle, 3, 6 
to choose, 154 
a direction, 3, 6 

Circle, 145 
Circular definitions, 60 
Circularity of definitions of money, 60 
Circularity of definition of budget 

constraint, 60 
Closed set, 43, 119 
Closed input-output model, 98 
Closed under addition, 19 
Closed under multiplication, 18 
Closed under scalar multiplication, 20 
Cobb-Douglas, 2 
Cobb-Douglas production function, 77 
Coefficient, dimensioned, 162, 167 
Coefficient matrix, 126, 127, 161 
Cognitive, 7, 19, 51, 176 
Coin, 51 
Commodity, 24, 25, 53, 54, 63, 64 

defined, 64 
flow, 24, 25 
vs. good, 54 
vs. money, 53 
stock, 24 

Compact set, 44 
Compensation, 135 
Cone, 80-82, 109-111,113, 119, 121, 159 
Congestion, 62 
Connotations, 6, 67, 152 

irrelevance of, 6 
of utility, 67 

Consistent behavior, 9 
Consistent system, 27 
Constancy of riches, 73 
Constant driver, 107 
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Constant driver rate, 163, 165, 171 
Constant elasticity of substitution, 77 
Constant returns to scale, 56 
Constant tastes, 61 
Constrained indifference curve, 71, 118 
Constrained maximum, 92, 96 
Constrained utility maximum, 96, 116-118 

possible nonexistence of, 116, 117 
Constraint, 2 

unified, 104 
uniqueness of, 102 

Consumer as seller, 68 
Consumer capable of ranking bundles, 8, 

9,14 
Consumer demand, exogenous, 97, 98 
Consumer goods, 52 
Consumer on porch, 96 
Consumer/producer dichotomy, 103 
Consumer tries to maximize utility, 3, 91 
Consumer ultimately a demander, 83 
Consumer's cross-price demand function, 

2; 122 
Consumer's cross-price supply function, 

2, 122 
Consumer's demand function, 3 
Consumer's own-price demand function, 

2, 122 
Consumer's own-price supply function, 

2, 122 
Consuming the opposite of buying, 14 
Consumption activities, 52 
Consumption by actions, 11 
Consumption rate, 124 
Continuity of preferences, 12 
Continuous time, 2, 5, 10, 59, 90, 175 
Continuous-time dynamics, 5, 10 
Contour surface, 47, 145 
Contract, 9 
Converging path of ~:, 164 
Convex, 43, 80, 109, 119, 148 
Convex cone, 80, 109, 148 
Coordinate axis, 28 
Coordinate of an endowment, 6 
Coordinate system, 28 
Core of an action, 149, 153, 157, 161 
Corner solution, 49 
Cost, 9, 10, 61 

opportunity, 61 
Costless information, 84 
Country, 9 
Coupon, 7 
Cramer's Rule, 125, 127, 161 

Crescend, 3 
Cross-border capital flow, 56 
Cross-border labor flow, 56 
Cross-price demand function, 2, 94, 122, 

124, 128, 131, 136, 162 
Cross-price supply function, 2, 122, 124, 162 
Cumulative demand, 171 
Cumulative-response function, 158, 160, 

162, 163, 167, 168, 172 
Current endowment, 106, 108, 109, 112 

Deciding to decide, 154 
Decision, 10 
Decision making, 14 
Decrescend, 11,145, 157 
Deficient numerator, 126 
Definition vs. interpretation, 6 
Delta function, 42, 165 
Demand, 9 

cumulative, 171 
derived, 2, 53 
excess, 80 
exogenous, 97, 98 
as a flow rate, 81 
for labor power, 76 
for leisure, 64, 72, 75, 76, 97 
for poverty, 75 
as a stock, 81 
and supply, 80, 81 

Marshallian interpretation of, 81 
Demand curve, 3, 53, 81,105 

backward-bending, 3, 105 
downward-sloping, 3, 81 

Demand function, 1-3, 14, 94, 122, 124, 
128, 129, 136, 162, 174 

cannot be linear, 54 
cross-price, 2, 94, 122, 124, 128, 129, 136, 

162 
denominator of, 94 
dynamic version, 13 
form of, 3 
parameters of, 3 

Demand rate, 81, 92-94, 104, 105, 122, 123, 
130-134, 162 

converging to constancy, 13 
elastic, 104 
inelastic, 93, 104 
limit of, 105 

Demanded bundle, 7, 8, 69-72, 75 
Denominator of demand function, 94 
Derivative of a function in the direction of 

a vector, 38, 39 
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Derived demand, 2, 53 
Diagonal elements, 31 
Dichotomy, 52, 55, 66 

false, 52 
vs. partitioning, 52 
valid, 52 

Differential equation, 41 
Dimension of a vector space, 25 
Dimensioned, 19, 24, 95, 132, 162, 167 

coefficient, 162, 167 
coordinate, 24 
element, 24 
parameter, 132 
quantity, 95 

Dimensionless, 19, 95 
Dimensionless quantity, 95 
Diminishing Marginal Utility, Law of, 147, 

153, 155 
Dining room, 76 
Direction in which utility increases fastest, 3 
Direction of feasible action, 115 
Direction of steepest ascent, 39 
Direction of steepest constrained ascent, 41 
Directional derivative, 38, 39 
Discount factor, 99 
Discounted future pleasures, 99 
Displacement, 20, 21, 23, 106 
Disposable-income rate, 124 
Distance, 44, 145 

between a point and a set, 44 
Divisibility 

imperfect, 53, 176 
perfect, 49, 53, 90, 176 
strong, 90, 102 
weak, 90 

Division, 18 
Dollar flow, 19 
Domain 

of Hicks's utility function, 69, 72 
of Pareto's utility function, 67 
of profit function, 77 
of short-response function, 134 
of utility function, 60, 69, 72 

Dominant firm, 56 
Doomsday, 115 
Downward-bending labor supply curve, 128 
Downward-sloping demand curve, 3, 81 
Drifting endowment, 97 
Driver, 97-99, 104, 106, 107, 112, 114-119, 

121,142, 143, 147, 148, 153-155, 157, 
159, 167, 174-177 

constant, 107 

as feasible action, 114, 153 
as pair of vectors, 147, 148 
periodic, 107 
stochastic, 107 
at t, 107, 147 
between 0 and t, 107, 148 
between 0 and t as pair of vectors, 148 

Driver rate, 107, 148, 163, 165, 167, 171 
as pair of vectors, 148 
constant, 163, 165, 171 

Dual bases, 29 
Dual-basis matrix, 29, 31, 46 
Dual space, 25, 26, 32, 39 

main, 26, 32, 39 
Durable goods, 53 
Duration of economic period, 59, 66, 69, 

75, 178 
Dynamic, 5 
Dynamic models, 175 
Dynamic version of demand function, 13 
Dynamic version of testable results, 13 
Dynamics, continuous-time, 5, 10 

Earth, 56, 61 
Eating, 76, 96, 103 
Echo of an action, 58 
Economic fluctuations, 56 
Economic period, duration of, 59, 66, 69, 

75, 178 
Economic vocabulary, 10 
Edge of a cone, 111,112, 121 
Edible goods, 53 
Efficient allocation, 9 
Ego, 155 
Egyptian priests, 51 
Elastic demand rate, 104 
Electrochemical, 4, 143, 155 
Element of an action, 6 
Endogeneity, 114 

and exogeneity mathematically 
distinguished, 114 

Endogenous, 97, 114, 149 
energy loss, 97 
movement, 149 

Endowment, 3, 5, 24, 67, 70, 79, 106-108 
attainable, 67, 110, 112 
current, 106, 108, 109, 112 
drifting, 97 
initial, 5, 67, 70, 79, 106, 108 
motion of, 3, 7, 12, 89, 107 
speed of, 12, 92, 100, 115, 117 
stationary, 97 
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vs. surround, 152 
at t, 106 
(time) path of, 5, 7, 9, 10, 90, 106, 118, 

133 
Endowment coordinate, 6 
Endowment set, 24, 63, 79 

producer's, 79 
Endowment velocity, 93-95, 97, 105, 106, 

120, 164 
Energy, 64, 69, 72, 75, 76, 96, 97, 103, 111, 

114, 124, 129, 130, 147 
supply of, 72 

Energy deficit, 97 
Energy drain, autonomous, 96, 97 
Engel curve, 132 
Engel function, 2, 132, 174 
English language, 52 
Equal-stress contour, 145 
Equilibria, multiple, 10, 80 
Equilibrium, 2, 62, 100, 101, 104, 149, 175 

absence of, 101 
general, 2 
irrelevance of, 101 
moving, 101 
static, 101 
stationary, 100, 175 
stochastic, 101 

Equimarginal Principle, 82 
Erg, 64, 75 
Estimation, 93, 133, 162 
Ether, 155 
Euclid, 19, 51 
Excess demand, 80 
Exchange, 60, 84 

network of, 84 
Exogeneity, 114 

and endogeneity mathematically 
distinguished, 114 

Exogenous, 10, 96-98, 104, 105, 107, 114, 
120, 143, 148, 149, 174 

Exogenous change, 143, 148 
Exogenous consumer demand, 97, 98 
Exogenous energy loss, 96, 97 
Exogenous factors, 10 
Exogenous influences, 97, 99, 104, 105, 107, 

120, 174 
Expectations, 9, 10 
Expenditure, 9 
Expenditure rate, 93, 105, 124, 128 

limit of, 105 
Experiment, 173 

Explicit cost, 77 
Explosive behavior, 101, 175 
Exponential decay, 13, 165, 166, 175, 178 
Extreme close-up, 115 

Facet, attractive, 119, 121,135, 151,159 
Fallacy, Bright Puzzle Piece, 48, 52 
False dichotomy, 52 
Falsifiability, 136 
Family Pak, 110, 111,113, 121 
Family planning, 178 
Fat City, 62 
Feasible, 78, 108-111, 113-115, 119, 121, 

135, 148, 149, 151, 153, 154 
Feasible action, 108, 110, 111, 113-115, 121, 

148, 149, 153, 154 
direction of, 115 
length of, 115 
as pair of vectors, 148 

Feasible activity, 78-80 
Feasible set, 79, 80, 101, 106, 108-111,114, 

115, 117, 121, 135, 148 
defined, 114 

Feasible set unbounded, 80, 115 
Feedback, 143, 146, 147, 149, 157, 161 

defined, 149 
Fertility rate, 178 
Fifth principle of model building: Avoid 

Circularity, 60 
Final bundle, 5 
Final endowment, 5, 106 
Final goods, 53 
Financial instruments, 9, 53 
Finished product, 98 
Finite endowment speed, 100, 115 
Finite speed, 80, 100, 104, 115, 175 
Firm wholly owned by household, 84 
First principle of model building: Define 

Mathematically, 48 
Fixed input prices, 56 
Fixed output price, 56 
Flashbulb, 42 
Flashlight, 112 
Flat set, 34 
Flow, 6, 106, 107, 122, 158, 163 
Flow rate, 10, 81, 106, 107, 122, 123, 126-130, 

132, 133, 136, 158, 160, 163, 166 
Flow rates 

can sometimes be added, 133 
measured in same units, 133 
are unobservable, 133 

Followers vs. Leader, 56 
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Fork in endowment's time path, 9, 10 
Fourth principle of model building: Avoid 

Arbitrariness, 57 
Free access, 79, 80, 115 
Free disposal, 79 
Free vector, 24 
Free will, 155 
Full column rank, 27 
Future, 9, 68, 98, 99, 166 
Future event, 166 
Future expenses, 68 
Future utility, 99 

Game theory, 175 
Gasoline rationing, 7 
General equilibrium, 2 
Geometry, 51 
Geranium, 66 
Giffen behavior, 152 
Giffen curve, 152 
Giffen goods, 3, 54 
Good, 54 

vs. commodity, 54 
definition of, 64 
vs. money, 54 

Goodness of fit, 172 
Gossen, H., 11 
Government, 9 
Gradient, 26, 91, 93, 150 

Hessian matrix, 27 
Hicks, J. R., 12, 54, 55, 60, 63, 69-72, 75, 

97, 177 
Hicks's budget constraint, 54, 55, 70 

asymmetry of, 54, 55 
symmetry of, 54, 55 

Hicks's model, 71 
Hicks's utility domain, 69, 72 
Hicks's utility theory, 63, 69, 75, 97, 177 
Hicksian week, 69 
Hiring a worker, 77 
Homogeneous system, 27 
Horizontal p-axis, 3, 123, 129 
House of Calculus, 90 
House painter, 103 
Household production function, 105 
Household sector, 53 
Human capital, 53 
Human vs. animal behavior, 168 

Hunger, 143, 145 
Hyperplane, 113 

Idempotence, 35 
Identical firms, 55 
Imperfect divisibility, 53, 176 
Imperfectly divisible goods, 53 
Imputed price, 111, 121 
Inability to buy, 81 
Inability to sell, 81 
Inactivity, 14, 24, 97 
Inanimate consumer, 8 
Income, 2, 9, 10, 53, 75, 132, 135, 

174 
Income effect, 132 
Income elasticity, 132 
Income-inferior, 131 
Income-normal, 131, 132 
Income rate, 124, 130, 132 
Inconsistent behavior, 9 
Indeterminate period length, 100 
Indifference, 14 
Indifference contour, 71 
Indifference curve, 10 

constrained, 71,118 
Indifference map, 71, 72 
Indifference surface, 70, 117, 145 
Individual behavior, 58 
Industrial sector, 53 
Inedible goods, 53 
Inefficient allocation, 9 
Inefficient behavior, 5 
Inelastic demand rate, 93, 104 
Infeasible, 78, 111 
Inferior good, 131 
Infinite endowment speed, 100 
Infinite speed, 175 
Infinite wealth, 80, 101 
Infinite wealth in finite time, 101 
Infinitely rich, 115 
Infinity of prices, 114 
Information, 143, 177, 178 
Ingested quantities, 67 
Inheritance, 71, 165 
Inhomogeneous system, 27 
Initial endowment, 5, 67, 70, 79, 106, 108 
Inner product, 17, 29, 33, 36, 132, 145 

nonstandard, 29, 33, 36 
standard, 17, 29, 145 

Inner-product matrix, 31, 32, 36, 94, 145 
Input, 7, 54, 77, 123, 142, 143 
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Input link, 142, 146-148 
defined, 148 

Input markets, 56 
Input prices, 56 
Input-output model 

closed, 98 
open, 98 

Inputs, symmetric treatment of, 54 
Instant, 19, 21, 63 
Institutional, 7, 9, 10, 51,176 
Integrated theory vs. unified theory, 105 
Intensity of preferences, 12 
Intention, 10 
Interactive behavior, 58, 148 
Intermediate goods, 53 
Interpretation vs. definition, 6 
Intrusive Agent, 175-177 
Intrusive Consumer, 8, 9 
Inverse-square law, 11 
Involuntary action, 14 
Irrational, 5, 8, 9, 96 
Irrational behavior, 5, 9, 96 
Irreversible, 78, 111 
Irreversible activity, 78 
Ivory Tower, 49, 51 

Jigsaw puzzle, 48 
Joint output, 7 
Joint purchase, 7 
Joint sale, 7 
Jump discontinuity in endowment's time 

path, 5 

Keeping the stockholders happy, 102 
Klein, L. R., 175 
Knowledge, 10 
Kolmogorov, A., 49, 51 
Koopmans, T. C., 175 

Labor, 75; see also Labor power 
and capital, symmetric treatment of, 54 
as a bad, 76 
as primary good, 76 
supply of, 72, 75 

Labor flow, cross-border, 56 
Labor input, 124 
Labor power, 2, 64, 72, 75, 76, 96 

demand for, 70 

Labor supply, theory of, 63, 75, 76, 97, 177 
Labor-supply curve, 129, 130 
Labor-supply function, 2, 129 
Labor-supply model, 75 
Laboring, 76 
Lancaster, K. J., 84 
Law of Diminishing Marginal Utility, 147, 

153, 155 
Law of motion, 91, 92, 95, 97, 98, 104-106, 

108, 115, 117, 118, 120, 126, 136, 141, 
142, 146, 150, 159, 166, 174, 175 

Laws, 9 
Leader vs. Followers, 56 
Learning, 177 
Least-squares method, 172 
Leisure, 64, 72, 75, 76, 97 
Lemma, 49 
Length of economic period, 59, 66, 69, 75, 

178 
Length of feasible action, 115 
Length of steepest ascent, 39 
Length of steepest constrained ascent, 41 
Liechtenstein, 56 
Life insurance, 57 
Limit of demand rate, 105 
Limit of expenditure rate, 105 
Limit of price elasticity, 105 
Linear approximation, 148 
Linear dependence, 27 
Linear form, 125, 134, 160 

in two variables, 134 
Linear function, 37 

matrix representation of, 37 
Linear independence, 27 
Linear span, 46 
Linear system, 125 
Linear transformation, 37 
Linearity, 37 
Literary models, 52 
Location, 153 
Locational change, 153 
Locations in the plane, 19, 20 
Logic, 49 
Logically unexchangeable, 66 
Long-response function, 122, 141, 145, 158, 

160, 162, 163, 166, 167, 168, 175, 178 
Lottery ticket, 10 
Low matrix, 28 

Main dual space, 26, 32, 39 
Mainstream models, 63, 66 
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Manufacturing, 77, 78 
Marginal utility, 26, 74, 82, 97 

per dollar, 82 
of income, 74 
of money, 74 
negative, 60 
unit of measurement of, 26 

Market behavior, 1, 53, 109 
Market exchange, 14 
Market place, 152 
Market price, 111 
Market value, 77 
Marshall, A., 123 
Marshallian interpretation of demand and 

supply, 81 
Marshallian model, 81 
Marshallian price-quantity diagram, 81 
Mathematization vs. axiomatization, 49 
Matrix representation of a linear 

function, 37 
Matrix vs. array, 26 
Maximand, 3, 145 

vs. minimand, 145 
Maximum age, 57, 58 
Maximum, constrained, 92, 96, 116-118 
Measurement unit, 19, 94, 106, 108, 114 
Medium of exchange, 60, 65, 84 
Methodology, 48 
Mice in the pantry, 96 
Migration, 62 
Mind, 4, 13, 141, 165 
Minimand, 11,145 

vs. maximand, 145 
Model building, 2 
Model ingredient, 106, 174 
Monetary concept, 53, 64, 65, 174 
Monetary exchange, 53 
Monetization of an economy, 84 
Money, 9, 53, 54, 60-68, 72, 74-76, 84, 85, 

93, 94 
circular definitions of, 60 
vs. commodity, 53, 66 
definition of, 64 
directly exchangeable, 66 
vs. good, 54 
nominal, 9, 67, 68, 84 
as nongood, 72, 75, 76 
real, 68, 84 
the only supplied good, 65 
used but not used up, 65 

Money balances, 68, 85 

Money/commodities dichotomy, 66 
Money illusion, 74 
Money not wanted for its own sake, 60, 65 
Money-supply function, 94 
Money-supply rate, 93, 94 
Moneyness, 84 
Monopolistic firm, 97, 98 
Monopoly profit, 102 
Mortality tables, 57, 58 
Motion, 107 
Motion law, 91, 92, 95, 97, 98, 104-106, 

108, 115, 117, 118, 120, 126, 136, 141, 
142, 146, 150, 159, 166, 174, 175 

for Model One, 91, 92, 97, 115, 120, 126 
for Model One, reformulated, 120 
for Model Two, 150, 159 
for neoclassical theory, 118 

Motion of a particle, 154 
Motion of the endowment, 3, 7, 12, 89, 107 
Mount Everest, 95 
Movies, 179 
Moving equilibrium, 101 
MT, 18 
Multiple equilibria, 10, 80 
Multiplication, 18 

by a scalar, 18, 20 
Multiplicative group, 21 
Mutual observation, 148 
Myopic Law, 99, 154 

vs. Rational Law, 154 

Natural sciences, 6, 173 
Negative marginal utility, 60 
Negative-exponential rate, 13, 165, 167, 

175, 178 
Network of exchange, 84 
Neuron, 143 
Newton, I., 3, 11 
Next period, nonexistence of, 60 
Nile, 51 
Nominal balances vs. real balances, 68 
Nominal money, 9, 67, 68, 84 
Nominal money stock, 84 
Nondurable goods, 53 
Noneconomic behavior, 175 
Nonexistence of next period, 60 
Nonexistence of profit maximum, 57 
Nonmanufacturing activities, 78 
Nonmarket activities, 7 
Nonmarket behavior, 53 
Nonmatrix array, 27 
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Nonmonetary concepts, 53 
Nonmonetary transaction costs, 7 
Nonnegative action, 70 
Nonnegative linear combination, 114, 119, 

151 
Nonnegative point space, 63, 64 
Nonprimary goods, 53 
Nonstandard inner product, 29, 33, 36 
Nonstandard norm, 32 
Norm, 17, 32; see also Length 
Norm of steepest ascent, 39 
Norm of steepest constrained ascent, 41 
Normal good, 91,131 
Normative theory, 5, 64, 99, 174 
Null vector, 22 
Numeraire, 84, 85 
n-vector, 6 

Objective function, 67 
unified, 104 
uniqueness of, 102 

Observable consequences, 143 
Observable input, 142 
Observable output, 142 
Observable part, 147 
Observation matrix, 27, 148, 166 
Obtuse angle, 155 
Off-diagonal elements, 31 
Offering for sale vs. selling, 128 
Oil well, 96 
One good, one price, 60 
Open input-output model, 98 
Operation, algebraic, 18, 21 
Oph~limit~, 66 
Opportunity cost, 61 
Optimization, 10 
Ordinality, 11, 70 
Origin, 22 
Orthogonal, 33 
Orthogonal projection, 34 
Orthogonality vs. annihilation, 34 
Output, 2, 77, 142 
Output link, 142, 143, 146, 147 

defined, 147 
Output price, 2, 56 
Output rate, 124, 134 
Outputs, two or more, 7 
Overeating, 144 
Overpopulation, 178 
Own-price demand function, 2, 94, 105, 122, 

124, 128, 134, 136, 162 

Own-price demand rate, 166 
Own-price supply function, 2, 105, 122, 124, 

129, 136, 162 
Ownership, 9 

Paint, 103 
Palm trees, 58 
Pantry, 76 
Pareto, V., 11, 12, 76 
Pareto's budget constraint, 66, 69, 108 
Pareto's handling of supply, 69 
Pareto's utility domain, 67 
Pareto's utility theory, 63, 66, 76, 89, 93, 97, 

101,136 
Parmenides, 61 
Particle, motion of, 154 
Partitioning vs. dichotomy, 52 
Party Pak, 110, 111,121 
Path of ~, converging, 164 
Path of the endowment, 5, 7, 9, 10, 90, 106, 

118, 133 
Paying taxes, 7 
Perception of the future, 99 
Perfect competition, 55-57 
Perfect divisibility, 49, 53, 90, 176 
Period analysis, 5, 6, 10, 59, 102, 106, 176, 

178 
Period length, 59, 66, 69, 75, 100, 178 

indeterminate, 100 
Periodic functions, 107 
Permutation matrix, 136 
Perpendicular, 33, 35; see also Orthogonal 
Pharmacist, 65 
Physical constants, 172 
Physiology, 155 
Plane geometry, 51 
Planning, 10 
Point, 21 
Point set, 21 
Point space, 23, 24, 34, 36, 37, 43, 45, 63, 

64, 147 
nonnegative, 63, 64 

Pointed cone, 80, 109-111,113 
Pointed, convex, polyhedral cone, 109 
Points written as vectors, 24 
Polyhedral cone, 80, 109, 174 
Possession, 9 
Postulate, 49 
Potential utility gain, 12 
Powers of a matrix, 35 
Prediction, 10 
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Preference, 9-12, 62, 103 
revealed, 62 

Preference-aversion curve, 152 
Preference intensity, 12 
Preference ordering, 12 
Present utility, 99 
Price, 10 
Price change, interpretation of, 123 
Price elasticity, 105 
Price index, 68 
Price is a quotient of two action elements, 

123 
Price maker, 59 
Price of capital, 2 
Price taker, 59 
Price vector, 25, 91, 94, 114 
Price vector not unique, 114 
Primary good, 53, 76 
Prime, 17 
Principle of Least Astonishment, 57-59 
Principles of model building 

Avoid Arbitrariness, 57 
Avoid Circularity, 60 
Beware Dichotomies, 52 
Define Mathematically, 48 
Small Is Not Zero, 55 

Prism, 80 
Private goods, 53 
Probability, 49, 51 
Probability theory, 51 
Problem of the Intrusive Consumer, 8 
Procrustes, 76 
Producer behavior, 1, 6 
Producer/consumer dichotomy, 103 
Producer goods, 52 
Producer's cross-price demand function, 

2, 122 
Producer's cross-price supply function, 

2, 122 
Producer's endowment set, 79 
Producer's own-price demand function, 

2, 122 
Producer's own-price supply function, 

2, 122 
Production activity, 6, 7, 52, 53 
Production by actions, 11 
Production ex nihilo, 79, 115 
Production function, 54, 77 

household, 105 
Production process, 7, 77-79, 114, 123, 134 
Productive economy, 53 

Profit, 9, 10, 53, 76 
monopoly, 102 

Profit function, 76, 77 
Profit maximization, 53, 77, 78 
Profit maximum, nonexistence of, 57 
Projection, 34-37, 92, 93-95, 118, 120, 125, 

135, 150, 151,159 
onto budget line, 93, 94 
onto budget plane, 95, 118 
onto facet, 118, 135, 150, 151,159 
onto feasible set, 118, 135, 150, 151 
onto plane, 125 
of point onto set, 36, 37 
onto subspace, 35 
of vector onto set, 36 

Projection matrix, 35, 36, 150, 165 
asymmetric, 36 
symmetric, 35 

Projects, consumer as undertaker of, 5, 6 
Property, 9 
Property rights, 14 
Protagonist of Hicks's utility theory, 89 
Protagonist of Model One, 7 
Protagonist of Model Two, 13 
Protagonist of Pareto's utility theory, 89 
Protagonist of producer theory, 89 
Protagonist of labor-supply theory, 89 
Public goods, 53 
Pure theory, 49, 53, 64 
Pure-exchange economy, 53 
Purpose, 10 
Pythagorean theorem, 32 

Quadratic form, 125, 134, 160 
in two variables, 134 

Quadratic utility function, 11 
Quadrilateral, 51 
Quasi-Engel function, 2, 122, 130-~32, 136, 

162, 167, 174 
Quasiconcavity, 108 
Quiet life, 102 

Raising taxes, 178 
Random, 10 
Randomness, 10 
Rank of action matrix, 113 
Rational, 8 
Rational, bad, myopic, good, 100 
Rational behavior, 9 
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Rational Law, 99, 153, 154 
vs. Myopic Law, 154 

Rationality, 10, 154 
Rationing, 7 
Rats, 169 
Ray, 113, 116 
Real analysis, 44 
Real money, 68, 84 
Real money stock, 84 
Real balances vs. nominal balances, 68 
Real-balance approach, 68 
Register, 143, 146, 153 
Regression analysis, 27 
Repeated trials, 51 
Response function 

cumulative, 158, 160, 162, 163, 167, 168, 
172 

long, 122, 141, 145, 158, 160, 162, 163, 
166, 167, 168, 175, 178 

short, 122, 124-126, 134, 136, 158, 162, 
174, 175, 178 

Restaurant owner, 103 
Retailer, 78 
Returns to scale, 56 
Revealed preference, 62 
Revenue, 9, 10, 77 
Revenue rate, 124 
Rights, 9 
Ring, 21 
Risk, 9 
River current, 97 
Robinson Crusoe, 58 
Robot, 8, 9, 95, 96, 102, 103, 168, 169, 177 

uniqueness of, 102 
Robot-consumer, 8, 9, 96 
Role switching, 102 
Roof, 37 
Rowboat, 97 

Sailing, 6 
Sales rate, 124 
Salt concentration, 169 
Salt water, 169 
Satisfaction, 14, 67 
Satisficing, 102 
Savings, 9 
Scalar multiple, 20 
Scalar multiplication, 18, 20 
Scarce means, 14 
Scientist, the, 49, 50, 136, 152 
Scitovsky, T., 102 

Second principle of model building: Beware 
Dichotomies, 52 

Seller, consumer as, 68 
Selling a unit of output, 77 
Selling output, 77, 78 
Selling vs. offering for sale, 129 
Sensations, 143 
Sequentiality, 97 
Set of instants, 20 
Set with addition, 19-21 
Set with multiplication, 18, 19, 21 
Set with scalar multiplication, 20 
Short-response function, 122, 124-126, 134, 

136, 158, 162, 174, 175, 178 
Sigmoid, 132 
Signal, 143 
Slope of a surface in the direction of a 

vector, 12, 39, 92 
Slutsky equation, 1, 3, 53, 135 
Slutsky, E. E., 1 
Small is not zero, 55 
Small vs. zero, 55 
Soap operas, 178, 179 
Social behavior, 58, 59, 148 
Social science, 6, 155, 173 
Specific gravity, 171, 172 
Specifying the action matrix, 119 
Speed, 12, 90, 92 

of endowment, 12, 92, 100, 115, 117 
Spike, 42, 163, 165, 167 
Stackelberg, H. von, 56 
Stagnant societies, 97 
Standard inner product, 17, 29, 145 
Standard norm, 17, 32 
State at t, 9, 146, 157, 170 
State of mind, 13, 141-144, 146, 156, 157, 

164, 174, 175 
asymptotic velocity of, 164 

Statement, 49 
Static equilibrium, 101 
Stationarity, 164, 175 
Stationary endowment, 97 
Stationary equilibrium, 100, 175 
Steepest ascent, 39, 40, 46, 150 

direction of, 39 
norm of, 39 
as a vector, 39 

Steepest constrained ascent, 41, 47, 92, 94, 
99, 116-118, 150 

direction of, 41 
length of, 41 
norm of, 41 
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Steepest constrained descent, 150 
Steepest descent, 150 
Steering the endowment, 3, 6 
Stellar, E., 169 
Stimuli, 154 
Stimulus, 142 
Stochastic driver, 107 
Stochastic equilibrium, 101 
Stochastic process, 107 
Stock, 6 
Store of value, 65 
Straight-line demand curve, 53 
Stress, 145-147, 150, 155-157 
Stress slope minimization, 145 
Strict quasiconcavity, 108 
Strong divisibility, 90, 102 
Submarine, 66 
Submaximum utility, 91,104 
Suboptimal behavior, 5 
Subspace, 22, 23 
Subtraction, 18 
Sudden event, 42, 166, 175 
Suicide, 179 
Sum of flow rates, 163 
Sum of flows, 163 
Supply, 9, 73, 75 

of output, 2 
Pareto's handling of, 69 

Supply curve, upward sloping, 81 
Supply function, 2, 122, 124, 128, 136, 162, 

174 
cross-price, 2, 122, 124, 162 
of money, 94 
own-price, 2, 105, 122, 124, 128, 136, 

162 
Supply rate, 81, 92-94, 123 

of money, 93, 94 
as absolute value, 81 

Supplying by consumers, 72, 76 
Supplying of energy, 72 
Supplying of labor, 72, 75 
Surplus, 97 
Surround, 152, 153, 157, 165, 176 

vs. endowment, 152 
Symmetric matrix, 30 
Symmetric projection matrix, 35 
Symmetry, 5 

in indices, 54, 55 
of interpretation, 55 
in a theory, 54-56 
of theory of gravitation, 56 

t-function, 159-163, 167 
defined, 160 

Tall matrix, 28, 35 
Tasks, consumer as undertaker of, 5, 6 
Tastes, 61 
Tax payment rate, 124 
Taxes, 9, 178 
Taylor expansion, 37 
Taylor series, 38, 44 
Tea-drinking consumer, 68 
Technological constraint, 77 
Technology, 79, 84 
Technology matrix, 26, 79 
Test, 13 
Test fluid, 169, 171 
Test period, 169 
Testable results, 1, 2, 10, 11, 13 

dynamic version, 13 
Tests of animal behavior, 169 
Theorem, 49 
Theoretical (a)symmetry, 54 
Theoretical vocabulary, 6, 9, 10, 52, 53, 91 
Theory of gravitation, 3, 56 
Theory of labor supply, 63, 75, 76, 97, 177 
Theory of leisure demand, 75, 97 
Theory of the firm, 59 
Theory of the producer, 59, 63, 76 
Third principle of model building: Small Is 

Not Zero, 55 
Thirst, 143, 145 
Time, 5, 19, 20, 23, 63, 64 

as a continuous variable, 2, 5, 10, 59, 90, 
175 

defined, 63 
Time axis, 19, 20, 63 
Time flow, 20, 63 
Time line, 19 
Time path, 5, 7, 9, 10, 90, 106, 118, 133, 

144, 167 
of ~:, 144 
of endowment, 5, 7, 9, 10, 90, 106, 118, 

133 
uniqueness of endowment's, 10 

Tintner, G., 175 
Toaster, 111 
Tomato plants, 96 
Total variation, 172 
Trading, 78 
Transaction, 6, 7, 76, 77, 108, 114 
Transaction costs, 7 
Transitivity of preferences, 12 
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Transposition, 17 
Trapezoid, 51 
Traumatic event, 165, 178 
Travel, 153 
Triangle, 51 
Trying to maximize utility, 3, 91 
Tuna inheritance, 71 
TV news, 179 
Type A personality, 166 

Utility-maximizing action, 67, 118 
Utility-maximizing demanded bundle, 71 
Utility-maximizing endowment, 70, 75 
Utility-maximizing location, 115 
Utility maximum, constrained, 96, 116-118 
Utility slope maximization, 3, 92, 95, 96 
Utility theory 

Hicks's, 63, 69, 75, 97, 177 
Pareto's, 63, 66, 76, 89, 93, 97, 101, 136 

Uzawa, H., 12 

U.S. economy, 56 
Unable to buy, 81 
Unable to sell, 81 
Unattainable endowment, 112 
Unattractive basic action, 119, 134 
Unbounded feasible set, 80, 115 
Uncertainty, 8-11, 177 
Unified constraint, 104 
Unified objective function, 104 
Unified theory, 104 

vs. integrated theory, 105 
Uniform velocity, 164 
Uniqueness of behavior, 111 
Uniqueness of endowment's time path, 10 
Uniqueness of objective function, 102 
Unit of account, 65, 85 
Unit of measurement, 19, 94, 106, 108, 114 
Unit vector, 37 
Unit of time, 64 
Unobservable, 157 
Unobservable part, 146, 147, 149, 154 

of action, 146, 147, 149 
of driver, 147 

Upward-sloping supply curve, 81 
Usefulness, 67, 99, 103 
Utility, 3, 106, 107 

differentiable, 107, 108 
future, 99 
not a measure of anything, 11 
not a maximand, 3 
always maximized, 91 
present, 99 
of a steak, 82 
as a "tainted notion", 12 

Utility difference, 12 
Utility function, 2, 60, 68, 69, 72 

asymmetric in indices, 68 
quadratic, 11 

Utility maximization, 3, 91, 93, 95, 96, 118 

Valid dichotomy, 52 
Value added, 77 
Variable basic action, 125, 170 

elements, more than one, 134 
Vector space, 21 
Velocity, 90, 92, 94, 97, 106, 164 

asymptotic, 164 
average, 106 
uniform, 164 

Velocity of endowment, 92-95, 97, 105, 
106, 120, 164 

Verbal economics, 49 
Vertical p-axis, 123 
Vertical translate, 127 
Visitor, the, 50, 136, 152 
Vocabulary of theory, 6, 9, 10, 52, 53, 91 
Voluntary action, 14 

Wage, 2, 122, 124, 129-132, 174 
Wage-inferior, 131 
Wage-normal, 131 
Wage rate, 75 
Weak divisibility, 90 
Weaknesses of Model One, 153 
Week, Hicksian, 69 
Weekly expenditure for all other goods, 83 
Weiner, I. H., 169 
Wholesaler, 78 
Widget manufacturer, 56 
Willing to buy, 81 
Willing to sell, 81 
Windup doll, 95, 169 
Working, 97, 129 

Zero endowment speed, 100 
Zero period length, 59, 60, 90, 98 
Zero vs. small, 55 
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