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ANSWERS PAMPHLET 1

Chapter 2
2.1 i) y = 3x—2isincreasing everywhere, and hasno local maximaor minima.
See figure.*

ii) y = —2xisdecreasing everywhere, and has no local maximaor minima.
Seefigure.

iii) y = x> + 1 has aglobal minimum of 1 a x = 0. It is decreasing on
(=0, 0) and increasing on (0, ). See figure.

iv) y = x3+xisincreasing everywhere, and hasno local maximaor minima.
Seefigure.

V) y = x3 — x has a local maximum of 2/3,/3 at —1/+/3, and a local
minimum of —2/3y/3 a 1/4/3, but no global maxima or minima. It

increases on (—, —1/+/3) and (1/+/3, *) and decreasesin between. See
figure.

vi) y = |x| decreases on (—<,0) and increases on (0, ). It has a global
minimum of 0 at x = 0. Seefigure.

2.2 Increasing functions include production and supply functions. Decreasing
functionsinclude demand and marginal utility. Functionswith global critical
pointsinclude average cost functions when afixed cost is present, and profit
functions.

23 1,5 -2,0.

24 a) x#1, b)x>1 ¢ dlx; d x#=1 e —-1l=x=+1,
f) -1=x=+1,x#0.

25a x#1, b)dlx, ¢ x#-1-2, d) dlx

2.6 The most common functions students come up with al have the nonnegative
real numbers for their domain.

28a 1, b)) -1 00 d3

2.8 a) The general form of alinear function is f(x) = mx + b, where b isthe
y-intercept and misthe sope. Herem = 2 and b = 3, so theformulais
f(x) =2x+ 3.

b) Herem = —3andb = 0, so theformulais f(x) = —3x.

*All figures areincluded at the back of the pamphlet.
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¢) We know m but need to compute b. Here m = 4, so the function is of
the form f(x) = 4x + b. When x = 1, f(X) = 1, so b hasto solve the
equationl = 4-1+ b. Thus,b = —3and f(x) = 4x — 3.

d) Herem = —2, so the function is of the form f(X) = —2x + b. When
x = 2, f(x) = —2, thusb hasto solvethe equation —2 = —2-2 + b, so
b=2and f(x) = —2x + 2

€) We need to compute m and b. Recall that given the value of f(x) at two
points, m equals the change in f(x) divided by the change in x. Here
m= (5—3)/(4 —2) = 1. Now b solvesthe equation3 = 1-2 + b, s0
b=1and f(x) = x+ 1

fy m=[3-(—4)]/(0—-2) = —7/2, and we are given that b = 3, so
f(x) = —(7/2)x + 3.

2.9 a) The dope is the marginal revenue, that is, the rate at which revenue
increases with output.

b) The slope is the marginal cost, that is, the rate at which the cost of
purchasing x units increases with x.

¢) Thedopeisthe rate at which demand increases with price.

d) The dope is the marginal propensity to consume, that is, the rate at
which aggregate consumption increases with national income.

€) The slopeisthe marginal propensity to save, that is, the rate at which
aggregate savings increases with national income.

2.10 a) The slope of a secant line through points with x-values x and x + his
[Mm(x +h) —mx]/h = mh/h =m.

b) For f(x) = x5,

C fx+h)—f(x) . x®+3x°h+3xh®+ hd—x3
lim = lim
h—0 h h—0 h
= lim3x? + 3xh + h* = 3x%
h—0
For f(x) = x4,
, . 4x3h + 6x2h? + 4xh® + h?
f'(x) = lim
h—0 h

= lim4x3 + 6x2h + 4xh? + h® = 4x°.
h—0
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211 a) —21x%, b) —24x73, ¢) —(9/2x %2, d)1/4/x,
e 6x — 9+ (14/5)x~ %5 — (3/2)x V2, f)20x* — (3/2)x /2,
g) 4+ 9x% + 6x + 3,
h) (1/2)(x" Y2 = x73/2)(4x5 — 3/%) + (x/2 + x"1/2)(20x* — (3/2)x"1/?),
) 2/(x+ 12, j)A—x3)/A+xD)?, K 7(x®— 3x2)°%(5x* — 6X),
1) (10/3)(x® — 6x2 + 3x)~"1/3(5x* — 12x + 3),
m) 3(3x° + 2)(x® + 2x)?(4x + 5)? + 8(x° + 2x)3(4x + 5).

2.12 a) The dope of the tangent line |(X) = mx + b to the graph of f(x) at
Xo ism = f/(xg) = 2% = 6. The tangent line goes through the point
(X0, T(%0)) = (3,9), sobsolves9 = 6-3+ b. Thusb = -9 and
[(x) = 6x — 9.

b) Applying the quotient rule, f/(x) = (2 — x?)/(x? + 2)2. Evaluating this
at xo = 1, m = 1/9. The tangent line goes through the point (1,1/3).
Solving for b, [(x) = (1/9)x + 2/9.

(fOo + 1) + g(x0 + h) — (f(%) + 9(x))

213 (f +9)'(x0) = lim

h
—im fG0+h) — o) (9% + 1) — 9(x)
h—0 h h—0 h
= (%) + g'(%0)

and similarly for (f — g)'(Xo).

kf(x + h) — kf(x)
h

fOo +h) — f(x)
h

(kf)'(x0) = Jim

= kf'(x).

=klim

h—0

2.14 Let F(x) = x % = 1/xk. Apply the quotient rule with f(x) = 1 and
g(x) = xk. Then f/(x0) = 0, g'(x0) = kx§ %, and

Flixo) = —kg /g = —hog ™.

2.15 For positive x, |x| = x, soitsderivativeis 1. For negative x, |[x| = —X, soits
derivativeis —1.
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216,17 a) t/(x) = {2_X2x :; i Z 8’

As x converges to 0 both from above and below, f’(x) convergesto 0, so
the function is C*. Seefigure.

b) This function is not continuous (and thus not differentiable). As x con-
vergesto 0 from above, f(x) tendsto 1, whereas x tendsto O from bel ow,
f(x) convergesto —1. Seefigure.

¢) This function is continuous, since lim,_,; f(x) = 1 no matter how the
limit is taken. But it is not differentiable at x = 1, since limyo[f(1 +
h) — f(1)]/h = 3and limp;o[f (1 + h) — f(1)]/h = 1. Seefigure.

d) ThisfunctionisC? at x = 1. No matter which formulais used, the value
for the derivative of f(x) at x = 1is 3. Seefigure.

f/(x) — {3X2 if x < 1,
3 if x=1.

2.18 Theinteresting behavior of thisfunction occursin aneighborhood of x = 0.
Computing, [f(0 + h) — f(0)]/h = h™/3, which converges to +o or —x
as h converges to 0 from above or below, respectively. Thus f(x) = x?/3 is
not differentiableat x = 0. Itiscontinuousat x = 0, sincelim,_q f(x) = 0.
This can easily be seen by plotting the function. See figure.

2.19 Seefigure.

2.20 a) —42x, b)72x7%, ©) (45/4)x /2, d)x3/2/8,

e) 6 — (52/25)x78/5 + (3/4)x~%/2, ) 80x3 + (3/4)x~%/2,

g) 12x° + 18x + 6,

h) (—x3/2/4+3x75/2/4)(4x5 — 3\/}) + (X2 - x3/2)(20x4 — 3x1/2/2)
+ (X1/2 + x’l/z)(80x3 + 3X73/2/4),

) —4/(x+ 1% ) (¢ - 6x)/( + 1),

K) 42(5x* — 6x)%(x> — 3x?)° + 7(20x3 — 6)(x° — 3x?)®,

1) (—10/9)(5x* — 12x + 3)2(x® — 6x2 + 3x) ~#/3 + (10/3)(20x3 — 12)(x° —
6x2 + 3x)"1/3,

m) 12(x + 1)2(4x + 5)%(x? + 2x) + 96(x + 1)(4x + 5)(x% + 2x)? + 6(4x +
5)2(x? + 2x)% + 32(x% + 2x)°.

2.21 a) f/(x) = (5/3)x¥3, so f(x) is CL. But x¥/3 is not differentiable at x = 0,
so f isnot C? a x = 0. Everywhere elseitisC*.
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b)

This function is a step function: f(x) = k for k = x < k + 1, for every
integer k. It is C” except at integers, sinceit is constant on every interval
(k,k + 1). At integersit fails to be continuous.

2.22 C/(20) = 86,50 C(21) — C(20) ~ C'(20)- 1 = 86. Direct calculation shows
that C(21) = 1020, so C(21) — C(20) = 88.

2.23 C/(x) = 0.3x2 — 0.5x + 300. Then C(6.1) — C(6) ~ C/(6) - 0.1 = 30.78.

2.24 F/(t) = 8/(+2)2. ThusF/(0) = 2 and the population increase over the next
half-year isF/(0) - 0.5 = 1.

2.25 a)

b)

c)

31 a)

b)

©)

f(x) = X and f/(x) = 1/2/x. f(50) = f(49) + f'(49) - (1L0) =
7+ 1/14.

f(x) = x¥4, and f/(x) = 1/(4x%/%). Then £(9,997) ~ f(10,000) +
£/(10,000) - (—3.0) = 10 — 3/4,000 = 9.99925,

f(x) = x° and f/(x) = 5x* £(10.003) = f(10) + f/(10) - 0.003 =
100,000 + 50,000 - 0.003 = 100,150.

Chapter 3

f/(x) = 3x? + 3, so f/(x) is aways positive and f(x) is increasing
throughout its domain. f(0) = 0, so the graph of f passes through the
origin. Seefigure.

Early versions of the text have f(x) = x* — 8x® + 18x — 11 here,
with f/(x) = 4x3 — 24x? + 18. This itself is a complicated function.
f/(x) = 12x2 — 48x. Thus, f/(x) hascritical pointsat x = Oand x = 4.
Thepoint x = Oisalocal maximumof f/, andx = 4isalocal minimum.
Evaluating, f/(x) is positive at the local max and negative at the local
min. Thismeansit crosses the x-axisthree times, so the original function
f hasthree critical points. Since f/(x) is negative for small x and positive
for large X, the critical points of f are, from smallest to largest, a local
minimum, alocal maximum, and aloca minimum.

Later versions have f(x) = x* — 8x® + 18x? — 11. Its y-intercept is at
(0, —11); f/(x) = 4x3 — 24x? + 36x = 4x(x% — 6x + 9) = 4x(x — 3)%.

Critical pointsareat x = 0, 3, i.e., (0,11) and (3,16).

f’ > 0 (and f increasing) for 0 < x < o (x # 3); f/ < 0 (and f
decreasing) for —oo < x < 0. Seefigure.

f/(x) = x2+9. Thisfunctionisalwayspositive, so f isforever increasing.
A littlechecking showsitsroot to be between —1/3and —1/2. Seefigure.
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d) f/(x) = 7x6 — 7, which hasroots at x = *1. The local maximum is at
(—1,6), and thelocal minimum isat (1, —6). The function is decreasing
between these two points and increasing elsewhere. The y-intercept is at
(0,0). Seefigure.

e) f(0) =0; f'(x) = (2/3)x /3. f/(x) < 0 (and f decreasing) for x < 0;
f/(x) > O(and f increasing) for x > 0. Asx — 0, thegraphof f becomes
infinitely steep. See figure.

f) f/(x) = 12x5 — 12x® = 12x3(x? — 1). The first derivative has roots at
—1,0and 1. f/(x) isnegativefor x < —1and 0 < x < 1, and positive
for —1 < x < Oandx > 1. Thus f (x) isshaped likeaw. Itsthreecritica
points are, aternately, a min, a max, and a min. Its values at the two
minimaare both —1, and its value at the maximum is +2. Seefigure.

3.2 Since f isdifferentiable at xg, for small h, [f(Xg + h) — f(Xp)]/h < 0. This
means that for small positive h, f(X; + h) < f(Xg) and, for small negative h,
f(xo + h) > f(X). Thus, f isdecreasing near Xg.

3.3 a) f”(x) = 6x. The function is concave (concave down) on the negative
reals and convex (concave up) on the positive reals.

b) f”(x) = 12x? — 48x, which is negative for 0 < x < 4 and positive
outside thisinterval. Thus f is concave on the interval (0, 4) and convex
elsewhere.

c) f”(x) = 2x, so f is concave on the negative reals and convex on the
positive reals.

d) f/(x) = 42x° o f is concave on the negative reals and convex on the
positive reals.

e) f/(x) = —2x"*3/9. This number is always less than 0 for x # 0. f is
concave on (0, ) and on (—o°, 0). It is not globally concave.

f) f”(x) = 60x* — 36x2, which is negative on theinterval (—+/3/5,/3/5),
and positive outside it. Thus, f is concave on this interval and convex
elsewhere.

3.4-5 Seefigures.

3.6 Thereisasingle vertical asymptoteat x = 2. f/(x) = —16(x + 4)/(x — 2)3
and f”(x) = 32(x + 7)/(x — 2)*. Consequently there is a critical point at
x = —4, where the function takes the value —4/3. f”(—4) > 0, so thisis
alocal minimum. There is an inflection point at x = —7. f is decreasing
to the right of its asymptote and to the left of x = —4, and increasing on
(—4,2). Seefigure.
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3.7 a) Theleading monomial isx ™1, so f(x) convergesto 0 as x becomes very

3.8

3.9

positive or very negative. It also has vertical asymptotesat x = —1 and
x=1f(x)=—-(x*+1)/(x*—1)? soforx < —land x> 1, f(x)is
decreasing. (In fact it behaves as 1/x.) It is also decreasing between the
asymptotes. Thus, it goes from 0 to — as x goes from — to —1, from
+0 t0 —o0 as x goes from —1 to 1, and from +oo to O as x goes from 1
to +o0. Seefigure.

b) f(x) behavesas1/x for x very large and very small. That is, as |x| grows
large, f(x) tendsto 0. f/(x) = (1 — x?)/(x? + 1); so there are critical
pointsat —1 and 1. These are, respectively, aminimum with value —1/2
and a maximum with value 1/2. Inflection points are at (—+/3, —+/3/4),
(0,0), and (+/3,+/3/4). Seefigure.

c) This function has a vertical asymptote at x = —1. The lead monomial
isx2/x = X, soin thetailsit isincreasing as x — +o and decreasing
as X — —o, As x convergesto —1 from below, f(X) tendsto —«; as x
convergesto —1 from above, f(x) convergesto +oe. See figure.

d) Thelead monomial isx?/x? = 1, so f(x) convergesto 1 as |x| becomes
large. It has vertical asymptotesat x = 1and x = —1. Infact, f can be
rewrittenas f(x) = 1+ (3x + 1)/(x?> — 1). Since f'(x) = —(3x*> + 2x +
3)/(x?> — 1)2 < 0, f isaways decreasing. So, its general shapeisthat of
the function in part 7a. See figure.

€) Thelead monomial isx?/x = X, so thisfunction isincreasing in x when
[x| islarge. When x issmall near itsvertical asymtoteat x = 0, it behaves
asl/x. f/(x) = 1—1/x?, whichisOat +1. x = —lisalocal maximum
and x = 1isalocal minimum. See figure.

f) Thisfunction is bell shaped. It is always positive, tends to 0 when |x| is
large, and hasamaximum at x = 0 whereit takesthevalue 1. Seefigure.

Seefigures.

a) No global max or minon Dy; max at 1 and min at 2 on D».

b) No max or min on Dy; min at 0 and max at 1 on D».

c) Minat —4, max at —2onDy; minat +1, no max on Dj.

d) Minat 0, max at 10 on Dy; min at 0, no max on D5.

€) Minat —2, max at +2 on Dy; minat —+/2, max at ++/2 on D.

f) Minat 1, no max on Dy; max a —1, ho min on D5.

g) Nominor max on D;; max at 1 and min at 2 on Dy.

h) No max or minon Dy; max at 1 and minat 5 on D».
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3.10

311

3.12

3.13

3.15

3.16

3.17

In this exercise x is the market price, which is a choice variable for the
firm. w(X) = x(15 — x) — 5(15 — x). Thisfunction is concave, and itsfirst
derivativeis 7/(x) = —2x + 20. 7/(x) = Oat x = 10.

From the information given, the demand function must be computed. The
function is linear, and the slope is — 1. It goes through the point (10, 10), so
the function must be f(xX) = 20 — x. Then the profit function (as a function
of price) must be w(x) = (X — 5)(20 — X). 7/(x) = —2x + 25, so profit is
maximized at x = 12.5.

One can tranglate the proof of Theorem 3.4ain thetext. Hereisanother idea
If £ isasecant line connecting (Xo, Yo) and (X, Y1) on the graph of a convex
function f(x), then the set of points (x, f(x)) for x & (o, X1) lies above £.
Taking limits, the graph of a convex function always lies above each tangent
line (except where they touch). If f/(Xy) = 0, then the tangent line is of the
form £(x) = f(Xp) = b. Since f(X) is convex near Xy, f(X) must be at least
asbig asb for x near xo, and S0 Xg isamin.

Suppose Yo < Xo; f is decreasing just to the right of yg and increasing just
to the left of xg. It must change from decreasing to increasing somewhere
between yp and Xg, say at wg. Then, wy is an interior critical point of f —
contradicting the hypothesis that xg isthe only critical point of fg.

AC(X) = x>+ 1+ 1/x. MC(X) = 3x*> + 1. MC(Xy) = AC(X;) when
23 = 1/%, that is, a xo = 273, AC/(x) = 2x — 1/%?, s0 AC(X) has a
critical point a x = 2713, Thus ¢ is satisfied. MC(X) is increasing, AC(x)
is convex, and the two curvesintersect only once at xg, S0 it must be that to
theleft of xg, AC(X) > MC(x), and henceto theright, AC(x) < MC(X). See
figure.

Suppose C(x) = 4/x. Then MC(x) = 1/2,/x, which is decreasing. 7(x) =
px — \/X. 7'(X) = p—1/2,/x. Theequation 7/(x) = O will haveasolution,
but 7"(x) = —1/4x%2, which is always negative on the positive reals.
Setting price equal to marginal cost gives alocal min. Profit can aways be
increased by increasing output beyond this point.

a) Locatex” correctly at theintersection of the MR and M C curves. Revenue
at theoptimum isdescribed by the area of therectanglewith height AR(X*)
and length x*.

b) The rectangle with height AC(x*) and length x*.
¢) The rectangle with height AR(x*) — AC(x+) and length x*.
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3.18 For demand curve x = a— bp, the elagticity at (a— bp, p)ise = —bp/(a—
bp). Then,e = ~1<=bp=a—-bp 2bp=a p=a/b.

/ . _ —-r—1,
319 ¢ = F(p)-p = rkp P _ —r, constant.

F(p) kp~'

3.20 x* and p* both increase.
3.21 Therectangle with height p* — AC(x*) and length x*.

3.22 First, compute the inverse demand: p = a/b — (1/b)x. Then revenue is
R(X) = (a/b)x — (1/b)x? and MR(x) = a/b — (2/b)x. MC(x) = 2kx, S0
x* solvesa/b — (2/b)x = 2kx. The solution is x* = a/(2kb + 2), and the
pricewill be p* = 2kab/(2kb? + 2b).

Chapter 4

41 a) (goh)(@ = (52— 12 +4, (hog)(x) = 5x2 + 10.
b) (@oh)@ = (z—1)3z+ 13 (hog)(x) = (x*— (3 +1).
c,d) (9o h)(?d =12z (hog)(x)=x
& goh@=1/(Z+1), hog(x) =1/x2+1

4.2 a) Insidey = 3x% + 1, outside z = y'/2.
b) Insidey = 1/x, outsidez = y? + 5y + 4.
c) Insidey = 2x — 7, outside z = cosy.
d) Insidey = 4t + 1, outsidez = 3V.

43 a) (go h)'(2) = 2(52— 1)5 =50z— 10, (ho @) (x) =5 2x = 10x.
b) (9o h)'(@ = 3[(z— D+ DI*(22 = 62z— 1)*(z+ 1)% (ho 9)'(x) =
2x3 - 3x% = 6x°.
©) (9o )@ =1 (heg)(x) =1
d) @oh@=1 (heg)(x =1
e (9o h)(d=-22/(Z+1)?% (hog)(x)=—-2/%.

44 @) (goh)(x) = 1(3x*+ 1)7V2-6x = 3x/v/3x2 + 1
b) (g e h)/(x) = [2(1/x) + 5] (—1/%).
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4.5

4.6

4.8

4.9

c) (goh)(x) = —2sin(2x — 7).
d) (go h)'(t) = (4log3)3***.

a) (g o h)/(x) = cos(x*) - 4x3.

b) (g o h)'(X) = cos(1/x) - (—=1/%%).

©) (g h)'(x) = cosx/(2,/sinx).

d) (9o h)'(x) = (cos\/x)/2y/x.

e) (go h)(x) = (2x + 3) exp(x? + 3x).

f) (g h)(x) = —x"?exp(1/x).

9) (9o h)(X) = 2x/(x* + 4).

h) (g o h)/(x) = 4x(x? + 4) cos((x* + 4)?).

x/(t) = 2and C/(x) = 12, so (d/dt)C(x(t)) = 2- 12 = 24.

a) g(y) = (y—6)/3 —» <y< +.

b) gly) =1/y—1, —0o<y< 40, y#0.

c) Therange of f(x) = x%/3 isthe nonnegative reals, so this is the domain
of theinverse. But notice that f(x) is not one-to one from R to itsrange.
It is one-to-one if the domain of f isrestricted to R... In this case the
inverseisg(y) = y/2,0 = y < . If thedomain of f isrestrictedto R _,
theinverseis —g(y).

d) Thegraph of f(x) isaparabolawith agloba minimumat x = 1/2, and
is one-to-one on each side of it. Thus there will be two inverses. For a
given y they are the solutions to x* + x + 2 = y. The two inverses are

z= 3(-1+ Ay - 7)andz = (—1—./4y — 7),withdomainy = 7/4.

If y < 7/4, the equation has no solution; there is no value of x such that
f(x) =y.

a) (FY(f)) = 1/3, 1/f'(1) = 1/3.

b) (F1/(1/2) = -4, 1/f(1) = —(1+ 12 = —4.
o (F~Hf(1) = 3/2, 1/f'(1) = 3/2.

d) (F-Y'f(1) = 1/3, 1/f(Q) = 1/3.
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4.10 To prove Theorem 4.4, let f(x) = x¥/~" = 1/x%" for n a positive integer.
Applying the quotient rule,

0-x¥/M—1.(1/mx&/m-1
X2/n

= —(1/nx /M-,

fl(x) =

For Theorem 4.5, the proof in the text applies to the case where both m and
n are negative. To prove the remaining case, let f(x) = x~™" where m,n
are positive integers. Applying the quotient rule,

0-x™M—1-(m/n)xmm-1

f /(X) = X2m/ n

= —(m /n)x(m/n)—l—(Zm/ n)

= —(m/mx” (M-,

Chapter 5

51a) 8 b)1/8 ¢ 2 d) 4, € 1/4, f)1, g) 1/32, h) 125,
i) 1/3125.

5.2 Seefigures.

5.3 By caculator to three decimal places: a) 2.699, b) 0.699, c) 3.091,
d) 0434, e) 3401, f) 4605 @) 1.099, h) 1.145. Seefigures.

54a)1 b) -3 009 d3 €2 f)-1 g2 h1/2 io0.

55 a) 268 =18 — & =9— 6x=In9 = x = (In9)/6;
b)e=1—=x2=Inl=0=x=0;
Q) =€ = In2X=1Ine = xIn2=5=— x=5/(In2);
d) 2+1In5/In2; e e’? f)5.

5.6 Solve 3A = Aexprt. Dividing out A and taking logs, In3 = rt, and t =
In3/r.

5.7 Solve 600 = 500exp(0.05t). t = In(6/5)/0.05 = 3.65.
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58

59

5.10

511

5.12

a) f/(x) = e + 3xe¥, f7(x) = 6> + 9xe>.

b) f/(x) = (2x + 3)e’+¥x2, f(x) = (4x2 + 12X + 11)e" 32,

c) f/(x) =8x3/(x* + 2), f/(X) = (48x% — 8x8)/(x* + 2)2.

d) /() = (1— x)/¢€, £(x) = (x — 2) /€.

e) f/(x) = 1/(Inx) — 1/[(Inx)]%,  f"(x) = 2/[x(Inx)®] — 1/[x(Inx)?].
f) f/(x) = (1 —Inx)/x?, f(x) = (2Inx — 3)/x.

g) f/(x) = x/(x2 + 4), f(x) = (—x% + 4) /(X + 4)%.

a) f(x) = xe* = f'(x) = €(x + 1) ispositive (f increasing) for x > —1

and negative (f decreasing) for x < —1. f”(x) = €(x + 2) ispositive (f
convex) for x > —2, and negative (f concave) for x < —2. As x tends
to —oo, f(X) goesto O, and as x gets large, f(x) behaves as €*. Thus, the
function hasahorizontal asymptoteat 0 asx — —o, grows unboundedly
as X — +o, hasaglobal minimum at —1, and has an inflection point at
—2. Seefigure.

b) y = xe7%; ¥y = (1 — x)e * is positive (f increasing) for x < 1, and
negative (f decreasing) for x > 1.y"” = (x — 2)e"* ispositive (f convex)
for x > 2, and negative (f concave) for x < 2. Asx getslarge, f(x) tends
to 0. Asx goesto —x, so does f (x). Theinflection pointisat x = 2. See
figure.

0 y= 3 +e),;y = i(e — e ispositive (y increasing) if x > 0,
and negative (y decreasing) if x < 0.y” = yisalways positive (y always
convex). See figure.

Let f(x) = Log(x), and let g(x) = 10°™® = x. Then, by the Chain Rule and
Theorem 5.3,

g'(x) = (In10)210' ™ f/(x) = 1.
1 1

/ = =
=0, P = 10100 ~ xin1o’

The present value of the first option is 215/(1.1)? = 177.69. The present
value of the second optionis 100/(1.1) + 100/(1.1)> = 173.56. The present
value of the third option is 100 + 95/(1.1)> = 178.51.

By equation (14), the present value of the 5-year annuity is
1—e05
500m = 1870.62.

Equation (15) gives the present value of the infinitely lived annuity:
500/(e® — 1) = 4754.17.
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5.13 InB(t) = \/tIn2. Differentiating,

B(t) _ In2

B 2t

The solution to B/(t) /B(t) = r ist = 100(In2)? = 48.05.

5.14 InV(t) = K + /t. Differentiating, V'(t)/V(t) = 1/2(;/t). The solution to
V/(t)/V(t) = r ist = 1/(4r?), which isindependent of K. A check of the
second order conditions shows this to be a maximum.

5.15 InV(t) = In2000 + t%/4, Differentiating, we find that

Vi) _ L1i-3

V) 4

The solutionto V/(t)/V(t) = r ist = (4r)~%3. Whenr = 0.1,t = 3.39.

5.16 a) Inf(x) = 3 In(x® + 1) — 3 In(x? + 4). Differentiating,

f’(x): X X
fx) x2+1 x2+4
I — X X
o (k)
3x

T @+ D2 + 432,

b) Inf(x) = 2x2Inx. Differentiating, f'(x)/f(x) = 4xInx + 2x = 2x(1 +
Inx?), so f/(x) = 2x(1 + Inx2)(x?)¥".

517 Let h(x) = f(X)g(x), so Inh(x) = Inf(x) + Ing(x). Differentiating,
h(x)/h(x) = f'(X)/f(X) + g'(x)/g(x). Multiplying both sides of the
equality by x provesthe claim.

Chapter 6

6.1 S = 0.05(100,000)
F = 0.4(100,000 — S).
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Multiplying out the system gives

S = 5,000
F + 0.4S = 40,000.
ThusS = 5,000and F = 38,000, and after-tax profitsare $57,000. Including

contributions, after-tax profits were calculated to be $53,605, so the $5,956
contribution really cost only $57,000 — $53, 605 = $3, 395.

6.2 Now S = 0.05(100,000 — C — F), so the equations become

C + 01S+ 0.1F = 10,000
0.05C + S+ 0.05F = 5,000
04C + 04S+ F = 40,000.

The solutionisC = 6,070, S = 2,875, and F = 36,422.

6.3 X, = 0.5x; + 0.5% + 1, xo = 0x; + 0.25%, + 3. The solution is x; = 6,
Xo = 4.

6.4 Solving the system of equationsx; = 0.5x; + 0.5, + 1 and x, = 0.875x; +
0.25x, + 3 givesx; = —36 and x, = —38; thisisinfeasible.

6.5 0.002-0.9 + 0.864 - 0.1 = 0.0882, and 0.004 - 0.8 + 0.898 - 0.2 = 0.1828.

6.6 For black females, {Xt“ = 0.993x + 0.106y; }

Vi+1 = 0.007x + 0.894y,
To find the stationary distribution, set x+1 = % = Xand yi+1 = %t = V:
X = 0.9381 and y = 0.0619.
X+1 = 0.997% + 0.151y;
Vi+1 = 0.003x; + 0.849y; }
Stationary solution: x = 0.9805 and y = 0.0195.

For white females, {

6.7 Theequation systemis

0.16Y — 1500r
0.2Y + 2000r

0
1000.

The solutionisr = 0.2581and Y = 2419.35.
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Chapter 7

7.1 aande.

7.2 @) Thesolutionisx =5,y =6,z= 2.
b) Thesolutionisx; = 1, % = —2, X3 = 1.

73 a) x=17/3,y = —13/3.
b) x=2y=12z=3.
g x=1Ly=-1z= -2
7.4 Start with system (*):

Q1Xy + -+ apXn = b]_

aXgt ot anX, = b

aj1Xy + + -+ ainXn = by

amX + -0+ 8mnXy = bn.

1) Change system (*) to

A Xy + -+ ainXn = bl

1Xg + -+ @inXn =D

(rag + ayp)xa + -+ - + (rain + an)xn = (rb + by)

QniXy + -+ @nnXn = by.

2) Changetheith equation of system (*) toraj1x; + - - - + rainXn =

I'bi.
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3) Change system (*) to

ap Xy + -+ agnXn = bl

aj]_Xl + .-+ a.ann = bJ

a1Xy + ccc +anX, = b

anlxl + -+ AnnXn = bn.

Reverse operations:

1) Subtractr timesequationi from eguation j, leaving other n — 1 equations
intact.

2) Multiply theith equation through by 1/r.
3) Interchange theith and jth equations again.

7.5 The system to solveis

0.20Y + 2000r = 1000
0.16Y — 1500r = 0.

Solving the second equationfor Y intermsof r givesY = 9375r . Substitut-
ing into the first equation, 3875r = 1000, sor = 0.258 and Y = 2419.35.

7.6 @) Thesystemto solveis:
sY +ar =1°
mY — hr = 0.
Solving the second equation for Y in terms of r givesY = (h/mr.

Substituting into the first equation gives (sh + am)r/m = 1%, sor =
ml®/(sh + am)and Y = hl®/(sh + am).
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b, c) Differentiate the solutions with respect to s:

ﬁl__ hmlg <0 and ﬁ__ h2|0
S (sh + am)? Js (sh + am)?
7.7 Solving for y in terms of x in the second equation givesy = —x — 10.

Substituting this into the first equation gives a new equation that must be
satisfied by all solutions. This equation is —30 = 4. Since this is never
satisfied, there are no solutions to the equation system.

7.8 If ay # 0, then xo = (b, — a1 X;1)/ay. Substituting into the first equation
gives

aj1 — apdy
b= ————+=
ax»
_ agpb; — aph,
djjd — aipdy

a
X1 + E b2
ax

A similar calculation solving the first equation for x; ends up at the same
point if ay; # 0. The division that gives this answer is possible only if
18 — apay; # 0. Inthiscase,

aj by, — axnby
djidye — apdy

7.9 (1) Add 0.2timesrow 1torow 2. (2) Add 0.5timesrow 1 torow 3. (3) Add
0.5timesrow 2 to row 3.

1 20
710 (o 0 ) (291,
0 0O

10

(1 0 0.5)
’ ’ O 1 .
0 1 03 (O 0)

7.11 a) Theoriginal system, the row echelon form, and the reduced row echelon
form are, respectively,

(i —31 : fo>’ (g —32 : 264/3)' (é (1) : —113{?3)

Thesolutionisx = 17/3,y = —13/3.

[cNeNeN
[oNeN e
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b) Theorigina system, the row echelon form, and the reduced row echelon
form are, respectively,

4 2 -3 |1 4 2 -3 | 1
(6 3 -5 | 0), (0 1/2 11/4 | 35/4),
11 21| 9 0 0 -1/2 | -3/2
100 2
(o 10 1)_
0 01 ] 3

Thesolutionisx=2,y=1,z= 3.

¢) Theoriginal system, the row echelon form, and the reduced row echelon
form are, respectively,

2 2 -1 | 2 2 2 -1 | 2
1 1 1| -2}, 0 -6 4 | -2,
2 -4 3 | 0 0 0 32| -3

10 0 | 1
0101 -1}.
001 ]| -2

Thesolutionisx=1,y=—-1,z= —2.

7.12 The origina system, the row echelon form, and the reduced row echelon
form are, respectively,

11 3 -21]0 113 -2 | 0
23 7 =219 011 2 | 9
3513 -9 | 1)’ 0 0 2 -7 | 17 )’
-21 0 -11]0 0 00 —-1/2 | —-3/2
1000 ]| -1

010 0 | 1

0 010 | 2

0 00 1| 3

Thesolutionisw= -1, x=1y=22=3.
11 10 1 3 4 1 01
713 3) (o 1)a”d(o 1)’ b)(o -1 —1)a”d(o 1 1)’

-1 1 10
) 0 -1})ad| 0O 1].
0 O 00
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7.14 Theoriginal system and the reduced row echelon form are, respectively,

(—464|4)and<10 |).

2 -11 1] 1 0 1 |
5

The solution set is the set of al (x,y, 2) triples such that x = 3 — %zand

y = 3 — 3 zaszrangesover all the real numbers.

NIw Mo
NIWw IOl

7.15 Theoriginal system and the row echelon form are, respectively,

(3% 11) =™ (0 —wp i o)

If kK = —1, the second equation is a multiple of thefirst. In the row echelon
form this appears as the second equation 0 + 0 = 0. Any solution to thefirst
equation solves the second equation aswell, and so there are infinitely many
solutions. For all other values of k there is a unique solution, with x; = 1
and x, = 0.

7.16 a) Theoriginal system and the reduced row echelon form are, respectively,

3 1
1 2 1 -11]1 1oo 4 | 4
3 -1 -1 23| _ |010 -5 | -5
0 -1 1 -1 ] 1 001_%|%
2 3 3 -3 3 000 o0 0

The variable zis free and the rest are basic. The solution is

_ 4,1
X=—q t 172
_7 .12

y——l+—lz

b) The original system and the reduced row echelon form are, respectively,

=
=

O O uiIn dilw

[oNe XUl Yk

and

N NS R
|
OFR P W

wWwk P
N
wW o wo
OO O -
oo +—» O
O O viw viw
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The variables y and z are free, while w and x are basic. The solution is

[ay
=

w=23- Ly 37

vlw  olw
ol

x= 23+

[GIFN
N

y—§

¢) Theorigina system and the reduced row echelon form are, respectively,

1 2 3 -1 |1 1 00 0 | 17/65
-1 1 2 3| 2 and 0100/ 7/65
3 -1 1 2| 2 0 01 0 | 22/65
2 3 -1 1] 1 0 00 1 | 32/65

All variables are basic. There are no free variables. The solutionisw =
17/65,x = 7/65,y = 22/65,z = 32/65.

d) Theoriginal system and the reduced row echelon form are, respectively,

1 1 -1 21| 3 11 -121 3
2 2 -2 4| 6 g |00 0010
3 -3 3 6] -9 ™ loo oo o0
2 -2 2 -4 | -6 00 00 O

Variable w is basic and the remaining variables are free. The solution is
w=3—-x+ty—2z

7.17 a) Theoriginal system and the reduced row echelon form are, respectively,
11 1| 13 and 10 -2 1] 1
1510 | 61 01 3§ | 12)
To have x and y integers, z should be an even multiple of 2, i.e., 4, 8,
16,....Tohavey =0,z=16/3.50,z=4,x = 6,y = 3.

b) 4 pennies, 6 nickels, 6 dimes! 16 coinsworth 94 cents.

7.18 The reduced row echelon form of the system is

10 | 1
0 1 | 1 .
0 0| 8+a

Thelast equation has solutionsonly whena = —8. Inthiscasex =y = 1.
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7.19 a)

b)

7.20 Q)

b)

©)

d)

The second equation is —1 times the first equation. When the system is
row-reduced, the second equation becomes Ox + Oy = O; that is, it is
redundant. The resulting systemis

1 1 | 1

(0 1-q+p | 1- q) .
0 0 | 0

This system has no solutionif andonly if 1 —q+ p=0and1—q # 0.

This happens if and only if p = —(1 — g). With the nonnegativity

constraints p, g = 0, thiscan never happen unlessq > 1. So the equation

system always has a solution. If g = 1 and p = 0, the equation system

has infinitely many solutionswith x = 1 — y; otherwise it has a unique
solution.

If g = 2and p = 1, the system containsthe two equationsx +y = 1 and
X +y = 0, which cannot simultaneously be satisfied. More generaly, if
g # land p = g — 1, the equation system has no solution.

A row echelon form of this matrix is
2 —4
0 0/’
A row echelon form of this matrix is
2 —4 2
0 0o 2)’
A row echelon form of this matrix is

1 6 -7 3
03 11},
00 0 2

A row echelon form of thismatrix is

soitsrank is 1.

soitsrank is 2.

soitsrank is 3.

(NNl
OO wo
[N eI
ONPFP W
O h~ Ol

soitsrank is 3.
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€) A row echelon form of this matrix is
16 -7 31
03 11 1],
00 0265

7.21 a) i) RankM = #rows = #cols, so there is a unique solution (0, 0).

soitsrank is 3.

ii) Rank M = #rows < #cols, so there are infinitely many solutions.

iii) Rank M = #cols, so thereis aunique solution (O, 0).

iv) Rank M = #rows = #cols, so thereisaunique solution (0, 0, 0).

V) Rank M < #rows = #cols, so there are infinitely many solutions.
b) i) RankM = #rows = #coals, so there is a unique solution.

ii) RankM = #rows < #cols, so there are infinitely many solutions.

iii) Rank M = #cols, so there are either zero solutions or one solution.

iv) Rank M = #rows = #cols, so there is aunique solution.

V) RankM < #rows = #cols, so there are zero or infinitely many
solutions.

7.22 a) RankM = 1 < #rows = #cols, so the homogeneous system has in-
finitely many solutions and the general system has either 0 or infinitely
many solutions.

b) RankM = 2 = #rows < #cols, so the homogeneous system has in-
finitely many solutions and the general system has infinitely many solu-
tions.

c) RankM = 3 = #rows < #cols, so the homogeneous system has in-
finitely many solutions and the general system has infinitely many solu-
tions.

d) RankM = 3 < #rows < #cols, so the homogeneous system has in-
finitely many solutionsand the general system haseither zero or infinitely
many solutions.

¢) RankM = 3 = #rows < #cols, so the homogeneous system has in-
finitely many solutions and the general system has infinitely many solu-
tions.

7.23 Checking the reduced row echelon forms, only ¢ has no nonzero rows.
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7.24 Let Abean n X nmatrix with row echelon form R. Let a(j) be the number
of leading zerosin row j of R. By definition of R,

O=ah)<a@<a@ <---

until one reaches k so that a(k) = n; thena(j) = nforal j = k.

It followsthat a(j) = j — 1 for all j.

If Aisnonsingular, a(n) < n.Sincea(n) = n—1,a(n) = n— 1. Thismeans
a(j) = j — 1for al j, and so the jth entry in row j (diagonal entry) is not
Zero.

Conversely, if every diagonal entry of Risnot zero, a(j) < j for al j.
Sincea(j) = j—1,a() = j— 1fordlj. Sincea(n) = n— 1, A has full
rank, i.e., isnonsingular.

7.25 i) The row-reduced row echelon form of the matrix for this system in the

7.26

variables x, y, z, and wis

(120—1|
001 0|

EN[ZFENIN)

The rank of the system is 2. Thus, two variables can be endogenous at
any onetime: z and one other. For example, the variables x and z can be

solved for interms of wand y, and the solutionisx = 3/4 — 2y —wand
z=1/4.

The row-reduced row echelon form of the matrix for this systemis

10 -10 | 1
01 101 0.
00 O0O11] 0

This matrix has rank 3, so three variables can be solved for in terms of
the fourth. In particular, X, y, and w can be solved for in terms of z. One
solutionisx=1+2zy= —z andw = 0.

C+01S+01F—-01P =0
0.05C + S —0.05P =0
04C +04S+ F—-04P =0.

The reduced row-echelon form for the matrix representing the systemis

0 1 0 —00470219 | O

(1 0 0 -—0.0595611 | O)
0 01 -0357367 | O
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Thus the solution is C = 0.0595611P, S = 0.0470219P, and F =
0.357367P.

7.27 Theequation systemis
0.2Y + 2000r + OM = 1000
0.16Y — 1500r — Mg = —M°C.

The reduced row echelon form of the matrix is

1 0 -—322581 | 2419.36 + 3.22581M°
0 1 0.000322581 | 0.258065 — 0.000322581M° }°

Thus, a solution is Y = 2419.36 + 3.22581M° + 3.22581Ms and r =
0.258065 — 0.000322581M° — 0.000322581Ms.

7.28 a) Row reduce the matrix
(S a | lp+G
m —a | Mg—M%)"
b) Thesolutionis

_ h(I* + G) + a(Ms — M)
sh + am

m(l* + G) + s(Ms — M*)
sh+ am '

r:

¢) Increasesin|®, G and Mg increase.
Increasesin |, G and M° increaser.
Increasesin M° — decreasesin Y.
Increasesin M® — decreasesinr.

7.29 a) Here is one possibility. Row reducing the matrix associated with the
system gives

N
=
<
I
o
~*
g
QD
c
=14
o
=}
=
=3
Il
I
x
Il
Glw
o
N
I
o N
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¢) Trying to solve the system in terms of zwill not work. To seethis, take z
over to the right-hand side. The coefficient matrix for the resulting 3 X 3
system has rank 2. The system has infinitely many solutions.

7.30 The rank of the associated matrix is 2; twice the second equation plus the
first equation equals the third equation. The reduced row echelon formis

1o % f

2 3
01 -5 &1 3
00 O O01] O

In this case w and x can be solved for in terms of y and z. However, there is
no successful decomposition involving three endogenous variabl es because
no matrix of rank 2 can have a submatrix of rank 3.

Chapter 8
(2 40\ , . (0 3 -3
8.1 a)A+B—(4 - 4), A — D undefined, 35—(12 I 6>,
c 4 0 4 2 6
DC=(4 1), BT= 1 -1|, Ac"=[1 10},
12 5 1
(33\ o . (-2 -2 -2 .
C+D_(4 0), B A_( 2 o)’ AB undefined,

ce=(73) o=(1 1) ©=c1 9

B + C undefined, D—C:(_; —1)' CA=(2 1 5),

2 6 10 1
2 6

EC undefined, (CA)T=|1 10|, ETCT=(CE)T = (-1 4).
5 1

o oa=(3 1)(5 3 32)=(5 3 3)
ATDTz(g _z)(i 1)=(§ g):(DA)T.
9 CD=<g ‘;’),Dcz(i f)

83 IfAis2X2andBis2 X 3,then ABis2 X 3, s0 BTAT = (AB)T is3 x 2.
But AT is2 X 2and BT is3 X 2, so ATBT is not defined.

=
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85 a)

b)

5

(o) 2)
(¢ a0

ra r

Both equal rc rg More generaly, if B = rl then AB = A(rl) =
r(Al) = rA.BA = (rl)A = r(1A) = rA, too.

AB=(_2 _5)=BA

Oa+rc Ob+rd)’

(
(ar + b0 a0+br)'
)

ra+ Oc rb+0d)

cr +d0 cO+dr

8.6 The 3 X 3 identity matrix is an example of everything except a row matrix
and a column matrix. The book gives examples of each of these.

87 (

12)(0r o) (G p) e

(3 21 2)-(1 2)

8.8 a)

b)

Suppose that U* and U2 are upper triangular; i.e., each Uf = Ofori > j.
Then, [U* + U?];; = U + U3 = 0ifi > . For multiplication, the i, j)th
entry of UtU? is

[UTU%)5 = > URUZ + > URUE.

k<i k=i

The first term is 0 because U? is upper triangular. If i > |, the second
term is O because U? is upper triangular. Thus, if i > j, [UU2];; = 0,
and so the product is upper triangular.

If LY and L? arelower triangular, then (L) " and (L?)T are upper triangular.
By the previous paragraph, (LY)" + (L?)T is upper triangular, and so
L + L2 = [(LYT + (LD is lower triangular. Similarly, L1L? =
[(LDT(LYT]T islower triangular.

If D is both lower and upper triangular, and if i > j, Dy = 0 (lower)
and D;; = 0 (upper), so D isdiagonal. Conversdly, if D isdiagonal, it is
obviously both upper and lower triangular. Consequently, if D! and D?
arediagonal, then D! + D? and DD? are both upper and lower triangular,
and hence diagonal.

Clearly, D C U;soDNU = D. If Misamatrix in SN U, then for
i <j, Mjj = 0 (upper). Thus, M;; = 0 (symmetric), so M is diagonal. If
M isdiagonal, thenfori # j, Mjj = 0 = M;;; so M is symmetric. Hence
DCS
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0 a 0 --- 0 by 0 --- 0
0 a - 0 0 b --- 0
0O O an 0 O bn
a.]_bl 0 0
_ 0 a2b2 0
blal 0 0
. 0 bzaz 0
by 0 --- O a4 0 -+ 0
0O b - 0 0 a -+ 0
0 0 --- by 0 0 - a,

(This aso shows D is closed under multiplication.) Not true for U. For

example,
4 0\_( 4 0),
5 6 23 18)’

(s o)z 3)=(x7 1)

Symmetric matrices generally do not commute. Let A = (a E) and

b
B — (2 fe) Then, (AB)y, = ae + bf and (BA)y, = bd + ec. These

two terms are generally not equal.

8.9 There are n choices for whereto put the 1 in thefirst row, n — 1 choices for
where to put the onein the second row, etc. Therearen- (n—1)---1=n!
permutation matrices.

8.10 Not closed under addition: The identity matrix is a permutation matrix, but
I +1 = 2l isnot.

Closed under multiplication: Suppose P and Q are two n X n permutation
matrices. First, show that each row of PQ has exactly oneland n — 1 0sin
it. Theentriesin row i of PQ are calculated by multiplying row i of P by the
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8.12

various columns of Q. If P;; = 1, then (PQ)ix = 0 unless column k of Q has
itslinrow j. Since Q is apermutation matrix, one and only one column of
Qhasalinrow j. So, thereisonek such that (PQ)ik = 1and n — 1 k’'swith
(PQ)ik = O; that is, row i of PQ hasone 1 and n — 1 Os. The transpose of
a permutation matrix is a permutation matrix. So the same argument shows
that each row of Q"PT hasone 1 and n — 1 Os. But each row of Q"PT isa
column of PQ. So, every row and every column of PQ contains only one 1
and n — 1 0s. Thus, PQ is a permutation matrix.

The three kinds of elementary n X n matrices are the E;;’s, the Ei(r)’s, and
the E;j(r)’s in the notation of this section. Theorem 8.2 gives the proof for
the E;j’s. For the Ei(r)'s, ageneric element ey of Ei(r) is

e =0 ifh=#j,
en=1 ifh#i,
€ =1T.

The (k, mth entry of Ei(r) - Ais

n . .
A _ fam ifk#i
j:Zle«J Bim = GdBlam {rakm ifk =i.
S0, Ej(r) - AisAwithitsith row multiplied by r.
We now work with E;j(r), the result of adding r timesrow i to row j in the
identity matrix |. The only nonzero entry inrow i isthe 1in columni. So row
j of Eij(r) hasanr in columni, in addition to the 1 in column j. In symbols,

en=1 fordlh
& =1
ex =0 forh# kand(hk) # (j,i).
Since the elements in the hth row of E;j(r) - A are the products of row h of

Eij(r) and the columns of A, rows of E;j(r) - A are the same asthe rows of A,
except for row j. Thetypical mth entry inrow j of E;j(r) - Ais

n
D €k & = §jam + €idim = &m + raim,
k=1

since the other e ’s are zero. But this states that row j of E;j(r) - Ais(row |
of A) + r(row i of A).
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8.13 We saw in Chapter 7 that by using a finite sequence of elementary row
operations, one can transform any matrix A to its (reduced) row echelon
form (RREF) U. Suppose we apply row operations Ry, .. ., Ry in that order
to reduce A to RREF U. By Theorem 8.3, the same affect can be achieved
by premultiplying A by the corresponding elementary matrices E, ..., En
so that

Em-En1---Ey-Ej-A=U.

Since U isin echelon form, each row has more |eading zeros than its prede-
cessor; i.e., U isupper triangular.

8.14 a) Permutation matrix P arises by permuting the rows of them X midentity
matrix | according to thepermutations: {1,...,m} — {1,..., m}, sothat
row i of P isrow (i) of I:

o :{1 if j = (i)
! 0 otherwise.

The (i, K)th entry of PA is:
m
Z RPijdik = Pis(i)Bs(i)k = Bsijks
j=1
the (s(i), K)th entry of A. Row i of PAisrow s(i) of A.
b) AP = [[AP]"]" = [PTAT]". If Pj = 1, then P| = 1. Applying part a
shows that [AP]};( = -ll—(, S()Apkj = Ay.
8.15 Carry out the multiplication. In thefirst case,
2 1 1 -1\_( 1 -1)\(2 1\_(1 0
1 1)\-1 2 -1 2J\1 1 0 1)’
The computation for the second caseis carried out in asimilar fashion.
8.16 Carry out the multiplication.

8.17 0O b
c d

|
|
~(0 1w )= (o



30  MATHEMATICS FOR ECONOMISTS

Sincea = 0,

d b
= ad — bc ad — bc
c a

o oOlk

“ad—bc ad— bc

oi~3la

8.18 Carry out the multiplication.
8.19 a) 5 1 11 0 _ 1
11:01 1

(1
0

o NIk
= O
v

= NI

NI NI
NI NI

0y _(10: 11
1 01 : -1 2

. . 11
Themversels(_1 2).
. . 4/6 —-5/6
b) Thelnversels(_2/6 4/6)'
¢) Singular.
9 (2 40i100 1 20: fo00
4 63 :010]|7|lo -23: -210
-6 —-10 O 0 01 0 20: 301
12 o0:% oo 100: -3 0 -1
—l10 1 -3 1 -3 o|~”]o 1o 20 3
oo 1: % % 31 001 3
-3 0 -1
e) Theinverseis| 2 0 3
11 1
3 3 3
9 15 11
2 3 7 3
1 1 13 _8
H H 3 3 3 3
f) Theinverseis o - 3
4 4 4
-1 1 -1 1
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_ 1 -1\(5 2

s a-( 2 2)(5)-(9)
-6 3/2 -1\ /4 3

b) A—lz( 13 -3 2) (zo)z(—z).
5/2 —1/3 1/3) \ 3 1

—5/2 0 -1 2 1
c)Al:( 2 0 1/2)( 1)( 0).
1/3 1/3 1/3) \ -6 -1

8.21 An X nand AB defined implies B has n rows.
A n X nand BA defined implies B has n columns.

34 21 13 8 2 -3
4 _ 3 _ -2 _
822 A (21 13),A ( - 5),A (_3 5).

8.23 To provethat E; - Ej; = |, writethe (h, K)th entry of E;; as

ifh=ik=j,
ifh=j k=i,
ifh+#i,jandh =k,
0 otherwise.

R e

€k =

Let ank denote the (h, k)th entry of B - Bj:

n enex ifh=i,
A = ) enek =1 ek ifh=j,
r=1 enen ifh#i,j.

If h =i, case 1 tellsusthat

(0 ifk#h
ahk_{l itk = h.

If h = j, case 2 tellsusthat

(0 ifh+k
a“k_{1 ith=k

If h # i, ], case 3tellsusthat

(0 ifh#k
ahk_{l ith =k

In other words, (an) is the identity matrix.
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8.24

8.25

To see that Ei(r) - Ei(1/r) = |, one easily checks that the inverse of
diag{a;, a, ..., an}isdiag{l/ay,..., 1/a,}, where the entries listed are the
diagonal entries of the diagonal matrix.

To seethat Ej(r) - Ej(—r) = |, write ey for the (h, K)th entry of E;;(r):

1 ifh=k,
ex =11 if(hk = (,i),
0 otherwise,

asinExercise8.12. Let fry bethe (h, K)th entry of Ejj(—r), with —r replacing
r in case 2. Then, the (h, K)th entry of Ej(r) - Ej(—r) is

\ o
_ (e T ifh+j
B = ;Q“'f'k = {e”-fjk-i-e]ifik ifh=].

1 ifh=k
0 ifh#k

{e”fji+e,if”=—r+r =0 if K#j

Ifh+#j, a = enfi

1 ifh=Kk
0, &k =10 ifh#k

and Eij(l’) : Eij(—r) = 1.

a) (‘Z‘ g)isinvertible(:)ad—bc= ad+ 0e=a+0andd # 0,

a 0\! 1/.do .
b) (c ) —5( ),Iowertrlangular.

d —Cc a
o (2 by™ _ 1/(d -b upper triangular

a) PartaholdssinceA - A= A-A! = impliesthat Aistheinverse of
AL

Toproveb, computethat] =17 = (AA™ )T = (A )T -AT. So, (AT) L =
(A HT.

To provec, observethat (AB) - (B"*A 1) = ABB HA 1 = A1 -A L =
A-Al=1,

Similarly, (B™*A"1) - (AB) = I.
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b) Since  (Ar - AJAT AL AT
= (A Ac)AAD AL ALY
= (Ar - Ac)(AL - ATY
= (Ar Ac2)Ac AL A ALY
= =AAT=1

SO,(Al"'Ak)d:A;Zl'A[_ll"'AIl-

1 1
c) For example, A = (i (2)) andB = (S i),orjusttakeaninvertible
AandletB = —A. ° 2

. 1 1 1.
d) Evenfor 1 X 1 matrices, —— # — + —, ingenera.
a+b a b

8.26 a) One can use the statement and/or method of Exercise 8.25b with A; =

o= A=A
b) Ar'ASZ(A~-'A)~(A~'-A)=A'~'A'A-'~A.
r times stimes r+stimes
1

0) (rA)-(r}A’l) =r-F-A-A’1=1-I =1.

8.27 a) Applying AB = BA (k — 1) times, we easily find
AB“ = A-BB* ! = BABX! = BAB - B 2 = B?AB* 2
=...=B1.A.B=B"1-B-A=BA

Use induction to prove (AB)k = (BA)X if AB = BA. Itistruefork = 1
since AB = BA. Assume (AB)*~! = (BA)*~! and proveit true for k:

(AB)X = (AB)**AB
= A1B*IAB, by inductive hypothesis
= A 1ABK1B, by first sentencein a
= ABX,

(11 (10
b) LetA—(0 1)andB—(1 1).Then

2 __ 5 3 202 _ 5 2
ver= (3 3) b wer- (3 2)
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8.28

8.29

8.30

More generally, supposethat A and B are non-singular. If ABAB = A?B?,
then premultiplying by A~* and postmultiplying by B~* give AB = BA.

¢) (A+B)?> = A>+AB+BA+B? (A+B)>— (A2+2AB + B?) = BA—AB.
Thisequals0if and only if AB = BA.

1/d, 0 -+ 0

0 1/d, -+ 0

Dt=1| . L .
o 0 - 1/d,

a byt 1 c —-b . .
(b d) _m<—b a),awmmetrlcmatnx.

Let U bean nx n upper-triangular matrix with (i, j)thentry u;. LetB = U1
with (i, j)th entry b;. Let | = (g;) be the identity matrix. Since U is upper
triangular, uj = Ofor al i > j. Now | = BU; therefore,

1=ey =) bylq = buuy
K

sinceuy; = * -+ = Uy = 0. Therefore, uyy # Oand by = 1/U11. Forh>1,

O=¢ey= Z PriUic = braUss.
K

Sinceuy; # 0,by = 0forh > 1.
Now, work with column 2 of B.

1=epr = bule = byl + btz = byl
K

sinceby; = 0. Therefore, Uy # 0and by, = 1/ug.
For h > 2,

0=ep = > brlkz = brylsz + bralizz = 0 + broUiz,.
k

Since Uy, # 0, b, = 0. We conclude that b, = 0 for al h > 2. This
argument shows by,; = Ofor al h > j; that is, B too is upper triangular.

The second part follows by transposing the first part and Theorem 8.10b.
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8.31 The (i, j)th entry of PTP is the product of the ith row of PT and the jth
column of B, that is, the product of the ith column of P and the jth column
of P. ThisproductisOifi # jand 1if i = j; thatis, PTP = 1.

8.32 The criterion for invertability is

Q1182833 — 811823832 T Q13821831 — A11821833 + Q11820831 — Apdx a3 # 0.

See Section 26.1.

8.33 a) Supposeak X | matrix A hasaleft inverse L (which must be k X k) and
aright inverse R (which must bel X 1). ThenLAR = (LAAR=IR=R
and LAR = L(AR) = LI = L, so0 R = L. Thisisimpossible since the
two matrices are of different sizes.

b,c) Suppose A ism X nwithm < n. If A has rank m, then Ax = b has
infinitely many solutions for every right-hand side b, by Fact 7.11a. Let
e =(0,...,0,1,0,...,0) withalintheith entry. Let ¢; be one of the
(infinitely many) solutions of Ax = g. Then,

A-fCrCo] =[€r---&m] = 1.

So,C =[c; € -+ Cy] isoneof theright inverses of A. Conversely,
if A hasaright inverse C, then the solution of Ax = b isx = Cb since
A(Cb) = (AC)b = b. By Fact 7.7, A must have rank m = number of
rows of A.

d) If Aism X nwithm> n, apply the previous analysisto AT .

1 14 2 20
8.34 a) (| —A)—l(l) = ( 8); b) (I —A)—l(l) = (14);
1 8 1 14
2 18
o ¢ _A)l(l) _ (16).
2 18

8.35 For(i g>witha,b,c,d>0,a+c<1,andb+d<1,

("A)fl:(l—_ca 1_—bd)_1:(1—a)(11—d)—bc(l;d 1Ea>'

Sincea+c<1lc<(l1-a)sinceb+d<1,b< (1-d). Therefore,
O<bc<(l—-al—-dand(l—a)(l—d)—bc>0.50,( —Alisa
positive matrix.
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8.36 Leta, = #of columnsof Ay, = # of columns of Ay;.
Let a., = # of columnsof A, = # of columns of Ay,.
Let c;. = #of rowsof Cy; = #of rowsof C, = # of rows of Cy3.
Let c,. = #of rowsof Cy; = #of rowsof Cy, = # of rows of Cos.
Then, a1 = c. anda, = Cy..

Ciu Cpp Cg3
8.37 C should bewrittenas | Co; Cy, Cys | . Inthe notation of the previous
Cst Cx Cgs
problem
a;=¢.=2
a,=c. =1
asz=20¢C3 = 3.
A 0 - 0
o AL --- 0
838 Al = 2z
0 0 . A;nl

8.39 In the notation of Exercise 8.36, Ay; isof sizea;. X a1; ApAstAg isaso
of sizea;. X a1, so D iswell defined.

(A11 A12) D~ DA - A
A21 A22 —A£21A21 D™ 1 721(| + A21D 71A12A2721)

_ (AHD*l — ApAFAND ™Y —ARDTIARA + ApAL + A12A2’21A21D’1A12A521)
AnD™L — ApASAND Y —AuDTIARA + ApAst + ApAt Ay DTIALAL

Write (1,1) as (A1 — A12AyA)D ™1 = DD~ = I. Write (1, 2) as

_(Aj_]_ - A12A2_21A21)D1A12A2_21 + A12A2_21 = _DD_1A12A£21 + A12A2_21
= _A12A2_21 + A12A2_21 = 0

Write (2,1) as (AnD~t — 1A»D™ 1) = 0.
Write (2,2) as —AnD 1AnAL + | + AnD IARAL = 1.

So the product isthe identity matrix ((l) ?) .
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8.40

841

8.42

8.43

8.44

8.45

AL = A+ ARCANALY)  —AALCT?
_C71A21A:Itll c1 d

whereC = Ax» — A21A511A12-

a) A;; and Ay, nonsingular.
b) Aqp and Ay — (1/3.22)A12A21 nonsi ngular.
c) Ay invertible and p" As,tp nonzero.

a) E(3).

b) E12(—3), E13(2), Exs(—1).

) E12(—2), E13(3), Exs(1).

d) Eio(—3), E1a(—2), Exs(2), Eza(—1).

? (5 1) 1)

100
b) 10)

WNEFE NW

d)

N O W
|
OO0OON

Suppose we can write Aas A = L U; = L,U, whereL; and L, are lower
triangular with only 1son the diagonals. The proof and statement of Exercise
8.30 show that L; and L, are invertible and that L;* and L,* are lower
triangular. SinceU; = L;*Aand U, = L, A, U; and U, areinvertible too.
Write LUy = LU asL, Ly = UpUp L. By Exercise 8.8, Ly 1L is lower
triangular and U,U; * is upper triangular. Therefore, L, 1L, and U,U; * are
both diagonal matrices. Since L; and L, have only 1s on the diagonal, L, *
and L, L, have only 1son the diagonal. It followsthat L, L; = | and that
U2U1‘1 = |. Therefore, L, = L; and U, = U,, and the LU decomposition
of Aisunique.

Suppose A = L1U; = LyU,, asin the last exercise. First, choose U, to be
arow echelon matrix of A. By rearranging the order of the variables, we
can assume that each row of U, has exactly one more leading zero than the
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previousrow and that itsUy; # 0. WriteL,U; = L,U, asLU; = U, where
L is the lower-triangular matrix L, *L; and has only 1son its diagonal. Let

L = ((li)), Ur = ((vij)), and Uz = ((uyj))-

0#upy = lejvjl = |11V11 =V = V1 # 0.
j

Fork>1,Uq = Via = 0.80,0 = Uq = Y\ lgVjr = haVia = la = 0
fork > 1.

1
. : 10
This shows that the first columnof Lis | .
0
0
Similar analysis showsthat the jthcolumnof Lis| 1 |. Weneed only show

0

that U, has no all-zero rows; this follows from the assumptions that U, is
the row echelon matrix of A and A has maximal rank. It follows that L is
the identity matrix and U; = U,. Since every such U; equals U, they equal
each other. Sincel = L = L2_1|_1, L, = Lj.

8.46 Asimpleexampleis(O 0)= (1 O)(O 0)foralla.

00 a 1)\0 O

8.47 As in Exercise 8.44, write A uniquely as A = LiU; where L; is lower

triangular and has only 1s on its diagonal. Decompose upper-triangular U,
as

ug 0 -+ 0\ /1 up/unp -+ up/un

0 up -+ O0Jffo0 1 “tr Upn/Up
DU = . .o . . . . .
0 o --- Unn 0 0 te 1

(Since Aisnonsingular, soisU;, and so al itsdiagonal entries are nonzero.)
Usethemethod of Exercise8.44 to seethat thisDU decompositionisunique.

848a)(_§ 2)(5 fﬁ)(é i)
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1 00 2 00 112 0
b) 310 0 -1 0 0 1 —-6].
-2 11 0O O 3 0 0 1

d) Useanswer to 8.43d:

1 0 0O 2 0 00 1 3 0 5/2
3 1 0O 0 3 00 0 1 8/3 2/3
0 -1 10 00 -4 0 00 1 —-9/4
2 011 00 0 6 00 O 1
320 320 320
849 i) a) ( 6 4 1) — (0 0 l) — (0 6 1).
-3 4 1 Eg3(1)-E2(—2) 06 1 Exs 00 1

1 00
b)P:P23: 0 0 1].
010
0

3 2 320
¢ PA=| -3 4 1 — 0 6 1].
6 4 1 E13(*2)'E12(1) 0 0 1
320 1 00 320
d) PA=E1‘21-E1‘31- 06 1|]=1-1 10 0 6 1].
0 0 1 2 01 0 0 1
0 1 1 4 1 1 2 2
iy a) 1 1 2 2 - 0 1 1 4
6 -5 -11 -12|g,| -6 -5 —-11 -12
2 3 =2 3 2 3 -2 3
11 2 2 11 2 2
R 0 1 1 4 - 0 1 1 4
Ewm(-2)0En@) | O 1 1 O Ex(-1Eu(-| 0 O 0 -4
01 -6 -1 0 0 -7 -5
11 2 2
- 0 1 1 4
Ex |0 O -7 —
00 0 —
01 00
1 0 0 0] _
0 010
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1 1 2 2 1 1 2 2
. 0 1 1 4 0 1 1 4
c) PA > 3 -2 3|egran|0 1 -6 -1
-6 -5 —-11 -12 0 1 1 0
1 1 2 2
0 1 1 4
524(71)_-&3(71) 00 -7 -5 , asat end of part a.
00 0 —4
d) PA = (Epa(—1) - Ep3(—1) - E14(6) - Eza(—2)) *
1 1 2 2
0 1 1 4
0 0 -7 -5
0 o0 0 -4
1 0 0O 1 1 2 2
[ o1o00ffo1 1 4
21 10 0 0 -7 -5
-6 1 0 1 00 0 -4

8.50 a) Inthegeneral 2 X 2 case, arow interchangeisrequiredif a;; = 0 # ay;.

b) A row interchangeisrequired if a;; = Oand g; # Ofor somei > 1 or
if ;18 — anap = 0 # apazp — agays.

851 b) i) 2 4 0 1 00 2 4 0
4 6 3| = 2 10 0 -2 3]|=LU
-6 —-10 O -3 -1 1 0 0 3
1 0O V) 2 Z; 2
Lz=b:>( 2 10 (22):( 1):(22):(_3).
-3 -1 1 3 -6 Z3 3
2 4 0\ /x 2 X1 1
Ux=z= 1[0 -2 3 X |l=|-3]|=|x]|= 0].
0 0 3 X3 -3 X3 -1
1 Zl 2 Z; 2
-3 —1 1 —4 s 6
2 Xj_ 2 X1 -1
0 —2 3 =l4)|l=|x|= 1].
0 X3 6 X3 2
1 00 5 31
—5 —4 1 =|-1 10 0 -1 2].
-10 -9 5 -2 3 1 0 01
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BEEHORERONE)
(53 2))-(2)-()-()
EEEH DREINONE
(5320 (2)-)-()

Chapter 9

9.1 ay1axazs — a118383 — Q12821833 T A1283183 + A13821832 — A1383180.

( A ax ax ) ( Q1 a3 ax )
9.2 ay; - det Adzp aAzz3 aAzg | — A det Az; dzz axy
g2 43 Ay 1 43 Ay
Ay Ay axu Ay adxp ax

+ay3 det ( Q1 axp ax ) — ayy det ( 8 ax ass ) .
Ay A2 au Ay Qa2 ag3

There are four terms, each consisting of a scalar multiple of the determinant
of a3 X 3 matrix. There are six termsin the expansion of the determinant of
a3 X 3matrix, sothe4 X 4 expansion has4 - 6 = 24 terms.

a a
9.4 Row 2: det( 11 12) = (_1)33.21&12 + (_1)43.22&11 = Qpqdp — Ax1dj2.
d ax

a a
Column 1: det ( all 8.12 ) = (_ 1)23.11&122 + (_ 1)33.213.12 = Qypdp —ap1ai2.
21 22

a a
Column 2: det ( all a12 ) = (_ 1)33128.21 + (_ 1)43.22311 = Qypdp —ap1ai2.
21 22
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9.5 Expand along column one:

a;n a2 a3 3rr B
det 0 ay axs =a11'det( (.2)2 a23)—0~det(
0 0 a3 s
<0 ga(22 3
dyp  ax
= ajiaxpazx + 0+ 0.
06 det(2 P) = ad—bcanddet( 2 b ) = rap+ad-rab—bc =
' cd ' ra+c rb+d
ad — bc.
1 1
97 a) R= (0 _1),detR= —1,anddetA = —1.
2 4 0
by R=|0 -8 3 |,detR= —12,anddetA = —12.
0 0 3/4
34 5
¢ R=|10 1 2|,detR= —18 anddetA = 18.
0 0 -6
111
9.8 a) Onerow echelonformis|{ 0 3 1 |.So,det = 3.
0 01
11 1
b) Onerow echelonformis| 0 4 5. So, det = —20.
0 0 -5
9.9 All nonsingular since det +# 0.
9.10 Carry out the calculation
2 45 3 -4 -15 1 100
0 30 0 -3 O(—§)=010
101 -3 4 6 0 0 1

1/ 1 -3
9.1151)1(_1 4).
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43

5

0

0

b) det A 1
0

1

1 (%
37 \ g
9 1 (d
ad —bc\ —¢C

912 x, = 35/35 =1,

913 a)yx =—-7/—-7=1,
b) x, = —23/ — 23 =1,

6| |2 3
8 08
6 13
8 18
5 |1 2
0 10
~16 -3
5_6)_
-2 5

OFr OFr OIN

X, = —70/35 = —2.

OGN OOWOoOWw

X =14/ -7 = —2.
X, =0/ —23=0,

X3 = —69/ — 23 = 3.

9.14 a) detA = —1,detB = —1, detAB = +1, det(A + B) = —4;
b) detA = 24, detB = 18, det AB = 432, det(A + B) = 56;
c) detA = ad — b, detB = eh — fg, det AB = (ad — bc)(eh — fg),
det(A + B) = detA + detB + ah — bg + de — cf.

9.15

9.16

N h
G sh+am’
a a
My sh+am’
aY
%1

dh

N _(1°+G) __(I°+Gh+aMs—M°)

sh + am

a o
= @ramell
ar
“ram

(sh+ am)2

+G)m— (Ms — M°)g]
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o (I° + G)sh + as(Ms — M°)

am (sh + am)?
sY
“@hram
a _am(Ms —M®°) + mh(I° + G)
s (sh + am)2
mY
R L
017 |, _ h(1° + G) + a(Ms — M©) o (1° + G)m — (1 — )(Ms — MO)
(1-t)sh+am ’ (1-t)sh+am
aY or msY
E>0’ ﬁ_aer(l—t)hs>o

9.18 ThelScurveis[1—ay —c (L — )Y + (@+ c)r = 19+ G + ¢ — Cytp.
The solution to the system is

_ (@a+ c)(Ms — Mg) + h(G + 1° + ¢ — citp)
B h[1—ay — ci(1— t1)] + (@ + c)m

_ [l -3 —c1(d — ta)(Ms — Mo)] + m(G + 1% + & — cito)
h[1-ay—c(1—-1t)] +(@+c)m '

Y

r

9.19 Under the obvious assumptions on parameter values, increasing | © increases
both Y and r. Differentiating the solutions with respect to m,

ﬂ _ _(a + C2)Y <0
om  h[1—ay—c(1—t)] +(a+c)m
ar Co— Citp — (@a+ c)r

om  hl—ay—ci(l—t)]+ (@+c)m

Similarly, differentiating the solutions with respect to ¢, gives

ﬁ = h >0
o hl—ay—cy(l—-t)]+(@+c)m '
ar m

H Mi-a-ad-u]+@rcm  °
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9.20 Theequation systemis

C+cS+ckF=cP
sC + S = sP
fC + fS+ F = fP.

The solution is

c c c
s 1 0f-P

C= f f 1 (@A +sf=f—9cP
1 cec 1+sfc—fc—sc
s 1 0
f f 1
1 c c
s s Of-P

S— f f 1 _ s(1—-c)P
1 cec 1+sfc—fc—sc
s 10
f f 1
1 ¢c c
s 1 s|-P

E - f f f _ (1l+sc—-s—-0ofP
1l cc 1+sfc—fc—sc’
s 10
f f 1

Chapter 10

104 a) (2,—-1), b) (-2,-1), ¢) (21, d) (3,0, e (1,24),
f) (2,—2,3).

105 a) (1,3), b) (-4,12), c) undefined, d) (0,3,3), € (0,2),
) (L4, g) (LY, h 37,1, i) (-2 -40), j) undefined.

10.7 —u iswhat one addstou toget 0. (—)u +u = (-Lu+1-u

[(F)+2u=0-u=0.S(—1u = —u.
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108 (r +)u = (r + S)(Uy,...,Up) = ((r + Yuy,...,(r +9S)uy)

= (rug,...,rup) + (SUy,...,Sup) = ru + su.
ru+v)=r(U+v)y...,u+Vv)n)=0FU+V)y,....,ru+v),
= (rup +rvy,...,fuy +1vy) = (fug,...,rup) + (rve, ..., rvy)

=ru+rv.

1010 8 5 b) 3, © V3, d) 32, €2 f)V14, g) 2, h) 30

i) 3.

1011 a) 5, b) 10, ¢) 4, d) V41, o) 6.

10.12 a) u-v = 2, sotheangleisacute; 6 = arccos(2/2,/2) = 45°.

b) u-v =0, sotheangleisright; 6 = 90°.

¢) u-v = 3, sotheangleisacute; § = arccos(y/3/2) = 30°.
du-v
€) u-v =1, sotheangleisacute; 6 = arccos(l/\/g) ~ 63.4°.

—1, sotheangleis obtuse; = arccos(—1/2,/3) ~ 106.8°.

10.13 Multiply each vector u by the scalar 1/]|ull:

3) (3/5,4/5), b) (1,0), o (1/4/31/131/V3),
d) (~1/14,2/y/14,-3/Y/14).

10.14 Multiply each vector v found in Exercise 10.13 by the scalar —5:

3) (-3,-4), b) (=50, o (-5/v/3,-5/V3,-5/y3),
d) (5/14,~10/1/14,15//14).

10.15 Jlu—v|? = (u—-v)-(u—Vv) =u-u—2u-v+v-v = [[ul?—2u-v+|v|.

10.16 a) |[u]l = |uy| + |up| = 0, and equals O if and only if both termsin the sum

equal 0.
[lrull = rug| + |ruzl = Irl(lua| + luzl) = rlfull.
lu+Vvil = lug + vl + [uz + Vol = lug| + [ug| + [val + Vo] = [Jull + [Vl

[lull = max{[uy], |us|} = 0, and equals O if and only if both termsin the
max equal 0.
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Irull = max{|rual, [ruzl} = Ir] max{|ual, luzl} = [r]llull.
lu + vl = max{luy + val, [uz + Vol} = max{luy| + [val, [up| + [Val}
= max{|uyl, [upl} + max{|val, [v2} = [lull + [IvIl.

b) lul + |up| + - -+ + |up|, called thel, norm;
max{|u|, [uzl, ..., lupl}, known asthe l.. or sup norm.

1017 @) u-v=>,uV, =>;Vitly = V- u.

b) u-(v+w)=> (v + W) => UV +Uuw =u-v+u-w.

c) u-(rv) =>;u(rvi) =r >;uVv, = ru-v. A similar calculation proves
the other assertion.

du-u=3u=0.

€) Everyterminthesumu - u isnonnegative, so u - u = Oiff every term
isO; thisistrueiff each u; = 0.

fy u+v)-(u+v)=u-ut+u-v+v-u+v-v=u-u+2u-v)+v-v
by part a.

10.19 Putting onevertex of the box at theorigin, thelong sideisthevector (4, 0, 0)
and the diagonal isthe vector (4, 3,2). Then, 8 = arccos(u - v/||ullllv]]) =

arccos(4/J2§) ~ 42.03°.

10.20 Thetwo diagonalsare (u + v) and (v — u). Their inner productisv-v +u-
V=Vv-u—u-u=v-v—u-u = |v[|>—||ull>. ThisequalsOif [[ul| = [lv]I.

1021 a) lu+vl?+llu—Vvl|P=u-u+2u-v+v-v+u-u—2u-v+v-v=
2u-u+2v-v = 2lull2 + 2||vl2.

b) Calculatingasinparta, |lu + v|[? — |lu — v|[? = 4u - v.
10.22 |lu+ v||? = ||ull?> + [IvI|> + 2u - v. If u and v are orthogonal, u - v = 0 and

llu + v|IZ = |lul® + |IvI|2. When applied to (perpendicular) vectors in R?,
thisis exactly Pythagoras' theorem.

10.23 a) Interchanging u and v interchanges the rows in the three matrices in
the definition of cross product and thus changes the sign of all three

determinants.
U u up u up u
UXV= 2 Us| U Ut U
Vo V3 Vi V3| |Vi V2
_ V2 V3| _ (V1 V3| |V1 W2
W Uz| |up Uz|'|up U

= —Vv XU
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U u up u
b) u-(UXv)=u| 2 |- +ug| b
Vi V2
Uy U Uz
up U Uz
Vi V2 V3
Vi V2 V3
c) v-(uXxv) Uy U Uz
Vi Vo2 V3
Alternatively, v- (UuXv) = —v-(v-u) = 0.
ru ru ru ru ru ru
d) (r U) XV = 2 3 _ 1 3 , 1 2
Vo V3 Vi V3 Vi V2
=r U Uz| _ (U Uz]| |Uup W
Vo Vgl o [vi ova|'lvi oW
=r(uXv).

A similar calculation proves the remaining assertion.

U +W, Ug+ W up +w; Uz +w
e) (U+W)XV: 2 2 3 3'_ 1 1 3 3’
V2 V3 V1 V3
Uy + W U + Wy
\%1 V2
_ [|U2 U3z _JuUr U3 [Up U
Vo V3|’ (v va|'lvi W
n W2 Wi | |Wp Wz | (W W
Vo V3 Vi vz |'fvi W
= (UXV)+ (WwXV).
2 2 2
2 _|U2 U3 up Us up U
f) lluxv|*=
Vo V3 Vi V3 Vi V2

= (UpV3 — UgVp)? + (UgVa — UgVp)? + (UgVa — UpVa)?
= (U] + U5 + W) (V] + V3 + V3) — (Upvy + UpVp + UgVs)?

= JlullPlIvI> —u-v

9) llux viIZ = llullPIvII? = (u - v)* = IlulllIvII*(1 — cos’ 6)

= llull?llvII? sin? 6.
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U Uz
Uz Uz

uXxu=|ul|[*sin?0 = 0.

Uy Uz
Up Uz

up U
up U

h)u><u=(

) = (0,0,0). Alternatively,

. VoV Vi V Vi V
Du-(vxw)=ul 2 3 1™ G
Wo W3 W Ws Wiy Wy
up Uz Us
=|V1 V2 V3
W1 W2 W
€& & €&
U u up u up u
1024 |u; W wl|=e|? Pl-eg|* 3 ro
Vo V3 Vi V3 Vi V2
Vi V2 V3
U u up u up u
_ 2 Us) Ui Uit ey,
Vo V3 Vi V3| |Vi V2

10.25 a) u X v = (—1,0,1).
b) uxv=(-735).
10.26 a) Theareaof the paralelogramis|lv|lh = ||v|||lullsin® = |lu X v]|.

b) By a, the area of the triangle with vertices A, B, C is%ll,ﬁ X RII.

AB = (0,1,3) — (1,—1,2) = (-1,2,1)
AC =(2,1,0) - (1,-1,2) = (1,2, -2)
AB x AC = (—6,1, —4)

11AB x ACl = 136 + 1+ 16 = 14/53.

1027 Ifz = J(x +y), thenx —z=3(x —y) = z—y,0(x —z|| = [ly — z|..

10.28 a) x(t) = (3 + 2t,0), and its midpoint is (4, 0).
b) x(t) = (1 —t,t), and itsmidpoint is (0.5, 0.5).
c) x(t) = (1 +t,t,1—1t),anditsmidpointis(1.5,0.5,0.5).
10.29 No. If it were, then judging from the first coordinate, the point would occur

att = 2. But then the last coordinate of the point wouldbe 8- 2 + 4 = 20,
not 16.
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10.30 a) Solve both equationsfor t and equate:

X1 — 4 Xo— 3
L and t="2

t =
-2 6

Xo = —3X%; + 15.

b) Alternative method: sett = Oandt = 1 to get the two points (3, 5) and
(4,4). Use these two points to deduce equation x, = —x; + 8.

C) X = 5(x; takes on any value).

1031 a) x(t) = (592) + <3}2)t. b) x(t) = (g) + (_11)t.

0 x(t):(g)+((l’)t.

10.32 No. Solving the first two coordinate equations for sand t, s = —2 and
t = 3. But with these values for s and t, the third coordinate should be 1,
not 2.

d) x(s,t) =

Nlg1

1035 @) y=—3ix+3. b)y=(x/2+1 c) —7x+2y+z=-3. d)y=
4,

6 -6 -6
10.36 a) x(s,t) = | 0| + —6)t+ O|s, x—y+2z=6.
0 0 3
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0 3 2
b) x(st)=(3)+( 0)t+( 2)3, X+2y+3z=12
2 -1 -2

10.37 a) Rewriting the symmetric equations, y = Yy, — (b/a)xo + (b/a)x and
z= 27y — (c/a)x + (c/a)x. Then

x(t) X0 1 x(t) Xo a
) ()&~ ()60
z(t) Z c/a Z(t) Z c

b) The two planes are described by any two distinct equalities in system
(20). For example,

X—X% _ Y~ Y% _
a b and b c

In other words, —bx + ay = —bxg + ayp and cy — bz = cyy — bz,.

. X1_2_X2—3_X3_1 .. Xl_l_X2—2_X3_3
OV~ "3 5 W3 "5 "%
d) i) 4x; + X, = 11 and 5x, — 4x3 = 11.

ii) 5%, — 4%, = —3and 6x, — 5%3 = —3.

10.38 &) Normas(1,2, —3) and (1, 3, —2) do not line up, so planes intersect.
b) Normals(1,2, —3)and(—2, —4, 6) dolineup, so planesdo not intersect.

1039 a) (x—1,y—2z-3)-(-1,1,0=0,s0x—y=—1

b) Thelinerunsthroughthe points(4, 2, 6) and (1, 3, 11), so the plane must
be orthogonal to the difference vector (—3,1,5). Thus (x — 1,y — 1,
z+1)-(-3,1,5 =0,0or —=3x+y+5z= —7.

¢) Thegeneral equation for the planeis ax + By + yz = 8. The equations
tobesatisfiedarea = §/a, b = 6/B8,andc = &/v. A solutionisa =
1/a,=1/b.y=1/cand§ = 1,s0(1/a)x + (1/b)y + (1/c)z = 1.

1040 Plugx = 3+t,y=1—"7t,andz= 3— 3tintotheequationx+y+z=1
of theplaneand solvefort: 3+t)+ (1—-7t)+(3—-3t) =1=1t = 2/3.
Thepointis(11/3,—-11/3,1).

a1 (11 -1 P4} (10 -3 5)
12 1% 3 01 2 -1

X

y
X 5 3

Taking z = t, writethelineas| y | = | -1 | +t| —2.
z 0 1
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1042 IS:[1—-c(1—t) —a]Y +@+c)r =cp—cCitg+ 1"+ G
LM :mY —hr = Mg — M".
I* risess= ISmovesup = Y* and r * increase.
Ms risess=—> LM movesup — Y™ decreasesand r * increases.
mrises —> LM becomes steeper —> Y* decreases and r * increases.
hrises= LM flatter — Y increasesand r * decreases.
ap rises = |Sflatter (with same r -intercept) = r* and Y* rise.
Co rises=— ISmovesup = Y* and r * increase.
t; ort, risess=— |Ssteeper (with samer -intercept) = r* and Y * decrease.

Chapter 11

11.1 SupposeV; = rpvo. Then 1vy — rovy = vy — ravp = 0.

Suppose c1v1 + Cpvp = 0. Suppose that ¢; # 0. Then cvi = —¢jvj, SO
Vi = (Gj/G)v;.

11.2 a) Condition (3) givesthe equation system

2c, + ¢ =0
c, + 2c, =0.

Theonly solutionisc; = ¢, = 0, so these vectors are independent.
b) Condition (3) givesthe equation system

2c, + ¢ =0
—4c, — 2¢, = 0.

Onesolutionisc; = —2, ¢, = 1, so these vectors are dependent.
¢) Condition (3) givesthe equation system

Clearly ¢; = ¢, = 0isthe unique solution.
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d) Condition (3) givesthe equation system

(o] +c=0
Ci + C =0
c,+ c3=0.

Theonly solutionisc; = ¢, = ¢z = 0, sothesevectorsareindependent.

11.3 a) The coefficient matrix of the equation system of condition 3 is
110
00O . - .
10 1 . Therank of thismatrix is 3, so the homogeneous equation
011

system has only one solution, ¢; = ¢, = ¢3 = 0. Thus these vectors
are independent.

b) The coefficient matrix of the equation system of condition 3 is

1 11

0 00 : o

1 -1 ol The rank of this matrix is 2, so the homogeneous
0 00

equation system has an infinite humber of solutions aside from
€1 = C; = c3 = 0. Thusthese vectors are dependent.

11.4 If cyvy = vy, then cvy, + (—1)v, = 0, and condition (4) fails to hold. If
condition (4) failsto hold, then c;v; + ¢c,v, = 0 has anonzero solution in
which, say, c; # 0. Then v, = (c1/c;)vy, and vo isamultiple of v;.

11.5 @) Thenegation of “c;v; + CVv, + C3vg = Oimpliesc; = ¢, = ¢c3 = 0" is
“Thereissomenonzero choiceof ¢4, ¢y, and c3 that ¢V, + oV, +C3vz =
0"
b) Suppose that condition (5) fails and that ¢c; # 0. Then v; =
—(C2/c1)v1 — (Ca/C1)Va.

11.6 Suppose {vi,...,Vn} is a collection of vectors such that v; = 0. Then
1lv; + Ovy + - - - + Ov, = 0 and the vectors are linearly dependent.

C1
117 Al | = cqva+ - - - + GV, sothecolumnsof Aarelinearly independent

Ck
if and only if the equation system A - ¢ = 0 has no nonzero solution.
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11.8

119

11.10

1111

11.12

11.13

11.14

11.15

The condition of Theorem 2 is necessary and sufficient for the equation
system of Theorem 1 to have a unique solution, which must be the trivial
solution. ThusAhasrank n, and it followsfrom Theorem 9.3 that det A # O.

a) (2,2) = 3(1,2) — 1(1,4).

1101
b) Solvetheequation systemwhoseaugmented matrix is ( 101 2 ) .
011 3

Thesolutionisc; = 0,¢c, = 1, andcz = 2.

No they do not. Checking the equation system Ax = b, we see that A has
rank 2; this means that the equation system does not have a solution for
genera b.

For any column vector b, if the equation system Ax = b has a solution
X*, then xjv1 + - - - + x3vn, = b. Consequently, if the equation system has
a solution for every right-hand side, then every vector b can be written as
alinear combination of the column vectors v;. Conversely, if the equation
system fails to have a solution for some right-hand side b, then b is not a
linear combination of the v;, and the v; do not span R".

The vectors in a are not independent. The vectors in b are a basis. The
vectorsin ¢ are not independent. The vectorsind are abasis.

a) det <(1) (1)) = 1 # 0, so these vectors span R? and are independent.

b) det( _01 2) = —1 # 0, sothesevectorsspan R? and areindependent.

1 1

d)da(_l 1

) = 2 # 0, so these vectors span R? and are independent.

Two vectors cannot span R3, so the vectorsin a are not a basis. More than
three vectors in R® cannot be independent, so the vectors in e fail to be a
basis. The matrix of column vectorsin b and c have rank less than 3, so
neither of these collections of vectorsisabasis. The 3 X 3 matrix A whose
column vectors are the vectors of d hasrank 3, sodet A # 0. Thusthey are
abasis according to Theorem 11.8.

Supposeaistrue. Thenthe n X n matrix A whose columns are the vectorsv;
hasrank n, and therefore Ax = b hasasolution for every right-hand side b.
Thus the column vectors v; span R". Since they are linearly independent
and span R3, they are a basis. Since the rank of Aisn, detA # 0. Thusa
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implies b, c and d. Finally suppose d istrue. Since det A # 0, the solution
X = 0to Ax = Oisunique. Thusthe columnsof A arelinearly independent;
dimpliesa.

Chapter 12

1218 Xo=n. b) Xo=1/n. ) X, = 200D,
d) o = (=D)(n=(n—=1)/n. € x,=(-H". f) x,=(n+1)/n.
0) X, isthetruncation of 7 to n decimal places.

h) x, isthe value of the nth decimal placein .

12.2 @) 1/2 comes before 3/2 in original sequence.
b) Not infinite.

c) 2/1lisnotin original sequence.

12.3 If x and y are both positive, soisx + y,and x + y = x| + |y| = |x + yl.
If x and y are both negative, soisx +y,and —(X +y) = —x — y; that is,
X+ yl = Ixl + Iyl
If xand y are oppositesigns, say x > Oandy = O,thenx+y = x = |x| =
IX| +lyland —x—y = —y = |yl = |x| + |yl. Sincex + y < |x| + |y| and
—(x+y)=Ixl+ Iyl Ix+ ¥l =[x +Iyl.

Itfollowsthat |x| = |y+(x—Y)| = |yl +|x—V];s0 x| — |yl = [x—V].Also,
IV =Ix+(y—xI=Ix+ly—x =[x +Ix—ys0lyl —Ix = |x—y.
Therefore, [IX| — [yl| = Ix — yl.

124 If xandyare= 0, soisxy and |X||y| = xy = [xyl.
If xandy are=< 0, xy = |xyl.
Ifx=0andy = 0,xy = 0and |xy] = —xy. Then, [X||yl = x(—y) =
—xy = |xy|. Similarly, for x = 0and y = 0.

L5 |x+y+2zd=|x+y)+d=Ix+yl+12d=|x+Iy+|2.
12.6 Follow the proof of Theorem 12.2, changing the last four linesto

|(Xn = Yn) = (X =Y = (% = X) = (Yo — Y)I
=% — X+ lyn =W

+ = &.

NI ™
NI &
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12.7 @) ThereexistsN > Osuchthatn = N = X, — Xo| < 3[%ol.
Then, [Xo| = [Xal = IXo = Xal < 3I%ol, Or 3IXol = IXal, foral n=N.
Let B = min{3lxol, Ixal, bl ..., Ixal}
Forn=N, || = min{[x| : 1= j =N} =B.
Forn= N, [x\| = 3[x| = B.
b) Let B be asin part a). Let & > 0. Choose N such that for n = N,
[Xn — Xo| = &B|xg|. Then, for n = N,

1_3‘: X2 = %ol _ X0 — Xl
X Xo [Xnl 1Xol Blxol

(since |xy| = Bforal n= 1/|xy| = 1/Bfordl n)

e Blxl _
Blxol

<

&.

Therefore, 1/x, — 1/Xo.

12.8 Suppose y, — Y with all y,s and y nonzero. By the previous exercise,
1/yn— 1/y. By Theorem 12.3

Xn 1
—:Xn'——'X'

Yn Yn

X
V

<Pk

129 Let ¢ > 0. ChooseN suchthat forn = N, |x, — 0| = - Bwhere|y,| = B
for al n. Then,forn= N,

X2 * ¥n = Ol = [Xn* Yol = [Xallynl = 5 B =&

£
B

12.10 Suppose that x, = b for al n and that x < b. Choose ¢ > 0 such that
0<e<b—-—x50e+x<bandl.(x) = (X— &X+ ¢) liesto the left
of b on the number line. There existsan N > 0 such that for all n = N,
Xn € 1.(X). For these xps, xn < X+ & < b, acontradiction to the hypothesis
that x, = b for dl n.

12.11 Theproof of Theorem 12.3 carriesover perfectly, using thefact that [x-y| =
[Ix]| - llyll holdsin R".

12.12 Suppose X, — a and b # a is an accumulation point. Choose ¢ =
|la — bl| /4. Thereexistsan N suchthatn = N = ||x, — al| < &. Sinceb
is an accumulation point, there exists an m = N such that ||xm, — bl| < &.
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Then,
lla—bll = lla = Xm + xm — bl|
= [IXm — all + lIxm — bl
a—b
<8+8=28=” ”
2
Contradiction!

12.13 The union of the open ball of radius 2 around 0 with the open ball of radius
2 around 1 is open but not aball. So is the intersection of these two sets.

12.14 Letx € R";. Choose ¢ = min{x : i = 1,...,n} > 0. Show B, /,(X) C
Rn+. LetyE Ba/z(x) andj = 1,...,n.

Iy = %1 = 30— X024+ -+ + (o — 02 = lly = x| < £/2.
X =¥ ==yl =x - -yl=y

Vi=x—Ix—yl=e—¢e/2=¢/2>0.

1215 InRY B.(x) = {y: lly—xll <&t ={y:ly—x < &}
={y:—e<y—x<+g={yix—e<y<x+e¢g}

=(X— g X+ &).

12.16 If Aisopen, forall x € Athereisanopenball By containingxandinA. Then
UxeaBx C A C UyeaBy. Let A° denote the interior of A. By definition,
foral x € A, By C A°, SO UyeaBx C A° C A C UyeaBx C A°, and
A° C AC A°. Thetwo setsareidentical.

12.17 x € intS = there exists ¢ > 0 such that B.(xX) C S If x, — X, there
existsan N > O such that ||x, — || < e foral n = N; that is, X, € B,(X)
forall n=N.

12.18 Suppose {x,} isasequencein [a, b] that convergesto x. By Theorem 12.4,
X € [a, b] too.

1219 FixzeR"ande > 0. Let F = {Xx € R": |[x — z|| = &}. Lety, bea
sequence in F withy, — y. Show y € F; that is, |ly — z|| = &. Suppose
lly — z|| > &. Choose g, = %(Ily—zll — g) > 0. Choosey,, in the sequence
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12.20

1221

12.22

with |y, — y|| < &;. Then,

lly = zll = lIty = yn) + (Yn — 2l
= |ly = ynll + llyn — 2l

e +e=1ly—z,

acontradiction.

Let F be afinite set of points{ps,...,pm} inR". Letd = min{|lp; — p;ll :
i #j,i,j =1,...,M} > 0. Suppose {x,} is a sequence in F and x,, — X.
Show x € F. Thereexistsan N suchthat n = N = ||x, — x|| < d/2.
Let ng, np = N. Then, |[Xn, = Xn, Il = [IXy, = XI| + [IX = Xp, |l < d. But
[[Xn, — Xn,/l < d and x,,, Xn, € F implies that x,, = Xy,; that is, there
existsap € F suchthat x, = pforal n= N. Then, limx, = p € F.

Proof that the set of integersisaclosed set isthe same, takingd = 1.

a) Not open, because (0,0) isin the set but (0, ) is not in the set for any
e #0.
Not closed, because{(n/(n + 1), 0) : integer n} isin the set, but itslimit
(1,0) isnot.

b) Not open, since (0, 0) isin the set, but (0, ¢) for al small £ > 0is not.
Closed; same argument asin Exercise 12.20a.

¢) Not open, since no disk about (1, 0) isin the set.
Closed, sinceif {(xn, Yn)} isasequencein the set that convergesto (X, y),
thenx +y = limx, + limy, = lim(x, + y») = 1.

d) Open, sinceif x+y < 1,thensois(x + h) + (y + k) for all sufficiently
small h and k.
Not closed, because if x + y = 1, then (x,¥) is not in the set, but
(x—1/n,y — 1/n) for al integersn > 0.

€) This set is the union of the x- and y-axes. Each axis is closed. For
instance, if (xn, 0) convergesto (X, y), theny = 0 and so (X, y) ison the
x-axis. Thusthe set is the union of two closed sets, and henceis closed.
The set isnot open. (0, 0) isin the set, but (&, £) failsto bein the set for
adle>0.

The complement of any intersection of closed setsis a union of open sets.
Thisunionisopen according to Theorem 12.8, so its complement is closed.
The complement of a finite union of closed sets is a finite intersection
of open sets. According to Theorem 12.8 this intersection is open, so its
complement is closed.
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12.23

If x € c'S, then there exists a sequence {x,} C S converging to x. Since
there are points in S arbitrarily near to x, x & intT. If x & cl S, then for
some ¢ > 0, B.(x) N S = J. (Otherwise it would be possible to construct
aseguencein S converging to x.) Thereforex € int T.

12.24 Any accumulation point of Sisin cl S. To see this, observe that if x isan

12.25

12.26

12.27

12.28

accumulation point of S, then for al n > 0,B,,,(X) N S # . For each
integer n, choose X, to be in this set. Then the sequence {x,} isin S and
converges to X, so x € cl S Conversdly, if x isin cl S, then there is a
sequence {y,} C Swith limit x. Therefore, for all £ > Othereisay € S
such that |ly — x|| < &. Consequently, for all £ > 0,B,(x) N' S # J, 0 X
isan accumulation point of S.

Thereisno ball around b contained in (a, b], so thisinterval is not open. A
sequence converging down to a from above and bounded above by b will
beintheinterval, but itslimit ais not. Hence the interval is not closed.

The segquence convergesto 0, but 0 is not in the set so the set is not closed.
No openball of radiuslessthan 1/2 around the point 1 containsany elements
of the set, so the set is not open.

A sequencein the line without the point converging to the point liesin the
line without the point, but its limit does not. Hence the set is not closed.
Any open ball around a point on the linewill contain points not on theline,
S0 the set is not closed.

Supposethat x isaboundary point. Then for all nthere exist pointsx, € S
and y, in $¢, both within distance 1/n of x. Thus x is the limit of both the
{xn} and {yn} sequences, so x € clSand x € cl . Conversdly, if x isin
both cl Sand cl §°, thereexist sequences{x,} C Sand{y,} C S converging
to x. Thus every open ball around x contains elements of both sequences,
S0 x isaboundary point.

The whole space R™ contains open balls around every one of its elements,
soitisopen. Any limit of asequencein R™ is, by definition, inR™, so R™
is closed. The empty set isthe complement of R™. It isthe complement of
aclosed and open set, and consequently is both open and closed. Checking
directly, the empty set contains no points or sequences to falsify either
definiton, and so it satisfies both.

The hint saysit all. Let abeamember of Sand b not. Let| = {x : x =
X(t) =ta+ (1 —t)b,0 =t < o}, Let t* be the least upper bound of
the set of al t such that x(t) € S. Consider the point x(t*). It must be in
S because there exists a sequence {t,} converging up to t* such that each
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X(tn) € S, x(t*) isthe limit of the x(t,), and Sis closed. Since Sis open,
there exists a ball of positive radius around x(t*) contained in S. Thus for
& > 0 sufficiently small, x(t = +&) € Swhich contradicts the construction
of tx.

Chapter 13

13.1 Seefigures.

13.3 Intersect the graph with the plane z = k in R®, and project the resulting
curve down to the z = 0 plane.

13.4 A map that gives various depthsin alake. Close level curvesimply a steep
drop off (and possibly good fishing).

13.6 @) Spheresaround the origin.
b) Cylindersaround the xs-axis.

¢) Theintersection of the graph with planes parallel to the x;x;-plane are
parabolas with a minimum at x + 1 = 0. The level of the parabolas
shrinksas 'y grows.

d) Parallel planes.
13.9 Seefigures.

13.10 The graph of f isG = {(x,y) : y = f(X)}. Consider the curve F(t) =
(t, f(t)). The point (x,y) is on the curveif and only if thereisat such that
X =tandy = f(t); thatistrueif and only if y = f(x); and thisistrueif
and only if (x, y) isinthe graph of f.

X1
1311 a) (2 -3 5)(X2),

X3

2 -3
b) (1 —4)(?),
1 0 2
10 -1\ /x
0 (2 3 —6) (xz).
0 2 1 X3

1312 a) (x Xz)(_i _D(ﬁl)
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b (1 % Xs)(

()

_1) X2 |,
X3

2 -3 X1

. 4)()

4 3 X3

13.13 f(x) = sinx, g(x) = €%, h(x) = logx.

5
-5
1
0 (X1 X x3)| 2
-3

13.14 Suppose f(x) islinear. Let g = f(g), and supposeX = X;€; + -+ + Xc&.
Then

fX) = fOxaer + - - + X&)
=D xf(e)

=D ax

= (ag, - a) (X1, -y X0)-

13.15 Consider the line x(t) = x + ty, and suppose f islinear. Then f(x(t)) =
f(x +ty) = f(x) +tf(y), sotheimage of thelinewill bealineif f(y) # 0
and apointif f(y) = 0.

13.16 Let {xn}_, be asequence with limit x. Since g is continuous, there exists
an N such that for all n = N, |g(xn) — g(X)| < g(x)/2. Thus, for n = N,
g(xn) # 0, since g(x) — g(Xn) < g(x)/2impliesthat 0 < g(x)/2 < g(Xn).
Since convergence depends only onthe“largeN” behavior of the sequence,
we can suppose without loss of generality that g(x,) isnever 0. Now, f(Xp)

converges to f(x) and g(x,) converges to g(x), so the result follows from
Exercise 12.8.

13.17 Suppose not; that is, suppose that for every n there existsan x, € By /n(X*)
with f(x,) = 0. Since ||x, — x*|| < 1/n, x, — x*. Since f is continuous,
f(xn) — f(x*). Sinceeach f(x,) = 0, f(x*) = limf(x,) = O, but f(x*) >
0. (See Theorem 12.4).

13.18 From Theorem 12.5 conclude that a function f : R — R™ is continuous
if and only if its coordinate functions are continuous. From Theorems 12.2
and 12.3 and this observation, concludethat if f and g are continuous, then
the coordinate functions of f + gand f - g are continuous.
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13.19

13.20

13.21

13.22

13.23

= Suppose f = (fy,..., fy) is continuous at x*. Let {x,} be a sequence
converging to x*. Then, f(x,) — f(x*). By Theorem 12.5, each fi(x,) —
fi(x*). So each f; is continuous.

< Reverse the above argument.

SuppOose Xn = (Xng, Xn2s - - -+ Xnk) — Xo = (Xo1, X02, - - - Xok)- By Theorem
12.5, X — Xgi for eachi. Thissaysh(xy, ..., Xs) = X is continuous. Any
monomial g(xq, ..., Xk) = Cx* - - - x* isaproduct of such hs (for positive
integer n;s) and is continuous by Theorem 13.4. Any polynomial isasum
of monomials and is continuous by Theorem 13.4.

Let{t,}_, denoteasequencewithlimitt®. Theng(t,) = f(th, &z, ..., &) —
f(t*,ay,...,a) = g(t*), so g is continuous.

For f(x,y) = xy?/(x*+ ¥4, f(t,a) = ta®/(t* + a*). If a # Othissequence
clearly convergesto 0/a* = O ast convergesto 0. If a = 0, f(t,0) = Ofor
al t. Similar arguments apply to continuity in the second coordinate. But
f(t,t) = t3/(t* + t*), which growsas 1/t ast — 0.

a) If y € f(Uy), then there is an x € U; such that f(x) = y. Since
Ui CUp,x€E Uy, 0y E f(Uz)

b) If x € f~1(Vy), thenthereisay € V; suchthat f(x) = y.Nowy € V,,
sox € f71(Vy).

¢) If x € U, thenthereisay € f(U) such that f(x) = y. Thusx €
fF3(f(U)).

d) If y € f(f1(V)), thenthereisan x € f (V) such that f(x) = y, s0
f(x) € V.

e) x € f~1(v)if and only if thereisay € VC such that f(x) = y. Since
f(x) =ye VS f(x) & V.Thusx & f~1(V),andso x € (f 1(V))°.

f(X) Domain  Range Oneto-one f~(y) Onto
a 3x-—7 R R Yes Hy+7) Yes
by x2-1 R [—1,) No No
) el R (0,) Yes In(y) No
d  x¥-x R R No Yes
e x/(+1) R [-1.2 No No
f) x3 R R Yes yl/3 Yes
0) 1/x R—-{0} R-{0} Yes 1/y No
hy Jx—-1 [1, ) [0, ) Yes y+1 No

i) xe * R (=20, 1/€] No No
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13.24 &) f(x) = logx,g(x) = x>+ 1; b) f(x) = x%, g(X) = sinx;
¢) f(x) = (cosx,sinx),g(x) = x3; d) f(x) = x2+ x, g(x) = x?.

Chapter 14
of of 5
: — = - + — = - )
14.1 a) = &Y 3y% + 6, py 4x% — 9xy?

of of
b) — =y, — =X
) o =Y ay X

of of

= = = 2xy.
© X ' ay 4
d) ﬂ = De2X+3y ﬂ = 323y,

X ' ay
o of 2% of 2

o (xHy? o ay (xty)?

af _ of o X
f) v 6xy — 7./Y, Wy 3x 20y

14.2 For the Cobb-Douglas function,
of 1«
B_Xi = kaixi“" 1X]-J = Ozi)—C:.
For the CES function,
of

o Ghk(eng ™ + Cox; )~ (/A 1ya-1,

14.3 (dT/ax)(x*, y*) is the rate of change of temperature with respect to an
increase in x while holding y fixed at the point (x*, y*).

14.4 a) Q = 5400.

b,c) Q(998,216) = 5392.798. The approximation gives Q =~ 5392.8, which
isin error by —0.002.

Q(1000,217.5) = 5412.471. The approximation gives Q =~ 54125,
whichisin error by —0.029.

d) For the approximation to be in error by more than 2.0, AL must be at
least 58.475, or about 5.875% of L.
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145 a) g = (1/Q1)(dQ1/dl) = (1/Q1)(b1Q/1) = by. Similarly the own and
cross-price elasticities are, respectively, a;; and as,.

b) We would expect ay; to be negative and b, to be positive, but in fact
these constraints are not derivable from theoretical principles.

146 a) Q = 9/2.
—12p/? 9,/P2
pl pl
Evaluatingat p; = 6, Ap; = 1/4, p, = 9, and Ap, = —1/2 gives
Q= -3/4
¢) Evaluating the expression in part b when Ap; = Ap, = 0.2, gives
AQ = —-0.5.

d) Incase b, Q = 3.80645 and the estimate is Q. = 3.75, with an error
of Q — Qe = 0.05645. In case ¢, Q = 4.35562 and the estimate is
Qe = 4.35, with an error of Q — Qe = 0.00562.

147 a) Q = 240,
10 1/2,,1/6 5Xl/3 1/6 5Xl/3X1/2
b) AQ = 2o Axy+ LS Axy+ T Ax,
33 % 3%

Evaluating, Q + AQ = 238.046.
¢) Theactual output at x; = 27.1, X, = 15.7, and X3 = 64 is238.032.
d) Q + AQ = 241.843, and the actual output is 238.837.

14.8 a) df = (4x3 + 4xy? + yH)dx + (10 + 4x2y + 4xy°) dy.
Takingx = 10,y = 1,dx = 0.36,and y = 0.04 gives f =~ 11692.8.
2/3
b) df = il—\/de—k 31(0 dy.
Evaluating at x = 1000, dx = —2,y = 100, anddy = 1.5, f = 6037.
dx 4 dy
4/x/XV/2 + y1/3 + 522 6y2/3,/x1/2 + y1/3 + 572
. 5zdz .
X2 + Y13 + 572

Evaluating at x = 4, dx = 0.2,y = 8, dy = —0.05 z = 1, and
dz = 0.02 gives f = 3.04097.

c) df =
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149 Q = 3% 1005 = 1500. 9IQ/dK = 2/3* 1500/1000 = 1. dQ/dL =
1/3*1500/125 = 4.

Q(998,128) ~ 1500 + 1- (—2) + 4- 3 = 1510.

2 2
14.10 df = 3 dx — 3 o Z 4
23—y -2 23—y -2 2y -y -7
Evaluatingat x = 4,dx = 0.1,y = 2,dy = —0.05,z= 1, and dz = 0.02
gives f = 6.5075.

14.11 Hereisthe chain rule calculation:

1040, y10) = Ty + ;y )

= [3y(t)2 + 2](—6t) + [6x(t)y(t)] (12t + 1).

14.12 Therate of change of output with respect totimeis2.5-0.5+3-2 = 7.25.

dz oz
- = = + = / + l +
14.13 e wi(t) (t) (t)
5t 5t2+3xy, 3 012 2t

R ey, —
w2y w3y P N

Att=0,x= 1y =1 adw = 2. Substituting, dz/dt = —3/8.

14.14 (310,000~ Y/4-6251/4) - (—10- 100- 100) + (10,000%/* - 625-3/4) - 250 =
—148,000.

14.15 Attimet = 1, Bob the Bat's position will be (2,1, 2). The tangent vector
to Bob'spathis(2, 2t, 2t) = (2, 2, 2). Hisdisplacement after 2 units of time
from his time 1 position will be (4,4, 4), so his position at t = 3 will be
(2,1,2) + (4,4,4) = (6,5, 6).

14.16 The car’'s velocity vector is (€' + 10t, 4t3 — 4). This vector will be parallel
to the x-axiswhen its y-coordinate is 0. This happensonly whent = 1. At
t = 1, the position vector is (e + 5, —3).
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JF &\N(?r+<?\lvﬁs

1417 & = N4
oX o ox  ds X
ow oW
= —— 4+ —
or 0s

0B _wir | owis
dy oy dsdy
oW oW
= — + —.
or s
14.18 A4x?y = (8xy,4x?). At (2,3) this vector is (48, 16). Normalizing it to
length 1, the length-1 vector of maximal ascent is (3/4/10, 1/4/10).

14.19 Ay’e> = (3y?e®,2ye®). At x = 0, y = 3, this vector is proportional to
(9, 2). Normalizing to length 1, the vector is (9/+/85, 2/+/85).

14.20 Vi(x,y) = (y> + 3x%y,2xy + x3). Evaluating at (4, —2), Vf(4,—2) =
(—92,48). Then V f (4, —2) - (1/+/10, 3/+/10) = 52/4/10.

10
&ql/ﬂt ﬂql/ar _ _15/2 15/4 9/2
1.2l ((7Q2/<?t &qg/ar)_(—100/9 —200/27 80/3)(? 28)'

14.22 (ZE??? 35%) - ((1) 21v>(§§ 8)

=0 2)(6 2)=(5 4)

8x — 9y? 01 0 2
14.23 3) (8x—9y —18xy ) b) (1 o)' ©) (Zy 2x)’
ez><+3y er+3y
d) (6e2x+3y 9e2x+3y)
o ( 4y/(x=y° —2(X+y)/(x§y)3)
2(x +y)/(x-y) ax/(x —y) ’
( 6X — 7/2\5/)
6X — 7/2ﬁ s
14.24 #*Q _ 15/3/4 #Q _ #Q _ #Q 9
' k3 16k94  okokal  okdl ok ol dkdk 16k5/411/4°
#Q  #Q  #PQ 9 *Q 15194

Kad  ddkd  dook  16kMASA A3 16k3/4
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14.25

#PF 9 F _ # F _ PFF
0X1 IXp X3 Xy OXo X3 OXo IX1 X3 IXp IXq IX3
_ 9 ¢F 9 *F _  &F
Xo dXq 0X3 Xo dX3 0X1 OXo IX3 0Xq
9 ok P F . PF
OXo dX3 Xy OX3 IXo IXq IX3 Mo X1 ’
and so forth.

14.26 The Cobb-Douglas production function is f (x, Xp) = Kx®*x52.

of _

— =KX xE > 0=a >0

X1

azf _ _ a;—2,,8 _

W = al(al 1)KX1 X5 <0= a.]_(a]_ 1) <0=0<a <1l
1

Similarly, wewant 0 < a, < 1.
The CES production function is f (x;, X2) = k(c1x; 2 + ¢o%,2) /2,

of

c o —1—(h/a)
— = clhkxl‘l‘a‘(—l + —2) > 0= c;hk > 0;
Xy

X%
#*f _ cihkod (—(1 + a)cxg — cu(l — h)x3)
h/a (CQXT + C]_Xg)2

= (1 + a)cexf + ¢ (1 — h)xg > 0.

>0

P (o +0x?)

Thuscy(1+a) > O0andcy(1— h) > 0. Similarly, c,hk > 0, ¢;(1+a) > 0,
and cy(1 — h) > 0. The Law of Diminishing Returns (absent the word
“Marginal”) is used to refer to the concavity of the production function.
This imposes further constraints on the CES parameters, although not on
the Cobb-Douglas parameters.

14.27 Asin the previous exercise, 0 < 3/4 < 1 implies diminishing marginal

productivity. A > 1 = F(AK,AL) = (AK)¥4(AL)¥* = A\%2F(K,L).
A¥2 > 1for A > 1= increasing returns.

14.28 a) x =0,y # 0= f(0,y) = 0= (Jf/ay)(0,y) = O.

x# 0,y =0= f(x,0) = 0= (¢f/3x)(x,0) = 0.
If f € CL, (9f/9x)(0,0) = limy_o(af/dx)(x,0) = lim0 = 0.
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of Xy + a2y -y af X —a3y? —xy?

R R A CRNGE
o Toog=? (ﬁ) (0.0) = lim @Y/P0Y) = 01/, 0)
Ay X ay \ ox y0 y
—im Y =0%- g
y—0 y
Pt o= 2 (ﬁ 0,0) = tim /X0 = (31/2)(0,0)
oXay ax \ oy x—0 X
—im*=0%- 1
=0 X

S0, 9%f/ax dy # 9%f/ay ox at (0, 0).
?f X0+ 9xty? — Ox%yt — P

f) for (x,y) # (0,0).

axay (X2 + y?)8
) ?f x®+9x6 —9xb — x® _ 0
9 oy~ (2x?)3 e
2 2
h) i ﬂasx—»O.fisnotCZ.
oxdy | dyox
Chapter 15
15.1. of = —3xy? + 5y*|.» = 20 # 0
Jda a) Y |(5]2) = —3x |52 = .
b) ﬂ o offox 2 01

Ax  offay 20
Ax=-02=Ay=002=y= 202

15.2 Let G be a C? function of (x,y) about (Xo, Yo). Suppose G(Xg, Yo) = C. If
(9G/x)(Xo, Yo) # O, then there exists a C* function y — x(y) defined on
aninterval | about y, such that:

G(x(y),y) =c fordlyel,
X(Yo) = Yo,

_ (9G/3y) (%0, Yo)

X00) = = GG ) 00 yo)
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Ay -3y _ 1

15. _—
53 AX —-3x+3y2 15

ax=4y=3
_ S P
V¥(3.7) = y(4) + B(( 03) =3+ 15( 0.3) = 2.98.

154 Let G(x,y) = x* +3xy + y* — 7. GO,y) = O impliesy = 73,
DG(0,7%/3) = 3(—73,7%/3). Since the partial derivative with respect
to yisnot 0, y can be described as a function of x around x = 0. Further-
more, y'(0) = —Gx(0, 7+%) /G,(0, 7+/3) = 771/3. Combining y(0) = 7+/3
andy/(0) = 73 yields

y(—0.1) = y(0) + 773 . (-0.1)
= 1.86066 - - -

y(0.15) = y(0) + 7-%/3 - (0.15)
=1.99134" - -,

15.5 Theimplicit calculationisasfollows: G(x, y) = y?—5xy+4x?. DG(x, y) =
(8x — By, —=5x + 2y), whichis(3,-3)ax =y = 1,s0¥y/(x) = 1.
Explicitly, the equation G(x,y) = G(1,1) has solutionsy = —4x and
y = X. The point (1,1) is on the second branch, so y(x) = x and the
derivativeisy'(x) = 1.

156 @) F(X, %, Y) = X2 —x3+y3 =0; X3 = 6,% = 3implies27+y® = 0.
So,y = —3.
b) (6F/dy)(6,3,—3) = 27 # 0; so the equation implicitly definesy as a
function of x around the point (6, 3, —3).

(9y __&F/&Xl__le__12__4
VoI FE iy T T m e ™
ﬂ63)—_‘9|:/ax2—&—£—g

Mo aF/ay 32 27 9

d) ¥(6.2,2.9) = y(6,3) — 4(0.2) + §(-0.1) = - 2.

15.7 G(x,p,w) = pf/(x) — w. The Jacobian of G is Dy pwG = (pf’(X),
f/(x), —1). By hypothesis, DG = pf”(x) < 0, so the Implicit Function
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Theorem implies that

Y G !
DepwX(p,w) = <pf (%)’ pf”(x))'
f'(%0) 1
X = Xg — Ap+ Aw.
07 b))

From the concavity assumption it follows that Dpx(p,w) > 0 and

DwXx(p,w) < 0.
15.8 a) G(x,Y,2) = x® + 3y? + 4x2 — 32y.Whenx =y =1,G(1,1,2 = 1

b)

159 a)

becomes 2 + 3 = 0, which has no real solution; so zis not defined as
afunction of x and y.

The solution to G(1,0,2) = Oisz = 0. At (1,0,0), D,G(1,0,0) = 0,
so we cannot conclude from the Implicit Function Theorem that the
equation system defines z as a function of x and y. Checking directly,
we see that the only possible solutions for z are

z—+i Ax + 3 1k 33 N
/3 4x—3y 4x—3y 4x—3y

3y.

In any neighborhood of (x,y) = (1,0) the argument of the square root
takes on negative values, so in fact z is not defined as a function of x
and y in some neighborhood of (1, 0).

The solutions to G(0.5,0,2) = O are z = +/7/4. At (0.5,0,/7/4),
0G/dz = \J7 # 0, so conclude from the Implicit Function Theorem
that the equation system defines z as afunction of x and y.

gz dG/ix _ 3*+42 5

x oG/ 8xa-3yz 27 2 (05,0.7/4)
;i; - —‘;g;?z’ _ 31? a (0.5,0,/17/4).
3x%yz + xyz2 = 30 at (1,3, 2).
g:_ﬁF/ay:_szzﬂszz__i o (13,2).

ay 9F /dx 6xyz+y2 24

X X 5 23
=X+ —Ay+ —Az=1- (02 +0= —.
X = Xg ayAy azAZ 1 24(0 2)+0 >4
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b) The equation to solve is 3yzx? + yz2x — 30 = 0. The solution has two
branches. The branch that givesthe correct value of x is

‘= —yZ2 + /Y37 + 360yz
6yz '
ax _ —Z + 0.5(y*Z + 360yz)~*/?(2yZ* + 3602)
ay 6yz
_ —yZ2 + (Y22 + 360y2)Y/?
6y2z

= —5/24,
after tedious arithmetic.

15.11 &) (fx, fy) - (G Gy) = (X Y)a(X,y) + fy(X y)gy(x,y) = Oforal (x,y).
b) If fx = gyand fy, = —gx, (fx, fy) - (Ox, 9y) = O.
15.12 a) fy = 2xe&¥ and f, = x?¢¥, s0 Vf(2,0) = (4,4) and slope = —f,/f, =
-1
b) V(2,0)/IVf(2,0) = (1/v2,1/V2).

15.13 a) Q = 60x¥/3yY/3: x = 64,y = 27.
60 - 64%/3 - 271/3 = 60 - 16 - 3 = 2880.
b) VQ(64,27) = (40x~/3y1/3,20x*3y~2/3)| ¢, . = (30,320/9). Nor-
malizing the vector to unit length gives (1,/46.52)(30, 35.55 - - -).

c) Ay = +1.5. So Ax must solve 30Ax + (320/9)(1.5) = O; thisimplies
that Ax = —16/9.

15.15 Inthe solution of (24),

aY i1 aY —bc,

oMs (1 —b) +ice ar (1 —b) +icp
a_ —a-b) a_ o m g
oMs Cz(l - b) + i1 ' ar C2(1 - b) +i10

In the solution of (37),

N 1) N LM,
-0 - 2oy -T) <
m - D % T TpaCl )=
_CHVE T
ro 12O ET) g X I Moy <o

aMms D ar Doy
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15.16 F(x,y) = x3y — zand G(x, y) = X + y? + 2. Computing derivatives,

d(F, G) _ (3x2y x3> _ (6 1)
@21 1 2y 1 4)°

A% y)

which isnonsingular.

-1 1 6 —
X ‘ 3 4‘_7 ay ‘1 3‘_ 19
9z ‘6 1‘ 23’ 9z 6 1‘ 23’
1 4 1 4

sox~1+(7/23)(0.1) = 1.03---, y=~2—(19/23)(0.1) = 1.917- - -

1517 J(F,G) au 2y —x
ax__det au,y) __det(ZU 4y+x)
ETRE IF,G) (‘y ZY_X)
det ) det( Y
4 7
_ det(z 17) _ 9
4 7\ 16
det( 4 17)
J(F,G) 2 7
x_ “auy) __de‘<—2 )
N AF.G) (—4 7)
det S det( "y ]
__20__5
9% 24
Similarly,
ady_ 24_ 1 gy _16 _1
- w2 ™ N % 6

ay ay 1 1
== + = + = = — —(—0. — —(—0. = . oo
Y= Yo auAu Av =14 4( 0.1) 6( 0.1) 4.008

P P 9 5
X = Xo + &—)JAU+ %Av: 1+ 75(-01) = 2 (~0.1) = 0.96458 - -.

15.18 We cannot. Since there are two equations, we must have two, not three,
endogenous variables.
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15.19 J(F,G) 4y B
Z_ v _ |y z‘
X d(F,G) ‘4y2v3 3xZ
a(v,2) yZ X+ 2wz
4 1
N )
4 3 3
13
J(F,G) 4 2
oz _ &(v,y):_llz_g
ay J(F,G) 4 3 9
det v, 2) 13
J(F,G) 1 3
N _ ¢9(x,z):_13:0
ax i(F,G) 4 3 '
(v, 2) 13
J(F,G) 2 3
N__ vz _ |13 38_ 1
ay d(F,G) 4 3 9 3
(v, 2) 13
JF,G) _ (4u 2v\ (4 -2 . _
15.20 o) (2u 2v) = (2 _2) has determinant —4. Yes, one can
take (u, v) as endogenous.
i Ay |7 —2:§:5
ay det /F.G) ‘4 —2‘ 4
a(u,v) 2 -2
J(F,G) 4 7
N auv) _ |2 17] 54 _ 27
ay i(F,G) ‘4 -2 4 27
®oay |2 -2

u= ug+ g—;Ayz 1+5(0.02) = 1.1,

N 27
V=\y+ a—yAy =-1+ ?(0.02) = —0.73.

15.21 a) (z+y)dx+x dy+(@2x+1—-zY%)dz=0
(y2) dx + (x2) dy + (xy) dz=0,
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or

4dx + 3dy + 6(0.1) = 0

2dx + 3dy + 6(0.1) = 0.
Subtracting yields dx = O and dy = —0.6/3 = —0.2. So, x = 3,
y =~ 18.

b) The vector x of partial derivatives of the equation system with respect
toyand zissingular.

(1 2 1)\_(1 2 1
1522 TheJacob|an|s(6Xyz 3x27 3x2y)_(12 12 12).

One cannot have x and z endogenous. If x and y are endogenous,

d(F,G) 1 2
X _ dzy _ |12 12 Y
oz det a(F,G) 1 2 '
(X, y) 12 12
JI(F,G) 1 1
Ay ___ dxz _ |12 12|
gz det J(F,G) ‘1 2 ‘ '
(X, y) 1 12

S0, X = Xg + (x/d2)Az=2—-0.25= 175,y = yp + (9y/d2)Az = 1.
If y and z are endogenous,

d(F,G) 2 1
0z _ Ay, X) :_’12 12‘:_1 &_y:o
X det d(F,G) ‘ 2 1 ‘ ' X ’
ay,2) 12 12

So,z= 7y + (9z/9x)Ax = 1 — 1(0.25) = 0.75,y = 1.

1523 a) det 2F©) —det( L2 )=det( 1 2)=—12¢o.

axy) 6xyz 3x%z 12 12
get °F-G) ‘ 1 2
b)%=— zy) _ |12 12 — ciy:o.
0z det d(F,G) ‘ 1 2 | oz
(X, y) 12 12

So, X = Xg + (0x/d)Az=2+ (-1)(2) = 1.8,y =~ 1.
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15.24 alnx + blny
X+y = 125.

Inz

x =25y=100,z=50,anda = b = 0.5.
b exogenous implies that x and y are endogenous.

a b
;dx+)—/dy+ Inydb =0

dx + dy =0.
&)l
05 0.5
——dx + — (—dx) + ) =
0.25dx 100( dx) +1n100(0.004) = 0
In100 - (0.004)

= — e . — + . ]
(05/25 — (05/100) _ 12%8  dy=+1228

S0, x = 23.77 and y = 101.228.

15.25 TakeY, C,|,andr asendogenous, withG, T, and M* exogenous. The matrix

of endogenous variablesis

1 -1 -1 O
-b 1 0 0
o 0 1 i
C1 0 0 o

which has determinant —[(1 — b)c, + i1¢,] > 0.

15.26 Taking u; to beln givesalog transformation of the Cobb-Douglasfunctional

form.

15.27 Solve (45) for x; and (46) for yy, and plug these expressionsinto (42); (44)

results.

15.28 SupposeX; > yi. Then, uj(x1) < uj(y1) sinceu; < 0,and a/(1 — a) > p
by (41). Then, by (43) uj(x2) < uj(y2) and x; > y,. We cannot have
Xg > Y1, X > Yo, and X; + X = y; + ¥, = 1. A similar argument shows
that x; < y; leads to a contradiction. We conclude x; = y; and X, = V.
Then, uj(x1) = uj(y1) and p = a/(1 — «). Findly, p = /(1 — @), and
g=e =1landx; = y1in(42) imply x; = y1 = «; (45) and (46) imply

X2=y2=1—a.
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1530 R, = R, = 1and D = 1in (53).

e _ o P
g de | o d&y
15.31
@ v —u@)
1 1 1-«
oWl —lf‘aug(l— @) —uy(l-a)
au!(a) al!(a)
B u;l(a) ugl(a) ~(1-a)
a l-«a (1-)?
(1-0u(l-a) (-oul-o  (@1- a)?
uy(l-a) u(l-a) a
ri(e) —r(e) -(1-«
a l-«a (1- w)?
- - -2

_aui’(a)
(s;;):( uug)del).
dp 0
dX2 rl(a)del
dy2 = 0 .
(3)-("F)

The determinant of the matrix isstill D = Ry(1 — a)?/a + Ry(1 — ).

For example,
P _RR M _ R(A-R)I1- @)
ey D ey D '
15.33 Thesystemisx? — y? = a, 2xy = b.
x=B implies x2=b—2'
2y P 4y2’
S0 b?/4y* —y* =a and 4y* + 4ay?> — b> = 0.
Therefore,
V- _daxyl162? + 1602  a*a?+b?
8 2 '
[(82 + 1?2 — a
0, y=tq|——F
2
x2=a+y2=a—gt%\/a2+b2,
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N (@2 +b)¥2 +a
* > :

Since xy must equal b/2, there are two preimages for each (a, b) # (0, 0).

15.34 If F is one-to-one, then for any b thereis at most one x with F(x) = b, so
thereisno other z # x with F(z) = F(x). Thus, F(z) = F(X) implesz = x.

15.35 Let F : R — R beaC? function with F(x*) = y*. If F/(x*) # 0, thereis
aninterva (X —r,x* +r)and aninterval (y* — s, y" + ) suchthat F is
aone-to-one map from (X* — rq, X* +r)to (Y — so, Y* + S1).

Thenatural map F~1 @ (y* — 50, ¥ + ) — (X* — ry, x* +r)isC?, and

1
(dF/dx)(x*)

aFt
dy )=

Y
ex 1
al (x,y). By Theorem 15.9, F is everywhere locally invertible.

15.36 DF(x,y) = (_ ) has determinant 1 + €%, which is positive for

15.37 f/(t) = (- sint, cost) is never (0, 0). By Theorem 15.8b, f islocally one-
to-one. But f(0) = f(27) = f(4m); that is, f isnot globally one-to-one.

—&¥sinx & cosx

e¥cosx esinx
cos®x) = —¢&¥ # Oforadl (x,y). By Theorem 15.9, F iseverywherelocally
one-to-one and onto. But F(x + 2m7n,y) = F(x,y) for al (x,y) and all
integers n, so F is not globally one-to-one.

15.38 DF(x,y) = ( ) with determinant = —eY(sinx +

15.39 f/(x) = € # 0. By Theorem 15.9, f islocally one-to-one and onto. But f
itself can take on no negative values.

Chapter 16

16.1 a) The Leading Principal Minors (LPMs) are 2, 1; positive definite.
b) The LPMsare —3, —1, indefinite.
¢) TheLPMsare —3, 2; negative definite.
d) TheLPMsare 2,0. All principal minors = 0O; positive semidefinite.
e) TheLPMsare 1,0, —25; indefinite.
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f) The LPMs are —1,0,0. All 1 X 1 principal minors = 0. All 2 X 2
principal minors = 0; negative semidefinite.

g) Thefirst three LPMsare 1, 2, —10; indefinite.

16.2 Supposex'Ax > Oforalx # 0.Forx = ¢ = (0,...,0,1,0,...), ' Ag =
ai > 0. If A is positive semidefinite, we must have a; = e Ag = 0.
Similarly, if A is negative definite, then each a; < 0, and if A is negative
semidefinite, then each a; =< 0. Parts b, e, and g in the previous exercise
show that these conditions are not sufficient.

16.3 For A positive definite, x"Ax > 0 for al x # 0. Fix indices iq,..., ik,
say 1,...,k. Then, for al nonzero x such that X¢4; = - = X3 = 0,
xTAx > 0. This means that the top leftmost k X k submatrix of A must be
positive definite.

16.4 How many different ways can one choose k items from alist of n?

ny n!
k]  ki(n—K!

1 app a3 X1
165 (x4 % x)|an an axm || %
3 a3 am X3

= alle + 2312X1X2 + 2a13X1X3 + 2a23X2X3 + azzxg + aggxg
2a 2a
= an (X% + a_lleXZ + a—BX1X3) + 2ay3XoX3 + azgxg + a33x§
11 11

2 2 2
a a a 2ap,a
13 X ) 12 X2 13 X% 1243

= a (Xl + aw X2 +
= P 2
an an an

XoX3
an aig

+ 2&23X2X3 + a22X§ + 333X§

2 2
a a ajpagy — &
= an (Xl + a2 Xo + a3 X3) + %2 %12 2 12 X%
agq an ajgl

2(a183 — appa ajags — a2
+ (811823 — A128413) Yoxs - [ 2188~ 813 ) o
an an

2
a a
= an (Xl + A2 Xo + o3 X3)
a ann

5 2
a1am — ay1893 — apod: 1893 — Apa
4 [ P82 — 8 X+ 2 11823 122 13 ) yoxg + [ 2152 122 13 2
an apiaxp — ag, 1 — ag,
ajas — @2, (A3 — A12d43)?
i 13 _ (81183 — 810213)" | »
an (an1@ — a%z)all
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2
2 2
a a ayjapy — & aj1803 — 8108
—ay (Xl IV Xa) p(Butz A )|, | (Buds 12803 ) o,
agg ajg ajg anaxp — ap

1

2
(211923 — a12a43) 2
- s — otis) |2
aaxp — afz

[(311333 - a%g)(anazz - a%z) -
an

2 2
a a A aj183 — apa A

_ |,,_\l|(xlJr 2, 13X3) 4 |Aa| (x2+ 11823 — @12 13x3) 1Asl o
aiy aig [Aql [Ag|

If |Aql, |A2l, and |Agl > O, xTAx > Ofor al x # O.
If |A1] <O, Ay >0, and|As] <0, xTAx < Oforall x # 0.

0 1 1
_ n=2m=1]Al=2>0;
166 a) A= 1 negative definite.
-1
0 1 1
_ n=2m=11]A=-1<0;
b) A= 1 1 positive definite.
1 1 -1
0
0 o0 -
n=3m=2,
c) A= ) |Al = 16 > 0;
11 = 1 -1 2 positive definite.
1 1 -1 1
1 -1 2 0 -1
0 o0 1 1
0 o0 1 -1
n=3m=2,
d) A= . |Al = 16 > 0,
1 1= 1 -1 positive definite.
1 -1 1
-1 2
0 1 1 -1
_ : n=3m=1, Al =4,
9A=] 1 12 =3 |A| = 3: indefinite.
2 0 0
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16.7 Writetheleading principal minorsof Hy+masHsq, Ho, . .., Hhem. According
to Theorem 16.4, we look at the signs of the last n — mminors:

Hn+m, Hhem-1, Hpem-2, - -+ Hn+m—(n—m)+1 = Hom+1.
The patterns are for n variables and m constraints:

Negative Definite  Positive Definite

Hn+m (_1)n (_1)m
Hn+m-1 (—pnt (—nm
Homez  (—1)™2 (—m
Hom<1 (—ymt =™

We see that thisis the same pattern as:

Negative definite iff signHoy: 1 = sign(—1)™** and signs alternate.

Positive definite iff signHom1 = sign(—1)™ and al signsthe same.

16.8 To change the matricesin Example 8 to those in Example 7, first move the
rows up and then the columns across. For every movement of the rowsthere
is a corresponding movement of the columns. At the end there are an even
number of row and column interchanges, so the determinant is unchanged.

16.9 Maximize Q(Xy, Xo, X3) = &q1X2 + appX3 + AgX2 + 212X + 2813%1 X3 +
2853%o3 SUb]eCt tobyx; + boXo + baxs = 0.

X = = (%xz + %Xg).

b, by \? 2 2
Q=apn (b—x2 + b—x3 + X5 + agaX3 + 2a3XX3
1 1

— 2ap (%—Xg + l%Xg) Xo — 2813 (%Xz + l%Xg) X3

bfazz—Zalzblszranb% au bz —aphs—agshy +aghy
= (% X3) ( )

1 by

X2
ay1bybz—aib3—aishy +assh, agab? —2a3b; b3 +24103 ( X3 ) '
L b7

Thefirst leading principal minor A; of this2 X 2 matrix is

1 ) ) 1 0 bl b2
E(a22bl — 2abmby + a1103) = v det|{ by ayn ap |.
1 1 b, ap ax
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The second leading principal minor A; is
1 2 2 2 o 1
2 (a2b1 — 2ayobi b, + a1105)(agsbt — 2a43bibs + a4403) - 2
1 1

— (a11bpbs — apbs — aizhy + az3b1)2]

0 by by bs
1 by an ap as

- -1 dat
b2 by a;p axp ax

bs a3 axp as

For a constrained max (negative definite), we want A, < 0 and A, > 0.
Thisis the same as Hz > 0 and H4 < O for the original 4 X 4 bordered
Hessian, as Theorem 16.4 states.

16.10 I OnY (A On)(1n Ajla
A" 1 /J\o d/J\of 1

_ |nAn 0n |n ArT 1a

(s, @) 2°)
An AAta )

alAIA, (Arta)TANA la + d

Y2 )

An+1n+l

becaused = ani1n+1 — A A, Al

16.11 Again, we useinduction on n. We suppose that thetheoremistruefor nxX n
matrices and proveit for (n + 1) X (n + 1) matrices. Let Ay, Ay, ..., Ant1
bethe leading principal submatricesof (n+ 1) X (n+ 1) matrix A. Suppose
|A1] <O, |As] > 0,....Bytheinductive hypothesis, A, is negative definite
on R". Partition A asin (17) and write it as A = Q'BQ as in (18). For

any (n + 1) vector z = (XX ) Z'Bz = x"Ax + dx2,,. Since d =
n+1

detA,.1/detA, by (19),d < 0. So, z'Bz < Ofor al z # 0in R""%,
Therefore, B is negative definite. By Lemma 16.2, A is negative definite
too.

To provethe converse, assumeit truefor n X n matrices. A negative definite

i
—> detAj hassign (=1)! for j = 1,...,n. Since 0 > (é) AG) B
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xTAX, A, is negative definite and det A, has sign (—1)". As in (19),
det An+1 = detA,-d. Asin(20), d < Oif Aisnegative definite. Therefore,
det Ay, 1 hassign (—1)"*2.

17.1 a) f(x,y) = xy? + x3y — xy.

fy =y +3%y—y=yy+3x*-1andfy =2xy +x3 —x =
X(2y + x2 — 1).

Casel:x=0,y=0.

Case2: x =0,y + 3x> — 1 = 0; that is, (x,y) = (0, 1).

Case3:Ify = 0and2y+x?>—1 = 0,thenx? = 1andso(x,y) = (1,0)
or (—1,0).

Cased: Ify+3x* —1=0and2y+x>*—1=0,then3x®> =1—y
and3x> = 3—6y,s0 1 —y = 3 — 6y. Therefore, y = 2/5 and
x2=(1-vY)/3=1/550x = +1/4/5.

Six critical points: (0, 0), (0,1), (1,0), (—1,0),

(+1/+/5,.2/5), (-1/4/5,2/5).

s _ 6xy 2y+3x2—1
HanH_<2y+3x2—1 2x )
At (0,0), H = (_2 _é) which isindefinite, so (0, 0) is asaddle.
At (0,1), H = (Cl’ é) which is indefinite, so (0, 1) is asaddle.
0 2 L .
At(1,0),H = (2 0) which isindefinite, so (1,0) isasaddle.
0 2 S .
At(—1,0),H = (2 _2)Whlchlsmdefmlte,so(—l, 0) isasaddle.

1 2 _ (12/5/5 2/5) L .
At (\@ 5), H = ( 2/5 2/5 which is positive definite, so

1 2
—, = | isaloca min.

(%)

12\, _(-12/5/5 2/5).. . -
At( NG 5),H = ( 2/5 —2/J5 whichisnegativedefinite,
S0 —ig isalocal max.

55
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b)

0)

d)

f(x,y) = x? — 6xy + 2y? + 10x + 2y — 5.
fx =2x—6y+10and fy = —6x + 4y + 2.
Critical point: (13/7,16/7).

2 —6
6 4

f(x,y) = x* + x2 — 6xy + 3y°.
fy = 4x3 + 2x — 6y and f, = —6x + 6y.

Hessian: ( B ) which isindefinite, so the point is a saddle.

f, = Oimpliesx = y. Then, fy = 0 implies 4x® = 4x. Therefore
x3=x,s0x = *+1,0.
Three critical points. (—1, —1),(0,0), (1, 1).

o (12x*+2 -6
Hessian: H = ( 6 6 )
14 -6 o - - .
H(—-1,-1) = (—6 6) which is positive definite, so (—1, —1) isa
local min.

14 -6 L . - .
H(1,1) = 6 6 which is positive definite, so (1, 1) is a local
min.

H(0,0) = (_g _2) which isindefinite, so (0, 0) is a saddle.

f(x,y) = 3x* + 3x%y — y°.
fy = 12x3 + 6xy and fy = 3x% — 3y2.

fy = Oimpliesx = xy. fy(x,X) = 12x3 + 6x% = 6x%(2x + 1) implies
x=0,-1/2

f(+X%, —X) = 12x3 — 6x%2 = 6x%(2x — 1) impliesx = 0,1/2.
Critical points: (0,0),(—1/2,—-1/2),(1/2,—-1/2).

36x2 + 6y  6X )

Hessian: H = ( 6x 6y

H(0,0) = (8 8) which isindeterminate, butf (0,y) = —y?, so (0, 0)
is neither amax nor amin.

H(=1/2,-1/2) = ( _g _g) which is positive definite, so

(=1/2,—1/2) isalocal min.

H(1/2,~1/2) = (g g)whichispositivedefinite,50(1/2, —1/2)is

alocal min.
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17.2 a)

b)

fk=2x+6y+6,fy=6x+2y—3z+ 17, andf, = -3y + 82— 2.

fy = fy = f, = Oimplies(x,y,2) = (—369/137, —14/137,29/137).
2 6 O

Hessann H = | 6 2 —3 | which isindefinite, so the point is a

0O -3 8
saddle.

fy = 2xe ¢+ +?) 1 (x2 4 2y2 + 372)(—2x) e K HYHD),

fy = dye CHY+D) 4 (2 + 242 + 32)(—2y) e K +V D),

f, = 62e O*TYH2) 4 (x2 4 2y2 + 372)(—22) e YD),

f, = 0implies2x(x® + 2y? + 32 — 1) = 0.

fy = Oimplies 2y(x? + 2y* + 322 — 2) = 0.

f, = 0implies2z(x® + 2y? + 322 — 3) = 0.

Casel:x=y=2z2=0.

Case2: x2+2y*+32 = 1landy = z= 0impliesx = =1. S0, (1,0, 0)
and (—1,0,0).

Case3: x> +2y?+ 32 = 2andx = z= Oimpliesy = +1. So, (0, 1,0)
and (0, —1,0).

Case4: x?+2y’+ 372 = 3andx = y = Oimpliesz = +1. S0, (0,0, 1)
and (0,0, —1).

Hessian:
2A[(1 — B) — 2x3(2 — B)] —4xyA(3 — B) —4xzA(4 — B)
H= ( —4xyA(3 — B) 2A[(2 — B) — 2y%(4 — B)] —4yzA(5 — B) ) ,
—4xzA(4 — B) —4yzA(5 — B) 2A[(3 — B) — 222(6 — B)]

where A = exp(—(X° + y? + ) and B = x2 + 2y? + 37

2 00 . - -
HO,00=Al0 4 0 wh|ch|§post|ved§f|n|te,so
00 6 (0,0,0) isaloca min,

4 00 ) which is indefinite, so

—_ a1
H(*1.0,0 =e 8 é 2 (+1,0,0) are saddles,

— a1 —
H(O +1,0) = e 8 g g (0, %1, 0) are saddles,

-4 0 0) which is negative

-2 0 0) which isindefinite, o

H@O,0,x1)=el| 0 -2 0 definite, so (0,0, +1)
0 0 —-12 are local maxes.
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17.3 a) Atlocal max (—1/+/5,2/5), f(~1/+/5,2/5) = 0.07155- - -.
Atlocal min (1/+/5,2/5), f(1/+/5,2/5) = —0.07155.
But f(1,1) = 1and f(—1,1) = —1. So, neither isglabal.

b) (0,0,0) isagloba minimum.
(0,0, =1) are global maxima.

2 —
c) H(xy) = ( 12x Jr_é g) has determinant equal to 72x? — 24, which

is= 0for x2 > 1/3.
So, f is convex on the open sets{(x,y) : X = 1/4/3} = Aand {(X, y) :

x < —1/4/3} = B.
f(1,1) = —lisagloba minon A and f(—1,—1) = —1lisagloba
max on B.

17.4 TI(x,y) = x¥4yY4 — 4(x + y).
I, = %X73/4yl/4 —4=0, Hy — %X1/4y73/4 —4=0.
X“S/AYL/A fx1/Ay3/4 = 4/4 = 1, 0ry = x = 1/256.

o _%X—7/4yl/4 %X—3/4y—3/4
%3 x~3/4y=3/4  _ % x/Ay-1/4 |-
3 7/a1/4
[Hi| = TR <0,
o foral (x,y) € R, ;.
|H2| = 2—56X76/4y76/4 > 0
17.5 TI(x,y) = px@y® — wx — ry.
Iy = pax® 1y? —w = 0, I, = pbx®y* 1 —r = 0.

pax®ty® _ w
pbxayb-1 — t

Plug thisinto Il = 0to solvefor x (and then y).

H = pa(a— 1)x22y*  pabx¥ lyP?
B ( pabx3~1y*~1  pb(b — 1)Xayb_2>'

N bw
implies —;

X <

Hil = pa(a — 1)x@ 2% < Oif and only if 0 < a < 1. |[Hp =
p?[a(a — 1)b(b — 1) — a?b?]x?a2y?=2 > 0/if and only if ab[(a — 1)(b —
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1)—ab]=ab[l-(a+b)]>01f0<a<l0<b<lada+b<i,
the solution to the first order conditionsis a global max.

17.6 Maximize F(0y, 02) = 0u(10 — d1) + 02(16 — 0p) — (10 + (a1 + G2)?)
= 100, — 0 + 160, — g5 — 10 — (01 + ).

Fu =10—20 —2(on + 92) =0 or 4qg; + 20 = 10,

Fo, =16 — 20, — 2(0; + ) =0 or 2q; + 4q, = 16.
g =11/3andq; = 2/3;p, = 16—-11/3 = 37/3andp, = 10— 2/3 =
28/3.

IT = (2/3)(28/3) + (11/3)(37/3) — 10 — (13/3)> = 204/9 = 68/3 =
222,

0 if p= 16,
17.7 The market demand functionisq =1 16 — p if 10 = p = 16,
26—-2p if0=p=10.

Work first withqg = 26 — 2por p = %(26—q) ontheinterval 0 = p = 10.
IT = 20(26 — q) — (10 + ¢?) = 139 — 3¢? — 10.

I’ =13-3q = 0impliesq= £ =41 sop=1(212) > 10.

This answer is not compatiblewith 0 = p = 10.

Work withg = 16 — por p = 16 — gontheinterval 10 =< p < 16.

IT = q(16 — g) — 10 — ¢? = 16q — 202

I’ =16 — 49 = Oimpliesq = 4,0 p = 12 € [10, 16].
I[1=12-4—10—4>=48—-10—-16 = 22.

178 S x =153y =153 %y =653 %2 =71,n=4.

,_465-15-15 35 . 71-15-15-65 _ 90
4-71-152 59’ 71-4-15-15 59’

_3% .0
Y= 5% 5o

17.9 a) 0= (a— b)? = a®> — 2ab + b? implies 2ab = &% + b”.
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b) O+ X)) =0+ G+ ) 2%

i<j

=X+ G+ D () + )

i<j
=X+ AR+ D+ + D)
=n(é + - +x)).
2 .
¢) The Hessian for (12) 'S(Zz)iq Z’?})
Hi=Yx*=0.Hy = n(3 x?) — (in)2 = 0, by part b. H is positive

definite, so (m*, b*) isaglobal min.

17.10 H, = Oimplieseach 2xx; = x? + x?, so each x; = x;. All pointslie on the
same vertical line.

17.11 S= (A% +By; + C—2)?+ - + (A%, + By, + C — 7))
S
(TA—ZZ(AxHrByiJrC—zi)-x;—O
S
%ZZZ(Axi+Byi+C—zi)~y.=0
i
S
aczZZ(Axi+Byi+C—zi)~l=0

( )A+ > %y B+(in)C=inizi
(Sx)as (£9) e+ (Ew)c = Sva
(Sx)a+ () 8¢ nc-¥a

XWXy Y X%y

1712 m* = , = .
X2 — X2 X2 — %2
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Chapter 18

18.1 (0, ++/3) isaloca minimum, and (0, —+/3) isalocal maximum. Neither is
aglobal maximum or minimum. See figure.

18.2 The problemis
max X2+ y?
subjectto  x? + xy + y? = 3.

The Lagrangian isL = x? + y> — A(X? + xy + y?> — 3). The first order
conditions are

Ly =2x—2\x—Ay =0
Ly=2y—Ax—-2\y=0
Ly=—(¢+xy+y>—3)=0.

There are four solutions:

(—/3.4/3,2)
(X, Y, )\) — (\/év _\/év 2)

1,1,2/3)

(-1,-1,2/3)

The NDCQ holds at all four solutions. Clearly the first two solutions are
maxima and the second two are minima.

183 max  (2— %)%+ (1 - y)?
subjectto x> —y=0.
The Lagrangianis
L=2-x2+1-y)?— Ary—x3.
Thefirst order conditions are

Ly =—-22—-x)+2\x=0
Ly=—21-y)—A=0
La=y—x*=0.
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Solving for A and substituting gives 2x> — x — 2 = 0. Thus x =~ 1.165,
andsoy = x2 = 1.357. Finaly V(y — x?) = (—2x,1) # (0,0) so NDCQ
holds.

18.4 The location and type of the critical points are independent of k > 0, so
assume without loss of generality that k = 1.

max x4x3 @

subjectto  (p1X1 + pax2 — 1) = 0.
The Lagrangianis

L = x§x5 2 — A(poXxa + p2Xe — 1).

The first order conditions are

Ly =aq ™G = Apy = 0

Ly, = (1 —a)xix2—Ap, =0

Ly =pixs + pxo — 1 =0.
The solutionis
al 1-a)l
X, = — Xp = .
' P1 2 P2

Since the constraint is linear, NDCQ holds.

185 min X%+ y? + 72
subjectto 3x+y+z=5
Xx+y+z=1
The Lagrangianis
L=xX+y+Z—-MBx+y+z—5)— A(x+yz—1).
Thefirst order conditions are
Ly=2X—3A1 — A =0
Ly=2y—)\1—)\220
L,=2z— A — A =0
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18.6

18.7

Ly, =3+y+z-5=0
Ly, =X+y+z—-1=0.

Thislinear system of five equationsin five unknowns has a unique solution:
(2, —1/2, —1/2). The Jacobian of the constrai ntsis(i 1 i) whichhas
rank 2, and so the NDCQ holds.

Substitute y = 0 into all the equations.
max (min) x+ 7
subjectto X* + Z = 1.
The Lagrangianis
L=x+Z-A+Z-1)
and thefirst order conditions are

Ly=1-2xx=0
L,=2z2—-A2z2=(1—-)MN)2z=0
LLh=x*+Z-1=0.

There are four solutions:

(1/2,0,4/3/2,1)
(1/2,0,—+/3/2,1)
(1,0,0,1/2) '
(-1,0,0,-1/2)

X ¥,z A) =

A check shows that the first two correspond to local maximawith avalue
of 5/4, the third to a critical point with avalue of 1, and the last to alocal
minimum with avalue of —1.

Substitute the constraint xz = 3 into the objective function:

max 3+ yz
subjectto y? + 2 = 1.

The Lagrangianis

L=3+yz—A(Y> + 2 —1).
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The first order conditions are

Ly=z—-2\xy =0
L,=y—2z=0
La=y*+Z-1=0.
The solutions are the four (y,2) pairs such that y = +1/y2 and z =

+1/+/2. For amaximum, y and zmust have the same sign, so the solutions

are (3v2,1/+/2,1/4/2) and (=32, —1/+/2, —1/+/2). The value of the

maximand in each caseis 7/2, and NDCQ holds.

18.8 Suppose there are n variables and m constraints. The Jacobian of the con-

straintsis
Xy IXn
X1 IXn

This matrix can have rank monly if m = n.

18.9 A simple substitution makes this much easier. Let X = x2, Y = y? and
Z = 72. The maximization problem is now

max XYZ
subjectto X +Y +Z=¢?

together with inequality constraints X = 0, Y = 0 and Z = 0, which we
will ignore for the moment. Thisisafamiliar problem. The Lagrangianis

L=XYZ-AX+Y +Z-07D).
Thefirst order conditions are

Lx=YZ-A=0
Ly=XZ—-A=0
Lz=XY—-A=0
Li=X+Y+Z-c&=0

The solution is

X
[
<
[
N
[
w| R
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and we see that the inequality constraints are never binding. Going back to
the original problem, the solution is

c
NE
The value of the objective function at its maximum is (¢%/3)3, so

3 X2 +y?+ 7 3
e (£1057)

for al (x,y, 2) in the constraint set. Ranging over al values of c,

(PR = (7"2 Ly 22) .

18.10 The Lagrangianis
L=x2+y?>—A2X+Yy—2)+ X+ my.
Thefirst order conditions are

Ly=2x—2A2+1. =0
Ly=2y—A+1,=0
A2x+y—-—2)=0
nx=20
wy =20
n=0 wm=0 AI=0.
Solve by enumerating cases. Is there a solution with x = 0? If so, then
vp =22 andy = 2. Ify=2thenv, = 0,0\ = 4and v, = 8,
which is consistent with the FOCs. This is a solution. Is there a solution
withy = 0?1f so,thenv, = Aandx = L If x = 1, thenv; = 0, SO
A = land v; = 1, which is consistent with the FOCs. Thisis a solution.
X =Yy = =1 =)A= 0isasolution. If neither x nor y are 0, then
vy = v = 0.Thenx = 4/5and so y = 2/5. Thisis consistent. Among

these four points the global maximum occurs at (0, 2) and the value of f
is4.

18.11 The Lagrangianis

L=2y>—x— AP+ Y — 1) + X + wy.



ANSWERS PAMPHLET

93

Thefirst order conditions are
Ly=—-1-2\X+»v =0
Ly=4y—-20y+ 1, =0
AP +yY—1)=0
mx=20
ny = 0
mn=0 =0 A=0.
The only solution to the first order conditionsis
x=0 y=1 »=1 =0 A=2

so theoptimumisx = Oandy = 1, and thevalueof f is2.

18.12 a) Theproblemis

max Xxyz+z
subjectto x> +y>+2z=6
x=0,y=0,z=0.
The first order conditions are

Lx =yz—2Ax+ v =0
Ly=x2—2xy+ v, =0
L=xy+1—-A+wv3=0

AP +y+2z-6)=0

mx =20
V2y=0
1rz=0

b) Thereis no solution to the first order conditions with A = 0O, because
A = 0impliesxy + 1 + v3 = 0, and this eguation has no nonnegative
solution. Since A > 0, the constraint must be binding at every solution

to the first order conditions.

) If x=0,then v, = 2Ay. Since A > 0, v,y = 2Ay? = Oimpliesy = 0

and v, = 0. Thereforez=6,v, = 0,v3 = A — 1, and A = 1L
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d) If x > 0,then v, = 0soyz = 2Ax. Since A > 0, y and z are both
positive, so v, and v3 are both 0. Thus four equationsin four unknowns
arethefirst order conditionsfor Ly, Ly and L, and the constraint equality:

yz—2Ax =10
x2—2\y =0
xy+1—A=0

X2+ y?*+z=6.
Solving for A and substituting gives the equation system

—2X—2X°y+yz=10
—2y—2xy* +x2=0

X +y+z=6.

€) Thisequation system has only one solution that satisfies all the nonneg-
aivity constraints: x = 1,y = 1,andz= 4. Then A = 2.

18.13 The Lagrangianis
L = U(Xg, %) — A(p1Xs + paXo — 1) + viXg + voXo.
Thefirst order conditions include

Lx

1

:le_)\pl+V1:O
|_X2 :sz_)\p2+V2:O
A(piXy + p2xz — 1) = 0.

If A = 0, then Uy, + » = 0 hasto have a nonnegative solution, and thisis
impossible if at every (X, X2) = 0 at least one of the Uy, exceeds 0. Thus
A >0,%0pix; + pxo = 1.

At most one nonnegativity constraint can bind because the origin cannot
solve the first order conditions (since A > 0). Thus there are at most
two binding constraints: The budget constraint and one of the inequality
congtraints. If oneinequality constraint binds, the budget-constraint row of
the matrix of derivatives of the binding constraints has two nonzero entries,
and the row corresponding to the inequality constraint has one 0 and one
1, so the matrix is nonsingular. If only the budget constraint binds, the
positivity of any one price guarantees that the matrix (now 1 by 2) hasfull
rank. In either case NDCQ holds.



ANSWERS PAMPHLET 95

18.14 Assumethat the p; are adl positive. The Lagrangianis
L =xyz— A(pX + pay + p3z — 1) + AoX + Agy + AyZ
Thefirst order conditions are

Lx =yz=Ap1 +A2=0

Ly =Xxz—A1p2+A3=0

Lo=xy—AMp3s+ A =0
Ar(PiX + p2y + psz— 1) =0

Ax =0
A3y =0
Mz=0
A =0 fordli.

One set of solutions has any two of x, y and z equal to 0 and the remaining
variable taking on any value in the unit interval. For these solutions A; = 0
for all i and the value of the objective function is 0. These are the only
solutionswith A; = 0.

If Ay > 0, then the principal constraint binds, and so at least one of X, y
and z must be positive. Suppose, for instance, that x > 0, then A, = 0 so
yz = Ap; # 0,andbothyandzarepositive. ThusA, = Az = A4 = 0.From
here it is easy to show that the only solution with A; > 0 has x = |/pq,
y = |/p» and z = | /ps. At this point the objective function is positive, and
0 it must be the maximum. Finally, A, = 12/9p1p.pa.

18.15 The Lagrangianis
L =3xy— x> — w@x—y+5) — A(=5x — 2y + 37) + v1X + wy.
Thefirst order conditions are

Lx=3y—-3¢—-2u+5\+1v =0
Ly=3x+up+20+v, =0
A(—=5x—2y+37)=0

nx=0
wy =20
2X—y+5=0

A1, Ve, XY, Bx+2y—37 adl =0
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If either x or y are O, the equality constraint and the inequality constraint
cannot simultaneoudly be satisfied. Thusv; = v, = 0.

If the inequality constraint is binding, then solving it and the inequality
congtraint give x = 3and y = 11. From the first order conditionsLy = 0
and Ly = Oit can be seenthat A < 0O, so there can be no such solution to
the first order conditions. Consequently A = 0.

After substituting all the known muiltipliers, the remaining variables can be
solved for: x = 5,y = 15and . = —15.

18.16 The Jacobian matrix of the binding constraints at (1, 0) is

(6 )

which isnon-singular.

18.17 The Lagrangianis
L=x2—2y—A(—X*—y?+ 1) — v1x — wy.
Thefirst order conditions are
Ly =2X+2\x—v, =0
Ly=—2+2\y—1,=0
AC+Yy—1)=0
mx =0
wy =20
Aoy, V2, XY, 1- X2 — y2 = 0.

If A =0o0ry =0, then », <0, soinany solution A > 0,y > 0 and
v, = 0. Multiplying the L, = 0 condition by x gives 2x?(1 + ) = 0, S0
X = 0, and consequently y = 1. ThenA = 1and »; = 0.

18.18 The Lagrangianis
L = 2x%+2y? — 2xy—9y— A1 (—4x—3y+10) — Ap(y—4x2 +2) — v1X— voY.
The first order conditions are

Ly = 4X— 2y + 4\ + 8)oX — A3 = 0
Ly=4y_2X—9+3)\1_)\2—)\4:0
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18.19

18.20

M(—4x—3y+10) =0
oy — 4% +2)=0
A3x =0

Agy = 0.

Supposethat x = y = 0. Thefirst order conditionsimply A, = A, = 0,and
so Az = 0and A4, = —9, which contradicts the requirement that A4, = 0.
Next supposethat X >y = 0. Then A3 = 0, and SO X + A; + 2A,x = 0.
Hence at least one of A; and A, must be negative, which contradicts the
requirement that all multipliers be nonnegative. Next supposethaty > x =
0. Then A4 = A, = 0. Conclude from the first equation that A; > 0 (else
Az < 0, whichisacontradiction). Thusy = 10/3 and the second equation
implies that A\; < 0, which is a contradiction. So the only solutions have
x> 0andy > 0.

Suppose X,y > 0. Then A3 = A4 = 0. Suppose A; > 0and A, > 0. Then
4x+3y =10andy — 4x> = 2. Thus3x? + x —4 =0, andso x = 1
andy = 2. Then Ay + 2\, = 0. Since the multipliers are nonnegative,
A1 = A, = Owhichisacontradiction. Suppose A; = 0and A, > 0. Then
the first order conditions lead to the equation —16x2 + 2x + 17 + A, = 0.
This equation has no nonnegative root, which contradicts a nonnegativity
constraint. Suppose that A; = A, = 0. Then x = 3/2andy = 3isthe
only solution to the first two first order conditions. But this violates the
constraint y — 4x% = —2.

Supposethat A; > 0and A, = 0. Thefirst order conditions have a solution
with x = 28/37,y = 86/37 and A, = 15/37.

Let (x*,y*) beaminimizer of f ontheset g(x,y) = bwhereg(x*,y*) = b.
Then Vg(x*, y*) points onto the constraint set since it points into region of
higher g-values. Since (x*, y*) minimizes f ontheconstraint set, f increases
asonemovesintotheconstraint set. So, V f (x*, y*) pointsinto the constraint
set, too. Vg(x*, y*) and V f (x*, y*) point along the same line and both point
into the constraint set. So, they point in the same directions.

More rigoroudly, if NDCQ holds, Vg(x*,y*) - h > 0 implies V f (x*, y*) -
h = 0. Write VI (X", y") = Vg(X*,y*) + w, where w - Vg(x*,y*) = 0.
If w # 0, then the system Vg(x*,y")-h = Oand w-h < 0 has a
solution, so Vf(x*,y") - h < 0. Perturbing a solution gives an h such
that Vg(x*,y*) - h > 0and Vf(x*,y") - h < 0, which is a contradiction.
Consequently w = 0. If A < 0, again Vg(x*, y*) - h > 0 and again implies
V(X ¥) - h < 0, whichisacontradiction.

For simplicity of notation, suppose that the first h inequality constraints
(the g; constraints) and the first j nonnegativity constraints are the binding
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constraints. Then NDCQ requires that

oL, Y Y ..
Xy 129 IXj+1 Xn
dh ... P G ...
Xq 129 IXj+1 Xn
1 .o 0 0 .o 0
0 0 0 0
0 ‘e 1 0 ‘e 0

hasrank h+j. Thelast j rowsarelinearly independent. Theentire collection
of rowswill belinearly independent if and only if the upper right submatrix
has full rank. Thisisthe condition of Theorem 18.7.

18.21 min f(x)
subjectto  ga(x) = by,

Ok(X) = b
x=0.
The Lagrangianis
L= f(x) = A1(0a(X) = b1) = - = - = A(Gk(X) — by).

Equations (40) becomesfori = 1,...,n,

aL L

— = 0, =

X 0%

andforj =1,...,k,

JL JL

— = i— =0.
IA; 0 A 2 0

Chapter 19
19.1 a) L=x2+y>—A(x®+xy+y>—33)

Ly =2x—A(2X+y)=0
Ly=2y—A(x+2y)=0
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A= 2X B 2y
S @2x+y) (x+2y)

Consequently x = *y. The solutions to the first order conditions are

x,y) = (11, —/1.D) withA = 2/3and (x,y) = *(/3.3, —+/3.3)
with A = 2. Min square of distanceis 1.1 + 1.1 = 2.2; Max square of
distanceis3.3 + 3.3 = 6.6.

b) Using Theorem 19.1 and Exercise 18.2,

V(3.3) = V(3) + A*(0.3)
—2+(2/303 =22
or V(3.3) = 6+ 2(3) — 6.6,

the exact same answersasin a.

19.2 a) V(.8) = V(1) + A*(—.2) = 5/4+ 1(—.2) = 1.05.
b) Using the method of Exercise 18.6,

Ly=1-2\x=0,
Ly=1-2\y—un =0,

L,=(1—-\)2z=0.
A=1=—x=1/2,y=0,2= 08— 0.25 = 055,z= /055
X*+y+2Z=05+0+055=105 asina

19.3 a) L = 50xY2y? — XA (x + y — 80).
Ly = 25x Y2y =\ =0,
Ly = 100x¥2y — \ = 0.

Dividing,
Ix/y=1 = y=4x
= x =16, y= 64, Q = 819,200, A = 25,600.

b) Q*(79) = Q*(80) + A*(—1) = 819,200 — 25,600 = 793,600.
c) Asina,y = 4x.5x = 79 = x = 15.8, y = 63.2.

Q = 50 (15.8)/2(63.2)2 = 793,839.5.

AQ = —25360.5.
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19.4 £%(0.9) = f*(1) + A*(—0.1) = 2+ 2(—0.1) = 1.8.
195 f*(6.2) = f*(6) + A*(0.2) = 8 + 2(0.2) = 8.4.
19.6 Seeequations (19.30) and (19.31), or Theorem 19.9.

197 d ... N o
d_ajf(x @) = .Z &—Xi(x (a))a—);(a)

h *
=33 uk(a)‘;—xf(x*(a»(;—;(a)

L of ohy
because0 = — = — — —
( x i % L )

he . g
- Sw@y i—)q'f(x (a))j—;“j(a) ~ (@),
(because h(x(a) = & 5, o -

and = 0if k # j).

= Skj,whereﬁk,- =1ifk =j

19.8 Consider the problem of maximizing x +— f(x) subject to: gi(x) =
by,..., ok(X) = by, and hy(x) = a,..., hm(X) = am. Let x*(b,a) de-
note the solution of this problem with corresponding multipliers A; (b, a),
..., Af (b, @) for theinequality constraintsand ui(b, @), ..., um(b, @) for the
inequality constraints. Supposex*, A", p; are C! functions of (b, a) around

(b*, a*) and that NDCQ holds there. Then,

N'(b.a) = i—qf(x*(b*,a*)) and pi(b,a) = aiaif(x*(b*,a*)).

19.9 Consider the problem of minimizing f (x) subject to:

01(X) = by, ..., 0(X) = by, hy(X) = ay,...,hn(X) = am.

Let x*(b,a) denote the minimizing x with corresponding multipliers
Af(b,a),..., A (b,a) for the inequality constraints and wj(b,a),...,
m(b.a) for the equality constraints, al for the Lagrangian

L= 1)~ Y@ —b) = 3 mh() - a).
i j

Then,

a_blf(x (b7a)) - &_bl(x !b 1a 1A vl‘l’)



ANSWERS PAMPHLET 101

and

a_a,-f(x (b,a)) = aa,-(x b, & At wh).

19.10 Form L(x,a, ) = f(x) — X wjhj(x,a). Let (x*(a"), u*(a")) denote the
maximizer and its multiplier when the parameter a = a*. a+— h;(x*(a), a)
isthe zero function.

f(x"(@) = F(x"(@) — D uj (@h;(x"(2); a)
= L(x*(a), u"(a); a) for all a.

d e d * *
K@) = L, 1 (2):a)

Z (@@ * @
+ Z—(X @), 1" (a), a) (a) + :(X*(a),u*(a),a)
=0+ Z( hi(x"(a), a)) (a) + f(x (@), n*(a),a)
= %(X*v M*(a), a)'
19.11 max f(x)
subjectto  hy(X) = ag,...,h(X) = a
Suppose the constraint qualification holds and that the solution x* depends

ona = (a,...,&). TheLagrangianisL(x, A;a) = f(x) —> Ai(hi(X) — &).
By Theorem 19.5,

L f(x (@) = —(X (@), 1"(a); ).

2

L
It follows from the above formulafor L that ja =A. S0 f(x (a) =

Aj(a). But thisis the conclusion of Theorem 19.1.

19.12 max X%+ y?
subjectto  x? + xy + .9y = 3.
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Write the constraint as x? + xy + by? = 3.

L =x2+y?>— A+ xy + by? — 3).
JL

Forb = 1, themaxisat (X, y,A) = (=+/3, ¥4/3,2) with f* = 6; and the
minisat (x,y,A) = (=1, =1,2/3) with f* = 2.

Forb =09 f* =6+ (-2-3)-(—.1) = 6.6 a themax and f* =
2+(—(2/3)- 1)+ (—.1) = 2+ (2/30) = 2+ at themin. If we want actual
distance and not distance squared, we would take the sgquare roots of these
numbers and obtain 2.569 and 1.438, respectively.

19.13 max x>+ X + ay?
subjectto 2x+2y=1,x=0,y=0.

The Lagrangianis
L=x2+x+ay’ — A (2x + 2y — 1) + AoX + Agy.

Fora=4,x"=0,y =05 =2 A, =3, A; =0,and f* = 1. At
these values,

oL
— =y =05=025
da y

f*(4.0) ~ £*(4) + % -Aa =1+ 0.250.1) = 1.025.

0 2X+y X+2y 0 3 3
1914 182):H=| 2x+y 2-2A —A =|3 2/3 -2/3
X+2y —A  2-2) 3 -2/3 2/3

at the minimizer (1,1,2/3). detH = —24 < 0, the SOC for a constrained

min. At the max, (v/3, —/3, 2),

0 /3 —3
detH =det| /3 -2 -2]|=+24>0,
/3 -2 -2

the SOC for a constrained max.
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0 2x -1
183):detH =det| 2x 2+2x 0| =—(2+2x +8x) <0,

-1 0 2
the SOC for a constrained min.
0 0 311
00111
185:13 1 2 0 0
11020
1100 2

has positive determinant, the SOC for a constrained min when there are 3
variables and 2 constraints.

19.15 If Z—Z(x*, y*) # 0, then C,, can be written as x = s(y) around (x*, y); i.e.,
h(y(y),y) = Ofor al y near y* and

o oh oh
W) = =5 0).) | 0.

Let F(y) = f(¥(y),y). So, F'(y*) = 0and F/(y*) < Oimpliesthat y* isa
strict local max of F and that (x*, y*) isastrict local constrained max of f.

Fiy) = 5(¢(y L YW(Y) + @(w(y),y)
_ (9f * * 1+ 7 (7f * *
= &(w(y )L YOU(y) + @(w(y ), Y)

* h * * I+ 7% h * k
| o)+ Sy
= 5(x ,y)w(y)+@(x YY)
=0, since% = ar = 0 by FOCs.
X ay
Asin the proof of Theorem 19.7,

F'(y") = Li(¥')? + 2Lyyip” + Lyy + Lyp”

—hy\? —h

X X
1

= (ML — 2Ly + LyhE),
X

which is negative by hypothesis b of the Theorem.
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19.16 The proof is basically the same, except that hypothesis b now implies that
F”(x*) > 0. The conditions F/(x*) = 0 and F"(x*) > 0imply that X* isa
strict local min of F and that (x*, y*) isastrict local constrained min of f.

19.18 max X3,

subjectto 2x2 + X3 = a.

TheLagrangianisL = x2x, — A(2x? + X3 — a). Thefirst order conditions

are.
Ly, = 2% X2 — 4AX; = 0
Ly, =X — 2% = 0
Ly =—(2¢+x2—a) =0.

The Jacobian for these expressions with respect to (Xg, o, A) is
2%y — 4\ 2Xq — 4%,
2%y —20  —2% |.
—4x; —2%o 0
At x; = X = 1and A = 0.5, its determinant is 48. The implicit func-

tion theorem concludes that we can solve Ly, = O,Ly, = 0,L, = O for
(X1, X2, A) as C* functions of a near a = 3.

19.19 If Dh(x)* does not have maximal rank, we can use elementary row opera-
tions to transform one of the last k rows of DL, in (31) to a zero row.
Thiswould imply that D?Ly , itself does not have maximal rank.

19.20 The new Lagrangianis
Mo + X + 4y?) — M(2x + 2y — 1) + Aoy + Asz
Thefirst two first order conditions on page 446 would become:
)\Q(ZX + 1) - 2)\1 + )\2 = O, 8)\oy2 - 2)\1 + /\3 = 0.
The other 9 FOCs are unchanged; we would include conditions (€) and (f)
from Theorem 19.11. If Ag = 0, the above 2 equationsyield: 2\, = A, =
Asz. By (f), this common value cannot be zero. By conditions 3, 4, 5, the

congtraints are binding: x = 0,y = 0,2x + 2y = 1, an impossibility. So,
Ao # 0. By (), Ao = 1 and we proceed asin Example 18.13.

19.21 18.10: ¢, d,e; 18.11: ¢; 18.12: ¢; 18.17: d; 18.18: d.
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19.22 a)

b)

L = AoX — Ar(y — X — 103 — y) — Az(x — 0.5).
aL

— =X+ —3 x> —A3=0

X 0 1X 2X 3

aL

—=—MtA=0 = A=A
9%

If Ay = Ap > 0, thefirst two constraints are binding and y = x3 = x*.
Sincex = 0.5,x = 0. Inthiscase, A\g = A3 = 0.

If Ay = A, = 0, then Ly = 0 becomes Ay = A3. By condition (f) of
Theorem 19.11, A\g = A3 > 0.

Since A3(x — 0.5) = 0,x = 0.5.

Buttheny=x* — y=0125y=x* — y=00625a
contradiction.

Theonly solutionis: Ag = A3, X = 0,A; = A, > 0.
If weworked with Ay = 1in part a, thefirst order conditions would be:

1+ 4)\1X3 = 32X + A3
)\1 = )\2.
If Ay = A, = 0,then A3 = 1and x = 0.5. Asin part a, this contradicts
thefirst two constraints.

If Ay = A > 0, then thefirst two constraintsare binding: y = x3 = x*.
Since x < 0.5, x = 0. Then, by the first FOC above, A3 = 1. On the
other hand, this would contradict Az(x — 0.5) = 0.

We conclude that there is no solution to the FOCswith Ag = 1.

19.23 C, = {(x,y) : X3 + y? = 0}, acusp in the left-half plane. Since Dg(0, 0) =
(0,0), Dg(0,0)v = Ofor al v, includingv = e = (1,0). Any curve «a(t)
with «(0) = (0, 0) and «’(0) = (1, 0) movesinto theright-half planewhere
gispositive; i.e., t — g(a(t)) isincreasing for t small so that fort > 0and
small, g(af(t)) > 0.

19.24 Inthe proof of Theorem 18.4, instead of considering the curvet — b; —t,
work with thecurvet — b, —t fort = 0. By theimplicit function theorem,
we can solve (47) for X;,, ..., X;.; that is, there exists a C* curve t — x(t)
fort € [0, €) such that

x(0) =x" and go(x(t)) = by —t,gj(x(t)) = b forj =1,3,...,e
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Let v = x/(0). From the Chain Rule, Dg,(x")v = —1 and Dg;(x*)v = 0
for j # 2. Asin the proof of Theorem 18.4,

Df(x)v=0 and 0= DyL(X*)v = Df(X")v + As.

We conclude that A, = 0.

19.25 If x* maximizes f on Cyp,, itisalso alocal max of f subject to the equality

constraints gi(x) = by,...,0(X) = b, m(X) = ci,...,"m(X) = Cm.
By Theorem 18.2, there are multipliers Aq, ..., Ay, ta,..., um SO that
conditions (a), (c) and (€) hold. If we choose Ayy11 = --- = A = 0,
condition (b) holds. Use the argument in the proof of Theorem 18.4 (or
Exercise 19.24) to show condition (d): each A; = 0.

Chapter 20

20.1 a) Degree6, b) no, c) degree0, d) degreel, €) no,

f) degreeO.

20.2 a) fy, = 2% + 3x3, fy, = X2 + BxyX%p + 3%5

Xifx, + Xofy, = 2X3% + 3X1X5 + XSXp + 6X1X5 + 3%2
= 3x4Xp + Iy X5 + 3%

= 3f(xq, X2).

b) TxExx3 + 30X,

_.,
x
X

Il

fy, = X[X2 + 20X$X3 — 5%ox3,

fy, = 2X{XoX3 — 5X5X3.

Xifx, + Xofy, + Xafu, = TX{XoX3 + 30X5X3 + X{XoX5 + 20X$x5
— 5X3%5 + 2X{XoX3 — BX3X3

= 10x/x;X3 + 50x8x5 — 10x5%5 = 10f.

20.3 f(tx) = t2f(x), g(tx) = tPg(x).

(f - g)(tx) = f(x) - gtx) = ¥ (x) - t°g(x) = t**°(F - G)(x).

20.4 F(tXl,tXZ) = A(altpr + aztf’xg)l/P = tA(ale + azxg)l/" = tF(Xl, Xz).
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20.5

20.6

20.7

20.8

209

X1 fy, + Xofy, = rf

X1 fxxg T Xofuy = (r — Dy,

lexlxz + Xzfxzxz = (I’ - 1) fxz
since fy, and fy, are homogeneous of degree (r — 1).
Xl(lexlxl + X2fx2x1) + X2(X1fx1x2 + Xzfxzxz) =(r— 1)X1fx1 +(r — 1)X2fx2-
S0, X2y, + 2X1 X1 fux, + X3fyon, = r(r — DF.
f is homogeneous <= on any ray {tx : t > 0} from 0, t — f(tx) isa
homogeneous monomial at¥. Suppose f is homogeneous of degreea and g

is homogeneous of degree b. Choose x so that f(x) # 0 and g(x) # 0 and
f(x) + g(x) # 0.

Ontheray through x, t — f(tx) + g(tx) ist?f (x) + t°g(x) (witha # b, say
a < b). So, t2f (x) + tPg(x) = t3[f(x) + tP~3g(x)].

If f + gishomogeneous, thisequalst®[ f (x) + g(x)] for somec. In summary,
t3[f(x) + P 3g(x)] = t[f(x) + g(x)] foralt > 0.
Divide both sides by t€:
L (¥) + t°72g()] = f(x) + g(x).
Lett — O.If a> ¢, LHSiszero. If a < ¢, LHSis“infinite” Therefore,

a=candf(x)+g(x) = f(x)+t°3g(x). Att = 0, f(x) +g(x) = f(X) =
g(x) = 0, acontradiction.

f is homogeneous of every degree. In the previous exercise, we need to
assume that neither f nor g isthe zero function.

a) ye¥, b) yin(x/y), ©) 5y, d) (x/x) + (S/x3),
e (X2 + x2)/Xa.

3xy+2, {3xy+2=05}, {3xy+2=14}; (xy)2 {(xy)>=1},
{0y =16} () + (), {09)° + 0y) =25 {(xy)® + (xy) = 68},
e, {¥=¢, {&¥=¢" In(xy), {In(xy)=0} {In(xy)= In(4)}.
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b) 2xy)y _y 1

2(xy)x  x  2°
ey y 1
O ex x 2

1/1_y_1
®;/9‘;‘z
2011 2 + Z,yes; Z'—Z,no; z/(z+1),yes, |z yes 72 +4,vyes.

20.12 a) yes, 72 +2; b) yes Inz+1; c) no; d) yes z/3.

20.13 Suppose f is homogeneous of degree k. Since z — 7% is a monotonic
transformation, f isequivalent to /. But f/% is homogeneous of degree
1, since

fFX(tx) = [F(t)]7 = [t*F 01 = tF7K(x).

a?U 1
20.14 For U = x%/2yl/2, & —Zx_3/2y1/2 < Ofor (x,y) € R%, . But for
_ Y ,
the equivalent V = x3y8, & 6xy° > 0. Not an ordinal property.

20.15 If f/ > O for all x, f isinvertible and its inverse g satisfies g’ > 0 for
al x in its domain. Since g is a monotonic transformation, g(f (x)) = xis
equivalent to f and is homogeneous of degree one.

20.16 Let g be homothetic so that g = ¢(h) where h is homogeneous of degree
k. Now, h*/¥ is homogeneous of degree 1 and y(z) = Z is a monotone
transformation. g = o(y(h/¥)) = (¢ o ¢)(h'/%) and ¢ o  is amonotone
transformation.

20.17 a) Yes. This function is a monotone transformation of a homogeneous
function of degree 3, p(X?y + xy?), where ¢(2) = €

b) Yes. This function is a monotone transformation of a homogeneous
function of degree 5, ¢(x?y®), where ¢(2) = Inz

¢) Yes. This function is a monotone transformation of a homogeneous
function of degree 3, o(xy?), where ¢(2) = Z2 + 322 + 3z + 9. Check
the derivative to see that ¢(2) isincreasing.

d) No. Theslopeof thelevel set passing through (x, y) is(y/X)(2x) /(x+1).
This slopeis not constant along rays emanating from the origin.
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€) Yes. This function is a monotone transformation of a homogeneous
function of degree 2, (xy), where o(2) = 22/(z + 1).

YT L (2xy + V) 22Xy +y?

20.18 a) exzy+xy2 . (X2 + 2xy) X2 + 2Xy

is homogenous of degree zero.

2 /3 2y,
b) X / §/ = 3% is homogeneous of degree zero.

3x2y* + 4xy? + 12
xy® + 2y3 + 4y
2xy +y
X2 + X

0

is not homogenous of degree 0.

d) is not homogeneous of degree zero.

€) Theratio of partial derivativesis obviously homogeneous of degree 0.
3 2 _
f ax° + 2xy= — 3

2x3y + 4y3 — 8
etic.

is not homogeneous of degree zero; f is not homoth-

20.19 Suppose u is homothetic, so that u(x,y) = ¢(h(x, y)) for some homoge-
neous function h and monotone ¢ with ¢’ > 0.

Mexty) oty - exty

o) ¢%MM%%MM

_.6h oh
tk 1&(x, y) &(X, y)

1P y) %mw

&0 M y)

¢mmm%mw
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20.20 Suppose u(x) = u(y), but u(ax) > u(ay) for some a > 0. Since u is
strictly monotone,

u(%(ax)) > u(%(ay)); i.e, u(x) > u(y),

a contradiction. Therefore, u(ax) = u(ay).

Chapter 21

211 f(x) =a-x.
f(tx) = a- (tx) = ta- x = tf(x), homogeneous of degree 1.
fix+(@QA—-ty) =a-[tx+(1—-ty]=ta-x+(1—-t)a-y
=tf(x) + (1 —t)f(y).

So, f isconcave and convex.

1
21.2 @) " = 3e*+ 60x% + v 0 = convex.

b) D?f = (_6 2) negative definite —>  concave.

2 -2

3 0 0
<) ( 0 60y> O ) positive definite =  convex.
0 0o 1/7
a(a— Lxa 2y abx@ 1yp-1z£ acxa Lypze1
d) D*f = A( abxa 1Yo~ p(b — 1)x3yP 22 bCXayblzcl)
aod 1P oy Al ofc - PR
First LPM: a(a — 1)x2 2y°Z.
Second LPM: ab(1 — a — b)x?2y?=27¢,
Third LPM: abc(a + b + ¢ — 1)x322y80—273¢-2,
If0<a<10<b<lO0<c<landO<a+b+c<1lthenfis
concave.

21.3 Let f(x) = Zaanan-
i

2a;7 2292 - 2ayy

Hessian D?f 2 22 2
eSS = . . .
2a—ln 2a2n e 2ann

=2-A
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214

215

21.6

21.7

21.8

So, f isconcave &< D?f isnegative semidefinite <=  Aisnegative
semidefinite.

f(t) = atk, f/ = kat*"%, £/ = k(k — L)at*~2.
f isconvex if k(k — 1)a = 0.
f isconcaveif k(k — 1)a = 0.

Show that f : R? — R? is concave if and only if the set on or below its
graph in R? is a convex set. Suppose f is concave and that (xy,y;) and
(X2, ¥o) lie below its graph G; i.e., f(X1) = 1, f(%) = y». A point on the
lineL joining these 2 pointsis (tx, + (1 — t)Xg, ty, + (1 — t)y1).

flto + (L —t)x) =tf (%) + (L —t)f(x) =ty + (1 — t)ys.

So, segment L lies below G, and the set below G is convex. Conversely,
suppose the set on or below G is convex and that (X3, f(x1)) and (X, f(x2))
are in this set. Then, so is (tx; + (1 — t)xp, tf (%) + (1 — t)f(x)) for
t € [0,1]. The statement that these points lie on or below G means:
tf(x) + (L —t)f(x) = f(txy + (1 — t)xo). f isconcave.

In the figure, £ is tangent to the graph at (x, f(X)) and £, is tangent at
(v, T(¥)); € is the “secant” line joining these 2 points. (4) and (5) state:
slope £, = dope £y = dope£ 1. Seefigure.
gf(tx+ (A —-ty)=af(tx+ 2 —-ty)+b
=a[tf(x) + (L —-t)f(y)] + b
= t[af(x) + b] + (1 — t)[af(y) + b]
= tg(f(x) + (1 — a(f(¥));

i.e, go fisconcave.
Suppose f and g are C2. Then,

(fo @) = f(g(x)g'()* + f'(9(x))g"(¥).

If f isconcave sothat f” = 0, if gisconcave sothat g” = Oand if f is
monotone increasing so that f/ = 0, then (f o g)” = 0and f o gisconcave.
This can be proved directly using the definitions of concave and monotone
without the C? hypothesis.
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1 n 2f/2 f//
219 (Z) =S — .
9(f) T
CONnvex.

If f” < 0 (f concave) and f and f’ > 0, then 1/f is

21.10 (f - )" = (f"g+ 2f'g’ + fg"). 1fg=0,f = 0and f’- g’ < O,thenf - g
is concave.

21.11 TI(x) = pg(x) — w - X. X — —W - x isconcave. If gisconcave, soisIl by
Theorem 21.8.

21.12 &) 1I(9) = q- F(q) — C(q).
b) I1” = 2F/(q) + gF"(q) — C"(q). If F isdecreasing and concave and C
is convex, I1 is concave. (See Exercise 21.10.)

21.13 Since f isC* and concave, f(y) — f(xo) = Df(Xg) - (y — Xo) foral yinU. If
Df (Xo)(y — Xo) = OforalyinU,then f(y) — f(Xxo) =< OforalyinU;i.e,
f(y) = f(xo)foralyinU.Inparticular,if Df (xg) = 0,Df (Xo)(y—Xo) =0
foral yinU, and Xq isaglobal max.

21.14 If f isconvex, g = —f isconcave. Apply Theorem 21.2 to g:

gly) — 9(x) = g'(X)(y — X) fordl x,yinl.
—fiy)+f(X)= —f'(x)(y—x) fordlxyinl.
fly) — f(x) = f/(X)(y — X) forall x,yinl.

21.15 For eachi, fi(tx + (1 — t)y) = tfi(x) + (1 — t)fi(y).
Multiply through by & and sum over i:

Zaifi(tx +(1-ty) = Zta fi(x) + (1 — t)afi(y)
=ty afi) + (L - 1) afi(y).
So, Y & f; is concave.

21.16 w(p,w) = max{py —w - x:y = g(X)}.
Y. X

Let (p,w) and (p’, w') be two price-wage combinations.
Let (p",w") = t(p’,w’) + (1 — t)(p, w) with corresponding optimal y”, x".
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21.17

21.18

21.19

21.20

w(p”, W”) — p//y// —w"x"
= t(p'y" —w'- x") + (1 = t)(py” —w - x")
= tm(p, W) + (L — t)m(p, W),

since (y”,x") is not necessarily optimal for (p’,w’) or (p,w). So, 7 is
CONVex.

(y',x’) maximizes py — w - x if and only if it maximizes tpy — tw - x for
any t > 0. The corresponding optimal profit is tzr(p, w), i.e, tr(p,w) =
(tp, tw).

Let f(x) = a-x. LetV(a) = max{a- x : x € U}. Show V is convex and
homogeneous of degree 1.

Xo maximizesx +— a - x for x € U iff it maximizesx — ta- xforx € U
for any fixedt > 0.

V(ta) = ta- Xg = t(a- xg) = tV(a), and V is homogeneous of degree 1.
Let a” = ta’ + (1 — t)a and let x” be the maximizer of x — a” - x for
x e U.

V(a//) — a~// . X/l — ta/X/l + (1 _ t)a. . X/l

=tv(@) + (1 - t)V(a),
sinceV(a’) = a’-xandV(a) = a- x forany x € U.

a) Both, b) both, c) both, d) neither, €) neither,
f) quasiconvex, ¢@) both, h) neither.

a) = b): Suppose f(x) = f(y). Then, x and y are both in C;(,. By a
tx + (1 — t)yisin Csy, too. That is, f(tx + (1 — t)y) = f(y).

b) = ¢): Suppose f(x) = f(y); i.e, f(x) = min{f(x), f(y)}. By b,
f(tx + (A —t)y) = f(x) = min{f (x), f(y)}. Similarly,if f(x) = f(y),
b) implies f (tx + (1 — t)y) = f(y) = min{f(x), f(y)}.

c) = a): Suppose f(x) and f(y) = a; that is, X,y € C,. Then f(tx +
A - t)y) = min{f(x), f(y)} (by ) = asince f(x) = aand f(y) = a.
Thustx + (1 — t)y € C,, s0 C, isaconvex set.

The following are equivalent:
a) C; ={xeU:f(x)<a}lisaconvex setforal x € U.

b) Fordlx,y € Uandt € [0,1], f(x) = f(y) impliesf(tx + (1 — t)y) =
f(y).
c) Foralx,y € Uandt € [0,1], f(tx + (1 — t)y) = max {f(x), f(y)}.
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21.21

21.22

21.23

We show that a quasiconcave function cannot have a strict interior min-
imum. Suppose x* is such a minimum. Write x* = ty; + (1 — t)y,
where f(y;) > f(x*) and f(y,) > f(x*). By Theorem 21.12¢c, f(x*) =
min{f (y1), f(y2)} > f(x*), acontradiction.

Suppose F(x) = F(y); i.e, g(fu(xa) + -+ + fi(x)) = 9(fa(y) + -+ +
fic(Y))-

Since gismonotone, fi(xq) + - -+ + fil(x) = fi(yd) + - - - + fi(W)-
Since o(Xg, ..., %) = fi(xg) + - - - + fk(x) is concave and therefore qua-
siconcave, o(tx + (1 — t)y) = o(y).

Then g(e(tx + (1 — t)y)) = gle(y))- So, F(tx + (1 — t)y) = F(y), and F
is quasiconcave.

a,b) The bordered Hessian has determinant ye 3%, For (x,y) € R?, it
takes on both signs. For (x,y) € R2,, it is only positive. a) Neither,
b) quasiconcave.

¢) Monotone transformation z+— Z° of the linear (quasiconcave and qua-
siconvex) function 2x + 3y. Both quasiconcave and quasi convex.

d) (x,y,2) — € + 5y* + |7 is aconvex function. So (x,Y,2) — (e +
5y* + |2)1/2 is quasi convex.

e) A monotonetransformation (z+— z%/3) of the concavefunction (y — x?).
Therefore, quasiconcave.

f) Eachleve set {f = a}isthegraphof y = a(x?> + 1); for a > 0, the set
above thisgraphis aconvex set. So f is quasiconcave.

g) By f, quasiconcave for y > 0 and quasiconvex for y < 0. It is neither
onall R?.

h) Level set {f = a} isthe graph of y = ax? for a > 0. Set above level
Set is convex set, so f is quasiconcave. Also, the determinant of the
bordered Hessian is 2x 8y > 0.

i) Monotone transformation x — ke* of convex function x — xTAX.
Therefore, quasi convex.

21.24 Suppose F ispseudoconcaveon U. Let Cy- = {y € U : DF(X*)(y — X*) =

0}; x € Cy-.

By definition of pseudoconcave, if y € Cy-, F(y) = F(X*). Therefore,
x* maximizes F on C,-. Conversely, suppose x* maximizes F on Cy.. Let
y € U. Suppose DF(x*)(y — x*) = 0. Then,y € Cy- and F(y) = F(X");
that is, F is pseudoconcave.
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21.25 a) Suppose f(L(x)) = f(L(y)). Since f is quasiconcave, f(tLx + (1 —

21.26

21.27

21.28

t)Ly) = f(L(y)). Since L is linear, this inequality can be written as
f(L(tx + (1 — t)y)) = f(L(y)). So f o L isquasiconcave.

b) Suppose D(f o L)(x*)(y — x*) = 0. By the Chain Rule, D(f o L)(x*) =
Df(Lx*)oL. Then, f pseudoconcaveand Df (Lx*)(Ly —Lx*) = Oimply
f(Ly) = f(Lx7); that is, (f o L)(y) = (f o L)(x).

The solution of max xy subject to 2x + 2y = 8isx* = 2and y* = 2,
and the value of the multiplier is A = 1. The saddle point inequality is
Xy — (2x + 2y — 8) = 4.Butat x = y = 1, theleft-hand term is 5. xy is
quasi concave and pseudoconcave on R?, ., but not concave.

f isconcavein (x,a) and g; convex in (X, a).
ThusL(x,a,A) = f(x,a) — > Aigi(x,a) isaconcave function.
Z(a) = maximizersof x — f(x, a) such that gj(x,a) = Ofori = 1,...,k.
V(a) = f(Z(a),a).
Letx, € Z(al) andx, € Z(az). V(al) = f(Xl, al) and V(az) = f(Xz, 3.2).
Let (X3! a3) = t(Xli al) + (1 - t)(XZ, a2)'
V(ag) = V(tar + (1 — t)ap)

= f(txg + (1 — t)xp, tag + (1 — t)ay)

=tf(xy, &) + (1 — )f (X2, @)

=tV(a1) + (1 — t)V(ap).
Thefirst inequality requires that x5 isin the constraint set for f(-, ag); i.e.,

each gi(Xs, ag) = 0. But since each g; is convex and each gi(x;, &) = Ofor
j = 11 21

0i(X3; &) = tgi(X1, a1) + (L — 1)gi(X2, &) = 0.

Let ag = tay + (1 — t)ay. Let x; € Z(a) denote a constrained max of
f(-,&) on the constraint set C,, for eachi = 1,2, 3. Each x; satisfies the
constraintsg < 0. Therefore, f(x3, &) = V(g) fori = 1,2
V(ag) = f(xs,tag + (1 — t)ay)
= tf(X3, a1) + (1 — t)f (X3, @)
=tV(ap) + (1 — t)V(a).

21.29 Theorem 15.1.
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Chapter 22
la b |a+b=1gapb
21X=——-— Xp=——"7-, A= a+ bl ab
T @+t T path) g @0
a+baanb
_I ab(abab, ﬂ:)\.

22.2 By FOCs (5), ajpjx; = ajpix foradli,j = 1,...,n. Substituting into (6)

yields
=a';| fori=1,...,n
Pi
1 _ a; (agl\& 1 al \@ apl \®
)\=—axa1a2---xa“— 1(1> (_) (_)
Rt I ) p Pn
ail...aﬁn
i &i | o 0
Yan =3 (%) &5 - Xe%
I

d
=52an=54=1

P« ‘9§J I 9§
€jx + —
% e Z i IPk 5,— ol

ol G\ _
gj(k pk£+lﬁ)—0,

by Euler’s theorem, since §; is homogeneous of degree zero.

L .
224 L pi — v@(x) -y =0 forali.
IX X

Foriasin (33),x > 0;s01 = 0. Then, pp > 0 impliesv > 0. Let
A = 1/v > 0. The above equation becomes:

u U
AP = (Tx.-(x) + Ay = a—Xi(x)

with equality if x; > 0 (when v; = 0). Condition a holds.
Sincev > 0, U(x") = u. That is, U(Z(p,u)) = uand b holds.
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The eguationsfor X* = Z(p, u) wherex; > 0 are

Ugy(X) —Api=0, i=1---,n,
Ux)—u=0.

The Jacobian for this system is (13); and ¢ follows.
That (9E/du) = X isexactly Theorem 19.1. By the Envelope Theorem,

oE oL
= =2 =% =2z(p,u).
e s X i(p,u)

225 Let x* = &(p, 1), the maximizer of U subjecttop-x =<1 andx = 0. Let
V(p,1) = U(&(p.,1)) = u". By (6),1 = p-&(p,1).
We want to show that x* minimizes p - x subject to U(x) = u* andx = 0.
Suppose not, i.e., that thereisz’ = OwithU(z') = u*andp - Z/ < p - x*.
Since U is continuous and monctone, we can perturb z’ to z” so that
p-z'<p-x*andU(z") > U(x*) = u*. This contradicts x* as max of U
onp-x = |. Therefore, x* = Z(p,u’) = Z(p,V(p, 1)), and b holds. The
equationp - £(p, 1) = | impliesd.

22.6 u = V(p,E(p,u)) by Theorem 22.7c. By Theorem 22.2 and 22.6, V and
E are C! functions under the hypothesis of Theorem 22.5. Taking the p;
partial derivative viathe Chain Ruleyields:

0= j_l\o/i(p, E(p, u)) + i—\ll(p, E(p,u)) - j—;(p,w
= j—;’i(p, E(p,) + 2 (0 E(p,0) - Z(p,1) (b (34)
S-CO RO RICE

where| = E(p, u), using Theorem 22.7 again.

22.7 One computesthat for U = x5 - - - x&, withay + -+ + a, = 1,

&p.1) = al/pi,

For i #j,0&/dp =0 and

Zoo-u(®)(2) (%)
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0Z; a a
So, —=(p,V(p,) == -1
api(p (p. 1)) o

oy e=8. &
Also, g (p,1)-§ ) IoiI.

s0, 0= o1y = Do vip) - Bep,1y &, for i 4],

Ipi Ipi

22.8 Thelinearized systemis

0 —P1 —pP2 da dep]_ + depg —dl
—pr Un Up|ldg|= Adp; .
—p2 Up Uxp/ \dx Adp2

Let D = the determinant of the coefficient matrix.

0 il VD]
—p1 Ui A
2 —p2 Up O
e = U - U + A .
o = X1(U11p2 — U1ap1) + Ap1p2
&Xz 0 P -1
Xl% =X |—pr Unu 0 |=x(—Uyps + Uppa).
1 —p> Up O
IXo 293
— L 4+ X—== A .
s X1 a P1p2
Similarly,
Xy X1
—— F+ Xo—= = A .
s X2 i P1P2

22.9 X = pli/(’*l)l/(pfl/(“l) +pfC), fork=12,
V= (prl/(r—l) + prz/(r—l))(l’—l)/r’
e=U (prl/(r—l) + pr2/(r—1))(rfl)/r.
22.10 Multiplying p and w by r > 0, multiplies the profit function by r. The

x* that maximizes TI(x) is exactly the x* that maximizes rII(x); i.e,
X*(rp, rw) = x*(p, w).
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22.11 Continuing the previous exercise,
IT*(rp,rw) = II(X*(rp, rw))
= rpf(X*(rp,rw)) — rw - x*(rp, rw)

rpf (x"(p,w)) — rw - x*(p.w)
rIT*(p, w).

22.12 The Lagrangian for thisproblemisL = pf(x) —w - x + Y uX. Thefirst
order conditions

of
L)q:pﬁ_Xi_Wi+Vi:O
along with 1 = O trandate to (40):
of
—X) —w =0.
Pox () —w
If x* > 0, yx* = 0implies », = 0 and (40) becomes (41). In the case
where each x* > 0, we can treat this problem as an unconstrained max
problem. If x* is a critical point, i.e., satisfies (41), and if the Hessian is
negative definite, x* is a strict loca max by Theorem 17.2. Conversely,
if X* isan interior local max, it satisfies (41) and the Hessian is negative
semidefinite by Theorems 17.6 and 17.7.

22.13 The monotonicity assumption implies NDCQ. The Lagrangian is
L =wx = A(f()) = y) = X wx.
i
The FOCs are;
of .
Ly =W, —)\a—xi(x)— v=0 fori=1,...,n

or

w = Aj—;(xw " ZAj—y:(x). *)

((49) inthetext hasthewrong sign.) If x; > 0, % = Oimpliesy; = Oand
(*) becomes

N o
w, = )\ﬁ—xi(x). ()i
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By the monotonicity condition, thereisan i such that x* > 0. For such an
i, (+); holds and wi > O impliesA > 0. For i, j with x, > 0 and x; > 0,
divide (+x); by (++); to obtain (50).

The Jacobian of the FOCs is the matrix in (51). So, (51) follows from the
discussion below (19.23). The converse follows directly from Theorems
19.6 and 19.9 applied to this problem.

22.14 By Theorem 19.9, the solution z*(y, w) of Problem (48) isa C* function of
y and w. So is C(y,w) = Z*(y,w) - w, the optimal value of the objective
function of (48). Suppose we are at an interior solution where z* > 0. The
Lagrangian for Problem (48) isL = w-x — A(f(X) — y). By Theorem 19.5,

Then,

22.15 X3 (Y, W1, Wo), X5(y, Wi, Wy), and A (Y, wy, Wo) satisfy

of
Ar9_xz(xl’ X2) = W»
f(X1, %) =Y.

Taking total differentialsyields

of of
- + — =
o dxq Fs dx, = dy
2 2
an 2 Lax + 27 e, = dwy
X1 24 OX19X%2
f 2f 2f
T an 4+ ALy + 20wy = dw,.
IXo IX10%2 8X2
00 f
det fxl 0 Afxlxz
% — fx2 1 )\fxzxz — 1:><1 sz

My D D



ANSWERS PAMPHLET 121

0 f, O
det(fxl My, 1)
X _ fxz )\fxlxz 0/ _ le sz
= D

Wy D B

where D is the determinant of the coefficient matrix. So, dx;/dw, =
(?Xz/o'\N]_.

22.16 By Shepard'slemma,

JC 1 W dC 1wy
= —yl1+Z ]2 =% —yf1+Z 2.
X My y<1 2 Wl) and X, My y(l 2 Wz)

Wy X2 y
—=2(=-1)= ———.
Y w, (y ) 2(x1 —Y)

So, Y2 = 4(xg — Y)(X2 — y) or 3y — 4(xy + X))y + 4xaxp = Oory =

%[(xl + %) + 48 — X% + xg]

22.17 x* isalocal Pareto optimum for uy,...,us on C if thereis an open set U
about x* sothat if x € C N U, x # x*, and u;(x) > u;j(x*) for some j, then
Ui(X) < u(x*) for somei.
X" isastrict Pareto optimumfor uy, ...,usonCifx € Cand u;(x) = uj(x")
for some j; then uj(x) < ui(x*) for somei = 1,..., A

X* isastrict local Pareto optimum for u; ..., ua on C if there is an open
set U about x* so that if x € C N U and u;(x) = u;(x*) for some j, then
Ui(x) < u(x*) for somei.

22.18 By theproof of Theorem 22.17, if x* satisfiesthe hypotheses of thetheorem,
x* isastrict local max of u; on

Ci={xeC:uyX =u(x) for j=+i},
foreachi = 1,..., A Supposethereisanindex i and an x in C such that

Ui(X) = u(x*). Then, x cannot bein C;. That is, thereisan index j such that
Uj(x) < u;j(x*). But thisisjust the definition of a strict Pareto optimum.

22.19 For each i consider the problem of maximizing u; on the constraint set C;
asin the previous exercise. Its Lagrangian is

M N
00 = > (Ui() = 4i(x)) = D M@ = b) = > pp(hp(x) — ¢p).
k=1

j#i p=1
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22.20

2221

By hypothesis, there exist ay, ..., aa, A1, ..., Am, M1, - - -, oy SUCh that for
s=1,...,n

My Mg Moy g
p

IXs 7 OXs P OXs aj IXg

at x = x*. Thisisthe FOC for our origina problem. By hypothesis, u; is
pseudoconcave, u; for j # i and &l gys are quasiconcave, and the hy's are
linear. By Theorem 21.22, x* isaglobal max of u; on C;. Since thisis true
for each i, there cannot exist a point with uj(x) = u;(x*) for al j with strict
inequality for somei; that is, X* isagloba Pareto optimum.

UKL, ..., 2% = Uv(Z).

0 if j # k

k(1 Ayl Ay —
DUz, ..., 2NV, ...,V {Du“(zk)vk it j = k

since UX isindependent of Z/ for j # k and UX(z) = uk(Z¥) fork = j. Then

A A A
D> @DUKY)V = D D> D UKY)V; = D o*DU(y V<.
k=1 k=1 i k=1

Consider the problem of maximizing
21
Y — W(Y) = |;)ﬁu"(y") subjectto > y* =bandy*=0inR".

The Lagrangian for this problemis
L= @/ —p- (Zyk - b) EDNLES
k
where p and r ¥ are n-vectors, r* = 0. The FOCs are:
Dyl = (1/AMDu*y*) —p +rk = 0.

Sincerk = 0, these FOCs can be written as

1 1 auk _
ﬁDuk(yk) -p=0, ad Fa—xlk(yk) = pif x>0

But these are exactly conditions (66) and (67) withp = cand 1/ Ak = o,
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22.22 a) (Comparewith Section15.4.) Let y; = B1/(1—B1) and vy, = B>/(1—
B2). The six equations for a competitive equilibrium are
P1X1 = Y1P2X2
P11 = v2P2Y2
P1X1 + P2X2 = P1
Piyr + P22 = P2
xt+ty=1
Xo + Yo = 1.
The six variables are prices py, p2, consumer 1's bundle (g, X2) and
consumer 2'shundle (y1, y»). Thefirst two equations are the consumers
first order conditions, the next two are their budget constraints, and the
last two are the pure exchange equations. Since prices are relative, we
set p, = 1. Sincethe system has aredundant equation, we will drop the

fourth equation. (See Section 15.4.) Solve for y; and v, in the last two
equations and substitute into the second; thisyields

Pl —x) = y2(L = %) OF p1— PiXe = v2 — YaXe
Substitute y; X, for ppx;:
P = (v1 = ¥2)% + 72
Combining the first and third equations yields

YiXo T X2 = Pr.

Solve these two equations for
_ 7 _ @+ vy
X = o W= -
1+ vy 1+ v
1 . i .
Then, y, = 1T by equation (6). Use the first two equations to
Y.
compute 2
1
X, = Y1 , Vi =

1+y, 1+‘yl.
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Interms of B; and B, these solutions are

X1=P1, X=PB2 V1=1-01, Y=1-p,
pL=B2/(1—B), p2=1

b) By Theorem 22.19, the equation (68) for a Pareto optimum are

W a
oX: 1%

a—lﬁ(xl.xz) = %(YLyZ) = (9—31%(1 = X1, 1= %)
% a2 ay?

sincex; +y; = 1and x; + Y, = 1. These become:

Bi X _ B 1-X%

1-B1 X1 1-B 1-x'

which gives the curve of Pareto optima

_ B

B2

acurve that goes through both (0, 0) and (1, 1). All are Pareto superior
to theinitial alocation.

X2

+ (B1 — B2)X1,

22.23 a) Solid curves are indifference curves of u?.
Dashed curves are indifference curves of u'.
Dark lineis set of Pareto optima.
Interior Pareto optima are solutions of
it

Xy
1

au U2
— (X1, X: —(2—X1.2 — X
axz( 1, X2) axz( 1 2)

IU?
X1, X —(2—%X1,2 — X
(X1 2)_[9)(1( 1 2)

or

o = e x) -1 = 2 - )

or

Xp = 2x2 — 3,
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acurveinthe Edgeworth Box [0, 2] X [0, 2] from (v/3/2, 0) to (v/5/2, 2).
Checking how the indifference curves cross on the boundary of [0, 2] X
[0, 2], one notes that the segment from 1 to y/3/2 on x, = 0 and the
segment from /5/2t0 2 on x, = 2 are Pareto optima. See figure.

b) Isthe point A in the figure realizable as a competitive equilibrium? A
is the global max of uy in the Edgeworth Box, and therefore the max
of u, on any budget line. Choose prices so that A is the max of u; on
the corresponding budget line. A will be a competitive equilibrium for

these prices.
Chapter 23
1 0 2 1 -1 1
231 (o 5 0)( o):( 0)=(—1)( o).
3 0 2 -1 1 -1
232 a) ( ):>(3—r)(5—r)=0:>r1=3,r2=5.
(%22 s%) () - ()= (0) =w=(2)
o)) = (o) = (0) == (2)

b)

/\Abl

i) — (-1-nN@-r)+6=0=1r2-3r+2=0

=TI, =2r1,=1
-1-2 3 viy _[(—3vi+3w»n) (O oy = 1
-2 4-2)\w) \-2vy+2v,) \0O t7\1)-
-1-1 3 Vi 2V1+3V2 0 — v, = 3
-2 4-1)\vw, —2v; + 3w, 0 27 \2)

c) (2 :g):(—f)(—3—r)+2=0:>r2+3r+2=0

—r,=-1r=-2
(O )R O ()
(°1% st (2) = (Mu )= (o) == (1)
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0 0 -2
d) (0 7 O) = (—nNT-nE3-1nN-(-2(7-r)(n=0
1 0 -3

= 7-NInNEB-rn-(=3@] =0

— T7-r2-3r +2)

= r,="71,=-1rz3= -2
-7 0 -2 Vi —7vy + Ovy — 2v3 0 0

0 0 0 Vo | = Ovi+0v, +0v3 | =0 | =vVvi=1(1].
1 0 -10/ \ws Vi + Ov, — 10vs 0 0

1 0 -2 Vi Vi — 2v3 0 2

0 6 0 Vo | = 6v, =|0]=vVv,=|0].

1 0 -2/ \vs Vi — 2V 0 1

2 0 -2 Vi 2vi — 2v3 0 1

0 5 0 Vo | = 5v, =|0]=v3=|0].

1 0 -1 V3 Vi — V3 0 1

23.3 The eigenvalues of D are the values of r that make |D —rl| = Q.
|D — rll = (dll — r)(dzz — r)...(dnn — r) =0.

The only solutionsto thisequation arer & {dy1, d, . .., dnn}, the diagonal
entries of D.

23.4 The eigenvalues of A, an upper triangular matrix, are the solutions to

det(A—rl) =0,
app — I ap a3 T ain
0 ap —r anx an
det(A—rly=| O 0 ag—r - am
0 0 0 R T |
axp —r ax agn
g — I - azn
= (a1 —r) . _
0 O e ann_r

=(@u—r)@z—r)--(@n—r)=0,
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by the inductive hypothesis. The only solutions to this equation arer €
{a11,a, ..., an}, Which are the diagonal entries. The same proof works
for a lower-triangular matrix, by expanding across the top row each time
(rather than down the first column as above).

25 (A—rllv=0<Av=rlv=rv

= AA=Alv=rAlve=v=rAly

= r}v =Alve= (A‘lv - r}v) =0 (A‘1 - r})v = 0.
So, if r isan eigenvalue of A, then 1/r is an eigenvalue of A, Similarly,
if 1/r isan eigenvalueof A1, 1/(1/r) isan eigenvalue of (A"1)"1 = A,
Therefore, r isan eigenvalue of A <= 1/r isan eigenvalue of A™L.

26 (o5 o)(1) = (2) 2(1) o
(05 0)(72)= (1) = 2(77)

30
1 2

wmomn (o= ()

(1 3)o(o2) P (1 7)
THEIEH
(2 2)(2 1) 2)

_5*V25-4 _ 54421 5—421
2 ' '

2 2

23.7a)A=( ):>A=3,A=2:>vl—v2=0,

=

= A

1
5+4/21
—( 2\/_)V1+V2:0:>V1: (5+JZ),

2

_(5—2\/Z)V1+V2:0:>V2: (5_1\/5).

2
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1 1 5+ 421 0
P=|5+y21 5-21| add D= 2 5_ 2l
2 2 0 >

1 -1
c)Az(2 4>,
A-AN@-N)+2=22-8BA+6=A—-3)(A—2), X\ =32

—2vl—v2=0:>v1=<_;); and
1

—vl—v2=0:>v2=(_1).

_ 1 1 (3 0

P=(2 1) o= (0 2)

3 -1 0 B-nl2-rnEB-r)-1-1]
( )::>

d A=[-1 2 -1 =(@B—r)r%—5r +4

0 -1 3 =r,=3rn=4r3=1

0 -1 0\ /v
-1 -1 -1 Vo, | =0=wv=0,-vy—v3=0
0 -1 0 V3

1
:>v1=—v3:>v1=( 0).

-1
-1 -1 0 V1
(—1 -2 —1) (v2)=O:>v1:—v2,—v2:v3
0 -1 -1 V3
= (W) —2v2—(-v2) =0
1
:>V2:(—l).
1
2 -1 0 V1
(—1 1 —1) (v2)=0:>v2=2v1,v2=2v3
0 -1 2 V3
:>V1:V3,_V1+2V1_V1:0
1
:>V3=(2).
1
1 11 300
p:( 0 -1 2), D=(040).
-1 11 0 01
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‘4—r -2

4 -2 —2 Q-0 ¢ 1

=A-r)r—-3)(r —-2)=0

=—=r,=1r,=2r3=3

3 -2 -2\ /v
(O 0 0) (Vz):O:>V1:O,_2V2_2V3:O
1 0 0 V3
0
:>V1=( 1)
-1
2 -2 -2\ /v
(O -1 0)(v2)=O:>v2:O,v1=v3
1 0 -1 V3
1
:>v2=(0).
1
1 -2 -2 V1
(0 -2 0) (V2)20:>V2:0,V1:2V3
1 0 -2/ \vs
2
:>V3:(0).
1
01 2 1 00
P=(100), D=(020).
-1 11 0 0 3

23.8 Using the solutions for 23.7:

@ () =e () e ()

Xn n 1 _ n 1
0 ()=o) (o) () (3a)
2 2
o (*) =c2n + 3"
) (Gn) ez () e ()
Xn 1 -1 1
d) (yn) :C13n( 0)+Cz4n( 1)+C31n(2).
Zn -1 -1 1
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Xn 0 1 2
€ (yn) =clln( 1)+022“(0)+c33”(0).
Zn -1 1 1

by b, bm-1 bm

1-4d; 0 0 0

23.9 0 1-d 0 0
0 0 v+ 1—-dn-1 O

23.10 The general solution is given in (18). As n — o, the first term in (18)
dominates; it goes to o while the second term stays bounded. Asn — oo,
the ratio of the size of first population to that of the second approaches
4-to-1.

Xn+1 1 40 Xn
2311 | Y+ =15 0 O Y |
Zn+1 0 2 0/ \=zn
The eigenvalues are 0, — 1, 2 with corresponding eigenvectors
0 -10 40
01, 5],]10].
1 -1 1
The general solution is
Xn 0 -10 40
Yn | = C:|_0n 0|+ Cz(—l)n 5]+ C32n 10 |.
Z 1 -1 1
1/3 1/3
3 0 10
2312 9) (2 3) D) (% )z 1)

313 0
2. 51/3 2. 31/3 51/3)

)(31/2 5?/2>(; 2)

312 0 )

HER

2. 51/2 2. 31/2 51/2

(-2
(
(-2
“
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b) ( :; )l/S

( )(11/3 29/3)(—; _;)
(3 243 3.218 — 3)
(2

2243 3.213_7»

Do o) (2 )

3232 3.01/2_3
( 23/2 21/2 2)

0 -2\"*_(2 1\(-1"®* 0 1 -1

©) 1 -3 1 1)\ 0o —23)l-1 2
213 -2 2247
:(21/3—1 1—24/3>

(Y

A2 js not defined since A has negative eigenval ues.

00 -2\
9 (07 o]
10 -3

0 2 1\ /73 0 0 01 O
100 o -1 o0 10 —-1].
011 0 0 —21/3 -1 0 2

A2 s not defined since A has negative eigenval ues.

2313 Suppose P = (v --- vp) isinvertible. Then, Av; = ryv; fori =
1,...,n
ry o --- 0
0 rp --- 0
=AM o v =(v o v L T
0 0 -+

&= AP = PD < P AP = D.

2314 a) 3+5=3=5 and 3-5=15
b)4-1=2+1 and (-1)4—(—2)3=2=2-1
c)0-3=-1-2 and —-(-2-1)=2=(-1) (—2.
d0+7-3=7-1-2 and 14=7-(-1) (2.
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23.15 a) Columnssumto 1, so r; = 1 is an eigenvalue. By Theorem 23.9a,
ri+r,=0.8;s0r, = —-0.2

b) Columns are equal, so r; = 0 is an eigenvalue. By Theorem 23.9a,
ri+ry=2,s0r, =2

¢) Columnssumto 2, sor; = 2isan eigenvalue. By inspection, r, = —1
is a second eigenvalue and it has multiplicity two. Eigenvalues are
2,-1,-1

d) By inspection, r; = 3isan eigenvalue and so isr, = 0. By Theorem
239a, > ri = 6;s0r3 = 3, too.

-1 1

2,2:v1+v2=O:>v:(_1).

(-0 2)() = () =w=(6)=r=(1 o)
b)(:g _i): (-5-r)(-1-r)+4=r2+6r+9 =171 =
—3,—3:>—2v1+2v2:O:>v=(1>.

23.16a)( 3 1): B-r)L-r)+1=r2—dr+d=(r—22—r1 =

[

1
(%2 2)(w) = (1) == () =P - (1 12)
c)(_g _2) B-r)(-3-r)+9=r2-9+9=r2=7r1 =

o,o:ml+w2=o:v=(_g).

(= 3)) = () == () =P o)

2317 @) zh11 = (_i i)zn;

Zn = (Co2" + nc 2" 1Y) ( _i) + ¢ 2" (é)
0 2= (5 1)
2= (-3 + neu(-3" ) () + -3 (1 5 )

_( 3 3),.
C) Zn+]_— _3 _3 ZI"Iv

e 2 2)(909) - (44555509),
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2 00 1 2 0
23.18 VerifyP AP =0 3 1|wheeP=|1 1 1|and
0 3

0 110
4 2 -4
A=|1 4 -3].
11 0
Find P~1;
12 0 : 0 1 0 0 O
111 : == -1 1 -1 0
110 : 0 1:0 1 -1
1 0 0 O
== 0 0 -1
0 1 -1
100 : -1 0 2
=|l0o10: 10 -1
001: 01 -1
-1 0 2\ /4 2 -4\ /1 2 0
PIAP = 10 -1)l1 4 3|1 11
01 -1/\1 1 o/\110

&
—
Q
<
Il
—
B
N—
—

|
=
|
=
N—
—
5z
N—
|
—
|
H
N—
=
+
S

Law=("g)=P= (7 o)=rr=(9 )
= (5 3)(-1 2)(1 o)
(75 301 9)-6G %)
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b) Letv=(_jf). (_i _i)(a;):(_j):>W1+W2=4,

—Wi1 — Wy = —4,

an-(B) e (4 Y=o 5(E D)
e (2 (1)
(E (196

23.20 Thegeneral solutionisz, = cory'vy + nclr{“lvl + cir{'vo. Sincery| < 1,
r' — 0 and thefirst and last terms in z, tend to 0. What happensto nr[—*
as n — «? Thefirst factor — oo, but second — 0. Using L' Hopital'srule,

n 1 ri
limnr?™t = lim — = lim = lim—L— —0.
nN—oe 1 nN—oe r]:!-_n n—o (1— n)rl_n n—o (1— n)

3—r 1 1
1 2—r 1
-1 -1 1-r

1 1 1\ /v 0
To find eigenvectorsfor r = 2, solve 1 0 1 v |=10])
-1 -1 -1/ \ws 0

1
Sincetherank of thismatrix istwo, the solution set isgenerated by ( 0) .

Gy
Lt

1 11 0 -1 -1
P= 0 1 0|l=P'=|l0 1 o0].
-1 -1 0 1 0 1

23.21 The characteristic equation is =—(r—-2°%=0.

and
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0 -1 -1 3 11 1 11
PlcP=|(0 1 0O 1 21 0O 10
i1 0 1/\-1 -1 1/\-1 -1 0

210
=10 2 1].
0 0 2

4—r 0 0
-1 4-r 2
0 0 4—r

To find the corresponding eigenvalue(s),

0 0 0\ /v 0
(C—4I)v=(—1 0 2) (vz)z(o).
0 0 0/ \vs 0

2 0
S0, 2v3 = vp and v, is anything, e.g., (0) or (—l).
1 0

0 0 0\ /vy 0
(C—4h)>v=|0 0 Of||v|=1]0];
0 0O V33 0

1
thisimplies that v3 can be anything, e.g., ( 0) . Then
0

0 O 1 4 00 2 01 4 00
0O -1 o0 -1 4 2 0O -1 0|=|0 4 1].
1 0 -2 0 0 4 1 00 0 0 4
23.23 If vy, v,, vz areindependent eigenvectorsfor eigenvaluer * and 3 X 3 matrix
AletP =(vy v, vz)andletD =r*l.SinceAyv; = r*vifori = 1,2,3,

AP = PD. SinceP isinvertible (by theindependence of thev;s), P~1AP =
D =r*l.Then, A= P }(r*I)P = r*(P1IP) = r*|.

rr 0 O rr 1 O rs 0O O rr 1 O
232410 r, O0,{O0O ry O)},10 r;y 21,10 r;y 1], where
0 0 r3 0 0 r3 0 0 np 0 0 rq

any of rq,r,, r3 may be equal.

23.22 —(4-r@=o0.
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23.25 a) Example 14: z, = ¢12"v; + (63" + ncs3™ vy + 33"V,

() ) )

b) Exercise 21:
Xn _ 1
(yn) = [012“ +ne2"t + wcﬁ”‘z] ( o)
-1

Zn
1 1
+ (2" +neg2" )| 1| +c2"| 0.
-1 0

) Exercise22: z, = 4", + (C24" + ncgd" v, + czd"va.

) (3 -0

1 0 -3 10 -1 -1 0
2326 a) [0 o]. | 3 00| ol 0o o 1]
1 -1 101 2 10

OFr,rO NP O

1 0 21 -1 0 11
d) (4 o). e) (0 1 0). f) (o -1 0).
5 1 10 0 1 10
23.28 a) (;”) = \/fsn[(clcosne — czsinn6)<_;)
n
. 3
- (czcosn9+cls|nn0)(o>]

where cos§ = 2/4/13.

b) (;:) - 2”{[01 cos(nm/2) — ¢, sin(nm/2)] ( _i)

— [c1sin(nm/2) + ¢, cos(nm/2)] ( _2) }
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c) (X”) = 5”/2[(clcosn0 — cpsinng) ( _5)
Yn 1

— (cpcosnb + c1 sinnd) ( _(2)) ]
2
_5)
-2

where cos = 1/4/5.

Xn
d) (yn) =2" {[cl cos(nm/2) — c;sin(nm/2)]
Z

P

— [ersin(nm/2) + ¢, cos(nm/2)]

Xn
€) (yn) =2" [clcosn;—czsjnn;]

Zn
—[csinn—w+ccosn—w] —
19 TR

OWNO 1 WIN WIE
S — N~——" oN O
_|_
&
N
=}
/0

1+ 3i 0

23.29 Show PIAP = ( 0

w
Oﬁ“—.‘ Oﬁllf . /
>
@
1)
>
Il
—
|
© P
P
\__/

_-_ »

3 & 1 1\(1 1
-1 _ 2 6
P AP_(; ;i)(—g 1><3i —3|)
2 6
3. -
_(zt3 3 (1_ 1)
ST VACIES
_ I+3i+di+l 143i-3i-1
_(1+3 0
0 1-3i)
5 1
23.30 a) 01(3) + cz(.2)“<_1).
1 1
b) cl(o) +c2(.5)“<_1).

]
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2 -1
0 ¢ (2) +27n/2 ([01 cos(7nm/4) — c; sin(7nm/4)] ( 1)
1 0

0
— [c2 cos(7nm/4) + ¢y sin(7nmr/4)] ( —1)) .
1

23.31 White males; y = .002x + .864y = .002(1 — y) + .864y —> y = .0145
or 1.45%.

Black males: y = .004(1 — y) + .898y or y = .0377 or 3.77%.

23.32 Columns of M add to 1; that is, Zi m; = 1.
Let p be a probability vector, so pj = Oforaliand > ; pi = 1. (Mp); =

DM =3 > mip=>p>m=>p-1=>p=1
i ] 1 J

23.33 a) X, = probability nth day is sunny.
yn = probability nth day is cloudy without rain.
Z, = probability nth day israiny.

Xnt1 05 025 O Xn
Va1 | =1 05 025 05 Yo |-
Zn+1 0O 05 05 Zn

05 025 0\? [/3/8 3/16 1/8
by M>=|05 025 05| =|3/8 7/16 3/8|.

0 05 05 1/4 3/8 1/2
c) Eigenvectorvforr = 1:

-05 025 0 1 0 1
05 -075 05 V |=10)l=vVv=]|2].
0 05 -05 V3 0 2

0.2
Long-run distribution vector is ( 0.4) .
0.4

. (075 01 ~025  01\(2)_(0
23.34 Stock A: (0.25 0.9):>< 0.25 —0.1)(5)_(0>'
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Stock A will sall for $5 % of thetime and for $10 % of thetime.
Its expected value is $5 - (2/7) + $10- (5/7) = $82.

. 09 03 -0.1 03\/3) (O
Stock B: (0.1 0.7) ﬁ( 0.1 —o.3> (1) - (0)'
Stock B will sell for $6 2 of the time and for $12 7 of thetime.
Its expected vaue is $6 - (3/4) + $12 - (1/4) = $7.5.

1 4\(1 4\ _ (3 4 : o i
23.35(.5 O)(.S 0) = <.5 2), strictly positive. Eigenvalues are 2 and

—1. An eigenvector forr = 2 is(‘ll).

0 0 16 0 0 16 0 064 0
23368 0 O 8 0 0]= 0 0 128].
0 4 O 0 4 O 32 0 0

Every multiple of the matrix will have only three nonzero entries; soit’snot
regular. However, it still satisfies al the properties listed under Theorem
23.15.

23.37 &) Eigenvalues by inspection are —2, 6. Corresponding normalized eigen-

vectors are:
1/+/2 1/+/2
(-i) = (135)
an orthonormal set. Teke Q = ( _gg 1;%)

b) Eigenvaluesare 0, 5. Corresponding normalized eigenvectors are:

(40 = ()

an orthonormal set. Take Q = ( 1/\5 2/ ‘/§>

—-2/\5 1/\/5
C)Q=( 1/+/2 1/&)_

~1/¥2 1/y2
0 1/V/3 2//6
d) Eigenvaluesare1,0,3. Q=( 1/\/2 —1//3 1/\/6).
-1/¥2 -1/y3 1/V/6
143 142 1/46
) Eigenvaluesare0,3,3. Q = (1/\/5 0 —2/\/6).

1/4/3 -1/V/2  1/y/6
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23.38

23.39

23.40

2341

1/42 0 1/y2
0 1 0 )
1///2 0 —1/42

a) Eigenvaluesare 3, 1. Q:(l/\/5 l/\fZ)

f) Eigenvaluesare1,4,3. Q= (

N2 —1/y2
b) Eigenvaluesare4,—-2. Q= ( i;\/‘g _1;%)
/3 142 1/
c) Eigenvaluesare0,3,3. OneQis(l/\/ﬁ 0 —2/\@),
/43 —1/42  1/V6

Supposevy, .. ., Vkx aremutually orthogonal. Supposec,vy +- - -+ ¢V = O.
Take the dot product with v; on each side: ¢y (vy - Vi) + -+ - + (Vi - vi) +
<o+ c(vk - vi) = 0.

Sincethev;’sareorthogonal, v - vi = Ofor j # i. Therefore, ¢i(v; - vi) = 0.
Sincev; - vi # 0, ¢, must equal zero.

Since dl ¢’sare zero, v;s are linearly independent.

AT = A" — detA = 1/det A= (detA)? = 1.

Suppose Wy, ..., Wy are mutually orthogonal eigenvectors of symmetric
matrix A. Let vq,..., vk be the corresponding vectors of length 1; that is,
vi = w;/|lwill.

Let P bethek X kmatrix P = (v; v, -+ wvg).Then,
V Vl-vl Vl.v2 ) Vl-vk
1
Vo Vi Vo Vy -+ Vp-Vy
Pe=|: |t - vo=| " " °° ?
Vk Vk-vl Vk.v2 ) Vk-vk
10 0
|01 0
00 1
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23.42 In (49),
-1/y2 1/y2 0) (—1/f2 1/4/3 1/%)

Q'Q =( /43 1/¥3 13 || 142 143 1/4/6
1/J6 1/\6 —2/./6 0 1/J/3 -2//6

1 00
=10 1 0) =1
0 01

(53) isasimilar calculation.

23.43 Straightforward.

-1
1
23.44 W1 =V1 = 0
0
Wy - V2
Wz = Va Wi W,
-1 -1 -1 -1 -1 -1
_ 0] _ 1 0 1 1 1
1 0 1 0 0 0
0 0 0 0 0 0
-1 -1 -1/2
_ 0 _} 1 _ -1/2
1 2 0 1
0 0 0
. Wi+ V3 _ W3- V3
W3 = V3 Wi - Wi 1 Wy W, Wao
-1 -1 -1/2 -1/3
| oo ry_i2f-12)_[-1/3
0 2 0 3/2 1 -1/3
1 0 0 1
Wy - V2
23.45 . = . —
W1 - Wy = Wy (Vz Wi W, Wl)
Wi - V2
=Wq*Vy — Wy * W
1°V2 1‘W1( 1 Wy)

= W1 Vo —Wjp-Vp
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Wy - V3 W3 - V3
Wy W3 =Wp (Vg — —— W — —— - W»
Wq - Wy Wy - Wo

Wi * V3
W1 - Wy

= Wi V3 — (W - wy)

=W;-Vz—wvz3—0

Wi - V3 W3 - V3
Wy W3 =W Vg — ——— W — —— - W»
Wi =W, Wa - W7

Wi -V Wy - V:
L (wp - w) — 2wy - W)
W1 - Wy Wy - W»

= Wy V3 —

=W Vz3—0—w,-v3=0.

23.46 Suppose PTAP = D, and PTBP = D, with D, D, diagonal. Then,
A=PHD;Pt=pPD;P! and B=(P") !D,P !t =PD,P Y,
sincePT = P~1. So,

AB = PD,P~*PD,P"* = PD;D,P* = PD,D,P !
= PD,P!PD;P ! = BA,

since diagonal matrices commute.

23.48 If xTAx > 0and x"Bx > O for al x # 0, then x"(A + B)x = x"Ax +
x"Bx > Oforall x # 0.

23.49 a) Let A beasymmetric matrix. Then, the following are equivalent:
i) Aisnegative definite,
ii) Thereisanonsingular B such that A = —B'B,
iii) Thereisanonsingular Q such that QTAQ = —1.

Proof: A is negative definite if and only if —A is positive definite.
Apply Theorem 23.18 to find a nonsingular B such that B'TB = —A
and anonsingular Q such that Q"(—A)Q = I;i.e, Q"AQ = —I. The
converse arguments work the same way.

b) Let Abeasymmetric matrix. Then, the following are equivalent:
i) Ais positive semidefinite,
ii) Thereisamatrix B such that A = BTB,

iii) Thereisamatrix Q such that Q"AQ = (é) 8)
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Proof: Thereisamatrix P of eigenvectors such that (56) and (57) hold,
wherery, ..., rx are the nonnegative eigenvalues of A. The proof that
a < bissimilar to the proof on page 628, except that x" Ax may be
zero for nonzero x.

The proof that a = c issimilar to that in Theorem 18, but with

Q:(\/Aﬁvl cen \/Arihvh O e O)
\/ir—l 0O 0 --- 0

=p| 0 I
0 o 0 - 0
o --- 0O 0 --- 0

where we order the k eigenvalues of Asothatry,...,r, arethe strictly
positive eigenvaluesof Aand ri;q = ry = 0.

2 1 Ik
23.50 For example, ( ) — B'Bfor B = ( 2) andfor B =

e
(0
4

2351 Let L = diag {ry,...,r«} and let R = diag {l/\/T,...,l/\/Tk}, so that

Q = PR Then,

Q'AQ=R'P'APR=R'LR=I.

In order for R to be defined, al the eigenvalues rj must be positive, a
condition equivalent to A’s being positive definite.

2352 Let To = min v'Av for ||v|| = 1. If Ty > 0, Ais positive definite and we
cantaket = 0. Supposethat Ty = 0. Chooset > —Tysothat To +t > 0.
For any vector v with ||v|| = 1,
VIA+t)v =vIAv +tv'lv
= v'Av + t||v||?
> TO +t

> 0.
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23.53

23.54

23.55

For any vector w writew = rv wherer = ||lw|| and v = w/(|lw||). Then,
vI(A+tl)v > 0since|lv|]| = 1and

WIA +thw = (rv)T(A+ th(rv) = r2(vT(A + tl)v) > 0.

Proof of Theorem 23.5: Section 23.9 contains the proof for h = 1,2.
Suppose the theorem is true for h — 1 distinct eigenvalues. Suppose that
ry,...,marehdistinct real eigenvalues of A with corresponding eigenvec-
torsvy,...vh. Av; = v, fori = 1,...,h. Suppose

civy + -+ + oy = 0. ()
Then,
CiAv, + - - - + chAv, = AQ,
CiriVy + - - - cprpvy = O.
Multiply (*) through by r:

CiFvy + + -+ + Cyl vy = 0,
and subtract the previous two equations:
Co(rz = ry)Va + - -+ + cp(rh — ry)va = 0.

By the inductive hypothesis, v»,..., vy, are linearly independent vectors.
Therefore, ¢c; = -+ = ¢, = 0. Then, substituting into (*), we find that
¢; = 0too, and concludethat v4, vy, ..., vy are linearly independent.

Let B = A — rl be the matrix in (66). One proves easily by induction
that each term of det B is a product of entries with exactly one entry from
each row of B and one entry from each column of B and that every such
combination occurs in the expansion of det B. See Exercise 26.34. One
such term in the expansion of det B is the product of its diagonal entries:
(a1 —r) - - - (& — r). Any other term can contain at most k — 2 diagonal
entriesay; — r, sinceif aterm containsk — 1 diagonal entriesin its product,
the pattern dictatesthat it contain al k diagonal entries. A term that contains
exactly j diagonal entries (a; — r) of B will be ajth order polynomia inr.

By the previous exercise, the only term with r= in it arises from the
product of the diagonal entries of B:

Pu(r) = (@ —r) (& — ).
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2357

We prove by induction on the number of factorsin Py(r) that
Pe(r) = £(rk—(ag+- - - +ag)r< 1)+ terms of order lower thank—1inr.

This statement is easily seen to be true for k = 1,2. Assume it is true for
Px—1(r). Then,
Pe(r) = (@ — 1) - Pe-a(r)
= (@~ [~ (@u + -+ ace)r ) + o]
by the inductive hypothesis, where g isof order =< k — 3inr. Multiplying
out the above expression yields:
Pe(r) = Fr(r* = (ag + - + ac - )r' 2 + g(r))
*ag(r = (u + o Fac e )r 2+ o)
=Frf (@ + A tawr?

Frg(r) + (aa + + -+ + A 1x-1)ar % — awg(r)],

where we are careful with the order of g but not itssign. Since g is of order

a most k — 3inr, the expression in square brackets has order at most k — 2
inr. The coefficient of r* 1 is +(ay + - -+ + ag).

det(A — x1) = =IIj(x — rj) = P«(x), whererq, ..., ry are the eigenvalues
of A. Wewant to prove that the coefficient of x<~J in P(x) isthe sum of all
j-fold products of {ry, ..., r¢}. Weuseinduction on k. It is easily seen to be
truefor k = 1,2. We assumeit truefor k — 1:

k-1
Pr1() = (X = 17) -+ (X — 1-g) = > BT,

j=0
where bk~ = (—1)/ times the sum of all j—fold products of ry, - - -, r1.
Then,

k-1
Pe(X) = (X — ) - Pe—1(X) = (X — rg) Z b]k_lxk_j
i=o

k-1 ) k-1 )
— Z bjkflxkfjJrl _ Z rkbjkflxkfj
j=0 j=0

Il
M=

k-1
K—1, k=] K—1y k=]
BT = > (b X,
1 j=0
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The coefficient bl of x*~1in P(x) is 1 times the coefficient of x< =% in
P_1(X) minusr, timesthe coefficient of X1 in P_1(x). Thefirst term gives
all j-fold productsof ry, ..., rg_1; the second term gives al j-fold products
of rq,...,rg, that include ry. Together, this gives al j-fold products of
r,...,lk.

23.58 Simply carry out the multiplication to find

app — X a2 a3
det ax1 ayp — X ax3 = —X3 + (all + ayp + a33)X2
az1 az azz — X
a1 A2 a3
_ [lar a2 a1 A3 Ay Ay
+ + X+ |ap ax ax|,
dy  axp azy ag3 dz2 az3
azy azx ass

and

(re = X)(r2 = x)(rz3 — x)

= =X3+ (ry + 1y + r3)x% — (raro + rafg + rorg)x + rirors.

Chapter 24
. 2c—-t)+2t-2t 2 4t2
241 a) y= = + and
) (c— 122 c—€  (c—2p
4t? 2

24+ ¥ = + .

R (c—t2)2 c—t2
b § = (ct2 _ 1)1/2 _ Ctz(CtZ _ 1)71/2 3 -1 B f

y -1 (CZ—1p2

_ 1

(ctz2 — 1)%/2°

Q) y=ce +2t+2andy—t?> =ce + 2t + 2.
d) V= 1(4t +6) + ¢ + 2c,* and § = 1 + ¢, €' + 4ce.

. 9 14
3y—2y-|—t2=3t+5+3cle‘+60262‘—t2—3t—z

— 2c,€8 — 2c, + t?
=1+ cé +4ce* = .
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24.2 Q) y=ke? + ke +1
y = 2|(1€2t + kzet
¥ = 4k € + ko€
3y — 2y + 2 = (6ki€* + 3ko€') — (2ke€? + 2kp€' — 2) + 2
= 4|(;|_€2t + |(2et = y
b) y = ki cost + ko sint + kse' + kse !

y = —kycost — kpSint + ks&' + k!

Y4 =k cost + kysint + kget + ket = y.

24.3 y = ki cosy/at + ky sin,/at

y = —/aky sin\/at + kp\/acos,/at

§ = —ak, cos,/at — akysin/at = —ay.

24.4 Initia stretching and initial velocity of the spring.

245 a) By (8),y = ke' +5.y(1) = ke'* + 5 = limpliesk = —4e and
y=—4e!"t +5

by y=-y+t; a=—l1landb=1tin(10).

t
y= (k + J sesds) e
= (k +te —€')e™" by tableor integration by parts
=ke'+t—1

y(1) = ke ! = limpliesk =eandy =e"" '+t — 1.
) y=y—t¥a=1andb= —t?in(10).
t
y= (k + J (—sz)e‘sds) ¢
= (k +t?et+2tet + 2e’t) € Dby table or integration by parts
= ke' + (t? + 2t + 2).

y(1) = ke+5= limpliesk = —detandy = -4 1 + 12+ 2t + 2.
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dy _y° s (o3
d)a—t—3:>Jy dy—Jt dt

1 1 1 1+ cyt? +t
- = T 55 CO'I — ==+ C]_ = y g
2y> a2 y> tz J1+ct?

1
1) = = limpliesc; = 0. Soy=t.
y(2) N pliesc; y

1 1
ZYA = Zt4 + Co, y4 = t4 + Cq, y= i(tA + C1)1/4,

y) =(1+c)/*=1=0¢,=0. Soy=t.

fyy=01-tY)y+tle®. Soa=1-t"tandb=t"1e?in(10).
y= (k + r s la js(l—u’l)duds) offa-s s
t
— (k 4 J’ SfleZSeferlns dS) etflnt
t
= (k + J s le®e s sds)t‘let
=(k+ et e = ke +t 7%,

yl)=ke+ & =1=k = 1;62 =
Soy =t} 1 - et + ),

t s t
24.6 y = (k + J b(s)e” ! aols) ela
t t t t
y= <k+J b(s)e‘fads) ael 2+ pt)efa-ela

t t
= a(k +J b(s)e’fads> el 2+ p(t)
=ay+h.

24.7 a) If aand b are constants, (10) becomes

t
y=(k+ bj eds)et = (k- ge—at)eat ket -2
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asin(8).1fb = 0anda = a(t), (10) becomesy = (k+ | Ods)el a9 —
kel @99 asin (9).

b) i) 0=ey—egday= %(e’a‘y). Soe &y =k, ory = ke*.

i) e @(y—ay) = e @b. So %(ye‘at) = be &,

Thenye @ = b ['e ds+ k = —ge‘a‘ +kory= —g + ke,
d t

~[afy _ _ (o | a9ds —

iii) e J3(y—ay) = 0.S0 it (e y(t)) 0.
e J'a9dsy (1) = Kk, ory = kel @99,

Ydy t t
24.8 j v =J a(s)ds. Solny = [ a(s)ds + k.

Thereforey = el @9ds . gk — cel' a9 s,

249 y = g:>y:0andy(a—by) = g(a_ b_;‘> =0
a a
Y prkew YO Tpik W
a = yob + yok impliesk = 2= P _ @ _
Yo Yo
a

Soy(t) = a )

b+ (— —b)e—at

Yo

2410a) y—y=0, r2—1=@r-1r+1) =0, r
y = ki€l + koe™t; Y = ki€t — koe™.
1=y(0) =k +ky, and 1=y0) =k — k.
Sok; = landk, = O; y =¢.

b) y—5y+6y=0, r2—5+6=( —3)(r —2) =0.
y = ket + ke?;  y=3ket + 2k
3=y(0) =k +ky;  7=y0) =3k + 2ky.
ki =1k =2 y=¢et + 2e%.

C) 2y +3y—2y=0; 22+3r —2=(2r —D(r +2)=0.

*1

y=ce/2+ced;  y= 5ce/2— 2ce 2.
3= y(O) =C + Cp; -1= y(O) = .5C1 - 2C2.
c=2c=1 y=2¢d?2+e2,
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2411 y = 46® + & + 2te® = 56 + 2te?.
¥ = 1062 + 26 + 4te? = 1262 + 4te?.
¥ — 4y + 4y = 12e* + 4te® — (20e* + 8te”) + (8e* + 4te?) = 0.

24.12 y(t) = ke + kote,
y(t) = rkle” + kze“ + rkzte”
= (rk]_ + kz)ert + rkgtert.

Yo = kle”O + kztoerto and 7y = (rky + kz)e”O + rkztoe”f’.

e\ _ (1 k

Zpe rol1+rtg)\k /"
The determinant of the coefficient matrix is 1, so the matrix is invertible
and one can always solve for k; and k. In fact,

kq _ 1+rtg —ty yoe’“o
ko —r 1 e )’
2413 @) y+6y+9y =0, r?+6r+=( +3?2=0.
y= |(;|_(-:‘_3I + kzte_3t, y = —3k1e_3t + kz(-:‘_3I - 3tk28_3t.
0=y(0) = kq,
1= y(O) = _3k]_ + kz.

Sok; = 0,k; = landy = te 3.
b) 4+ 4y +y=0, 4r2+4r +1=(2r +1)2=0.

y=kie2+kte V2, y=—lkieV2 + ke V2 - lkte V2,
1 = y(o) = kl’

. 1
1= y(O) = _Ek]_ + k2.
Sok; = 1k, = 1.5;andy = e¥2 + 1.5te7 /2,

2414 a) §+2y+ 10y =0,r2+2r +10 =0

_ —2+.4-40

= —1=3i.
5 3i

r

y = e '(c, cos3t + ¢, sin3t),

y = e [(—c; + 3cy) cos3t + (—¢, — 3¢1) sin3t].
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2=y(0) = ¢y 1=y0) = —c; + 3c,.
ct=2C=1s0y=¢e"2cos3t + sin3t).

b) y+ 9y =0; r’+9=0,r = +3i.
y = ky cos3t + k,sin3t, y = —3ky sin3t + 3k, cos3t.
2 = y(0) = ky, 1 = y(0) = 3ko.
ke =2k = 3. y = 2cos3t + $sin3t.

24.15 y = €*(c; cosBt + c,sin ),

y = e"'[(acy + Bc,) cosBt + (ac, — Bey) Sinpt],

¥ = e'[(«® — B?)cy + 2aBc,] cospt + €'[(a” — B)c,
— 2a3c1] Sin Bt

ay + by + cy = e cospt[a(e® — B?)c; + 2aafc, + bac; + bBc, + ¢
+ e sint[a(e?® — B2)c, — 2aafc; + bac,
— bBcy + ¢y
= e cospt[ci(ale? — B?) + ba + ¢) + cx(2aaB + bp)]
+ e sinpt[—ci(2aaB + bB) + co(a(e?® — B2)

+ ba + 0)].
On the other hand, sincer = « + iB isarootof ar? + br + ¢ = 0,
0=ala+iB)?+bla+iB)+c=[ala®— B?) + ba + c] + (2acB + bp).

Soa(a? — B%) + ba + ¢ = 0and 2aaB + b = 0.

But these are precisely the coefficients of ¢, and ¢, in the previous expres-
sion, and so that expression equals zero.

2416 @) 6y —y—y =0, 6re—r—1=@r+ 12 -1 =0.
y=kieV® +ke’?2,  y=—1lke V3 + lke/2
1=y0) =k +k, 0=y0)=—3k + iko.
Soky = 3,k = Z;andy = 2e7V/3 + 2672,
b) y+2y+2y=0  r?+2r+2=0 r=-1%i.
y = e Y(ky cost + k, sint), y = e (ko —ky¢) cost — (k; + ky) sint].
1=y(0) =k, O0=y0) =k —k. Sok =k =1
y = e Y(cost + sint).
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C) 4y —4y+y=0, 42 -4 +1=(2r —1)?=0.
y = ki€/2 + kote’2, ¥ = 1ki€/2 + ko€/? + LkoteV2.
1=y0) =k, 0=y0)=3k+k=k=1Lk=-1
y(t) = €/2 — 1te’2.

d y+5y+6y=0 r2+5+6=( +3)(r +2=0.
y = ke 3 + ke 2, y = —3ke 3 — 2ke 2,
1=y(0) =k +ky, 0=¥0)= -3k —2ky=>k3 = -2k =3
y=—2e3% +3e 2,

€ y—6y+9y =0, r’—eér+9=(r —332=0.
y = ket + kote®, y = 3kie™ + koe™ + 3kote.
1=y00) =k, 0=y0) =3k +k =k =1k = -3

y = et — 3te™.
f)y+y+y=0 r24+r+1=0, rz—%tigg.
y=ge 2 klcos@tJrkzsin@t
2 2
o ki /3. k3 3. k. /3
— t/2 ™M Yo+ 2 Vo, 2 -
y=e ( 2c052t > coszt 2sm2t
—kl\/ésin@t.
2 2
. k k
1=y(0) = ki, 0=y(0)=—51+ zfﬁklzl,kzzl/\/g-
— o t/2 @.}_i @
y=e¢ (cos2 \/ésmzt.

24.17 y1¥1 — 2y — y + 2y = 0. Look for the solution y = €.

glrd-2r2—r +2)=0.
r—Dr+1r-2)=0=r=1-12
y= k;]_et + |(2€7t + kgeZI

2418 y = Aet, y=—Ael, y=Aet.

y—2y—3y = Ae"t+2Aet — 3Ae! = 0, but { — 2y — 3y must equal
8et.
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24.19 a)

b)

<)

d)

y-—2y-y=7

For the general solution of the homogeneous equation: r2 — 2r — 1 =
O=r1 =1+,2

A particular solution of the nonhomogeneous equationisy, = —7.
S0,y = V2t 4 el V2t — 7,

y+y—2y=6t.

Genera solution of the homogeneous equation:

r2+r—-2=(r+2(r —-1=0

y= kle_Zt + kzet.

Particular solution of the nonhomogeneousequation: y = At+B,y = A
= A-2At-2B=6t,-2A=6,A—-2B=0

= A= —-3,B=-3/2

So,y = kg2 + koet — 3t — 3/2.

y-y-2y=det.

General solution of the homogeneous equation:

r2—r—2=(—2)(r +1) =0,

y = ki + koe .
Particular solution of the nonhomogeneous equation: not Ae™*, but y, =
Ate !,
Vo =Ae ' —Ate!, Y, =(—2A)e "'+ Ate "
Yo — Vo — 2¥p = € [-2A+ At — (A— A) — 2A1] = 4e".
-3A=4, A= -4/3 Yo = (—4/3)te .
Soy = ki€® + ket — (4/3)te .
y+ 2y =sin2t.

General solution of the homogeneous equation: r2 +2r = 0 =y =
k]_("l‘oI + kze_Zt

Particular solution of the nonhomogeneous equation: y = Asin2t +
B cos?2t.

y = +2Acos2t — 2Bsin2t,
y = —4Asin2t — 4B cos2t.
¥+ 2y =(—4A—4B)sin2t + (—4B + 4A) cos2t = sin2t.
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~4A-4B=1  -4B+4A=0—A=B=-1
y=ky + ke ? —1sin2t — % cos2t.

e) ¥+ 4y = sin2t. The general solution of the homogeneous equation is:
y = ky cos2t + ky sin2t.

A particular solution of the nonhomogeneous equation is: y, =
t(Asin2t + Bcos2t).

Yp = Asin2t + Bcos2t + 2tAcos2t — 2tBsin2t,
Yo = 4Acos2t — 4Bsin2t — 4tAsin2t — 4tB cos2t,
Yo + 4yp = 4Acos2t — 4Bsin2t = sin2t.

A=0B=—-1/4.50y = k;cos2t + k,sin2t — (t/4) cos2t.

f)y—y=¢.
General solution of the homogeneous equation: r2 — 1 = 0 = y =
k]_eI + kze_t.

Particular solution of the nonhomogeneous equation: y, = Ate'.
Yo = A + Até', Vo = 2A€" + Ate'.
y= k]_et + kze_t + %tet
d? d
24.20 Wa(Ypl + Yp,) Tt Eb(ypl + Yp,) + (Yo, + Ypo)
= ayp, + byp, + cyp, + ayp, + by, + cyp,
= 6u(t) + g2(b).

24.21 General solution of the homogeneous equation:
rP—r—2=(r-2(r+1=0
y= k]_eZt + kze_t.
Particular solution #1:

Yo = At + B, Yo, = AYp, =0,
Yoo = Yoo — 2Yp, = —A— 2(At + B) = 6t.
—2A=6 and -A-2B=0=— A= -3,B=+3/2
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Particular solution #2:

Yp, = Cte™!,

Yp, = Ce ' —Cte™", ¥, = —2Ce '+ Cte".

Yo, — Yo, — 2Yp, = [(—2C + Ct) — (C — Ct) — 2(Ct)]e”" = 4e™".
—3C =4, C=-4/3

Soy = ki€t + ke ? — 3t + (3/2) — (4/3)te”.
24.22 Seefigure.
24.23 Seefigure.
24.24 Seefigure.
24.25 Seefigure.
24.26 Seefigure.

2427 @) y = 0,y = 1 are the steady states.
2 _

f(y) = 7)/(;2_ iyl)zl.
f/(0) = —1 < 0= Oisasymptotically stable.
f/(1) = 2/4> 0= lisunstable.

b) y=—-2m -0, 2m7,...,
f'(y) = &(siny + cosy),
f'(2n7) = €' - cos2nm > 0,
f/((2n + 1)) = D7 . cog(2n + 1)7 < 0.
Soy = 2n7r areunstable, and y = (2n + 1) are asymptotically stable.

¢) y = Oistheonly steady state.
f/(0) = 0, so we can’t use the derivative test.
The phase diagramis: > . >
Soy = 0isunstable (on the right).
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24.28 By (48), p+— w(p) satisfies the differential equation:

du

— = = p? bec

Using separation of variables, we find:

-b — C na ® —
Jp« du Jepdp, o 1%

Choose k to satisfy initial condition w(q) = v:

K= yl—b B ecqa—l
1-b a+1’
Then
1-b 1-b
I — € a+l _ ~atl y
1-p _a+1P 9 )tip
or
_ 1/(1-b)
— [ec(’(il_l— 1b) (pa+1 _ qa+1) + yl—b]
Chapter 25

o (5)-(z 5)()

r’+3r +2=(@+2)(r +1)=0.

-0
(—13 —411>(_§): (8)'

(3) = () v (73)
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> ()= )0)

r2—7r=r(r-7)=0=r =0,7.

00
(30

()= (2) o= (1)

° (;):(é g)(?) r?=3r —10=(r -9 +2 =0

900
3 9(9-0

()= ) -e=(3)

(S 6) e

290 = (2 90-6)
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()-2[a2) o(d) (2]
7 (?):(:2 i)(’;) r2—2r +2=0r=1=i.
(725" s2)(s2i)= (o) = vrmv=(3)+1(3)

(’;) - e‘[(klcost ~ kesint) (g) ~(ksint + kzcost)(g)].

s )

Then(r —3)(r +3) =0,s0r =3,3,—3.Forr = 3,

(22 9(2)-()

and
-2 -2 -6 0 0
2 2 6 31=10].
-2 -2 —6 -1 0
Forr = =3,
4 -2 -6 1 0
( 2 s 6)(1)(0)
-2 -2 0 1 0
So
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o . o VY _ 0 1\(y
252 y = —ay,letz=y.Then,z=y = ayso’('z) (—a 0)(2)'

253 1f 2=, thenz = § = —%y— mgsiny. So
y=2
7= —27_mgsin
mZ ~ masiny.
25.4 By equation (24.10), the solution of ¥, = ry; + et is:
t S
ya(t) = (cl + J €% [T ds) et
t
= (cl + J c,€s - e"sds) gt
= (Cl + Cgt) e”

25.5 Accordingto Chapter 23, thereexistsaninvertibleP = (vy v, v3)such
that

r 1 0
PIAP=L whee L=|0 r 1].
0O O r

Lety = P Ix. Then,y = P 1x = P"1Ax = P"1APy = Ly.

Solvingy = Ly,
Vi=riyi+ Y.
Yo =Tr1¥o + Y3
Y3 =TrYys.
Soys = Czert.

From the previous exercise, conclude that y, = (¢; + cot)e't.
B=ryit+y: =ryi+ (a1t cot)e", oy = ket + At).

Using the method of undetermined coefficients, look for z(t) = (A + Bt +
Ct?)e't.

z=rz+ (¢, + Cot)e". (%)
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But, z= (B + 2Ct)€' + (rA + rBt + rCt?)¢".
RHS of () = (rA + rBt + rCt?)e' + (¢; + cot)€’.
Set these two equal, cancel €'s and set similar the coefficients of t equal:

B=c¢ and 2C = c,.

So, Z(t) = (A + cit + Jcot?)e.
Letco = A+ k. Then, yi(t) = (o + cit + 3cot?)e™
The solutionis x(t) = Py(t). That is,

(co + cit + %Cztz)

X(@t) =(vi V2 V3) ( c; + cot
C2

= €'[(Co + Cut + 3Cat?)vy + (Cr + Cot)va + Covg].

26 Y=Y =%"%
Y2 = 4y1— 2y, becomes$ — Y1 = 4y1 —2(y1 —y1) or y1 + Y1 —6y1 = 0.
r’+r—-6=(+3)(r—-2=0.S,r =-3,2.
y1 = cie” + ce?,
Yo =Y1—y1 = —3cie M+ 206" — e d — e = —dce ¥ + et

yl(O) =¢c +c =1ad y2(0) =4 +c=0 = ¢ =.2
andc, = .8.

(yl) _ ( 273 4 .8e2‘)
Yo -8 % + 8% )
b) yo = 0.2y; — 0.2, and > = 0.2y, — 0.24.
Vo = 2y; — 5y, implies.2y; — 0.2y, = 2y; —y; + Yy or 0.2y, + 0.8y +
Vi =0= 22+ 8 +1=00rr2+4r +5=0;s0r = -2+
y1 = e %(c, cost — ¢y sint)
V1 = e #(—2c, cost + 2c,sint — ¢ sint — ¢, cost)
= e 2[—(2¢;, + ¢y) cost + (2¢, — ¢;) sint]
Yo = € 2[0.2¢; cost — 0.2c, sint + (0.4¢; + 0.2c,) cost
— (0.4¢c, — 0.2¢y) sint]
= e 2[(0.6c, + 0.2¢,) cost + (0.2¢; — 0.6¢,) sint].



ANSWERS PAMPHLET 161

1=y(0) = ¢;,0=y,(0) = 0.6¢c; + 0.2c,. Soc; = 1,¢, = —3.
(yl) R (cost + 3s?nt).
Vo 2sint
0 Y2 =21+ 6y1, V2= .20+ 6%
Yo = =y + Yo implies.2y; + .6y; = —y; + 0.2y; + 0.6y;.
2 + 04y, + 04y, =0oryy + 2y +2y; = 0.
r’+2r +2=0impliesr = -1 +1.

y1 = € (¢ cost — ¢y sint)
V1 = e '(—cpcost + cySint — ¢ sint — ¢, cost)
= e '[—(cy + ¢y) cost + (C; — ¢1) sint]
Yo = 0.2y; + 0.6y,
= e '[—(0.2¢c; + 0.2c,) cost + (0.2¢c, — 0.2¢,) sint]
+ e7'(0.6¢, cost — 0.6c, sint)
= e '[(0.4c; — 0.2c,) cost + (—0.4c, — 0.2¢;) sint].

Then1 = y4(0) = ¢; and 0 = y,(0) = 0.4c; — 0.2¢,. S0, ¢; = 1 and
C, = 2.

(yl) o (cost - 25int>
=€ . .
Yo —sint

25.7 A fourth steady state is the solution of the system:

byr + Ciys = ay, Coy1 + oy, = ay,
namely
arh, — ac ba, — aic
== °° and = —— =,
N blbz — C1C 2 ble %1%

Thisis the steady state in which both species survive at positive levels. It
only makes sense if both y; and y, are positive.

258 x=0,y=0andx = C/D;y = A/B.

259 a) 2y(x —y) = 0andx = 2 — y2.
y=0x=2andx=y,y°+y—2=0o0ry=1, -2
Steady statesare (x,y) = (2,0),(1,1) and (—2, —2).
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25.10

2511

25.12

25.13

b) x+y=0andx + 4y = 0imply (x,y) = (0, 0).

c) xy =0and2x + 4y = 4.
x=0,y=landy=0,x=2.

d) 2x =0andy? — x2 = Limply (x,y) = (0, 1) or (0, —1).

Eigenvalues of (1 4

11
i.e,r =3—-1
Since 3 > 0, (0, 0) isan unstable steady state of (18). The general solution

of (18) is
(ﬁ) = ™ (i) + et ( _i)

Whenever ¢; # 0, the solution grows like e*.

)aresolutionsof r2—2r—=3=(r—3)(r +1) =0;

The characteristic polynomial of ( 211 :12 ) iSr2—(ag +axn)r +detA =
b1 82

0. The sum of the eigenvalues equalsthe trace, (a;; + ax,). The product of
the eigenvalues equals the constant term, det A. If the eigenvalues are real
and negative, their sumis < 0 and their product is > 0. If the eigenvalues
are complex a = ib with a < 0, their sum 2a is negative and their product
a® + b? is positive. Conversely, if their product is positive and their sum is
negative, the eigenvalues are complex numbers with negative rea part or
they are negative real numbers. If det A < 0, the eigenval ues have opposite
signs; so one must be positive. If trace A > 0, at |east one eigenvalue must
be positive or both are complex with positivereal part. Finally, if det A > 0
and trace A = 0, the eigenvalues must be complex humbers with zero real
part, i.e., pure imaginary numbers *ib. The general solutioninthiscaseis
X = (cosbt)u + (sinbt)v; in this case, al orbits are periodic and (0, 0) is
neutrally stable.

a) trace = 4 > 0; unstable.
b) trace = 5 > 0; unstable.
C) trace = 2 > 0; unstable.

d) trace = 8 = sum of roots; unstable.

Just replace A in the above solution of Exercise 25.11 by the Jacobian
matrix of the system evaluated at the steady state.
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aO ) , hastwo positive eigenvalues. When
2

one population is very small, the other behaves as in the logisitic equation
with exponentia growth near zero. The Jacobian of (2) at (0, 0), ( '8\ _OC )
has one positive eigenvalue. In the absence or near absence of the predator,
the prey has exponential growth.

25.14 TheJacobianof (1) a (0, 0), ( aé

25.15 The Jacobian of (1) at (0, a,/by) isJ = (al ~Ga/b 0 ) Its eigen-

o . G/ —a

values are both negative if and only if

Cidy _ b — &
y——-—=——<0
' b b,
that is, ayb, — cia, < O or & < %, or & > E The left side (ﬂ)
e b a & a

measures the negative impact of the size of population 2 on the growth rate
of population 1, while theright side (%) measures the negative impact of

2
the size of population 2 on its own growth rate. So, the inequality states

that: if alarge population 2 has a more negative impact on the growth of
population 1 than it does on its own growth, then there is a stable steady
state withy; = Oandy; > 0.

25.16 The Jacobian of (2) at the interior equilibrium (C/D, A/B) is

(o %0"):

Its eigenval ues are the pure imaginary numbers *iy/AC. Thisisthecasein
which the stability of the linearization does not determine the stability of
the nonlinear system.

25.17 @) trace = —3 < 0, det = 2 > 0O; asymptoticaly stable.
b) trace = 7 > O; unstable.
¢) trace = 3 > 0; unstable.
d) trace = 4 > 0; unstable.
€) trace = 2 > 0; unstable.
f) trace = 3 > O; unstable.

25.18 Write X(t; yo) for the solution x(t) of the autonomous system of differential
equations x = f(x) that satisfies the initial condition x(0) = yo. A steady
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state x* of this system isasymptotically stableif thereisan £ > 0 such that
for any yo with |lyo — Xoll < &, X(t;yo) — X* ast — .

25.19 Seefigure.

25.20 a)

b)

Steady states at (0, 0), (0,4), (2,0) and (1, 3).
6—6x—y —X )

The Jacobian of the RHSisJ =
y 4—x—2y

At(0,0),d = (8 2)Witheigenvalue36and4. S0, (0, 0) isan unstable
source.
At (0,4),J = (_i _2) with eigenvalues 2 and —4. So, (0, 4) is an
unstable saddle.
At (2,0),J = ( _8 _g) with eigenvalues —6 and 2. o, (2, 0) isan
unstable saddle.

3 -1\ o
At (1,3),J = (_3 _3> with negative eigenvalues —3 = /3. So,
(1,3)isasink.

All orbits starting inside the positive orthant tend to (1, 3). Speciesreach
equilibrium with both surviving. Seefigure.

Steady statesin the positive quadrant are: (0, 0), (O, 6) and (2, 0).

. . [(2—=2x—y —X

The Jacobian of the RHSisJ = ( —oy 6—2y— 2x>'

20
At (0,0),J = (0 6) = unstable.

-2 -2
At(2,0),J = ( 0 2) — unstable.

-4 0 :

At (0,6),J = (_12 —6) — asymptotically stable.

All orbits starting in the interior of the positive orthant tend to (0, 6); so
the first species eventually dies out. Seefigure.

Steady statesin the positive quadrant are (0, 0), (3, 0), (0, 2).
(0, 0) is unstable source.

(3,0) is asymptotically stable steady state, attracting al orbits in the
interior of the positive orthant.

(0, 2) isan unstable saddle.
Seefigure.



ANSWERS PAMPHLET 165

2521

25.22

25.23

25.24

25.25

d) Steady statesare (0, 0), (2, 0), (0,2) and (4/3,4/3).
(0, 0) isan unstable source. (2, 0) and (0, 2) are unstable saddles.

(4/3,4/3) is an asymptotically stable steady state which attracts all
orbits that start inside the positive orthant. See figure.

The fact that the lines were straight in Figure 25.12 plays amost no role
inthe analysis. The same argument would show that the vector field points
west on the curve corresponding to segment d in Figure 25.12 and points
south on the curve corresponding to segment b in Figure 25.12.Seefigure.

Theinterior equilibriumis

Vi) = (albz — aC; aphy — aICZ)
172 bib, — 16" b, — cic;

- cmint i [P —QW) - \
TheJacobian of (1) at thispointis: 1 1), withtrace —(byy; +
( ) p (_Czyz* _bzyz* ( 1W1

boy;) < 0 and determinant y;y;(bib, — ¢1Cp). In order for y; > 0, y; > 0
and the determinant > 0, we need:

b ¢
a > aC o —>—=
1bp > apcy % a
b C
ab; > ac, or -1 > 2
a @

bib, > ci0o.

Aswesaw in Exercise 25.15, thefirst two inequalitiesmean that the negative
effect of the size of each speciesis greater on itself than it is on the other
species. The third inequality follows from the first two and emphasizes the
requirement that the growth of each species has a greater impact onitsown
growth than on the growth of the other.

Seefigure.
N N
fFVXY) =xy,V=— X+ —-(-y)=y-x+x(-y) =0.
(xy) = xy = X ay(y) y-x+x(=y)
If V were constant on some large open set, then V would have to be zero

on that set and we do not know in which direction the orbits are moving,
relative to the level setsof V.
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25.27 a) Seefigure.
b) Seefigure.
c) Seefigure.
d) Seefigure.

Chapter 26

261a) 1, b)0, ¢ 0 d) 16 e 80.

26.3 If aj1ap — apap; = 0in(5), (5) becomes
—ayidgzag + Apdxsas + zdaz — 13822831 (*)
On the other hand,
— (axay — anass)(anas — azag)/an

_ 2
= (—agaag + a1dnanay — apayndizas + a11821813832) /a1

_ 2
= (—af a8 + a18108p3831 — A180813831 T A1821813832) /a11

= —ay18x3832 + A128p3831 — Ax@13831 T A13321832

().

26.5 Useinduction. Easily seenfor n = 1,2. Assumetruefor (n— 1) X (n— 1)
matricesand let Aben X n.
Let Ajj beasin Theorem 26.1. Let & = aj and A = A;i.
Expanding across row 1 of AT yields

det A" = > (~1)**a]; det A]
i
= > (~1)""a, detAy, by inductive hypothesis,
i
= det A, expanding down column 1.

266 c det=1-5-9+4-8-3+7-2-6-3:-5-7-2-4-9-1-8-6
=45+96+84—105— 72— 48
=225-225=0.

26.7 a) 2X2:2terms, 3X 3:3-2=3lterms, 4X 4 = 4-3! = 4l terms,
n X n: n! terms.
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26.8

26.9

26.10

26.11

26.12

26.13

Generally, let ¢ (n) denote the number of termsin the determinant of an
n X n matrix. From Theorem 26.1 it is clear that ¢(n) = nd(n — 1), so
&(n) = nl¢p(1). Furthermore, ¢(1) = 1, s0 $(n) = nl.

b) Each of the n! terms multipliestogether n elements; thisrequiresn — 1
multiplications. Thus, in toto there are n!(n — 1) multiplications. There
aren! termsto beadded or subtracted, and thisinvolvesn! — 1 operations,
sotherearen!(n — 1) + nl —1 = n-n! — 1 operations.

8termsvs. 41 = 24 terms.

detA = 1, detB = 1, det(A + B) = 4. Matrix C differs from each of A
and B only in the first row; itsfirst row is the sum of their first rows. So it
follows from Fact 2 that det(A + B) = det C. Calculation showsthat thisis
thecase: detC = 2.

Let k be the number of elementary row operations in a string of such
operations. Let A be the origina matrix and R the result of applying the
row operations on A in the prescribed order. Each operation leaves the
determinant invariant or changes its sign. If it takes one row operation to
change A to its row echelon form A;, detA = = det A,. Assume that for
a string of length k — 1, detA = *detR. Now suppose it takes k row
operations to go from A to R. Let R’ be the end result of the first (k — 1)
operations. By the inductive hypothesis, det A = = detR’. Furthermore,
going from R’ to R either leaves the determinant invariant or changes its
sign. So, detR = = detA.

Clearly true for 1 X 1 and 2 X 2 matrices. Suppose true for (k — 1) X
(k — 1) upper-triangular matrices. Expand the determinant of upper-
triangular matrix A along its first column:

detA = a;; - detAjp + 0-detAp + - -+ + 0- det Ay, = a1 det Aqg.

But, Az isa(k — 1) X (k — 1) upper-triangular matrix with agy, ..., an, ON
its diagonal.

By the inductive hypothesis, det Aj; = ax - - - ann.
So, detA = ag; - axn - - - an.

According to Fact 26.11, the determinant of an upper- or lower-triangular
matrix isO if even one diagonal element is 0. In this case, by Theorem 9.3,
the matrix is singular.

2 10
a) i) detA=det(O -1 6)=—6.
0 0 3
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2 31 -1
. B 014 -1 _ _
i) detA = det 00 2 4)21228
000 2
2 6 0 5
B 03 8 2| _5 a.( m.10-_
iii) detA = det 00 -4 3 =2-3-(—4)-19 456
00 0 19

b) All three are nonsingular.

26.14 det(i ';) =1-K=0ck=1-1

k 1 1
det|{1 k 1|=K-3k+2=Kk-DK>+k—2)
1 1 k

if and only if

=k-Dk-Dk+2=0 | 75

26.15 Suppose Aisinvertible. Then, A- A1 = |.
By Theorem 26.4, detA- detA~! = detl = 1. So, detA™! = 1/ detA.

26.16 a) Let a denotetheith row vector of A. Then according to Fact 26.4,

rag a1 a1

rap rap a
detrA=det| . | =rdet =-...=r"det

ran Ian an

b) Letr = —linpata
¢) Useinduction of r. If r = 1, trivial. If r = 2, Theorem 26.4 applies.
Assumetrueforr — 1. Then,
det(Ay- - A) = detAy - (Az -+ AY)
= detA; - det(Az- - - A) by Theorem 26.4
= detA; - detA, - - - det A by induction hypothesis.

d) ApplycwithA; =---=A = Aandk =r.
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e) If k = —manegativeinteger, AK = (A"1)™ and

det(AX) = det(A 1™ = (detA™H)™
= [(detA)" 1™ = (detA)™™
= (det A)X.

26.17 Eij(r)-BisBwithr timesrowi addedtorow j. By Fact 26.7, det(E;j(r )-B) =
det B.

On the other hand, since E;j(r) is a triangular matrix with only 1s on its
diagonal, det Ejj(r) = 1. So det Ejj(r) - detB = detB = det(E;j(r) - B).

26.18 a) If AT = A1, det A = detAT = detA™1 = 1/detA.
Therefore (det A)2 = 1and detA = *1.
b) If AT = —A, detA = detAT = det(—A) = (—1)"detA.
If nisodd, (—1)" = —1and detA = — detA.
Sincedet A = 0, Aissingular.

Q) (1/\/5 _1/\/5) is orthogonal; ( 0 1) is skew-symmetric (and

N2 12 -10
orthogonal). If U is any upper-triangular matrix, then U — UT is skew-
symmetric.

26.19 Let R denote the row echelon form of A. If no row interchanges were used
in the Gaussian elimination process, then by Fact 26.7, detR = det A. But
R is an upper-triangular matrix with the pivots of A on its diagona. By
Fact 26.11, det R = the product of the pivots of A. If Gaussian elimination
required some row interchanges, then det A = =+ detR as in the proof of
Theorem 26.3. In this case, det A = = the product of its pivots.

26.20 det(AB) = det A - detB.
SodetAB # Qif and only if detA #+ Oand detB # O.
But amatrix isnonsingular if and only if its determinant is nonzero.

26.21 a) Notation: Al = the submatrix of A obtained by deleting row i and
column j of A.

A21 is the submatrix of Ay, obtained by deleting row i and column j
from Aq;.

We will use induction on the size of Aq;.
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If Ajpisal X 1 matrix agq,

ail 0
det( 0 Azz)

ay; - det Ay, by definition of determinant,
= det A]_l - det A22.

Assumetruefor (n — 1) X (n — 1)Aq's.
Suppose Aq1 isn X n. Expand det A across itsfirst row.

a - detAll —a " detAlz + .-

Al 0 AZ 0
fu det<0 Azz) 812 det(o Azz)Jr

= a detAﬁ . detAzz —agp detAﬁ . detA22 + .-
(inductive hypothesis)

detA

= (a11 . detAﬂ —ap " detAﬁ + - ) detAzz
= detAll - det A22.

b) Same proof asin a.
¢) Carry out the multiplication on the right side:
A — AAG AN A I 0
0 Ay A£21A21 |

_ (All — AAL A + ApA A Alz)
A~y Ax Az

A Ap )
- = A
( Ay Ax

d) Combinebandc.

31 - 2 -1
e AZZ:(S 2)’ A221=(_5 3)’
) 2 1\ (-1 3\( 2 -1\/-3 1
A11_A12A221A212<1 1>_( 4 1)<—5 3)( 4 2)
_ (-89 -2\ . _
_< 14 0) with  det = 28.

Then detA = 28 - det Ay, = 28.
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26.22 1 1 1 1 1 1
(a b c):>(0 b—a c—a)
a? b 2 0 h®-a c2-a
1 1 1
= |0 b—a c—a .
0 0 (c—a)(c—h)
det =1-(b—a)(c— a)(c— a).

—1/59 4/59 5/59

1/59 -63/59 54/59
26.23 :
6/59 35/59 —30/59

26.24 A= (all alz) — adjA= ( 822 _a21)
A aAx —ap ann
Al= 1 ( a2 _aZl)
detA\ —ap ann/’

asin Theorem 8.8.
1 -1
26.25 a)(_1 2).
b,c) Notinvertible.
-3/2 1/4 1/2
d)( 5/4 -1/2 —1/4).
0 1/4 0

-1/80 9/40 3/80 -7/20
-1/10 -1/5 3/10 1/5

© 27/80 —-3/40 -1/80 -11/20
1/20 1/10 -3/20 2/5

26.26 a) Nine2 X 2 determinants at 3 steps each = 27 steps.

b) 6+ 6 + 4 = 16 steps.
¢) Gaussian elimination:

2n-n-D+2-n—-1)-N—-2)+---+2-2-1
=21-2+2-3+---+(n—1)n)

n(n+ 1)(2n + 1)

=2-(2+F+--- 4+ = 3
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Adjoint method:

Each (n — 1) X (n — 1) determinant requires (n — 1)! - (n — 2) stepsand
there are n? such determinants: n(n — 2) - (n — 1)!

26.27 @) X1 = —13/(—13) = 1, x, = 52/(—13) = —4.
b) xg = —12/12 = —1, o = 12/12 = 1, g = 24/12 = 2.
©) X1 = 0/(=5) = 0,% = 5/(=5) = 1, x3 = 5/(~5) = —1.

26.28 a) If entries of A are all integers, each det A;j is an integer. Since det A =
*1, each (det Ayj) /(det A) isan integer. But thisis =(ji)th entry of A~2.

b) If al entriesof Aand A~ areintegers, det A isan integer a and det A2
is an integer b. By Theorem 26.5, b = 1/a. If a and 1/a are integers,
a= =1

26.29 a) Since the leading principal minors are 1, —6, and 28, the pivots are 1,
—-6/1= —6,and 28/(—6) = —14/3.

b) 1Al =2, |A| =2, |Ag] = —4, |A4l = 4
So, thepivotsof Aare2,2/2 =1,-4/2 = —2and4/ — 4 = —1.
This agrees with the result of Gauss elimination:

ooonN
OO PrpF
|
OoONOP
P NEN

26.30 b) Log-demand equations:
qgj_ =k; + ap In(l + t) + ag1P1 + appe + bly,
09 = ko + @ IN(L + ) + @ Py + axpp; + byy.
Equilibrium equations:
(a1 — Ng)pr + @app2 = My — kg — agp In(1 + t) — byy,
APy t+ (@ —M)p2 = M — ky —axIn(l +t) — byy.

In the expressions for p; and p, on page 742, replace a;1 In(1 + t) and
a1 In(1 + t) by a5 In(1 + t) and ay, In(1 + t), respectively.
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26.31

26.32

26.33

Take 9/ dag, of both sides of both equationsin (20):

a1 Pz
app —Mm)—— +ap— =0,
(a1 — ny) o e

JIp1 ap2
a— + (ap —Np)—= + p, = 0.
a ( )t?azz P

Solve via Cramer’srule:

p1 _ pear P2 p2(agr — M)
P _ and 2Pz _ P8 7 M)
dag D dayy D

Do the same using d/dn,:

p1 P2
a1 — N)— + ap— =0,
(@11 1) o, 12 o,
p1 ap2
an——t+t@—Mm)-——p=0.
D1 an, (a2 2) an, P2
dp1 _ —appP2
any D -

Letg] = my+nypy+ngIn(1—t)in(19). Writem;, = my+ngIn(1—t) < my
sinceln(1 —t) <O.

Jp1 (—axp +ny)
In(2), — = ———— = < 0.
n(21) m D
Asmy decreasesto my, py rises.
p2 a
In(22), — = ——=.
n(22) m D

If goods are complements so that ay; < 0, dpo/dmy > 0. As my drops to
my, p. falls.

If goods are substitutes so that az; > 0, dp,/dmy < 0. Asmy dropsto m;,
P2 rises.

(- Dx+py=0,
x+ y=1
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Applying Cramer’srule,

0 p
_ det(l 1) P p
p
1

X = = - = [}
Olet(q—l ) g-1-p 1+p-gq
1
qg—1 O
y:det( 1 1): q-1
q-1 p 1+p—q
det( ) 1)

26.34 Supposethat for (n — 1) X (h — 1) matrices A, each term in the expansion
of det A contains one and only one entry from each row of A and one and
only one entry from each column of A. Let B bean n X n matrix.

detB = by; - detByg — by - detBip + - - - = by, - det By,

Look at the jth term *by; - det B;; in thisexpansion, where Bjj is B excluding
row 1 and column j. By the induction hypothesis, each term in det By
contains exactly one entry from each of rows 2, ..., n of B and exactly one
entry from each of columns1,...,j—1,j+ 1,...,nof B. Then by; - det B;
contains exactly one entry from each row of B and exactly one entry from
each column of B. Thisholdsforeachj = 1,...,n.

26.35 a) 2x2:even: (1,2) — (1,2);0dd: (1,2) — (2,1).3X 3:even: (1,2,3) —
(1,2,3)or (2,3, or(31,2);

odd: (1,2,3) — (2,1,3) or (1,3,2) or (3,2,1).
b) Therefore, using (36), det of 2 X 2isay;a; — a1287.
detfor3 X 3 = Q118083 + Ajpdpzadz; + ajzdn azn

— Q2821833 — A11832823 — 13822831

These match (1) and (5), respectively.

Chapter 27
27.1 a) Yes.
b) No: (1,0) + (1,1) = (2,1).
c) Yes.

d) No: (1,1) + (1, —1) = (2,0).
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27.2

27.3

274

275

27.6

27.7

e) No:3-(0,1) = (0,3).
f) Yes, {(0,0)}.

If (X1, X2) and (y1, ¥») are nonnegative vectors, then sois(X; + yi, X2 + ¥»).
Thus, the nonnegative orthant is closed under addition. But (—1)(1,1) =
(—1, —1), so the nonnegative orthant is not closed under scalar multiplica-
tion.

a(xg,0) = (axq,0) and B(0, x2) = (0, Bxz). But (1,0) + (0,1) = (1,1) &
W.

(a1, by, b1, ¢1) + (82,002,102, C2) = (a1 + @,y + by, by + by, ¢ + ), and
r(a,b,b,c) = (rarb,rb,rc).

2a) (2,1),(1,2).

2b) (2, ).

20) (1,1,0), (0,1, 1).

2d) (1,1,0),(0,1,1), (1,0, 1).

3a) (1,0,1,0),(1,0,0,1),(0,0,1,1).
3b) (1,0,1,0), (1,0, —1,0).

1) (1,141.

2) Any maximal linearly independent subset of the vectorswa, . .., Wy.
3) (1,-1).

4) Not a subspace.

5) (1,0,0,0),(0,1,1,0),(0,0,0,1).

6) No basis.

7 (1,1...,1).

a) (2,-1).

b) (2,—1,3),(0,0,2).

) (2,1),(0,4).

d) (4,1,-5,1),(0,3,0,6),(0,0,2,0).
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1 2 0 3
. - 3 5 1 7 .
27.8 The corresponding matrix is 11 11 . Its row echelon form is

01 -1 2

1 2 0 3

O -1 1 -2

0 00 0

0 00 0

Thebasisis: (1,2,0,3) and (0, -1, 1, —2).

27.9 Themrows of A arevectorsin R".

By Theorem 11.3, if m > n, any set of mvectorsin R" islinearly indepen-
dent.

27.11

27.12 a) (;)

()

¢) The nullspace contains only the vector 0.

1 00 —-1/4
d) Thereducedrow echelonformis|{ 0 1 0 2 . S0, X1 = .25Xq,
0 0 1 0
Xo = —2X4, X3 = 0.
1/4
Thebasisis 0

1
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2 0 1
b)(_l).( o)-(z o

3 1 0

2 0\ _ 0) . (0) _

9 (1) (o) =0m(a) (o) =©

4 1/4 0 1/4 0 1/4

1 -2 31| 2] _ 0 -2 _
d) 5 0 0(0 ( O)O,and 5 0 =0

1 1 6 1 0 1

27.14 a) AXx = b has asolution iff b = c(i) For such a b, the solution is:

1 1
a(z) + c(o)forall a

b) Ax = b hasasolution iff b = cl(i) + cz(g).

1 1 0
For such ab, the general solution isa(z) +C (0) +C (0) for

0 0 1
al a.

¢) Ax = b alwayshasasolution: x = A~ 1b.
d) Ax = b aways has a solution.

4 1 -5
If b = cl( 8) +c (5) + c3(—10), the genera solution is
-4 2 7

1/4 1 0 0
-2 0 1 0

a 0 +c 0 + G 0 +c3 1 for al a.
1 0 0 0

27.15 a) Cal(C) = {b : Cx = b for somex]}.

b € Col(AB) = (AB)x = b forsome x
= A(Bx) = b forsome x
= b € Col(A).

b) Supposeb € Col(A). So, b = Az for some z.
Let x = B!z, sothat z = Bx. Thenb = Az = A(Bx) = (AB)x and
b € Col(AB).
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27.16 q) X € nullspace(A) — Ax =0
= B(AX) =B-0=0
= (BA)x =0

= X € nullspace(BA)

b) If x € nullspace(BA), BAx = 0. Since B isinvertible, Ax = B~10 =0
and x € nullspace(A).

27.17 a) Reduced Row Echelon Form (RREF) = (

o3 )

Basis of Col(A) = {(;) (é)} (or any basis of R?).

2
Basis of nullspace(A) = {(—1)}
0
bRREF-lZOB'fR A—; 8
) _(O 0 1). asis of Row(A) = : , ° .

Basis of Col(A) = {(i) (g)} (or any basis of R?).

2
Basis of nullspace(A) = {( —1)} .
0

1 20
0 0 1)

1 0
¢) RREF = (é 2 (2) 193).Basisof Row(A) = g , (1)
0 1/3
Basis of Col(A) = {(i) (S)} (or any basis of R?).
-2 0
Basis of nullspace(A) = 2 , _1/3
0 1

1\ /0
d) RREF=(é g (1)).BasisofRow(A)={(g),(g)}.
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27.18

27.19

27.20

Basis of Col(A) = {(j) , (é)} (or any basis of R2).

2
Basis of nullspace(A) = {( —1)}.
0

Let Abean n X mmatrix with column vectorsay, ..., am.

According to Theorem 27.6, dimcol(A) = dimRow(A), which in this
case equals n. Thus, the set of b for which Ax = b is a solution is an
n-dimensional subspace of R", in other words, all of R". This proves (1).

The matrix product Ax isthelinear combination X;a; + - - - + Xmam. Thus,
the set of matrix products Ax for al x €& R™ is the column space of A.
Consequently, Ax = b hasasolutionif and only if b isin the column space
of A. Thisproves (2). (See Theorem 27.7a.)

If rank(A) = m, then according to Theorem 27.10, dim nullspace(A) = m—
m = 0. If xandy areboth solutionsto Ax = b, thenA(x—y) = b—b =0,
so X —y € nullspace(A). But nullspace(A) contains only the vector O,
so X = y. This proves the first statement in (3); the second follows from
Theorem 27.9.

According to Theorem 27.9, the solution set to Ax = b isxg + nullspace(A)
where Xg isany particular solution of the equation. Thus, the dimension of
the solution set is dim nullspace(A) = m — n according to Theorem 27.10.
This proves (4).

a) Yes {(X1, X2, X3, %) 1 X% =X =0t ={(0 1 -1 0)}4
b) YeS;{(XLXZ,XS'XA):XZ:X3:0}2{<8 é 2 8)}-
9 %ei 5 0) (o 1) = (o 1)

d) Yes.

0 0). .
€) No.(O 0)|snot|ntheset.

a) Check properties 1 to 10. Straightforward.

b) Proof 1: Supposecy- 1+ CiX+ X2+ - - - + ¢,x" = 0, the zero function.
Let f(X) = Co + C1X + CX2 + - -+ + Cpx".
f(0)=cp=0¢cp =0.
f/(X) = ¢ + 26X + 3c3x? + - - - + nepx" L
f'(0)=0=c¢cy =0.
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f/(x) = 2¢; + 2+ 3CaX + - -+ + n(n — 1)c,x" 2,

f”(O) =20,=0=10¢=0.

Similarly,c3 = -+ =¢, = 0.

Proof 2: Use induction on n, the degree of the highest monomial.
Note first that the statement must be true when n = 0. Suppose
now that 3 ax* = 0 impliesag = -+ = a,-; = 0. Now sup-
pose that for some linear combination, 3 y_, axX = 0. Observe first
that ag = O, else the statement would be false for x = 0. Therefore
S e i axk = 0. Factoring, x3p—5 a1x¢ = 0. It follows that for all
x # 0, Y15 & 1x¥ = 0. By continuity thismust hold truefor x = Oas
well. Finally, theinduction hypothesisimpliesthata; = - -+ = a, = 0.

2721 0+0=0
(0 + 0)x = Ox
Ox + Ox = Ox
Ox + Ox = 0 + Ox
OX +0x —0x = 0+ Ox — Ox
Ox = 0.

2722(1) uveE Ry = u-vER,.
(2 u-v=v-u.
@B u-(v-w=(Uu-v)-w.
4 1-v=v fordlw
5) @/v)-v=v(1l/v) =1
6) vV eRy forveRiandr €R.
@) (U-V) =u-V.
(8) uU*s=u - s
(9 (U)*=us
(10) u! = u.

27.23 Letx = e = (1,0,...,0).
Ae; = first columnof A= (0,0,...,0).
So each entry in the first column of A is zero.
Ag = ith column of A = (0,0,...,0) = each entry in the ith column is
zero.

27.24 Letvy,..., Vv bealinearly independent set in vector space V.
If w € Visalinear combination of vy, ..., Vg,
thenwq, vy, ..., Vg isalinearly dependent set.
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28.1

28.3

284

Proof: Sincew = ¢civi+: - - +CV, 1-W—C1vy—CoVo— - - - — Vi = 0.

Since the coefficient of w is not zero, w, vy, ..., Vi are linearly depen-
dent.

Chapter 28

Each equation defines aline in the plane, so three equations describe three
lines. The figure shows how they can be configured: The three lines can be
coincident as in a, in which case the entire line is the (one-dimensional)
solution set. If two lines are coincident, the third line can either be parallel
asinb, in which case there are no solutions, or intersect at asingle point as
in ¢, in which casethere is a unique solution. When no lines are coincident,
all three can be parallel asin d, two can be parallel asin e, or no two can be
parallel. In cases d and e, there is no solution. If no two lines are paralld,
each pair of lines may intersect at a distinct point asin f, in which case
thereisno solution; or all linesmay intersect at acommon point. Inthislast
case the equation system has a unique solution, at the point of intersection.
Seefigure.

For 10 alternatives, M is45 by 3, 628, 000. For nalternatives, Misn(n—1) /2
by n!.

The eight aggregate pairwise rankings are:

a 1>2 2>3 1>3.
b 1>2 2>3 3>1
0 1>2 3>2 1>3.
d 1>2 3>2 3>1
e 2>1 2>3 1>3.
fy 2>1, 2>3 3>1
g9 2>1 3>2 1>3
h 2>1, 3>2 3>1

All voters1 > 2 > 3 will achieve a.

All voters1 > 3 > 2 will achievec.

All voters 3 > 1 > 2 will achieved.

All voters2 > 1 > 3 will achievee.

All voters 2 > 3 > 1 will achieve f.

All voters3 > 2 > 1 will achieveh.

Six voters with 1 > 2 > 3, five voters with 2 > 3 > 1, and four voters
with 3 > 1 > 2 will achieveb.

Six voters with 3 > 2 > 1, five voters with 1 > 3 > 2, and four voters
with 2 > 1 > 3 will achieveg.



182 MATHEMATICS FOR ECONOMISTS

More generally, consider the system of equations (8). To achieve an aggre-
gate 1 > 2 (2 > 1), choose y1, > 0 (y12 < 0), etc. Then, solve system
(8) for the vector of profiles (Ny, ..., Ng). One way to do this is to find
(X1, X2, X3) that satisfies:

1 1 -1\ /x Y12
G )E)-G)
1 -1 1 X3 Y23
X1 1 0 1 Y12
(xz):(o.s,)( 0 1 _1)(y13).
X3 -1 1 0/ \yzs

will give the appropriate number

that is,

Then, for an appropriate N,

N
N
of voters with each profile to achieve the aggregate paired rankings.

28.6 a) Letw; = 1ifi = 1 and O otherwise.

b) Let Njx denote the number of voters who put aternativei in position k.
Then

iispreferred tojiff > wiNik > > wiNj
k k
iff aZwkNik + bz Nix > aZwkNjk + bz Njk
k k k k

since >, Nik = >, Njx = N, the total number of voters.

c) For agiven vector of weights w, define a new vector of weightsw/ =
w; + b whereb = —w,. Then, let v = aw’ wherea = 1/, w/.
According to part b, w, w’ and v give identical outcomes. But w/, =
Vo =0and};v; = 1L

Chapter 29

29.1 b), d), e), f) g) and h) are bounded sequences, with least upper bounds 1,
1,1, 2, m, and 9, respectively.
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29.2

29.3

294

29.5

296

29.7

29.8

29.9

Let {Xa}n_, denote a bounded, decreasing sequence with greatest lower
bound b. We want to show that x, — b. For al & > 0, thereisan N such
that b = xy < b + &. Since the sequence is decreasing with greatest lower
bound b, it followsthat for all n > N, b = x, = xy < b + &. Thus, for all
e > Othereisan N such that for all n = N, |x, — b| < &, that is, bisthe
limit of {Xn}r_1.

Supposethat {xn}5_, convergesto x, and that {ym}m—, iSasubsequence. Let
n(m) denote the index in the original x-sequence of the mth element of the
y-sequence. The function n(m) is strictly increasing. Clearly, n(m) = m.
For all £ > Othereisan N such that for al n = N, |x, — x| < &. Choose
N; = N with N; = n(M;) for some M. Then, for all m= M; = n"%(N,),
Iym - Xl <e.

Suppose that b and c are least upper bounds for aset S. Since b is a least
upper bound and c isan upper bound, b = c. Since cisaleast upper bound
and b isan upper bound, ¢ = b. Consequently, ¢ = b.

Suppose X is an accumulation point of a sequence {X,};_,. Then, for al
& > 0 there are infinitely many elements x, such that |[x, — x| < &. Let
y1 = X. Letng = 1, andfori = 1,2,3,..., let n; denote the first element
Xk in the sequence {x,}_, after x,_, such that [x — x| < 1/i. Then the
sequence defined by y; = x, convergesto x, sincely; — x| < 1/j.

If a sequence of vectors is Cauchy, then each sequence of coordinate vec-
tors is a Cauchy sequence of real numbers. Thus, according to Theorem
29.3, each coordinate sequence converges; and so the sequence of vectors
converges.

A set Sisconnected if for each pair of open setsU, and U,, SN Uy # &
and SN U, # JandS C U, Uu, |mpI|eSthaI U Nu, # &.

Suppose cl Sis not connected. Then, there exist dioint open sets U; and
U,, each of which intersects ¢l S, that satisfy ¢l S C U; U U,. These two
setscover Ssince S C ¢l S. Furthermore, x € ¢l Sif and only if every open
set containing X intersects S, so U; and U, each intersect S. Hence, Sis not
connected.

Let S = B(+10 U B(-1,0, Where By is the closed ball of radius 1 about x
in R2. Sis closed and connected. However, when you remove its figure-8-
shaped boundary, you find that itsinterior is the disjoint union of two open
balls, a disconnected set. See figure.
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29.10

29.11

29.12

29.13

29.14

29.15

Theclosure of thegraph GisG U {(0, x) : —1 = x = 1}. Thefact that this
set is connected follows from Problem 29.8 and the fact that the curve G is
connected. See figure.

i isclosed and connected. ii is closed, compact and connected. iii is closed
and connected. iv is the union of the x- and y-axes less the origin. It is not
connected, and neither open nor closed. See figure.

i isaclosed, connected subspace. ii is aconnected, open annulus. iii isthe
closed unit simplex in R3, and is compact and connected.

nonnegative. If any one x; is strictly positive, so isthe sum and hencesois
the square root. Thusa and b hold. Then

which proves d. (In Theorem 10.5, take u = (a;Xy,...,anX,) and v =
(aly1! ey anyﬂ))

a, b, ¢, and d all follow from the corresponding property of the absolute
value. For example,
Ni(X +Yy) = [xe + yal + -+ + [X + Yl
= Ixal + Iyal + - + [xal + Iynl
= (Ixal + -+ Ixal) + (Iyal + - -+ + Iynl)
= N1(x) + Na(y).

No(X) isthe max of nonnegative elements, hence nonnegative. If Ng(x) = 0,
then each [x|j = 0, and so x = 0. No(rx) = max{|rxal,...,[rx.|} =
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[r|Ng(x), proving c. Finally,

No(x +y) = max{[xs + yil, ..., [Xn + Wnl}
= max{|xa| + Iyal,.... Xl + |ynl}
= max{[xal, ..., [Xal} + max{lyal, ..., Iynl},
proving d.

29.16 Since |x| = Np(x) for al i, Ni(x) = >; x| = nNo(x). It is obvious from
the definitions that Ng(X) = Ny(x).

29.17 Supposethat N ~ N'. Then, thereare a,b > 0 such that aN(x) = N’(x) =
bN(x) for all x. Then (1/b)N’(x) = N(x) = (1/a)N’(x), so N’ ~ N.

Takea = b = 1toseethat N ~ N for any norm N.
Suppose N ~ N’ and N’ ~ N”. Then there are a, b, a’, b’ > 0 such that

aN(x) = N’(x) = bN(x) and a'N’(x) = N"(x) = b/N(x) forall x.
Then, aa’N(x) = N”(x) = bb’N(x), soN ~ N”.
29.18 Let {by};_, be asequence, and suppose N ~ N’. Then for some positive B
and al n, 0 < N/(b, — b) < BN(b, — b). If the sequence convergesto b

in the N-norm, then the right-hand side converges to 0. Hence, so doesthe
|eft; so the sequence convergesto b in the N’-norm.

29.19 Forx € R",

No(x) = max{lx}
= Ix
k
- %\/g

= D¢ =Ny(x)
| %
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where the last inequality follows from the concavity of the square-root
function. On the other side,

No(x) = ’%Xff /nmf\xxf

= \/ﬁmlgx ||
= \/ﬁNo(X)

29.20 The No-unit ball in the Euclidean planeisabox: —1 = x, < 1fori = 1,2.

The Ny-unit ball is the set of all points x such that [x;| + [%| = 1. This
set is diamond-shaped, given by the intersection of the following four half-
spaces. X1+ X =1L,y — %=1 -x+txx=Lad-x —x =1

The N,-unit ball satisfies the inequality ||x||> = 1, which in this case
isx? + x5 = 1. This inequality describes a disk of radius 1 around the
origin. The various weighted Euclidean norms have unit balls given by the
inequality a;x? + a3 < 1 with ay, a, > 0. These are ellipses. Seefigure.

29.21 Thiscomputation is contained in Exercise 19, whereit is shown that

/gxi = nmax |xd = y/INo(¥).

Thusif No(X — Xo) < r/4/n, Na(x — Xo) <'r.

29.22 Suppose the set Sis bounded in the N-norm; i.e., N(y) = aforaly € S.
Sinceall normsin R" are equivalent, for any other norm N/, N’(x) < BN(x)
forall x. Thenforanyy € S, N'(y) < Ba, and Sisbounded inthe N’-norm.

Similarly, suppose AN(x) = N’(x) = BN(x) for all x. Then, the open N'-
ball of radius ¢ is contained in the open N-ball of radius /A and contains
the open N-ball of radius £/B. Thus, every N-open set is an N’-open set,
and vice versa. Since closed sets are complements of open sets, the closed
sets for the two norms must be identical too. Since both norms have the
same open sets, aset Sis N-connected if and only if it is N’-connected. It
follows from the definition and the first part of this question that aset Sis
N’-closed and bounded if and only if it is N-closed and bounded.

29.23 a) Np-norm:; For any norm N, write B(X, £, N) for the open set

B(x,&;,N) ={y € R": N(y — x) < &}.
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29.24

29.25

29.26

29.27

Now, x € R7_ implies that each component X, > 0 and minx, =
e > 0. We'll show that the open set B(x, /2, Np) liesin R" . Let
y € B(x,&/2,Ng). Then, max; |y, — x| < ¢/2,i.e,

& & .
—— Y X< =
5 Vi — X > for dl i,
or

>0 fordli.

& &

NI ®

S0, B(x, £/2,No) C R, .

b) Ni-norm: As above, x € R}, implies that minx, = ¢ > 0. We'll
show that the open set B(x, £/2,N;) liesinR". . Sincemax |y; — x| =
Zj ly; — xil, B(x, £/2,N1) C B(x,£/2,No) C R ;.

Suppose that afinite subcollection covers (0, 1). Let N denote the largest n
such that theinterval (1/(n + 1),n/(n + 1)) isin the collection. Since the
sets in the collection are nested in each other, the union of al elementsin
the collectionis (1/(n + 1),n/(n + 1)). If 0 < x < 1/(n + 1), then x is
not in the union; so (0, 1) does not have the finite covering property.

The sets with n = 1,..., 10 together with the two additional sets cover
[0, 1]. The finite covering property requires that every open cover of [0, 1]
has afinite subcover.

Closed: Let S = {ay,...,an} beafinitesetin R". let &g = min{|lay — gl :
a # @ € S} Let {zj}]?;1 be a convergent sequence in S with limit z,.
Since the sequence is Cauchy, there exists N such that j,k > N implies
llz; — zll < &/2. By thedefinition of ¢, thisrequiresthat zy = zy1 = .. ..
S0, z5 isthis common value and liesin S. Therefore, Sis closed.

Bounded: Let B = max{||a|| : & € S}; B makes S bounded.

Sequential compactness: Let {xn},_, be asequencein S. Since Sis finite,
there is some point y € S such that x, = y for infinitely many n. The
subsequence consisting of all x, such that x, = y isobviously convergent.

Finite subcover: Let S denote an open cover of S. For each x € Schoosea
single set Uy € S such that x € Uy. The collection {Uy, x € S}isafinite
subcover.

According to Theorem 29.14, for each x € K; there is an open set Uy
containing x and an open set V, containing all of K, suchthat Uy NVy = .
The collection {Uyx}xek, is an open cover of K;. Choose a finite subcover
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29.28

29.29

30.1

{Uy,, ..., Ux,}. Theunion U of these sets contains K. Let V. = N_,Vy,.
Since each V, is open and the intersection is afinite one, V is open. Since
each Vy, containsKy, so doesV. Finally, U NV = .

The intersection and finite union of closed and bounded sets are closed and
bounded.

Let {Xn};—, denote a sequence of pointsin either the intersection or finite
union of compact sets. In either case there is a compact set A containing
an infinite number of pointsin the sequence. Let {ym}r,_, denote the sub-
seguence containing those points in the original sequence which arein the
compact set A. Since A is compact, the sequence {ym}:,_, has aconvergent
subsequence with limit y. This limit point is obviously in the finite union
of the compact sets, so the finite union is compact. In theintersection case,
this convergent subsequence is contained in every compact set, so its limit
y iscontained in every compact set, and soy isin the intersection.

Let {Ky,..., K} denote afinite collection of compact sets, whose unioniis
K. Let S bean open cover of K. Let Sy, denote the collection of al elements
of S whichintersect K. Since Ky, iscompact, each S, has afinite subcover
of Kin. The (finite) union of these finite subcoversis afinite subcover of K.

Let {Ka}aca denote a collection of compact sets with intersection K. K is
closed. Let S be an open cover of K, and let K, be a compact set in the
collection of compact sets. The collection S U {K®} is an open cover of K.
Since K, is compact, it has afinite subcover S’. Since this subcover covers
Ka, it hasto cover K. The finite collection S’\ {K®} consists only of setsin
S, and coversK.

Let {Xn}_, denote a sequence of pointsin a closed subset C of a compact
set K. The sequence has a convergent subsequencein K with limit x. Since
Cisclosed, x € C; so C issequentially compact.

A closed subset of abounded set is bounded, so C is compact.

Let S beacover of C. Then S U C° isan open cover of K. Hence, it has
a finite subcover S’. Finally, observe that S’\ C¢ covers C, so C has the
Heine-Borel property.

Chapter 30

Apply the argument of the text to the continuous function |F(x)| to show
that |F(x)| is bounded. Thus there isa b > —o« such that F(x) > b
for al x € C. Let B denote the greatest lower bound of the values that
F takes in C. Since B is the greatest lower bound, for al n there is an
Xn € C such that F(x,) < B + (1/n). Since C is compact, we can extract
a convergent subsequence {wn},_, of {Xn}r_, with limit w. Since F is



ANSWERS PAMPHLET 189

continuous, lim, F(w,) = F(w) = B, so wisthe global min of F in C.
Alternatively, apply the proof for the existence of a global max to the
function —F.

30.2 Denote the two sets A- and A<. To prove A- is closed, we begin with a
sequenceof points{xn}s_, in A= withlimit x. Weneedto show that x € A—.
Suppose (without loss of generality) that F(x) = c. Since F is continuous,
F(xn) — F(X). Now F(x,) = cfor dl n, so it follows from Theorem 12.4
that F(xX) = c, and therefore that F(X) = ¢; so x € A-. Exactly the same
argument appliesto A<.

30.3 The function F(x) = 1 —

is a bounded function on its closed

1+X)

domain on [0, =), but it does not achieve its supremum of 1.

30.4 a)

b)

Let No, N; and N, = || || denote the standard norms on R", as described
in Section 29.4. Let ey, ..., e, denote the canonical basis of R". Let
g = N(e)/llell and q = max; q;. For x = 3; &,

NX) = D IxIN(e) by properties ¢ and d of anorm
i
= > Ixlgllell by thedefinition of g
i

=q> Ixlllell by definition of g
i

= gN1(x) by definition of Ny
= gnNp(x) since N;(X) = nNp(x) forx € R"
= gnl|x]| by equation (29.8).

From this and property a it follows that if {Xn};,_, convergesto O (in
N,-norm), then 0 = N(xn) = gnl|x,l| — 0, so N(x;) — N(O).

Now suppose that {x,}n_, convergesto x in the Euclidean norm. Then,
Xn — X converges to 0, so N(x, — X) converges to 0. Then N(x,) =
N(X + Xp — X) = N(X) + N(X, — x) from property d of a norm; so
limsupN(xpn) = N(X). Similarly, N(X) = N(Xp + X — Xp) = N(Xp) +
N(Xn — X); so liminf N(xn) = N(x). Thus, N(x,) convergesto N(x) as
n — oo, Therefore, the norm N is a continuous function.

The unit sphere Sis a compact subset of R". It follows from part a and
Weierstrass's theorem that N achieves its minimum value m; on S at
some point x* € Sand its maximum value m, a somey* € S. Since
0 is not in the unit sphere (sphere, not ball), neither x* nor y* is 0. By
property b of anorm, N(y*) = N(x*) > 0.
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c) For any x € R", writex = rv wherer = [|x|| and v = x/||x||. By

property c of anorm, [lv|| = 1. By part b of thisexercise, my = N(v) =
mp, and therefore rmy = rN(v) = rmp. Since N(X) = N(rv) = rN(v)
andr = [IxIl, melIx]l = N(x) = mlIx]|.

d) Part c provesthat al normsin R" are equivalent to the Euclidean norm

N,. If N and N’ are two arbitrary norms on R", then there are positive

constants aq, a,, by, b, such that
aN(X) = No(X) = biN(x) and  asN’(x) = No(X) = boN’/(X)
for all vectorsx € R" by part c. It follows that

& = N’ RN(x) =
EN(x) =N'(x) and blN (X) = N(¥).

So, al norms on R" are equivalent. In particular, a sequence that con-
verges in one norm converges in any other norm.

30.5 Thethird order approximationis; € = 1+ h + (1/2)h? + (1/6)h?,

and the fourth order oneis: € = 1 + h + (1/2)h? + (1/6)h® + (1/24)h*.
Thethird order approximation at h = 0.21is1.22133 with error 0.0000694.

The fourth order approximation a¢ h = 0.2 is 1.22140 with error
0.00000276.

The third order approximation at h = 1is2.66667 with error 0.0516152.
The fourth order approximation at h = 1is2.718282 with error 0.009978.

30.6 (x + h)¥2 = x3/2 + (3/2)x%2h + (1/2)(3/4)x~Y/2h2. Taking x = 4 and

h = 0.2 gives (4.2)%2 =~ 8 + 3- 0.2 + (3/16) - 0.04 = 8.6075. The actual
value to four decimal placesis 8.6074.

30.7 For F(X) = /1 + X,

2 2 3
Pi(h) =1+ 2 Py(h) =1+ g - % Pa(h) = 1+ g - % + 2—6
For h* = 0.2, F(h*) = 1.09545 to 5 decimal places.
P;(h*) = 1.1 and the error is 0.00455488.
P,(h*) = 1.095 and the error is —0.000445115.
P3(h*) = 1.0955 and the error is 0.000054885.
For h* = 1.0, F(h*) = 1.41421 to 5 decimal places.
P,(h*) = 1.5 and the error is 0.0857864.

P,(h*) = 1.375 and the error is —0.0392136. P3(h*) = 1.4375 and the
error is 0.0232864.
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For F(x) = Inx + 1,

2 2 3

h h h
Pit) = h, Poh) =h— =, Py =h- 2+

For h* = 0.2, F(1 + h*) = 0.182322 to six decimal places.
P,(h*) = 0.2 and the error is 0.00177.

P,(h*) = 0.18 and the error is —0.00232156.

P3(h*) = 0.182667 and the error is 0.00023511.

For h* = 1.0, F(1 + h*) = 0.693147 to six decimal places.
P1(h*) = 1.0 and the error is 0.306853.

P,(h*) = 0.5 and the error is —0.193147.

P3(h*) = 0.833333 and the error is 0.140186.

30.8 Suppose£; and £, are two such numbers, with corresponding remainder
terms Ry (h) and Ry(h). Then £, — £, = Ry(h)/h — Ry(h)/h. Taking limits
ash—0,£;,-4£,=0.

30.9 Proof of Theorem 30.5:
a(a) = f(a) — f(a) — f/(a)@a—a) — My(a—a)> = 0.
Also,
g'(t) = f/(t) — /() — 2My(t — a).

Att =a,g'(a) = f'(a) — f'(a) — 2My(a—a) = 0.
Proof of Theorem 30.6:

g(@+h) = fa+h) - f@ — f'(@h— (1/2)f"(@h°
—fla+h) + f(@ + f'@h+ (1/2)f"@h* = 0
%@ = f(a) — f(a) — f'(@)(@a—a) — (1/2)f"(a)(a— &)’ — Ma(a - a)°
=0
gh(@) = f'(a) — f'(a@) — f"(a)(@a—a) — 3Mz(@a—a)> = 0
gs(@) = f"(a) — f"(a) — 6My(a—a) = 0.

30.12 a) Py(hi, hp) =y
hyh
Pa(hy, h) = hy — =7
hyh, | hyhZ
Pa(hy, ) = hy — =2 + 22,

2 3
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b) Pi(hy,hp) =1+ hy

h?  hs
Pz(hl,hz) =1+ hl + El + 52

h2 h2 n  hk?

=1+h+2+2+—+—.

Pa(hy,hp) =1+ 5 > 6 6
d)  Pi(hi,hp) = Kla(hy — 1) + b(h, — 1)]
Pa(hy, hp) = Kla(hy — 1) + b(h, — 1)]

n a(a— 1)(hy — 1) + ab(hy — 1)(h, — 1) + b(b — 1)(h, — 1)?
2

Ps(hy, hg) = Kla(hy — 1) + b(h; — 1)]

N a(a— 1)(hy — 1)? + ab(hy — 1)(h, — 1) + b(b — 1)(hy — 1)?
2

+ é[a(a - D(a—2)( - 1° +a@— Db(hy — 1*(h, — 1)]
+ %[ab(b = D(hy — H(hy — 1)” + b(b — 1)(b — 2)(hz — .

30.17 Fromthe ChainRule, att = 0

d B d? T
af(x+tw)—Df(x) w and Ef(ertw)—w D7f(x) - w.

The claim now follows from Theorem 3.4.

30.20 f(xo + h) — f(xg) = k—j'!f[k](xo)hk + R(h)

where R¢(h)/hK — 0 ash — 0. For small |h|, if f({(xo) # 0, then

sgn f (%o + h) — f(xo)

- = sgn 1400 /K.

Supposekiseven. Thenh > Ofor all nonzeroh. If fK(x,) > 0, thenfor all
sufficiently small h, f(xg + h) > f(x0) S0 Xg isalocal min. If fI4(xy) < 0,
then for al sufficiently small h, f(Xo + h) < f(xg) s0 Xy isaloca max.

Suppose k is odd and f¥(xg) # 0. If h < 0 and small, then

a [0+ 1) —f(x) _

e ~ sn 19 (0) /K.

sgnf(xo +h) — f(x) = —sg
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If h > 0and small, then

f(xo +h) — F(x0))

K = sgn f(xp) /K!.

sgn f(X + h) — f(x0) = sgn

Thesign of f(xg + h) — f(Xg) changes as h passesthrough 0, so Xg is neither
alocal maximum nor alocal minimum.

Appendix 1

All CUA={1,23,4,56,7,8,910,12,14,16,18,21,.. .}

u{0, -2, —4,—6,..}.

cuB={1,234,5,6,7,8,9,10,11,13,15,17,19,21,.. .}
U{-1,-3-5-7,...}

C-B =1{24,6,8,10}

AND =1{0,2,4,6,8,10,...}.

BUD=R, U{-1,-3-5,..}.

AU B = dl integers.

ANB=d.

Al2 a) Glb = {1}, nolub.
b) Glb = {0}, lub = {1}.
c) Glb = {-1}, lub = {+1}.
d,e f) Glb = {0}, lub = {1}.

Al3a) xE(ANBf = xZANB= XZ Ao x& B x& A°or
X € B®x € A°U B°.

b) X E(AUB) = x¢€ AUB= x& Aandx & B+ x € A°and
X € B¢ <= x € A" N B".

c) xeANBUC)
—=xeA and xeBUC
— (X€A and xeB)or(xeA and xe€C)
—xeANnBoxeANC
= xE(ANB)UANC).
Al4 Lemma: If 3 dividesn?, 3 dividesn.
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Al5

Al1.6

Proof: Any natural number n can bewrittenasn = 3k + awherek € N
and a € {0,1,2}. In particular, 3 dividesniff a = 0. For n = 3k + a,
n? = 9k? + 6ka + a. If 3dividesn?, n> = 3r = 9k? + 6ka + a2 for some
r € N.So,r = 3k? + 2ka + (a?/3).

But, r isan integer iff a%/3 isan integer iff a = 0iff 3dividesn. O

Theorem: +/3isirrational.

Proof: Suppose /3 isrationa, i.e., a quotient of integers: /3 = p/q. We
can assume that 3 does not divide both p and g. Then, V3 q=por
3-¢° = p

This implies 3 divides p?. By the lemma, 3 divides p. So p can be written
p = 3mfor some min N, the set of natural numbers.

Then 3¢? = p? = 9n? or ¢ = 3n?. This implies 3 divides ¢?. By the
lemma, 3 divides g. This contradicts our choice of p and g—not both
divisible by 3.

We conclude that /3 cannot be written as p/q,i.e,isirrationa. O

1-2-
Trueforn= 112 = 5 3.
Assumetruefor n = k:

_ k(k+ D2k + 1)

2+ 4K
6

(IH)

Add (k + 1) to both sides of (IH):

k(k + 1)(2k + 1)

_ k= 1)[i(2k +1) + 6(k + 1)]

_ (k+ 1262+ ik + 6)

_ (k+ Dk f 2)(2k +3)

_ (k + D(k +62)(2(k +1)+1)
5 :

2+ + K+ (Kk+12= +(k+1)?

whichis (IH) with k + 1 replacing k. This establishes the induction.

11 _2 1.1 13
1-2 2 ' 1-2 2-3 3-4 &

wIN

Lt
1.2 23
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Guess.

1 1 1 n
4+ —— 4+ e 4 = .
1-2 2-3 nn+1) n+1

©)

We have seen that (G) istrueforn = 1,2, 3.
Assume (G) holdsfor n = kand add 1/[(k + 1)(k + 2)] to both sides:

IS 1 _ ko, 1
1-2 kk+1) (k+Dk+2 k+1 (k+21k+2
 kk+2)+1
 k+ Dk +2)
K+ 2k+1
 k+ Dk +2)
 (k+1)2
 k+ 1)K+ 2)
Ck+1
Tkt 2

That is, (G) holdsfor n = k + 1. This establishes the induction.

AL17 Trueforn= lsincel <2l =2
Assumetruefor n = k: k < 2%,
Multiply both sidesby (k+ 1)/k = 1+ 1/kwhichislessthan 2 for k > 1):

(k+1
k

1
= k —
2 <1+ k)

<2k.2

— 2|(+l

K+1<2%.

Appendix 2
A2.1 Using the notation of Figure A2.2,

_ IIBCIl _ IIBCIl /IIAC|l _ siné

tano = = =
IACIl  1IABII/ llAB|l  cos®

IAC 1 cosé

coth = = = —
IBC|| tan® sin@




196  MATHEMATICS FOR ECONOMISTS

[lAB]| [IACI| 1
sech = =1 -

[IACI| IIAB]|  cos@

[lAB]| IBCI| 1
csch = =1 = ___,

IBCI| IABI]|  sin6

A2.2 For graphs of cotangent, cosecant X, secant X. See figures.

A2.3 UseFigure A2.2 for angles between 0 and 90 degrees. If 6 = ZBAC, then
90 - 6 = LABC.

cos = [|AC] / 1AB]|

Sn(90 — 0) = sin(~ ABC) = 2PPositeley
hypotenuse
IAC]|
= ——— = Cos6.
llAB|
Similarly,
adjacent leg
cos(90 — 6) = cos(£LABC) = ——
& ) & ) hypotenuse
IBCll _ .
= —— =4d9né.
lAB]|
A2.4 a) sin120° = sin60° = /3/2, c0s120° = — cos60° = —1/2,
tan120° = —/3.
b) sin135° = sin45° = 1/4/2, c0s135° = — c0s45° = —1/4/2,
tan135° = 1.
f) sin240° = —sin60° = —/3/2, c0s240° = — cos60° = —1/2,
tan 240° = /3.

A25 a) cot30° = cos30°/sin30° = /3, sec30° = 2/4/3, csc30° = 2.
b) cot60° = 1/4/3, sec60° = 2, csc60° = 2/4/3.

A26 Let X = sina, Y = cosa, X = cosa/2, y = sina/2. By Theorem A2.2,
X =2xyandY = x? — y? Solve for x and y in terms of X and Y
(compare with Exercise 15.33) to find x = X/2y, Y = (X2/4y?) — y? =
(X2 — 4y*)/4y°.
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—4Y */16Y2 + 16X?2
8
*1-Y
2

A+ 4V - X2 =0 = y? =

=—-=

N <
NI =

sinceX? + Y2 = 1.
V=0=—y = %(1—Y):>y= +/05(1-Y).

Substitution gives: sin(a/2) = *=,/0.5(1 — cosa). Similarly, cos(a/2) =
+,/0.5(1 + cosa).

A27 a) sin15° = sin(60° — 45°) = 2-3/2(,/3 — 1).
d) c0s22.5° = cos(} - 45) = 27%/4(y/2 + 1)"%.

A2.8 Seefigure.
A2.9 0.01 ? (x radians) ? (x degrees)
1 0.84 0.01745
0.1 0.998334 0.01745
0.01 0.999983 0.01745
: / Y o /
A2.10 (tanx)’ — (smx) _ sin’x- cosx — sinxcos'x
CoSX Cos? X
_ cos’x + sin?x
cos? X
— 1 _ SeC2 X
Cos? X '
1\ 1
(cotx)’ = (—) = ———— - s’ X
tanx tan? x
_cox 1 1
sinx  cos? X sinZ x
= — CC? X
1 !
secx)’ = = - —sin
(secx) (cosx) coszx( X)
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sinx 1

© COSX COSX
= tanXx - SeCX.

(cscx)' = <$) = _§T12><(COSX)

COSX 1
sinx

sinXx
— Cot X - CSCX.

A211

T 1 /m\? 1 /m\*
—=1—-—(=) +=(—=) = .70742
COS4 2! (4) 4 (4) 07429,

which compares well with 0.707107.

3 5
03555+ 4(5) - e
which compares well with 0.866025.
A2.12 f(X) = sinx f(0)=0
f/(x) = cosx fll0)=1
f’(x) = —sinx f7(0)=0
f¥(x) = — cosx f¥o) = -1
fl4(x) = sinx fo)=0
f19(x) = cosx f80) =1
Taylor series.

1 1 , 1 5, 1 4
O+—-1-x+z-0-x +§(—1)-x +E-0-x +

1!
x3 x5
- 4+ =
3! 51

=X

Similarly, for g(x) = cosx.

1 5

A2.13 Let N be any fixed integer > a.Then, a/N < 1 and (a/N)™ — 0 as

m— oo, Choose n > N.

a

a" aN( a a
N+1 N+2 N+ (n—N)

n N
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N
Z|%
—
Zlo
Zlo
Zlo
N—

Let n — oo; keep in mind that N isfixed. (a/N)" — 0. Therefore, a"/n! — 0.

Appendix 3

D

A3.1 By (4) solutions are; _23 =2=* %3 =2=* 3

s

NI

(2+3i)2—4(2+3i)+13=4+12i + 9> — 8 —12i + 13
=(@4—-9-8+13)+i(12-12)
=0.

A32 2 =2-3, =3+4, zz=1+I.

Z]_+Zz:5+i 21_23:1_4i
e 7 (2-3)1-)
ares i n @)
_(2-3-i(3+2
- 1-i2
1 :
=§(—1—5|)

7n-7z=02-3)2+3) =z =2-3)1A-i=(-1) -5
=4-0°=13

1 a—hi a—hi a ) b
A33 75 acbh 2D _(a2+b2)_'(a2+b2)'
A3.4 b) Letz; = xg + iy, andz = X + iys.

@+ 2) = (X —iyD) + (X2 — iy2)
= (X1 + %) —i(y1 + ¥2)

=271+ 2.
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c) 212 = (XX — Y1Yo) T i(XeY2 + Xo¥1)
71 = (X — iy (% —iy»)
= (X1X2 = Y1Y2) — I(X1Y2 + Xo¥1)

=171 D.

A35a) zg=x tiy, =% t+iy

-2 = (X — %) Tily1—Y2)
= (X = %) —i(y1 — ¥2)
= (X —iy) = (X —iy2)
=42

z _xatiyn X iy _ (X + V1Y) + iy — Xay)

L Xptiya X iy X5+ Y2
ZL_ X —iyi X tiy, (XX + yiye) +ilxaye — Xoyr) _ <ﬁ)
Z X =iy Xty X3+ y2 )

A3.6 Solutionsof ax? + bx + ¢ = O are:

—b /b2 —4ac _ —_b , Vdac — b2

x= -+ VT O i

a 2a 2a 2a
=axip,
if b2 — 4ac < 0.
__b. p_ac-p
“« 2a’ 2a

A3.7 @) x3—1 = 0:Sincex = lisasolution,x — 1dividesx*—1: x*—1=
(X — (X + x + 1).

— —“+ /1 —
x2+x+120@x=i‘=—}ti@.
2 2 2
. 1 3 1 .3
__+_—_—_.
Solutions are 1, 5 |2, 5 |2
b) x* + 1 = 0; Since x = —1 is a solution, x + 1 divides x® + 1:
B+ 1=(xx+1DX —x+1).
+ /1 —
x2—x+1=0@x=#=%ii§.
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. 1 /3 1 .43
Solutlonsare—1,§+|§,§—|%.
A38 el =¢el- €& = gcosl +isinl).
/2 = cos— +isinl =i,

2 2
e2*77i — e2 . efﬂ'i = ez(COS(_’IT) + |S|n(_77)) = _e2_

A39 &t -¢e?

(1+Zl+z§+§+ )(1+z +Z%+§+~-)

20 3 20 3

z
:1+(Zl+22)+(2::'+2122+§%)

3l
+§(23+1|2| 22+ 2I1]z§zz+z§)

(z4+ 3 1lz§zz+ 2I2Iz%zz+ 1|3|2123+z4)

1 1 1
=1+ (Zl + 22) + 5(2122)2 + 5(21 + 22)3 + E(Zl + 22)4 +

= etz

The coefficient of 2, Z; in the big expansion above is

11 1 (+K
K- (+R jK

But, (j + k)! /(j! k!) is precisely the coefficient of zjlz‘g in the expansion of

(Zl + Zz)j K,

A3.10 If x, = C13n + Cy - 1", then Xn+1 = 3C13n +1-¢c- 1" and Xn+2 =

9C13n +1-C- 1",
AXne1 — Xy = (12013” +4c, - 1”) - (3C13n + 3¢ - 1“)
=9c,3"+¢c,- 1"
= Xn+2-

Leem=n+ 2. SinCe€Xn+2 = 4Xn+1 — 3Xny Xm = dXm—1 — 3Xm-2.
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A3.11 a) If Xy = ky(2 + 3i)" + ko(2 — 3i)",
Xnt1 = (2 + 3)kg(2 + 3i)" + (2 — 3i)ka(2 — 3i)"
Xnp2 = (24 31)%ky(2 + 30)" + (2 — 3i)%k(2 — 3i)"
= (=5 + 12i)ky(2 + 3i)" + (=5 — 12i)ko(2 — 3i)".
A%ni1 — 13X, = [4(2 + 3i) — 13]ky (2 + 3i)" + [4(2 — 3i) — 13]kx(2 — 3i)"
(=5 + 12i)ky (2 + 3)" + (=5 — 12i)ky(2 — 3i)"

= Xn+2-

b,c) By DeMoivre'sformula, (2 = 3i)" = (5" cosnfy =+ i5" sinnfy), where
tan 6y = 3/2. Now,
(c1 + ic)(5"cosnby + i5"sinnfy) + (c1 — i) (5" cosnby — i5" sinnbp)
= (c15" cosndy — ;5" sinnfp) + i(c5" cosny + ¢15" sinndg)
+ (c15" cosnfy — ¢,5" sinnBp) — i(c,5" cosndy + 15" sinnép)
= 2(c,5" cosnfy — ¢,5" sinndp)

= 5"(Cy cosnfy + C, sinnby),

where C; = 2¢; and C, = —20;.

Appendix 4

4 1
A41 a) Ix’ — 7x*
b) 4x3 — 4x3/2 + 6x/2 — Inx
c) Se™
d) %e’zx2+6x
) (X2 + 2x + 4)%/2

f) 2In(x¥2 + x%/2).

A42 a) 1x2Inx — %2,

b) (1 — Ix+ by,

19 FN2 19
i V(1 18, 1 19-20-39
A3 S (L)Y (=)= =S 2= : =247,
,Zo(lO) (10) 1000 J.:le 1000 6

using Exercise AL1.5.
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4 2 2 2 14
A44 Vogy = £x3/2) = £.8-Z.1=2",
a)Jx dx 3x "3 8 3 3

1 e

b) J xInxdx—( X2 Inx — ZX)

= ezIn _9) 12Inl—1 _e2+1
“\z2" 7 2 1)~ 71

100

100
A45 J 3qY2dq = 6q1/ 2 =60 = total willingnessto pay.
0

Total paidis100 - 2 15 = 30. Consumer surplusis 60 — 30 = 30.

b t
A46 J e JarO%p(t) .
a

Appendix 5

A5.1 P(E®) + P(E) = P(E°U E) = 1, by (3) and (2). S0 P(E°) = 1 — P(E).

21

A52EV—7(1+2+3+4+5+6)—€—35
=>»-(—-3 + +
;6@ 35)% = [(25) (1.5)% + (0.5) =5
$2-35 = $7.
1 2 3 4 5 6 5
A53a)EV=_"-24+ -3+ > 4+ — 54+ -6+ —-T+_—-
3 36 36 36 36 36 36 36
3 2 1
+ =10+ — 11+ -
T3p 9t ge W g it 12
1 2 3 4 5 6
=t =t 2+ =
(36 3% 36 36 36) B+37
252
:— + = _—=1.
(15 14+6-7) = % =7
2 2 2 2 2 35
b) Var=2-3_6(1-5 +2-42+3-32+4-2 +5‘1):§
6 10 8 6 4 2 70
= — +_ +_. +_. +_ +_. =
BV =3 0731352353 "3 %" 3% °" 3%
35

8
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A5.4 a) .1(900)1/3 + .9(1000)1/3 ~ 9.965.
b) 9903 =~ 9.967.
c) (1000 — x)/3 = 9.9655 — x = 10.32.
AS5.5 Let f denotethedensity function for acontinuousrandom variable x running

from a to b. Divide [a,b] into n equal segments [x—1, %] each of width
Ax = (b—a)/n.

PrX € [%_1,x]} = r F) dx = F(x) - Ax.

Xi-1

n=EV= inp(xi) = inf(xi)Ax—>J’bxf(x)dx as Ax—O0.

Var =~ Z(X‘ — w)?f(x)Ax — J'b(x — w?f(x)dx as Ax— 0.
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Chapter 2 Figures

21 ) y=3x—-2

i) y=—2x
21
11
] 05 0.5 i
14
21
i) y=x2+1

05 1
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iv) y=x3+x
24
2 15 1 - 05
-2
4]
-6 1
-8 1
-10 |
V) y=x3—x
15 ¢
11
0.5
2
-0.5
a1
-1.5
vi) y = Ix
1+
0.8 1
0.6 1
04 ¢
0.2 ¢
] 0.5 0.5
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2.16 a)

b)

0.06 1

0.04 1

0.02 ¢

0.02

-0.04

-0.06

02 0.2 0.4

0.6

0.8 i 1.2 1.4
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d)

8+

2/ i

2.18 f(x) = x?¥/3

157
125 ¢

0.75 1

0.2

219

0.1+

0.05 1

-0.05 ¢

0.5
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Chapter 3 Figures

3.1 a) f(x) = x3+ 3x

b) f(x) = x*—8x3+ 18x*> — 11

30}
20t

10}

A A

o f(x)=3x3+9x+3

60 |

40}

20t
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d) f(x) =x"—7x

6
4
2
15 1 05 05 1 15
2
-4
-6
e) f(x) =x¥3
25
2
15
1
0.5
1 2 3

f) f(x) =2x8 —3x*+2
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3.4, 3.5 (The same graphs work for each part of each problem.)

a) 1t
05 |

1 05 05 1
05 |
.1 L
b) 1t
05 |

1 05 05 1
05 |
.1 .

1 2
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36 f(x) =16(x+1)/(x—2)

1000
750
500
250

-250
-500
-750

-1000

37 a) f(x)=x/(x*—1)

40+

20t

05 1 15
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b) f(x) = x/(x* + 1)

04

0.2

10 5

0.2+

o) f(x) =x2/(x+1)

15¢

10t

10

!
N
=

210 |

-15 +

d) f(x) = (x2+3x)/(x*—1)
30

20

10

-10

-20
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e f(x) = (x*+ 1)/x

10

05 1 15
f) f(x) =1/(x>+ 1)
15 1 05 05 1 15
09 |
0.8 |
07 |
0.6 |
05 |
0.4 |
03k
3.8 a) 21
15}
1,
05 |
1 1 2 3
0
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©)

d)

5 4 3 2 1 1 R
.2 b
4l
.6 b
_8 L
25 |
8 6 ) 2 2 4
25
5
75
_10 L
125
-15 L
0
04 |
02t
2 3 2
0.2
0.4
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3.15

Chapter 5 Figures

52 a) st

0.2 0.4 06 0.8 1
b) 1
0.8
0.6
0.4

0.2
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0)

14}

12¢

10t

d 12

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8 1
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59 a)
25 |

15 ¢

05 ¢

b)

0.5
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Chapter 13 Figures

13.1 a)
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f) 10.50 55 ,
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13.9 Thelast two plotsaredifferent viewsof thecurvein part d. Thefirstisfroma
“generic” position, and thelast isfrom the top, |ooking down on the xy-plane.

a)

2.5 3 3.5 4

b) 3

o
N
o
IS
©
o
o
©
N

c)




228 MATHEMATICS FOR ECONOMISTS

d)

Chapter 18 Figures

2 -1-05 05 -1 -2
1 05 0 05 1
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Chapter 21 Figures

©
—
N

Chapter 22 Figures

22.23 a)

Chapter 24 Figures
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Appendix 2 Figures

A2.2 Graph of the cotangent function on the range [, 7]
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