SOLUTIONS TO CHAFTER 1

Problem 1.1
{a) Since the growth rate of a vaniable equals the time denivative of its log, as shown by equation {1.10]) in
the text, we can writs
@ _dinZit) dIn[X(t)¥(t)]
Ziy & dt ’
Since the log of the product of two variables equals the sum of their logs, we have
Z(t) dnX@)+InYit) dlnX() i dIn¥(t)
@ 20" dt T a i
orsimply
Ziy X Yo

Ziy  X(r) Yin)

{b) Again, smee the growth rate of a vaniable equals the time derivative of its log, we can write
() dinz) dn[X@)/ Y]
Z(ty  dt de '

Since the log of the ratio of two vanables equals the difference in their logs, we have

s 20 dlin X@) -InY(t)] dinX() dInYie)
Z() dt Toa dt

or simply
Z( XM Y

.

{c) We have
a Zm) dinZ@) din[X@®"]
Z()  d dt

Using the fact that In[X(t)" | = alnXit), we have
2(1) dfaln X(t)] ] dlIn X(t) o X(e)

Z()y ot dt X'
where we have used the fact that o iz a constant.

Problem 1.2

{a) Using the information provided in the question, the ,
path of the growth rate of X, X(t)/X(t), is depicted in | ~oL)
the figure at nght. Xty
From time 0 to time t, , the growth rate of X is constant
and equalto a > 0. At time t; , the growth rate of X
drops to 0. From time t; to time t; , the growth rate of P
X rises gradually from 0 to a. Note that we have mads ;
the assumption that K{r},«'X{t] rises at a constant rate
from t; tot; . Finally, after time t; | the growth rate of
X is constant and equal to a agamn
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(b) Note that the slope of InX(t) platted againet time js
equal to the growth rate of Xit). That is, we know
dinX(t) _ X(r)
dt Xit)
(See equation (1.10) in the text.)

From time 0 to time t, the slope of InX{t) equals

a > 0. The nX(t) locus has an inflection point at t, ;
when the growth rate of X(t) changes discontinuously
from a to 0. Between t, andt, » the slope of InXit)
rises gradually from O to a. After time t; the slope of
InX(t) is constant and equal to a > 0 again,

Problem 1.3

(a) The slope of the break-even investment line is
given by {n + g + 5) and thus a fall in the rate of
depreciation, &, decreaszes the slope of the break-gven
imvestment line,

The actual investment curve, f{k) is unaffected,

From the figure at right we can see that the balanced-
growth-path level of capital per unit of effective labor
rises from k* to k*h'zu.r :

(b} Since the slope of the break-even investment line
is given by (n + g + 8), a rise in the rate of
technological progress, g, makes the break-even
investment line stesper

The actual investment curve, sfik), is unaffected
From the figure at right we can see that the balanced-

growth-path level of capital per unit of effective labor
falls from k* to k*pw

InX(1)

[0

slope = a

slope=a

4

time
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(c) The break-even investment line, (n + g = &)k, is b
unaffected by the rise in capital’s share, o, el lab

The effect of a change in @ on the actual mvestment
curve, sk® can be determinad by examining the
derivative &(sk™)de. It is possible to show that

k™
(1} P
Far 0 < @ < 1, and for positive values of k, the sign
of &{k™)/fn 15 determined by the sign of Ink, For
Ink>0,ork>1, ﬁk“fﬂ::}ﬂ and so the new actual
investment curve lies above the old ane. For
Ink=0ork=1, Esic”,"rﬂc,-ﬁﬂ and so the new actual investment curve lies below the old one. Atk =1, so
that Ink = 0, the new actual mvestment curve intersects the old one.

(n+ g+ &k

=sk®Ink.

k* E*eew k

Tn addition, the effect of a nse in = on k* is ambiguous and depends on the relative magnitudes of < and
{n+ g+ 8&). It is possible to show that a rise in capital's share, o, will cause k* to rise if s > (n + g + §).
This is the case depicted in the figure above

{d) Suppose we madify the intensive form of the

production fimction to include a non-negative Inw!
constant, B, so that the actual investment curve is ell lab R~
given by sBf(k), B> 0. +g+8

Then workers exerting more effort, so that cutput per

I B k)
unit of effective labor is higher than before, can be j

modeled as an increase in B. This increase in B EBAT)
shifts the actual investment curve up.
The break-even investment line, (n + g + &)k, is S
unaffected.
k* K e k

From the figure at right we can see that the balanced-growth-path level of capital per unit of effective labor

rises from k* to k¥ypw -

Problem 1.4

{3) At some time, call it ty , there is a discrete upward jump in the number of workers. This reduces the
amount of capital per unit of effective labor from k* to kypw . We can see this by simply locking at the
definition, k = K/AL . An increase m L without a jump in K or A causes k to fall. Since f' (k) = 0, this
fall in the amount of capital per unit of effective labor reduces the amount of output per unit of effective
labor as well. In the figure below, v falls from v* to vurw .
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(b) Now at this lower kuew , actual | Tnvesument
investment per unit of effective labor | /efT I,
exceeds break-even investment per
unit of effective labor. That is, ¥ :
sflkyew ) > (g + 8)kogw . The 5+ &k
ECONOMY is now saving and investing _ i

more than enough to offset ol
depreciation and technological
progress at this lower kygy . Thus k
begins rising back toward k*. As

capital per unit of effective labor
begins rising, so does cutput per unit \/__"—_\i
of effective labor. That is, v begins
rising from ywew back toward y*, g k* k=K/AL

¥=1ik)

siik)

() Capital per unit of effective labor will continue to rise until it eventually retumns to the origmal level of
k*. Atk*, investment per unit of effective labor is agam just enough to offset technological progress and
depreciation and keep k constant. Since k retums to its original value of k* once the economy again retums
to a balanced growth path, sutput per unit of effective labor also retums to its original value of
¥ =Rk*).
Problem 1.5
(a) The equation deseribing the evolution of the capital stock per unit of effective labor is given by
(1) k=sf(k)~(n+g+8)k.
Substituting in for the intensive form of the Cobb-Douglas, fik) = k”, yields

k=sk™ - (n+g+5)k,
On the balanced growth path, k is Zefo, mvestment per unit of effective labar is equal to break-even
investment per unit of effective labor and so k remains constant. Denoting the balanced-growth-path value
of k as k*, we have sk*™ = (n + 8+ 8)k* Rearranging to solve for k* yialds

1i{l-a

2) k*=[s/(n +g+8)]"",
To get the balanced-growth-path value of output per unit of effective labor, substitute equation (2} into the
intensive form of the production function, v = k™
(3) y*=[s/tn+g+8)]""™
Consumption per unit of effective labor on the balanced growth path is given by c* = (1 - siy*.
Substituting equation (3) mto this expression yizlds
) c*=(1-9)[s/(n+g+8)] ¥ |

(b) By definition, the golden-rule level of the capital stock is that level at which consumption per unit of
effective labor is maximized. To derive this level of k, take equation (2), which expresses the balanced-
growth-path level of k, and rearrange it to solve for ¢
(5) s=(m+g+8)k"
Now substitute equation (5) into equation (4):

c*=[I-(n+g+H)k -““}[{n +g+8)k* % fn1g +5}]“"'“-“’ :
After some straightforward algebraic manipulation, this simplifies to
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(8) c*=k* -in+g+ak*

Equation (&) can be easily interpreted, Consumption per unit of effective labor is equal to output per unit
of effective labor, k*?, less actual investment per unit of effective labor, which on the balanced growth path
is the same as break-even investment per unit of effective labor, (n + g + 8k,

Mow use equation (6) to maximize c* with respect to k*. The first-order condition is given by
fetfokt=ak *™ ! ~(n+g+8)=0,

ar simply

(7) ak*' = (n+g+8)

Note that equation (7} is just a specific form of f* (k*) = (n + g + &), which is the general condition that

implicitly defines the golden-rule level of capital per unit of effective labor, Equation (7) has a graphical

nterpretation: it defines the level of k at which the slope of the intensive form of the production function is

equal to the zlope of the break-gven investment line,

Selving equation (7) for the golden-rule lovel of k yields
(8) k*gp = {ui'liﬂ+g+ 5}] I!.-{I—u.J_

(c) To get the saving rate that will yield the golden-rule lavel of k, substitute equation (E) into (5):

Bgp =(n+g+ E]{:;,."{n +5 +$]]{I_M'I{I_IIJ,
which simplifies to
() sz=o
With a Cobb-Douglas production function, the saving rate required to reach the golden rule is equal to the
elasticiry of output with respect to capital or capital's share in output (if capital eams its marginal product).

Problem 1.6

(a) Since there is no technological progress, we can carry out the entire analysis in terms of capital and
output per worker rather than capital and output per unit of effective labor. With A constant, they behave
the zame. Thus we can define v=Y/L and k = K/L.

The fall in the population growth rate makes the

break-even mvestment line flatter. In the
absence of technolagical progress, the per unit
time change in k, capital per worker, is given by P S T A k)
k =sf(k) - (5+n)k. Since k was 0 before the T
decrease in n -- the economy was on a balanced
growth path — the decrease in n causes k to
become posttive. At k*, actual investment per
wotker, sf(k*), now exceeds break-even
investment per worker, (Mayew + 6)k*. Thus k
maves to a new higher balanced growth path
level. Seethe figure at right.

(M + Bk

sfik)

As k nises, v — output per worker — also rises,
Since a constant fraction of output is saved, ¢ —
consumption per worker — rises as y rises, This
is summanzed i the figures below,
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time tife time

(b} By definition, output can be written as ; '|
Y = Ly. Thus the growth rate of output is Iny i
Y/¥=L/L+%/y. On the initial balanced growth
path, ¥/yv = 0 — output per worker is constant —
so Y/Y =L/L=n. On the final balanced growth
path, ¥y = 0 again -- cutput per warker is
constant again - and so /¥ = L/L = NyEw <0
In the end, output will be growing at a
permanently lower rate

What happens during the transitien? Examine the production function Y = F(E,AL), On the mitial
balanced growth path AL, K and thus Y are all growing at rate n. Then suddenly AL begmns growing at
some new lower rate uzw. Thus suddenly Y will be growing at some rate between that of K {which is
growing at n) and that of AL (which is growing at fyew). Thus, during the transition, output grows more
rapidly than it will an the new balanced growth path, but Jess rapidly than it would have without the
decrease in population growth. As output growth gradually slows down during the transition, so does
capital growth until finally K, AL, and thus Y are all grovanng at the new lower nupe.

Problem 1.7
The derivative of y* = flk*) with respect to n is given by
(1} dv*én = F'(k*)[Sk*/on).
To find &k*/fn, use the equation for the eveluticn of the capital stock per unit of effective labor,
k =sf(k)—(n+g+8)k. In addition, use the fact that on a balanced growth path, k =0, k = k* and thus
$fk*) = (n+ g+ 8)k*. Taking the derivative of both sides of this expression with respect to n yields
L 3 L]

k &k
Wl = 5__ E ]
rf{k}ﬂn En+g+}aﬂ+k,
and rearranging yields
ik * k*

) =
@ in  sFk*) —(n+g+8)
Substituting equation (2) into equation (1) gives us
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SRR A,

fﬁ_p"*_ . k* ]
G fn ~Lik )[sf’{k']l—(n+g+5} '

Rearrangmmg the condition that implicitly defines k*, sfilk*) = (n + g + 8)k*, and solving for 5 yields
(4) s=in+g+Hk*Hk*).
Substitute equaticn (4) into equation (3):
@) By f'ik*)k*
on [(n+g+8)E (k* )k * (k")) - (o +g +8)
To tumn this into the elasticity that we want, multiply both sides of equation (5) by nf'y*:
L e n fik*pk * (k")

¥* &0 (n+g+8) [FkDk*/Fk*)]-1"
Using the definition that oy (k*) = £'(k*}k*/f(k*) gives us
o ndt_ _n [ @y |

y* & (n+g+3)|I —ﬂxtk‘}lJ

Now, with o (k*) = I/3, g = 2% and § = 3%, we need to caleulate the effect on v* of a fall in n from 2%
to 1%. Using the midpeint of n = 0.015 to calculate the elasticity gives us

n &y 0.015 {143 J

i e | —————— i

y' h T 00154+ 002+003j41-1/3
So this 50% drop in the population growth rate, from 2% to 1%, will lead to approximately a 6% increase
in the level of output per unit of effective labor, smee (-0.50)(=0.12) = 0.06. This calculation illustrates the
point that observed differences m population growth rates across countries are not nearly enough to
account for differences in y that we see.

Problem 1.8
{a) A permanent inereace in the fraction of autput that 15 devoted to investment frem 0.15 ta 0.18
represents a 20% increase in the saving rate, From equation (1.27) in the text, the elasticity of output with
respect to the saving rate is
iy LAt gl

y* & l-agk*’
where ag (k*) 15 the share of income paid to capital (assuming that capital is paid its marginal product),

Substituting the assumption that oy (k*) = 1/3 into equation (1) gives us
g dy*  ap(k") 1/3 1

y* & l-op(k®) 1-13 2
Thus the elasticity of output with respect to the saving rate is 1/2. So this 20% increase in the saving rate
- from s = 0,15 bo spew = 0,18 — will cause output to rise relative to what it would have been by about
10%%, [MNete that the analysis has been carmied cut in terms of cutput per unit of effective labor, Since the
paths of A and L are not affected, however, if output per unit of effective labor rises by 10%, output itself
is also 10% higher than what it would have been_]

{b) Consumption will rise less than output. Although output winds up 10% higher than what it would
have been, the fact that the saving rate is higher means that we are now consuming a smaller fraction of
output. We can calculate the elasticity of consumption with respect to the saving rate. On the balanced
growth path, consumption 15 given by

_
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(2) e* =(1-s)y*.
Taking the derivative with respect to s yields
dc* -

3 ==y *4{l- i
3) el R P
To tum this inte an elasticity, multiply both sides of equation (3) by s/c*:

dc? g5 ~-y*s oy* g
Tt +({1-5} .
g5 c* (l-gy* ds (1-g)y*
where we have substituted c* = (1 - s)v* on the right-hand side. Simplifying gives us
det s -5 dy* 3
) ——= + :
g5 c* (1-5) & (l-gy*

From part (a), the second term on the right-hand side of (4), the elasticity of output with respact to the
saving rate, equals 1/2. We can use the midpoint between s = 0.15 and s,ew = 0.18 to calculate the
elasticity:

et g —0165

———=——4(5=030,

& ¢* (1-0165)

Thus the elasticity of consumption with respect to the saving rate is approximately 0.3, So this 20%
increase in the saving rate will cause consumption to be approsamately 5% above what it would have been.

(¢) The immediate effect of the rise in investment as a fraction of output is that consumption falls.
Although y* does not jump immediately ~ it only begins to move toward its new, higher balanced-growth-
path level == we are now saving a greater fraction, and thus consuming a smaller fraction, of this same y*.
At the moment of the rise in s by 3 percentage points - since ¢ = (1 - 5)y® and ¥* is unchanged -- ¢ falls.

In fact, the percentage change in ¢ will be the percentage change in (1 - 5). Now, (1 - 5) falls from 0.85 to
0.82, which is approximately a 3.5% drop. Thus at the moment of the rise in s, consumption falls by about
three and a half percent.

We can use some results from the text an the speed of convergence to determine the length of time it takes
for consumption to retum to what it would have been without the increase in the saving rate. After the
initial riss in s, s remains constant throughout. Singe ¢ = {1 - s}y, this means that consumption will grow at
the same rate as y on the way to the new balanced growth path. In the text it is shown that the rate of
convergence of k and y, after a linear approximation, ie given by L = (1 - oy }n +g +8). With (n + g + &)
equal to 6% per year and ay. = 1/3, this vields a value for 1 of about 4%, This means that k and v move
about 4% of the remaining distance toward their balanced-growth-path values of k*® and v* each year.
Since ¢ is proportional to y — ¢ = (1 - s}y - it also approaches its new balanced-growth-path value at that
same constant rate. That is, analogous to equation (1.31) in the text, we could write
(5) c(t)—cr=e BRI ) 1y
or equivalently

-hb _ C{t}—ﬂt
e e(l)-c*
The term on the right-hand side of equation (6) is the fraction of the distance to the balanced growth path
that remains to be traveled,

We know that consumption falls mitially by 3.5% and eventually will be 6% higher than it would have
been. Thus it must change by 9.5% on the way to the balanced growth path. It will therefore be equal to
what it would have been about 36 8% (3.5%/9 5% = 36.8%) of the way to the new balanced growth path.
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Equivalently, this is when the remaining distance to the new balanced growth path is 63 2% of the original
distance. In arder to determine the length of timz this will take, we need to find a t* that solves
(M ™ =0632
Taking logs of both sides of equation (7) yields
- = In{0.632).
Rearranging to solve for t gives us
t* = 0.459/0.04,
and thus
{8) t*=11.5 years.
It will take a fairly long time — over a decade - for consumption to retum to what it would have been in the
absence of the increase in investment as a fraction of output.

Problem 1.9
{a) Define the marginal product of labor as w = SF(K,ALYEL. Then write the production function as

¥ = ALfTk) = ALfIK/AL), Taking the partial derivative of output with respect to L yields
(1} w= &Y/OL = ALF' (k)[-K/AL? | + ARK) = A[-K/ALF ' (k) + fk)] = A[fik) - k£ (k)]
as required,

(b} Define the marginal product of capital as r = [EF(K,ALY8K] - & Again, writing the production
function as ¥ = ALf{k) = ALf{K/AL) and now taking the partial derivative of output with respect to K
yields
(2) re=[6Y/EK] - 8= ALF (k)[1/AL] -6 = £" (k) - &.
Substitute equations (1) and (2) into wL + rK:

wL + K = A[fik) - k' (k)] L + [£' (k) - 5]K = ALfk) - £ ([K/ALJAL + £' (kK - 8K,
Simplifying gives us
(3) wL +rK = ALfK) - ' (KK + ' (kK - 8K = Alfik) - 6K = ALF(K/AL, 1) - K.
Finally, since F is constant returns to scale, equation (3) can be rewritten as
{4) wL +rk = F{ALKSAL, AL) - 8K = F{K, AL) - 6K.

(¢) As shown above, r="F'(k) - §. Since & is a constant and since k is constant on a balanced growth path,
s0 is £'(k) and thus sois r. In other words, on a balanced growth path, i/r = 0. Thus the Sclow model
does exhibit the property that the retum to capital is constant over time,

Since capital is paid its marginal product, the share of output going to capital is tK/Y. Cn a balanced
growth path,
(/)

(5 W:Hr+ KK-Y/Y=0+(n+g)-(n+g)=0

Thus, en a balanced growth path, the share of output going to capital is constant, Since the shares of
output going to capital and labor sum to one, this implies that the share of output going to laber is also
constant on the balanced growth path.

We need to determine the growth rate of the marginal product of labor, w, on a balanced growth path. As
shown above, w = A[f(k) - kf'(k)]. Taking the time derivative of the log of this expression yields the
growth rate of the ma;g'inal product of labor:

w A . [£0k) = %f(8)] , +{f'(k}|’: - kf'(k) — kf"(k)k] e ~kf*(k)k
w A [fk)-kf(k)] ’ f(k) - kf'(k) g Fk) = kf' (k)

(5)
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On a balanced growth path k = 0 and so W/w =g That is, on a balanced growth path, the marginal
product of labor rises at the rate of growth of the effectiveness of labor.

(d} As shown in part (c), the growth rate of the marginal product of labor is

W —kf (k)
(8, g

w £(k) - kF'(k)
Ifk < k*, then as k moves toward k*, v /w >g. This is true because the denominater of the secand term
on the right-hand side of equation {8) is positive because f{k) is a concave function. The numerator of that
same term 15 positive because k and k are positive and " (k) is negative, Thus, as k rises toward k*, the
marginal product of labor grows faster than on the balanced growth path. Intuitively, the marginal product
of labor rises by the rate of growth of the effectivenase of labor on the balanced growth path. As we move
from k to k*, however, the amount of capital per unit of effective labor is also rising which also makes
labor more productive and this increases the marginal product of laber even more.

The gmwthlmte of the marginal product of capital, r, is

i [f)] kK

e fik) fik)
As k rises toward k*, this growth rate is negative since £' (k) > 0, £ (k) <0 and k > 0. Thus, as the
econamy moves from k to k*, the marginal product of capital falls, That is, it grows at a rate less than on
the balanced growth path where its growth rate is 0,

Problem 1.10

(a) By definition a balanced growth path occurs when all the variables of the model are growing at
constant rates. Despite the differences between this model and the usual Solow model, it tums out that we
can again show that the economy will converge to a balanced growth path by examining the behavior of k =
KrAL.

Taking the time derivative of both sides of the definition of k = K/AL gives us
@ E=[£]_ K(AL) - K[LA - AL] Ii_iri“’**“‘]: E_;{Eii}
AL (AL)* AL AL|_ AL AL L A

Substituting the capital-accumulation equation, K = [#F(K, AL)/K|K - 8K, and the constant growth rates
of the laber force and technology, L/L=nand A/A =g, into equation (1) yiclds

. [eF(K,AL)/oK] K- 8K 8F(K,AL)
Grken AL i K
Substituting SF(K, AL)EK = f'(k) into equation (2) gives us k = £'(k)k -8k - (n + g)k or simply
(3 k=[f)-n+g+H]k.

n+gk= k—6k-(n+glk.

Capital per unit of effective labor will be constant when k=0, i.e. when [f' (k) - (n + g+ 8)] k= 0. This
condition holds if k = 0 (a case we will ignore) or f' (k) - (n + g + 8) = 0. Thus the balanced-growth-path
level of the capital stock per unit of effective labor is implicitly defined by £'(k*) = (n + g+ &), Since

capital per unit of effective labor, k = K/AL, is constant on the balaneed growth path, K must grow at the
same rate as AL, which grows at rate n + g. Since the production finction has constant retums to capital
and effective labor, which both grow at rate n + g on the balanced growth path, output must also grow at
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rate n + g on the balanced growth path, Thus we have found a balanced growth path where all the
variables of the model grow at constant rates.

The next step i5 to show that the cconomy actually converges to this balanced growth path. At k= k*,
Flki=(+g+8). IFk>k® £ (k) <(n+g+8). This follows from the assumption that £* (k) < 0 which
means that £° (k) falls as k rises. Thus if k > k*, we have k < 0 so that k will fall toward its balanced-
growth-path value. [fk <k* ' (k) >(n+g+8). Again, this follows from the assumption that £" (k) < 0
which means that £' (k) rises as k falls. Thus if k < k*, we have k > 0 o that k will rise toward its
balanced-growth-path value. Thus, regardless of the initial value of k (as long as it is not zero), the
econony will eonverge to a balanced growth path at k*, where all the vanables in the model are growing at
constant rates.

(b} The golden-rule level of k - the level of k that maximizes consumption per unit of effective labor -- is
defined implicitly by £'(k™) = {n +g + 5). Graphically, this occurs when the slope of the production
function equals the slope of the break-even investment line. Mote that this is exactly the level of k that the
economy converges to m this model where all capital income 15 saved and all labor income 15 consumed.

In this model, we are saving capital's contribution to cutput, which is the marginal product of capital times
the amount of caprtal. If that contribution exceeds break-even investment, (n + g + 4)k, then k nses. Ifitis
less than break-even investment, k falls, Thus k settles down to a pomt where saving, the margmal product
of capital times k, equals break-even investment, (n + g + &)k, That 15, the economy settles down to a pomnt
where ' (k)k = (1 + g + &)k or equivalently f' (k) = (0 + g + &).

Problem 1.11

{a) The production function with capital-augmenting technelogical progress is given by
(1 Y =[AmKD)]* L™,
Dividing both sides of equation (1) by A@D™" L) yields

yoo | amKe _T uy __]H‘
AM¥ L LA ] LAm* L
and simplifying;
YW _'Mﬂ‘""‘-”-*“}m}]“ S M:}““"*"“’m}“f_c{_u]“
Ay | Lit) 1 Lit) '
and thus finally _
v | ke }
AL [Ap¥ L

Now, defining 4 = a/(1 - ), kit) = KVARLE) and v(t) = Y ARFLIE) yields
(2) ¥yt =k)®*.

In order to analyze the dynamics of kit), take the time derivative of both sides of kit) = K{t)/A(t°L{t):
i koAt Lo] -Kolsaw* ALy + Loaw®)

[A{t}“’ b[ﬂl1

1
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; Kit) Kt [ Am Lo
e Ry,

ALt A() L)L Aty Lit) ]
and then using kit) = KV AL, At)/A(D) = and Lit)/L(t) = n vields
() k(1) = K@)/ AW L(t) - (b + )kt
The evolution of the total capital stock is given by the usual
{4y K(t)=sY(t) - 5Kt
Substituting equation (4) mto (3) gives us

k(t) = sY(£)/A(0)® L(t) - 8Kt} AC)® Lit) - Gy + n)k(t) = sy(t) — (bya+n + 5)k(1).

Finally, using equation (2), w{t) = k{t)", we have
(5) k() =sk(t)™ - (dp+ n +E)k(r).

Equation (5) is very similar to the basic equation
governing the dynamics of the Solow madal with
labor-augmenting technological progress. Hera,
however, we are measuring in units of AL
rather than in units of effective labor, A{fL(). (P
Using the same graphical technigue as with the
basic Solow model, we can graph both
components of k(t). See the figure at right.

{6+ n + &

When actual investment per unit of A(t)"Lit),
skit)®, exceeds break-even investment per unit of
A(t)*L{E), given by (s + n + S)ket), k will rise
toward k*. When actual investment per unit of k* kit) = K{v AL

A)'Lit) falls short of break-even investment
per unit of A{t)*L(¢), k will fall toward k*® Ignoring the case in which the initial level of k is zero, the
economy will converge to a situatien in which k is constant at k* Since y = k*, w will also be constant
when the economy converges to k*,

The total capital stock, K, can be written as A*Lk. Thus when k iz constant, K will be growing at the
constant rate of gy +n. Similarly, total output, Y, can be written as A®Ly. Thus when y is constant,
output grows at the constant rate of ¢ + n as well. Since L and A grow at constant rates by assumption,
we have found a balanced growth path where all the variables of the model grow at constant rates.

(b} The production function is now given by

(6) Y(t) =30 L(ty' ™.

Define J{t) = M A(t). The production function can then be written as

(M Y =[amim] Lo,

Proceed as in part (a). Divide both sides of equation (7) by A@)™““'L{t) and simplify to obtain

() _{ i) T
AWMLy Lap™ iy |
Now, defining ¢ = o/(1 - ), j(t) = J(t)/A{Li) and y(t) = YEVAD'LA) vields
@) ylty=j0"
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In order to analyze the dynamics of j(t), take the time derivative of both sides of j(t) = J(t) /ALY
. Jo[ae’ Lo]-Toluo* ' Aouw + Loaw®]
i= :

[Mt}* L{:}] *
: i) i [ Aw L]
o e e ed
AL ATLL A Ly
and then using j(t) = J()/A@PLIE), A(t)/A(t) = u and Lit)/Lit) =n yields

(10} 56 =T/ Am° L) - (gu + m)jit).

El

The next step is to get an expression for J(t), Take the time derivative of both sides of T{t) = J(t)/A(t):
IA® -JWA® I Am Jn
Al)? CAMD A Al
Now use J(t) = J(t)/A(t), A(t)/A(t)=p and J{t) = sA(t)Y () - 5I (1) to obtain
_sAMY®) 8I()

Jin= A —m—}dlﬂh
nrsimply

(11) Tit)=sY(t) ~ (u+ 8T (1)
Sub:mnrte equation {11) mto equation (10):
30 =sY(0)/ AP L)~ (u+ 8T/ AWM L) (s + 1)j(1) = sy(t) ~[n + 8-+ pt + 8)] 0.
Finally, using equation (%), y(t) = j(t)}", we have
(12) J©) =50 - [n +5 -+ u(1+p)]jir).
Using the same graphical technique as in the basic Solow model, we can graph both components of j{t}.

T{t] =

See the figure at right. Ignoring the
pessibility that the mitial value of | is

zoro, the economy will converge to a i

i ! = = kGl 4+ t
situation where j is constant at j ¥, ! ML+ 8l
Since y = ] ° y will also be constant when 5jin®

the economy converges to | *.

The level of total cutput, Y, can he
written as ALy, Thus when v is
constant, output prows at the constant rate
of dp+n

LI

By definition, T= A®Lj. Once the
economy converges to the situation where
J is constant, ] grows at the constant
rate of g+ n. Since J = J A, the effective capital stock, J, grows at rate du +n + porn + p(l +4). Thus
the economy does converge to a balanced growth path where all the variables of the model are growing at
constant rates.

I 30 =T/ AP Loy
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(c) On the balanced growth path, j{t) = 0 and thus from equation (12).
5% =|n +B+pl+d)); = =5/[n +8 -+ il + )],
and thus
(13) 3*=[s/{n+5 4+ p(1+4))] ",
Substitute equation (13) into equation (2) to get an expression for ewtput per unit of ALt} on the
balanced growth path: _
(14) y*=[sf(n+5+ pa1+)) .
Take the derivative of y* with respect to s:

E_ o T 5 :r.-"fl!—u}-lir | T
i _[I~a][n+6+u[l++} [n+-5+p|:]+¢.}J'

In order to tum this into an elasticity, multiply both sides by s/y* using the expression for y* from equation
(14) on the right-hand side;

y*s [ o ][ s i | 1 ]I’ 5 e

_uriu';_y_“"_Ll—u n+&+u(l+4) | L—:+6+;.Lf]+¢] sLn+E+—p{|+¢JJ '
Simplifying yields

y* s _I_L:|[n+6+p{']+¢]'J[_ g

& y* Ll-a s n+8+u(l1+4) |
and thus finally

iy 5 a

(15 ——©c ——

% y* l-a’

(d) A first-order Taylor approximation of ¥ around the balanced-growth-path value of y = v* will be of
the form
(16) y=ay/ay| _ [y-v].
Taking the time derivative of both sides of equation (9) vields
(17 y=aj*'],
Substitute equation (12) into equation (17):
y=01" [ ~(n +5+ u(1+4))j,
or
(18) §= 5o o[ +5+{1+4)].
Equation (18) expresses ¥ in terms of ] . We can express | in terms of y: since y = ] *, we can write

J=y"™ T'hul_s Oy /0y evaluated at y = y* is given by
i |
Er o % J[EJ— = [sa(20 - PO _ a2 Y 450 +¢;}] [—I yli-eia }
ey y=y* |. Ulyaye JL & =y oz
Now, ¥ is simply J'** since y = 7 *and thus

% =5(2m~ lfl‘-i“""[':l_!‘H{H‘LJ = a.]q_[m_“:'!n +5+p(1+4)] =5(2a - I)__iﬂ_! ~an+8+p(l +4)].
¥=x*
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Finally, substitute out for s by rearranging equation (13) to obtain s= ]Hi [n+5+ (1 +4)] and thus

ﬂ‘ =37 n+8+ pl+ ) 2a - D> —afn +5+ u(1+4)],
oyl oye

or simply
(19) r:_y =—(1-a)[n + 5+ u(l +4)]
&y

¥lyays
Substituting equation (19) into equation (16} gives the first-order Taylor expansion:
20) y=-(1-a){n+8+pl+4)] [y-y*]

Solving this differential equation (as m the text} yields

{2-[} }'{t} ity },¢= E-I]—u}[1l+ﬁ+u£|*+]]' E},(ﬂj i }r*]

This means that the economy moves fraction (1 - a)[n + & + pil + 4] of the remammg distance toward y*
each year.

{e) The elasticity of cutput with respect to s is the same in this model as in the basic Solow model. The
speed of convergence is faster in this model. In the basic Solow model, the rate of convergence is given by
(1 - a)[n + & + p], which is less than the rate of convergence in this model, (1 - et)[a + & + pil + ¢4)], sinee
=] - a) is pesitive

Problem 1.12
{a) The growth-accounting technique of Section 1.7 yields the following expression for the growth rate of
output per person:

Y() L) K@) L

(n Yo L 'H;{l}[m - E} Rit),

where oy (t) is the elasticity of cutput with respect to capital at time t and Rit) i5 the Solow residual.

Mow imagine applying this growth-accounting equation to a Sclow economy that is on its balanced growth
path. On the balanced growth path, the growth rates of output per worker and capital per worker are both
equal to g, the grewth rate of A Thus equation (1) implies that growth accounting would attributz a
fraction oy, of growth i output per worker to growth in capital per worker. [t would attribute the rest —
fraction 1 = og = to technological progress, as this is what would be left in the Solow residual. So with cur
usnal estimate of ug = 1/3, growth accounting would attribute about 67% of the growth in cutput per
worker to technological progress and about 33% of the growth in output per worker to growth in caprtal
per worker,

(b) In an accounting sense, the result in part (a) would be true, but in a deeper sense it would not: the
reason that the capital-labor ratio grows at rate g on the balanced growth path is because the effectiveness
of labor 15 growing at rate g That is, the growth in the effectrveness of labor — the g!'mluﬂ‘l. in A — raises
output per worker through two channels, First, by directly raising output but alse by (for a given saving
rate) increasing the resources devoted to capital accumulation and thereby raising the capital-labor ratio.
Growth accounting attributes the rise in cutput per worker through the second channel to growth in the
capital-labor ratie, and not to its underlying source. Thus, although growth accounting is often instructive,
it is not appropriate to interpret it as shedding light on the underlying determinants of growth,
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Problem 1.13
{a) Ordinary least squares (OLS) yields a biased estimate of the slope coefficient of 3 regression if the
explanatory variable is correlated with the error term, We are given that

(1) m[[&jm}mgj-Jn[{wmlm]'=a+bm][wn}1m]'+s,md

Subs:tituling equation (2) into (1) and rearranging yields
) mf{wm}]m]—h{[vm}mﬂ]:a +bin[(¥/N), i

Running an QLS regression on model (3) will vield a biased estimate of b i 10[(Y/ Nhen] is correlatag with
the emror term, [g - (1 + biu]. In general, of course, this will be the case since u is the measilfement error
that helps to determine the value of In[{(Y/N),5] that We get 1o observe. However, in the special case in
which the true valye of b = -1, the error term in modei (3) is simply . Thus OLS will be unbiased eina
the explanatory variable will No langer be correlated with the rTor tarm

(b} Measurement error in the dependent variable will not capse a problem for OLS estimation and is, in
fact, one of the justifications for the disturbance term in 3 regression model. Intuitively, if the measurement
error is im 1870 income per capita, the explanatory variable, there will be a bias toward finding
convergence, If 1870 income Per capita is overstated, growth is understated. This looks like canvergence:
a "high" initial income country growing slowly. Similarly, if 1870 income Per capita is understated, growth
is overstated. This also looks like canvergence: a "Jow" initial income country growing quickly.

Suppose instead that it is only 1979 income per capita that is subject to random, MEAN-2Lr0 measurement
error. When 1979 income is overstated, 50 is growth for g Elven level of 1870 income, When 1979 income
is understated, so i growth for a given 1370 income, Either case is equally likely: overstating 1970 neame
for any given 1870 INComs is just as likely as understating it {or more precisely, measurement error is an
average equal to zero). Thus there js no reason for this to systematically cause us to see more or less
convergence than there really is in the data,

Problem .14
What is needed for a balancad growth path is that K and ¥ are each growmng at a constant rate. The
equation of motion for capital, Kit)=sY(t) —~8K(t), implies the growth rate of Kis
i 2, Y0,

K(t) Kt
As in the mode! in the text, Y/K must be constant in order far the growth rate of K to be constant. That s,
the growth rates of Y and K muyst be aqual

Taking logs of both sides of the production funetion, Y(t) = K(t)* Ryt Yy [A@L@) B vields
(2) InY(t) = alnKt) + PinR{t) + yInT(t) + (1 - - B - VA + InLt)).
Differentiating both sides of (2} with respect to tima gives us
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(3) gyt =ogg (O +Beg () + e+ (1-a—p-y)gs ) +g. ()]
Substituting in the facts that the growth rates of B, T, and L are all equal to n and the growth rate of A is
equal to g gives us
gyl =wgg(t)+fo+m+{l-a—P-y)n+g).
Simplifying gives us
gy =agg(t)+(B+yn+-am-(PF+yn+(l-a-f-y)g
=aggti+(l-an+{l-a-f-yig
Using the fact that gy and gy must be egual on a balanced growth path leaves us with
gr=cgyF(l-em*(l-a-p-yg
(1-apgy=00-amn+(l-a-p-vg,
and thus the growth rate of output on the balanced growth path is given by
bgp _{I-cn+(l-a-P-v)g

© & g

E The growth rate of eutput per worker on the balanced growth path is

~bEp _ - bgp . bgp
| ByiL =8y ~EL -

Using equation (5] and the fact that L grows at rate n, we can write

_bgp (l—en+{l-a-P-y)g  (I-ah+(l-a-p-g-(-an

i E?J'L;—EH—.__H= I
- l-a

: And thus finally

_ 1=t =B

§ 6) Eﬁﬂr:{ a-p '.I’}E.

H l—ﬂ-

Equation () i identical to equation (1.50) in the text.

L e e s s e e
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Problem 2.1

(a} The firm's problem is to choose the quantities of capital, K, and effective labor, AL, in order to

minimize costs, wAL + rK, subject to the production function, ¥ = ALfk). Set up the Lagrangian:
<=wAL+1K + A[Y - ALF(K/AL)].

The first-order conditions are given by

= AALCRALGAL] <0 = rear, @)

i 2 :
mw-x[rm;uuau{K,f.u,}(—m:]r(m,) [=0 = w=ifao-krm). @

Dividing equation (1) by equation (2) gives us
r (k)

@ w o f(k)-kf' (k)

Equation (3) implicitly defines the cost-minimizin i choice of k. Clearly this cheice does not depend upon

the level of output, Y. Note that equation (3) is the standard cost-minimizing condition: the ratio of the

marginal cost of the two inputs, capital and effective labor, must equal the ratio of the marginal products of

the two inputs,

{b) Since, as shown in part (a), each firm chooses the same value of k and since we are told that each firm
has the same value of A, we can write the total amount produced by the N cost-minimizing firms as
n n o 22
LY, = EALfk) = Af(k) ZL; = ALf(k),
i=1 i=l i=1
where L is the total amount of labor employed,

The single firm also has the same value of A and would choose the same value of k; the choice of k does
not depend on Y. Thus if it used all of the labor employed by the N cost-minimizing firms, L, the single
firm would produce Y = ALf{k). This is exactly the same amount of cutput produced in total by the N
cost-minimizing firms.

Problem 2.2
() The individual’s problem is to maximize lifetime utility given by
g 1 g
(W U=y — 22
-8 l+p 1-8
subject to the lifetime budget constraint given by
(2) PiC, = PyCo =W,
where W represents lifetime income.

Rearrange the budget constraint to solve for C;:
{3} 'C; = “’TF; = C|P:| ."Pz .
Substitute equation (3) into equation (1):

CI!_H 1 [“lrl." Pz x {:] Pl I."P:].I_ﬂ
) Us—m—yp —

I-8 1+p 1-@

Now we can solve the unconstrained problem of maximizing utility, as given by equation (4), with respect
1o first period consumption, C; . The first-order condition is given by
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aufec, =€, +{11+ 9GP /By ) =0 = ¢ =()f14 ) (P /P;) 57",
o E 18
® ¢ =(1+0"(p/R) "y,

In order to solve for C; | substitute equation (5) imto equation (3):
Cz=Wa'er-'[1+P:|Ifﬂ{?zfp’i}l"ﬂc:{ﬁfpz} = Cz[l*'[H p?mlrpzfpl]1I_E}’ﬂ]=w.'"|’zr

or simply i
/P

o) G -
Pl [;“{HP}W{PL-"Fl]'“_um]

Finally, to get the optimal choice of €, , substitute equation (6) into equation (5):
o ¢ o e (e /p) Pwrm,)
1= ; TN R
[1+(1+0)"%(p, /m, )07

(b) From equation (5), the optimal ratio of first-period to second-period consumption is
o 18
® €/C; =(1+0)"(p,/p,)"
Taking the log of bath sides of equation () vields
©) 1n(C,/C;) =(1/8)n{1+p) +(1/8)n(P, /P)) .
The elasticity of substitution betwesn C, and C; |, defined in such a way that it is positive, is given by
aci/cy) (ry/m) E e’{kﬂ{ct-"'cz H 1
dry/m) (Cy/c;) {3[‘3“{ P .f'PiJ] 8
where we have used equation (9) to find the denvative. Thus higher values of @ imply that the individual is
less willing to substitute consumption between periods,

Problem 2.3
(a) We can use analysis similar to the intuitive derivation of the Euler equation in Section 2.2 of the text.
Think of the househald's consumption at two moments of time,  Specifically, consider a short (formally

infinitesimal) peried of time At from (L, - £) to (1, + &),

Imagine the household reducing consumption per unit of effective laber, ¢, at {ty - £) -- an instant before the
confiseation of wealth — by a small (again, infinitesimal) amount Ac. It then invests this additional saving
and consumes the proceeds at (t; + €). If the household is optimizing, the marginal impact of this change
on lifetime wtility must be zera.

This experiment would have a utility cost of u "(Cuefier )¢, Ordinarily, since the instantaneous rate of retum
is rit), ¢ at time (ta + ) could be increased by c[r{t]—u—g].ﬁtm_ But here, half of that increase will be
confiscated. Thus the utility benefit would be [1/2]u’(c ;5 Yl i1 8IM e Thye for the path of
consumption to be utility-maximizing, it must satisfy

(1) W(Cpeppre)dc= Etu'{cm}e[r“:"“‘ﬂ"—“m,

Rather informally, we can cancel the Ac's and allow At —» 0, leaving us with
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]
() w'icpypme)= Eu-(:aﬂg}-

Thus there will be a discontinuous jump in consumption at the time of the confiscation of wealth
Specifically, consumption will jump down. Intuitively, the household's consumption will be high before t,
because it will have an incentive not to save so as to avoid the wealth confiscation.

(b} In this case, from the viewpoint of an individual household, its actions will not affect the ameunt of
wealth that is confiscated. For an individual household, essentially a predetermined amount of wealth will
be confiscated at time t; and thus the household's optimization and its choice of consumption path would
take this into account. The household would still prefer to smooth consumption over time and there will not
be a discontinuous jump in consumption at time t; .

Problem 2.4

We need to solve the household's problem assuming log utility and in per capita terms rather than in units
of effective labor, The household's problem is to maximize lifetime utility subject to the budget constramt,
That is, its problem is to maximize

() u= | e‘mmc{t}ﬂm,
1=0 H
subject to
b e K{@® T _ L{t)
2 | e RUo X KO T Rty
() :=|:|¢ (t) H H +1=ﬂ= Aftwit) m d.

g
Now let W:-}:(—l+ | e'R“]Mﬂw[t]l—'{Hdt
H t=0 H

We can use the informal method, presented in the text, for solving this type of problem. Set up the
Lagrangian:
1] _ t C ) - L :
4= [ e My cmﬁm W= [ e ““’cmﬂ
1=10 H 1=t H

The first-order condition is given by
(]

dt |.

_ePopt MY, ke LO
x{:}—e Cit) T he = =10
Canceling the Lit)'H yields
(3 ePow ™ =ae RO,
which implies

(4) Clt)=e™ 1" ™"
Substituting this into the budget constraint, equation (2}, gives us
5 I e‘““}[e‘“rfe““il O i w.

el H
Since L(t) = e L(0), this implies

B )
@ 1O Jer (Ml v

1=0

As long as p - n > ( (which it must be), the integral is equal to 1/(p - n) and thus A" is given by
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o W
-=1{D}_-’H(F n.

ting equation (7} into equation (4) vields

W
_C{ﬂ=cﬁ{t:'_pl m)“l_?(i‘-“ n) |.

4 28 consumption is therefore

(p-n).

~ L(o)/H

: t!ll::t C(0) is consumption per person, W is wealth per household and L{0)VH is the number of people

path of the real interest rate, Also note that the bigger is the household's discount rate p - the more the
household discounts the future - the bigger is the fraction of wealth that it initially consumes

he hoosehold's problem is to maximize lifetime utility subject to the budget constraint, That is, its
oblem is to maximize

-] o 00t
e 1-6 H

bject to

o,

): [ et

]

Lo
t H

re W denotes the household's initial wealth plus the present value of its lifetime labor income, i.e. the
-hand side of equation (2.6) in the text. Note that the real interest rate, r, is assumed to be constant.

dt =W,

can use the informal method, presented in the text, for solving this type of problem. Set up the

= T, PRI g e, SR 1T

Eian:

€)™ L) ® . L), |
J:Te P d+aw- | e o —at |
.t t=0 1-8 H 1=0 {} H J
first-order condition is given by
C oS " L{t) Lit
— =g pic-t hE__M-rt —_—
2Clt) ) H H

i Lan L_':eting the L{t)H yields

¢ e-pl:t{-ﬂ—ﬂ " le-—n _

Differentiate both sides of equation (3) with respect to time:
2 e o0 o) - pe e+ e 0.

i can:: be rearranged to obtain

I.'I{!- '—E'Ei—ge_r"t(t}_ﬂ - pe":"(:(t]'a +rhe ™ =0

Now substitute the first-order condition, equation (3), into equation (4):
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—G%Ae‘“ —phe ™ e =,

Canceling the e ™™ and solving for the growth rate of consumption, C(t)/C(t), yields
Cit -

(5 ) il
City 8

Thus with a constant real interest rate, the growth rate of consumption is a constant. If r > p — that is, if
the rate that the market pays to defer consumption exceeds the household's discount rate - consumption
will be rising over time. The value of § determines the magnitude of consumption growth if r exceeds p. A
lower value of 8 - and thus a higher value of the elasticity of substitution, 1/8 — means that consumption
growth will be higher for any given difference between rand p.

We now need to solve for the path of Cit). First, note that equation (5) can be rewritten as

® ln C(t) -_—E.
ot a

Integrate equation (6) forward from time T = 0 to time T = -
InC(©)-In CO)=(r~ plfBls[ ",

which simplifies to

(7) In[C(1)/(0)] =[(r - p) fot.

Taking the exponential function of both sides of equation {7) yields
Cir)/C(0) = El{r- el :

and thus

(8) C(t)=C(0) gl{r=rl/elt :

We can now solve for mitial consumption, C(0), by using the fact that it must be chosen to satisfy the
household's budget constraint, Substitute equation (8} into equation (2);

T e'"C{ﬂ}e[{r'P}’IHll %{-{-t-:ld: =W,

t=0
Using the fact that L(t) = L(0)e™ yields

':?} fiﬂll-(ﬂ) Tﬂ—fp-riﬂ(r—n]rtﬁm i w
=0

As long as [p - r+ 8(r - n)]/8 > 0 , we can solve the integral:
(10) ? E—lpu:+3[r—|l:|fl.-"€!dt= 6 ]

=t p-r+8(r-n)
Substitute equation (10} into equation (9) and solve for C(oy:

W | (p-r)
0) = =——

Uipch Lio)/HL @
Finally, to get an expression for consumption at each instant in time, substitute equation (11) into equation
(8
(12) C[t}=E[[rup+'ij W ]—{P—I} ]

+{r=n)|.

LoyHL g TU~™
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Problem 2.6 .
(&) The equation describing the dynamics of the capital stock per unit of effective labor is

(1) k(o) =£{k(t)) - c(t) - (n + g)kir)

For a given k, the level of ¢ that implies k = 0 is given by ¢ = f{k) - (n + g)k. Thus a fall in g makes the
level of ¢ consistent with k = 0 higher for a given k. That is, the k = 0 curve shifts up. Intuitively, a lower
g makes break-even investment lower at any given k and thus allows for more resources to be devoted to
consumption and still mamtain a given k. Since (n + g)k falls proportionately more at higher levels of k,
the k =0 curve shifts up more at higher levels of k. See the figure.

{(b) The equation describing the dynamics of consumption per unit of effective labor is given by

5 40 £'(k(t)) - p-0g

( clt) ] '

Thus the condition required for &= 0 is given by £ (k) = p + 8. After the fall in g, £' (k) must be lower in
order for £=0, Since f" (k) is negative this means that the k needed for ¢ = 0 therefore rises. Thus the
&= 0 curve shifts to the right.

{e) At the time of the change in g, the

value of k, the stock of capital per unit of B

effective labor, is given by the history of &=

the economnty, and it cannot change

discentinucusly, It remains equal to the Exzw
k* on the old balanced growth path. ShwEw | R

In contrast, ¢, the rate at which
households are consuming in units of .
effective labor, can jump at the time of c*
the shock. In order for the economy to
reach the new balanced growth path, ¢
must jump at the instant of the change so
that the economy is on the new saddle

path. k* k*ew k

However, we cannat tell whether the new saddle path passes above or below the origimal point E. Thus we
cannot tell whether ¢ jumps up or down and in fact, if the new saddle path passes right through peint E, ¢
might even remain the same at the instant that g falls. Thereafter, ¢ and k rise gradually to their new
balanced-growth-path values; these are higher than their values on the original balanced growth path.

(d) On a balanced growth path, the fraction of output that is saved and invested is given by

[f(k*) - ¢*)/f{k*). Sincek is constant, er k =0 on a balanced growth path then, from equation (1), we can
write fk*) - ¢* = {n + g)k*. Using this, we can rewrite the fraction of output that is saved on a balanced
growth path as

(3} 5= [(n + gk*)/f(k?).

Differentiating both sides of equation (3) with respect to g yields
w3 f(k*)[(n +g)(2k */3g) + k *| - (n + g)k * £(k*)(k */0g)
&g [Foen)?

which simplifies to

L
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_f.ls_ _ (4 g)[F(k*) =k * £ k)00 * Og) + fll* )k *

o8 [fekn)? '

Since k* iz defined by £(k*) = p + Bg, differentiating both sides of this exprezsion gives us
fU(k*)ck*/8g) = 8. Solving for ok*/Og gives us

(6) kg =0/f"k*) <0

Substituting equation (&) into equation (3) yields

7 8 (n+g)[f(k*) - k* £(k*))0+ F(k*)k *£7(k*)

% (e £7ck) |

The first term in the numerator is positive, whereas the second is negative and so the sign of Js/0p is

ambiguous. Thus we cannot tell whether the fall in g raises or lowers the saving rate on the new balanced
growth path,

(3)

(e) When the production function is Cobb-Douglas, fik) = k*, (k) = ok™" and £ "(k) = oo - 1k
Substituting these facts into equation (7) yields
& (n+g)k** —k ok *" 1B+ k*" k* afe - Dk
dg k** k** afo— Dk **2
which simplifies to
& (n+gk*® (1-a)b-(1-o)k** ak **"!
3B [(1-ak*™(ak** ) ak** )/ a)
which implies
e i
ag = _gln+e) m;ﬂg}]_
g (p+8g)
Thus, finally, we have

e WO AR

& (preg)’  (p+ew)

(8)

¥

b

Problem 2.7
The two equations of motion are
elt) fk(t))-p-8 -

Wg=T e @ KO=HkO) - (k).

(m) A rise in© or a fall in the elasticity of

substitution, 1/89, means that households become

less willing to substitute consumption between /

A

M
E

n
-
[}
L=

I

periods. It alse means that the marginal utility
of consumption falls off more rapidly as
consumption rises. If the economy is growing, f
this tends to make households value present

consumption more than future consumption, E.

The capital-accumulation equaticn is unaffected k=0
The condition required for £ =0 is given by
f'(k}=p +6g. Since £" (k) < 0, the £ (k) that e
makes ¢ =10 is now higher. Thus the value of k H

that satisfies &= 0 is lower, The ¢=0 locus k* ke k

e Bt
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shifts to the left. The econcmy moves up to point A on the new saddle path; people consume more now,
Movement is then dewn along the new saddle path until the economy reaches pomt E*, At that point, ¢*
and k* are lower than their oniginal values.

(b} We can assume that a downward shift of the production function means that for any given k, both fik)
and £ (k) are lower than before.

& é=10 fik)

E
L~
L~

E 1

ke k* || K

The condition required for k=0is ziven by e = f(k)—(n+p)k. We can see from the figure on the right
that the k = 0 locus will shift down more at higher levels of k. Also, since for a given k, f' (k) is lower
now, the golden-rule k will be lower than before. Thus the k = 0 locus shifts as depicted in the figure.

The condition required for ¢ = 0 is given by (k) = p+ 8z, For a given k, ' (k) is now lower, Thus we
need a lower k to keep £' (k) the same and satisfy the & =0 equation. Thus the ¢ =0 locus shifts left. The
economy will eventually reach point E * with lower ¢* and lower k*, Whether ¢ initially jumps up or down
depends upon whether the new saddle path passes above or below point E.

(<} Wiﬂ! a positive rate of depreciation, & = 0, the new capital-accumulation equation is
(3) kit) = f(k{t)) —cit) - (n+ g+ E)k(t)
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The level of saving and investment required just to keep any given k constant is now higher == and thus the
amount of consumption passible is now lewer — than in the case with no depreciation. The level of extra
investment required is also higher at higher levels of k. Thus the k = 0 locus shifts down more at higher
levels of k.

In addition, the real retumn on capital is now f' (kit)) - 5 and so the househald's maximization will yield
ét)  £k(t)) -6 p-te
4 —=—— =
clt) a
The condition required for ¢ =0 is f'(k) = 8+ p+8g_ Compared to the case with no depreciation, £' (k)
must be higher and k lower in order for ¢=0. Thus the & = 0 locus shifts to the left. The econanty will
eventually wind up at point E ' with lower levels of ¢* and k*, Again, whether ¢ jumps up or down initially
depends upon whether the new saddle path passes abeve or below the original equilibrium point of E,

Problem 2.7

With a positive depreciation rate, 5 > 0, the Euler equation and the capital-accumulation equation are given

by
ety ki) -6-p-8
(1) %:‘I'LBIJ—'E, and (] k{t}=f{k(!}l}—c{t}—{n +g -l-ﬁ}kl[t}

We begin by taking first-order Taylor approximations to (1} and (2) around k = k* and ¢ = ¢*, That is, we
Can write

e i " ik
3 z—IJk—k¥+—Jc— Y, =—[k=k¥+—[c-c¥,
(3 ¢ 5!ﬁ[k I+E'(_:E= ct| | and (4 k ﬂ;[ k]+ﬂ:|: ¢t
where §¢ /8k, 8¢ /0e, Ok /ck and Jk /8¢ are all evaluated at k = k* and ¢ = o*

Define E=c-c*and k=k~k*. Since ¢* and k* are constants, & and k are equivalent to & and k
respectively. We can therefore rewrite (3) and (4)as

. e 08 s k. &
i) Ez—k+—F d 6) k=—k+—F.
(3} € ﬂtk+c‘:'¢c1 an 5 k s = c
Using equations (1) and (2) to compute theze derivatives yields
i (k*)c* i kY -6-p=0
) ~| SR (8) ~{ Shd o ol il 97
Kl @ &by B
|i ]
(9) %—[ =fik*)-{n+g+85), (10} ,.E{ =-1
| bgp “logp

Substituting equations (7) and (3) into (5) and equations (%) and {10) into (6) yields

) "k*ye* _
n E"Ef{k L k , and

(1) k=[f(k*) -(n+g+8)]| k-7

z[{5+p+ﬂg}-{n +g+8)| k-¢

=pk-¢.
The second line of equation (12) uses the fact thar (1) implies that {' (k*) = 6 + p + 8g. The third line uses
the definition of f=p -n - (1 - B)g.
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Dividing equation (11) by € and dividing equation (12) by K vields

13y Eofketk k
( g 6 €
Mate that these are exactly the same as equations (2.31) and (2.32) in the text; adding a positive

ad  (14) m=p-o
i E_ E.

¥

depreciation rate does not alter the expressions for the growth rates of € and k. Thus equation (2.36), the

expression for i, the constant growth rate of both € and k as the economy moves toward the balanced

growth path, is still valid. Thus
B-yB% —4F(k*)c*/®

(15) py = -

where we have chosen the negative growth rate so that ¢ and k are moving toward c* and k*, not away

from them.

Mow consider the Cobb-Douglas production function, flk) = k® Thus

(16) F(k*)=ak** ' =r*+5, and (17) F(k*) =afe - Dk **2,
Squaring both sides of equation {16) gives us

(18) (r* +5}|1 :::2]; .,Iu.-ll

and so equation (17) can be rewritten as

oy O @D a-1(*45)

(19) f{k*)= - B F(k*) .

In addition, defining s* to be the saving rate on the balanced growth path, we can write the balanced-

growth-path level of eonsumption as
(20) e* = (1 -s*)fik*).
Substituting equations (19} and (20) into (15) yelds

~1)(r * +5)°
B = 5 ;

Caneeling the flk*) and multiplymg through by the minus sign vields
3 4l -a 2
B=yB7 o] [(r*48)7 (1~ 5%)
o a

2

@y =

Om the balanced prowth path, the eondition required for ¢ = 012 given by r* = p + Bg and thus
(22) M+ é=p+0+5.
In addition, actual saving, s*f(k*), equals break-even investment, (n + g + &)k*, and thus
(n+g+8)k* (n+g+d) on+g+a)
(23) s*= = - =
fik*) k** {r*+3)

where we have used equation (16), £* + § = ok*™" . From equation (23), we can write

*Hi)-aln+z+5
a9 “_5_}:& )—oin+g+8)

(r*+3)

Substituting equations (22) and (24) inte equation (217 yields
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T AT
ﬂ—Jﬂ‘ - a[l—u){p+ﬂg+5}1p+ﬂs +6-afn +g +8)]
[
(25) py = 3 —,

Equation (25) is analogous to equation (2.38) in the text Tt expresses the rate of adjustment i terms of the
underlying parameters of the model. Keeping the values in the text — o = 13, p=d% n=2%g=1%
and & = 1 — and using & = 3% yields a value for u; of approximately - 8 8%. This is faster CONVErzence
than the -5.4% obtained with no depreciation,

Prohlem 2.9

(a) The real after-tax rate of retum on capital is now given by (1 - 13" (k(t)). Thus the housshold's
maximization would now yield the following expression describing the dynamics of consumption per unit of
effective labor:
ay 0 [(1= D)) - p-og] .

e(t) 8
The condition required for ¢ = 0 is given by (1 - 7)f' (k) = p+8g. The after-tax rate of return must equal
P +8g. Compared to the case without a tax on capital, £' (k), the pre-tax rate of retum on capital, must be
higher and thus k must be lower in order for & = 0. Thus the ¢ = 0 locus shifts to the left.

The equation describing the dynamics of the capital stock per unit of effective labor is still given by

(2) kit) = F(k(t)) - e(t) - (n+ghkit)

For a given k, the level of ¢ that implies k = 0 is given by cit) = fik) - in+ ghk. Since the tax is rebated to
househalds in the form of lump-sum transfers, this k = 0 locus is unafected.

(b} At time 0, when the tax is put in place,
the value of k, the stock of capital per unit c é=
of effective labor, is given by the history of —
the economy, and it cannot change A
discontinuously. It remains equal to the k*
an the old balanced growth path.

0

M

In contrast, ¢, the rate at which households
are eensuming in units of effective labor,
can jump at the time that the tax is
introduced. This jump in ¢ is net
inconsistent with the consumption-
smoothing behavior implied by the
household's optimization problem since the
tax was unexpected and could not be —
prepared for.

Evpw

k=0

k*smor k* k

In order for the economy to reach the new
balanced growth path, it should be clear what must occur. At time 0, ¢ jumps up so that the economy iz on
the new saddle path. In the figure, the economy jumps from point E to a point such as A, Since the retumn
to saving and accumulating capital is now lower than before, people switch away from saving and into
consumption,
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After time 0, the economy will gradually move down the new saddle path until it eventually reaches the new

balanced growth path at Enpw .

{c) On the new balanced growth path at E.pw , the distortionary tax on investment mcome has caused the
ecomarty to have a lower level of capitzl per unit of effective labor as well as a lower level of consumption
per unit of effective labor.

{(d) (i) From the analysis above, we know that the higher 15 the tax rate on investment income, =, the lower
will be the balanced-growth-path level of k*, all else equal, In terms of the above story, the higher is  the
more that the & = 0 locus shifts to the left and hence the more that k* falls. Thus ck*/'dr <0.

Om a balanced growth path, the fraction of output that is saved and invested, the saving rate, is given by
[f(k*) - c*J/fik*). Simce k is constant, or k=0, on a balanced growth path then from
kit) = fik(t)) = c(t) = (n + g)kit) we can write fik*) - ¢* = (n + g)k*. Using this we can rewnite the
fraction of output that is saved on a balanced growth path as
(3) s=[{n+gk*]Hk*).
Use equation (3) to take the derivative of the saving rate with respect to the tax rate, ©
g8 (n+g)(dk* /o) E(k*)—(n+gik * k) {3k */ )
(4) T T ;
i, f{kt}
Simplifying vizlds )
P (n+g)dk* (n+g) k*"F(k*) Tk* (n +s}_ﬁ§c__j[ k* f'{k“‘]-l
&t f(k*) St f(k%) f(k*) &t k) &l f(kY)
Recall that k*f" (k*)fik*) = ax (k*) is capital's (pre-tax) share in income, which must be less than ene.
Sinc?afk"fﬁ': < ﬂ'} wax can write
it -1 & .
) o= e [1-ag k)] <0
Thus the saving rate on the balanced growth path is decreasing in 1.

(d) (ii) Citizens in low-t, high-k*, high-saving countries do not have the incentive to invest in low-saving
countries, From part (a), the condition required for ¢ = 05 (1 -0)f' (k) = p + Bg.. That is, the after-tax
rate of retum must equal p + 8g. Assuming preferences and technology are the same across countries so
that p, 8 and g aro the same across countries, the after-tax rate of retamn will be the same acrass countries,
Smee the after-tax rate of retum is thus the same m low-saving countries as it is in high-saving countries,
there is no meentive to shift saving from a high-saving to a low-saving country

(e} Should the government subsidize mvestment instead and fund this with a lump-sum tax? This would
lead to the opposite result from abeve and the economy would have higher ¢ and k on the new balanced
growth path,
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| The answer is no. Tha original market cutcome is
already the ane that would be chosen by a central
planner attemptmg to maximize the lifetime utility of
a representative household subject to the capital-
accumulation equation, It therefore Zives the
household the highest possible lifetime utility,

Starting at point E, the implementation of the subsidy
would lead to a short-term drop in consumption st
point A, but would eventually result in permanently
higher consumption at point Exere . It would tum out
that the utility lost from the short-term sacrifice
would cutweigh the utility gained in the long-term (all
in present value terms, a ppropriately discounted).
This is the same type of argument used to explain the reason that households do not cheose to consume at
the golden-rule level. See Section 2 4 for a more complete description of the welfare implications of this
miodel.

govemnment purchases. Let Git) represent govemment purchases per unit of effective labor. The equation
describing the dynamics of the capital stock per unit of effective labor is now given by

(2') kit = k(1)) - c(t)~ G(t) - (n + g)k(t)

The fact that the government is making purchases that do not add to the caprtal stock — it is assumed to be
govemment cansumption, not govemnment investment — shifts down the k = 0 lecus.

—

c E=0

After the imposition of the tax, the & = 0
locus shifts to the left, just as it did in the
case in which the government rebated the
tax to households. In the end, k* falls to
k*ugw just as in the case where the
govermnment rebated the tax. Consumgption
per unit of effective labor on the new
balanced growth path at Eupy is lower
than in the case where the tax is rebated by
the amount of the govemnment purchases,
which is of ' (k)k,

Fmnally, whether the level of ¢ jumps up or
down initially depends upon whether the
new saddle path passes above or belaw the
original balanced-growth-path point of E.
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Problem 2.10

. (c) Before the tax is put in place, 1. until time t, , the equations governing the dynamics of the

are

| and (2) k(ty=£(kit) - c(t) - (n+g)k(t).

X -ﬁ;emndilim required for & =0 is given by f' (k) = p + Bz. The capital-accumulation equation is not
affected when the tax is put in place at time t, since we are assuming that the government is rebating the

"~ tax, not spendmg it.

Since the real after-tax rate of retum on capital is now (1 - ©)f ' (kit)), the houschold's maximization yields

the following growth rate of consumption:
o) (- DF(kit) - p-g

eft) 8

The condition required for & = 0 is now given by (1 - ©)f ' (k) = p + Bz, The afer-tax rate of retum on
capital must equal p + &g Thus the pre-tax rate of return, ' (k), must be higher and thus k must be lower
in order for & = 0. Thus at time t; , the & = 0 locus shifts to the left.

The important point is that the dynamics of
the economy are still govemed by the

C . s b v o] original equations of motion until the tax is
E.IE,E actually put in place. Between the time of
time 1] the announcement and the time the tax is
]

actually put m place, it is the ongmal ¢=10
locus that is relevant,

‘When the tax is put in place at time t, , ¢
cannot jump discontimuously because
households know ahead of time that the tax
will be implemented then. A discontinueus
jumg in ¢ would be inconsistent with the
consumption smoothing implied by the
household's intertempaoral optimization,
The household would not want ¢ to be low,

k | and thus marginal utility to be high, a
G | moment before t; knowing that ¢ will jump

ki up and ba high, and thus marginal utility will be low, a moment after t;. The housshold would like to
! smooth consumption between the two instants in time.

] (d) We know that ¢ cannot jump at time t; . 'We also know that if the econamy is to reach the new
balanced grewth path at peint Eypw , it must be right on the new saddle path at the time that the tax is put
in place, Thus when the tax is announced at time t; , ¢ must jump up to a point such as A. Pomt A lies
between the original balanced growth path at E and the new saddle path,
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At A, ¢ is too high to maintain the capital

; stock at k* and so k begins falling. Between
¢ — ',.-" & =10 [until 1] tz and t; , the dynamics of the system are still
= Oiafice 4] governed by the original ¢ = 0 locus, The
econamy is thus to the left of the ¢ = 0 locus
and so consumption begins rising.

i

The ecanomy moves off to the northwest

E until at t; , it is right at point B on the new
saddle path. The tax is then put in place and
the system is governed by the new ¢ = 0

} locus. Thus ¢ begins falling. The economy
Exew k=0 moves down the new saddle path, eventually

reaching point Eypy
[ k* k \7

(e} The story in part (d) implies the following time paths for consumption per unit of effective labor and
capital per unit of effective labar

k
[ =
c.
k.!\:F.'.".'
Ly 1 time Ly L
Problem 2.11

(a) The first point is that consumption cannot Jump at time t; . Households know ahead of time that the
tax will end then and so a discontinuous jump in ¢ would be inconsistent with the consumption-smocthing
behavior implied by the household's itertemporal optimization. Thus, for the economy to return to a
balanced growth path, we must be somewhere on the original saddle path right at time t, .

Before the tax is put in place —~ until time ty == and after the tax is removed - after time t, - the equations
goveming the dynamics of the economy are

ity Flkit)) = p-8 .
(1) :—%=J—#——E. and (2) k(1) = f{k(t)) - (1) - (n + g)k(1).
Thelomdi:tim required for £ =0 is given by f' (k) =p + g, The capital-accumulation equation, and thus
the k =0 locus, is not affected by the tax, The é=0 locus is affected, however. Between time t, and time
t; , the condition required for &= 0 is that the after4ax rate of retumn on capttal equal p + 8g so that
(I-0f" (k)=p+0g Thus between ty and t, , £ (k) must be higher and sa k must be lower in erder for
¢=0. That is, between time t, and time t, , the ¢ = 0 locus lies to the laft of its orginal pesition,

= s . g
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point E, the economy is still on the c
k = 0 locus but is now to the right of the
new &= 0 locus, Thus if ¢ did nat jump
up to a point like A, ¢ would begin
falling. The econcmy would then be
below the k = 0 locus and so k would
start rising. The economy would drift
away from point E in the direction of
the southeast and could not be on the B
priginal saddle path right at time t, ,

At time T3 , the tax s put in place, At /:'::l] [Between time tyand 1 |

¢ =10 [before time tg
and after time t, |

Thus at time t,, ¢ must jump up so that
the economy 15 at 3 point like A, Thus, ]
k and ¢ begin fallmg.  Eventually the I "
economy crosses the k = 0 locus and so
k begins rising. This can be interpreted as households anticipating the removal of the tax en capital and
thus being willing to accumulate capital again. Point A must be such that given the dynamics of the
system, the economy is right at a point like B, on the orignal saddle path, at time t; when the tax is
removed. Aftert; , the original ¢ = 0 locus governs the dynamics of the system again, Thus the economy
moves up the original saddle path, eventually retuming to the onginal balanced growth path at point E.

(b} The first point is that consumption cannat jump at erther time t; or time t; . Households know ahead of
time that the tax will be implemented at t; and removed at t; . Thus a discontinuous jump in ¢ at ether date
would be inconsistent with the consumption-smoothing behavior implied by the household's intertemporal
optimization. In order for the economy to retum to a balanced growth path, the economy must be
somewhere on the original saddle path right at time t; |

Before the tax is put in place — until &= 0 [berween time 4 and 1z ]
time t; -- and after the tax 15 removed — e l/

after time t; — equations (1) and (2)
goven the dynamics of the system. An
important point 15 that even duning the
time between the announcement and the B
implementation of the tax - that 1s,
between tima tp and time t; — the
criginal &= 0 locus governs the
dynamics of the svstem.

¢=0 [before time 1,
d afier ime 1]

At time £y, the tax is announced,
Consumption must jump up so that the
economy 1§ at a point like A, At A, the PR
ecanomy is still on the & =0 locus but is i
above the k = 0 locus and so k starts
falling, The economy is then to the left of the &= 0 locus and so ¢ starts rising. The economy drifis off to
the northwest,
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At time t; , the tax is implemented, the ¢ = 0 locus shifts to the left and the economy is at a paint like B, ;

The economy is still above the k = 0 locus but is now to the right of the relevant € = 0 locus; k continues to
fall and ¢ stops rising and begins to fall,

Eventually the economy crosses the k = 0 locus and k begins rising. Househelds begin accumulating
capital again before the actual removal of the tax on capital income. Point A must be chosen so that Fiven
the dynamics of the system, the economy is right at a point like C, on the original saddle path, at time t
when the tax is removed. After t; , the original ¢ =0 locus govemns the dynamics of the system again
Thus the economy moves up the original saddle path, eventually retumning to the original balanced growth
path at point E. |

Problem 2.12

With government purchases in the model, the capital-accumulation equation is given by
(1) k(1) = flk(t) —e(8) - G(8) - (n + k1),

where G(t) represents government purchases in units of effective labor at time t.

Intuitively, since government purchases are assuried to be a perfect substitute for private consumption,
changes in G will simply be offset one-for-
ome with changes in ¢. Suppose that G(t)is | . g=0
mitially constant at some level G, . The
household's maximization vields

@ &0 _flk®)-p-og

clt) + Gy g ’

Thus the condition for constant
consumption is still given by £* (k) = p +
8g. Changes in the level of Gy will affect
the level of ¢, but will not shift the ¢=0
locus.

i e il

e i o et

Suppose the economy starts on a balanced
growth path at point E. At some time t, , G
unexpectedly increases to Gy and
households know this is temporary; households know that at some future time t;, povernment purchases
will retum to Gi. At time tg, the k = 0 locus shifts down; at each level of k, the government is using more
resources leaving less available for consumption. In particular, the k = 0 locus shifts down by the amount
of the increase in purchases, which is (Gy - Gy ).

The difference between this case, in which ¢ and G are perfect substitutes, and the case in which G does not
affect private utility, is that ¢ can jump at time t; when G retums to its original value. In fact, at t; , when
G jumps down by the amount (G, - Gy ), € must jump up by that exact same amount, If it did not, there
would be a discontinuous jump in marginal utility that could not be optimal for households, Thus att, ¢
must jump up by (Gy; - Gy, ) and this must put the economy somewhere o the original saddle path, If it did
nat, themmmn}rwmlldnatretumtnaba]mmdgmmhpaﬂ]. What must happen is that at time t; , c falls
b}rﬂmanmtmt{ﬁu-{iﬂandthammyjunmsmpumtEmg-p.r. It then stays there until time t, , Att,,c
jumpsba:;kupbythcanmmt(ﬁn-ﬁl}mdsnﬂnmomyjumps back to point E and stays there,
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Why can't ¢ jump down by less than (Gy - Gp ) att 7 1f it did, the economy would be above the new k=0
locus, k would start falling putting the economy to the left of the £ =0 locus. Thus ¢ would start rising and
g0 the economy would drift off to the northwest, There would be no way for ¢ to jump up by (G - Gy ) at

t, and still put the economy on the origmal saddle path,

Why can't ¢ jump down by more that (Gy - G ) att, 7 If it did, the economy would be below the new

k =0 locus, k would start rising putting the economy to the right of the ¢ =0 locus. Thus ¢ would start
falling and o the economy would drift off to the southeast. Again, there would be no way for ¢ to jump up
by (Gy - Gp ) at ty and still put the economy on the original saddle path.

In summary, the capital stock and the real interest rate are unaffected by the temporary increase in G. At
the instant that G rises, consumption falls by an equal amount. It remains constant at that level while G
remains high. At the instant that G falls to its initial value, consumption jumps back up to its original value
and stays there.

Problem 2.13
Equation (2.59) in the text describes the relationship between k.., and k; in the special case of logarithmic
utility and Cobb-Douglas production:

1 I
2.5 m——(] = =1
2% {1+n}{|+g}2+p{1 2k,

(a) A msein nshifts the k., function down.
From equation (2.59), a higher n means a ke, 45?
smaller k. for a given k, . Since the fraction
of their labar income that the young save
does not depend on n, a given amount of

capital per unit of effective labor and thus l
output per unit of effective labor in time t
yields the same amount of saving in period t.
Thus it yields the same amount of capital mn
period t + 1. However, the number of
individuals increases mora from period t to
period t + | than it used to. So that capital is
spread out among more individuals than it - k* k,
would have been in the absence of the
increase in population growth and thus capital per unit of effective labor in period t + 1 is lower for a given
k.

R

{b) With the parameter B added to the Cobb-Douglas production function, fik) = Bk", equation (2.5%)
becomes

1 1
M) ke = e p{l—u;}Eh .
This fall in B causes the k,,, function to shift down. See the figure from part (a). A lower B means that a
given amaount of capital per unit of effective labor in period t now produces less output per unit of effective
labor in period t. Since the fraction of their labor income that the young save does not depend on B, this
leads to less total saving and a lower capital stock per unit of effective labor in period t + 1 for a given k; .
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(e) We nesd to determine the effect an [ fnragivmiq,ufachangjemu. From equatian (2,.59):
ey ! ! ok,

N —=——— | ks (l-a) |

— " ﬂ+nl{l+g}2+ﬂ[ ey

We need to determine 7k, /. Define flo) = k™ and note that Infix) = alnk, . Thus

(3) finflo)da = Ink, ,

Now nate that we can write

&ffa)  Of(x) oln fla) 1 &ln f(a)
) = =1z . ;
fa  dinfa) fa  [olnf(a)of(a)] ou
and thus finally

(3) cfla)da = fa)ink, .
Therefore, we have 7k, /fa = k* Ink, Substituting this fact into equation (2) yields

4 1

6 = S e p
® £ {l+ﬂ]'f1+g}21-p[ k™ +( @}k, L“k:].
or simply
ki 1 1 "
= i )
D % {I+n);|+3;z+pl“1 [(1-a)ink, -1]}.

Thus, for (1 - a)ink, - 1 > 0, or Ink, > 11 - o), an increase in & means a higher k., for a given k, and thus
the k,.; function shifts up over this range of k, 's. However, for Ink, < 1/(1 - o), an increase in o means a
lower ki, for a given k, . Thus the k.., function shifts down over this range of k, 's. Finally, right at

Ink, = 1/(1 - @), the old and new k., functions intersast

Problem 2.14
(a) We need to find an expression for ki-y as a function of k, Next period's capital stock is equal to this
peried's capital stock, plus any investment done this peried, less any depreciation that occurs, Thus
(1) Ku) =K, +5Y,-5K, .
To convert this into units of effective labor, divide both sides of equation (1) by AuiLy
Ky _ K, (1-8) +5Y, _ K, (1-8)+5Y,  ky(1-8) +sfk,)
Al ALy (1+n)(1+g)A,L, (L+n}l+g)
which simplifies to
I1=8

5
@ kia “Lunm*g}}k' +Ll+n:u:l+m]m°"‘"

(b) We need to sketch k.. as a funetion of k, .
Nate that

ek 1-8 +[ 5
&k, (1+n)l+g) {1+n){1+g)
and using the lnada conditions

Pk sf(ky)
&kt (l+n)(l+g)

Wy

]f’{kl} >0,  and

lim ak|+l e ﬁkHﬁI 1-5
S 1 R

Thus the function eventually has a slope of less than one and will therefore cross the 45 degres line at some
point. Also, the function is well-behaved and will cross the 45 degree line only once.
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i As long as k starts out at some value other than 0, the
L 4 econcmy will converge to k*. For example, if k stans
out below k*, we see that ki, will be greater than k,
and the economy will move toward k*, Similarly, ifk
starts out above k*, we see that k., will be below k,
and again the economy will move toward k*. Atk*, y*
= fik*) 1% also constant and we have a balanced growth
path

Kt

k* k

(© 0,,ahﬂaﬂmgm!lrmpath,h,ﬁhak_“l‘a.ndﬂmsﬁ'cmequatim{?)i
1-& ]
r- k* fik*
. [{Hn}mg}l {{HHJEHS}JH h
which simplifies to
l+n+g+ng-1+8 [

X ‘l (1+n)(l+5) J [ﬂ Fnj(l+ )
Thus on a balanced growth path:
{3) k*n +g+ng+8)=sfik*).
Rearranging equation (3) to get an expression for s on the balanced growth path yields
(#) s=(n+g+ng+ &k*MHk*).
Consumption per unit of effective labor on the balanced growth path is given by
(3) e*=(1-35)f(k*).
Substitute equation (4} into equation (5):

]f{k*}.

1 Teaey—ke
. I-EMJFEH}ﬂ\ﬂkJ k*(n+g+ng+3) £k*)
fik*) fk*)
Canceling the f(k*) yields

(G) e* =flk*) - (n+ g +ng+ Sk*.

To get an expression for the ' (k*) that maximizes consumption per unit of effective labor on the balanced

growth path, we need to maximize ¢* with respect to k*, The first-order condition is given by
de*fék*=f(k*)-(n+g+ng+8) =0

Thus the golden-rule capital stock is defined implicitly by

{7} f' {kw )={n+g+ng+8).

{d) (i) Substitute a Cobb-Douglas production function, ik, ) = k., into equation (2):

1-& ]
8 = =
(8) kg i_.[1+n}|{l+g]Jkl+[“+ n)(1+g) e

{d) (if) On a balanced growth path, k., =k = k® Thus from equation (8):

k‘:[ b=l ]k{ > ]k‘“.
(1+n)1+g) {(1+n)l+g)
Simplifying vields
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k*:[—"—-s——. [k*= k*le sn+pg+ ng + &),

[{1+n}[1+g}-ﬂ-ﬁjJ
{]+n}|{l+g}4

(1+n}1+g)
and thus finally
) k* = [s/n + g + ng + gy

(d) (iii) Using equation (8):

dkt+| 1-& s
(10) — e O
dkt Jy ko (+n)1+g) (1+n)(1+g)
Substituting the balanwd~gmm-paﬂ1 value of k* - squation (9) - into equation (10} yields

ks*1

Sy —i-i_J,-—_“L_”—iL_ﬂj_JJ
i e (+n)lsg) (+m+gl ™
el be usefulto write 4+ - ng + 5) 45 )l +g)- (1 - 5):
dkyyg _”-5}+ﬂ[ﬂ+n}[l+g}-{]_5;]
dk, ;_k.h {T+n)(1+g)
"=
Simplifying further yiglds
{Il} dk1.+r =u+ﬂ—ﬁ}ﬂ—a}

dk[ E.l:k‘ U"‘“Jf“g}

: (2) kyy =k *+fa+ (1-5)( o)/ (1+a)1+g)|[k, - k q.
| Since we can write this simply as
k= k‘i[c:i-ﬂ-—ﬁ}{l-a}ffhnm +8)] [k, k],
equation (12) implies
| 13) ke ~k*=[a+(1-8)1- a1 4 1+ )] [k k]
J 'Ihusﬂmecurmnynmres fraction 1-[a+ {(1-8)(1 —aj,-’{!-«nj{Hg}j of the way to the balanced growth
Path each period. Some simple algebra simplifies the txpression for this rate of convergence to
(1 —a)in+g+ng +8)/(1+n)1 +8). With o = If3,n= 1%, 8=2%and 5 = 3%, this yields 5 rate of

| convergence of about 3 9% This is slower than the rate of canvergence found in the continuows-time
i Solow mode|

roblem 2,15
(a) The individug['s optimization problem is not affected by the depreciation which means thay
f fi=£'(k) - 5. The household's Problem is still to maximize utility as given by
C -5 1 C |
(I Ll! & It + 2,141
1-8 14p g
subject to the budget constraing

"

R
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Thus the way in which the fraction of income saved depends an the real interest rate, £, is unchanged.
The only difference is that the real interest rate itself is now £ (ki ) - 8, rather than just £ (ke )
The capital stock in period t + | equals the amount saved by young individuals in peried t. Thus
@) K =5 L,
where 5, is the amount of saving done by a young person in period t. Note that 8, = s(fi. DA : the
amount of saving done is equal to the fraction of mcome saved times the amount of income. Thus equation
{4) can be rewtitten as
(5) Keer = Las{riy DA
To get this into units of time t + 1 effective laber, divide both sides of equation (3) by AwiLe
Kin Ay
(8) =
n"iul ]-'1+| A L+l I""|+1
Since Ay.q = (1 +g)A, , we have A, Ay = 11+ g} Similarly, Ly /Ly = 1/(1 +n). In additicn,
Koot MMy Loy = by - Thus
1
ke o ;
(7 ki {1+n}{1+g}[i{ﬁ+]}wli
Fimlly.suhstitutefnrr.qﬁf'ﬂq..}-ﬁmdw.=f{k‘}-k.f'{k.]-.
1
1 I TR p———— Y T T T | 1R (L S TR LD R
) ke {1+nH|+E}{5{ Kea) }][{ ke 11]

This should be compared with equation (2.58) in the text, the analogous expression with no depreciation,
which is

IE{FLH Iw t] j

1
=m[5{f (k4 }}“f(kl} -k tf{kq}] :

Thus adding depreciation does alter the relationship between ki and ki . Whather ki.; will be higher or
lower for a given k depends on the way in which saving varies with fe.; .

kt+|.

(b} With lagarithmic utility, the fraction of income saved does not depend upon the rate of return on saving
and in fact
(9} s(rea )= L2 +p).
In addition, with Cobb-Douglas production, v, = k* , the real wage is w, = k" - kak™ = (1 -a)k®. Thus
equation (8) becomes .

SRR N e L9 a
00 ke = (1+n)(1+ 5)[2 +pﬂ_‘:'[}Ilt J
We need to compare this with equation (2) in the solution to Problem 2.14, the analogous exprassion in the
discrete-time Solow model, with the additional assumption of 100% depreciation (i.e. & = 1).

‘The saving rate in this economy is total saving divided by total output. Note that this is not the same as
s{fy; ), which is simply the fraction of their labor income that the young save. Denote the economy's total
saving rate as § . Then § will equal the saving of the young plus the dissaving of the old, all divided by
total autput and in addition, all variables are measured in unils of effective labar,

The saving of the young is [1/(2 + p)] (1 ~a)k,*. Since there is 100% depreciation, the old do not get to
dissave by the amount of the capital stock; there is no dissaving by the old. Thus
L Ve+pja-a)k™ 1
s=[ P]{u Lt = {1-a@).
kg 2+p

Thus equation {10) can be rewritten as
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1 — ]
(1+n1{1+g)5k‘ "|_n+n}u+g}J”k“"
Note that this is exactly the same as the expression for k.., as a function of k: in the discrete-time Solow
model with § = 1, That is, it is equivalent to equation (2) in the solution to Problem 214 with § set to one,
Thus that version of the Solow model does have some microeconamie foundations, although the assumption
of 100% depreciation is quite unrealistic,

(1) kg, =

P m 2,16

(a) (i) The wtility function is given by

M G,y +1f{1+g)]inc, ;.

With the sacial security tax of T per person, the individual faces the following constraints (with g, the
growth rate of technology, equal to 0, A is simply a constant thraughout):

(2) C1y+8;=Aw, - T, and

(3 Cap=(1+ [ )8y + {1 +m)T,

where §, represents the individual's saving in the first period. As far as the individual is concemed, the rate
of retum on social security is (1 + n); in general this will not he equal to the retum on private saving which
i5(] +ry ). From equation (3}, {1+ B4 )8, = Cap—(1+mT. Solving for S, vields

c
@ § =2l _(+m)

I+rg Q + Iy
Now substitute equation (4) into equation (2);

C 1
Crp+ il aw, -y 4D
o l4ny (T,
Rearranging, we get the intertemporal budget constraint:
Carut (ry — )
5) Cpy bz Aw, — 1 7 0)
Sl ke g R [l

We know that with logarithmic utility, the individual will consume fraction {1+ p)2 + p) of her lifetime
wealth in the first period. Thus

1 fieg —
(6) Cy, =[ﬁ‘§}["‘“’l _[I:-:Ir, ]nJ TJ

Te solve for saving per person, substitute eqluati:ﬂn (6) into equation (2); r :
l'l'p Ir.l'H_l—I'Illll r].’.pJ [I*—pl[lﬂ —“J
g = - - | - o i Y ) (Sl el | B, | N .
v =Awg [2+p}[AwI lali-rnl_!TJ T =g L2+p e |_I 2+pJ T+n JT
4 (2+p)(1+ r4y) = (14 pMryy; —n) |
5] 5 —I]JIJI{2+P}]'A-W1 —'[ {2+P]|{f+l‘t+|)

Note that if r,., = n, saving is reduced one-for-one by the social security tax, If r,., >n, saving falls less
than cne-for-one, Finally, if r.; <n, saving falls more than one-for-gna.

Denote Z, =[(2 +p)(1+ fieg ) = 1+ p)ryg — )] (2 4+ p)1 + Ty+1) and thus equation (7) becomes
(8) 8, =Jiﬂ2 + p}i.ﬁ.w. -Z,T.

It i still true that the capital stock in period t+1 will be equal to the total saving of the young in period t,
hence
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{g} Il'l;-l--l oy SI I-'1 a
Converting this into units of effective labor by dividing both sides of (9) by ALy, and using equation (8)
yields

(10) kyg = [+ 0)] (V2 + p))w, - Z,T/A].

With 2 Cobb-Douglas production function, the real wage is given by

(11w =11 - ek

Substituting (11) inta {10) gives the new relationship between capital in peried t + | and capital in period t,
all in units of effective labor:

(12) kyyy =[1(1+0)] [{ /(2 +p)) (1 - )k} - thM].

{a) (ii} To see what effect the introduction of the social security system has on the balanced-growth-path
value of k, we must determine the sign of Z,. If it is positive, the introduction of the tax, T, shifts down the

j kuy curve and reduces the balanced-growth-path value of k. We have
] _2+p)l4ry) =1+ pHry —n)  (I+1+pHl+rg)-(+pHny —n)
! (24+pMl+ 1) (2+p)1+r.) :

and simplifying further allows us to sign Z,
C(Lengg) + Qe p) (L4 ng) ~ (g —0)] (14 14) + (14 p)(14n) o

F : (2+p)l+ ) T (24pX1l4ry)
Thus, the k., curve shifts down, relative to the case without the social securtty, and k¥ is reduced

(a) (iii} If the economy was initially dynamically efficient, a marginal increase in T would result in a gain
to the old generation that would receive the extra benefits. However, it would reduce k* further below ka
and thus leave future generations worse off, with lower consumption pessibilities. [f the economy was

i initially dynamically inefficient, so that k* > ke , the old generation would again gain due to the extra
benefits. In this case, the reduction in k* would actually allow for higher consumption for future
generations and would be welfare-improving. The introduction of the tax in this case would reduce or
possibly eliminate the dynamic inefficiency caused by the over-accumulation of capital.

{b) (i) Equation (3) becomes
(13) Cj 44 =1+ )8 + (14 1) T,

As far as the mdividual 15 concerned, the rate of return on social securtty is the same as that on private
,' saving. We can now derive the mtertemporal budget constraint. From equation (16),

! (14) §; = Ca a1 /(1414 ) - T.

Substituting equation (14) into equation (2) yields

C
Gy +Ij+:ll=ﬁwt ~T+T,;
i or simply
(15) Cp, + Carn AW
* 1+ ny

This is just the usual intertemporal budget constraint in the Diamend model. Solving the individual's
maximization problem yields the usual Euler equation:
o =[W1+ g] 410 Cy,
Substituting this inte the budget constrant, equation (15), yields
(16) €y =[(1+p)/(2+p)] Aw,

_
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Ta get saving per person, substitute equation (1 B) inta equation (2).
St =Aw, ~[(1+p)/(2+ pl| Aw, - T,
ar simply
(17 S =[1/{2+ )] Aw, -T.
The social security tax causes a one-for-one reduction in private saving,

The capital stock in period t +1 will be equal to the sum of total private saving of the young plus the tatal
amount invested by the government. Hence

“E_} K,|+| == SgL. "‘TLr-

Dividing both sides of (18) by AL,., to convert this into units of effsctive laber, and using equation {17)

yields ; .
1 1) T (1T
kg = [;_';;I[(z_‘_-aljwr "R J""IIII:EJ ;:-
which simplifies 1o
ki =I],.-"f1+nJ”Il,-"'f2 + p]']w:_
Using equation (1 1} to substitute for the wage yields
(19) kg =[1f(1+0)] [1/(2 +p)](1-a)k

Thus the fully-funded social security system has no effect on the relationship between the capital stock in
successive periods,

(b} (i} Since there js no effect on the re!arjonship between k,.y and k; , the b-atanced-gmﬂ't-path value of k
is the same as it was before the introduction of the fully-funded social security system. (Note that we have
been assuming that the amount of the tax is not greater than the amaunt of saving each individual would
have done in the absence of the tax). The basic idea js that total investment and saving is still the same
each period, the government s simply deing some of the saving for the voung. Sines social security pays
the same rate of return as private saving, individuals are indifferen as to who does the saving. Thus
individuals offset one-for-one any saving that the govemnment does for them

Problem 2,17

(a) In the decentralized equilibrium, there will be pa mtergenerational trade. Even if the young would like
to trade goods this period for goods next period, the only pesple around ta trade with are the ald,
UnFonmaLt]}r, the old will be dead — and thue M N0 pesition to complete the trade -- next peried

The individual's utility function iz given by
(1) InCyy +InCy .

The constraints are
{2} Ci,t + Ft =A . and i:j} Cz.l+] = KF[,
where F, is the amount stored by the individyal,

Substituting equation (3) into (2) yields the intertemporal budget constraint:

#) Cyy +Caafx=A.

The individual's problem is to maximize lifetime utility, as given by equation (1), subject to the

ntertemporal budget censtraint, as given by equation (4). Set up the Lagrangian-
“=InCyi+InCyypy + P-.[A ~Cpe- Cz,t+r,"f"]

The first-order conditions ars given by
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ﬂ‘,c‘l,n'ﬂclll -_-1||'Ic|1: -A=0 = ]]'Ilcl,i =Pl.-1 and {5]
84[0C 1 =YCapu ~Hx=0 = YChpy=2x (6
Substitute equation (5) into equation (6) and rearrange to obtain
(1) Cape1=%Cpy
Substitute equation (7) into the intertemporal budget constraint, equation (4), to abtain
{:]J- + Hcl,tlfrl = ﬂ,
or simply
(8) Cip=A/2.
To obtain an expression for second-period consumption, substitute equation (8) into equation (7):
(9) Cape1 =%A[2
When young, each individual consumes half of her endowment and stores the other half, that s, f, = 112,
This allows her to consume xA/2 when old. Note that with log utility, the fraction of her endowment that
the individual stores does not depend upen the retum to storage.

{b) What is consumption per unit of effective labor at time t7 First, calculate total consumption at time t;
€y =Cply +Cp Ll
where there are L, young and L._, old individuals alive at time t. Each young person consumes the fraction
af her endowment that che does not store, (1 = f)A, and each old person gets to consume the gross retum on
the fraction of her endowment that she stored, fixA. Thus
C,=(1-f)AL; + AL, ;.
To canvert this into units of time t effective labor, divide both sides by AL, to get
C, /AL, =(1—£) + f[x/(1+n)|
Thus consumption per unit of time t effective labor is a weighted average of one and something less than
ane, since x < (1 +n). [t will therefore be maximized when the weight on one is one; that is, when fa= (.
(We could aleo carry out this analysis on consumption per persan alive at time t which would not change
the result here).

The decentralized equilibrium, with f= 1/2, is not Pareto efficient. Since intergenerational trade is not
possible, individuals are "forced” into storage because that is the only way they can save and consume in
old age. They must do this even if the retum on storage, x, is low. However, at any point in time, a social
planner could take one unit from each young persen and give (1 + n) units to each old person since there
are fewer of them. With {1 +n) > x, this gives a better return than storage. Therefore, the social planner
could raise welfare by taking the half of each generation’s endowment that it was going to store and instead
give it to the old. The planner could then do this each period. This allows individuals ta consume A/
units when young — the same as in the decentralized equilibrium — but now they get to consume

{1+ n)AS2 unite when old. This is greater than the xA/2 units of consumptien when old that they would
have had in the decentralized equilibrium with storage

Problem 2.18

{2) The individual has a utility function given by

(1) InCyp +InCy yq,

and constraints, expressed in units of money, given by

(2) B,Cyy = PA-PF, - M{, and

(3) PyyCapn = PyxFy +Hf!-

where Hf’ is nominal money demand and F, is the amount stored.
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What does she do with the other half? That will depend upan the gross rate of return on storage, x, relative
to the gross ratz of retum on money, which is PyP,., . The gross rate of returm on maney is PPy, since the
individual can sell one unit of consumption in peried t and get P, units of meney. In period t + 1, onie unit
of consusmption costs Py.; units of money and thus one unjt of money will buy 1/P, _, units of consumption,
Thus the individual's P, units of money will buy P,/P.., units of consumption in period t+].

CASE1: x> P /Py
She will consume half of her endowment, store the rest and not hald any money since the rate of retum on
money is less than the rate of return an storage. Thus

Ce=A/2 R=Afz  Mifp =0 Cg 141 =XA/2.

CASE2:x <P, /P,
Now storage is dominated by holding money, She will consume half of her endowment and then sel| the
rest for money:;

UM R=0 MIB=AR oy =[B/p[As]

CASE 3 x=PF /P,

Money and storage pay the same rate of retumn. She will consume half of her endowment and is then
indifferent as to how much of the other half to store and how much of it to sell for money. Leta & [0,1] be
the fraction of saving that is in the form of money. Thus

Cp =42 F=(-a)az MY P =aAfz Cz:m=xA,.l'2=[P”-’PHJ[ﬁ,.-’2].

{(b) Equilibrium requires that aggregate real money demand equal a Egregate real money supply.
We can derive expressions for both real money demand and supply in period t;

aggtegate real money supply = [Lg /(1 + )] M /p, =[Lt;’{1+n}“‘]M/p, .
The expressian for aggregate real money supply uses the fact that in peried 0, each old person, and there
are [Lo /(1 + n)) of them, receives M units of monegy. The last step then uses the fact that since population
Brows at rate n, L, = (1 +n)' L, and thus Lo=L /il +n)_
We can then use the equilibrium condition to solve for P,:
Lifar2)=[L, /a+ ™M = p =2m/[aq w5
We can similarly derjve expressions for real money demand and supply in period ¢ + |
aggregate real money demand = L., [A/2] =14 n) Le[A/2], and
aggregate real money supply = [L: [ +n}t+']M/P|+1 -
We can then use the equilibriuvm condition 1o solve for P, , -
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a+mLofar2]=[L /a+ “’I+JIM/P=+J = Py =2M/[Ad+m™?]. @
Dividing equation (6) by equation (5) yields

Pt.|.'|.||IIP| :l.lf“"'n} = P!+1 ZPIJIr'l:l"'“}
This analysis holds for all time periods t 2 0 and so Py = P, /{1 + n) is an equilibrium, This shows that if
maney 15 introduced into a dynamically inefficient econanty, storage will not be used. The monetary
equilibrium will thus result in attainment of the "golden-rule” level of storage. See the solution to part (b)
of Preblem 2.17 for an explanation of the reason that zero storage maximizes consumption per unit of
effective labor,

{c) This is the situation where P, /P,.; = x; the retumn on money is equal to the refurn on storage. In this
case, individuals are indifferent as to how much of their saving to store and how much to hold in the form
of money. Let oy & [0,1] be the fraction of saving held in the form of money in period t. We can again
derive expressions for aggregate real money demand and supply in period t:
aggregate real money demand = Lo, [AI."I], and
agpregate real money supply = [L.J,"{I + n}l] MKF[ = ’L.. ,."a{l + n}“l] M/P1 .
We can then use the equilibrium condition to selve for P,

Leg[af2]=[L /asm ™M/ = p=amfaacen™] o

We can similarly derive expressions for real money demand and supply in period t + 1-
aggregate real money demand = Ly, [4/2] = (1+ n}LtaH[A,I"E] , and
apgregate real money supply = [Ltl.u'f{l +n) H']] M/P,:H
% We can then use the equilibrium condition to solve for Py, -
G Membma[a)=[L/asm™ My = Pa=Moaaen™] @)
Dividing equation (3) by (7) yields
4 P /Py =[‘1t."'“t+i] [I.I"':l"'n}]-
For P,. | /P, = /%, we need
[aﬂlraml[],"{]+n}]= x = J“:d-li'l“t]:[xj"l“"'“]]‘“-
Thus for all t = 0, Py = P, /x will be an equilibrium for any path of o's that satisfies o /o = /(1 +n).

(d) Py =oc - money is worthless - is also an equilibrium. This occurs if the young generation at time 0
does naot believe that money will be valeed in the next peried and thus that the generation one individuals
will not accept money for goods. In that case, in period 0, the young simply consume half of their
endowment and store the rest, and the old have some useless pieces of paper to go along with their
endowment. This is an equilibrium with real money demand equal to zero and real money supply equal to
zero as well. Ifno one believes the next generation will accept meney for goods, this equilibrium continues
for all future time periods,

T

This will be the only equilibrium if the economy ends at some date T. The voung at date T will not want to
sell any of their endowment. They will maximize the utility of their one-period life by consuming all of
their endowment in peried T, Thus, if the old at date T held any maney, they would be stuck with it and it
would be useless to them. Thus when they are young, in period T - 1, they will not sell any of their
endowment for money, knowing that the moaey will be of no use to them when old, Thus, if the old at date
T - 1 held any maney, they would be stuck with it and it would be useless to them, Thus the old at




46 Solutions to Chapter 2

T - 1 will not want any money when they are Young and so on. Working backward, ne ane would ever
want to sell goods for money and money would not be valued,

Problem 2.19

{2) (i) The individual has a utility function given by

(1} U=iCy, +InCy,.,,

and a lifetime budget constraint given by

(2) QCii* Quy Crpni = Qu(A -5 )+ Qui xS, .

From Problem 2.17, we know that with log utility, the individual wants to consume A/2 in the first period.
The way in which the individual accomplishes this depends on the gross rate of retumn on storage, x,
relative to the gross rate of retum on trading,

The individual can sell one unit of the good in period t for Q,  In period t + 1. it costs Qv.y to obtain one
unit of the good or equivalently, it costs one to ohtain 1/Qs.; units of the good. Thus for @, , it is possible
to obtain Q, /Q\.; units of the good. Thus selling a unit of the good in period t allows the individual to buy
Q: /Qu.y units of the good in period t + 1, Thus the gross rate of retumn on trading is Q. /Q,,, .

Now, Quy=Q, /xforallt >0 js equivalent tox =,/ Q. forallt > 0. In ather words, the rate of retumn
on storage is equal to the rate of retumn on trading and hence the individual is indifferent as to the amount o
store and the amount to trade. Let o, [0, 1] represent the fraction of "saving", A/2, that the individual
sells in period t. That is, the individual sells o (Af2) in period t. This allows the individual to buy the
amount o, (0 /Qyq WAZ) when she is old in period t + 1. The individual stores a fraction {1=a,)ofher
“saving”. Thus
(3} S =(1-o, HAD).
Censumption in period t + 1 will be equal to the amount the individual buys plus the amount she has
through storage. Thus
(4) Carer = @ (Qu Qur WAZ) + (1 - a1, Jx(AS2),
Since we are considering a case in which Q, /Q,., = X, equation (4) ean be rewritten as
{5} C1|1+1 = Oty x{MZ} + {] = iy }I{NZ} - x{Ml}
Consider some period t + 1 and let L represent the total number of individuals bomn each period, which iz
constant. Aggregate supply in period t + 1 is equal to the total number of young individuals, L, multiplied
by the amount that each young individual wishes to sell, oy (A2). Thus
(6) Aggregate Supply,.; = La,,, (A/Z).
Aggrepate demand in period t + | is equal to the total number of old individuals, L, multiplied by the
amount each old individual wishes to buy, (Q: /Qw; Ja, (A'7). Thus
(7) Aggregate Demand,.; = L(Q, /Q\., Ja, (A/2).
Far the market to clear, aggregate supply must equal aggregate demand or

Low, (AM2) = L(Q, /Quy Je (A/D),
or simply
(8) @iy = (0 Qs Jay .
Since the proposed price path has Q,., = O, /x, the equilibrium condition given by equation (8) can also be
written as
(9 oy =xa,
Now consider the situation in period 0. The old individuals simply consume their endowment. Thus we
must have o, equal to zero in order for the market to clear m period 0, Thus equation (9) implies that we
must have o, = 0 forallt = 0.
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The resulting equilibrium is the same as that in part (a) of Problem 2.17. The individual consumes half of
her endowment in the first period of life, stores the rest and consumes xA/2 in the second period of life.
Note that with x < 1 + n here (since n = 0 and x < 1), this equilibrium is dynamically mefficient. Thus
sliminating incomplete markets by allowing individuals to trade before the start of time does not eliminate
dynamic inefficiency

(=) (i) Suppose the auctioneer announces Qy1 < Q, /x or equivalently x < (Q /Q. ) for some datet. This
means that trading dominates storage for the young at date t. This means that the young at date t will want
to sell all of their saving — o, = 1 so that they want to sell A/2 — and not store anything, Thus aggregate
supply in period t is equal to L{A/2). For the old at date t, Q\., is irrelevant. They based their decision of
hew much to buy when old on Q. / Q. which was equal to x. Thus as described in part (a) (i), old
individuals were nat planning to buy anything  Thus aggregate demand in period t is zero. Thus aggregate
demand will be less than ageresate supply and the market for the good will not clear. Thus the proposed
price path cannot be an equilibrium,

Suppose instead that the auctioneer announces Q. > Qy /x or equivalently x > (Q /Qy. ) for some date t.
This means that storage dominates trading for the young at date t. This means that the young at date t will
want to store their entire endowment and will want to buy A2, For the old at date t, Q. 15 irrelevant.
They based their decision of how much to trade when old on Q, /Q,., which was equal to x. Thus each old
individual was not planning to buy or sell anything  Thus aggregate demand exceeds aggregate supply and
the market for the good will not elear. Thus the propesed price path cannet be an equilibrium.

(b) Censider the social planner's problem. The planner can divide the resources available for consumpticn
between the young and the old in any matter, The planner can take, for example, one unit of each young
person's endowment and transfer it to the old, Since there are the same number of old and young pecple in
this model, this increases the consumption of each old person by one. With x = 1, this method of
transferring from the voung to the old provides a better return than storage. [f the economy did not end at
same date T, the planner could prevent this change from making anyone worse off by requinng the next
generation of young to make the same transfer in the following pericd. However, if the economy ends at
some date T, the planner cannct do this. Taking anything from the young at date T would make them
worse off since the planner cannot give them anything i retumn the next period,; there is no next period.
Thus the planner cannot make some generations better off without making another generation worse off.
Thus the decentralized equilibrium is Pareto-efficient,

bk

f e

-

{c} It is infinite duration that is the source of the dynamic meffictency. Allowmg individuals to trade
before the start of time requires a price path that results in an equilibrium which is equivalent to the
situation where such a market does not exist. This equilibrium is not Pareto-efficient; a social planner

& could raise welfare by doing the procedure described m part (). However, removing infinite duration also
' remaves the social planner's ability to Pareto improve the decentralized equilibrium, as explained in part
(b).

P ¢
=gl

T

s

PFroblem 2.20
(a) The mdivdual has utility function given by
C " Cop'™®

() ——p—= gc]
1-8 1-8
The constraints expressed m units of money are
2) BC =PA-M], and  (3) PyCapy =M{.

Combining equations (2) and (3) yields the lifetime budget constraint.
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# BC 14+ PCap =RA.

Nate that 6 < 1 means that the elasticity of substitution, 1/9, is greater than one. Thus when the rate of
retum on saving increases, the substitution effect dommates; the individual will consume less now and save
more. This is essentially what we will be showing here. As the rate of retumn on holding money, which is
P: [Py, rises, the individual wishes to hald more money,

The individual's problem is to maximize (1) subject to (4). Set up the Lagrangian:

E],,I -8 CJ'.J+J 1-8
ek 1-8 +A[PA-RC, ~PiCaa)
The first-order conditions are
o4 - G IHE
= —-AP. = A==—" and 5
EC[J c|,l PI = Pl » Al ‘: }
a4 7 )
BCoy -2 AR =0 = G fan, (6)
WL

Substitute (5) into (8) to obtain
a o L]
Coen ™ =Cy Py /R, = {fz,u-: ,-”EJ_rJ =P /Py = Capy/Cy, =[P, TL ) i
or simply
1/
(M Cg =[P /Py) Cpt-
This is the Euler equation, which can now be substituted inta the budget constraint (4):
18
I:"!':I,t +Pt+t{P1fP1+l} Cre=RA.
Dividing by F, yields
18
Cie "'|:Pt+I /P, }{ Py ."rPHtJ' Cii=A,
and simplifying vields
(1-ay8 [ {1-6318
Cyy +(By/P,) Cla=A = Cye | 1+(P /Py :|=A
Thus consumption when VOUng is given by
A

(8 C,= _'—-Ta};a-.
1+ {Pl Py }

To get the amount of her endowment that the mdividual sells for money (in real terms), we can use equation
(2, expressed in real terms

(2) M{ /P =A-cy,.
Substitute equation (8) into (2% to abtain
M A
.Iﬂl. =
Py 1 “'{Ft /Py
Simplifying by getting a common denominater yields
{i-618
M_;I__A EPI ."'Pl:+lj
Pt 1By, ) O

Prviding the top and bottom of the right-hand side of equation (9) by (P, /P, | !"®® yields

MY FI' 1 J
A e —— e — |
NIOE DR WP

)
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Py i (P /Py :'ib:u'm 1

Thus the fraction of her endowment that the mdividual sells for money is

(1 he=————mm -
(P /Pyt ) +1

It is straightforward to show that the fraction of her endowment that the agent sells for money is an
increasing function of the rate of retum on holdmg money:;

_oh,_-@-n8](R /R0 jle-niel-1
f.'[ Py I."F‘1+l] [[ P, /P Jll[ﬁ—]],-'ﬂ o I]z

We can also show that as the rate of retum on money goes to zero, the amount of her endowment that the
individual sells for money goes to zere. Use equation (9) to rewrite b, as

- (P /By }“ng

i 08|
[1+(2 /R ) |

and thus
lim by =0/(1+0)=0.
(P /By J20

=0 for@ < 1.

(b} The constrants expressed in real terms are

{zl} CI.I =A—M?J'Irpt= and 'ET} CE.H[ =T""{ili|'frpl+l

Since there is no population growth, we can normalize the population to one without loss of generality.
From (3", a generation bomn at time t plans to buy M, /P,., units of the good when it is old. Thus, the
generation borm at time 0 plans to buy M® /P, units when it is old (in period 1). Use equation (10) to find
MY, substituting t = 0-

PyA Mi  [Po/P]A
M = v = e (1}
0 [P‘g. ."F| ]iﬁ"]]_-'ﬁ £l pl [PD,"P'] }U’:‘—I},-E +1

From equation (2, a generation bomn at time t plans to sell M, /P, units of the good for maney. Thus the
generation born at time 1 plans to sell M", /P, units of the good. Substituting t = | into equation {10) gives
{13) l‘i_ A

T {n p JB-1NE

PI {P] ! FJJ

In order for the amount of the consumption good that generation 0 wishes to buy with its meney, given by
equation {12), to be equal to the amount of the consumption good that generation 1 wishes to sell for
money, given by equation (13}, we need

[o/Pi] A A (ro/p) """ 41,

+1-

= = aall
(Ro/m) ™1 (e "1 (Rt B
MNow with Py /P; < |, we need
(Bo/B) ™ w1<(py/p) * 0wt = (ryey) 0 < (py ),

and since (8 - 1)/8 is negative, this implies



pE

50 Salutions to Chapter 2

P
L. Fo =1
P, B
(c) Iterating this reasoning forward, the rate of retum on money will have to be falling over time. That is,
P F P P,
I}-l:»—J::—z:r.. and so —— 30,
P] P2 P; P:+i

As shown in part (a), this means that the fraction of the endowment that is sold for money will also go to
zero, The economy approaches the situation where individuals consume their entire endowment in the first
period. This is an equilibrium path in the sense that every time period, markets will clear. Each peried, the
real money demand by the young will be equal to real meney supplied by the old and they will both go to
zero as t gets large

(d) IfPy /P, = |, we obtain the apposite result for the path of prices. That is, P, /P,., will rise over time;

P B P P,
le—e—<—=%- andsg -3
P P P Py

From equation (11) we can see that this means that the fraction of the endowment sold for money will goto
one. In other words, the econamy approaches the situation where no one consumes anything in the first
period and individuals sell their entire endowment far meney. Thus, total real money demand will go to A,
the endewment of the young (we have normalized the population to one). But with this path of prices, the
price level goes to zero, which means that real meney supplied by the old goes to infinity. Thus this cannat
represent an equilibrium path for the economy because there will be a time period when real money supply
will exceed real meney demand and the market will net clear.
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SOLUTIONS TO CHAPTER 3

Problem 3.1
The production functions for output and new knowledge are given by

) YO =A®Q -2, )LE), and @) A(t)=Ba 'L()TA®M)°®  o<l.

(a) On a balanced growth path, A(t)/A(t) = ga* =m/(1 - 6). 3
Dividing both sides of equation (2) by A(t) yields
@) A®/A®t)=Ba L) A0)°®T.
Equating (3) and (4) yields

Ba 'Ly’ A0 =yn/01-0) = A®%!=yn/(-0)Ba, TL)' .
Simplifying and solving for A(t) yields

1/(1-6
) A®)=[(1-6)Ba 'L®t)" /y] fa-e

(b) Substitute equation (5) into equation (1):

1/(1-6)

Y()=[(1-0)Ba L) /ya] " (1-ay)Lt) =[1-6)B/yn]
We can maximize the log of output with respect to a; or maximize

InY(t) =[1/(1-6)] In[(1-0)B/yn] +[y/(1-8)] Ina, +In(1-ay) +[(v/(1-6)) + | inL(t).
The first-order condition is given by

onY®) vy 1 1

aaL _(l—e)aL l—aL_ »
Some simple algebra yields an expression for ap *:
Y
6 fa—f

(6) a (1-8)+y
The higher is 6, the importance of knowledge in the production of new knowledge, and the higher is v, the
importance of labor in the production of new knowledge, the more of the labor force that should be
employed in the knowledge sector.

1/(1-6) (1-o)}+

a 709 (1 _ap YLl

Problem 3.2

Substituting the production function, Y; (t) = K; (t)°, into the capital-accumulation equation,
K;(t)=5;Y;(1), yields

M K ®=5K,0®° o>1

Dividing both sides of equation (1) by K; (t) gives an expression for the growth rate of the capital stock,
Bk

@ gx; O=K®O/K;® =5;K; %",

Taking the time derivative of the log of equation (2) yields an expression for the growth rate of the growth
rate of capital:

3) gki®/exi®=0-Dgg (1),
and thus
@) 8x;®=06-Dgg; (1)
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Equation (4) is plotted at right. With 6 > 1,
gx.i will be always increasing. The initial gk (t
value of gy; is determined by the initial capital
stock and the saving rate; see equation (2).
Since both economies have the same K(0) but
one has a higher saving rate, then from
equation (2), the economy with the higher s
will have the higher initial gk.i (0). From
equation (3), the growth rate of gkiis
increasing in gx; . Thus the growth rate of the

capital stock in the high-saving economy will —
always exceed the growth rate of the capital & M
stock in the low-saving economy. That is, we
have g¢; (t) > g« ®forallt>0 In fact, the gap between the two growth rates will be increasing over
time,

More formally, using the production function, we can write the ratio of output in the high-saving country,
country 1, to output in the low-saving country, country 2, as

0
) Yit/Y, 0 =[K;1)/K, 0)]°.
Taking the time derivative of the log of equation (5) yields an expression for the growth rate of the ratio of
output in the high-saving €conomy to output in the low-saving economy:
[ ]

MO/ %0 (ko K]
6 = - ——|=6 - ~
©) [Yl % (t)] [K](t) K, (t)J [8{(,1 M -gx2 (t)J >0

As explained above, 81 () will exceed gy, (t) for alit> 0. In fact, the gap between the two will be
increasing over time. Thus the growth rate of the output ratio will be positive and increasing over time,
That is, the ratio of output in the high-saving €conomy to output in the low-saving economy will be
continually rising, and rising at an increasing rate.

Problem 3.3

The equations of the gx =0and g, =0 lines are given by
() 8k =0 = gy =g, +n,

and

. (1-0)gs —yn
@ ga=0 = gg=—2ATID

The expressions for the growth rates of capital and knowledge are

1- -
() gx(® =cK[A(t)L(t)/K(t)] * cg=s(l- ag)*(1-ap )i
@ A =caKOPLOTAD® ¢, = BayPa, 7.
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(a) From equation (1), for a given g, , the

Solutions to Chapter 3

value of gx that satisfies gg =0 is now
higher as a result of the rise in population
growth from n to nygw. Thus the g =0
locus shifts up. From equation (2), for a
given ga , the value of gk that satisfies
ga =0isnow lower. Thusthe g, =0
locus shifts down.

Since n does not appear in equation (3),
there is no jump in the value of gk at the
moment of the increase in population

growth.

Similarly, since n does not appear in
equation (4), there is no jump in the value

of g4 at the moment of the rise in population
growth.

(b) Note that ax does not appear in

equation (1), the gx =0 line, or in equation
(2), the g, =0 line. Thus neither the

gk =0 northe § 54 =0 line shifts as a result
of the increase in the fraction of the capital
stock used in the knowledge sector from ax
to aKNEw.

From equation (3), the rise in ak causes the
growth rate of capital, gk , to jump down.

From equation (4), the growth rate of
knowledge, ga , jumps up at the instant of
the rise in ax . Thus the economy moves to
a point such as F in the figure. /B

(c) Since 0 does not appear in equation (1), there is
no shift of the g = 0 locus as a result of the rise in
0, the coefficient on knowledge in the knowledge
production function. From equation (2), the g5 =0
locus has slope (1 - 6)/B and therefore becomes
flatter after the rise in 6. See the figure.

Since © does not appear in equation (3), the growth

rate of capital, gx , does not jump at the time of the

rise in 0. O does appear in equation (4) and thus we
need to determine the effect that the rise in 6 has on
the growth rate of knowledge. It tumns out that g,
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may jump up, jump down or stay the same at the instant of the change in 6. Taking the log of both sides of
equation (4) gives us

Inga (t) = Inc, + BINK(t) + yInL(t) + ( - 1)lnA(t).
Taking the derivative of both sides of this expression with respect to O yields
(5) Olnga (t)/60 = InA(t).
So if A(t) is less than one, so that InA(t) < 0, the growth rate of knowledge jumps down at the instant of the
rise in 6. However, if A(t) is greater than one, so that InA(t) > 0, the growth rate of knowledge jumps up at
the instant of the rise in 8. Finally, if A(t) is equal to one at the time of the change in 6, there is no initial
Jjump in g5 . This means the dynamics of the adjustment to Exzw may differ depending on the value of gaat
the time of the change in 0, but the end result is the same.

Problem 3.4

The equations of the gy =0 and g, =0 loci are

(1-6)gp —yn

_—B .

The equations defining the growth rates of capital and knowledge at any point in time are
1- -

@) gx®=ck[AOLO/K®] ™ cx =s(1-ag)*(1-a )

@ ga(®O=c KOPL®TA®®! ¢, =BagPa, .

(1) g =0 = gx=g4 +n, and 2 84o=0 = gg=

(a) Since the saving rate, s, does not
appear in equations (1) or (2), neither g
the §x =0 nor the g, = 0 locus shifts
when s increases. From equation (4),
the growth rate of knowledge, ga, does
not change at the moment that s
increases. However, from equation
(3), a rise in s causes an upward jump
in the growth rate of capital, gx. In the n
figure, the economy jumps from its
balanced growth path at E to a point

such as F at the moment that s / 8a
increases. J

. . -m/B
(b) At point F, the economy is above
the §4 =0 locus and thus g, is rising.
Due to the increase in s, the growth rate of capital is higher than it would have been -- the amount of capital
going into the production of knowledge is higher than it would have been - and so the growth rate of
knowledge begins to rise above what it would have been. Also at point F, the economy is above the gy =0
locus and so g is falling. The economy drifts to the southeast and eventually crosses the g, = 0 locus at
which point g, begins to fall as well. Since there are decreasing retums to capital and knowledge in the
production of new knowledge -- 8 + B < 1 -- the increase in s does not have a permanent effect on the
growth rates of K and A. The economy eventually retums to point E.

The production function is given by
& Y@ =|(1- aK)K(t)]a[A(t)(l ~ap L) e

§
|
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Taking the time derivative of the log of equation (5) will yield the growth rate of total output:

()

© < =ogx®+1-)ga®)+n].
Yo InY/L

On the initial balanced growth path, from
equation (1), gx* = ga* +n. From equation (6),
this means that total output is also growing at rate
gk* =ga* + 1 on the initial balanced growth path.
Thus output per person, Y(t)/L(t), is initially
growing at rate ga*. During the transition period,
both gx and g4 are growing at a higher rate than
on the balanced growth path and so output per :
worker must also be growing at a rate greater than t time
its balanced-growth-path value of g4*. Whether
the growth rate of output per worker is rising or falling will depend, among other things, on the value of &
since there is a period of time when gk is falling and ga is rising. The figure shows the growth rate of
output per worker initially rising and then falling, but the important point is that during the entire transition,
the growth rate itself is higher than its balanced-growth-path value of g4*. In the end, once the economy
returns to point E, output per worker is again growing at rate ga*, which has not changed.

(c) Note that the effects of an increase in s in this model are qualitatively similar to the effects in the Solow
model. Since there are net decreasing returns to the produced factors of production here -- 6 + § <1 - the
increase in s has only a level effect on output per worker. The path of output per worker lies above the
path it would have taken but there is no permanent effect on the growth rate of output per worker, which on
the balanced growth path is equal to the growth rate of knowledge. This is the same effect that a rise in s
has in the Solow model in which there are diminishing retums to the produced factor, capital.
Quantitatively, the effect is larger than in the Solow model (for a given set of parameters). This is due to
the fact that, here, A rises above the path it would have taken whereas that is not true in the Solow model.

Problem 3.5

(a) From equations (3.14) and (3.16) in the text, the growth rates of capital and knowledge are given by
(1) gx () =K@®)/K®) = cx [A@L®/K®)] " where ek =s[1 - ax °[1 - . 1", and

@ ga®=AQ/AD=c,KOPL®)A®®!,  whereca =Bagar’.

With the assumptions of § + 6 = 1 and n = 0, these equations simplify to

() g ®© = [l JAQ/KW®]'™, and (4) g4 ®© = [cAl'IKEYA®].

Thus given the parameters of the model and the population (which is constant), the ratio A/K determines
3 both growth rates. The two growth rates, g and ga , will be equal when

[exLTAQ/K®] = [l IKE/ADLP = [AQKO]™® = [ca fox L.

Thus the value of A/K that yields equal growth rates of capital and knowledge is given by

® A(t)/K(t):[(cA /cK)LY_(l'“)]l/(l—“*'B)_

RBIEITRS

(b) In order to find the growth rate of A and K when gx = g4 = g*, substitute equation (5) into (3):
1 1
g =[ox L) (e fe L1700 ),
Simplifying the exponents yields
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>

1/(1
g* :l:cK(l—wﬁ)—(l—a)cA1—aL(1—a)+7(1—a)-<l-a)2 ] f-a+h)

or simply
(©) g*=[egPe, mp @i )

(c) In order to see the way in which an increase in s affects the long-run growth rate of the economy,
substitute the definitions of ¢k and c, into equation (6):

@) g*=[sﬁu-ax)“"(l-aL)“‘“”’B‘-“axﬁ“-“)aﬂ(‘-@L“**W*a)]‘/‘“’”‘” .

Taking the log of both sides of equation (7) gives us

®) lng*:[l/(l—cx+B)] {Blns+(1-a)(y+a)ln L+(1-a)in B+Blaln(l-ag) +(1-a)lnag ]+
(-o)[Bin(1-a;) +ylnay }}.

Using equation (8), the elasticity of the long-run growth rate of the economy with respect to the saving rate

is

(%) Olng*/ons = B/(1 - o + B) > 0.

Thus an increase in the saving rate increases the long-run growth rate of the economy This is essentially

because it increases the resources devoted to physical capital accumulation and in this model, we have

constant returns to the produced factors of production.

(d) We can maximize Ing* with respect to ax to determine the fraction of the capital stock that should be
employed in the R&D sector in order to maximize the long-run growth rate of the economy. The first-order
condition is

dlng* B[ o a-u

= + J: 0.
dag  (-a+B)l(-ag) ag
Solving for the optimal ax* yields
a/(l -ak)=(1 - o)fag = aag=1-ag+oag-a = 0=1-ax-a,
and thus
(10) ag*=(1 - ).
Thus the optimal fraction of the capital stock to employ in the R&D sector is equal to effective labor's
share in the production of output. Note that B, capital's share in the production function for new
knowledge, does not affect the optimal allocation of capital to the R&D sector. The reason for this is that
an increase in B has two effects. It makes capital more important in the R&D sector, thereby tending to
raise the ax that maximizes g*. A rise in B also makes the production of new capital more valuable, and
new capital is produced when there is more output to be saved and invested. This tends to lower the ax that
maximizes g* since it implies that more resources should be devoted to the production of output rather than
knowledge. In the case we are considering, these two effects exactly cancel each other out.

Problem 3.6
(a) Substituting the assumption that x(1) =K/A for 0 < i< A into the production function gives us

M) Y=[(-ap )™ ?[K/A]adi .

i=0
Since (K/A)* is independent of i, this leaves us with
@ Y=[t-apt]*[k/a]* Tai.

i=0
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Since ?di =[A-0}=A, we have
i=0

@) Y=[(1-a)L]""K"A™,

or, rearranging,

@ Y=[(1-a. )AL]"K"

(b) () For ease of notation, define Ly = amount of labor employed by the firm. The firm's problem is to
choose the quantities of labor and each capital good, x(i), in order to minimize cost, given by

(5) wLy + ?x(i)p(i)di,

i=0
subject to output being equal to one unit, or
©) Ly'™@ ?x(i)“di =1.

i=0
Thus the Lagrangian for the firm's cost-minimization problem is

[
() £=wLy + Jx(@p(i)di+A 1- Ly Ix()*di |
1 e e
i=0 i=0

(b) (ii) The first-order conditions are given by

® o4 w-Al-a)Ly™® ?X(i)adi =0,

oLy i=0
and
o4 _
©) P p(i) - ALy %ax()* ' =0.

(b) (iii) Since there will be full employment, we can find the demand for capital good i, x(i), with Ly and
the p(i)'s taken as given. Dividing equation (8) by (9) gives us

AM1-a)Ly ™ ?x(i)“ di Ly Ly™® ?x(i)“di
(1-a)

w i=0 i=0
10) ——= a1 -1
p@) ALy ™%ax(i) a Ly ™x(i)*
Using the cost-minimization constraint, equation (6), this simplifies to
w (-0 1 (- x(@)'

ay —-= — = _
p) o Ly2%x@)*! @ Ly¥®

We can now solve for an expression for the demand for capital good x(i). Rearranging equation (11) yields
w oo
12) x()'"™* =————Ly?> ™™
) x()'* =Ly
Taking both sides of equation (12) to the exponent 1/(1 - o) leaves us with
1

o w =
a3) x(i):[———,LYZ‘“} *
1-a p(i)
Using the fact that labor in the goods-producing sector is paid its marginal product, or
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oY
w=——=(1-a)Ly™® ?x(i)udi,
aLY i=0

we can rewrite equation (13) as

! €1
l-a 1

(1-o)Ly™® ?x(i)“di ] Lyl ?x(i)“di
(14) x(i)= ,a Ly o i

[ ~-a p() J [ p(@) J

Substituting the cost-minimization constraint, equation (6), into (14) yields

1 1
) aLYI‘aJE [ a JE
15 = =f — Lv.
13 =) [ p() pi)] Y

Note that we can write the elasticity of demand for capital good i as
a8 ox(i) p(i)  olnx(i)
Op(i) x(i) Olnp(i)’
Taking the natural log of both sides of equation (15) gives us
1
(17) Inx() =1~[1na ~Inp(@)]+InLy.
-a

And thus the elasticity of demand is given by

(g Z0PO_ohx®)_ 1

as required.

To see why this implies that the profit of a monopolistic supplier of capital good i, at the profit-maximizing
price, is (1 - o0)p(i)x(i), note that profit for a producer of capital good i is given by

7 = [p(i) - c(@)]x@),
where c(i) is the unit cost of producing capital good i. The firm chooses quantity to maximize profit, so the
first-order condition is

om(i X
9 20 2O ) L by -etiy=o.
ox(i)  ox(i)
Dividing both sides of equation ( 19) by p(i) and using equation ( 18) to substitute for the inverse of the
elasticity of demand for capital good i gives us

-1
20) —+1-—==0,.
n
Solving equation (20) for p() gives us
i) _n-1
p@d 7’
or simply
@ pli)=—1—c(i).
n-1

This expression illustrates the fact that the price of the monopolist is n/(n - 1), times cost. Substituting the
definition of 1, which is N =1/(1 - o), into equation (21) yields
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oY
w=——=(1-a)Ly ?x(i)“di,
OLy i=0

Wwe can rewrite equation (13) as

A L O

1 1
(1-a)Ly™@ ?x(i)udi ]H’ Lyl ?x(i)“di =
a i =
14) x(i) = 1=0 L2 slg—I=0 1w
(19 >0 ll—oa p() Y J' [“ pi) Y

Substituting the cost-minimization constraint, equation (6), into (14) yields

1
15 = =|—| "Ly,
1% xy [ p(d) p( Y

Note that we can write the elasticity of demand for capital good i as
a6 Ox(i) p(i) _ dlnx(i)

op(i) x(i) dlnp(i)’

Taking the natural log of both sides of equation (15) gives us

an 1nx(i)=Ilﬁa[lna ~Inp(i)] +InLy.
And thus the elasticity of demand is given by
Ox(i) p(i) dOlnx(i) 1
) ——=r-— .~
op(i) x()) Olnp(i) l-a

as required.

i To see why this implies that the profit of a monopolistic supplier of capital good i, at the profit-maximizing
; price, is (1 - o)p(i)x(i), note that profit for a producer of capital good i is given by
7= [pG) - c()]xG),
: where c(i) is the unit cost of producing capital good i. The firm chooses quantity to maximize profit, so the
first-order condition is

on(i i

o) 220 _PD ), oy -eiy=o.

ox(i)  ox(i)
Dividing both sides of equation (19) by p(i) and using equation (18) to substitute for the inverse of the
elasticity of demand for capital good i gives us

-1 i
20) —+1——‘m=0.
n )

PG
Solving equation (20) for p() gives us
<) _n-1
p) n’
or simply

@1) pli)=—2c(i).
n-1

This expression illustrates the fact that the price of the monopolist is n/(n - 1), times cost. Substituting the
definition of 0, which is = 1/(1 - @), into equation (21) yields
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(-

F(/l(j;)";)_—l]c(i) - [Ya)e(i),

and so c(i) = ap(i). Substituting for c(i) in the expression for profit gives us
7= [p(®) - ap()]x(i),

or simply

23) == (1 - A)pDx(Q).

r
22) p() =L

Problem 3.7
(a) The present discounted value of the profit from renting out a capital good at time t is

© ~ jr(s)ds
@ VW= Je = a@ydr.

7=t
From equation (23) in the solution to Problem 3.6, profit at any point in time is & = (1 - &)p()x({). We are
examining a balanced growth path where x(i) and p(i) are independent of i and constant over time and
where P and X=K/A are the balanced-growth-path price and quantity of each capital good. Thus
equation (1) becomes

T

o - r(s)ds

@ V= le = (-wpxdr.

=t

In addition, since the real interest rate is constant, exp [-— ]r(s)ds] =exp [—r ]ds] =exp(-r(t-t)), and so
s=t s=t
we have

[+ o} [+ o}
@) V()= fe TV A-0)pxrdr=(1-w)px Je " Vdr.
1=t 1=t
Solving the integral in equation (3) yields ]
1 © 1 ]
PDV (v _ 1 cvme] _Lo=tt0° |4 el Lo
="V ()= (1-a)pX| - e L:d‘(l @)p%|-—(0-1)|,
and thus

@ =PV :Sl—_-?)E.

(b) The wage of a worker in the knowledge-producing sector will equal the marginal product of labor in
the knowledge sector multiplied by the price of the good produced by the knowledge sector or the price of
knowledge. More concretely, the price of knowledge can be interpreted as the price of a design for a new
capital good. This price will be bid up until it equals the present discounted value of the profit that a
monopolistic supplier of the new capital good can extract. Using equation (4) and denoting P, as the price
of knowledge gives us
(1-0)px
() Pp =—.
From A =Baj LA, the marginal product of labor in the knowledge-producing sector is
oA
(6) ——=BA.
da L
Thus the wage of a worker in the knowledge-producing sector, denoted W, , is

—
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(1-0)FXBA
M W, = —+.
From equation ( 15) in the solution to Problem 3.6, the demand for capital good i is

®) x(i):[i)j’lﬂ Ly.

p(
Taking both sides of equation (8) to the exponent (1 - ), and on a balanced growth path, we can write
© =2
P
Solving for § gives us
(10) p=aLyeg-0-o)
Substituting equation (10) into equation (7) yields

1-a)aLyl-eg=(-ogp,
an WA=( a)aLy'"%% X '

which simplifies to
a(l-a)Ly-ox%zBA
12) w, = 2Ly *x°%BA
r

(¢) As in the solution to Problem 3.6, we can define Ly = (1 - a, )L as the amount of labor employed in the

goods-producing sector. From the production function, Y = LY]"’ ?x(i)adi » on the balanced growth path
i=0
we have

(13) Y=Lyl@ ?x(i)“di =Ly(0goa
=0
Thus the marginal product of labor in the goods-producing sector is

Y
14) ——=(1-a)Ly " %%%A .
( oLy (I-a)Ly*x

(
balanced growth path. This is distinct from the concept of the marginal product of an increase in the
ba]anced-growth-path value of each capital good. That is, we want to find 0Y /0K on the balanced growth

From equation (4) in the solution to Problem 3.6, output when x(i) = K/A is given by
(I15) Y =[(1 - a. )AL)"*K" = Ly AoKe
Thus the marginal product of capital is

oY Iy el K1
16) —=aLyl-aptogo-1_ o l-a(—) }
16 5 =Ly =Y A

Since X=K/A, we can write

oY
(17) —p=aly'ege,
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(e) Since labor is mobile between the goods- and knowledge-producing sectors, the wage in both must be
equal or w =W, . Since labor will be paid its marginal product in the goods-producing sector (the price of
the output good is normalized to one), using equations (12) and (14) we require

a(l-a)Ly!"*%*BA

as) =(1-a)Ly *%x*A,
r

which simplifies to

(19) alyB=r.

Thus the amount of labor employed in the goods-producing sector is given by
(20) Ly=(1-a.)L = r/aB.

(f) Since A =Baj LA, the growth rate of knowledge is given by

@1n A Ba; L
—=Ba; L.
A L

On the balanced growth path, K, A, Y, and C all grow at the same rate, which we will denote g, and so
(22) g=Ba.L.

(8) We know that on the balanced growth path consumption grows at rate g, thus

C r-p
(@3) C=—5"=BarL.

From equation (20), a;L = L - (t/aB), and so (23) becomes
ey =LopL- I,
0 a

or
(25) ar-ap=aBBL - 6r.
Collecting the terms in the interest rate, , yields
(26) r(a +0) =a(p + OBL),
and thus the interest rate on the balanced growth path is

o(p+6BL)
QN r=—m——,

+6 :

Note that r is a decreasing function of individuals' patience. The more patient are individuals - the smaller

is p, the rate at which the future is discounted -- the lower is the balanced-growth-path value of r.

Next we can solve for the balanced-growth-path value of a; , the fraction of the labor force employed in the
knowledge sector. From equation (20), (1 - a )L = r/oB, we can write
r
28) af =1-——,
@8 2L =150

Substituting equation (27) into (28) yields
a(p+6BL) _ (a+6)aBL-ap-afBL

29 =1- =
@ A =1 oL (@+8BL
which simplifies to
BL -

(30) ay = 2BL=P)

(a+8)aBL
or simply

aBL-p
(31 ap =———

(a+6)BL’
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Finally, we can solve for the growth rate of the economy on the balanced growth path. Substituting
equation (31) into 8 =Ba.L gives us
aBL-p
32) g=BL|——F ,
62 ¢ (a+6)BL
or simply

aBL-p
33) g=——=
©3) a+0

(h) We need to examine whether or not a can be greater than one given our assumptions about the
parameters. Now a, > 1, from equation (31), is equivalent to
aBL-p

(x +6)BL
Thus, as long as p, 6, B, and L are all positive, a; cannot be greater than one.

>l & aBL-p>(a+6)BL < -p>0BL.

However, from equation (31), a; can be negative if p > gBL. Intuitively, this would mean that individuals
are so impatient -- p, the rate at which they discount the future, is so high -- that the futyre gains from extra
knowledge are of no value relative to current consumption.

(G4 p-(1-0)g>0
to ensure that lifetime utility does not diverge. Using equation (33) for g, this requires

[aBL -
35) (I'S)Lame p_‘L p.

This simplifies to

(36) (1-6)aBL - pP+pB<ap+pe,
or

(37) (1-6)aBL < p(1 + o),

which is equivalent to

aBL 1+q
38 —<«—
o] 1-6

Recall that a, will be negative if aBL < p or aBL/p < 1. Since for positive a and 9, (1 + a)/(1-6)>1, it
can be the case that '

BL 1+
@y == e
p 1-8

That is, under the restrictions on the parameters that ensures that lifetime utility is finite, it can stil] be the
case that the balanced-growth-path value of a; is negative.

Since the fraction of the labor force employed in the knowledge-producing sector cannot actually be
hegative, we will have a comer solution with a; =0 in this case. The growth rate of the €conomy on the
balanced growth path will be zero since g§=BaL.

Problem 3.8
From equation (31) in the solution to Problem 3.7, the balanced-growth-path fraction of the labor force that
is employed in the knowledge-producing sector is given by
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n oBL-p
ap =—————.
@ 2= oBL
(a) From equation (1),
dar, -1
———<0.

dp (a+6)BL
Thus a fall in p — a decrease in the rate at which individuals discount the future — raises the balanced-
growth-path value of a; . If individuals become more patient, the future gains from research will be valued
more, relative to current consumption. Thus more resources will be devoted to the knowledge-producing
sector and balanced-growth-path growth will be higher.

(b) From equation (1),
Qap, aL[(c+6)]BL—faBL - p](a. +8)L

3 ,

®) 28 [(¢+6)BL}?

which simplifies to

@ a;, 0Bl (@+0)-aBL?(@+6) + pla+6)L
B [(a+6)BL}? '

Thus the sign of da, /0B is determined by the sign of p(a. + 6)L, which is positive under our assumptions
about p, @, 6, and L. Intuitively, an increase in B represents an increase in the productivity of labor in the
knowledge sector. Thus the wage in the knowledge sector initially rises. The knowledge sector attracts
more workers until the wage there is once again equalized with the wage in the goods-producing sector.

(¢) From equation (1),
® da,  aB(a+6)]BL - [oBL - pl(a +6)B
oL [(@+6)BL})?

which simplifies to
da,_ oB’L(a+6)-aB’L(@+6) + p(e +6)B

oL [(@+8)BLF '
Thus the sign of da, /0L is determined by the sign of p(a. + 6)B, which is positive under our assumptions
about p, «, 6, and B. An increase in the overall labor force will lead to a higher fraction of the labor force
being employed in the knowledge-producing sector.

©

From equations (12) and (14) in the soluticn to Problem 3.7, we can see that initially, at the original a; , a
rise in L increases the wage in the knowledge sector and decreases it in the goods sector. This causes
movement of labor from the goods sector to the knowledge sector. That is, a, rises until the wage is once
again equal in the two sectors.

Problem 3.9
The relevant equations are

1) YO =K®*AD™, ) K(t)=sY(t), and (3) A(t)=BY(t).

(a) Substituting equation (1) into equation (2) yields K(t) = sK(t)* A(t)"™. Dividing both sides by K(t)
allows us to obtain the following expression for the growth rate of capital, gx(t):
@ gx ®=KO/KO=sKO* " A®™.
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Substituting equation (1) into (3) gives us A(t) = BK(t)aA(t)l'“. Dividing both sides by A(t) allows us
to obtain the following expression for the growth rate of knowledge, ga(t):
©) ga)=A®/A®) = BKO*A®) ™.

(b) Capital
Taking the time derivative of equation (4) yields the growth rate of the growth rate of capital:

g (t K(t At

w:(a—l)ﬁ+(l—a)ﬁ, -

0 K(t) A(t) 8k =0 [gx =2a]
or 243

©) sx®/gx ) =1-w)[gs ®-gx ®)].

From equation (6), gk will be constant when 8a=gk.
Thus the g = 0 locus is a 45° line in (g, ,gx ) space.
Also, g will be rising when g, > gx . Thus gg is rising
below the gx =0 line. Lastly, gk will fall when

8 <gx . Thus g is falling above the gk =0 line. 45°

ga

Knowledge
Taking the time derivative of the log of equation (5) yields the growth rate of the growth rate of knowledge:

8a®)  K(t)  A(t)’ ga =) [gx =84)
or 244
M 8aW)/8a M =clgx ®) -g4 @), —_—

From equation (7), g, will be constant when 8K=ga.
Thus the g, = 0 locus is also a 45° line in (g, 2k ) —
space. Also, g, will be rising when gy > g4 . Thus
above the g, =0 line, g, will be rising. Finally, g, .
will be falling when g« < g, . Thus below the g, = 0 45

line, g, will be falling, B

(c) We can put the gx =0and g, =0 loci into one diagram,

Although we can see that the economy will eventually -
arrive at a situation where 8k = ga and they are gx =0
constant, we still do not have enough information to g and
determine the unique balanced growth path. 8a =0
Rewriting equations (4) and (5) gives us r

- - 1-
@ gx (=sK®*A®"™ =s[A@)/K®)"™,
and
() 8a ®=BK(®)*A® ™ = B[A(t)/K(®)] ™. J
At any point in time, the growth rates of capital and
knowledge are linked because they both depend on the 45°

ga
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ratio of knowledge to capital at that point in time. It is therefore possible to write one growth rate as a
function of the other.

From equation (5), [A(t)/K(t)]” = B/g4 (t) or simply
I/

®) AW/K®=[B/ga®)] "
Substituting equation (8) into equation (4) gives us

© sx®=s[B/ga©] "

It must be the case that gx and ga lie on the locus l—’ 5 =
satisfying equation (9), which is labeled AA in the
figure. Regardless of the initial ratio of A/K the
economy starts somewhere on this locus and then
moves along it to point E. Thus the economy does
converge to a unique balanced growth path at E. N J

To calculate the growth rates of capital and A
knowledge on the balanced growth path, note that at
point Ewe are onthe gy =0 and g, =0 loci 2
where g = ga. Letting g* denote this common
growth rate, then from equation (9), g* = s[B/ g *]
Rearranging to solve for g* yields

10) g*=sB"

(1-a)/a

Taking the time derivative of the log of the production function, equation (1), yields the growth rate of real
output, Y(t)/Y(t) =agg (t) + (1-a)gy (t). Onthe balanced growth path, gk = ga = g*, and thus

(11) Y®)/Y(®) =ag*+(1-a)g*=g*=s*B"™*.

On the balanced growth path, capital, knowledge and output all grow at rate g*.

(d) Clearly, from equation (10), a rise in the gx =
saving rate, s, raises g* and thus raises the long- g l_’ and
run growth rates of capital, knowledge and g4 =0
output.

From equations (6) and (7), neither the g =0
nor the g, =0 lines shift when s changes since s :
does not appear in either equation. From equation : J
(4), a rise in s causes gg to jump up. Also, the LE

locus given by equation (9) shifts out. So at the
moment that s rises, the economy moves from its
balanced growth path at point E to a point such as 2
F. It then moves down along the AA locus given

by equation (9) until it reaches a new balanced growth path at point Exgw .
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Problem 3.10
(a) Taking the partial derivative of output at firm i -- Y; = K;* L;"* [K® L ] - with respect to K; , treating
the aggregate capital stock as given yields

-1
dY; - K; |7 (K)*
() r=—F=ak@ LKL =a{—‘] (—) .
oK; L, L
In equilibrium, the capital-labor ratio is equated across firms. Thus K; /L; must equal the economy-wide
capital-labor ratio, which is K/L. Substituting this fact into equation (1) gives us the private marginal
product of capital,

G(K)-(l—ﬁ‘*?)
Q) r= I .

(b) We can employ the technique used to solve for the balanced growth path in the Solow model. Since
K; /L; is the same across firms and the production function has constant returns, the aggregate production
function is given by Y = K* L' [K* L* ] or simply

(3) Y= K(cu” Ll-o.—¢

Define k = K/L and y = Y/L. Dividing both sides of equation (3) by L gives us

RGN
o) @

and thus output per worker is given by
@ y=k**
Taking the time derivative of both sides of the definition of k = K/L yields
. KL-KL K (K)L
o L Koke K (K)L
L L \L/L
Substituting the capital-accumulation equation, K =sY, and the assumption that the labor force grows at
raten, L/L =n, into equation (5) gives us
(6) k=sY/L-nk =sy-nk.
Substituting equation (4) for output per worker into equation (6) gives us
(7) k=sk** —nk.
Just as in the Solow model, the economy will converge to a situation in which actual investment per worker,
sk™? is equal to break-even investment per worker, nk. Thus on a balanced growth path, capital per
worker will be constant. Setting k =0 gives us
sk**=nk =  k"*®=gn,
or simply
(8) k* = [s/n]" =¥
Substituting equation (8) into equation (2) yields
1 = afs/n] et = grsmyt,
and thus the marginal product of capital on the balanced growth path is
9) r*=oan/s.

(c) The analysis above does not support the claim. The value of ¢ does not affect the steady-state value of
the private marginal product of capital, r*. In addition, ¢ does not affect the way in which this value of r*
changes when the saving rate changes. From equation (9), or*/ds = -(an)/s*, which does not depend on ¢.
That is, positive externalities from capital do not mitigate the decline in the marginal product of capital
caused by a rise in the saving rate. Why? It is true, as the claim asserts, that a higher ¢ means that r
responds less to changes in the capital-labor ratio, K/L; see equation (2). However, it is also true that a
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higher ¢ means that the capital-labor ratio itself responds more to the change in the saving rate; see
equation (8). In this case, the effects cancel each other out.

Problem 3.1
The production functions, after the normalization of T = 1, are given by
1) Ct)=Kc ), and 2) K(t)=BKg ().

(a) The retumn to employing an additional unit of capital in the capital-producing sector is given by

oK(t) /6KK(t) =B. This has value Px (t)B in units of consumption goods. The retum from employing an
.. . o . . . -1

additional unit of capital in the consumption-producing sector is C(t) / 6[KC (t)] = o.[KC (t)]a .

Equating these retums gives us

a-1
@) PxMB=a[Kc)] .
Taking the time derivative of the log of equation (3) yields the growth rate of the price of capital goods

relative to consumption goodF, |
P ® +—B—=3+(a-1)LKC(t)J - &O =(@-1) Xc®)

The last step uses the fact that B and « are constants. Now since K¢ (t) is growing at rate g (t) and
denoting the growth rate of Px (t) as gp (t), we have

@ g ®=(-D

(b) (i) The growth rate of consumption is given by

() 8c()=C®/CW)=[x(t) - p/o=[B+g,)~ p| fo=[B+(@-Dex ® - p] o,
where we have used equation (4) to substitute for gp (t).

(b) (ii) Taking the time derivative of the log of the consumption production function, equation(1), yields

© sc®=CH/CO=a[Kc®/Kc®)]=agg®).

Equating the two expressions for the growth rate of consumption, equations (5) and (6), yields
agg()=[B+(@-Dgg®)-p|fc = aogg(®)+(1-a)gg(®)=B-p.

Thus in order for C to be growing at rate gc (t), Kc (t) must be growing at the following rate:

M gx®=(B-p)/[ac+1-)].

3 (b) (iii) We have already solved for gk (t) in terms of the underlying parameters. To solve for gc (t),
g substitute equation (7) into equation (6):

®) sc®=a(B-p)/[oac+-m).

(c) The real interest rate is now (1 - T}(B + gp ). Thus equation (5) becomes

(1-7)B+g,O|-p (1-1)[B+(@-Dgg®)|-p
© gc®= [c ] _=9) - ] ,

where we have used equation (4) -- which is unaffected by the imposition of the tax -- to substitute for
gp (t). Equating the two expressions for the growth rate of consumption, equations (9) and (6), yields

1- B+(a-1 t)| -
agg ()= O[B+-Dex0]p aogy (6) + (1= (1~ 0)gg (1) = (1-)Bp,

; c
: and thus




68 Solutions to Chapter 3

(1-71)B-p
[ac+1-1)(1-a)]

Substituting equation (10) into equation (6) yields an expression for the growth rate of consumption as a
function of the underlying parameters of the model:

co| —4-®B-p
(1) gc®)=a ac+(1-1)(1-o) |

(10) gg (1) =

In order to see the effects of the tax, take the derivative of gc (t) with respect to 1
dgc (1) Blao+(1-7)(1-)] -[(1-9)B-p](1-0) { Bao+ p(1 - o) }
=—Q =-Q

o oo+ (1-n-w)? [0+ (1-1)-))
Thus an increase in the tax rate t causes the growth rate of consumption to fall.

Problem 3.12

(a) Note that the model of the northern economy is simply the Solow model with a constant growth rate of
technology equal to g = Bay Ly . From our analysis of the Solow model in Chapter 1, we know that the

long-run growth rate of northern output per worker will be equal to that constant growth rate of technology.

(b) Taking the time derivative of both sides of the definition, Z(t) = As (t)/Ax (t), yields
. ANDAgt) -Ag(DAN (1)
M) z@=2N S 2s N ( '
An@)
Substituting the expressions for Ag(t) and Ay (t) into equation (1) gives us
An®[parsLs(An () - Ag ®)] - As(©)[BaryLyAy (1)
An(®? '

Z(t) =

Simplifying yields

@ Z(t)=[parsLs(1- Asg ©/An®)] - [As®)/Ax (©)][BapyLy].

Substituting the definition of Z(t) = As (t)/Ax (t) into equation (2) gives us
2(t) =parsLs - parsLsZ(t) - Bapy Ly Z(t).

Collecting terms yields

(3) Z(t)=parsLs - [parsLs +BayyLy| Z(t).

The phase diagram implied by equation (3)
is depicted at right. Note that equation (3) Z(t)
and the accompanying phase diagram do
not apply for the case of Z > 1, since parsLs

: slope = -[pa;sLs + BayyLy ]
As(t) =0 for As (t) > Ax (t).

The relationship between Z(t) and Z(t)is
linear with slope equal to -[pa; sLg +
BarnLy 1 < 0. From the phase diagram, if
Z <Z*,then Z(t) > 0. Thus if Z begins to
the left of Z*, it rises toward Z* over time.
Similarly if Z > Z* then Z(t) <0. Thus if
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Z begins to the right of Z*, it falls toward Z* over time. Thus Z, the ratio of tgchnology in the south to
technology in the north, does converge to a stable value. To solve for Z*, set Z(t) = 0:
0 = pasLs -[pagsLs + BapnLa JZ*.
Solving for Z* yields
L
@ z+=—L8S
papsls +BapnLy

The next step is to determine the long-run growth rate of southern output per worker. We have just shown
that Z(t) = As (t)/Ax (t) converges to a constant. Thus in the long-run, As (t) must be growing at the same
rate as Ay (t). In the long-run, then, the south is a Solow economy with a growth rate of technology equal
to Bary Ly . Thus the long-run growth rate of southem output per worker is equal to that growth rate.

Note that in the long-run, the growth rate of southern output per worker is the same as that in the north.
This means that a; 5, the fraction of the south's labor force that is engaged in leaming the technology of the
north, does not affect the south's long-run growth rate. That growth rate is entirely determined by the
number of people the north has working to produce new technology.

(c) Dividing the northem production function, Yy (t) = Kx ()” [Ax ®)(1 - ax )ln 1", by the quantity of
effective labor, Ay (t)Ly , yields
1-
5 O _[ Ky () ]“[AN(Q(I -ap)Lly } *
An®Ly LAn®Ly AN@®Ly '
Defining output and capital per unit of effective labor as yn (t) = Yx (t)/Ax ()L~ and
kn () = Kx (t)/Ax (t)Ly respectively, we can rewrite equation (5) as
(6) yx () =kn (1 - 2y )™
Now we can use the technique employed to solve the Solow model to show that on the balanced growth
path, ks* = kn*. Taking the time derivative of both sides of the definition of ky (t) = Kx (t)/An (t)Ly yields
: Ky (® Ky Ayn()

M ky@)=—n N n

ALy An®MLy An®)
Substituting the capital-accumulation equation, KN (t) =syYy (1), into equation (7) gives us
. sNYn@®)  Ax@®) Ky
®) kn(t)= NN _2N N

AN(Ly  An(M) Ax(Ly
where we have used the definitions of yy (t) and ky (t) and have substituted for the growth rate of northemn
technology. Finally, using equation (8) to substitute for yy (t) yields
©) ky @) =syky O A-a5) "™ -BapyLyky (t).
An analogous derivation for the south would yield
(10) kg(t)=sgks(t)*(1-aps)™ - BayyLyks (D),
where we have used the fact that in the long-run, the growth rate of technology in the south is Bagy Ly .

=syyn(t) - BapnLnkn(®),

Using the facts that sy = s5 and a;y = a;5 , we can see that the equations for the dynamics of k are the same

for the two economies. Thus we know that the balanced-growth-path values of k and y will be the same for

the two economies. That is, we know that ks* = kn* and ys* = yw*. This implies

(11) ys*/yw*=1.

Using the definitions of ys and yx, this implies that
Ys/AsLs - Ys/bs _As

= = . (12)
Yn/AnLy Yn/Ln A

T
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Equation (12) states that, on the balanced growth path, the ratio of output per worker in the south to output
per worker in the north is equal to the ratio of technology in the south to technology in the north. From part
(b), we know that As /Ay converges to Z* in the long-run. Using equation (4) for Z* to substitute into
equation (12) leaves us with
13) Ys/Ls _ Ha;sLg ‘

YN/LN  parsLg +BapyLy
Note that with Ba,y Ly, > 0, this ratio must be less than one; output per person in the south will be lower
than output per person in the north. Also note that on the balanced growth path, the ratio of output per
person in the south to that in the north does depend on ays, the fraction of southem workers engaged in
leamning the north's technology. In fact, the higher is a5 , the closer will be the path of output per person in
the south to that in the north.

Problem 3.13

(a) We need to find a value of such that [Yy (t)/Ly VIYs (t)/Ls 1, the ratio of output per worker in the
north to that in the south, is equal to 10. From the northem production function,

M) Yn®/Ly=Av®)1 - a; ).

Taking the time derivative of the natural log of equation (1) yields an expression for the growth rate of
northem output per worker:

®

e [Yn®/ Ly] _AN® 3

YN®/Ly  An@®) ’
where we have used the information given in the problem that the growth rate of northem output per
worker, and thus of northern knowledge, is 3% per year. Since AN (t) / AN (t)=0.03 then
) Ax () =e""Ay (¢ - 7).
From the southem production function,
@) Ys ©/Ls = As ().
Dividing equation (3) by equation (4) yields an expression for the ratio of output per worker in the north to
that in the south:

© YN@®/Ln ANM®(-ap)  An() 003t
YS (t)/LS AS (t) AN(t—t) ’
where we have used the fact that a; ~ 0, that Ag ®=An(t-1),and equation (3).

For output per person in the north to exceed that in the south by a factor of 10, we need a t such that

003 _ 10, or

0.03t = In(10),

developed in the 1920s in order to explain a 10-fold difference in income per person.

() (i) Recall that in the Solow model, the balanced-growth—path value of k = K/AL is defined implicitly by
the condition that actual investment, sfk*), equal break-even investment, (n + g + 8)k*. Thus for the north,
kn* is implicitly defined by

(©) sflkn®) = (0 + g + S)ky*,

where g= Ay ®/AN®).
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-1 We are told that s, n, & and the function f(e) are the same for the north and the south. The only possible
: source of difference is the growth rate of southern knowledge. However, it is straightforward to show that

Ag(t)/Ag(t) =g also.

We are told that the knowledge used in the south at time t is the knowledge that was used in the north at
timet - t. Thatis,
M As®)=An(t-9).
Taking the time derivative of equation (7) yields
®) Agt)=Ay(t-7).
Dividing equation (8) by equation (7) yields
As®) An(t-7)
Ag(t) An(t-7)
The growth rate of northern knowledge is constant and equal to g at all points in time and thus
(10) Ag())/As®) =¢.
Therefore, for the south, ks* is implicitly defined by
(11) sflks*) = (o + g + 8)ks*.
Since ky* and ks* are implicitly defined by the same equation, they must be equal.

(b) (ii) Introducing capital will not change the answer to part (a). Since kn* = ks*, output per unit of
effective labor on the balanced growth path will also be equal in the north and the south. That is, yn* = ys*
where y;* = [Yi/AlL; ]*. We can write the balanced-growth-path value of output per worker in the north as
(12) Yn ®)/Lx (®) = Ax ©yn*.
: Similarly, the balanced-growth-path value of output per worker in the south is
(13) Ys ®©)/Ls @) = As ()ys*.
Dividing equation (12) by equation (13) yields
E (14 OO AxOyn* An® A
Ys®)/Ls(t)  As(ys* As(t) Ax(t-1)
The second-to-last step uses the fact that yx* = ys*. The last step uses As (t) = An (t - 7). Using equation
(3), we again have
Yn@®)/Ln()  An() (003
Ys(t)/Ls (1) An(t-7) '
The same calculation as in part (a) would yield a value of © = 76.8 years in order for

[Yx ©/Ln VIYs ©/Ls ] = 10.

Problem 3.14
(a) Differeqtiating both sides of the definition of k(t) = K(t)/A(t)L(t) with respect to time yields
1y o - KAWL - KO[AM®L®) + ALW)]

[A®L®)?
Using the definition of k(t) = K(t)/A(t)L(t), equation (1) can be rewritten as
. K(t A@) Lt
@ ky=—_ |20 MO
AMLE) LA®) L)
Substituting the capital-accumulation equation, K(t) = sY(t) -8g K(t), as well as the constant growth
rates of knowledge and labor into equation (2) gives us
sY(t) -6 K(t)

3) k()= _—A—(;)—LT ~(m+g)k(t).

1
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Substituting the production function, Y(t) =[(1— aK)K(t)]“[(l —ayg )H(t)]l"“, into equation (3) yields
a 1-a
o (l—aK)K(t):l ]:(l—aH)H(t):l B
) k(t)~s[ AOLOD AOLO (n+g+3)k(t).

Finally, defining cx = s(1 - ag )*(1 - ag)"™ and using k(t) = K{E/AG)L() as well as h(t) = HE)/AG)L(),
equation (4) can be rewritten as

(5) k() =cgk(®*h(t)™® - (n +g+8 )K(t).

Differentiating both sides of the definition of h(t) = H(t)/A(t)L(t) with respect to time yields

3 H(t)A()L(t) - HO[A)L() + A(t)L(t
© b= FOAOLEO - Hol OLY +A®) ®]

[A®L®)

Equation (6) can be simplified to

. Ho [A@® Lol

7 = ——— .

M AO=Foto [A(t) “Lol®
Substituting Fi(t) = Blag K(t)]" [agH®)]? [A®)L(®)]' ™7 ~* - 5,7H(t), the human-capital-accumulation
equation, as well as the constant growth rates of knowledge and labor into equation (7) gives us

‘ v ik -t
® hm:BkKKm } {aHHm ] [A(t)uo ]

®L®) 1 LAGL®) ] LAL(®)

Finally, defining ¢y = Bax'ay® allows us to rewrite equation (8) as
) h(t)=cyk(t)"h()® - (n +g+8)h(t).

-(n+g+3y)k(t).

(b) To find the combinations of h and k such that k = 0, set the right-hand side of equation (5) equal to
zero and solve for k as a function of h:
ck®h® =@ +g+8 k) = kO™ =cch®)/@m+g+8k),
and thus finally
(10) k(t) = [ex /(n + g + 8¢ )]"" het).

The k = 0 locus, as defined by equation (10), is a straight

line with slope [ck /(n + g + 8k )]"*™ > 0 that passes
through the origin. See the figure at right. From equation
(5), we can see that k (t) is increasing in h(t). Thus to the
right of the k = 0 locus, k > 0 and so k(t) is rising. To the
left of the k = 0 locus, k < 0 and so k(t) is falling.

k(t)

I Q)

s

To find the combinations of h and k such that h = 0, set the right-hand side of equation (9) equal to zero
and solve for k as a function of h:
k@ h@®*=(+g+8)h@® = k) =[(@+g+ 6 )cu Ja()"™,
and thus finally
(11) k(@) = [ca /@ + g + 8 )] h) ",
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The following derivatives will be useful:
- dk@/dh);_o =[a-0lfen/@+g+8m)]" b)Y >0, and

<121<(t)/dh(t)2|l.1=0 =[a-¢-nilla-o/ilen/@ +g+8)]| TR 50,

The h =0 locus, as defined by equation (11), is
upward-sloping with a positive second derivative.
See the figure at right. From equation (9), we can
see that h (¢) is increasing in k(t). Therefore, above
the h =0 locus, h > 0 and so h(t) is increasing.
Below the h =0 locus, h < 0 and so h(t) is falling.

k(t)

(c) Putting the k =0 and h =0 loci together, we can
see that the economy will converge to a stable balanced k() *—l
growth path at point E. This stable balanced growth h=0

path is unique (as long as we ignore the origin with r

k=h=0).

From the figure, physical capital per unit of effective
labor, k(t) = K(t)/A()L(t), is constant on a balanced
growth path. Thus physical capital per person, 'Y ‘___I
K®)/L(t) = k(t)A(t), must grow at the same rate as

knowledge, which is g. Similarly, human capital per
unit of effective labor, h(t) = HE)/A®)L(), is constant h(t)
on the balanced growth path. Thus human capital per
person, HE)/L(t) = H®)A(t), must also grow at the same rate as knowledge, which is g.

Dividing the production function by L(t) gives us an expression for output per person:

(12) YO/LE®) = [(1 - ax )KEYLMT” [(1 - an )HEOLO]

Since K(t)/L(t) and H(t)/L(t) both grow at rate g on the balanced growth path and since the production
function is constant retumns to scale, output per person also grows at rate g on the balanced growth path.

(d) From equation (10), the slope of the k =0 locus is [cx /(0 + g + 8k ]"* where we have defined
cx=s(1 -ag )* (1 -ax)"™® . Thus a rise in s will make the k = 0 locus steeper. Since s does not appear in

equation (11), the h = 0 locus is unaffected. See the figure on the left. The economy will move from its old
balanced growth path at E to a new balanced growth path at E *.
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k(t)

h(t) to ty time

Output per person grows at rate g until the time that s rises (denoted time t, in the figure on the right).
During the transition from E to E ', both h(t) and k(t) are rising. Thus human capital per person and
physical capital per person grow at a rate greater than g during the transition. From equation (12), this
means that output per person grows at a rate greater than g during the transition as well. Once the
economy reaches the new balanced growth path (at time t, in the diagram), h(t) and k(t) are constant again.
Thus human and physical capital per person grow at rate g again. Thus output per person grows at rate g
again on the new balanced growth path. A permanent rise in the saving rate has only a level effect on
output per person, not a permanent growth rate effect.

Problem 3.15

The relevant equations are

(1) Y =K@®*|(1-ay) H)| P @ H@=BagHW®, ad () K@)=sY(®),
where0<a<1,0<f<l,anda+B>1.

TSR AR e i

(a) To get the growth rate of human capital -- which turns out to be constant -- divide equation (2) by H(t):
(4) gy =H(t)/H(t)=Bay.

(b) Substitute the production function, equation (1), into the expression for the evolution of the physical
capital stock, equation (3), to obtain

) K®)=sK®*[(1-25)He)| P
To get the growth rate of physical capital, divide equation (5) by K(t):
©) gk (1) =KO/K®) =sK®*|(1-25) HE)| P

We need to examine the dynamics of the growth rate of physical capital. Taking the time derivative of the
log of equation (6) yields the following growth rate of the growth rate of physical capital:
(M gx ©/sx ®) =@ -DK®)/K@®) +PBHE)/HE) = (@ - Dgg (1) +Pgx -

Now we can plot the change in the growth rate of capital, g (t), as a function of the growth rate of capital
itself, gk(t). Multiplying both sides of equation (7) by gk (t) gives us
® gk (0 =(@-Dex®’ +Pguex ).
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Note that we are assuming that o < 1 which
means that there are decreasing retums to physical
capital alone. The phase diagram implied by gx®
equation (8) is depicted in the figure at right. Note
that gx(t) is constant when g (t) = 0 or when

(0. - Dgk(®) + Pga= 0. Solving this expression
for g(t) yields gg* = [B/(1 - a)lgu.

Note that gg* > gy sincea+B>1lorf>1-a.
To the left of gx*, from the phase diagram,
gx (1) > 0 and so gg(t) rises toward gg*.

Similarly, to the right of gx*, gx (t) <0 and so
gx(t) falls toward gg*. Thus the growth rate of capital converges to a constant value of gx* and a balanced
growth path exists.

Taking the time derivative of the log of equation (1) yields the growth rate of output:
©) Y®O/Y®) =aK®)/K(t)+BHO)/HE) = agg () +Bsy.
On the balanced growth path, gx(®) = gg* = [B/(1 - o)]gu and so

Y(t - .
E (10) #t;ﬂli_%gn +Bgy = ap(ﬁsa)apg}{ = (11) gy =2K -

On the balanced growth path, output grows at the same rate as physical capital, which in tum is greater
than the constant growth rate of human capital, gz = Bay.

Problem 3.16
1 (a) From equation (3.55) in the text, output per person on the balanced growth path with the assumption
that G(E) = *® is given by
by -nE _ _-nT
Y \EP e —e
1 [——) =y*A()etE —_,
W (g) =vrAoft g

where y* = f(k*) which is output per unit of effective labor services on the balanced growth path. We can
maximize the natural log of (Y, /N)™® with respect to E, noting that y* and A(t) are not functions of E. The
] log of output per person on the balanced growth path is

) m(%)bgp =Iny*+InA@) +4E +In[e ™™ — ™| ~in[1-¢ ],

and so the first-order condition is given by
bep
oIn(Y /N) 1 oE
OE =¢+e_nE _e__nT e (-n)=0,

(€)

or .
@ d’(e_nE —e'nT) =ne"F.
Collecting the terms in & gives us
) @-me™ =¢e™,
or simply
-nE

6 =
©) e o-n
Taking the natural log of both sides of equation (6) yields

¢ e T,

-
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(7) -nE =[in¢ - In(¢ - n)] - nT.
Multiplying both sides of (7) by - 1/n gives us the following golden-rule level of education:

1 [ ¢
® E*:T——ln[
n

¢-nl

(b) (i) Taking the derivative of E* with respect to T gives us
*

© 61—1 ‘
ar

So arise in T -- an increase in lifespan -- raises the golden-rule level of education one for one.

(b) (ii) Showing that a fall in n increases the golden-rule level of education is somewhat complicated.
From equation (6), we can write

(10) ¢ (T-E% =¢;n -
P |

or

(1) 1-¢™T-EH _ 2

Multiplying both sides¢of equation (11) by ¢/n gives us

a2 - e TEM o,

Now :ote that tl:e left-hand side of equation ( 12) is equivalent to
13) V= ¢T_Jﬁe'"sds.

s=0
Thus, totally differentiating equation (12) gives us

oV v
(14) —dn +———dE*=0, )
on OE* 3

and so
dE * oV/én
15) = L

dn | OV/oE*

Now note that
0

v T

(16) —=¢ .{E—se Mds<0,
On =0

and o
OV 4en(T-E%) -

a7 E:—(be <0, *

Thus dE*/dn < 0 and so a fall in n raises the golden-rule level of education.

Problem 3.17
(a) In general, the present discounted value, at time zero, of the worker's lifetime earnings is
) Y= }e—ﬁw(t)L(t)dt.
t=E
We can normalize L(t) to one and we are assuming that w(t) = be®e’t. Thus (1) becomes
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Q@ Y= -fe_ﬂbegted"Edt=be¢E }e_(f“g)tdt.
t=E t=E
Solving the integral in (2) gives us

-1
(3) Y=beE| —
|G-9)
which can be rewritten as
@ y=—2 [-e#E-G-BT | -Gl
r-g

betF

t=EJ T-g

o (E)t [ BT 4 FOE],

(b) The first-order condition for the choice of E is given by
ay b = <

©) o=t - -l O] 0,
0E T-g

This can be rewritten as

©) [¢-G- g)]e[‘#‘(f—s)]E - ¢e¢E-(f—g)T'

Dividing both sides by e*® and rearranging yields

@ e EoED___$

: $-(T-g)
E v Taking the natural log of both sides of equation (7) gives us
: [ ¢
® -C-g)(E-T=In|~————|
; & Iryureursy
1 Dividing both sides of (8) by —(T — g) and then adding T to both sides of the resulting expression gives us
3
4 1
] © E*=T—_—“‘1ﬂ[_—‘_i_>—— .
i f-g L$-(-9)

(c) (i) From equation (9),
10 E—l
(10) ar - b

Thus an increase in lifespan increases the optimal amount of education. Intuitively, a longer lifespan
provides a longer working period over which to receive the higher wages yielded by more education.

(c) (ii) & (iii) The interest rate, T, and the growth rate, g, enter the optimal choice of education through
their difference, (T —g). Intuitively, it should be clear that a rise in T, and thus a rise in (f — g), will cause
the individual to choose less education. Getting marginally more education foregoes current eamings for
higher future eamings. A higher interest rate means that the higher future wages due to increased education
will be worth less in present-value terms and hence the individual chooses less education.

Showing this formally is somewhat complicated, however. Taking the inverse of both sides of equation (7)

gives us
any o—(T-BXT-E*) _ ‘_’Liii)
P
or
12 1- o~ (-8XT-E%) _ @
¢

1
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Multiplying both sides of equation (12) by ¢/(T —g) gives us

13) =2 1o EeXTEN
T-g2
Now note that the left-hand side of equation (13) is equivalent to

T—fz' :
(14) V=¢ Je TBigs.

s=0
Thus, totally differentiating equation (13) gives us
ov
15 df-g)+ dE*=0,
(49 5409+ 555
and so
dE* ovV/o(r -
ae —EX___ /ot -8)
d(t-g) OV/OE*
Now note that
T eos
(17) — = —se v ©Pds <O,
o(r-g) ¢ s=0
and

ov .
OV _ 4 ~(F-eXT-E")
A7) 55 =-be <0.

Thus dE*/d(T—g) <0. Soarise in T decreases the optimal choice of education, a rise in g increases the
optimal choice of education.

Problem 3.18
(a) The representative producer's problem is to choose f, the fraction of time devoted to protection, to
maximize output, which is given by [1 - L(f, R)](1 - f)B. The first-order condition is
(1) -B[1-L(f, R)] - (1 -HBLs(f, R)=0.
This can be rearranged to obtain
@ L= L¢(f,R) .

1-f 1-L(f,R)
This is identical to equation (3.63) in the text. Thus the value of B does not affect the producer's allocation
of time between producing output and protecting it from rent-seekers. The optimal choice of f'is still
implicitly defined by the same condition as in the model in the text.

(b) Equilibrium requires that income per producer and income per predator be equal. Thus equilibrium
requires

1-R
(3) [1-L(E(R),R)J[(1 - £(R))B] = T[(l - f(R)BIL(f(R),R).

Since f does not depend on B, we can see that at a given R, an increase in B will increase producers' income
and predators' income by the percentage increase in B. Thus an increase in B shifts the producers' and
predators' income curves up proportionately. See the figure below.
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(¢) Since the curves showing producers' and Income
predators' incomes as functions of R both shift up
proportionately, they will still intersect at the
original equilibrium value of R. In the figure at
right, the original equilibrium was at point E; the
new equilibrium is at point E™=" . The fraction of
the population engaged in rent-seeking does not
change and the incomes of producers and predators
both rise by the same percentage amount as the
increase in B.

Predators

EN'EW

Producers

1

Problem 3.19
(a) (i) Wehave

) dy;ti =-Ay; (t) - y*].

Since y* is a constant, the derivative of y; (t) with respect to time is the same as the derivative of y; (t) - y*

with respect to time and so equation (1) is equivalent to
dlyi(t) - y*]

@ l—dt——g =-AMy; (- y*],

which implies that y; (t) - y* grows at rate -A. Thus

G yi®-y* =y 0)-y*1.

Rearranging equation (3) to solve for y; (t) gives us

@) yi@®) =1 -eMy* +e™y; (0).

(a) (ii) Adding a mean-zero, random disturbance to y; (t) gives us
() yi@® = (1-eM)y* +e™y, (0) +u ().
Consider the cross-country growth regression given by
©6) yi® -yi @ =0+ Py; (0) +5.
Using the hint in the question, the coefficient on y; (0) in this regression equals the covariance of
i (®) - yi (0) and y; (0) divided by the variance of y; (0). Thus the estimate of B is given by
covy; (t) - ¥i (0),y; (0]

() B=

var{y; (0)]
(If the sample size is large enough, we can treat sample parameters as equivalent to their population
counterparts.) Now, use the fact that for any two random variables, X and Y, cov[(X - Y), Y] =
cov[X, Y] - var[Y] and so
@® p= covly; (1), ¥i (0]~ varly; (O] _ covly; (),yi (0] _,

varly; (0] var[y; (0)]

Using equation (5),
©) covly; @, (O] =covi(1-e ™)y *+¢My; (0) +u; ), y; O]
Since y* is a constant, and u; () and y; (0) are assumed to be uncorrelated, we have
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(10) covly; (1), y; (O] =e™ varly; (0)].
Substituting equation (10) into equation (8) gives us

e ™M vary; (0)]
11 =
an varly; (0)]
or

(12) e™M=14p.

Taking the natural log of both sides of equation (12) and solving for A gives us
In(1+B)

(I13) A=- —

’

Thus, given an estimate of B, equation (13) could be used to calculate an estimate of the rate of
convergence, A.

(a) (iii) From equation (5), the variance of yi (t) is given by

(14) varly;(t)]= e M var[y; (0)] + var[u; (t)].

From equation (13), if B < 0 then A > 0. This does not, however, ensure that var[y; (t)] < var[y; (0)], so
that the variance of cross-country income is falling. The is due to the variance of the random shocks to
output, represented by the var[u; ()] term in equation (14). Thus the effect of B < 0 or A > 0, which tends
to reduce the dispersion of income, can be offset by the random shocks to output, which tend to raise
income dispersion.

If B > Othen A < 0. From equation ( 14), we can see that this means varfy; (t)] will be greater than
varfy; (0)]. In this case, the effect of B <0or A > 0is to increase income dispersion, and thus this works in
the same direction as the random shocks which also tend to increase income dispersion.

(b) () Since y;* is time-invariant, analysis equivalent to that in part (a) (i) would yield
- - -
(15) yi()=(1-e)y; +e ™My, (0).

(b) (ii) We will determine the value of A implied by an estimate of B in this model and compare it to the
value implied by using the formula from part (a) (ii). In the cross-country growth regression given by
(16) yi ®) -yi (0) = a + By; (0) +¢;,

again we have

an p= covlyi (t), y; (0)] - varfy; (0)] _Covlyi (0,i (O]

varfy; (0)] var[y; (0)]
Then, since
(8) yi®=(1-e™)y] +e My, (0) +e¢;,
we have
(19) covly; (0, ; (0] =(1-e ™) covly;,y; (0] +e™ varly; (0)].
Since
20) yi(0) =y*+ui=a+bX;+u;,
we have
(1) varlyi (0)] = b* var[X; ] + var[u; ],
and

(22) covly*, yi (0)] = covla + bX;, a + bX; + u; ]1=b’var[X;],
since X; and u; are assumed to be uncorrelated. Substituting equations (21) and (22) into equation (19)
gives us

s

T
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@3) covly; (1), y; @)1= (1-e M)b? var[X; ]+ b2e ™ var[X; 1+ e ™ var{u;],
or simply
@4) covly; (), y; (0] =b? var[X;]+e ™ var[u;].
Substituting equations (21) and (24) into (17) gives us
@5) B= b? var[X; ]+ e ™ var[u;] - —(1-e™) var{u; ]
b2 var[X; ]+ var[u;] b2 var[X; ]+ var[y;]
‘We can now solve for the value of A implied by equation (25) and compare it to the one we would calculate
if we used equation (13). Equation (25) implies
2
- b X;1+ i
gy M oy LKL var]
var{u;]
Taking the natural log of both sides of (26) and solving for A gives us
b2 var[X; ]+ var(u; ]

var[u;]

at
-In{1+

Q@7 A= -

Since (b®var[X; ] + var[u; ])/var[u; ] > 1, using the formula given by equation (13) would lead us to
calculate an estimate for A that is too small in absolute value. That is, if A > 0, using the method of part
(a) (i1) would yield an underestimate of the rate of convergence.

(b) (iii) Subtracting y; (0) from both sides of equation (18) gives us

@8) v;®-y;@=0-e)y; -(1-eM)y; (0 +¢;.

Substituting equation (20) into (28) yields

@9) 7;®-y; (O =-e)y] ~(1-e7)ly; +y;l+e;,

which simplifies to

G0 ¥;®-yi (0= - Dy; +¢;.

Defining Q = (e'“ - 1), we can see that the regression given by

@D y®-yi@=a+Py; (0 +7Xite

is equivalent to projecting Qu; + ¢; on a constant, y; (0), and X; , where ¢; is simply a mean-zero, random
error that is uncorrelated with the right-hand side variables. Rearranging y; (0) = a + bX; + u; to solve for
u; gives us

(32) ui=-a+y; (0)-bX;,

and so

(33) Qui=-Qa + Qy; (0) - QbX;.

Thus, in the regression given by (31), an estimate of B provides an estimate of Q and an estimate ofy
provides an estimate of -Qb. Thus, we can construct an estimate of b by taking the negative of the estimate
of v, divided by the estimate of B, or
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Problem 4.3
(a) The equations descnbmg the evolution of technology are given by
(1) lﬂAt—A+gt+At, and (2) At pAAt-l +F‘At’ -l<pA<1

From equation (1) and letting InA, denote the value of InA in period 0, we have In A = A +g(0) + A,

Rearranging to solve for AO gives us

(3) AO =In AO

In period 1, using equatlons (1) and (2), we have

@) InA; = A+g+A1, and ) A = AA0+sA’1.
Substituting equation (3) into equation (5) yields

©) A;=pa(lnAg-&)+ey,.

Finally, substituting equation (6) into equation (4) gives us

() A =K+g+py(inAy-A)+ey,.

In period 2, using equations (1) and (2), we have B

() InA; =A+2g+A,, and ) Az =paA +eu,.

Substituting equation (6) into equatnon (9) yields

10 A2—PA[PA InAg - +8A1]+8A,2 paX(nAg - A )+PA€A1+€A,2
Finally, substituting equation (10) into equation (8) gives us

(D) InA; =A+2g+ps2(InAg - &) +ppcpy +545.

In period 3, using equations (1) and (2), we have
(12) nA3=A+3g+K;  and  (13) Ay3=p,A, +84 3.
Substituting equatlon (10) into equation (13) yields

(14) Ay = PA[PA InAq -A)+paea +8A,2] +ea3=pa(lnAg~A)+ Pa%eA 1 +PABA2 +EA 3.

Finally, substituting equation (14) into equation (12) gives us
(15) lnA3 =X+ 3g+ pA3(lnA0 - K) + pAZSA’] + pASA’z +8A,3‘

(b) Using equation (7) to find the expected value of InA, yields
E[lnA;]=A+g+p,(InAy-A),
since E[es;, ] =0.

Using equation (11) to find the expected value of InA, yields
EllnA;]=A+2g+p,2(lnA, - &),
since E[paga ] = paE[ea; ] =0, E[ea2]1=0.

Using equation (15) to find the expected value of InA, yields
EllnA3]=A+3g+p,3(lnA, - A)
since E[pa’eas ] = pa’Efear 1= 0, E[pagaz ] = pa E[ea2]1=0,E[ea3]1=0.
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Problem 4.4
(a) We need to solve the household's one period problem assuming no initial wealth and normalizing the
size of the household to one. Thus the problem is given by

max Inc +b(1 -€)"7/(1 -7), subject to the budget constraint ¢ = w¢.
¢t

Set up the Lagrangian:
Z=Inc+b(1-€)"" /(1 -y) + A[we-c].
The first-order conditions are
(1) aéc=(1/c) -1 =0, and Q) 84/8¢=b(1-€)"+rw=0.
Substituting the budget constraint into equation (1) yields
(3) A=1/c=1/(W¢).
Substituting equation (3) into equation (2) yields
b(1-€)" +wiwe) =0,
and simplifying slightly gives us
@) 1/¢=b/(1-¢)".
Although labor supply, ¢, is only implicitly defined by equation (4), we can see that it will not depend upon
the real wage. ’

(b) We want a formula for relative leisure in the two periods. That is, a formula for (1 - 4)/(1 - &).
Assume that the household lives for two periods, has no initial wealth, has size Ne/H =1 for both periods
and finally that there is no uncertainty. Thus the problem can be formalized as

-y 1-y
1-¢ _ - 1-¢
max lnc1+b£——ﬁ—+e Plnc, +e pb(—z—)——,
1-y 1-y
subject to the intertemporal budget constraint given by
Cy Wolo
C1 +—'_‘=W1(1+ .
1+r 1+r
Set up the Lagrangian:
(1—‘1)1-7 - - (1-‘2)1-7 r W2(2 Cy
£=Inc; +b————+e Plnc, +e pb——+7&|_wlll+——-—cl -—\
1-v 1-v 1+r I+r

There will be four first-order conditions:

(5) 8Lloc;=(/ey)-A=0, and (6) dd/oc, = (e*/c;) - [M(1+1]=0,

() ad/dt,=b(1-6)'+24=0, and (8) &4d,=-<"b(1-6)"+[M/1+D]=0.
Rearranging equation (7) yields one expression for A : A =b(1 - )7 /6.

Rearranging (8) yields another expression for A : A= [¢®b(1-6)7 (1 + n)/é,.

Equating these two expressions for A yields

ePb(l+r) b - a-¢)' 1w,
A-t)'wy (A=) w, (1-¢5)" e PA+n) Wy~
and thus

a-op [ 1w,

W
© .

(1-¢3) —[e—p(l+r) W) J
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If w; /w rises, then (1 -¢; )/(1 - ¢,) rises. That is, suppose the real wage in the second period rises relative
to the real wage in the first period. Then the individual increases first-period leisure relative to second-
period leisure, or reduces first-period labor supply relative to second-period labor supply. We can
calculate the elasticity, denoting - for ease of notation only~-(1-€;)/(1-¢;)=¢*and w;y/ w, = w*:
- Iy
¢t wr 1 [l/e P(1+r)] / w /-1 w*

ow* ¢* y A
Substitute in the denominator for ¢* = (1 - ¢, Y(1 - ¢;) from equation (9) to yield
1
er wr 1 [l/e"’(l+r)] st 1

ow* ¢* _y [(I/e_p(l+r))w*]1/7 =Y.

Thus the smaller is y - or the bigger is 1/y -- the more the individual will adjust relative labor supply in
response to a change in relative real wages.

From equation (9), we can also see that if r rises then (1-6)/(1 - ¢,) falls. That is, suppose that there is a
rise in the real interest rate. Then the individual reduces first-period leisure relative to second-period

leisure, or increases first-period labor supply relative to second-period labor supply. It is straightforward
to show that

Aa-en/a-e)] (4 1
o(1+1) [a-epja-ey)] v
Thus the smaller is y -- or the bigger is 1/y -- the more the individual will respond to a change in the real
interest rate. Note that with log utility, where y = 1, this elasticity is equal to one.

Intuitively, a low value of y means that utility is not very sharply curved in ¢. This means that ¢ responds a
lot to changes in wages and the interest rate.

Problem 4.5

(a) The problem is to maximize utility as given by
(1) Inc; +bln(1 - ¢, ) + e®[Inc, + bln(1 - ¢, )],
subject to the following lifetime budget constraint:

1 1
2) 1+ —Cy =Wl + —— Wt
@ ¢ 1+r2 11 1+r 22

Set up the Lagrangian:
.

, [ 1 1
() £=Inc; +bn(1-¢) +eP[inc, +bin(l-¢,)] M Wi+ W —e m gy |

The four first-order equations and some simple algebra gives us

o4 1 L

—_— = = C =

o, ¢ A

o4 e P A “Pa

—_— = _0 = 02__.&’ )

A

%= S 4=l
1
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84 —-ePb Aw, (1+0e Pb
— =——+—==0 = fH=l-——(0)
6(2 (1—(2) 1+r sz

Now substitute equations (4) - (7) into the lifetime budget constraint, equation (2), to obtain
1 e PU+r) b d+r)ePb

+ 1 + Wzrl
P e d+n 1,2
A A+ L Awp ] lar Aw,

Multiplying both sides by A gives us

[Awi b | Aws| Aws - ~Pp
1+e‘p=kw1L il J+ wy) Awy ~ (¥ n)e }
XW‘ l+r|_ 7\.W2
Simplify further to obtain

Aw

1+eP=Aw, —b+—>—ePb.
T

Finally, solving for A yields
(+e P)(1+b)

[wy +wy/0+1)]’
where we have used the fact that 1 +e® +b+ePb=(1 +e®)(1 +b).

@8) A=

Now to obtain an expression for first-period labor supply, substitute equation (8) into equation (6) to
obtain

(4 =1- b :1_b[wl+w2/(1+r)],
1+ P)Q+b) (1+e P)(1+b)w,
[WI +wy /(1+ r)] "
Finally, dividing the top and bottom of the second term by w; yields
© 4=1- b[l +(w2 /wl)(l/(l + r))] |
(1+e™P)(1+Db)
Note that ¢, is a function of the relative wage, w, /w; . Thus any change in wy and w2 that leaves w; /w;

unchanged will leave ¢, unchanged.

To obtain an expression for second-period labor supply, substitute equation (8) into equation (7) to obtain
f=1- (1+1re Pb =1_(1+r)e_pb[w1 +w2/(1+r)].
A+e P)(1+b) A+e ?)(1+b)w,
[w1 +wy /(14 r)] w2
Finally, dividing the top and bottom of the second term by w yields
1+ Pb|(wy fwa ) + 11+ 1))
(1+e™P)1+b) '
Again, note that ¢ is just a function of the relative wage, w; /w; . Thus any change in w; and w, that

(10) ¢ =1-

leaves wy /w- unchanged will leave ¢; unchanged.

(b) (i) The fact that the household has initial wealth of Z > 0 will not affect equation (4.23) in the text --
the Euler equation -- which relates consumption in one period to expectations of consumption the following
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84 - b Aw, (1+1)e Pb
— =t —==0 = t(=l-—"" (1)
5(2 (1—(2) 1+4r sz
Now substitute equations (4) - (7) into the lifetime budget constraint, equation (2), to obtain

1 e PU+r) b ws d+re b
————=wy|l-— +—‘1————-— .
A A(l+1) Awy ] 141 Aw,

Multiplying both sides by A gives us

Tawi b Aws| Aws - ~Pp
1+e‘p=kw1L Ll J+ wy) Aw, ~ (4 D) )
lwl l+r|_ 7\.W2
Simplify further to obtain

Aw

1+eP=Aw,-b+ 1+2 ~e ™.
T

Finally, solving for A yields
(d+e P)(1+b)
[wy +wy/Q+D)]’
where we have used the fact that 1 +e®+b +e®b = (1 + eP)(1 +b).

® A=

Now to obtain an expression for first-period labor supply, substitute equation (8) into equation (6) to
obtain

(=1- b :l_b[w1+w2/(1+r)]'
(1+eP)1+b) (1+eP)1+b)w,
[Wl +wq (1+ r)] e
Finally, dividing the top and bottom of the second term by w, yields
© 4-1- b[l+(w2/w1)(l/(1+r))] |
(1+e7P)(1+b)
Note that ¢, is a function of the relative wage, w; /w; . Thus any change in w; and w that leaves w2 /w,

unchanged will leave ¢, unchanged.

To obtain an expression for second-period labor supply, substitute equation (8) into equation (7) to obtain
f=1- (1+1e b 1 (1+1)e Po[w, +w2/(l+r)]‘
A+e™P)1+b) (1+e P)1+bw,
[w1 +wy /(14 r)] w2
Finally, dividing the top and bottom of the second term by w yields
a+ r)e_pb[(wl /wz) +1/(1+ r)]
(1+eP)(1+b) '
Again, note that ¢, is just a function of the relative wage, w; /w; . Thus any change in w; and w;, that

(10) ¢ =1-

leaves w; /w, unchanged will leave ¢; unchanged.

(b) (i) The fact that the household has initial wealth of Z > 0 will not affect equation (4.23) in the text -~
the Euler equation -- which relates consumption in one period to expectations of consumption the following
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period. The fact that the household has initial wealth does not change the marginal utility lost from
reducing current consumption by a small amount today nor does it change the expected marginal utility :
gained by using the resulting greater wealth to increase consumption next period above what it otherwise k-
would have been. That is, it does not affect the experiment by which we informally derived the Euler |
equation. The budget constraint, just as in the Ramsey model, only becomes important when determining
the level of consumption each period.

(b) (i) The result in part (a) will not continue to hold if the household has initial wealth. The new lifetime
budget constraint is given by

1 1
11) ey +——cH =Z+wWyly +——Wrly.
(1) e, 1+r 2 11 l1+r 22

Clearly, this addition of a constant to lifetime wealth will not affect the four first-order conditions. Now
take those first-order conditions, equations (4) through (7), and substitute them into this new budget
constraint:

1 e PU+r) b Wy d+1r)e b
= Z 4wy | 1-— |+ 1-———
A A(1+D Awy ] 141 Aw,
Following the same algebra steps as in part (a) will now yield
(1+e7P)(1+b)

12) A= .
(12 [Z+w1+w2/(l+r)]

Now to obtain an expression for first-period labor supply, substitute equation (12) into equation (6) to
obtain

b : b[Z+w; +wy /(A +1)]

A+eP)A+b) T +eP)+b)wy
[Z+wy+wy/a+0)]
Finally, dividing the top and bottom of the second term by w, yields
ol(Z/w1 )+ 1+(wy jwi ) (/@ + )]

(1+e P)(1+b) '
Taking the derivative of ¢, with respect to w; -- imposing the condition that w, /w; remains constant --
yields
o4 bZ/W 12

— =30,

oWy (1+e7P)(1+b)
Thus a change in w; , even if it is accompanied by a change in w; such that relative wages remain constant,

does affect first-period labor supply. In fact, a rise in the first-period wage will increase first-period labor A :
supply. -

ll=1—

3) 4 =1-

To obtain an expression for second-period labor supply, substitute equation (12) into equation (7) to obtain
b=1- (1+)e Pb =1_(l+r)e'pb[Z+wl+w2/(l+r)]‘
(1+eP)(1+b) (1+e P)(1+b)w,
[Z+w) +w,/(1+1)] w2 =
Finally, dividing the top and bottom of the second term by w; yields
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A+ neP|(Z/w, ) +{wy fw;) + 1/ + )]
(1+e P)(1+b) '
Taking the derivative of ¢, with respect to w, - imposing the condition that w; /w, remains constant --
yields
&, (+nePbZ/wy?
owy  (1+e P)(1+b)
Thus a change in w; , even if it is accompanied by a change in w; such that relative wages remain constant,

does affect second-period labor supply. In fact, a rise in the second-period wage will increase second-
period labor supply.

(14) lz =1-

Problem 4.6
(a) The real interest rate is potentially random, so let r =Er + ¢ where € is a mean-zero random error.
The individual wants to maximize expected utility as given by
(1) U=InC,; +EInC,,
and substituting in for C, yields
2) U=InC; +En[(1+Er+s)(Y; -Cy)].
Set the derivative of equation (2) with respect to C; equal to zero to obtain the first-order condition:
() 8U/oC, =1/C, +E[(-D(1+Er +8)/(1 + Er +&)(Y; - C)] =0,
or simplifying
yC, -E[I/(v, - ¢,)]=0.
Since 1/(Y; - C; ) is not random, it is true that E[1/(Y; - C,)] = 1/(Y; - C, ) and thus after some simple
algebra we have
@ Ci=Y:/2.
In this case, the choice of C, is not affected by whether r is certain or not. Even if r is random, the
individual simply consumes half of first-period income and saves the rest.

(b) Now the individual does not receive any first-period income but receives income Y; in period 2. So the
individual's problem is to maximize expected utility as given by equation (1), subject to

() C;=B,, and (6) C; =Y, -(1+Er+e)B; =Y, ~(1+Er+¢)C,,

where B, represents the amount of borrowing the individual does in the first period. Substituting (6) into
the expected utility function (1) yields

() U=nC, +EIn[Y, - (1+Er+¢)C;].

Set the derivative of equation (7) with respect to C, equal to zero to find the first-order condition:

(8) 8U/AC; =1/C, - E[(1+ Er +£)/C,] =0.

Use the formula for the expected value of the product of 2 random variables -E[XY] = E[X]E[Y] +
cov(X,Y) -- to obtain

©) 1/C; =1+ ED E[l/C,1+cov(1+Er+£,1/C,).

The covariance term is positive. Intuitively, a higher € means the individual has to pay more interest on her
borrowing which forces her to have lower C; and thus higher 1/C, .

If 1 is not random -- so that r = Er because & = 0 always — we have from equation (9)

1/C, = (1+EN (Cp) = A+ EN/[Y, -+ ENC;| = Y, -(+ENC, =(+EnC,,
and thus solving for C, yields
(10) C, =Y, /2(1+Er).
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Now, from equation (9), in the case where r is random, we still have

l/Cy =E[1+Er +&] E[1/C,]+cov(1+Er+5,1/C,).
Since 1/C; is a convex function of C; , then by Jensen's inequality we have E[l/C,]>1/ E[C,;]. In
addition, because the covariance term is positive, we can write

Y€y =1+ ENE[Y/C, ]+ cov(1+Er +8,1/C, ) > (1 + En)|[E[C, .
Substituting into this inequality the fact that E[C.]1=Y,- (1 + EnC, yields

Y€y >(+ED/[Y, —(+ENC)| = Y, ~(1+EnC, >(1+ EnC, = 2(1+ENC,<Y,,
or simply
(11) C; <Y, /2(1+Er).
Note from equation (10) that the right-hand side of (11) is the optimal choice of C, under certainty. Thus
we have shown that if r becomes random with no change in the expected value of , the optimal choice of
C, becomes smaller. Essentially, if there is some uncertainty about how much interest the individual will
have to pay in the second period, she is more cautious in her decision as to how much to borrow and
consume in the first period.

Problem 4,7

(a) Imagine the household increasing its labor supply per member in period t by a small amount A/,
Suppose it then uses the resulting greater wealth to allow less labor supply per member in the next period
and allowing for consumption per member to be the same in both periods as it otherwise would have been.
If the household is behaving optimally, a marginal change of this type must leave expected lifetime utility
unchanged.

Household utility and the instantaneous utility function of the representative member of the household are
given by

t=00
(M) U= Te™Pule,l-¢)Ny/H, and  (2) u=lnc,+bla(l-4,)
t=0

From equations (1) and (2), the marginal disutility of working in period t is given by
(3) -0U/&¢, =™ (N, H)[b/(1 - ¢,)].
Thus increasing labor supply per member by A¢has a utility cost for the household of
Utility Cost = ™ (N, /H)[b/(1 - ¢, )]AL
This change raises income per member in period t by w,AZ Note that the household has e® times as many

members in period t + 1 as in period t. Thus the increase in wealth per member in period t + 1 is
e’[(1 + 1) )WAL]

We need to determine how much this will allow labor supply per member in period t + 1 to fall, if the path
of consumption is to be unaffected. In period t + 1, giving up one unit of labor per member costs wi; in
lost income per member. Thus giving up 1/wi., units of labor per member means lost income of one per
member. Or, giving up [e® (1 + 1y )W, AL W1 units of labor results in lost income per member of

e (1 + ryy )W AL, which is exactly equal to the extra wealth per member the household has from working
more last period. Thus we have determined that labor supply per member can fall below what it otherwise
would have been by the amount [e® (1 + 1y )WA¢ /ey while still allowing consumption to be the same as
it otherwise would have been. The expected utility benefit, as of period t, from this allowable drop in labor
supply per member is
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gty Nest b e‘“<1+rt+1>wr4

Expected Utility Benefit = Etl: H (-tup) —
+ +

Equating the costs and expected benefits yields
N b iy Nuw B e 1+ rt+1)th:|
H (1-¢) tl_ H (1-¢4) Wil
Since e™*"(N,.; /H)e™ is not uncertain and since Ni; = N, ¢°, this simplifies to

@ =e_pEl[ bQL+ 1y )Wy }
A=t W

€

(1-¢)

(b) Consider the household in period t. Suppose it reduces its current consumption per member by a small
amount Ac and then uses the resulting greater wealth to increase consumption per member in the next
period above what it otherwise would have been. The following equation, (4.23) in the text, gives the
condition this experiment implies, assuming the household is behaving optimally:

4.23) ! “PE ! (1+14)
. —/=¢ _— I .
Ct ‘ Citt o J

Now imagine the household increasing its labor supply per member in period t by a small amount A¢ and
using the resulting income to increase its consumption in that period. The following equation, (4.26) in the
text, gives the condition that this experiment implies, assuming that the household is behaving optimally:

Ct Wi

4.26) ——=—".
Solving for 1/c, gives us
1

426') —=——.

Ct (1 - (( )W t
Note that equations (4.26) and (4.26 ') hold in every period. Thus for period t + 1, we can write

1

426") —=——"-"—""—.
Cil (= bapdWiy
Substituting equations (4.26 ' ) and (4.26 ") into equation (4.23) yields
b _ P, b(1+r1y) .

A-4)w (A=W

Mutltiplying both sides by w; , and since E; [w; ] = w,, we have
b —ePE, b1+ )Wy

(1-¢) I_(l“t+1)wt+1

This is the same condition obtained from the experiment in part (a).

Problem 4.8

(a) To obtain the first-order condition or Euler equation, we can use the informal perturbation method.
The experiment is to suppose the individual reduces period-t consumption by AC. She then uses the
resulting greater wealth in period t + 1 to increase consumption above what it otherwise would have been.
The utility cost in period t of doing so is given by

Utility Cost = [1/(1+p)]' u(C,)AC =[y(1+p)] 1-20C, ]AC,
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where we have used the instantaneous utility function, u(C, )=C-6C2, to calculate u * ().

The expected utility gain in period t + 1 from the above experiment is
Exp. Utility Gain = E, [(1/(1 +0)) (o )1 + A)AC} =[/a+e)] " Eyi-20¢,, 1+ A)ac,
where A is the real interest tate. Finally, this simplifies to
Exp. Utility Gain = [1/(1 + p)]* [1-26E,[C,,; JJ1 + A)AC,

If the individual is optimizing, the utility cost from this perturbation must equal the expected utility gain:
[Va+ p)]t[l ~26C,]aC= [Va+ p)]m [l —26E[C, ]](1 +A)AC,

or simply
1-20C, =[i/a+p))(1+ A)[1-26E[C,,]].

Using the fact that p=Aand simplifying yields

(1) CG=E [Cy].

Consumption follows a random walk. The expected value of consumption next period is simply equal to

today's actual realization of consumption,

(b) We will guess that consumption takes the form:
@ ¢, =0+BK; +7ye,
Substitute equation (2) and the production function, Y, = AK, + €, into the capital-accumulation equation,
K=K +Y,-C, , to obtain
Kin =K, +AK; +e, -a-BK, —vey,
or simply
@) Key=—a+(1+A-p)K, +(1-7)e,.

(c) Substitute equation (2) and equation (2) lagged forward one period into the first-order condition,
equation (1):
@ a+ BK, + Yoy = Et[a+ BK 4 +yet+1].
Substituting equation (3) into equation (4) yields
@+PKy +yeq = a+BE [-a+(1+ A “PK¢+(1=7)ec]+ YEq[eqy].
Noting that Et[em] =E; [¢et + sm] = ¢ey, we can collect terms to obtain
©) a+PKi+ve; = a(l-B)+B(1+ A - p)K, +[B+1@-pe,.

In order for equation (5) to hold, we need the coefficients on Kiand e, as well as the constant term, to be
the same on both sides. Equating the coefficients on K. gives us
B=Bl+A-B) = I=1+A-B,

or simply

©6) B=A.

Equating the coefficients on e, gives us
Y=B+y(s-p).

Using equation (6) and simplifying yields
1(1-¢+A)=A4,

or simply

@ y=—2

1-¢+A°
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Finally, equating the constant terms yields

ca=a(l-p).
Unless B = A =1, this requires
8) o=0.

Note that we are also ignoring the case of § = 0, ¥ = 0 and no restriction on .

(d) Substituting equations (6) through (8) into the guess for consumption, equation (2), and the capital-
accumulation equation, equation (3), yields

1-¢
e , and (10) K¢y =Ky +[ Jet.

9) Cy=AK+
O Co= AR 1-9+A

1-¢+A

To keep the analysis simple, and without loss of generality, we can assume that €, and thus e, both equal 0
until some period t. In period t, there is a one-time, positive realization of €, =1-¢+A. From periodt + 1
forward, € = 0 again. In what follows, the change in a variable refers to the difference between its actual
value and the value it would have had in the absence of the one-time shock (i.e. if € and e had remained at
0 forever).

In period t, K, is unaffected. From equation (10), we can see that K, is determined by last period’s capital
stock and last period’s realization of e. From the production function, Y, = AK| + e, , we have

AY; = AAK, +Ae; =0+(1-¢+A).
Thus output in the period of the shock is higher by (1-¢+A). From equation (9), the change in
consumption is given by

A A
ACy = AMK + ———]Aet=0+[ J(1-¢+A)=A.
1-¢+A 1-6+A
Thus consumption in the period of the shock is higher by A.

In period t + 1, even though &, is assumed to be 0 again, e, is different than it would have been in the
absence of the one-time shock due to the autoregressive form of the e's. More precisely

Ao =PAe =d(1-$+A).
From equation (10), the change in the capital stock is given by

AK gy =AK, + ﬁj‘i e = 0+(l _]¢.TA}1—¢+A) =(1-¢).
Intuitively, last period, output rose by (1—¢+ A) but consumption rose only by A. The rest of the increase
in output ~ (1-¢) -- was devoted to investment and hence the rise in this period's capital stock by an equal
amount (we are assuming no depreciation). From the production function, Y1 = AKu1 + e, the change
in output is

AYiy = ABK y +Aegy = A(-$) +0(-$)+ A= A—0A+¢+ A -9 = A+9(1-9).
From equation (9), the change in consumption is given by

A A
AC.,; = AAK — =A(l- 1-¢0+A)=A-dA+dA=A.
t+ t+ 1-¢+A €+ 1-¢)+ l—¢+A}( ¢+A) dA+¢

Thus there are no further dynamics for consumption. I remains A higher than it would have been in the
absence of the shock.

Similarly, we can calculate these changes for period t+2:
2
Aegyy =Phegy =97 (1-¢+A),
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1- 1-0)(1-d+A) .
AKt+2=AK!+1+[1_¢_TA)A31+1:(1_4?)“{( ‘t;)‘j’_‘b‘*-_i_ — }= (-¢)+o(1-¢)=1-¢",

AYyyp = ABK ) + A0y, = Al-¢)+ AD(L-)+ 21—+ A) = A+¢” (1-¢), and

A 2
ACih = AAK (g +|— =A(l1-¢)" +
t+2 t+2 1-¢+A €42 1o 1—¢+A

)02(1—¢+A)= A-¢rA+¢A=A.

The pattemn can now be inferred. Suppose there is a one-time shock of &, =1—¢+A. In the period of the
shock, consumption rises by A and permanently stays at that new level with no further dynamics. In
addition, n periods after the shock, the change in output is

AYy,, = A+ (1-9),
and the change in the capital stock is

AKpp =1-0".

The nature of the dynamics of Y and K depends upon the value of ¢. In the special case in which it is
equal to 0, so that there is no persistence in the technology shock, there are no further dynamics after period
t + 1. The period after the shock, and in all those thereafter, capital is higher by one and output is higher
by A.

For the case of 0 < ¢ <1, the capital stock rises by (1-¢) the period after the shock. It then increases more
each period until it asymptotically approaches its new long-run level that is one higher than it would have
been in the absence of the shock. Output rises by (1-¢+A) the period of the shock. It then decreases
each period until it asymptotically approaches its new long-run Jevel that is A higher than it would have
been in the absence of the shock.

For the case of -1 < ¢ < 0, capital and output oscillate -- alternating above and below their new long-run
levels in successive periods - and gradually settle down to be one and A higher, respectively.

Problem 4.9

(a) To obtain the first-order condition or Euler equation, we can use the informal perturbation method.
The experiment is to suppose the individual reduces period-t consumption by AC. She then uses the
resulting greater wealth in period t + 1 to increase consumption above what it otherwise would have been.
The utility cost in period t of doing so is given by

Utility Cost = [/ + p)] w{C)ac=[ya+ )] [1-28(C, +vi)]Ac,
where the last step uses the instantaneous utility function, w(C,) = C;- 8(Ci + » )?, to calculate u ' (Cy).

The expected utility gain in period t + 1 from the above experiment is
ﬁl/(l +0) (o )1+ A)AC] = [ya+p)] " EJ1-28(Ce +ven)J(1+A)AC,
where A is the real interest rate. Now, since v is white noise, Ei[ve1 1=0 and thus
Exp. Utility Gain = [1/(1+p)] " [1- 20E,[C,y 1+ A)AC.

Exp. Gain = E,

If the individual is optimizing, the utility cost from this perturbation must equal the expected utility gain:

[ya+p)]'[1-20(c, +w)jac=[ya+ o] [1- 20E,[C oy ](1+ A)AC,
or simply

bl b st e ol o b B e e b W

£
3
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1-26(Cy +v¢) =[/1+ p)(1+ A)[1- 20, [Cyy 1.
Using the fact that p = A and simplifying yields
(1) Cy+v; =E{[Cen]-

(b) We will guess that consumption takes the form
2) Ci=a+BK;+7yv;.
Substitute equation (2) and the production function, Y, = AK,, into the capital-accumulation equation,
KHI=K|+Y1'C‘,t00btain
K =K +AK; —a-BK; —vv,
or simply
G) Ky =—a+(1+A-B)K, —yv.

(c) Substitute equation (2) and equation (2) lagged forward one period into the first-order condition,
equation (1):

o+BKy +7v + vy =Efa+BKeyy +1ven ]
Noting that E[V,. ] = 0, we have
@ a+BK, +(y+Dvi =a+PE K41
Substitute equation (3) into equation (4). Note that we can drop the expectations operator since Kuiisa
function of K, and v, which are both known at time t and thus we have

a+ Ky +(r+ vy =o+ B[+ (1+ A= B)Ky —yvy].
Simplifying yields
) a+BK, +(q+ vy =a(l-p)+B(1+A-B)K, —Brvy.
Clearly, in order for equation (5) to hold, we need the coefficients on K., v; ,and the constant term to be the
same on both sides. That is, we need

p=p(1+A-B) = 1=1+A-B = PB=A, (6

y+1=-By = (1+B)=-1 = y=-1/1+p) = y=-1/1+4), (D

a(l-B)=a = a(l-A)=a = a=0. (@)
There is another set of parameter values that satisfies equation (5) which is p = 0, y = -1, and no restriction
on o. This second solution is economically unappealing, however, since p = 0 implies that consumption

does not depend on the capital stock. This is not realistic since consumption depends on output which in
tumn is determined by the capital stock. Thus we can, on economic grounds, ignore this second solution.

(d) Substituting equations (6), (7) and (8) into the guess for consumption, equation (2), and the capital-
accumulation equation, equation (3), yields

©) C,=AK -[/Q+A)v, and  (10) Ky =K +[/a+M)n.

Without loss of generality, we can assume that v = 0 until some period t when there is a one-time positive
realization of v, . To keep the analysis simple, assume that v = (1 + A). From period t + 1 forward, v =0
again.

In period t, K, is unaffected. It is determined by last period's capital stock and last period's saving. From
the production function, Y, = AK, Y, is unaffected since K, is unaffected. From equation (9), we can see

that consumption in period t, C; , is lower by [1/(1+ A)]vt = [l/(1+A)](l+ A)=1.
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In periodt + 1, we can see from equation (10) that K., is higher by [1/(1+ Alv =[Ya+A)](1+A) =1.
Intuitively, last period's drop in consumption by one, with unchanged output, meant an increase in saving of
one. This in turn means an increase in this period's capital stock by one. Through the production function,
since Ky is higher by one, output is higher by A. Finally, with v,.; assumed to be 0, then since Ky is
higher by one, Cy,; must be higher than it was in period t - 1 (before the shock) by A. This last fact can be
seen from equation (9).

From period t + 2 forward, assuming v = 0 forever, there will be no further dynamics. K stays at its new
higher level: one higher than in period t - 1. Y stays at its new higher level: A higher than in periodt-1. C
stays at its new higher level: A higher than in periodt - 1. All of this is depicted in the figure below.

C Y K

t-1 t tH]l 2 t+3 t-1 t ]l 2 t+3 1t tHl 2 143

Problem 4.10

() From the Solow, Ramsey and Diamond models it is clear that on the balanced growth path without
shocks, the growth rates of Y, K and C are all equal ton + g. In addition, the growth rate of w is g, the
growth rate of L is n, and the growth rates of ¢ and r are zero. Note that given the logarithmic structure

here, "growth rate" means the change in the logarithm of the variable. That is, the fact that the growth rate
of K is n + g means that In(K1 ) -InK;)=n+g

Dividing both sides of the production function, Y, = K [AL, ]'"*, by AL, yields

Yo/AL = KAL J* = [K, /AL, "
Since y* and k* are the balanced-growth-path values of Y/AL and K/AL respectively, we have
(D) y*=k*
Similarly, dividing both sides of the capital-accumulation equation, Ky = K, + Y, - C, - G, -8K,, by AL,
gives us

Ku K, G G K

ALy AL AL, AL, ALy AL
Using the fact that K., = "*K, on the balanced growth path and thus that K1 /AL, = e%®K, /AL, ,as well
as the notation given in the question yields
(2) e'ek* =k* + y* - c* . G* - 5k*
Dividing both sides of the equation giving the real wage, w, = (1- a){Ki /AL I°A,, by A, yields

we/Ac= (1 - )[K, /AL, "
Denoting the value of w/A on the balanced growth path as w* gives us
(3) w*=(1-a)k*
From equation (4.4) in the text giving the real interest rate, we have on a balanced growth path

G SR &
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(@) * =ak*.35

We need to transform textbook equation (4.26), which relates the trade-off between current consumption
and current labor supply, into an expression conceming the balanced growth path without shocks. Note
that in equation (4.26) , ¢, /(1 -¢,) =w, /b, ¢ is consumption per person, C/N. We are interested in c*
which is consumption per unit of effective labor, C/AL. Since C/N = (C/AL)(L/N)A, on the balanced
growth path it is true that ¢ = c*¢ *A. Using this fact and dividing both sides of equation (4.26) by A, we
obtain
c*(*A/A w/A

(-5 b’
Since w* = W/A, we have

c*er wH
&) -

(1-¢%) b
Finally, to transform textbook equation (4.23), which relates the tradeoff between current and future
consumption, first eliminate the expectations term since there is no uncertainty without any shocks. Then
multiply both sides of equation (4.23), 1/¢; = €®E, [(1 + ry1 Y/C1 ], bY €t

et e =eP(1 +141).

On the balanced growth path, consumption per person grows at rate g and thus ¢, = ¢, €® or
¢ /e = €% . Thus we have
6) 1+r*=¢""%
Equations (1) - (6) are six equations in the following six variables: y*, k*, c*, w*, £ *, and r*.

(b) We need to assume the following parameter values: o = 1/3, g = 0.005, n = 0.0025, 6 = 0.025,
r¥=0.015, and £ * = 1/3. Note that these are quarterly values for n, g and r*.

From equation (4), we can obtain an expression for capital per unit of effective labor on the balanced
growth path, k*:

k* = [ou/(r* + 8)]"".
Substituting for the values given yields

k* = [(1/3)/(0.015 + 0.025)]"*® =  k*=24.0563.
Substituting this value for k* into equation (1) gives us a value for quarterly output per unit of effective
labor on the balanced growth path:

y*=k**=(24.0563)"® = y*=2.8868.
We are told that the ratio of government purchases to output on the balanced growth path is (G/Y)* = 0.2.
This means that:

[G/ALJ[Y/AL]=02 = G/AL=G*=(0.2)(2.8868) = G*=0.5774.
From equation (2), we can solve for consumption per unit of effective labor on the balanced growth path,
c*

c*=k* +y* - G* - 5k* - "e’k* = (1 - § - &"¢® )k* + y* - G*.
Substituting in for the values given yields:

c* = (1-0.025 - "™%"™ (24.0563) + 2.8868 - 0.5774 = c*=15269.

It is then straightforward to use these values for c* and y* to solve for the share of output devoted to
consumption on the balanced growth path:
C/Y = [C/ALJ/[Y/AL] = c*/y* = 1.5269/2.8868 = 0.5289,

l AROR g  a®  r ry
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and thus consumption's share in output is approximately 53%. Since output is devoted to consumption,
investment, or government purchases, we know that

Y=1-C/Y-G/Y=1-0.5289-0.2=0.2711,
and thus investment's share in output is roughly 27%. Compared to actual figures for the U.S. this is
giving slightly too much weight to investment and slightly too little weight to consumption. Finally, the
implied ratio of capital to annual output on the balanced growth path is

K/4Y = [K/AL)/[4Y/AL] = k*/4y* = 24.0563/[(4)(2.8868)] = 2.083.

Problem 4.11

Before invoking the simplifying assumptions, the model here is the RBC model with no govemment and
100% depreciation, given by

M V=K AL ( Ku=Y.-C () mA =A+gt+X,

@) A =pp&, +5y, (5) mN;=N+nt (6) u,=Inc, + bin(1 - ¢, ).

In this question, we are simplifying by assuming n =g = A = N =0. This results in the following
adjustments to the model. Population is given by

(') nN,=0 = Ne=1.

We have normalized the population to one and thus ¢, , labor supply per person, will be the same as total
labor supply, L. Thus we can rewrite the production function as

(1') Yo=K Al ]

Finally, with respect to technology, since g and A are equal to 0, we have In A= Xt and using equation
(4) to rewrite this yields

(3') InA;=palnA; +ey4,.

(a) Define the value function at time t as
© 1
() Vy=maxE{| Xe P YInCy +bin(1- es)]J.
s=t

Since we are solving the social planner's problem, the maximization is subject to the production function,
equation (1 ), the capital-accumulation equation (2) and the technology equation (3 '). Thus the value
function at time t is the expected present value of lifetime utility, from time t forward, evaluated at all the
optimal choices of consumption and labor supply. The technique here is that we can reduce what looks like
a complicated multiperiod problem down to a two-period problem. This is due to the fact that the value
function must satisfy Bellman's Equation, which is given by

®) Vi(Ky,Ap)= néa‘x{ln Cy+bIn(l-¢0) +e PEq[ Vit (Kea, A ).

Equation (8) says that the value function at time t is equal to utility at time t, evaluated at the optimal C,
and ¢, plus the discounted expected value as of time t of next period's value function. That is, the expected

value of maximized lifetime utility is maximized lifetime utility "today" plus "today's" expectation of
maximized lifetime utility from "tomorrow" on, appropriately discounted.

(b) We will guess that the value function is of the form
9 Vi(Ki, A) =Bo+ P InK, + P InA, .
Substituting this guess into equation (8), the Bellman equation, yields

10) V(K,AQ) =n(1:a:;{mCt +bIn(l-¢,) +e PE[Bg + B K sy +Ba InA ]},

Taking logs and then expectations of both sides of equation (2), the capital-accumulation equation, yields
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PR

Solutions to Chapter 4 97

(11) ElnKy; ] = E[In(Y, - C;)] = In(Y, - C,),

where we have used the fact that Y, and C, are both known as of time t. Taking expectations of both sides
of equation (3 ') yields

(12) E[lnAt. ] = palnA,,

where we have used the fact that the & shocks have mean zero. Substituting equations (11) and (12) into
equation (10) yields

(13) V{(K(,A)= %af{mct +bln(l-¢,)+e P[Bg + Bk In(Y, ~C) +Bapa lnAJ}.

The first-order condition for C, is

0=1/C, +e PP (-D/Y, -C; = VC, =e'PpK/(Y‘ -Cy),
(14) Y, -C =ePpxC, = C+ePpy)=Y, = C,=[1f[1+ e Ppy )| Y. (14")
Thus the ratio of consumption to output is given by

(15) G/, =1/(1 +e* Bx).
So clearly, the ratio of consumption to output does not depend on K or A;.

(c) The first-order condition for ¢, (noting that L, = ¢, ) is
=-b/(1-¢,)+ [e? Bx /(Y: - COI( - )K* A 62,
Simplifying yields
(16) b/(1-¢,)=[e® Bx /(Y: - C)IA - )(Y:/ 4).
Substituting equation (14) into equation (16) yields
(17) b/(1 -€,)=[e® Bk /e® Px Co)I1 - o)(Y:/ &) = (Y. /C (1 - o)/ ).
Substituting equation (15) into equation (17) yields
bi(1-6)=(1-a)(1+e"Pc) 4 =  ba=(1-64)1-a)(1+e’Px).
Further simplification allows us to obtain
¢ [(1-a)(1+ePPx)+b]=(1-a)l+e® k),
and thus

as) ¢ (-

(1~ +[b/A+e "By )]
Thus ¢, , labor supply per person, does not depend on K, or A, either. In addition, with some simple
algebra, it is possible to solve for optimal leisure, an expression which will be useful later on:

19) (1-¢)=b/[a-a)a+ePpg) +1].

(d) Now take these optimal choices of consumption and leisure, as well as the production function, and
substitute them all into the value function. It will tum out that the original guess that the value function is
loglinear in capital and technology is valid.

Formally, substitute equations (14), (14 ') and (19) into equation (13) to obtain
Ve, A=Y, /(1+¢7Ppg )| + bin{b/[ - a)1+ e Py ) + 1]} +

(20)

e {80 + By In|e By Y, /(1+ "By )| + Bapa InA, )
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Substituting equation (1 '), the
logarithms yields

ViKpA =anK, + (-0l A +(-0)ing ~Inl+ e PBy) + binfb/[(1- o)1 + e Py ) + b]}

production function, into equation (20) and expanding some of the

@n +e PRy +e PPy {ln(e‘PpK)—ln(1+e‘PpK) +alnK+(1-)lnA, +(1—a)lntt}
+e PBaps InA,.

There is no need to substitute in for ¢, since we already know that it does not depend on K, or A, and it is
really the coefficients on InK, and InA, that we are interested in. It is possible to rewrite equation (21) as
(22) Vi(K:, A1) = Bo' + Bx' InK, + Ba' InA;,

where By’ = terms that do not depend upon K, or A, B’ = a(l +¢® Bx ) and
Pa'=(1-o)(1+e”Px)+e® Bapa.

(e) In order for our original guess to be correct, we need the coefficient on InK, in equation (22) to be equal
to Bx. That is, we need P = a(1 +€® By ). Solving for Bx yields
(23) Bx=a/(1 - ae™).
We also need the coefficient on InA, in equation (22) to be equal to B. That is, we need
(24) Ba=(1-0)(1 +e”Px)+e” Bapa.
Substituting the expression for Bx , equation (23), into equation (24) yields
Pa=(1-0){1 +[ce® /(1 -ae®)]} +&® By ps .
Collecting the terms in B, and simplifying yields
Pa(l-€®pa)=(1-a)/(1-ae®),
and thus finally
(@5) Ba=(1-a)/[(1-ce® )1 -pae®)].

(f) Substitute the value of Bx that was derived above into the earlier solutions for Y, /C, and ¢,. That is,
substitute equation (23) into equation (15);
C

Ci_ 1 : 1
Yi 1+[ae""/(l—ae'p)] [(l—ae‘p+ae“p)/(l—ae"”)]’
or simply

(26) C//Y,=1-ce?.
This is the same ratio of consumption to output that was obtained by deriving the competitive solution to
this model, with the additional assumption of n = 0 incorporated.

Similarly for labor supply, substitute equation (23) into equation (18):
)

¢ = .
Y-y b/[1+(xe? /1 -ae™?))|

We have already worked on an expression like the one in the denominator Jjust above and thus

27) b= (1-0)/[(1- o) + b(I - o™ )l

This expression for labor sup

ply is the same as the one that was obtained when deriving the competitive
solution to the model, with the additional assumption of n = 0 incorporated.

Problem 4.12
The derivation of a constant saving rate, s

=$, and a constant labor supply per person, ¢, =¢, did not
depend on the behavior of technology. As

the text points out, it is the combination of logarithmic utility,
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Cobb-Douglas production, and 100% depreciation that causes movements in both technology and capital to
have offsetting income and substitution effects on saving. These assumptions allowed us to come up with
an expression for the saving rate that did not depend on technology which is equation (4.31) in the text.
Once a constant saving rate is established, technology plays no role in the derivation that labor supply is
also constant. That relied on the form of the utility function and on Cobb-Douglas production. The latter
was necessary so that labor's share in income was a constant.

Problem 4.13

(a) Imagine the household increasing its labor supply per member in period t by a small amount Afand
using the resulting income to increase its consumption in that period. Household utility and the
instantaneous utility function are given by

t=c0
(1) U= X e Pu(cy,1-¢)N/H,  and @) ue=Inc+b( -€) 71 -7).
t=0
From equations (1) and (2), the marginal disutility of working in period t is given by
3) -0U/, =™ (N, /H)b(l - ¢,)".
Thus increasing labor supply per member by A¢has a utility cost for the household of
Utility Cost = e®'(N, /H)b(1 - ¢, )TAY.

Since the change raises consumption by w:AY, it has a utility benefit for the household of
Utility Benefit = e™'(N, /H)(1/c, )wAL.

If the household is behaving optimally, a marginal change of this type must leave expected lifetime utility
unchanged. Thus the utility cost must equal the utility benefit; equating these two expressions gives us
e_Pt._N_t b N_e‘Pt Nt 1

= ——wA,
H (1"‘t)y H ¢,
or simply
Ct Wt
@ —==t
(1-¢)' b

Equation (4) relates current leisure and consumption given the wage.

(b) With this change to the model, the saving rate will still be constant. The derivation of a constant
saving rate began from the condition relating current consumption to expectations of future consumption,
1/e, = €, [(1 + Tt Yew ], which is not affected by this change to the instantaneous utility function. The
rest of the derivation did depend on Cobb-Douglas production and 100% depreciation but not on how
utility was affected by leisure. Thus equation (4.33) in the text, § = ae™® , continues to hold.

(¢) Leisure per person is still constant as well. Note that ¢, in equation (4) is consumption per person. It
can be written as ¢, = C, /N, = (1 - § )Y, /N, where § is the constant saving rate. Taking logs of equation
(4) and substituting for ¢, yields

) In[(1 - $)Y:/N;]1-7In(1 - ¢;) = lnw, - Inb.

Since the production function is Cobb-Douglas, labor's share of output is (1 - @) and thus
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w, €t Nt = (1 - )Y, . Note that we have used L, = ;N ; the total amount of labor, L. , is equal to labor
supply per person, ¢, , multiplied by the number of people, N . Rearranging, we have w, = (1 - )Y,/ ¢, Nt. i
Substituting this fact into equation (5) yields E

In(1 - §) +InY, - InN; - yIn(1 - ¢,) =In(1 - ) + InY; - In ¢, - InN; - Inb. G

Canceling terms and rearranging gives us
6) In¢,-yin(1 -¢,)=In(1-o) -1n(1 - §) - Inb.
Taking the exponential function of both sides of equation (6) yields
¢ _(-a)
(1-¢)' bA-9)

Equation (7) implicitly defines leisure per person as a function of the constants y, @, b, and 5. Thus
leisure per person is also a constant.

Problem 4.14

(a) Taking logs of the production function, Y; = K{*(AdL. )", gives us

(1) InY,= alnK; + (1 - a)(InA, + InL, ).

In the model of Section 4.5 it was shown that labor supply and the saving rate were constant so that

L= N;and K, =§Y,_;. Thus we can write

() InY,=oln§ +alnY. + (1 - o)A +Inf +IN,).

Finally we can use the equations for the evolution of technology and population, In A = A+gt+A, and
InN, =N +nt, to obtain

G) hY,=alhi+alhnY_;+(1~a)(A+g) +(1-)A +(1-a)[Iné +N+nt].

We need to solve for the path that log output would settle down to if there were no technology shocks.
Start by subtracting (n + g)t from both sides of equation (3):
@) Y, -(+g)t=ald+anY, ~a@m+gt+(-)AE+ni+N+A,].
Add and subtract a(n + g) to the right-hand side of equation (4) to yield
) nY,-(+gt=alns+1-a)A+Ini +N]-a(n+g)+afln Yy | — (n+g)(t- D]+(1-w)A,.
Now define Q=aln§+(1-a)[A +In ¢ + N]-a(n +g) and use this to rewrite equation (5) as
(6) nY, -(+gt=Q+aflnY,_; - (n+g)t-D]+(1-w)A,.
On a balanced growth path with no shocks to technology, the A's are uniformly 0. In addition, we know
that output will simply grow at rate n + g. With this logarithmic structure that means InY, - InY., =n+g
or InY,; = InY, - (n + g). Substituting these facts into equation (6) yields g
InY;- @+ gt=Q+aflnY,-+g)-(+g)t-1]=Q+aflY,-(+ght] R
Further simplification yields
[nY:-(+grl(1-)=Q,
or simply
) Y *=Q/(1-a)+ (@ +gh.
Equation (7) gives an expression for InY,*, the path that log output would settle down to if there were never
any technology shocks.

SRR S

IRV BRSPS B

(b) By definition, ?1 =InY; - InY, *, where InY,* is the path found in part (a). Thus ’-f’t gives us the
difference between what log output actually is in any period and what it would have been in the complete
absence of any technology shocks. Substituting for InY* from equation (7) yields
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®) Y, =hY,-Q/(1-0)-@+gk
Note that equation (8) holds every period and so we can write
©) Yooy =Yy -Q/(1-0)-@+g)t-1).
Multiplying both sides of equation (9) by a and solving for alnY..; yields
(10) alnYy, =a¥,_; +[o/(1 - 0)]Q + o +g)t - 1).
Substituting equation (10) into equation (3) and then substituting the resulting expression mto equation (8)
yields
¥, =als+a¥, +[a/(1—a)]Q+q(n +g)(t-1)

b +(1—a)[X+gt+K‘+ln?+ﬁ+nt]—Q/(l—a)—(n+g)t.
Simplification yields

(12) Y,=am+gt+(1-0)@+gt-a+gt+a¥+(-0)A,,
and thus finally

13) ¥, =a¥; +(1-m)A,.
Equation (13) is identical to equation (4.40) in the text.

Problem 4.15
(a) (i) The equation of motion for capital is given by
1) K=K +Y;-C, -G, - K,
or substituting the production function into equation (1), we have
) K =K +KHA L) - C, - G, - 8K, .
Using equation (1), élnKy /6K (holding A, , L, C,, and G fixed) 1s

oKy 0Ky Ky AN RS

oKy 9K Key _‘_ Yok, K

By definition, since factors are paid their marginal products, the real interest rate is r, = 9Y; /K, - & and
thus

oK K
@) — =+ —+.
OlnK, Kin

(a) (ii) On the balanced growth path without shocks, capital grows at rate n + g, so that Ky =€"2K; . In
addition, using r* to denote the balanced-growth-path value of the real interest rate, equation (3) can be
rewritten as
dlnK K 1+r*
e s
oln KI bgp (<] gKt 5] g

(b) Using equation (2), oKy, /A, (holding K, , C., G, and L, fixed) is
oInK,, 0K, A (A, ) 0-K*AL)™
@ 111 _ 9K Ay =(1_Q)KtaAt—aLtl_aL t J:( K% (ALy) ‘
OlnA, 0A¢ Ky Ky Kin

Using Y, = K (A, L, )™, equation (4) becomes
5 JnKu (-,

dlnAy Ky

On the balanced growth path without shocks, Ke.1 = €*® K, . Since the production function is Cobb-
Douglas, the amount of income going to capital -- which is the marginal product of capital multiplied by
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the amount of capital, (r* + §)K, — is equal to &Y, . Thus Y. =(r* + 8)K, /. Substituting these two facts
into equation (5) yields

© oInKyy | _0-a)E* 9K, (1-a)r*+9)
OlnA, lbgp ae™BK, ag™E

Using equation (2), 8InK /&InL, (holding K, , C,, G, and A, fixed) is
oKy, 0K, L L ) (-a)K*(AL)"™
) 4 _ ORe Ly = (1~ 0)K,*A 1oL, ¢ = Jz( K *(ALy) '
Oln L, 2% Kin Ky Kin
Comparing equation (7) to equation (4), we can see that OInKy /0InL, = 8InK.s; /0InA, . Thus by
performing the same manipulations as above, we can write
MKy  (A-a)r*+9)

Ly [T oo™

@®

Using equation (2), éInK, /6InG, (holding K, , C,, L, and A, fixed) is

© OmKy 0Ky Gy __G

oGy  9G; Ky Ky

Multiplying and dividing the right-hand side of equation (9) by Y, gives us
(10) oK, _ Y (G /Y})

oGy Ky
As explained above, on the balanced growth path without shocks, K = €*8 K, and Y, = (r* + §)K, /a.

Substituting these two facts into equation (10) and using (G*/Y) to denote the ratio of G to Y on the
balanced growth path yields

8inKyy| __E*K(GYY) (1t )G HY)
T e

any

Using equation (2), 0InK,,; /8InC, (holding K, , G, , L, and A, fixed) is
(12) OnKen 0Ky € G
olnCy  0C, Ky Ky
Using hint (2), we can write this derivative evaluated at the balanced growth path as
oInK,,| [Y -G *-8K, - (™ - K,
Ol C, lbgp Ky .
Defining A, = (1 +*)/e™, A, = (1 - o)(r* + 8)/(e™™® ) and A; = ~(r* + 5)(G*/Y)/(ce™® ), we need to show
that OInK.; /6InC, evaluated at the balanced growth path is equalto 1 - A; - A, - A; . By definition,
I+r* (I-a)(r*+8) (r*+3)H(G¥Y)
I-2 ~Ay -A3=1- - +

3
e oe™*8

13

-
ae™'8

or simply
I+t (*9)[G¥Y)-(1-0)]

R n+g

14) 1-0 -2 -23=1-
oe
Note that we can write (r* + §) as

(15) (r* +8) = 8Y, /oK, = aK*' (A, L))" = aY, /K, .
Substituting equation (15) into equation (14) gives us
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1+r*+aY,[(G*/Yt)—(1—a)]_1_1+r* G*-(1-0)Y,

16) 1-M-Mp-A3=1-—5 n+g n+g

e aKe e

en+g K ¢

Obtaining a common denominator and using the fact that on the balanced growth path without shocks,

Ker = €78 K,, we have
e™BK, - (1+ K +G*-Y, +aYy
K+ '
From equation (15), aY, = (* + §)K, . Substituting this into equation (17)
e™BK, — K —r* K +G*-Y +r* K +3K;
Kt+1 .

(A7) 1-A —hy —A3=

(18) 1-A —Ay —A3 =

Collecting terms yields

[Y,-G*-8K - (" - DK,|
(19) ]—)\,1—7\,2—)»3=— .

K
Comparing equations (13) and (19), we have shown that
oinK
Qo) T8 =1-a -dp -
amCy |,
gp
The log linearization is of the form
[ [ 1 7 10
~ ~| aan‘Hl ~ l 6ant+1 ~ l Oln Kt+l —~ aanH-]
Ket 50k Kot DA At oL Lt oma
L ¢ logp ‘. t lbgp L ¢ Togp !

Using equations (3), (6), (8), (11) and (20) as well as the definitions of A1 ,
derivatives, we have
@) KM K+ A +L)+23G +(- A - Ay —A3) Gy

yields

17 1
F} LS Ft
bgp bgp

A, and A; to substitute for the

(¢) Substituting equation (4.43), C; =a kK¢ +acaAy +acgGy, and equation (4.44),

L= arxKi+ apaAy + a; Gy, into equation (21) yields

Ry =M K+ 22 A + 2 (a1 Ky +apa K¢ +a gGy) +23Gy

+(1- 7\.1 - ).2 - ;"3)(aCKK1 + aCAK, + aCGGt)'
Collecting terms gives us

22

Kt—!rl 5[7\‘1 +7‘23LK + (1— )\,1 —7»2 - 7\.3)aCK] Kl +[)\,2 + )\QaLA +(1— X] - 7\,2 - L3)aCA]Kt

(23) ~

+[}“2aLG +}.3 +(1—X1 - M i ?»3)aCGth.

Deﬂnmgbxgs }\'l +xzau(+(1 ')~1 'A—z-}\g)acx,bmﬁ)\.z(l +am)+(l
bre=Mact A+ (1-M-Ra-2s Yacg , equation (23) can be rewritten as
24) Kt+l EbKK Kt +bKA Kt +bKG Gt'

Equation (24) is identical to equation (4.52) in the text.

Problem 4.16

(a) Suppose the true model is given by

(1) AlnY; =%,

where the €'s are independent, mean-zero errors. This implies that log outp
InY, -InY;_, =gy, 0r

“M-A- A3 )aca and

ut is a random walk; that is,
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@ Y, =hY,, +¢,

What happens if the true model is given by equation (1) and we run an Ordinary Least Squares (OLS)
regression of the change in log output on a constant and log output lagged one period? That is, what if we
run

(3) AlnY, =a’'+blnY,_ +¢,.

In part (a) of the question, we will assume that the sample size is three and the initial value is InY, = 0.
Also, we will assume that there are only two possible values of  -- +1 and -] -- and each one occurs with
probability 1/2. This means that there are eight possible realizations of (g, ¢, ,€3). For each possible
realization, we need to calculate the OLS estimate of b.

For example, look at (e1,82,63) = (1,1,-1). We can generate the left-hand-side and right-hand-side
variables for our regression:

LHS Variables RHS Variables

AlnYl =ﬁl=l IHYO =0

AlnY, =¢g,=1 InY; =InYy+e;=0+1=1

AlnY3=e3=—1 lnY2 =lﬂYI+82=I+1=2
The averages of each are

AlnY,=1/3 InY, ;=1

The formula for the OLS estimator is given by

3 R _
XY ¥ (an, - 357,
b=—=

3
—\2
tzl(ln Yy -InY,, )
Substituting the values given yields
= (-D(2 /3)+(0)(2/3) +(I)(-4/3) _6/3 _

D +©)2 +(1)? S 2
Similarly for the other 7 possible realizations of the £'s, we can obtain the following:
(Epe2e)=(LL) = b=0 E1e2,83)=(-11) = b=
(182,89 =(-1-1~) = b=0 (E1€2.89)=(-1-1) = p=_1
(€1,82,63)=(~1) = bH=-2 (Ere2e)=(-11-1) = p=—

E1e2.63)=(~1-) = b=-1.
The average of the eight OLS estimates turns out to be -1, even though we know for a fact that the data
were created with a true value of b = 0. One of the sources of bias in OLS here is the fact that the right-
hand-side variable in the regression is not uncorrelated with all leads and lags of the error term. In fact
each InY,, is correlated with all past values of the random shocks.

(b) See the following printout of the Monte Carlo experiment using TSP, Although the data were
generated with a true b = 0, the average of the 500 OLS estimates is about -0.029 and 96.6% of the
estimates of b are negative. Again, OLS is biased. If we were to plot a histogram of the OLS estimates,
their distribution would be highly skewed and non-normal, even though we know for a fact that the errors
are normally distributed.
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In case of questions or problems, see your local TSP
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P.O. Box 61015, Station A
Palo Alto, CA 94306
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PROGRAM
LINE FREEERRARKERRKRFRFRRRRRERRERRRRRRRRRRRRRRRRRERRRRRE IRk Rk RRRR kK
1 supres smpl;
2 set numtrial = 500;
3 set bhatneg =0;
4 regopt(noprint) @logl, @coef,

dot =1, numtrial;

smpl 1,201,

eps =0;

Iny =0,

smpl 2, 201;

random eps;

genr diny = eps;

genr Iny = Iny(-1) + eps;

olsq(silent) diny ¢ Iny(-1);

smpl 1,500;

set bhat(t) = @coef(2),

if bhat(t) < 0; then;

set bhatneg = bhatneg + 1;

enddo;

smpl 1, 500;

msd bhat;

set pbhatneg = bhatneg/numtrial,
print pbhatneg;
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Problem 5.1
Differentiate the LM equation, M/P = L(i, Y) or equivalently M = PL(i, Y), with respect to M, holding P
constant:
) l—PrL —di—+L ﬂ]
=Mt YoMl

Rearranging equation (1) to solve for dY/dM yields

dy 1 L; di
Q —=—-——0.

dM PLy Ly dM
Differentiate the IS equation, Y = E(Y, i - #°, G, T), with respect to M holding =°, G and T constant:
o & g &

dM~ YdM M
Rearranging equation (3) to solve for di/dM yields

di (1-Ey)ay
@ o=

dM Ei— . dM
Substitute equation (4) into equation (2):

ar_ 1 L (1-By)ay
dM PLy Ly E_. dM’

Collecting the terms in dY/dM and obtaining a common denominator leaves us with

ax[LyE, e +L{1-Ey)]|

dM| LyE, . | pLy’
Solving for dY/dM yields

dy E,_
(5) 1-7

M plLyE, . +1;(1-Ey)]
Dividing the top and bottom of equation (5) by Ei—n‘ yields
dY 1
Ol v
[LY +Li(1-Ey)/E,_.

To obtain di/dM, substitute equation (5) into equation (4):
7 i=(1‘EY) E w _ (1-Ey)
M E o P[LyE_ . +Li{1- Ey)| P[LyE_.+Li(1- Ey))
Dividing the top and bottom of equation (7) by (1 - Ey ) gives us
1

di
® ™ P[LYEi_ﬂe /(I—EY)+L1-] <

Looking at equation (6), since Ly >0, L; <0, Ey < 1 and Ei—n' <0, we have dY/dM > 0. In addition, note
that the bigger is Ei—n° (in absolute value) — the more that planned expenditure responds to changes in the

real interest rate — and the smaller is L; - the less responsive is real money demand to changes in the
nominal interest rate — the bigger is dY/dM. Why? Suppose there is an increase in M. To re-establish
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money-market equilibrium, we need a lower nominal interest rate at a given level of Y. All else equal, the
smaller is L; , the bigger is the drop in i required to re-establish this equilibrium. The drop in i -- which
also means a drop in i - =%, since 7° is assumed fixed ~ then increases planned expenditure. All else equal,
the bigger is Ei—n‘ (in absolute value), the more that planned expenditure will rise. Thus the more that

output will end up needing to rise to re-establish the equilibrium condition that output equals planned
expenditure or Y = E.

Problem 5.2

(a) The equilibrium condition in the money market is M/P = L(i,Y). Now suppose that the central bank
has a target interest rate of i =1 . At a given level of Y, demand for real money balances at the target
interest rate would be L(i ,Y). To ensure money market equilibrium, the central bank will simply have to
adjust the nominal money supply, M, to ensure that M/P = L(i,Y). Thus the "LM curve" -- the set of all

combinations of i and Y that cause real money demand and supply to be equal -- will be horizontal at the
central bank's target level of the interest rate, 1 .

(b) The AD curve will now be vertical. First of all, why is AD downward-sloping when the central bank
targets M rather than i? At a lower P, M/P is higher and thus the LM curve shifts down to the right. Thus
the level of Y that clears the money market and equates planned and actual expenditure is now higher. The
AD curve is all the combinations of P and Y that clear the money market and equate planned and actual

expenditure. Hence lower levels of P are associated with higher levels of Y along the AD curve so that the
AD is downward-sloping.

Now suppose the central bank is targeting the interest rate ati =1 . At a lower P, the real money supply
would be higher. But the horizontal "LM curve" will not shift. The central bank will simply lower M so
that at the given combination of income and T, M/P = (i ,Y) again. Thus a lower P will not require a
higher level of Y to clear the money market and equate planned and actual expenditure. That is, regardless
of the price level, there is one unique level of Y that clears the money market and makes planned and actual

expenditure equal -- the level of Y where the horizontal "LM curve" and IS intersect -- and thus the AD
curve is vertical.

Problem 5.3

(a) (i) How does an equal increase in G and T -- a "balanced budget" increase in government purchases --
affect the position of the IS curve? We need to determine the effect on Y for a given i to examine the extent
of the horizontal shift of the IS curve.

Differentiate the IS curve, Y = C(Y - T) +1(i— %) + G, with respect to G:

dy __ocC [g__g} a_di-%)

dG &(Y-DLAG dGJ 5Gi-n%) dG
Although continuing to use total derivative notation, keep in mind that we are now holding #° and i
constant. In addition, we are assuming that dT = dG and so

dY dY dy

—=Cyq =-1{+1 = (- =1-Cy_r,

G -1 36 dG( Cy-1)=1-Cy 1
or simply

dYy

ifixed = 1.

dG
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This can be interpreted as meaning the change in Y for a given i is simply equal to the change in
government purchases. Thus a change in govemment purchases, when accompanied by an equal change in
taxes, causes the IS curve to shift by a horizontal amount equal to that change in government purchases.

(a) (i) Now we have to allow for a variable interest rate. We want to know the extent of the horizontal
shift of the AD curve. That is, we want to know the effect on Y for a given P, but allowing for the effects
of a variable interest rate.

Differentiate the IS curve equation, Y = C(Y - T) + I(i—-n°) +G, with respect to G:
&Y  oc [dY ar] @ [ﬂ dn°J+

PP
dG dG.! a(i-=°)

4G a(Y-T) dG  dG
We are holding 7° (and P) constant, and assuming dT = dG so we have
a dy c dy c +1 di |
—= —_— . e ——+1.
G YTy YT 4G
Differentiate the LM equation, M/P = L(i,Y), with respect to G, holding M and P constant:
di dy
dG dG
and rearranging to solve for di/dG yields
di Ly dY
2) —=-——.
dG L; dG
Substituting equation (2) into equation (1) yields
aY oo A L_eLly dy
a6 YTae YTTTL 4G
Solving for dY/dG, we have
dY 1-Cy_t

B | paed = <1.
dG 1-Cyr +{1_ Ly /Ly)

The horizontal shift of the AD curve is thus [(1— Cy_T)/(l -Cy_t +Ii_n,LY/Li)}dG <dG. The AD

curve shifts less than the IS curve. This is because the shift of the AD takes into account the rising interest
rate caused by the upward-sloping LM.

(b) () We are now assuming that tax revenues are a function of income; T = T(Y). In addition,
T ' (Y) > 0 so that tax revenues rise when income rises. To find the slope of the IS curve, differentiate

Y=E(Y,i-°% G, T(Y)) with respect to i, holding everything else constant:

=— T

di 1-Ey-E{T(Y)

Inverting the above expression yields the slope of the IS curve,
di 1-Ey -ET(Y)

@) —|g=—Tt—"T "o

dy Ei—1t°
To see how an increase in T ' (Y) affects the slope, take the derivative of the expression for the slope with
respect to T ' (Y):

dy dYy dY dYy

~—=Ey—+E. ,+ET'"Y)— = —|1-Ey -E,T =E. .,

di oY g R PEITM di[ v-ErT(]=E,__
or simply

dv Eine
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5) a(dl/dY‘IS) =- Er <0 since E1,E. . <0

aT'(Y) Ei—n° -
Thus an increase in T ' (Y) causes the slope of the IS curve to become even more negative. That is, it
causes the IS curve to become steeper.

(b) (i) We need to determine how an increase in T ' (Y) affects the impact on output, for a given price, of
achange in G. First, we need the effect of a change in G on Y, for a given P. Differentiate the IS equation,

Y =E(Y,i-%°,G,T(Y)), with respect to G, holding =" (and P) constant:

(©) d—Y—E £+E i+1~1~l-: T’(Y)-c—ly—
4G YdG i dG 46
Differentiate the LM equation, M/P = L(i,Y), with respect to G, holding P and M constant:
di dy di  Lydy
0=Li—+Ly— = —=-—X— (7)
dG dG dG L; dG

Substitute equation (7) into equation (6):

G Yd6~ L; a6 °¢TT Wis
Solving for dY/dG yields
dy Eg

® d_G—|Pﬁxed = >0.

1-Ey +(E,_.Ly /L;)-E;T(Y)

Now to see how the impact of a change in government purchases on output, for a given price level, is
affected by a rise in T' (Y):

a(dY/dG‘ Pﬁxed) &,
Oy - (-Ep) <0 since Eg >0,Ep <0,
[1 ~Ey+(E_Ly/L;)- ETT'(Y)]2
When T ' (Y) is higher, the increase in Y, for a given P, due to an increase in G is smaller. Thus we have

shown that the horizontal shift of the AD curve due to a change in government purchases will be smaller,
the larger is T ' (Y).

Now we need to determine how an increase in T ' (Y) affects the impact on output, for a given price, of a
change in M. First, we need the effect of a change in M on Y, for a given P. Differentiate the IS equation,

Y =E(Y,i-=°% G, T(Y)), with respect to M, holding G, n° (and P) constant:

(10) v E d—Y+E —9‘-+E T'(Y) dy
dM - TdM o rtam T VM
Differentiate the LM equation, M/P = L(i,Y), with respect to M, holding P constant:
1 di dy di 1 LydY
—=Li—+Ly— = —=—u-_-X__ (1}
P dM dM dM PL; L; dM
Substitute equation (11) into equation (10):
dy vy E_. E_.Lydgy dy
—=Ey —+—E__IX +E7T(Y)—.
dM  YdM" PL L, am T Mgy
Solving for dY/dM yields
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dY

® N‘Pﬁxcd =

1-7

PLitl~1~:Y +(Ei_n,LY /Li) —ETT'(Y)J> "

To see how the impact of a change in M on Y, for a given P, is affected by a rise in T ' (Y), examine the
following derivative:

6(dY/dM'Pﬁxed) -E__.(-PLEq)

(10 =
aT(Y) 2 ,
(PL;) [1— Ey +(E,_ Ly /L)) -E{T (Y)]2
This derivative is negative since E. ., L;, and Ey are all negative. When T ' (Y) is higher, the increase in
1-T

<0.

Y, for a given P, due to an increase in M is smaller. Thus the horizontal shift of the AD curve due to a
change in the nominal quantity of money will be smaller when T ' (Y) is higher.

This illustrates the concept of income taxes as automatic stabilizers. We have shown that the more that
taxes increase with income, the smaller will be the impact on output from shocks to the IS and LM curves
such as changes in government purchases or changes in the money supply.

Problem 5.4

(a) In a liquidity trap, the LM curve is horizontal at the low nominal interest rate that prevails. Intuitively,
at a given interest rate, individuals are willing to hold any quantity of real money balances. Thus at higher
levels of income, Y, individuals are willing to change their real money balances without a change in the
interest rate. Thus higher levels of Y no longer require higher interest rates to clear the money market.
That is, LM is horizontal rather than upward sloping. This means that the AD curve will be vertical. This
can be seen by going through the exercise of deriving the AD curve. A decrease in P increases the supply
of real money balances. Ordinarily, a lower interest rate is needed to clear the money market for a given
level of income and so the LM curve would shift down. As a result, i falls and Y rises. Thus the level of
output at the intersection of the IS and LM curves is ordinarily a decreasing function of the price level.
That is, the AD curve is usually downward sloping; lower levels of P require higher levels of Y to clear the
money market and make planned expenditure equal actual expenditure.

In the case of a liquidity trap, the decrease in P which increases the supply of real money balances, M/P,
does not shift the horizontal LM curve. At a given level of income, we do not require a lower nominal
interest rate to get individuals to hold the extra money. They are willing to hold any quantity of real money
balances at a given level of Y. Thus LM does
not shift down. The same level of Y continuesto | p AD AS
clear the money market and make planned
expenditure equal actual expenditure, regardless
of the price level. In other words, the level of
output at the intersection of the IS and LM
curves is no longer a function of the price level;
AD is vertical.

Now, even if prices are fully flexible (so that the
AS curve is vertical), aggregate demand can play

a role in determining output. Suppose the AD Y: Y, Y
curve lies to the left of the AS curve as is
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depicted at right. Then output bought and sold in the economy will be at Y, ,not Y;. We have a situation
of excess supply that cannot be eliminated by a change in price, since price does not affect AD.

(b) We can now write planned expenditure as
(1) E=E(Y,i-7°,G, T, M/P), Emp>0.
The important point is that even if there is a
liquidity trap so that LM is horizontal, the AD i
curve will once again be downward-sloping. IS, IS,

Again, we can see this by going through the
exercise of deriving the AD curve. Suppose
IS, and LM, correspond to some price level P;.
Now consider a lower price level P; . As
explained in part (a), the horizontal LM will L
not shift. But the IS curve will. The fallin P : \
raises M/P which is a component of weaith. N :

With Eye > 0, this increase in wealth increases : "
planned expenditure at a giveni. Ina Y, Y, Y
"Keynesian Cross" diagram, the planned

expenditure line would shift up. Thus the level of Y required to equate planned and actual expenditure is
now higher at a given i. That is, the IS curve shifts to the right to IS, . This IS/LM diagram then tells us
that at lower P's, the level of Y that clears the money market and equates planned and actual expenditure is
now higher. Thus the AD curve, which is all the combinations of P and Y such that the money market
clears and planned and actual expenditure are equal, is once again downward-sloping. In this case, a
liquidity trap combined with real money holdings affecting planned expenditure, a vertical AS curve once
again means that AD is irrelevant to output. Essentially, we have re-introduced a way in which prices
affect AD. Thus a situation of excess supply can be eliminated by a falling price level.

M

Problem 5.5

A fall in expected inflation shifts the IS curve
to the left to ISxgw . At a given nominal
interest rate, i, the real interest rate, i - ©°, is
now higher and thus planned expenditure is
lower. In a "Keynesian Cross" diagram, the
planned expenditure line would shift down.
Thus the level of Y required to equate
planned and actual expenditure is now lower
at a given i. That is, IS shifts left.

From the figure at right, we can see that the
fall in n° causes both output and the nominal
interest rate to fall. What about the real
interest rate, i - n° ? It rises; that is, i falls Yrew Y Y
less than =° does. Graphicaily, think of the
IS curve as shifting down. What is the magnitude of the downward shift in IS? It must be the change in
expected inflation, An° . Intuitively, the same level of Y would continue to equate planned and actual
expenditure if i were to fall by the same amount as 7° so that i - n° (and thus planned expenditure) remained
unchanged. Thus on the new IS curve, a given level of Y is now associated with a nominal interest rate
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that is lower by the amount An® or in other words, IS shifts down by An° . We can see from the IS-LM
diagram, that because of the upward-sloping LM curve, i does not fall by the full extent of the downward

shift in IS. Thus i falls by less than 7° does and so the

More formally, the IS and LM equations are given by
M Y=E,i-=,GT), and

real interest rate, 1 - «° , rises.

) MP=LGY).

Differentiate the 1S equation with respect to n° , holding G and T constant:

dY dy di
—-;:EY——;+E._ ,L e—l
dn dn T dn
Rearranging to solve for di/dn® gives us
di dy g (1-
E_« __(1-Ey)— @ T
dn dn dr E

PR
1-K

Ey) dY
——d—+1. ®)

dn®

Differentiate the LM equation with respect to 7°, holding M and P constant:
di

0= Li e + LY
dr
Substitute equation (4) into equation (3):
di 1-Ey) -L; di d
1 (_,__X_).-__L_l__ +1 = __.—l

an® E,_ Ly dn® dne\_
and thus
5 2 =__———————-Ei"teLY >0

an® E_Ly +(1-Ey)L

W d
dn® gn® Ly dn°

@

iYEi_,ceLY’*'(l'EY)Li »
E. Ly o

i-m

Note that di/ dn® <1 which confirms the graphical and intuitive analysis above. The nominal interest rate

falls less than expected inflation does and so the real interest rate, 1 - n° , rises. Substituting equation o)
into equation (4) gives us the following expression for the change in output due to the change in expected

inflation:

&y  -L E Ly -LiE

1-T

© —=T

dn® Ly E neLY+(1—EY)Li Ei_u,LY+(1-EY)Li

1=

= c
-7
1 >0.

Since dY/dx* > 0, a fall in expected inflation causes output to fall. This confirms the graphical analysis

above.

Problem 5.6

(a) Substituting the consumnption function, C,=a+bY. ,and the assumption about investment,

I =K* - Y2, into the equation for output, Y, =C+
M Y.=a+b¥ut K*-cYi2t G

Substituting for the desired capital stock, K¢* = Y,
G.= G, yields

@) Ye=a+bYeu +cYucYus G.

Collecting terms in Ye. gives us output in period t as a
model:

(3) Ye=a+(@+ Y -cYea t G.

Ig + G‘ N ylelds

and for the constant level of government purchases,

function of i1, Yi2 and the parameters of the
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(b) With the assumptions of b = 0.9 and ¢ = 0.5, output in period t is given by

(@) Yi=a+14Y,,-05Y,+G.

Throughout the following, the change in a variable represents the change from the path that variable would
have taken if G had simply remained constant at G.

In period t,
Yi=a+14Y,;-05Y,,+G +1,
and thus the change in output from the path it would have taken is given by
AY;=+1.
In period t + 1, using the fact that equation (4) will hold in all future periods,
AYy1 = 14AY, - 0.5AY,; = 1.4(+1) - 0.5(0) = +1 4.
In period t + 2,
AYu; = 14AY . - 0.5AY, = 1.4(+1.4) - 0.5(+1) = +1.46.
In period t + 3,
AYu3 = 1.4AY,,; - 0.5AY,,, = 1.4(+1.46) - 0.5(+1.4) = +1.344.
With similar calculations, one can show that AYys=+1.15, AYys = 0.938 and so on. Thus output follows
a "hump-shaped" response to the one-time increase in government purchases of one. The maximum effect
is felt two periods after the increase in G and the effect then goes to 0 over time.

Problem 5.7

A decrease in taxes means that at a given i, planned
expenditure is higher since Er <0. Thus at a giveni, Y
must be higher in order for Y = E. Thus the IS curve
shifts to the right to IS ', Ordinarily, that would be the
whole story. The AD curve would shift to the right and
the tax cut would increase the level of output. Here,
there is also an effect on the LM curve. A decrease in
taxes means that at a given Y, disposable income,

(Y - T), is higher. Thus so is real money demand. At a
given Y, this requires a higher i than before to have real
money demand equal real money supply. Sothe LM
curve shifts up to LM ',

There is an ambiguity. The LM curve could shift up so
much that -- as in the case depicted in the figure at

right - the intersection of IS ' and LM * occurs to the
left of the original Y,. Thatis, Y fora given P falls
and so the AD curve would actually shift to the left in
this case. Thus the tax cut could end up reducing
output. [Note that the fall in P increases the real money
supply and thus shifts LM down to LM " to complete
the story].

Determining whether output rises or falls is equivalent
to determining whether the AD curve shifts to the left
or to the right. So we can see what happens to Y, for a
given P, and that will answer the question of whether
output rises or falls in the end.

i

Y] Yo Y
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Differentiate the LM relationship, M/P = L(i, Y - T), with respect to T, holding M and P constant:
di dy
0=L;—+L —-1].
tar” Y T\dT
Rearranging to solve for di/dT yields
di Lygq LyrdY
T L L; dT
Differentiate the IS relationship, Y = E(Y,i—-=°,G,T), with respect to T, holding 7°, G (and P) constant:
2 9—! =E EX +E 4 +
e O e
Substitute equation (1) into equation Q):
&y _ dY (Ly.y Lyt dY]
4= _———+ET.
k L; L; dT

Et.

—=Ey-——+E._.

aT  Ydr  m
Solving for dY/dT yields
(Ei—ﬂe Ly_'r /Ll) + ET

1- EY +(Ei—1!° Ly_'r /Ll) '

The denominator of equation (3) is positive since Ei—n‘ <0, Lyr>0,Li <0, and Ey < 1. The sign of the
numerator is indeterminate. The first term is negative and is basically capturing the money-market effects
of the cut in T. The second term is positive and is basically capturing the effects in the goods market of the
cutin T. If the former effect is stronger then dY/dT for a given P will be positive, meaning a cutin T
reduces Y for a given P. This is equivalent to saying that the AD curve shifts to the left.

6)) iY_\ —
dT P fixed =

(b) We will again restrict ourselves to looking at the effects on Y for a given P.
Due to the tax cut, at a given e, planned
expenditure is higher since Er < 0 and therefore e LM** LM*
we need a higher Y at a given e to satisfy the
equilibrium condition that Y = E. Thus IS* shifts
to the right to IS* .

Ordinarily that would be the whole story. There

would be an appreciation causing a reduction in

planned expenditure by an amount equal to the rise

in planned expenditure caused by the tax cut. & /

Thus on net, planned expenditure andthus Y —

would not change. But here, at the original Yo, Y, Yo Y

Y, - T is now higher than before due to the tax
cut. Therefore, at the original Yo , real money

demand would be higher, throwing the money market out of equilibrium. In order to clear the money
market — since i* cannot change -- we need a lower Y so that Y - T and thus real money demand is
unchanged and still equal to the given M/P. Thus, LM* shifts to the left to LM*'. The end result is that
output falls from Yoto Yi . A tax cut actually reduces the level of output for a given P. Formally,
differentiate the LM* relationship, M/P = L(i*, Y - T), with respect to T, holding M, P and i* constant:
0=L (ﬂ 1) &
=Ly-r{qr~l) = griptxd =1
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Output is determined entirely in the money market in this model. In response to a disturbance, since i*, M
and P are constant, it must be Y that adjusts to ensure equilibrium. As T falls, Y must fall by an equal
amount.

(c) Again we will look at the effects on Y for a given P.
We are assuming the central bank will ensure money- f
market equilibrium. It will do so by meeting money e Is* Is*
demand with the appropriate money supply to ensure —_—

that the nominal exchange rate remains fixed. Thus
our alteration to the money demand function does not -
mean that the nominal exchange rate will be affected ¢
by tax changes; it simply means that the central bank
will have to act to offset the effects of tax changes on
money demand.

f—— |

After T falls, IS* shifts to the right for the same Y Y Y T
reason as described above. Any increase in money 2 . &
demand that is caused by T falling is simply met with an increase in the money supply by the central bank;
M is no longer exogenous. We no longer need a drop in Y to maintain money-market equilibrium. The end
result is that Y rises to Y;. We get the "usual" result that a tax cut increases output for a given P. &

Problem 5.8

Planned expenditure is given by

(1) E=C(Y-T) +1(i-n°)+ G+ NX(eP*P).

For a floating exchange rate and perfect capital mobility, we have
2 Y=CX-T)+I(i*-n°) +G+NX(EeP*P) IS* Curve,

(3) M/P=L(*Y) LM*Curve.

For a fixed exchange rate and perfect capital mobility, we have equation (2) for the IS* curve and the
following exchange rate equation:

4) e=¢.

For a floating exchange rate and imperfect capital mobility, we have
B) Y=CY-T)+I{i-n")+G-CF(i-i*) IS** Curve,

6) MP=L(1Y) LM Curve.

TS

(a) (i) From equation (3), with M/P
unchanged, L(i*, Y) must be unchanged as € LM* LM*\gw
well for the money market to remain in —_—

equilibrium. Since i* does not change and / Is*
because Ly > 0, Y must rise so that money 25:07] S A
demand returns to its original value at that /
given i*. Thus the LM* curve shifts to the

right to LMygw . The IS* curve is unaffected; &
money demand does not appear in equation
(2). Thus for a given P, income rises to Ynew
and € rises to exgw (the domestic currency
depreciates). Finally, since NXp+p > 0, the
rise in € increases net exports for a given P.

%
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(a) (i) Again, the drop in the demand for
money does not affect the IS* curve. In
addition, the nominal exchange rate remains
pegged at €. The central bank simply reduces
the money supply to match the decrease in
money demand. Thus for a given P, income,
the exchange rate and net exports are all
unaffected. With a fixed exchange rate,
disturbances in the money market have no
impact on Y for a given P.

(a) (iii) From equation (5), the IS** curve is
unaffected. The LM curve shifts down. Ata
given level of income, the interest rate must
be lower in order to drive money demand
back up and keep the money market in
equilibrium. From the figure, income for a
given P rises. Since the domestic interest
rate is now lower and since CF ' (i - i*) > 0,
capital flows are lower. Thus NX must be
higher in order for the balance of payments
tobe 0. Since NXcp+p > 0, € must be higher.
That is, the domestic currency must have
depreciated.

(b) (i) The foreign interest rate rises.

Since Li» < 0, the rise in i* tends to reduce
real money demand. To offset this and keep
the money market in equilibrium, Y must be
higher. Since Ly > 0, a higher Y will keep
real money demand unchanged and equal to
the unchanged real money supply. Thus the
LM* curve shifts to the right.

From equation (2), the rise in i* reduces
planned expenditure at a given € since
I. . <0. This reduces the level of Y that

1-T
equates planned and actual expenditure at a
given . In other words, the IS* curve shifts
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IS*

L

ENEW

—_—

IS*New

Y

Ynew

Y

to the left. Thus income for a given P rises. The exchange rate rises; that is, the domestic currency
depreciates. Finally, since NX.pvp > 0, net exports rise due to the depreciation.

117
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(b) (ii) Again, the IS* curve shifts to the left
due to the rise in the foreign interest rate.
The nominal exchange rate remains pegged
at €. The central bank is offsetting the
effects on money demand with changes in the
nominal money supply. Thus for a given P,
income falls. Since the exchange rate does
not change, neither do net exports.

IS =|‘NEW

(b) (iii) From equation (6), the LM curve is
unaffected by the rise in i*. At a given i, the
rise in i* reduces capital flows and thus, in
order for the balance of payments to equal 0,
must increase net exports. Thus at a given i,
planned expenditure is now higher. Thus at a
given i, the level of Y that equates planned and
actual expenditure is higher. The IS** curve
shifts to the right. At a given P, the level of
income rises.

One way to see the effects on NX and € for a
given P is the following, Differentiate both
sides of equation (6), the LM curve, with
respect to i*, holdmg M and P constant:

di dY
0=L;—
di o Yaix
Solving for dY/di* yields
( dy Lj di
di* Lydi*
Differentiate both sides of equation (5), the IS** curve, with respect to i*, holding T, =° and G constant:

dy dy di ]
@) —==Cy_r1— 5 +I_ . m *—CF(I—I*)[——IJ
Substitute equation (7) into equation (8):

L, di L di di , ,
—-I;F=-CY— LY 4 *+Il ¢ & *—CF(I—I*)_-FCF(I—I*)
Collecting the terms in di/di* gives us
di
Setl-Cra)(Lisy) -1 +cFG-im)=cra-io,

and thus the change in the domestic interest rate due to a change in the foreign interest rate is given by
© L CF'(i-i*)

di* CF(-i*)-1_. ~[1-Cy_7](Li/Ly)’
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Note that CF ' (¢) > 0, Ii_’tg <0,[1-Cys]>0,L;<0andLy>0. Thus di/di* < 1. Soi rises less than i*;

that is, i - i* falls, and thus capital flows decrease. This means that NX must increase at a given P to
ensure a balance of payments equal to 0. Finally, since NXepsp > 0, if NX rises it must be the case that €
rises at a given P. That is, the domestic currency depreciates.

(c) The country adopts protectionist policies so that net exports at a given real exchange rate are higher
than before.

€
(c) () From equation (3), the LM* curve is unaffected. LM IS*
Since net exports are higher at a given €, planned /
expenditure is higher at a given . Thus the level of Y that . —
equates planned and actual expenditure at a given € is /

higher. The IS* curve shifts to the right. For a given P, the IS*\Ew
level of income is unchanged; it is determined entirely in the | exgw |~ /

money market here. All that happens is a drop in € -- an

appreciation of the domestic currency - which keeps NX

unchanged at a given P. Protectionist policies do not Y Y
improve the trade balance in this model.

(c) (i) Again, the IS* curve shifts to the right.

The nominal exchange rate remains pegged at € 1S*
£ . The central bank adjusts the nominal
money stock to ensure that the exchange rate —/ IS*aw

does not change. For a given P, income rises.

|

Even though the exchange rate is unchanged,
net exports at a given P wind up higher in the
end due to the protectionist policies. Thus
unlike with a floating exchange rate,
protectionist policies do work with a fixed
exchange rate regime. Y Yrew Y

(c) (iii) The LM curve is unaffected by the protectionist policies. In addition, the IS** curve is unaffected;
see equation (5), where NX does not appear. Since CF(i - i*) is not affected by this policy, NX cannot
change in the end either. Thus income for a given P does not change, nor do net exports. ‘What must
happen is that the domestic currency appreciates — € falls — which offsets the effect of the protectionist
policies on net exports. This is the same result obtained with perfect capital mobility and flexible exchange
rates.

Problem 5.9

(a) With this foreign exchange market intervention, the balance of payments equation is

(1) CF(@i-i*) +NX(Y,i-7°, G, T,eP*P)=a, where a > 0.

Thus net exports are given by

(2) NX(Y,i-7", G, T, eP*/P) =a - CF(i - i*).

Substituting this expression for net exports into equation (522)inthetext, Y = E°(Y,i-7°, G, T)+
NX(Y, i - 7°, G, T, €P*/P), yields the IS** curve:

3) Y=E°(Y,i-7°, G, T) +a-CFGi-I*.
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Note that CF ' () > 0, Ii—n‘ <0,[1-Cys]>0,L;<0andLy>0. Thus di/di* < 1. Soi rises less than i*;

that is, i - i* falls, and thus capital flows decrease. This means that NX must increase at a given P to
ensure a balance of payments equal to 0. Finally, since NXepwp > 0, if NX rises it must be the case thate
rises at a given P. That is, the domestic currency depreciates.

(c) The country adopts protectionist policies so that net exports at a given real exchange rate are higher
than before.

€
() ) From equation (3), the LM* curve is unaffected.

LM*

*
Since net exports are higher at a given €, planned / IS
expenditure is higher at a given &. Thus the level of Y that g | —~—
equates planned and actual expenditure at a given € is /
higher. The IS* curve shifts to the right. Fora given P, the [S*xew
level of income is unchanged; it is determined entirely in the | exgw |~ /
money market here. All that happens is a drop in € -- an
appreciation of the domestic currency - which keeps NX
unchanged at a given P. Protectionist policies do not Y Y
improve the trade balance in this model.

(c) (i) Again, the IS* curve shifts to the right.

The nominal exchange rate remains pegged at £ Is*
£ . The central bank adjusts the nominal
money stock to ensure that the exchange rate —/ IS*aw

does not change. For a given P, income rises.

™

Even though the exchange rate is unchanged,
net exports at a given P wind up higher in the
end due to the protectionist policies. Thus
unlike with a floating exchange rate,
protectionist policies do work with a fixed
exchange rate regime. Y Yrew Y

—

(¢) Gii) The LM curve is unaffected by the protectionist policies. In addition, the IS** curve is unaffected;
see equation (5), where NX does not appear. Since CF(i - i*) is not affected by this policy, NX cannot
change in the end either. Thus income for a given P does not change, nor do net exports. What must
happen is that the domestic currency appreciates - € falls — which offsets the effect of the protectionist
policies on net exports. This is the same result obtained with perfect capital mobility and flexible exchange
rates.

Problem 5.9

(a) With this foreign exchange market intervention, the balance of payments equation is

(1) CFG-i*)+NX(Y,i-7°,G, T, gP*/P)=a, wherea>0.

Thus net exports are given by

(2) NX(Y,i-7", G, T, eP*/P) =a - CF(i - i*).

Substituting this expression for net exports into equation (5.22) inthetext, Y=E° (Y,i-7, G, T) +
NX(Y, i - 7°, G, T, €P*/P), yields the IS** curve:

3) Y=E°(Y,i-7%, G, T) +a-CFi-I".

—
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Compared to the situation of a = 0, this
raises the level of Y for a given interest
rate and thus shifts the IS** curve to the
right. This tells us that Y for a given P
rises and hence the AD curve shifts to
the right. As long as the AS curve is
upward-sloping, both output and the
price level rise in the end. The
intervention, in which the central bank
sells domestic currency, causes the
domestic currency to depreciate. That
is, € rises.

{(b) If capital is perfectly mobile, Y Yeww Y
sterilized intervention has no effects.
The IS** curve is horizontal under perfect capital mobility. Thus a "shift to the right" of the IS** curve

does not actually affect its position.

Problem 5.10

(a) From the equation describing the behavior of inflation, p = 8y, when all prices have adjusted (p =0), y
must equal 0. Substituting p=0,y=0andi=¢ into the IS equation, y = b(e - p) -a(i- p), yields

(1) 0=b(e-p)-ac,

and thus the change in the log exchange rate is

(2) € = (b/a) -p).

Since p is constant, if € were greater than p, ¢ > 0 and so & would rise without bound. If € were less than
P, € <0and so & would continually fall. Thus when all prices have adjusted, we must have € = pforeto
remain constant. Substitutingy =0and i=¢ = 0 into the LM equation, m - p = hy - ki, yields

(3) m=p.

Thus once prices have fully adjusted, y=i=0andm=p =«.

(b) Ife is to jump to exactly m and then remain constant, we need an equilibrium where e =mand ¢ =0.
Since i = € , we must have i remain equal to its fully adjusted level of 0. Thus with i constant, y must
adjust to ensure money-market equilibrium. Substituting p =0y, € = m and i = 0 into the IS equation yields
(4) y=b(m -p) +afy.

Solving equation (4) for y yields

(5) y=[b/(1 -28))(m - p).

Substituting the assumption of i = 0 into the LM equation gives us

(6) m-p=hy.

Substituting equation (6) into equation (5) yields

(7) y=1[b/(1 - a6)]hy.

Thus we need the parameters to satisfy

(8) 1-a6="bh,

or equivalently

9) ab +bh=1.

ik o .
i b
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Problem S.11
(a) Taking the derivative of both sides of equation (5.12),
holding 7°, G, T, P* and P constant yields
di de

(l) 1= EY + Ei—ﬂe ‘g? + Espt/p E? .
Taking the derivative of both sides of the balance of payments equation (5.21), CF( - i*) + NX(Y, i - 7°,
G, T, €P*/P) = 0, with respect to Y, holding i*, =%, G, T, P* and P constant gives us

di di de

7} CF'())— + NXy + NX. . — +NX —=0.
@ CFO o+ RAY + B8 gy 7 0P gy
Rearranging equation (1) to solve for de/dY yields
de (1-Ey) Bi. di

) = - :
dY ESP‘/P EE:P‘/P dY

Substituting equation (3) into equation (2) leaves us with

4 NXepyp(l- Ey) NXepwypE ;o di

Y =E(Y,i-7° G, T, eP*/P), with respect to Y,

CF’(i)—(-h—+NXY +NX., . —+
dY - gy EEP'/P ESP’/P dY
Collect[i_ng terms yields ]

d‘ NX P* PE-_ [} " r NXSP-

U CFii) +NX.__ —J—/-LLJPLNX“ L4 (1—EY)J

dy] -r Egpyp £P*/P
Thus the slope of the IS** curve is given by

NXprp ]
Ny +—2 2 (1-Ey)
@ di L Ecpsp _| 0
= <.
dYljge NX; o By e

CF'(i)+NX. .-
- Ecp/p

‘We are told that NXy + (1 - Ey) > 0. Since NXpep [Ecpop = 1, the term in brackets in the numerator is

also positive and thus the numerator itself is negative. Itis straightforward to verify that the denominator is

positive and thus IS** remains downward-sloping.

() Rearranging equation (2) to solve for de/dYise» yields
di

—[CF'(i) +NX. ] &

de -] dY 1S**
o) = >0.

dYliges Eepep
[CF' () + NXix]is positive and di/dYlis« is negative. Since NXy is negative, the numerator is positive.
The denominator is positive . Thus as we move down the IS** curve and Y rises, € rises as well. That is,
as we move down the IS** curve, the domestic currency depreciates.

-NXy

(c) In order to see the effect of an increase in capital mobility, use equation (4) to take the derivative of the

slope of the IS** curve with respect to CF' (i):
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( 4 NXep*
5L£ NXy +— 2 (1-Ey)
dY g« ESP‘/P 0
—_—= >V,
aCF'(i) NX,pop E;_e ]2
CF()+NX, o———
=7 EEP‘/P _\

Again, we are told that NXy + (1 - Ey) > 0. Since NX.pep /Ecprp 2 1, the numerator is positive. Thusa
rise in CF ' (i) -- an increase in the degree of capital mobility -- causes the slope of the IS** curve to rise or
become less negative. That s, the IS** curve become flatter.

Problem 5.12
(a) (i) At price level P*¥, and thus at real ‘_‘
wage W/ P *, employment and output are at W/P
their maximum possible levels. This is
where the labor demand curve and the labor
supply curve intersect and there is no
unemployment.

W/p*
(a) (i) At a higher price, say P ' > P*, and —
thus at a lower real wage w/p <W/p*, w/p'
labor demand exceeds labor supply. Given
the "short-side" rule, this means that
employment is determined by labor supply [

and is at L' in the figure. Since L' L* L
F'(L)> 0, output is loweratL'(and P ")
than it is at L* (and P*).

LD

(b) As the price level rises toward P*,
employment is determined by labor demand.
Thus employment and output rise as the
economy moves down the labor demand
curve.

At price P*, output is at Y*, its maximum
possible value.

As the price level rises above P*,
employment is determined by labor supply.
Thus employment and output fall as the :
economy moves down the labor supply Y* Y
curve. See the figure for what this implies
about the shape of the aggregate supply
curve. At prices above P¥, the AS curve is backward-bending under the "short-side” assumption.
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For this to be the case, the effective labor
demand curve must intersect the labor supply
curve right at the point at which it becomes
vertical. Any further rightward shift in the
effective labor demand curve would not cause
the point of intersection of the two curves to
change. See the figure at right.

Thus even if the effective labor demand curve
shifts out, employment does not rise. Thus
output cannot rise above Ymax -

Lmax

=F' (Yuax)

Problem 5.14

the real wage. That is, L is determined by
(1) AF'(L)=W/P.

level. However, Yuax itself will now change.

As described in the solution to Problem 5.13,at
Yaax , the effective labor demand curve intersects
the labor supply curve right at the point where it
becomes vertical. Now with A lower, the
downward-sloping portion of the labor demand
curve shifts to the left; at a given real wage, the
level of L that equates the marginal product of
labor and the real wage is lower. This means that
there is a new lower Lyax . The maximum
amount of labor that it is profitable to hire to meet
demand at the fixed price is now lower.

Therefore Yumax is lower for two reasons. The

labor now produces less output.

In Model 1, Keynes's Model, firms hire labor up to the point at

At a given price, and thus at 2 given real wage, the level of L that equates th
real wage is now lower after the fallin A. The labor demand curve shifts to
amount of labor they demand at a given price. So output sup
lower for two reasons. A given amount of labor now produces less output and firms
labor at a given P. Thus the AS curve shifts to the left.

which the marginal product of labor equals

In Model 2 -- sticky prices, flexible wages and a competitive labor market - the AS curve i
at P=D out to Yaax , where Yiax is the Jevel of output at which marginal cost just equals the fixed price

¢ marginal product with the
the left. Firms reduce the

plied by firms at a given price level is now
choose to hire less

s still horizontal

W/P

LS

LMAXNEW

Laax

L

maximum amount of labor that it is profitable to hire at the fixed price is lower and a given amount of

123
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Problem 5.13
For this to be the case, the effective labor i
demand curve must intersect the labor supply
curve right at the point at which it becomes
vertical. Any further rightward shift in the
effective labor demand curve would not cause
the point of intersection of the two curves to
change. See the figure at right.

Thus even if the effective labor demand curve
shifts out, employment does not rise. Thus
output cannct rise above Yaax -

=F' (Ymax)

Problem 5.14

In Model 1, Keynes's Model, firms hire Jabor up to the point at which the marginal product of labor equals
the real wage. Thatis, L is determined by

(1) AF'(L)=W/P.

At a given price, and thus at a given real wage, the level of L that equates the marginal product with the
real wage is now lower after the fall in A. The labor demand curve shifts to the left. Firms reduce the
amount of labor they demand at a given price. So output supplied by firms at a given price level is now
lower for two reasons. A given amount of labor now produces less output and firms choose to hire less
labor at a given P. Thus the AS curve shifts to the left.

In Model 2 -- sticky prices, flexible wages and a competitive labor market - the AS curve is still horizontal
at P=P out to Yaax , where Yyax is the level of output at which marginal cost just equals the fixed price
level. However, Yuax itself will now change.

As described in the solution to Problem 5.13,at W/P
Yaax , the effective labor demand curve intersects
the labor supply curve right at the point where it
becomes vertical. Now with A lower, the
downward-sloping portion of the labor demand
curve shifts to the left; at a given real wage, the
level of L that equates the marginal product of
labor and the real wage is lower. This means that
there is a new lower Lyax . The maximum
amount of labor that it is profitable to hire to meet
demand at the fixed price is now lower.

LS

Lyax™” Lyax L

Therefore Yaax is lower for two reasons. The
maximum amount of labor that it is profitable to hire at the fixed price is lower and a given amount of
labor now produces less output.
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In Model 3 — sticky prices, flexible wages and real labor market imperfections — we get essentially the
same result as in Model 2. The level of output at which marginal cost just equals the fixed price is lower
after the fall in A. Thus the AS curve is horizontal but out to a lower Yy .

In Model 4 -- sticky wages, flexible prices and imperfect competition - the price is set as a markup over
marginal cost:
w

@ P=p(L) AP

A fall in A raises marginal cost at a given L. Assuming the markup does not depend on A, the price level
rises for a given L. The AS curve shifts u , regardless of whether it is downward-sloping, upward-sloping
or horizontal.

Problem 5.15
(a) (i) We can solve for output and the interest rate. Begin by substituting the expression for inflation,
p =0y, into the goods-market-equilibrium relationship, y = —a(i - P), to obtain
(1) y®) = -ai¢t) - 6y(®)].
Rearranging the money-market-equilibrium condition, m - p = -ki, yields
(@) i®) = [p@) - m@)/k.
Substitute equation (2) into equation (1) to obtain
y® ==al(p(®) - m) /k-6y®)] = y(t)-a0y(t)= (a/k) [m(®) - p(o)].
Simplifying and solving for output yields
a[m() - p(t)]

3 t)= .
3) y) k(] ~ ae)
Substituting p(0) = 0 and m(0) = m' into equation (3) yields
aml

@ y(0) =———<0, sincea6<l,a>0,k>0,andm'<0.
k(1-20)

Substituting p(0) = 0 and m(0) = m' into equation (2) yields

(5) i(0)=-m'k > 0.

Thus the level of output falls from its previous value of 0 and the nominal interest rate rises from its
previous value of 0.

In order to see how an increase in 6, the speed of price adjustment, affects the value of ¥(0), take the
derivative of output at time 0 with respect to 9:

®  k(1-20)2 k(1-28)2
Thus y(0) falls even more from its initial value of 0 if © is higher. The intuition is that a bigger 6, from
p =8y, implies that as y falls there will be an even bigger drop in inflation. In tumn, this means a bigger

increase in the real interest rate, This reduces planned expenditure, and thus equilibrium output, even
further.

0, sincem'<0.

(a) (i) Take the time derivative of equation (3), noting that m(t) =m' forallt > 0:

) B0
6 ==,
© 0= ]

Substituting the expression for inflation, p =0y, into equation (6) yields
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In Model 3 -- sticky prices, flexible wages and real labor market imperfections -- we get essentially the
same result as in Model 2. The level of output at which marginal cost just equals the fixed price is lower
after the fall in A. Thus the AS curve is horizontal but out to a lower Yy .

In Model 4 -- sticky wages, flexible prices and imperfect competition -- the price is set as a markup over
marginal cost:

w
@ P=pm.

A fall in A raises marginal cost at a given L. Assuming the markup does not depend on A, the price level
rises for a given L. The AS curve shifts u , regardless of whether it is downward-sloping, upward-sloping
or horizontal.

Problem 5.15
(a) (i) We can solve for output and the interest rate. Begin by substituting the expression for inflation,
p =0y, into the goods-market-equilibrium relationship, y = ~a(i - p), to obtain
(1) y(®) = -ai(t) - 6y(t)].
Rearranging the money-market-equilibrium condition, m - p = -ki, yields
@) i® = [p@) - m)Jk.
Substitute equation (2) into equation (1) to obtain
y®=-2l(p®) - m(®) k-6y®)] = y(e)- a8yt = (a/x) [m() - p(o)].
Simplifying and solving for output yields
a[m(t) - p(t)]
3 t)=—7—>--
3 y@) k(l B 39)
Substituting p(0) = 0 and m(0) =m' into equation (3) yields

@) YO =—""—20, sincead<1,a>0,k>0, andm' <0,
k(1-20)

Substituting p(0) = 0 and m(0) = m' into equation (2) yields

(5) #(0) = -mYk > 0.

Thus the level of output falls from its previous value of 0 and the nominal interest rate rises from its
previous value of 0.

In order to see how an increase in 8, the speed of price adjustment, affects the value of y(0), take the
derivative of output at time 0 with respect to 9:
oy(0) -am'(~a)  aZm’
@ TS <0,
®  k(1-20)  k(1-20)
Thus y(0) falls even more from its initial value of 0 if © is higher. The intuition is that a bigger 8, from
p =0y, implies that as y falls there will be an even bigger drop in inflation. In tumn, this means a bigger

increase in the real interest rate. This reduces planned expenditure, and thus equilibrium output, even
further.

sincem' < 0,

(a) (i) Take the time derivative of equation (3), noting that m{t) =m' forallt>0;

) B0
6 =
© 0= )

Substituting the expression for inflation, p =0y, into equation (6) yields

Giy
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al
y(t) = ————y(t).

M S0=172 Y0

So log output will exponentially approach its original value of 0. More formally, solving the differential

equation (7) yields

® yo=e Kty g

Substituting equation (4) into equation (8) yields

_ J-a0/a-a0p]e __ am’
©® yt)=¢ -0

(b) Substituting the expression for y(t) from equation (9) into the definition of the amount of output

«©
volatility caused by a disturbance, V= f y(t)2 dt, yields
t=0

V= T e{"zae/(l‘“e)k]‘[——am' T dt = V :[ am’ T Te[_zae/(l_ae)k]tdt.
120 k(1-a6) k(1-20) | o
Solving the integral is straightforward and doing so yields
yo|_am ]2f(1 —a0)k |
_Lk(l — ab) 22 [
Simplifying this e;(pression allows us to obtain
am’

2k(6-20%)’

(10) V=

To see how a change in the speed of price adjustment, 6, affects volatility, take the derivative of V with

respect to 6:
oV —am?
an —

Y
@D 2k(6-20?)
The sign of this derivative will be determined by the sign of (1 - 2a6).

(1-226).

If (1 - 2a0) > 0 or 8 < 1/2a then &V/00 < 0. Thus for "small" values of 6, a marginal increase in price
flexibility will reduce output volatility. If (1 - 2a6) <0 or 1/a > 6 > 1/2a then &V/20 > 0. Thus for "large"
values of 0, a marginal increase in price flexibility will actually increase output volatility. [Note that we
assumed from the outset that a6 < 1 or equivalently 6 < 1/a.] Finally, note that the higher is a —- where a
captures how responsive planned expenditure is to changes in the real interest rate -- the smaller is the
range of 6's over which increased price flexibility reduces output volatility.
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Problem 6.1
(a) The individual's problem is to choose labor supply, L;, to maximize expected utility, conditional on the
realization of P; . That is, the problem is

maxE((C; - /pL;7)| B

Substituting C; = P,Q; /P and Qi =L, gives us
PL, 1
maxEK#-—Lﬂ] Pi_l.
L Py
Since only P is uncertain, this can be rewritten as
max E[(;/P)| P|L; - (/y)L;7.

The first-order condition is given by
(1) E[(®:/P)P;]-L =0,
or

L = E[(P; /P)|P; ].
Thus optimal labor supply is given by

1/(y-1)

@ L ={g[@/m[r]}".
Taking the log of both sides of equation (2) and defining 4 = InL; yields
() &=[1/y - DIIE[(P; /P)[P; ].

(b) The amount of labor the individual supplies if she follows the certainty-equivalence rule is given by (in
logs)

(4) &=[1/y - DIE[In(P; /P)[P; ].

Since In(P; /P) is a concave function of (P; /P), then by Jensen's inequality InE{(P; /P)|P; ] > E[In(P; /P)P;].
Thus the amount of labor the individual supplies if she follows the certainty-equivalence rule is less than
the optimal amount derived in part (a).

(c) We are given that

(5) In(P; /P) = E[ln(P; /P)P; ] +u;, u; ~N(O,V, ).

Taking the exponential function of both sides of equation (5) yields

(6) P,/P=E®/PIR] u;

Now take the expected value, conditional on P;, of both sides of equation (6):
ElIn(P, /P)P. .

%) E[(Pi /p)| P1] — o Eln(Bi/P) ']E[e“' I Pi]-

Taking the natural log of both sides of equation (7) yields

® InE[(;/P)| B;] = E[n(p; /p)p;] + In E[e" ] .

Note that In E[eui , PiJ is just a constant that is independent of P; . Substituting equation (8) into equation

(3), the expression for the optimal amount of (log) labor supply, gives us
4 =[/(r- 1] [E[in®; /PR, + n e A
or simply
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© & =[1/{y- )] Eln®;/ PRy +{1/(y - 1] [1“ E[e“i \ Pi] ]
The first term on the right-hand side of equation (9), [1/(y - 1)IE{In(P; /P)|P; ], is the certainty-equivalence
choice of (log) labor supply and the second term is a constant. Thus the ¢, that maximizes expected utility
differs from the certainty-equivalence rule only by a constant.

Problem 6.2

n/(n-1)
1
(a) The individual's problem is to maximize C; ={ Iz jl/ “Cij("‘l)/"dj] subject to the budget
=0

1
constraint, EO P;Cydj= Y;. Set up the Lagrangian:
J._

{ - /(n-1) \' 1
) £= Izjll'lcij(ﬂ")/'\dj +MY; - }chijdj |
Lio L’

The first-order condition for a representative good, Cj , is

[n/(n-D}-1
o4 =(__n_}|\: } Z .l/ﬂci.(n-l)/ndj} [ﬁ—l\)z n Ci.[(n—l)/fll-l —4P. =0.
GCU T\—l =0 ] Y n J ] J
‘We can simplify the exponents since (/(n - D}-1=1/(n-1) and [(n - DM} -1=-1/m. Thus the
preceding expression implies

AP;

(v)) Cij—l/ = SICEIE

1

1 Jne..(mD/ng;

z; /n{ .j z; /“Cu(‘\' )/ndjj
=0

Taking both sides of equation (2) to the exponent -1 yields

) n/(n-1)
zj{j zjl/ﬂcij(n-l)/ndj}
=0
n
(rpy)

(b) For each good on the unit interval, there will be an equation like (3). Thus for some other good, Ci,
we can write

M W)
zkt ) zjl/ncij(n-l)/ndj:\

i=0
(Ap)"
Dividing equation (3) by equation (4) yields

{ 1 /(1)
Z. jz.llnc..(n-l)/ndj]
if e n
Cy =0 (APy)

E;= 1 n/(n-1) L
zk{ | zjl/ncij(n—l)/ﬂdj] ()‘Pi)

50

3 Gj=

@) Cx =
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Simplifying yields

n
) Cy/Cuc =(P/;)"(2; /24 ).
Writing C;; in terms of Cy, , we have

© 5 =(p/py)"(z; /2 ) i

1
Substituting equation (6) into the budget constraint, | PjC ,-jdj =Yj, yields
j=0

1 n ‘

}ooum (22 caaev,

J=
Pulling the terms not indexed by j out of the integral sign leaves us with

CaPy" |

kK j=0

and then solving for Cy, yields
) Cy =——=*

1 T
AN szjl‘ﬂde
Lj=0

Z;plgj=y;,

Equation (7) holds for all goods. Thus returning to the notation of C;; as our representative good gives us
Z;
® ¢ =1%’.
1- .
j=0
"n/(rrl)

() Substituting equation (8) into the expression for C; , G =[ } Zjl/flC-lj("'D/ dj _'
j=0

, yields
( n/(n-1)

1 Z.Yny.(n-D/ng (n-)/n
J 1 J di
J(n—n/n !

=0 1
pj(ﬂ—l) [ Zijl—ndj
70

I J

Pulling the terms not indexed by j out of the integral gives us
[ n/(n-1)

Y. (=D/n 1
Ci = L I ijjl—ndj

: D/
] Z~P<1"‘de
. M)
LLi=0
This simplifies to

| V(-1
O ¢ =Y{ I szjl-ﬂde

=0
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Since [n/(n - )] - 1 = 1/(n - 1) = -1/(1 - n), equation (9) can be rewritten as
(10) C;= :

1

1 a-m
{5 szjl‘"de
j=0

Defining the price index as
1 11/<1—n)
an p E[ ) szjl-ﬂde ,
=0
we have
(12) Ci = Yi /P.

1
(d) Notethat J Z;P;'™dj = P"". Using this fact, equation (8), the expression giving individual i's

=0
demand for good j, can be rewritten as
c Y;Z;
13) C;; = .
(9 € =gt

This can be rearranged to yield

-n
a4 ¢;=z;(p;/p) (¥i/P).
Equation (14) gives individual i's demand for good j as a function of the taste shock for good j, good j's
relative price, and individual i's real income.

() Taking the log of both sides of equation (14) yields

(15) cj=z;-n;-P)+i-Pp).

This resembles equation (6.7) in the text. However, the price index given in equation (11) is not simply the
average of the individual p's, as it is in equation (6.9).

Problem 6.3

(a) Model (i) is given by

1) yi=a'zq +be+ v,

This model says that only the unexpected component of money, e, , affects output. Model (ii) is given by
Qwn=c'z+ Bm,+ v

This model says that all money matters for output.

Substituting the assumption about monetary policy, m, = ¢' z.1 + &, into equation (2) yields

Q) p=dztplc'zatel+w,

and collecting terms in z..; gives us

@ y=(+pBNz+Petvi.

The models given by equations (1) and (4) cannot be distinguished from one another. Given some a'and b,
o' =a' - Bc' and B = b have the same predictions. Intuitively, it is not possible to separate the direct effect
of the z's on output from any possible indirect effect they may have through monetary policy. So it could
be the case that only unexpected money matters and the effect of the z's on output that we observe is simply
their direct effect. However, it could also be the case that the expected component of money affects output
and thus the effect of the z's that we observe consists of both the direct and indirect effects.
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(b) Substituting the new assumption about monetary policy, m, = ¢' z., + ¥' Wi + e, into model (ii) yields
O = 2 +B[c' zy + Y W + & ] + v,

or collecting the z,, terms gives us

(6) ye=(a'+ Bczes + By Wi + Bes + v .

In this case, it is possible to distinguish between the two theories. Model (1), only unexpected money
matters, predicts that the coefficients on the w's should be zero. Model (ii), all money matters, does not
predict this. Intuitively, since the w's do not directly affect output, if they are correlated with output it must
be due to their indirect effect through their impact on the money supply.

Problem 6.4
Using the correct price index does not alter the analysis of the individual's behavior. That is, equation
(6.40) in the text, which defines the optimal relative price of individual i's good as

Pi n w
M ==t

P n-1P
still holds. Similarly, individual i's optimal choice of labor supply is unaffected. It is still given by
equation (6.42) in the text, or

w V(-

o Y™

We need to solve for equilibrium output, Y, and the price level, P, using the fact that total spending in the
economy equals M, or

1
3 IpQidi=M,
i=0
where Q; equals output of good i. Since the production function is Q; = L; , output of good i is
w/-D
4 Q =(;) .
Multiplying both sides of equation (1) by P gives us

n
5 P,=——W.
® P=7

From equation (11) in the solution to Problem 6.2, the price index with all the Z{'s equal to zero is given by

[ 1/(1-n)

6 Pst f pi‘—ﬂdi] :
i=0

Substituting equation (5) into the price index given by equation (6) yields

® l-n  JVA-m -1 1/(1-n)
IETEE N L T
M P=l | |—wW| di = —= Idi ,
Li=o \n-1 ] [\n-1 i=0
which implies
@ P=—w,
n-1
Rearranging equation (8) gives us the equilibrium real wage:
W n-1
©) —=—0.
P n
Substituting equation (9) into equation (4) gives individual i's output:
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RS

Ty &

1/(y-D
-1
10) Q {___ﬂ ) -
n

Substituting Pi= P and equation (10) into equation (3) yields
1 ~1 1/(1—1) he

an | P[I‘—) di=M.
n !

- i=0
no Since nothing inside the integral is indexed by i, we have &
5 I :
n-1 (-1 1 ' {1
12 P|— Jdi=M. i
n i=0 ;
Solving equation (12) for P gives us |

n-1 -1/(r-1) M
(3) P=(") M=—""—"T760)"
n [-D/m]"

Equation (13) is identical to equation (6.47) in the text.

Finally, since aggregate demand is given by Y = M/P, equilibrium output is

o Y- M _[ IL:l_])/(H)
M/[n-nm] 0 '

Equation (14) is identical to equation (6.46) in the text. Thus using the correct price index does not affect
the expressions for equilibrium price and output.

Problem 6.5
(a) Substituting the expression for the nominal wage, w = 6p, into the aggregate price equation,

b= (L -a)-s, yields p =Bp + (1 -0)¢-s. Solving for p yields
1) p=1Q-a)-syd-8).

Substituting the aggregate output equation, y =s + af , and equation (1) for the price level into the
aggregate demand equation, y =m-p, yields
s+of=m-[(1-a)-s)/(1-6).
Collecting the terms in ¢ leaves us with
af+[(1-o)f/(1-6)]=m+ [s/(1-0)]-s.
Obtaining a common denominator and simplifying gives us
[a(1-8)+(1-0))¢/(1-8) =m+[1-(1- )s/(1 - 0),

AT

or
(1-08)/(1-6)=m+ [es/(1 - 9)},
and thus finally, employment is given by
(1-8)m +6s
Q@ t=——"7"—
(1-a8)

Substituting equation (2) into equation (1) yields
_ (1-a)[(1-0)m+ 6s] 3

P=T -0)(1-a8) 1-6)’
Simplifying gives us
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_1-a)(A-9m+(1-a)8s- (1-0B)s (1-a)(1-6)m - (1-6)s
p= (1-6)(1-0H) T (1-8)(1-08)
Thus, the aggregate price level is given by

_(-o)m-s
(€)] p———(l_ae)

Substituting equation (2) into the aggregate output equation, y = s + af, and simplifying yields
. a(l-8)m+abs s-as+a(l- 6)m + afs
=S =
(1-a8) (1-a8)

And therefore, output is given by

s+a(l-6)m
@ y=——"—

(1-ab)

y

Finally, to get an expression for the nominal wage, substitute equation (3) into w = 6p:

6) w= 6[(l—a)m-—s]
(1-aB)

The next step is to see how the degree of indexation affects the responsiveness of employment to monetary
shocks. First, use equation (2) to find how employment varies with m:
0¢ (1-8)m+6s

©) =

om (1-ab)
Taking the derivative of both sides of equation (6) with respect to  gives us
o 6[6(/6m] Dl1-ob]~(1-0)(~a) (a-1)

_—= = <

o8 (1-06)? (1-a6)?

Thus an increase in the degree of indexation, 6, reduces the amount that employment will change due to a
given monetary shock.

The next step is to see how the degree of indexation affects the responsiveness of employment to supply
shocks. First, use equation (2) to find how employment varies with s:

o¢
8) —= .
8s (1-a6)
Taking the derivative of both sides of equation (8) with respect to 0 gives us
© o[o¢/as] _ (D[1-aB] - (B)(-ar) 1

= >0.
ol (1-08)? (1-06)?

Thus an increase in the degree of wage indexation, 6, increases the amount that employment will change
due to a given supply shock.

(b) From equation (2), the variance of employment is given by

2
(1-0) 0
10) V, = Vi +H——| V,,
o v [(1_(19)} - [(l-ae)J s
where we have used the fact that m and s are independent random variables with variances Vmand V,. We

need to find the value of 8 that minimizes this variance of employment. The first-order condition for this
minimization is

.
A
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v, (1-9) (@-)) 0 1
D == | e | Ve 2 P Aol
o6~ La-o®) ]l a-as) (1-09) J| (1-6)

Equation (11) simplifies to

(1-0)(@ - 1)Va+86V,=0.
Collecting the terms in 6 gives us

8[(1 - W)V + Vo 1= (1 -0}V
Thus the optimal degree of wage indexation is

(1 - d,) Vm
12) 6=————
(- )V + Vg

Given the result in part (2) — that indexation reduces the impact on employment of monetary shocks but
increases the impact from supply shocks — equation (12) is intuitive. First of all, if V, = 0 — so that there
are no supply shocks -- the optimal degree of indexation is one. In addition, the larger is the variance of the
supply shocks relative to the variance of the monetary shocks, the lower is the optimal degree of indexation.

(¢) (i) As stated in the problem:

(13) yi=y - Wi - W),

where ¢ = an/fa + (1 -o)m]. Since w = Op and w; = 6; p, equation (13) becomes
(14) yi=y-$@©:ip -8p) =y - (8- O)¢p.

From the production function, y;=s + af, and y = s + af and thus we can write
(15) yi-y=a-¢).

Solving equation (15) for employment at firm i yields

16) =£+ (1o)(yi-y)-

Substituting equation (14) for yi -y into equation (16) gives us

(17) =¢- (1/o)(®;: - 8)dp.

Substituting equation (2) for aggregate employment and equation (3) for the price level into equation (17)

gives us
(1—6)m+es_(0i—8)¢[(1—a)m-—s]_ 1

as) ¢ = =) < —aB) - =) (o1~ 6)m + 05— (8; ~O)[(1 - c)ym - 51|,
which implies

1
19 4= "oe {m[o1-6) - 6; -0 (1- )] +5[ad+ (®; - o))}

(c) (ii) From equation (19), the variance of employment at firm i is given by
a(1-6) - ©; —0) (1-@)}2 +\:a6+(6-, -e)¢]zv
a(l-ab) m a(l-af) ¥

The first-order condition for the value of the degree of wage indexation at firm i, 8; , that minimizes the
variance of employment at firm i is

(20) Var(4) ={

oVar(g) [a-0)-@©; -6 1-0) {aeuei —o00 ..
@y —7 —2L =0 j‘[—‘b(l-a)] Vo) ~oase8) J¢Vs-0.
Equation (21) simplifies to

(22) {o(1 - 8) - 6; [p(1 - )] +6d(1 - 0)}o(1 - Ve = (aB +6: ¢ -60)¢Vs,

which implies

(23) 6; 4> Vo +6; [¢(1 - @)’ Vi = [a(1 - 8) +0¢(1 - a)ld(l - ) Vg - (08 - o)V, .
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Thus 6; is given by

[on(1-6) +6¢ (1 - a)p(1 - o) Vi, —[B(¢ - )19V,
(24) 6; = 2 2 .
" Vs + [0 -a)]° Vy,

(c) (iii) We need to find a value of 0 such that the first-order condition given by equation (22) holds when
;= 0. That is, we need to find a value of 8 such that if economy-wide indexation is given by 8, the
representative firm, in order to minimize its employment fluctuations, wishes to choose 0 as well. Setting
6; = 0 in equation (22) gives us
(25) o(1-0)¢(1 - )V = BV, ,
which implies
26) B[V, + (1 -a)Vpu 1 =(1 - )V .
Thus the Nash-equilibrium value of 6 is
@7 gEQ _ %

(1-a)Vy, +V,
This is exactly the same value of 6 we found in part (b); see equation (12). The value of 6 that minimizes
the variance of aggregate fluctuations in employment is also a Nash equilibrium. Given that other firms are
choosing 6% as their degree of wage indexation, it is optimal for any individual firm to choose 6% as well.

Problem 6.6

(a) The representative individual will set her price equal to the average of the optimal price for t and the
expected optimal price fort + 1. Thus

(1) %= (Pu* + Eipint*®)/2.

Since py* = ¢m, + (1 - ¢)p, and this holds for all periods, we have

@) x=[¢me+ (1-$)p.) + QE myy + (1 - $)E; ps )}/2.

(b) With synchronization, p, = x, and pe = x, and thus
() %= [(me + (1 - )%, ) + GE ey + (1 - $)x, J/2.
Simplifying yields
%= [2(1 - xet d(m+ Emer))2 = [1-(1 - $)]x = d(my + Eymyey )72,
and thus
(4) X = (mn +E, M+ )/2

Firms set their price equal to the average of this period's value of m and the expected value of next period's
value of m.

(c) Substitute p, = x, = (m, + E, my., )/2 into the aggregate demand equation to obtain
ye=m - (m + E my, )/2.

Simplifying gives us

() ye=(m; - Exmy., )/2.

Assuming that m follows a random walk so that E: my,; =m, , we have
ye=(me - m, }/2,

or simply

6) y.=0.

Now, substituting p..; = x, = (m, + E, m,.; )/2 into the aggregate demand equation for period t + 1 gives us
Vert = My - [(my + Ey myaq )/2).

Assuming that m follows a random walk so that E. myy =m,, we have

Yer1 = Myyq - (e +m, )/2,
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or simply

O] Yir1 = Mgy =My .

The central result of the Taylor model does not continue to hold. Nominal disturbances that occur in
periods when firms are not setting prices feed through one-for-one into output; see equation (7). However,
once firms set prices again, output retums to its normal value of 0; see equation (6).

Intuitively, we have removed the mechanism by which the Taylor model generates long-lasting effects of
nominal disturbances. In the Taylor model, once firms get to adjust price, they do not adjust fully to a
nominal disturbance because they know that not all firms are adjusting at that time. Thus fully adjusting
will change their relative price, which they are reluctant to do. But here, firms know that all firms are also

adjusting their price at the same time. Thus firms' real prices will not change if they fully adjust and thus
they do so.

Problem 6.7

When t is even, the price level is given by

) p= fp" +(1- DP:Z,

where p,' denotes the price set for t by individuals who set their prices int - 1 -- which was an odd period
and hence fraction f of firms set pt - and p¢ denotes the price set for t by individuals setting prices in

t - 2 - which was an even period and hence fraction (1 - ) of firms set p,’. Now, p,' equals the expectation
as of period t - 1 of py* and thus

(@) p' = Eui pi* = Evy [pm, + (1 - $)p, .

Substituting equation (1) into equation (2) and using the fact that p,” is already known when pi'is set and is
thus not uncertain, yields

G) p' = ¢Eu mi +(1-¢) [fp! + (1 - Hp ].
Some simple algebra allows us to solve for p:
$ a-9a-£) ,
4) plau¥ e
4) pq 1_(1_¢)fEt—1mt + I-(-0)f Pt.

Now, pi equals the expectation as of period t - 2 of p;* and thus

&) Ptz =Euapi*=E, [¢m, + (1 - )p: 1.

Substituting equation (1) into equation (5) yields

©) P\z =¢E,m + (1 - 9) [fE., Pt‘ +(1- ﬂpnz 1

We need to find E,, p, . Since the left- and right-hand sides of equation (4) are equal and since
expectations are rational, the expectation as of period t - 2 of these two expressions must be equal. That is

we have
1__ ¢ a-¢)a-f) ,
(M) Eqopy = 1-(1-)f Eom, + 1-(-¢)f Pt»

where we have used the law of iterated projections so that E,; E,.; m; = E., m, . Substituting equation (7)
into equation (6) yields

[ £ 1-6)(1-f)f
Pt =¢Ei_ym, +(1—¢)lﬁ)—fﬁt-zmt +(1—_"?l(_—w)—p% +(-fp?|.

»

Collecting terms gives us
52 [¢—¢(l—¢>f+<1—¢)¢f1 [a-9)a-DHf+1-H-A-9)a-Df] ,

t= —a-9)f JEt—th*'(l_(b){- -0 th,
which simplifies to
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a-ea-n ,
T1- (g b2 1-(1-¢)f Pt
Collecting the terms in p¢ gives us
1—(1—¢)f—(l—¢)(1—f)]2_ ¢
1-(1-$)f Iy

2
Pt

E{om,,

or simply
¢ 2 ¢
Pt =7——"——E ,m,.
I-(1-¢)f I-1-¢)f
And thus the price set in period t - 2 is given by
®) P¢2 =E,m,.

Now to solve for the price set for t by those setting price in t - 1, substitute equation (8) into equation (4):
1 ¢ -¢)(1-f)
©) pi= Epyme +=—=—""F ,m,.
I-(1-¢)f 1-(1-)f
Adding and subtracting E,, m, to the right-hand side of equation (9) yields
] ¢ '—(1—¢)(1—f)—1+(1—¢)f:!
10 =E,_ +—————E,_m, + _omy.
(10) p¢=E_;m, 1= (1-¢)f Ct-ime l_ Y t-2my
Since (1-9)(1-)-1+ d-df=-(1-d)f+(1 - ) -1+(1-p)f= -9, equation (10) can be rewritten as
1
(1) py=E, ,m, +m(Et—lmt ~Eiom,).

To get an expression for the aggregate price level, substitute the formulas for p,' and P, equations (11) and
(3), into equation (1):
¢ J
=f|E{ »m t———(Ei.ym; -E,_om +(1~f)E;_ym,.

Pt ’_tZt l‘(1_¢)f(tlt t-amy) [+ ( JE(_ymy

Simplifying yields
of

(2) py=E; ym, + 1_(1_¢)f(Et—lmt -Eiomy).
To solve for output in period t, substitute equation (12) into the expression for aggregate demand,
Yt=m-p,:

of
(13) yy =m; -E,_ym, “m(Et-lmt ~Eom,).

Collecting the terms in E, , m, as well as adding and subtracting E,; m to the right-hand side of equation
(13) gives us

o Of—1+(1-§)f 1—(1—¢)f—¢fJ
(14) yy=m, Ex—lmt"{WJEz—zmt‘{ -(-0)f E¢_mg.

Since ¢f- 1+ (1 “Pf=-(1-fand]- (- o)f-¢f=(1-9), equation (14) can be rewritten as
(15) y, =m(5t—1mt ‘Et-zmt) +(mt ~Eym,).

Equations (12) and (15) give equilibrium price and output for an even period.

The analysis for the case of t odd is identical to the preceding analysis, except that the roles of f and 1-9
are reversed. Thus derivations analogous to those used to obtain (12) and (15) yield

5
A

SEe L
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$(-1)

(16) pt =Erom +1—_—(l—_m(5t-lmt ~Eomy),

and

any =————f—~(E m, —E m)+(m -E m)
I a-9)1-f) t-1M¢ t—2My t t-1M¢ )

Equations (16) and (17) give equilibrium price and output for an odd period.

Problem 6.8
We will deal first with firms that set price in odd periods. Suppose that period t is an even period. Then pi

is the price set for an even period by a firm that sets prices in odd periods and pi1 is the price set for an
odd period by a firm that sets prices in odd periods. From equation (11) in the solution to Problem 6.7,

is given by
¢
(1) pix =Erome+ m(Et—lmt ~Eamy).
With the assumption that m is a random walk, we have E.; m¢ = me2 and E. m¢=m,; . Thus
¢
) Py =Myg + T (M1 T2/
@) pir =My-2 1_(1_¢)f( -1 ~ Mt 2)
As usual, the optimal price for period t is given by
() pu*=¢m+ (1-Ppe.
From equation (12) in the solution to Problem 6.7, the aggregate price level in an even period is
of
@) py=E2mt +m(Et—lmt ~Eiom).

Again, since m follows a random walk, this is equivalent to
of

5 =M, +——\M M2/

(5) pt=me2 1_(1_¢)f( t-1 2)

Substituting equation (5) into equation (3) yields the optimal price in period t:
(1-9)of

6) py*=¢m; +(1—¢)m¢ o + me_y—my3).

(6) py*=¢m¢ +(1-¢)m2 1_(1_¢)f( 1 -m2)

Thus the amount of profit a firm expects to lose in period t is proportional to

[ (1- 6)f
E.(pit — Pit 9= Et‘_mt—z + I—_Tf‘]_‘(bﬁ(mt—l —myp)-¢m - (-$me 2 + _a- ¢)f(mt—l - mt—z)J
Collecting terms yields
2
o[1--Pf
M E(pit —p®’ =E{—¢mt +'[T_?__¢7l(mt—l -my) +¢mz-z] :
Simplifying gives us

E: (P - li’it*)2 = E, [-pm, + ¢y - mu + ome., I#
or
(8) E:(@i-pi*)’ = ¢" Ec(muy - my Y.

Now, the price set for an odd period by a firm that sets prices in odd periods is given by
©) p1 = Eey My«

Since m follows a random walk, Evi Mot = M and thus

(1 0) pi+s1 =M .

The optimal price for period t + 1 is given by




138 Solutions to Chapter 6

A1) pis*= émy; + (1 - O)per
From equation (16) in the solution to Problem 6.7, the aggregate price level in an odd period is
$(1-f£)

0o B Eimeg).

Since E.q myy =my; and E, my, = m, , we have

(a-f
(13) pyy =my_, +—¢ﬁ)(mt -my ).

1-(1-$)(1-1)
Substituting equation (13) into equation (11) yields the optimal price in periodt + 1:

(12) pryy =Eyymyy

d-9)p(1-1)
A4 Pity*=¢mey +(1~¢)m,_ +1_(1¢: i)(l—f)(mt ~mey).
Thus the amount of profit a firm expects to lose in period t +1 is proportional to &
2 a5
(1-0)p(1- ) 1 :
(15) E¢(pits1 ~ Pyt )’ = Et[mt—l “¢mey - (-¢)m_; - - (-6)(- f)(mt _mt—l)J : %

Collecting terms gives us

2
1-9)¢(1- 1)
(16) E¢(iey —pien *)? =Et[¢(mt—l ‘mt+1)+%m—0(mt—l —mt)J :

Expanding the right-hand side of equation (16) yields
20(1-¢)p(1-1)

2.2 2
Ei(Pits1 = Pits1 )" =6 E((m(_; ~m,,;) o Eem —my ) (m -my) +

1-(1-¢)A-1)
" a-9pa- I
ATeed—1) ) )
L‘(l*«b)(l—f)] Eq(myy =m,)*.

Note that since m follows a random walk, we have

E; (my, - my., Yy -m ) =E, (my.q - my JE (my;-m;) = (m; - m; )(meq - my, )=0.
Thus the second term on the right-hand side of equation (17) is equal to 0. Using this fact, we can add
equations (8) and (17). Thus the total amount of profit a firm setting prices in odd periods expects to lose
is proportional to E; (py - pi*)’ + E, (ies1 - Pieer*) or

1-9090-f)

2
(18) Exp. Lossodd=¢2Et(mf_1 —mt)2 +¢2Et(mt_1 —mm)2 +L-—(I—¢)(1—f)J Et(mt—l ‘mt) :

Now we will deal with firms that set price in even periods. When period t is an odd period, analysis

parallel to that used to derive (8) shows that the amount of profit a firm expects to lose in period t + 1 is
proportional to

(19) Ei (i -pi*)’ = ¢* E, (my - m, )?.

Analysis parallel to that used to derive (17) shows that the amount of profit a firm expects to lose in period
t + 1 is proportional to

20(1- f
E(Pits1 ~Pits®)? =¢25t(mz—1 —my)® + 1d:((1~¢4)9(;f Eelmey —me)(mg —m) +
@ a-9)of
- 2
[1—(1-¢)f] Frles = m)

Note that this is identical to (17) except that the roles of f and (1 - f) are reversed. Proceeding as above, we
note that since m follows a random walk, we have
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E, (My - Mysq )y - my ) = By (Mg = Moy )E, (M - mye ) = (g - 0 )@ - e ) = 0.
Thus the second term on the right-hand side of equation (20) is equal to 0. Using this fact, we can add
equations (19) and (20). Thus the total amount of profit a firm setting prices in even periods expects to
lose is proportional to E; (pi - pi®)* + E; (it - pi,+|*)2 or

2
1-¢)of
(21) Exp. LosSeven = $%E,(my - my)? +¢?Ey(myy ~myy) +[%:I Et(mt—l - mt)z-

We need to compare the right-hand sides of equations (18) and (21). Recall that f is the fraction of firms
that set prices in odd periods. Note that with f < 1/2 -- more firms setting prices in even periods than in
odd periods -- we have (1 - f) > f. Using this and the fact that $ < 1, we can say that

[a-0a-0 1 [ a-oof ]2
) |\ Taopacn) Tl-a-wt)
since (1 - $)p(1 -£)> (1 - §)¢pfand 1 - (1-9)(1-H < 1- (1 - §)F.

Thus the right-hand side of equation (18) is greater than the right-hand side of equation (21). This means
that the profit a firm expects to lose if it sets prices in odd periods exceeds the profit a firm expects to lose
if it sets prices in even periods. Thus it is not optimal to set prices in odd periods and firms would like to
switch to setting prices in even periods. This means that with ¢ < 1, if we start with f < 1/2, we would
expect to see f go to zero; no firms will set price in odd periods.

By reasoning analogous to that above, we could show that if £ > 1/2, the inequality in (22) is reversed.
Firms setting prices in even periods expect to lose more than firms setting prices in odd periods. Thus it is
not optimal to set price in even periods and firms would like to switch to setting prices in odd periods. This
means that with ¢ < 1, if we start with f > 1/2, we would expect to see f go to one; all firms will set price in
odd periods.

Thus if ¢ < 1, staggered price setting with £ = 1/2 is not a stable equilibrium. If the economy starts with
anything other than f = 1/2, staggered price setting will not prevail. The economy will move to a situation
in which all firms set price in the same period.

Problem 6.9
The price set by firms in period t is

i (1) %= (* + EyPiast®2 = [(4my + (1 - $)po) + (OEemen + (1 - HEcpest V2,
i where we have used the fact that p* = ¢m + (1 - ¢)p. Since p, = (x, + %1 )/2 and E, m; = 0, equation (1)

can be rewritten as
Q-6 rxep [0-0060 +Eixi)/2]

2 =
2) x¢=¢my 2 2 s
which simplifies to
1- +2 E
3 xt=¢’;t+( $)(x¢-1 4xt+ txt+1)'

Solving for x, yields
@) %= Al +Eixen ) + [(1 - 2A)/2]m,,

11
where A=———.
2
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We need to eliminate E, x,., from the expression in (4). As in the text, it is reasonable to guess that x, is a
linear function of x,., and m, , or

() xe=p+AxXeq + v, .

We need to determine whether there are actually values of y, A, and v that solve the model. As explained in
the text, the flexible-price equilibrium involves each price equaling m. In light of this, consider a situation
where x,., and m; are both equal to zero. If period-t price-setters also set their prices to m, = 0, the economy
is at its flexible-price equilibrium. In addition, since m is white noise, the period-t price-setters have no
reason to expect my. to be on average either more or less than zero, and hence no reason to expect X to
depart on average from zero. Thus in this situation, py* and E, py..* are both equal to zero and so price-
setters would choose x, = 0. In summary, it is reasonable to guess that when X,y =m,=0, x, = 0. In terms
of equation (5), this condition is

(6) 0=p+A(0)+ v(0),

or simply p = 0. Thus equation (5) becomes

(7) x¢=Axeq + vy,

Our goal is to find values of A and v that solve the model. Since equation (7) holds each period, it implies
that Xe; = A% + vy . Thus the expectation as of time t of X,.; is Ax, since E; m.;; = 0. Using equation (7)
to substitute for x, yields

(8) E‘ Xi+1 = kz Xeq + ;\«th .

Substituting equation (8) into equation (4) gives us

9) %= AQe1 + A2 X + Avmy ) + [(1 - 2A)2]m,

which implies

(10) x, = (A + AA?)x,; + {AAv + [(1 - 2A)/2]}m, .

The coefficients on x,.; and m, must be the same in equations (7) and (10). This requires

(11) A+AN* =),

and

(12) AAv+(1-2A)2=v.

Equation (11) is the same as equation (6.68) in the text for the version of the model where m follows a
random walk. The solution to this quadratic is thus given by

148
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Solving for v in equation (12) yields

(14) v(1 - AA) =(1-2A)/2.

From equation (11), dividing through by A and rearranging, gives us 1 - AA = AA. Substituting this
expression into equation (14) gives us

13) A=

Substituting equation (15) into equation (7) yields
(16) %, = Ay + 2 2
Xy =AX ——my.
t t-1 2 AT
Thus equation (16) with A given by equation (13) solves the model.

We can now describe the behavior of output. Using the definitions of A and A, some simple algebra allows
us to rewrite equation (16) as

e e L et R A

[

a8

]

3
5
i

e
5
7
7
&
E

3

| et T



Solutions to Chapter 6 141

(A7) xy=Axyg + my =Axey +Cmy,

%

1+8)?
2¢

where we have defined C=——.

eTe Wi Y () (]+J$)2

Since y; = m, - p; and py = (X + Xe1 )/2 we have

(18) ye=my - [(x¢ + X 2.

Substituting equation (17), and equation (17) lagged one period, into equation (18) yields
(19) yi=m, - [(Axeq + Cmy + Axep + Cit )/2],

or simply

(20) y=mq- Aper - [(C/2)m, ] - [(C/2)my ],

where we have used the fact that p.1 = (X1 + X2 )/2. Now since yi.1 = M1 - Pea this implies
@21) yi=my+ Ay - Amgg - (C/2)m, - (C/2)my.; .

Collecting terms yields

C C
(22) y¢ = 1—3 mg - 7~+; my_ + Ay

Finally, since

23) =S ¢ 1+24p+o-¢ 1+246
2 (1+J$)2 (1+\/4—))2 (1+\/‘¥)2 »
and
@4 7~+-C-=1_‘/4—’+ ¢ _(-Vo)a+Vp)+e_ 1-¢+é 1
2 1440 (1+40)° +9)? A+V9)? A+

Using (23) and (24), equation (22) can be rewritten as
1428 1
25 yi=Ayt1+ &~ Et-1
A+ a+e)’
where we have substituted for m, = &, and m; = &, . Thus if the money stock is white noise, output is an
ARMA(1,1) process rather than an AR(1) process.

Problem 6.10
We could proceed as in the text and obtain equation (6.80), which holds for a general process for m, and
which is given by

A1-2A
(6380) x =Axpy + o —[my + (1 NE My +AEMey +MEmy,3+...)].

When the money stock is white noise, E;m, =0 for all s > 0. Thus equation (6.80) simplifies to
a Ao < A1-2A
Xy =AX_j+————

t =TT,
Note that equation (1) is identical to equation (16) in the solution to Problem 6.9. As in that solution, we

could now proceed to determine the behavior of output.

my.

Problem 6.11
(a) The price set by individuals at time t is

] Lf
@) x(t)== JE{m(t+1)ldt=— J(t+7)gdr,
T.o T

=0
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where we have substituted for the fact that m(t) = gt and thus that E, [m(t + ©)] = g(t + 7). Solving the
integral in (1) gives us

) }.(t +1)gdt = [gt1:|:g] +BTz

=T 1
=gtT+— g’I‘2 .

=0 =0 2
Substituting equation (2) back into equation (1) gives us the price set by individuals at time t, which is
(3) x(t) =gt + (gT/2).
The aggregate price level is the average of the prices set over the last interval of length T. Thus

1

@ p)= T }-x(t ~1)dz.

=0
Substituting equation (3) into equation (4) yields

117 1 }
) pt)y= T TI()Lg(t -1+ 5 gT |d.

Solving the integral in (5) gives us
=T

©) T[(t 1:)+1T}d1:[ Loz Lor 1ot Lo otT
- ~ = T——"g1 - T = - - = .
L 58 gti-Jgr +og JFO gtT-gT" +g

Substituting equation (6) back into equation (5) gives us the price level at time t, which is
(M) p® =gt.

Substituting m(t) = gt and p(t) = gt into y(t) = m(t) - p(t) gives us
¥ yt=0.

(b) (i) Suppose that x(t) = gT/2 foralit> 0. Then fort > T, since p(t) is just the average of the x's set
over the last interval of length T, p(t) = gT/2. Now we know that for t > T, m(t) = gT/2. Thus fort>T,
we do have p(t) = m(t). From y(t) = m(t) - p(t), this means that for all t > T, y(t) = 0, which would have
been its value in the absence of the change in policy.

Now consider the situation for some time t between time 0 and time T. From time 0 to time t, we are
assuming that individuals set price equal to gT/2. From equation (3), we know that before time 0,
individuals set price equal to gt + (gT/2). The aggregate price at time t, which is the average of the prices
set by individuals over the past interval of length T, is therefore given by

il T ™ | 1f T). gt
© pt)= *L ? (g’«' +g—Jdt + } [ijdt}= —[ ? (gt + g*)dt +g—}.

T t=t-T 2 =0 2 T t=t-T 2 2
Solving the remaining integral in equation (9) gives us

0 2 =0 2
T T t- T(t-
a0 | (gr+g-)dz=[5—+ﬂJ __Be-D” _gTe-T
1=t-T 2 2 2 T 2 2
Substituting equation (10) back into equation (9) and expanding yields
1 gt-T)? gTt-T) gTt| 1| -gt?+2gT-gT? —gTt+gT? + 4Tt

an p= {—g( T _gTt-TD glt| 1) -gt” +2gtT-gT" -gTt+gT" +g ,

T 2 2 2 I°T 2
which implies
2
1]
12) p(t)=gt - =—=gt{ 1~ — |
(12) p() =gt T gt 3T
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Thus p(t) = m(t) for t between 0 and T as well. Thus if x(t) = gT/2 for all t > 0, then p(t) = m(t) for all
t'> 0, and thus output is the same as it would be without the change in policy.

(b) (i) At time t, individuals set their prices equal to the average of the expected money supply over the
next interval of length T. We know that m(t) = gT/2 fort > T, but it is strictly less than gT/2 fort <T.
Thus individuals setting prices at some time t before T are going to set their prices less than gT/2. Why?
They will be averaging some m's equal to gT/2 with some m'’s less than gT/2 and so we must have

x(t) < gT/2 for 0 <t < T. For T <t < 2T, the money supply is expected to be constant at gT/2 and thus
individuals set prices equal to this constant money supply. Thus x(t) = gT/2 for T<t<2T.

‘We have shown in part (b) (i), that if everyone sets prices to gT/2, p(t) = m(t) and thus y(t) = 0, which is its
value in the absence of the change in policy. But as we have just explained, individuals actually set prices
less than gT/2 for 0 <t < T. Thus the aggregate price level will be less than m(t) over the interval

0 <t <2T. Since y(t) = m(t) - p(t), this means that output will be greater than zero during this interval.
Thus this steady reduction in money growth actually causes output to be higher than it would have been in
the absence of the policy change.

Problem 6.12

(a) Suppose first that the elevator is not-at the top or bottom of the shaft. Now assume that the money
supply rises by a small (formally, infinitesimal) amount dm. Since p; - pi* does not equal S or -S for
anyone, no prices change. All the (p; - pi*)'s fall by dm. The elevator moves down the shaft by dm and
stays of height S. Similarly, if m falls, no prices change. The elevator moves up the shaft by dm and stays
of height S.

Now suppose the elevator is at the bottom of the shaft. S
Assume that the money supply rises by dm. Firms that
initially have p; - p;* "just above" -S reach the barrier. They
therefore raise their price so that p; - p;* = 0. Everyone else
moves down the shaft by dm. Since the height of the elevator
was S, the top of the elevator was initially at zero.

In the figure at right, the horizontal lines represent “slices” of
the elevator of infinitesimal height dm. Essentially, the firms
at the bottom of the elevator jump up to the top and everyone
else moves down by dm. So the elevator does not move or
change shape. Thus, with an infinitesimal change in m, the
distribution of p; - p;* is unchanged, just as in the Caplin-
Spulber model. S

The situation where the elevator is at the bottom of the shaft and m falls is similar to the case where the
elevator is not at the top or bottom of the shaft. It simply moves up by dm.

Finally, the case where the elevator is at the top of the shaft is the reverse of the case where it starts at the
bottom. If m falls, the elevator does not move. If m rises, the elevator moves down by dm.

(b) For an increase in m, average price is unchanged except if the elevator is at the bottom of the shaft. In
this case, the average price rises exactly as much as m. Thus, on average, increases in the money supply
increase output.
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Problem 6.13

(a) Substitute the aggregate price level, p=qp"+ (1 - qp’, into the expression for the price set by flexible-

price firms, pf= (1 - $)p + ¢m, to yield

M p'=(1-®)lap’ + (1 - Qp*] + ¢m.

Solving for p' yields

@ p'1-A-91-gl=q - 9)qp’ + ¢m.

Since 1 -(1-¢)(1-q)=q+ $-9q=0¢ + (1 - $)q, equation (2) can be rewritten as
@) PO+ -9)a) =1 - h)gp’ + ¢m,

and thus finally

1= 4)q b b
4 f=‘ r,__ ¥ S . S "),
O = oe® Tor i ™" Tora-gq P

(b) Since rigid-price firms set p = (1 - $)Ep + $Em, we need to solve for Ep, the expectation of the
aggregate price level. Taking the expected value of both sides of p = qp" + (1 - )p” gives us

(5) Ep=qp"+(1 - QEp".

Thus we have

©) p'=(1-§)gp"+ (1 - QEp] + ¢Em.

The rigid-price firms know how the flexible-price firms will set their price. That is, they know that

flexible-price firms will use equation (4) to set their prices. Thus the rational expectation of the price set
by the flexible-price firms is

¢
7Ef=‘“E—'.
() Ep" =p +¢+(1_¢)q(m p)

Substituting equation (7) into equation (6) yields

T __ r _ T ¢ _nl
®p =0-9)jap" +(1-q)|p +¢+(1_¢)q(Em P )J}+¢Em,

which implies

(1-9)1-q)¢

9 P’ =(1-¢)p" +¢pEm+— VP g 1y

®) p =(1-9)p" +¢E ¢+(1_¢)q(m P)
Defining C = [(1 - ¢)(1 - D9)/[d + (1 - $)q], we can rewrite equation (9) as
(10) p'=[1-(1-¢)+C]= (¢ + C)Em,
or
(1) p (@ +C)=(¢ + C)Em,
and thus finally
(12) p"=Em.
Rigid-price firms simply set their prices equal to the expected value of the nominal money stock.
() The aggregate price level is given by
(13) p=gp'+ (1 - q)p’
Substituting equation (4) for p”into equation (13) yields

(14) p=qp" +(1~-q)| p* +

1_
(m—pr)}pr +“(“q)¢;(m—p')-

b
o+(1-¢)q v+(1-¢)q

Finally, from equation (12), we know that p"=Em. Thus the aggregate price level is

_ ad-9¢
@15) p—Em+¢+(1_¢)q(m Em).

Sy EE ik
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We know that y=m - p. Adding and subtracting Em on the right-hand side of this expression yields
(16) y=Em+(m-Em) -p.
Substituting equation (15) into equation (16) yields

P (1-9¢ _¢+(1—¢)q-(1~q)¢ B
17 y=(m Em) ¢+(l—¢)q(m Em)—/¢+(l—¢)q (m-Em),
which simplifies to

q
18) y="7 . —Em).
® v aee

(c) (i) From equations (15) and (18), we can se¢ that anticipated changes in m affect only prices.
Specifically, consider the effects of an upward shift in the entire distribution of m, with the realization of
m - Em held fixed. From equation (18) we can see that this will have no effects on real output. In this
case, rigid-price firms get to set their price knowing that m has changed and thus incorporate it into their
price-setting decision.

(c) (i) Unanticipated changes in m affect real output. That is, a higher value of m given its distribution —
that is, given Em — does raise y as we can see from equation (18). In this case, the rigid-price firms do not
get to observe the higher realization of m and cannot incorporate it into their price-setting decision and

hence the economy does not achieve the flexible-price equilibrium.

In addition, flexible-price firms are reluctant to allow their real prices to change. One can show that

oy -(1-9)q

O __ U7V (m-Em]<0 form>Em.

% [p+0-0)]
Thus a lower value of ¢ -- that is, a higher degree of "real rigidity” -- leads to a higher level of output for
any given positive realization of m - Em. This means that the impact on real output of an unanticipated
increase in aggregate demand is larger the larger is the degree of real rigidity or the more reluctant are
flexible-price firms to allow their real prices to vary.

Problem 6.14

@) nlyi, r*on)) is the profit a firm receives at aggregate output level y;, if it charges the profit-
maximizing real price, *(y1). ®y1, () is the profit a firm receives at aggregate output level y; if it
continues to charge a real price of 1*(Yo ), which was the optimal price to charge when aggregate output
was o . Thus G=7(1, *(y1)) - 7y, ¥ (o)) is the additional profit a firm would receive if, when
aggregate output changes from yoto y1, the firm changes its price to its new proﬁt-maximizmg level. This
represents, therefore, the firm's incentive to change its price in the face of a change in aggregate real output.

(b) The second-order Taylor approximation will be of the form

d
Q) GEGIyﬁ,O + =

G 1{ 3°G
[1 - ¥ol -;Ha > [v1- yol .
- Yi
Y1=Yo Y1=Yo

0y

Clearly, G evaluated at Y1 = Yo is equal to zero. In addition
) 8GOy =T (1t S5 ) + 7 G, O NIt ') - T G, TG0 )2
Evaluating this derivative at y1 = Yo gives us

(3) 8G/0y1 lyiyo =1 (o *(yo)) + %2 (Yo ,1* (o Nir* ‘o)l - ™ o *(y0)) = 0.
Since r*(yo ) is defined implicitly by 72 (o , *(yo)) =0, the right-hand side of equation (3) is equal to zero.
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Using equation (2) to find the second derivative of G with respect to y; gives us
@) & Gloy’ =my (s, *(y1 ) + 2 51, iy DIt ()] +
[m2 51, T%(y1 ) + 7y G ,T¥(yy ))0* I (1)1 + 72 (v, 7%y )[r* "(y1)] -
T (1, 1*(y0)).
Using the fact that w, (y; , r*(y; )) = 0 and T2 (71, (1)) = = (1, T%(y1 ), equation (4) becomes
(5) & Gloys’ = (1, 1*(31)) + 2712 (3, (5 DIE* 51 )] + Tan (31 .t DIE* ' )P - s (5 ™*(%)).
Evaluating this derivative at y, = y, leaves us with
(6) & GI9:’ ly1oyo = 2m12 (3o , *(y0 DIr* '(¥0 )] + 72 o, T*(yo DIr* '(vo )~

Now differentiate both sides of the equation that implicitly defines r*(yo ), 7, (Yo , T*(yo )) = 0, with respect
to yo to obtain

(M) 7 (o, *(¥0)) + a2 (o, P*(y0 DIr* '(yo)] =0,
and thus

(®) ™1 (o ,r*(¥0)) = -T2z (yo , r*(¥o Dr* ' (y0)].
Substituting equation (8) into equation (6) yields

() & Gloy) lyimo = 2722 (v , T DI (30 )P + 22 (%0 , P30 DIE* (50 )] = -7 (o, *(y0 D[r* '(y0 )]

Thus, since G and &G/dy, evaluated at ¥1 = Yo are both equal to zero, substituting equation (9) into
equation (1) gives us the second-order Taylor approximation:
(10) G =-my (vo, r*(ya ))r* '50)I? yi-y1* /2.

(c) The [r* ‘(o )] component reflects the degree of real rigidity. It tells us how much the firm's profit-
maximizing real price responds to changes in aggregate real output. The 7z (yo , r*(ys )) component
reflects insensitivity of the profit function. It tells us the curvature of the profit function and thus the cost
in lost profits from the firm allowing its real price to differ from its profit-maximizing value,

Problem 6.15

(a) Substituting the expression for aggregate demand, y =m - p, into the equation that defines the optimal
price for firms, p* =p + ¢y, yields p*=p + ¢(m - p) or simply

(1) p*=(1-¢)p + ¢m.

Substituting the aggregate price level, p = fp*, and m = m' into equation (1) yields

p*=(1-)fp* + ¢m".

Solving for p* gives us
¢
2) p*=————m’".
@r 1—(1~¢)fm
Now substitute equation (2) into the expression for the aggregate price level, p = fp*, to obtain

J) p=———m".
@p A ™
Substituting equation (3) and m = m' into the expression for aggregate demand, y = m - p, yields
, ¢of , (1= f+of - ¢f

Y T e ™ T sa-gr ™
or simply
1-
@ y=—D

I-(-g)f
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(b) Substituting equation (2), the expression for a firm's optimal price, into the expression describing the
firm's incentive to adjust its price, Kp*?, yields
2
om’ ]
5) Kp*? =K| ———| .
) Bp [1—(1—¢>f
‘We need to plot this incentive to change price as a function of f, the fraction of firms that change their
price. The following derivatives will be useful:

o 227 _2xa-oem?

Flke?] 6ka-4)? @omo)?
o [i-a-¢1 '

of? [1-a-of*

(

When ¢ < 1, 5{Kp** }/of > 0 and Kp*?
& [Kp** J/of > 0. From equation (5),
at f=1, Kp** = K[¢m'}’ /¢* = Km".
At £=0, Kp** = Kdp’m'? < Km” when
¢ < 1. Thus when ¢ < 1, the incentive
for a firm to adjust its price is an N
increasing function of how many other Km'e fooooerrer T
firms change their price. See the
figure at right.

K¢2m'2

N

When ¢ > 1, [Kp** }/f < 0 and

& [Kp** )/of* > 0. From equation (5),
at f=1, Kp** = K[¢m']* /$* = Km"™.
At =0, Kp** = K¢’m” > Km” when
¢ > 1. Thus when ¢ > 1, the incentive
for a firm to adjust its price is a decreasing function of how many other firms change their price. See the
figure.

p<1

2
(c) Inthecaseof ¢ <1, there canbe a Kp*
situation where both adjustment by all
firms and adjustment by no firms are Km?

equilibria. See the figure at right where the
menu cost, Z, is assumed to be such that

K¢’'m? < Z <Km?.
z — menu
Point A is an equilibrium with £= 0. ; cost
Consider the situation of a representative :
. . . A
firm at point A. If no one else is changing Ko'm?

their price, the profits a firm loses by not
changing its price, which are given by 1 f
Kp** = K¢’m?, are less than the menu cost
of Z. Thus it is optimal for the
representative firm not to change its price. This is true for all firms and thus no one changing price is an
equilibrium.

Point B is also an equilibrium with f= 1. Consider the situation of a representative firm at point B. If
everyone else is changing their price, the profits a firm loses by not changing its price, Kp** = Km®?, exceed
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the menu cost of Z. Thus it is optimal for the representative firm to change its price. This is true for all
firms and thus everyone changing price is also an equilibrium.

In the case of ¢ > 1, there can be a situation Kp*?
where neither adjustment by all firms nor
adjustment by no firms are equilibria. See K¢'m”? | A

the figure at right where the menu cost, Z,
is assumed to be such that Km? < Z <
Ké¢'m”.

menu

t
Consider the situation of f = 0 at point A. €08

If no one else is changing their price, the 2
profits that a representative firm would lose Km!
by not changing price, Kp*? = K¢’m"?,
exceed the menu cost Z. Thus it is optimal : :
for the firm to change its price. This is true fio 1 f
for all firms and thus it cannot be an
equilibrium for no one to change their price.

Now consider the situation of f=1 at point B. If everyone else is changing their price, the profits that a
representative firm would lose by not changing its price, Kp** = Km"”, are less than the menu cost of Z.
Thus it is optimal for the representative firm not to change its price. This is true for all firms and thus it
cannot be an equilibrium for all firms to change their price.

From this discussion, we can see that the equilibrium in this case is for fraction feq of firms to change their
price. If fraction fizq of firms are changing their price, the profit that a representative firm would lose by
not changing its price is exactly equal to the menu cost, Z. Thus the representative firm is indifferent and
there is no tendency for the economy to move away from this point where fraction fgq of firms are changing
their price.

Problem 6.16

(2) We can use the intuitive reasoning employed to explain equation (9.29) in Chapter 9. Consider an
asset that "pays” -c when the individual climbs a palm tree and pays T when an individual trades and eats
another's coconut. Assume that this asset is being priced by risk-neutral investors with required rate of
return equal to 1, the individual's discount rate. Since the expected present value of this asset is the same as
the individual's expected value of lifetime utility, the asset must have price Vp while the individual is
looking for palm trees and price V. while the individual is looking for other people with coconuts.

For the asset to be held, it must provide an expected rate of return of r. That is, its dividends per unit time
plus any expected capital gains or losses per unit time, must equal rVp . When the individual is looking for
palm trees, there are no dividends per unit time. There is a probability b per unit time of a capital "gain" of
(Vc - Vp) - ¢; if the individual finds a palm tree and climbs it, the difference in the price of the asset is

Ve - Vp and the asset "pays" - at that time. Thus we have

(1) rVp=b(Vc-Vp-c).

(b) The asset must have price V¢ while the individual is looking for others with coconuts and must provide
an expected rate of retun of r. Thus its dividends per unit time plus any expected capital gains or losses
per unit time, must equal rVc . When the individual is looking for others with coconuts, there are no
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dividends per unit time. There is a probability aL per unit time of a capital gain of (Vp - V¢ ) + 1 if the
individual finds someone else with a coconut, trades and eats that coconut, the change in the price of the
asset is (Vp - Vi ) and the asset pays U at that time. Thus we have

@) rVc=aL(Vp-Vc+1).

(c) Solving for Vp in equation (2) gives us
(3) Ve = (I‘Vc /aL)+ Ve- u.
Substituting equation (3) into equation (1) yields
t[(rVc /aL + Ve -u] =b[Vc - (tVc /al) - Ve + 1 -c].
Collecting terms in V¢ gives us
@) Ve [(* /aL) +t + (br/aL)] = r¥ +bT - be.
Equation (4) can be rewritten as
Ve [r(r +aL + b)J/aL = u(r + b) - be.
Thus finally, the value of being in state C is given by
aL[a(r +b) - be]
r(r+aL+b)
Substituting equation (5) into equation (3) yields the following value of being in state P
T(r+b)-bc aLlu(r+b)-bd _
= -4.

% Ve=

6) Vp=
r+al+b r(r+aL +b)
Subtracting equation (6) from equation (5) gives us
[ﬁ(r+b)—bc} _ —Ur—Tb+bec+ur+ual+ub
VC_VP=_ +u= 5
r+al+b r+al+b
or simply
7 Vo-Vp= be +ual
€™ P  rial+b’

(d) For a steady state -- in which L, the total number of people carrying coconuts, is constant - the flows
out of state C must always equal the flows into state C. That is, the number of people finding a trading
partner and eating their coconut per unit time must equal the number of people finding and climbing a tree
per unit time.

The number of people leaving state C per unit time is given by the probability of finding a trading partner,
aL, multiplied by the number of people with coconuts and looking for a trading partner, L. The number of
people entering state C per unit time is given by the probability of finding a tree, b, multiplied by the
number of people looking for a tree, (N -L). Fora steady state, these two must be equal. That is, a steady
state requires

(8) @L)L=b(N-L).

Rearranging equation (8), we have the following quadratic equation in L:

() al?+bL-bN=0.

Using the quadratic formula gives us

—b+vb? +4abN =-b¢W_3

2a 2a a
where we have used the given condition that aN = 2b. Also note that we can ignore the solution with
L=-2b/a<0.

(10) L=
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(e) For such a steady-state equilibrium, the gain to an individual from climbing a tree, V¢ - Vp -- going
from having the value of being in state P to the value of being in state C -- must be greater than or equal to
the cost to the individual of climbing the tree, ¢. That is, for a steady-state equilibrium where everyone
who finds a palm tree actually climbs it, we require
(11) Ve-Vp2ec.
Substituting the steady-state value of L = b/a from equation (10) into the expression for V¢ - Vp given in
equation (7), we have
12) Ve - Vp = be + a(b/a) B be + bu
( C P iab/a)+b r+2b
Substituting equation (12) into inequality (11) yields

be + b

r+2b

and thus the cost of climbing a tree must be such that
(13) c<bu/(r+b).
Note that the maximum possible cost for which it is optimal to always climb a tree when one is found (as
long as everyone else is doing so) is increasing in the utility gained from eating a coconut and decreasing in
the individual's discount rate.

>c = bc+bu=c(r+2b) = c(r+2b-b)<bu,

() The situation in which no one who finds a tree climbs it is a steady-state equilibrium for any ¢ > 0. If
no one else is climbing a tree when they find one, it is optimal for an individual not to climb a tree when she
finds one. If the individual were to climb a tree and pick a coconut, she would lose ¢ units of utility with no
hope of ever trading with someone else. If she does not climb the tree, she loses no utility. Thus it is
optimal not to climb the tree. The decision process is the same for every individual who comes across a
tree. Thus no one climbing a tree -- L = 0 -- is a steady-state equilibrium for any ¢ > 0. This implies that
for 0 < ¢ < bU/(r + b), there is more than one steady-state equilibrium. We have shown two: L =0 and
L=b/a.

In the situation of multiple equilibria, the one with L = b/a involves higher welfare than the one with L = 0.
We have shown that in part (e), with ¢ < bu/(r + b), individuals end up gaining utility each time they climb
atree. That is why they do it. They know that the utility they will eventually receive by trading their
coconut outweighs the cost of climbing the tree to obtain their coconut. Thus the equilibrium where people
go through a cycle of searching, climbing, searching, trading and eating etc., generates positive utility for
the individual. The equilibrium with L = 0 means that people never achieve any positive utility since they
never trade and obtain the U units of utility from eating another person's coconut.
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Problem 7.1

Since transitory income is on average equal to zero, we can interpret average income as average permanent
income. Thus we are told that on average, farmers have lower permanent income than nonfarmers do, or
715 <_Y—I§-F. We can interpret the fact that farmers' incomes fluctuate more from year to year as meaning
that the variance of transitory income for farmers is larger than the variance of transitory income for
nonfarmers, or var(Y's ) > var(Y ).

Consider the following regression model:
1) Ci=a+bYite,
where C; is current consumption -- which according to the permanent-income hypothesis is determined
entirely by Y’ sothat C = Y? - and Y; is current income, which is assumed to be the sum of permanent
income and transitory income so that Y = Y’ + Y*. From equation (7.8) in the text, the Ordinary Least
Squares (OLS) estimator of b takes the form

. var(Y?)

2) b= .
@ var(YP) + var(YT)

As long as var(Y’ ?) is the same across the two groups, the fact that var(Y T2} > var(Y'yr ) means that the
estimated slope coefficient should be smaller for farmers than it is for nonfarmers. This means that the
estimated impact on consumption of a marginal increase in current income is smaller for farmers than for
nonfarmers. According to the permanent-income hypothesis, this is because the increase is much more
likely to be due to transitory income for farmers than for nonfarmers. Thus it can be expected to have a
smaller impact on consumption for farmers than for nonfarmers.

From equation (7.9) in the text, the OLS estimator of the constant term takes the form

@) a=(1-0Y". :

The fact that farmers, on average, have lower permanent incomes than nonfarmers tends to make the
estimated constant term smaller for farmers. However, as was just explained, b is smaller for farmers than
it is for nonfarmers. This tends to make the estimated constant term bigger for farmers than for
nonfarmers. Thus the effect on the estimated constant term is ambiguous.

We can, say, however, that at the average level of permanent income for farmers, the estimated
consumption function for farmers is expected to lie below the one for nonfarmers. Thus if the two

estimated consumption functions do cross, they cross at a level of income less than YT F. Why?

Consider a member of each group whose income equals the average income among farmers. Since there
are many more nonfarmers with permanent incomes above this level than there are with permanent incomes
below it, the nonfarmer's permanent income is much more likely to be greater than her current income than
less. As a result, nonfarmers with this current income have on average higher permanent income; thus on
average they consume more than their income. For the farmer, in contrast, her permanent income is about
as likely to be more than current income as it is to be less; as a result, farmers with this current income on
average have the same permanent income, and thus on average they consume their income. Thus the
consumption function for farmers is expected to lie below the one for nonfarmers at the average level of
income for farmers.
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Problem 7.2

(a) We need to find an expression for [(Cea + Cuus /2] - [(C, + Cyy )/2]. We can write Cy.; , Cp.; and Cus
in terms of C, and the ¢'s. Specifically, we can write

1 Ci= C+ €1,

(2) Cuy= Corten = Ci+en + €u2 , and

(3) Cs=Cir+eus=Ci+eu + €zt e,

where we have used equation (1) in deriving (2) and equation (2) in deriving (3). Using equations (1)
through (3), the change in measured consumption from one two-period interval to the next is

@ Cti+Chy3  C+Cyy _Citen o) +(Corep +ey, +ers) _Ci+(Crrey)

2 2 2 2 ’
which simplifies to
Ctra +Cly3 Cy+Cyy _Et3t2eiy +eyy
©) 2 2 2 '

(b) Through similar manipulations as in part (a), the previous value of the change in measured
consumption would be
©) Ci+Ciyy _ Cia +Ciy _% t2e ey
2 2 2 '
Using e?uations (5) and (6), the covariance between successive changes in measured consumption is
Ctya +Crys €, +C [ Ci +Cryy Cip+Coy 1

@) covl- - , - =

2 2 2 2

[ €43 +2e0,5 +e €41 +2e4 +e 1
cov[( t+3 t+2 t+1 J’[ t+1 t t-1 ) ]
2 2

Since the ¢'s are uncorrelated with each other and since e, is the only value of e that appears in both
expressions, the covariance reduces to

[(Cisn +Cts  Ce+Cuy |[Ci+Cyy Ciz +Ciy )] o2
8) cov[ 3 B A Pa > =

where o,” denotes the variance of the e's. So the change in measured consumption is correlated with its
previous value. Since the covariance is positive, this means that if measured consumption in the two-period
interval (¢, t + 1) is greater than measured consumption in the two-period interval (¢ - 2, t - 1), measured
consumption in (t + 2, t + 3) will tend to be greater than measured consumption in (t, t + 1). When a
variable follows a random walk, successive changes in the variable are uncorrelated. For example, with
actual consumption in this model, we have Ci-Cui=eiand Cuy - Cy= ey . Since e and e, are
uncorrelated, successive changes in actual consumption are uncorrelated. Thus if C. were bigger than C,,, ,
it would not mean that C,.; would tend to be higher than C, . Since successive changes in measured
consumption are correlated, measured consumption is not a random walk. The change in measured
consumption today does provide us with some information as to what the change in measured consumption
is likely to be tomorrow.

() From equation (5), the change in measured consumption from (t, t + 1) to (t + 2,t + 3) depends on e, R
the innovation to consumption in period t + 1. But this is known as of t + 1, which is part of the first two-
period interval. Thus the change in consumption from one two-period interval to the next is not
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(d) We can write C3 as a function of Ce.y and the e's. Specifically, we can write

© Cus=Cuy+ews= Curtenateus.

Thus the change in measured consumption from one two-period interval to the next is

(10) Cu3-Cin1 =Cra ez tens- Cur=e€uz+eus.

The same calculations would yield the previous value of the change in measured consumption,

a D Ci-Ca=etem.

And so the covariance between successive changes in measured consumption is

(12) cov[(Cus - Cit1), (Cer1 - Cir )] = cov[(erz + €u3 ), (& + €1 )]

Since the e's are uncorrelated with each other, the covariance is zero. Thus measured consumption is a
random walk in this case. The amount that Cy., differs from C.., does not provide any information about
what the difference between Cy. and Ci.3 will be.

Problem 7.3

(a) Consider the usual experiment of a decrease in consumption by a small (formally, infinitesimal)
amount dC in period t. With the CRRA utility function given by

1) u(C)=C® /1 -8),

the marginal utility of consumption in period t is C.°. Thus the change has a utility cost of

(2) utility cost = C;° dC.

The marginal utility of consumption in period t + 1 is Cwr® . With a real interest rate of r, the individual
gets to consume an additional (1 + )dC in period t + 1. This has a discounted expected utility benefit of

1
(3) expected utility benefit = E_—-; E, [Cm'e 1+ r)dC] .

If the individual is optimizing, a marginal change of this type does not affect expected utility. This means
that the utility cost must equal the expected utility benefit or

1+r1 _
(@Cﬁ=;$&km°L

where we have (rather informally) canceled the dC's. Equation (4) is the Euler equation.

(b) For any variable x, ™ =x, and so we can write
—6InC

(5) EqCoa~®]=Edfe™%].
Using the hint in the question - if x ~ N(y, V) then E[e*] = ¢*¢""? — then since the log of consumption is
distributed normally, we have

E[Cur?] - Et[e—eE,lnC,,,l eezol/z]

)

= o~ 9EnCuyy 69202/2.

In the first line, we have used the fact that conditional on time t information, the variance of log
consumption is o*. In addition, we have written the mean of log consumption in period t + 1, conditional

L . . . . -6E,InC,,y 0%0%/2
on time t information, as B InCy; . Finally, in the last line we have used the fact that e e

is simply a constant.

Substituting equation (6) back into equation (2) and taking the log of both sides yields
(7) -6InC, = In(1 +1) - In(1 + p) - O, InCyy + 6% 7/2.

Dividing both sides of equation (7) by (- ) leaves us with

(8) InC,= E,InCs + [In(1 + p) - In(1 + 1)}/6 - B”/2.
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(c) Rearranging equation (8) to solve for E; InCy.; gives us

©) EInCy =InC,+ [In(1 + 1) - In(1 + p)}/8 + 6c%/2.

Equation (9) implies that consumption is expected to change by the constant amount

[In(1 + 1) - In(1 + p))/8 + 652 from one period to the next. Changes in consumption other than this
deterministic amount are unpredictable. By the definition of expectations we can write

(10) E;InCyy = InC, + [In(1 + 1) - In(1 + p)}/0 + 6672 + uq,

where the u's have mean zero and are serially uncorrelated. Thus log consumption follows a random walk
with drift where [In(1 + 1) - In(1 + p)}/® + 85%/2 is the drift parameter.

(d) From equation (9), expected consumption growth is
@11) E [InCyy - InC; 1= [In(1 + 1) - In(1 + p)}/® + 6%/2.
Clearly, a rise in r raises expected consumption growth. We have

0E|InCyyy-InCy) 1 1 g
(12) 1 [ t+1 t] - }q
or 61+ l') l;!:
Note that the smaller is 8 - the bigger is the elasticity of substitution, 1/8 — the more that consumption :
growth increases due to a given increase in the real interest rate.
An increase in o” also increases consumption growth since _
OE(lInC,y -InC 0 r
(13) i " d_e
_ do 2 i
It is straightforward to verify that the CRRA utility function has a positive third derivative. From equation !
(1),u'(C:)=C®and u"(C,) = -6C;*". Thus :
(14) u™(C,) =-8(-8 - NC;* = (" +6)C*? > 0. ’
So an individual with a CRRA utility function exhibits the precautionary saving behavior explained in
Section 7.6. A rise in uncertainty (as measured by o’, the variance of log consumption) increases saving ;
and thus expected consumption growth.
Problem 7.4 i
(a) Substituting the expression for consumption in period t, which is 1
T = EylY,
M Co=tA, s 3 2l “':] , ;
I+r =0 (1+71) ;
into the expression for wealth in period t + 1, which is ;
Q) A =(1+DA+Y,-C],
gives us 5
[ | ;
r r E,Y, E.Y
(G) Ay =(+D[ A +Y -—A - (Yt+ el ek L
T+r U 14rl 141 (1+1)
Obtaining a common denominator of (1 + r) and then canceling the (1 +1)'s gives us 3
(EYim EY,
@) Ay =Ac+Y - rL'—t”—+—t—'+f+...
l+r  (1+1)?
Since equation (1) holds in all periods, we can write consumption in period t + 1 as
r © Egn[Yiseel |
©®) Cn= —l.Am +2Z —H]__%LJ '
I+r =0 (1+r1) ;
Substituting equation (4) into equation (5) yields
§
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‘ [ ( ) 1
' r E\Y E\Y EyY
6 Cin :ELAt +Y; - rL—S—tﬂ+—‘——t—%—+,..J+(EMYH1 +—“’1—‘+A+...M.

1+r1 (1+71) 1+r
Taking the expectatlion, conditional on time t information, of both sides of equation (6) gives us
( )
r E.Y E.Y, E\Y
() ECpy=—] Ay +Y-1 ] +(15th+1 il +) )
1+r1 I+ (1+71) 1+r

where we have used the law of iterated projections so that for any variable x, E; Exj Xu2 = ErXuz . If this
did not hold, individuals would be expecting to revise their estimate either upward or downward and thus
their original expectation could not have been rational. Collecting terms in equation (7) gives us
(
r 1 r

)
T
8) E,Ciy=—1A +Y—(l——~}EY +|—- E: Yo+ |,
@) ECen =72t M Tp) i [1+r (1+r)2J“+2

which simplifies to
r EYu1  EYio 1
9) ECipy=— A+ +—— +— 5|
© ECn 1+r[_ Y 2 J
Using summation notation, and noting ﬂ_llat E Y.=Y,, we have
r = E.Y
(10) ECppy=——]A(+Z —‘—'—*%J .
l+r s=0 (1+71)
The right-hand sides of equations (1) and (10) are equal and thus
ay ECwn=C:.
Consumption follows a random walk; changes in consumption are unpredictable.

Since consumption follows a random walk, the best estimate of consumption in any future period is simply
the value of consumption in this period. That is, for any s 2 0, we can write

12) E Cu.=C:.

Using equation (12), we can write the present value of the expected path of consumption as’
© E[Cusl 2 _Ct e 1

a3) T —5 = z =

s s CZ PR
=0 (1+71) s=0 (1+71) =0 (1+1)
Since 1/(1 + r) < 1, the infinite sum on the right-hand side of (13) converges to V[1-1/(Q+0}=(1 +0)r
and thus
o E([C 1+r
as 3 1l t+:]= c
=0 (1+71) r
Substituting equation (1) for C, intro the right-hand sid<=j of equation (14) yields
® E,[C 1+ ® E[Y @ E[Y
@5) Z t[ t+:]= T [ r)‘-At‘Fz t[ t+s]J=A +z t[ t+:]'
w0 1+’ 1+rvr =0 (1+1)° =0 (+1)
Equation (15) states that the present value of the expected path of consumption equals initial wealth plus
the present value of the expected path of income.

t-

(b) Taking the expected value, as of time t - 1, of both sides of equation (1) yields

[ s |
- Eial¥isd
(16) E41Cy = IH[A +s§0 (1+1)° j
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where we have used the fact that A, = (1 +1)[Aw1 + Yo - Cua 1 is not uncertain as of t - 1. In addition, we

have used the law of iterated projections so that Eui E:[Yus ] = E.i [Yis ] Subtracting equation (16) from
equation (1) gives us the innovation in consumption:

(U)Ct—EFﬂh=—L{§ E\lYis] 2 Ehunﬂu__ifg Yl B [Yi] |
I+rls=0 (1+1)° =0 (1+1)° =0 (1+1)° ]

T+
The innovation in consumption will be fraction 1/(1 + 1) of the present value of the change in expected
lifetime income.

The next step is to determine the present value of the change in expected lifetime income. That is, we need
to determine
© E [Yy]-E;[Y [EYy1-E Yoy 1 | E,Yur ~E, ;Y
1s) T tt P t+s tsl[ t+$]=[Yt‘Et—lYt]+[_ t1t41 t—1 4] I Rk R 5 t71 t+2 .
s=0 (1+1) I+r (1+1)°
In what follows, "expected to be higher" means "expected, as of period t, to be higher than it was, as of

periodt - 1". We are told that u, = 1 and thus
(19 Y.-E. Y= 1.

In period t + 1, since AYy = ¢AY, + u,y, , the change in Y., is expected to be $AY, = ¢ higher. Thus the
level of Y... is expected to be higher by 1 + ¢. Thus

E:Y..; -E,;Y, 1+
Qo) =Xt “EeiYuy ¢_
l1+r I+r

In period t +2, since AYe.; = $AY,.; + up, , the change in Y, is expected to be higher by $AY,.; = ¢?.
Thus the level of Yy, is expected to be higher by 1 + ¢ + ¢°. Therefore, we have

EYuz ~E Yo 1+¢+¢?
@n 5 = 7
(I1+r1) (1+71)

The pattemn should be clear. We have

© EiYiys]-Ei4]Y, 1+ 1+d+d° 1+o+62 +¢3
@ % ElVis ts][ t+s]:1+ ¢+ ) t . d+¢ 3¢ +

5=0 (1+71) I+r (1+n (1+r1)
Note that this infinite series can be rewritten as

® -E
(23) ZEt[YHS] t_][Yt"Ls]z{l+L+ ! +...J+[—¢—+ i ¢ J+

+
5=0 (1+1)° 1+ (1412 l+r (1+n? @+n?

¢, 8]
e

For ease of notation, define y = 1/(1 + ). Then the first sum on the right-hand side of (23) converges to
1/(1 - ). The second sum converges to ¢y/(1 - y). The third sum converges to ¢* v* /(1 - ). And so on.
Thus equation (23) can be rewritten as

E[Yess] = oy [ Vo]

1 22, 1t 1
-I_Y[1+¢y+¢ Y +'"]*(1‘y) a-on’

Q) I

5=0 (1+1)°
Using the definition of y to rewrite equation (24) yields

Yy

i
oz

Pt e o

L

£2

IR R TEIRA

31
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o5 5 E,[Yiss)~Bea[Yosl 1 1 @+n (4D
T s0 @+’ CWa+n -/l T (+1-9)

Substituting equation (25) into equation (24) gives us the following change in consumption:

faen Q0 | 040
r +r +r +I
@8 C-EuCt=rp ¢+ arr-9 (rr-9)

{c) The variance of the innovation in consumption is

[ a+n '! [ (1+1) T
27) var{C _E,Cy)=var| W F ~T 7 | var(uy)>varle
a7 var(C, - EaCl)=v g M Lae -9 (ay) > var(uo)
Since (1 +1)y/(1+1~- $)>1,the variance of the innovation in consumption is greater than the variance of
the innovation in income- Intuitively, an innovation to income means that, on average, the consumer will
experience further changes in income in the same direction in future periods.

It is not clear whether consumers use saving and borrowing to smooth consumption relative to income.

Income is not stationary, so it is not obvious what it means to smocth it.

Problem 7.5

(a) The present value of the lump-sum taxes is Ty + [T2/Q + D). The present value of the tax on interest
income is [r/(1 + DY - C,°), where T is the tax rate on interest income. The government must choose T1
and T so that these two quantities aré equal, or

T
NOR!! +1—+2—r=1—;:(Y1 -c9.

(b) Suppose the new taxes satisfy condition (1). This means that at the point where the individual
consumes Cy’, she pays the same with the new lump-sum tax as she did with the old tax on interest income.
That is, right at %, the individual's after-tax lifetime income is the same under both tax schemes. Thus at
., the individual has just enough to consume ¢ in the second period under both tax schemes. This
means that the new budget line must go through (C, C’) just as the old one did. Since (CY, C7°) lies

right on the new budget line, it is just affordable.

© First-period consumption must fall.

Consider the figure at right. Point E slope=-{1+(1- 0]
represents the endowment, Y1, Y2) The
budget line under the tax on interest income
has slope - {1 + (1 - )} for Ci<Y,;for
C,> Y, there isno positive saving and
therefore no tax on interest income so that
the slope equals - (1 +r1).

slope=-(1+1

As explained in part (b), the budget line
with revenue-neutral, lump-sum taxes goes
through the initial optimum consumption
bundle, (C%, €' ). lthas slope equal to
-(1+1). With saving no longer taxed, then
for any C1 < Y1, giving up one unit of
period-one consumption yields more units

—_—_—_—— s s
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of period-two consumption. Specifically, it yields (1 + r) rather than [1+ (1 -r]. From the figure, we
can see that the new tangency must involve lower consumption in the first period.

Intuitively, the government has set the tax rate so that there is no income effect from the change in policy,
only a substitution effect. Thus, since the rate of return on saving increases, the individual chooses to save
more and consume less in the first period.

Problem 7.6

(a) The change in purchases in period t, dE, , must leave the present value of spending unchanged, so that
(1) dE; +dEu; + dE., = 0.

In addition, it must leave consumption in period t + 2 unchanged, or

@) (1-8)"dE+ (1 - §)dEy; + dEy, = 0,

To see why equation (2) must hold, note that we can write the change in C; as dC, = dE, . The change in
Ciis dCuy = (1 - p)dC, + dE, or substituting for dC, , we have dCeui = (1 - p)dE, + dE.;. The change in
Cizis dCuy=(1 - 8)dCy; + dE,.; or substituting for dCy., , we have dCez = (1-8)*dE, + (1 - 8)dE,., +
dE.; . Thus if Cy., is not to change, equation (2) must hold.

Thus we have two equations in two unknowns. Solving equation (1) for dE,., gives us
(3) dE.; = -dE, - dE,,, .

Substituting equation (3) into equation (2) yields
@) (1-8)"dE, +(1 - §)dE,.; - dE, - dE,, = 0,
Expanding and collecting terms gives us

() dE[1-26+682-1]+[1-5- 11dE, =0,
and thus

(6) dEw, = (5 - 2)dE, .

Substituting equation (6) into equation (3) yields
(7) dEw; = dE, - (5 - 2)dE,

and thus

(8) dE.; =(1 - §)dE, .

(b) Since C,= (1-8)C.i+E , then

(9) dC( = dE‘ .

Since Ciy = (1 - §)C, + Eqiq, then

(10) dCyi = (1 - 8)dC, + dE,., .

Substituting equations (9) and (6) into equation (10) gives us
an dc.=qQ - 8)dE, + (8 - 2)dE, = dE, .

Since only C, and C,., are changed -- C,., is unchanged by construction -- we only need to look at expected
utility in periods t and t + 1. Since instantaneous utility is quadratic, the marginal utility of consumption in
periodtis 1 -aC,. Thus the change in utility in period tis (1 - aC, )(dE, ). The marginal wtility of
consumption in period t + 1 js given by 1-aC,., . Since dCey = -dE, , the change in expected utility in
periodt + 1 is the expected value of (1 - aCyy )(-dE,).

(¢) For this change in expected utility to be zero -- as it must be, if the individual is optimizing -- we
require

(12) (1 -aC; )(dE, ) + expected value of [(1 - aCy; )(-dE, )] = 0.

Canceling the dE, 's (which is somewhat informal), subtracting one from both sides and then dividing both
sides by (- a) yields

N kA S,

R T AR
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13) expected value of C1 = Ct.
Thus consumption follows a random walk since changes in consumption are unpredictable. The best
estimate of consumption in period t + 1 is simply what consumption equals this period.

(d) Rearranging C,=(1-8)Cn+Eto solve for E, gives us
(14) E=C:-(1 - 85)Cer .

Equation (14) holds for all periods and so we can write

(15) Eu = Cu- (1 - 5)Ct-2 .

Subtracting equation (15) from equation (14) gives us

16) E-Ewu= C.-(1-8)Ci1 -Ca + 1-8C2,

which implies

(17) E-Eu=(Ci-Cu) -~ 8)(Cei - Cia).

Since consumption is a random walk, we can write

(18) Ci= Cutu,

where u, is a variable whose expectation as of t - 1 is zero. Using equation (18), and the fact that (18)

holds in all periods, equation (17) can be rewritten as
(19) E-Ey=u-(1- S -

Equation (19) states that the change in purchases fromt - 1 to t has a predictable component — a
component that is known as of t - 1 — which is u.1, the innovation to consumption in period t - 1. Thus
purchases of durable goods will not follow a random walk.

As explained in Section 7.2, any change in expected lifetime resources is spread out equally among
consumption in each remaining period of the individual's life. Although we are simplifying by using a
discount rate of zero, the basic ideas are general.

Now suppose that in period t - 1, the individual's estimate of lifetime resources changes in such a way that
C, is one unit higher than G,z , that is, u.q = 1. This also means that expected consumption in all future
periods is one unit higher than it used to be. In order to get C.. up by one, purchases in period t - 1 must
be one higher than they were expected to be. But now look at the change in purchases fromt - 1tot. From
equation (19), the expectation (as of period t - 1) of the change in purchases fromt - 1totis (1 - ), since
UL, is assumed to equal one.

Intuitively, some of the new goods purchased in period t - 1 will still be around in period t. Thusto keep
expected consumption in period t at the new higher path — one higher than it was before — it is not expected
to be necessary to buy one unit of goods all over again. The individual only has to purchase enough to
replace the fraction of the extra t - 1 purchases that depreciated, which is fraction 5. Thus purchases in
period t are expected to be less than purchases int - 1. Specifically, they are expected to be lower by the
amount that does not depreciate, which is (1 -8). Thus, as of period t - 1, part of the change in purchases
betweent - 1 and tis predictable and thus purchases do not follow a random walk.

Now consider what happens if § = 0, the case of no depreciation. Then from equation (19), the expectation
(as of period t - 1) of the change in purchases from t - 1totis -1. Now all of the new goods purchased in
period t - 1 will till be around in period t. Thus to keep expected consumption at its new higher path —
one higher than it was before — it is not expected to be necessary to purchase anything new in period t.

Thus purchases are expected to fall by the whole amount of the innovation in purchases the previous
period.
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Problem 7.7
(a) Consider the following experiment. In period t, the individual reduces consumption by a small
(formally, infinitesimal) amount dC and uses the proceeds to purchase stock. Since one unit of stock costs

P,, dC will buy the individual dC/P, units of stock. This change has a utility cost of dC since utility is
linear in consumption.

In period t + 1, the individual will receive Di.; [dC/P, ] in dividends which she can consume. She can then

sell the stock, receiving Py; {dC/P, } which she can also consume. The discounted expected utility benefit

of doing this is E; [[1/(1 + 1)][Dy; + Puy][dC/P]]. If the individual is optimizing, a marginal change of this

type must leave expected utility unchanged. Thus the utility cost must equal the expected utility benefit, or
1

[ dc
(1) dC= E‘L(KJ(DH + PM)P_} .
t

Canceling the dC's , which is somewhat informal, and multiplying both sides of the resulting expression by
P, yields

[Dyy +Pyy |
@ Py =E| =5

(b) Equation (2) holds in all pg,riods and so we can write
Dt+2 +P t+2
3) Py=E [——ﬁ
€] t+1 t+1 1+r
Substituting equation (3) into equation (2) gives us
rDt+1:, Dyia + Py
4) P,=E +E(E | 2
@ P t[_l+r R | ()2
Now we can use the law of iterated projections. For a variable X, Bt Evt Xu2 = E; X2 Equation (4) then
becomes . ~ f ]
D D P,
5) Pt=Et[ t+l+ 1+27 +Etl_ szJ'
I+r (141~ ] (1+1)
We could no|yv substitute for P,., and then P,.; and l_so on. We would have
D D D P
6) Pt =Etl t+1 + t+22 . t+s +Etl\ t+s .
I+r (1+n) d+r1)° (A+1)°
Imposing the no-bubbles condition that lim, _, ., E, [P,,. /(1 +1)°]=0, we can write P, as
bl Dt+s
M P= ZE(
s=1 (1+r)
Equation (7) says that the price of the stock is the present value of the stream of expected future dividends.

Problem 7.8
(a) (i) With the bubble term, the price of the stock in period t is now

© D
(1) P =T E, ‘*SSJ+(1+r)‘b.
s=1 (1+r1)
We need to see if such a price path satisfies the individual's first-order condition, which is given by
I—DH»I + Pt+1

(2) P, =E'l_—l+—r— .
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Specifically, then, we need to see if the right-hand sides of equations (1) and (2) are equivalent. Since
equation (1) holds every period, we can write the price of the stock inperiodt + 1 as

s

® D
G) Py=2 Eml- HES |y (14+1)™*b.
s=1 (1+71)

Dividing both sides of equation (3) by (1 + r) and then taking the time-t expectation of both sides of the
resulting expression gives us

Pyl 2 I D4 | t
4) E [——— =% E L—-———J+(l+r) b,
@ E{7, ] o La+n*?

where we have used the law of iterated projections so that E; Eu1 Xu2 = B Xua for any variable x. Now add
E, [Ds1 /1 + 1] to both sides of equation (4) to obtain

© ] o [ ]
©) E{D‘” +Pu | Et[D‘“ ]+ b Et[——D‘““*s J+(1+r)'b= p) Ett Diss J+(1+r)‘b.
l+r1 l+rd o La+n™ el LA+D)®
Thus the right-hand sides of equations (1) and (2) are equivalent and so the proposed price path satisfies
the individual's first-order condition. In this case, consumers are willing to pay more than the present value
of the stream of expected future dividends. That is because they anticipate the price of the stock will keep
rising so that they can enjoy capital gains that exactly offset the premium they are paying.

(a) (ii) Ifb were negative, then as t — oo, the bubble term, (1 + 1)' b, would go to minus infinity. Thus the
price of the stock would eventually become negative and go to minus infinity. But that is not possible. The
stock would never sell for a negative price. The strategy of just holding on to the stock and never selling it

would avoid the capital loss from selling at a negative price. Or even more simply, an individual could just

throw her stock certificate away rather than sell it for a negative price. Thus b cannot be negative.
(b) (i) With this bubble term, the price of the stock in period t is

2 Dt+s
6) P,=2 E +qs,
©R=Z ‘[(Hr)SJ at

where q; equals (1 + r)q.1 /a with probability o and equals zero with probability (1 - ). Again, we need to

see if the right-hand side of equation (6) is equivalent to the right-hand side of equation (2), the first-order

condition. Since equation (Q‘holds in every period, we can write the price of the stock in periodt + 1 as
Dt+l+s

P =2 E
() Py = t+l‘.(1+r)s

Taking the time t expectation of both sides of equation (7) and using the law of tterated projections, we
have

J"‘CIH-I-

] Diyies 1 (1+1)q = [ Disits 1
— +———a+(0)(1—a)=ZEL J+(1+r) )
_(1+r)SJ a o LA+’ At
Dividing both sides of equation (8) by (1 +r) and then adding E, [Dw1 /(1 + 1)] to both sides of the resulting
expression gives us

rDt+l+Pt+l- D] = r D4 1 = [ D 1
=E TS - t+s '
® E‘l- I+r J "-1+f—‘+s§1ﬁtl.(l+r)s+l Jﬂh sEIEtL(Hr)SJ*’qt

® Eufpul-ZE

Thus the right-hand sides of equations (6) and (2) are equivalent and so the proposed price path satisfies
the individual's first-order condition.
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(b) (ii) The probability that the bubble has burst by time t + s is the probability that it bursts in t + 1 plus
the probability that it bursts in t + 2, given that it did not burst in t + 1, plus the probability that it bursts in
t + 3, given that it did not burst int + 1 ort + 2 and so on. The probability that the bubble bursts in period
t+1is (1 - ). The probability that the bubble bursts in t + 2, given that it did not burst in period t + I is
given by a(l - o). The probability that the bubble bursts in t + 3, given that it did not burst in periods t + 1
ort+2is o® (1 - @). And so on, up to the probability that the bubble bursts in period s, given that it has
not burst in any previous period, which is a* (1 - «). Thus the probability that the bubble has burst by
time t + s is given by the sum of all these probabilities, or

(10) Prob(burst byt +s)=(1 -o)(1 +a+ o’ +.. +a*').

As we allow s to go to infinity, then since o, < Ll+a+a?+. +o! converges to 1/(1 - «). Thus the
probability that the bubble has burst by time t + 5, as s goes to infinity is (1 - a)/(1 - &) or simply one.

(¢) (i) The price of the stock in period t, in the absence of bubbles, is given by

o Dt+s
11) =2 E .
) =2 ‘[(mf

If dividends follow a random walk, then E, D,,, = D, for any s 2 0. Since changes in dividends are
unpredictable, the best estimate of dividends in any future period is what dividends are today. Thus P, can
be written as r

<] @©
a2 p =T -=D, % ﬁl—S:Dt[LJr‘l—zﬂ..J ‘

s=1(1+r) s=1(1+71) I+r (1+r1)
With 1/(1 +r) < 1, we have
a3 — = Ya+n Y+

I+r (1+r1) I-[Y(1+n] r/d+71)

Substituting equation (13) into equation (12) gives us the following price of the stock in period t:
(14) P,=D;/r. :

!
-.

(c) (ii) With the bubble term, the price of the stock in period t is given by

(15) Pe= (D, /1) + b= (D¢ /1) + (1 + by + ce, .

We need to see if the right-hand side of equation (15) is equivalent to the right-hand side of equation ?),
the first-order condition. Since equation (15) holds every period, we can write the price of the stock in
periodt+ 1 as

(16) Piy = (D /1) + (1 + D)be + couy = [(D, + ey )] + (1 + )b, +cew

where we have used the fact that D, = D, + &1 . Dividing both sides of equation (16) by (1 + r) and
taking the time-t expectation of the resulting expression gives us

l’t+1-] D,
7 — [=———+b,.
an Etl_1+rj r(l1+r1) t
Adding E; [De /(1 + r%] to btlgth side_,s of equation (17) gives us
Dy +P, D D D, +D 1+1)D
(IS)EtL t+; t41 =Et,_ t+1J+ t +t=ft t t=( ) Lib,,
+r 1+r r(l+r) r(l+r) r(l+r)
andthus[_ﬁnally
Dy +P D
[,

Therefore, the right-hand sides of equations (15) and (2) are equivalent and thus the first-order condition is
satisfied. With this formulation, the innovation to dividends, e, gets built into the bubble. Thus a positive
realization of e does not just raise the expected path of dividends, it also raises the path of the bubble and
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the current price responds to both of these changes. It is in this sense that the price of the stock overreacts
to changes in dividends.

Problem 7.9

(a) Suppose the individual reduces her consumption by a small (formally infinitesimal) amount dCin
period t. The utility cost of doing this equals the marginal utility of consumption in period t, 1/C, times
dC. Thus we have

(1) utility cost = dC/C,.

This reduction in consumption allows the individual to purchase dC/P, trees inperiodt. Inperiodt+1, the
individual receives the extra output from her additional holdings of trees. She gets to consume an extra
[dC/P;1Yu1 . The individual then sells her additional holdings of trees for [dC/P, Py and consumes the
proceeds. Thus her total extra consumption in period t + 1 is given by [dC/P TY e + [dC/P, 1Py, . The
marginal utility of consumption in period t + 1 is 1/Cy: . Thus the expected discounted utility benefit from

this action is
1 1 (dc ac_ Nl

27) expected utility benefit = E{| ———— —Y, +—P .
(2) exp ity tb“‘PCm\Pt T t+lJ“

If the individual is optimizing, a marginal change of this type must leave expected utility unchanged. This
means that the utility cost must equal the expected utility benefit, or
dC 1 1 dC
3 SoE | — =Y + P} |-
©)) C, ‘[Hpcm Pt( t+ t+l)j
Canceling the dC's (which is somewhat informal) gives us
1 1 1

1
@ = B o5 Cn ;t—(Ym +P.+1)J .

We can now solve equation (4) for P, in terms of Y, and expectations involving Yu1 , P.; and Ciy . Note
that we can replace C; with Y. and that P, is not uncertain at time t. Using these facts, equation (4) can be
rewritten as
1 1 1 1
5) —=—E{—— Yy +P .
® Y, P t l+pCM( t+1 t+1)i\
Solving equation (5) for the price of a tree in period t gives us
Yy | Y + P 1

6) ,=—E{— - |
© R 1“”Pt Cin J

) Since Curs = Yeus for all s > 0, equation (6) can be written as
Y, P Y Y, P
(™ P =——E; 1+—‘iJ=—‘—+—‘—Et[£’—‘— .
1+p Yinl 1+p 1+p LY
Equation (7) holds for all periods and so we can write the price of a tree in periodt + 1 as
Y Y P |
®) Py = —tl g, L*’lﬁ .
1+ P 1+ P Yt+2
Substituting equation (8) into equation (7) yields
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Y, Y, 11 P )|
©) Py=—"—+——E | ——+—E, [‘—*2 :
1+p 1+p I+p 1+p Yiso
Now use the law of iterated projections that states that for any variable x, E; Er-; Xu2 = Et Xu2, to obtain
Y, Y, Y, P, |
10) Py =——+—'=+—'=E, ‘+2J.
1+p (1+p? (+p? 'Yz
After repeated substitutions, we will have
Y, Y Y, Y, P,
an p=—tt—to ‘[ ‘“:l.
l+p (1+p) 1+p° (+p) Yiss
Imposing the no-bubbles condition that lim; e Er [(Pes /Yere (1 + p)° ] = 0, the price of a tree in period t
can be written as

1 1
12) P,=Y|—+ +}
e a4 p?

Since 1/(1 + p) < 1, the sum converges and we can write

Y1+ p) } { Y(1+p) }
13) P, =Y, =Y, R
. 1[1_[1/(“,,)] )
Thus, finally, the price of a tree in period t is

(14) P,= Y. /p.

(c) There are two effects of an increase in the expected value of dividends at some future date. The first is
the fact that at a given marginal utility of consumption, the higher expected dividends increase the
attractiveness of owning trees. This tends to raise the current price of a tree. However, since consumption
equals dividends in this model, higher expected dividends in that future period mean higher consumption
and thus lower marginal utility of consumption in that future period. This tends to reduce the attractiveness
of owning trees -- the tree is going to pay off more in a time when marginal utility is expected to be low --
and thus tends to lower the current price of a tree. In the case of logarithmic utility, these two forces
exactly offset each other, leaving the current price of a tree unchanged in the face of a rise in expected
future dividends.

(d) The path of consumption is equivalent to the path of output. Thus if output follows a random walk, so
does consumption. But if output does not follow a random walk, then consumption does nct either.

Problem 7.10

(a) Suppose the individual reduces her holdings of the good-state asset by a small (formally, infinitesimal)
amount dAg . This change means that if the good state occurs — which it will, with probability 1/2 - the
individual loses dAg times the marginal utility of consumption in the good state, which is U'(1). Thus

(1) expected utility loss = U '(1)dAg /2.

Since p represents the relative price of the bad-state asset to the good-state asset, selling dAg of the good-
state asset allows the individual to purchase dAg /p of the bad-state asset. This means that if the bad state
occurs -- which it will, with probability 1/2 - the individual gains dAg /p times the expected marginal
utility of consumption in the bad state. Fraction A of the population consumes 1 - ($/A) in the bad state and
fraction (1 - A) consumes one. Thus the expected marginal utility of consumption in the bad state is

AU - (@/A) + (1 - MU '(1). Putting all of this together, we have

(2) expected utility benefit = [dAg /p][ AU '(1 - (¢/2)) + (1 - MU '(D)2.

i A i B i e AR e
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If the individual is optimizing, this change in holdings of the two assets must leave expected utility
unchanged. Thus the expected utility loss must equal the expected utility gain, or
3) U'(DdAs /2 =[dAs I AU'(1 - @A) +(1-MU ‘(M2

(b) From equation (3), canceling the 1/2's and the dAg's (which is somewhat informal), we have
@) U'(Q)=[Upl[ AU'Q - @/A) + (1 - MU ‘D]
Solving equation (4) for p gives us
AU- (/M) +1-MU'(D)
U '

6) p=

(c) The change in the equilibrium relative price of the bad-state asset to the good-state asset due to a
change in A is

op P 2
©® I U'(1- (¢/A) + AU (1= (¢/M)(@ /X)) - U'(),
which simplifies to

0
)] a—‘;: U= (/M) - UM+ U(1-@/M)@ /D).

(d) If utility is quadratic, then U'(C)isa
linear function of C since U "(C) is a o)
constant. See the figure at right. We can
calculate the slope of the U '(C) line as

slope = U "(1 - (¢/A))

@) sl o2 0a-@m-Uh T | ::
¥ 1-@/m-1 :
or
(9) slope= v ‘ |
LG e :

We also know that the slope of this line is
U "(C) at any value of C and in particular it
equals U"(1 - (¢/A)). Equating these two H

expressions for the slope gives us 1-@/A) 1 C

U'-@/m-Ud
UA-@/M =YD _ g pay),

4.

and hence

a1 Ud-@/A) - U@ +@/MU"(1-@/4) =0.
The left-hand side of equation (11) is &p/0A and thus it equals zero as required. With quadratic utility, a

marginal change in the concentration of aggregate shocks has no effect on the relative price of the bad-state
asset to the good-state asset.
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6) ca=(W-¢;)/2.

Substituting equation (6) into equation (5) yields

1 1
¢ =——|W-(W-c)/2]= 2arg Ve

1+6
Solving for ¢, gives us
a2(1+8)-1]=W,
or simply
M e=15Y
Equation (7) gives the individual's optimal choice of first-period consumption under commitment. To solve
for second-period consumption, substitute equation (7) into (6):

1 1
c2=—(W— = (W+26W-W),
2 1+28 2(1+28)
which simplifies to
)
3 =
® 2272

It should be clear from the first-period objective function that c; and ¢, will be equal but to verify this,
substitute equations (7) and (8) into the constraint, ¢; = W - ¢; - ¢z, to obtain
8 1+26-1-8
c3=W- \A W=
| & 1+26 1+26 1+28
% which simplifies to

5
9) ¢ =——W
©) 32775

>

(a) (i) In period 2, the individual chooses c; taking her choice of ¢ -- which was made last period -- as
given and with the constraint that ¢c; =W - ¢, - ¢; . Thus the individual chooses c; to maximize

§ (10) U;=lnc; +8n[W-¢;-c; ].
. 4 The first-order condition is given by
ou, 1 5
i 1 (1) =—+ -n=0.
: (302 Co W—CI-CZ
Solving for c; as a function of W and ¢, yields
f ? (12) 5C1=W'C1'Cz,
¥ or simply

1
: 13) ¢ =——(W-¢)).
: 13) e =7—W-c)

This means that third-period consumption as a function of W and the choice of ¢, is given by
(I+3)W-(1+8)c; ~WH+cy

1+8

1
14) c3=W—c;~—=(W=c;)=
(14) c3 ] 1+6( <) ,
or simply
)
15 =——(W-cy).
(15) ¢3 1+5( D

The individual chooses ¢, in period 1 just as she did under commitment since she (wrongly) believes she
will choose ¢, in the same way as under commitment. Thus, again we have
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(16) ¢y =——W
1+28
Substituting equation (16) into equation (13) yields
1 1 ] 1 [1+28-1 ]
(17) cg=—= W——WJ:——
1+8 1+28 1+8L 1+28

or simply

(18) ¢, =

28
—_—W.
(1+8)(1+28)
Finally, we can obtain third-period consumption by substituting equation (16) into equation (15):

5 1 1 & [1+25-1
19 =—[w——w N
W o= sV TV I Tosl 12 V)

or simply
(20) 28° w
c3=————W.
3T (1+8)1+28)
(a) (iii) Now, in period 1, the individual chooses c; realizing that her choices of ¢; and ¢; — which will be

functions of her choice of ¢; -- will be given by equations (13) and (15). Thus we can substitute (13) and
(15) into the period-1 objective function:

i} R ) P_ }
@n Ul-lncl+6]n{1+6(W—cl)_l+6ln S W-en|

The first-order condition for the optimal choice of period-1 consumption is
ou; 1 8 [ (-1 § -5
22) 1——‘=—+———~—Li—)}+————— (~—)}=o,
ocy o [VA+8)W-cpli+s] [5/1+8))(W-c))L1+8
which simplifies to
23) i = 2
< B w- ) '
Solving for ¢, yields
24) 28¢,=W-¢;,
or simply
1
25 =—W
@) e=175
Note that the choice of period-1 consumption is the same here as it was under "naiveté". Since ¢, and 3
will be chosen the same way as under "naiveté", they will be the same also and are once again given by
equations (18) and (20).

(b) () The individual's preferences are time-inconsistent because the optimal choice of period-2
consumption that is made in the first period is no longer the optimal choice once period 2 actually arrives.
This is illustrated by the fact that if the individual does not commit to period-2 consumption in the first
period, then when period 2 arrives she chooses

25
18 =—W,
(18) < (1+8)(1+26)
rather than the choice she had originally made in the first period, which was
®) cy=

1+26
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And, in fact, since 2/(1 + &) > 1, she chooses a higher value of period-2 consumption once period 2 actually
arrives.

‘We can see from the period-1 objective function that in the first period the individual is indifferent between
period-2 and period-3 consumption; they are both discounted by 8. But when period 2 actually occurs, we
can see from the period-2 objective function that the individual then prefers period-2 consumption over
period-3 consumption.

(b) (i) The key to the result that sophistication does not affect behavior is the assumption of log utility.
The intuition behind this result is very similar to the intuition behind the version of the Tabellini-Alesina
model with logarithmic utility that is presented in Section 11.6.

Think of a sophisticated individual contemplating a marginal decrease in ¢, , relative to what a naive
individual would do. The naive individual believes she will allocate the increase in saving equally between
¢, and c; and that marginal utility will be the same in the two future periods. The sophisticated individual
realizes that she will, in fact, devote most of the increase in saving to ¢; and that ¢, will be high. The
individual does not particularly value c, thus marginal utility in period 2 will be low. This tends to make
the increase in saving look relatively less attractive to the sophisticated individual than to the naive
individual.

But the sophisticated individual also realizes that some of the increase in saving will be devoted to ¢; ,
which will be low. The individual values c; as much as ¢, and thus marginal utility will be high in period 3.
This tends to make the increase in saving look relatively more attractive to the sophisticated individual than
to the naive individual.

With log utility, these two effects exactly offset each other. Witha general utility function, a sophisticated
individual can consume either more or less in the first period than a naive individual.
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IO 10 CHAPTER 8
Problem 8.1

v

(a) Given K and the fixed quantity demanded, Y, the firm will hire enough labor to meet that demand.

Given the production function ,_
(1) Y=K*L"™

the firm will hire

(2) L = Yl/(l-().) K-a/(l-a)'

(b) Substituting equ;tion (2) for the firm's choice of L into the profit function, © = PY - WL - K, we

have
() m=PY-W[Y" g0y ok

() The first-order condition for the firm's choice of K is

on  a —a/(1-0)]-
@) EIZ::WY'/“"“)K[ /-l _ 2o,

or simply
®) Tix_a wy V(=) g =1/(1-a) _ g

In order for the value of K in equation (5) to be a maximum, we require &*n/6K” to be negative. This

derivative is

6) o x .—_( -1 ) x Wyl/(l—a)K(a-Z)/(l—a) <0
0K? \-a/l1-a :

So the second-order condition is satisfied since o < 1.

(d) Solving equation (5) for K gives us

- Kl/(l-a)=( o )WYI/(I—OL).
— l-a 19°¢

Taking both sides of equation (7) to the exponent (1 - o) gives us the firm's choice of K:

l-o (l-a0)
@®) K=Y(—a—) (EJ .

l-a 198 ‘ ,
Thus changes in the price of the firm's product do not directly affect the profit
although changes in P likely change Y. The elasticity of K with respect to the
positive. Its elasticity with respect to the rental price of capital, rx yis-(1-a
the elasticity of K with respect to the quantity demanded is one,

Problem 8.2

is the constant interest rate, the present value of the reduction in the firm
X, is given by the following expression:

4T |
M X= [e7Ve(p /Tyas,
s=t

which implies

-maximizing choice of K,
wage, W, is (1 - o), which is
), which is negative, Finally,
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t+T L 1 . s=t+T 1- e-iT 1
@ X=1(Pg/T) Je7 ¢ Vds=1(Py /T) ——;eﬂ(s—t) = (P /T — j
s=t s=t

Since the after-tax price of the capital good, denoted Pi*T is its pretax price, Px , minus the present value
of the tax saving that results, we have

[—eiT J—eiT

(b) An increase in inflation, 7, without a change in the real interest rate, r, increases the nominal interest
rate, i. From equation (1), the present value of the reduction in the firm's corporate tax liabilities as a result
of purchasing the capital good is

t+T |
@) X=1(Pg /D Je7 Vs,
s=t
The change in the present value of the reduction in the firm's corporate tax liabilities due to a change in the

nominal interest rate is therefore ‘
t+T t+T

& a6~ Vds=2(Bg /D [ (s-e™ Vs <.
oi s=t s=t

The increase in i reduces the present value of the tax savings from purchasing the capital good. Therefore,
it increases the after-tax price of the capital good.

Problem 8.3

From equation (8.4) in the text, the real user cost of capital is

(1) & @) = [r() + 5 - (Px ®)/px )Pk O,

where r(t) is the relevant real interest rate, 3 is the rate of depreciation and px (t) is the real price of capital.
Here, capital refers to owner-occupied housing. The after-tax real interest rate for owner-occupied housing
is r(t) - 7i(t) where 7 is the marginal tax rate. This is due to the fact that nominal interest payments are tax
deductible.

Intuitively, if an individual foregoes selling her home, she does lose r(t)px (t) — the interest she could obtain .
by selling it and saving the proceeds — but she does get the bonus of deducting her nominal interest
payments from her income. Thus she receives T times i(t)px (t) in tax savings by holding on to her home, .
which reduces the user cost of capital. Thus for owner-occupied housing, equation (1) becomes

@) 1% @) = [r(®) - 7it) + 3 - (p x ©/px ©)Ipx ©)-

Substituting i(t) = r(t) + () into equation (2) gives us

(3) 1x @ = [1(t) - w(®) - T2 ®) +3 - (px O)/px O)IPx O,

which implies

@) x @ =[(1 - Or® - T=® + 3 - (P ©)/px O)px ©)-

To see how an increase in inflation for a given real interest rate affects rx (t), take the derivative of 1k (t)
with respect to (t):

(5) orx (ty/on(t) = -wpx (1) <O0. ~

An increase in inflation reduces the user cost of owner-occupied housing since it allows the homeowner
more in the way of tax deductions on the nominal interest payments. Thus an increase in inflation increases
the desired stock of owner-occupied housing.
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Problem 8.4

(a) The planner's problem is to maximize the discounted value of lifetime utility for the representative
household, which is given by

© 1-0
M U=tfo e'mc(l—tié—dt B=p-n-(1-0)g,

subject to the capital-accumulation equation given by

@) k®=fke) - ct) - (@ + k().

The control variable is the variable that can be controlled freely by the planner, which is consumption per
unit of effective labor, c(t). The state variable is the variable whose value at any time is determined by past
decisions of the planner, which is capital per unit of effective labor, k(t). Finally, the shadow value of the
state variable is the costate variable, which we will denote ut).

The current-value Hamiltonian is thus

1-0
® H{k(,o(0) =<

+ O [E(k () - c(t) - (n + g)k(1)].

(b) The first condition characterizing the optimum is that the derivative of the Hamiltonian with respect to
the control variable at each point is zero, or
OH (k(t), c(t))

-— -8 - =
4) ae(t) c(t) " -nut)=0.

The second condition is that the derivative of the Hamiltonian with respect to the state variable equals the
discount rate times the costate variable minus the derivative of the costate variable with respect to time, or

oH(k(®),c(1)) , .
® ke ROE(k()) - p(t)(n + g) = Pu(t) ~ ju(t).
The final condition is the transversality condition. The limit as t goes to infinity of the discounted value of
the costate variable times the state variable equals zero, or

©) lim e P utk(r) = 0.
t—o

T G RIS ¥ g s T L

(c¢) From equation (4) we have
() ) =ct)®. .
Taking the time derivative of both sides of equation (7) yields

(®) fut) =-0ct) > Tect) =-0c(t)~° % .
From equation (5), we have

) 1® =nu®[B - f'k®) + (n +g)].

Equating these two expressions for fi(t) gives us
-g C(t

(10) -6e(t)™® Szt—; =B - £'(k(t)) + (n +g)].

Substituting equ_ation (7) for p(t) and £'(k(t)) = r(t) into equation (10) yields

(11) -Bc(t)™® 0] =c(t) °[B-r(t) + (n+g)].
c(t)

Canceling the c(t)®, dividing both sides by -9, and substituting for B = p -n - (1 - B)g gives us
12) ¢t) _r)-(n+g)-p+n+(1-0)g
c(t) 0 ’
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. which simplifies to
¢t) rt)-p-6
13 SO _10-p-0e
c(t) 0
Equation (13) is identical to the Euler equation in the decentralized equilibrium. See equation (2.20) in the
text.

(d) Dividing both sides of equation (9) by (t) leaves us with
1y 2 g wep-r,
)
where we have used f'(k(t)) = r(t). Note that equation (14) can be written as
(15) dlnpt)y/dt =P + @ +g) - ().
Integrating both sides of equation (15) from time t = O totime T =t gives us

et
(15) Tnp@) - lnp(©) = [p+ @ +g)]t |Ht) - Ior(t)d‘l:.

Using the definition of R(t) and simplifying gives us

(16) Inp(t) = Inu(0) + Pt +( + )t - R(1).

Taking the exponential function of both sides of equation (16) yields
(17) p(t) = p(0)e™ =¥ ™
Thus ™ p(t) is proportional to g RO et

This implies that the transversality condition, equation (6), is equivalent to
(18) lim e RMe®®k(1)=0.

t—yo0
From equation (2.15) in the text, the household's budget constraint, expressed in terms of limiting behavior,
is given by
(19) lim e W™ k(t)>0.

t—ooo
Comparing equations (18) and (19), we can see that the transversality condition will hold if and only if the
budget constraint is met with equality. Thus we have shown that the solution to the social planner's
problem in the Ramsey model is the same as the decentralized equilibrium. Hence that decentralized
equilibrium must be Pareto efficient.

Problem 8.5

The equation of motion for the market value of capital, g, is

1) 4@ =rq@®) - ©KQ),

where 7 '(s) < 0. The condition required for ¢ = 0 is given by

2 q==K)r.

The 9quation of motion for capital, K, is

3) K® =£a0), |

where f(q) = NC' (q - 1) with f(1) = 0 and f'(e) > 0. The condition required for K = 0 is given by
@ q=1
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(a) The destruction of half of the
capital stock does not cause either the
K = 0 or the ¢ =0 loci to shift. Both
of these are already drawn allowing for
K to vary. At the time of the
destruction, K falls to Ko = K/2. Qo

For the economy to retumn to a stable
equilibrium, q must adjust so that the
economy is on the saddle path. Thus q
must jump up to qo , putting the
economy at point A in the figure at
right. Intuitively, since profits are
higher at the lower K, the capital that is
left is more valuable and so the market
value of capital is now higher.

The economy then moves down the saddle path with q falling and K rising. Intuitively, the higher market
value of capital attracts investment and so the capital stock begins to build back up. As it does so, profits
begin to fall and thus so does the market value of capital. This process continues until the market value of
capital returns to its long-run-equilibrium value of one and the capital stock is back at its original level.
Hence the economy eventually retums to point E.

(b) Profits at a given K are now

(1 - ©)n(K) rather than n(K). The
condition required for ¢ = 0 is now
given by

) q=01 - )X/

At a given K, the value of q that makes
q =0 is now lower sothenew 4 =0
locus lies below the old one. In
addition, the slope of the ¢ = 0 locus is
og¢/6K = (1 - t)n '(K)/r rather than

n '(K)/r. With (1 - 7) <1, this new
slope is less negative and sothe ¢ =0
locus becomes flatter. The K = 0 locus :

is unaffected. See the figure at right. K K

K, the stock of capital, cannot jump at the time of the implementation of the tax. Thus q must jump down
so that the economy is on the new saddle path at point A. Intuitively, since the government is now taking a
fraction of profits, existing capital is less valuable and so the market value of capital falls. The economy
then moves up the new saddle path with K failing and q rising. Intuitively, the lower market value of
capital discourages investment and so the capital stock begins falling. As it does so, profits begin to rise
back up and thus so does the market value of capital. This process continues until the market value of
capital retums to its long-run-equilibrium value of one and the capital stock is at a permanently lower level.
The economy winds up at point Exgw in the diagram. The lower capital and thus higher pretax profits
offset the fact that the government takes a fraction of those profits.
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(c) One of the conditions required for
optimization is that the firm invests to
the point where the cost of acquiring
capital equals the value of that capital, Exw
q. With this tax on investment, the cost | 1 +y
of acquiring a unit of capital is the
purchase price (which is fixed at one)
plus the tax, y, plus the marginal
adjustment cost, C '(I). Thus analogous 1
to equation (8.18) in the text, we now
have

(6) 1+7+C'A®Y) =q0.

Since C '(0) is zero, equation (6) implies :
that I(t) is zero (and thus K = 0) when X ' X
q(t) = 1 +7v. Sothe equation of the
K = 0 locus is now

(M q=1+y. .
Thus an investment tax of y shifts the K = 0 locus up by y. The ¢ =0 locus is unaffected. See the figure.

K, the stock of capital, cannot jump at the time of the implementation of the tax. Thus q must jump up so
that the economy is on the new saddle path at point A. Intuitively, because the tax will reduce investment,
it means that the industry’s profits (neglecting the tax) will eventually be higher, and thus that existing
capital is more valuable. The economy then moves up the new saddle path until it reaches point Exgw .

The capital stock is permanently lower and the pretax market value of capital is equal to 1 +; the aftertax
market value is again equal to one.

Problem 8.6 : ,
The important point is that q is anticipated to jump up discontinuously at the time of the capital levy, time
T. Consider what is required, if there is a market for shares in firms, for individuals to be willing to hold
those shares through the interval where the one-time tax on capital holdings is imposed. Consider the
market value of capital an instant, €, before the levy and an instant after the levy and then look at what
happens as € goes to zero. The key point is that the market value of capital an instant before the levy,

q(T - €), must equal (1 - f) times the market value of capital an instant after the levy. If it did not, — in
light of the levy - holders of shares in firms would be expecting capital losses that they could avoid.
Therefore, q(T - €) must equal (1 - f)q(T +€) or

(1) (T -&)/q(T +&)=(1-9).

For example, if f= 0.10 or ten percent, then the value of q an instant before the levy must equal 90 percent
of its value an instant after the levy. Thus at time T, q jumps up to close that 10 percent gap. In addition,
that jump must put the economy somewhere on the saddle path in order for the economy to return to a
stable equilibrium.
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Thus at the time of the news, q must Jjump
down, putting the economy at a point
such as A in the figure at right. The
economy is then in a region where both q
and K are falling. Thus between the time
of the news and the time the levy is
imposed, the market value of capital and
the capital stock are falling. Intuitively, 1
firms begin decumulating capital in
anticipation of the one-time levy.

Point A must be chosen so that at the time
of the levy, q can jump up by the required
amount discussed above and that required
Jjump must put the economy right on the

saddle path. The stock of capital does not : K
jump at the time of the levy. Thus at time
T, the economy jumps from a point such as B to a point such as C where qg /qc = (1 - ).

After the time of the levy, the economy moves down the saddle path, eventually retumning to the original
equilibrium at point E. Intuitively, once the one-time tax is over with, since K is lower, profits are higher
and so investment is attractive once again. Thus the capital stock begins rising back to its initial level.

Problem 8.7

(a) The evolution of the stock of housing is given by

(1) H=1I(py) - 6H.

Thus the condition required for H = 0 is given by I(py ) = SH. That is, in order for the stock of housing to
remain constant, new investment in housing (which is an increasing function of the real price of housing)
must exactly offset depreciation of the existing housing stock. Differentiating both sides of this expression
with respect to H gives us the following slope of the H = 0 locus:

(@) 1'(pu)dpu/dH = §,

or

(3) dpu/dH =8/1'(py ) > 0.

Since I'(py ) > 0, the H = 0 locus is upward-sloping in (H, py ) space.

Rental income plus capital gains must equal the exogenous rate of retumn, r, or

R(H)+py
@4 ——=r.

PH

Solving equation (4) for Py Yyields
(5) By = px - REH).
Therefore the condition required for Py =0is 1pu - RH) = 0 or py = RH)/r. Differentiating both sides of
this expression with respect to H gives us the following slope of the py; = 0 locus:
(6) dpu/dH =R 'H)/r. :
Since R '(H) < 0 -- rent is a decreasing function of the stock of housing - the py; = 0 locus is downward-
sloping in (H, py ) space.
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(b) Since I'(pu) > 0, then from equation (1), H
is increasing in pu . This means that above the P Py =0
H =0 locus, H > 0 and so H is rising.
Intuitively, at a given H, if py is higher than the
price necessary to keep the stock of housing
constant, investment (which is an increasing
function of py ) is higher than necessary to offset
depreciation. Thus the stock of housing is rising
above the H = 0 locus. Similarly, below the

H =0 locus, H < 0 and so H is falling.
Intuitively, pu and thus investment are too low to
offset depreciation and keep the stock of housing
constant at a given H. Thus the stock of housing
is falling below the H = 0 locus. H

Since R '(H) < 0, then from equation (5), py is
increasing in H. This means that to the right of the py; = 0 locus, py; > 0 and so py is rising. Intuitively,
at a given py , if H is higher -- and thus rent lower -- than the level necessary to keep the price of housing
constant, this lower rent must be offset by capital gains — a rising py - if investors are to earn the required
exogenous return of r. Similarly, to the left of the pyy = 0 locus, pyy < 0 and so py is falling. If H is lower
- and thus rent higher -- than the level necessary to keep the price of housing constant, this higher rent
must be offset by capital losses in order for investors to eam the rate of return r.

(c) The pgy = 0 locus is defined by py = R(H)/r.
A rise in r means that the py that makes pg; =0 is P
now lower at a given H. Thus the new py locus
lies below the old one. In addition, the slope of
the py = 0 locus is R '(H)/r and sothe rise in r
makes the slope less negative. Thus the new

py = 0 locus is flatter than the old one. The

H = 0 locus is defined by I(py ) = 6H. Sincer
does not appear in this equation, the H = 0 locus
is unaffected.

At the time of the increase in r, H -- the stock of
existing housing -- cannot jump discontinuously.
The real price of housing, px , must jump down to H
put the economy on the new saddle path. In the '
figure, at the time of the rise in r, the economy jumps from point E to point A.

The discontinuous downward jump in py causes the amount of investment to jump down. Thus investment
is no longer enough to offset depreciation at the initial value of H — we are below the H = 0 locus -- and so
the stock of housing begins to fall. As H begins to fall, rent begins to rise since R '(H) < 0. As the
economy moves up the new saddle path, the real price of housing is rising. This means that investment is
rising back up since I '(ps) > 0. The economy eventually reaches point Exgw where py is constant at a new
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®

© 6}<(t) +q()[I(t) - dx(1)].

(1) H(x(t),1(t)) = =(K(t))«(t) - 1(t) - C(

(b) The first condition characterizing the optimum is that the derivative of the Hamiltonian with respect to
the control variable at each point is zero. Here, the control variable is investment and thus

@ IO o (ﬁ}—x(t) +q(t)=0.
ol(t) (t)/x(t)

The second condition is that the derivative of the Hamiltonian with respect to the state variable equals the

discount rate times the costate variable minus the derivative of the costate variable with respect to time.

Since the state variable is the capital stock, we have

SH(X®, 1) _ ( K(t )J( —I(t)} [ k(t )) .
) —— K(t C’ C 8 = —-q(t).
O R SOt ey el LORES By e CRL O

The final condition is the transversality condition. The limit as t goes to infinity of the present value of the
costate variable times the state variable must be zero. Thus, we have

@) lim e ™q(t)x(t) =0.

t—w

(c) Equation (2) states that each firm invests to the point at which the purchase price of capital plus the
marginal adjustment cost equals the value of capital: 1 + C '(x /) =q. Since C '(x/x) is increasing in K /X,
this condition implies that k /x is increasing in q. And since C '(0) is zero, it also implies that x /x is zero
when q equals one. Finally, note that since q is the same for all firms, all firms choose the same value of

¥ /x. Thus the growth rate of the aggregate capital stock, K/K, is given by the value of « /x that satisfies
(2). Putting this information together, we can write

) KO/K®=fqv) £f1)=0,f'(9)>0,

where f(q) is the value of K/K that satisfies C (K/K) =q-1: flg) =C" T@q- D). Equatlon (5) implies that
K is increasing when q > 1, decreasing when q < 1 and constant when q = 1. Thus the K =0 locus is a
horizontal line at q = 1 when drawn in (K, q) space.

(d) Rearranging equation (3) to solve for q (t) yields

[ c(t) ) 1 «t))]
6) at)=(r+8)q(®) —Ln(K(t)) + C(zg )[K((?) ) B C(EEI;)J '

To simplify this expression, note first that I/x equals (x + 5k)/x or (k/x) + 8. In addition, as we just
showed, the growth rate of the representative firm's capital stock, k /x, is the same as the growth rate of the
industry-wide capital st<|)_ck, K/K. Thus we can rewrite equatic:m (6)_Ias

. K@®) || K@) K(t)
(M a@t)=(r+d)q(t) - [n(K(t)) +C' (K(t))( ) + SJ— C(_IZ(?)_)J .
We can now use equation (5), K/K = f{q), to substitute for K/K, and then use the fact that the definition of
f(e) implies C '(f(q)) = q - 1. This yields
(®) qt)=(r+3)q(®) - [ﬂ(K(t)) +[q(t) - 11[f(q(V) +8]- C(f (Q(t)))] =G(K(),q(t)).

(¢) The condition G(K, q) = 0 implicitly defines the locus of points in (K, q) space for which q is zero. To

see how q varies with K along this locus, we therefore implicitly differentiate this condition with respect to
K. This yields
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=0,

| d
©) Gk (K,q)+Gy (K,q) 3
dKly_

or

d -Gk (K,
ao 3 _SxK.q)
dK|,

¢=0 Gq(K,q)’

where subscripts denote partial derivatives and 4 denotes the derivative of q with respect to K along

q=0

the 4 = 0 locus.

Using equation (8) to compute the derivatives in (10) yields
(l l) GK (K1 CI) =-n '(K)s
and

(12) G, (K, 9 =(r+8) - [(q - ) '(q) + (Rq) +9) - C (A (@] =r - Rg),
where we again use the fact that C 'f@)=q-1.

Substituting equations (11) and (12) into equation (10) gives us

a3) d_q‘ __*(K) .
dK q=0 r-— f(q) \

Note that fq) is zero when q equals one. Thus the slope of the 4 = 0 locus at the point where q=1is
simply 7 '(K)/r. Note that at this particular point, this slope is exactly the same as the slope of the q=0
locus in the version of the model in the text where adjustment costs took the form C(x).

Problem 8.9

(a) One of the conditions for optimization is that the marginal revenue product of capital, n(K(t)), equals
its user cost, rq(t) - g (t). Rearranging this condition gives us the following equation of motion for q
(1) 4@ = rq@) - =(K()).

Substituting the profit function, n(K) = a - bK, into equation (1) gives us

@) q®=rqt)-a+ bK(t).

The q = 0 locus is therefore given by

(3) rq-a+bK=0,

or solving for q as a function of K, we have

4) q=(a-bK)/r.

Sothe 4 = 0 locus has a constant slope of - b/r.

To find the long-run-equilibrium value of K, we need to find the intersection of the d = 0 locus -- as given
by equation (4) -- and the K = 0 locus. The K = 0 locus is given by q = 1, which means that we already
know that the long-run-equilibrium value of 9, g% is one. Substituting q = 1 into equation (4) and solving
for K* gives us

(5) K*=(a - ).

We can now use the method of Section 2 6 to find the slope of the saddle path. We first need to solve for
the equation of motion of K(t). One of the conditions for optimization is that each firm invests to the point
at which the purchase price of capital (which is fixed at one), plus the marginal adjustment cost, equals the
value of capital, q. We are assuming quadratic costs of adjustment, C(x ) = ak 2 /2, and thus the marginal
adjustment cost is
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d
©) Gk (K9 +Gy (K, <o,
dK|,
or
d -Gy (K,
ag 4 _Zk&a)
Ky Gq(Kq)

d o .
where subscripts denote partial derivatives and = denotes the derivative of q with respect to K along

‘ q=0
the ¢ = 0 locus.

Using equation (8) to compute the derivatives in (10) yields
(11) Gk (K, @) = -n'(K),
and

(12) Gy (K, @ =(r +8) - [(q - 1)f (q) + (@) + ) - C A (@] =r - f(g),
where we again use the fact that C (fl@)=q-1.

Substituting equations (11) and (12) into equation (10) gives us

a3) dq __ K .
dK q=0 r- f(Q) \

Note that fq) is zero when q equals one. Thus the slope of the q =0 locus at the point where q=1lis
simply % '(K)/r. Note that at this particular point, this slope is exactly the same as the slope of the q=0
locus in the version of the model in the text where adjustment costs took the form C(x).

Problem 8.9

(a) One of the conditions for optimization is that the marginal revenue product of capital, n(K(t)), equals
its user cost, rq(t) - 4 (t). Rearranging this condition gives us the following equation of motion for q
(1) 4@ =rq(t) - =(K()).

Substituting the profit function, n(K) = a - bK, into equation ( 1) gives us

@ q)=rqt)-a+ bK(t).

The q = 0 locus is therefore given by

3) rq-a+bK =0,

or solving for q as a function of K, we have

(4) q=(a-bK)rr.

Sothe 4 = 0 locus has a constant slope of - b/r.

To find the long-run-equilibrium value of K, we need to find the intersection of the q =0 locus -- as given
by equation (4) -- and the K = 0 locus. The K = 0 locus is given by q = 1, which means that we already
know that the long-run-equilibrium value of 9 9% is one. Substituting q = 1 into equation (4) and solving
for K* gives us

(5) K*=(a- .

at which the purchase price of capital (which is fixed at one), plus the marginal adjustment cost, equals the
value of capital, q. We are assuming quadratic costs of adjustment, C(x ) = ak 2 /2, and thus the marginal
adjustment cost is
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(6) oC(x)/ox =ax.

Thus we have 1 + ak = q, which implies

(M «=(q- Do

Since q is the same for all firms, all firms choose the same value of investment, k. Thus the rate of change
of the aggregate capital stock, K, is given by

(8) K=N(@q- /e,

where N is the number of firms.

Define §=q-q* and K=K-K*. Since q* and K* are constants, 4 and K are equivalent to Gand K
respectively. Thus we can rewrite the equations of motion, equations (2) and (8), as

¥ q=rq-a+bK, and 10) K =N(q- 1)/a.

Dividing both sides of equation (9) by q gives us

q +bK
(1 l) r_q__a____.

From equatlon (5), we can write

(12) K=K -a+nh,

or rearranging to solve for bK:

(13) bK=bK +a-r.

Substltutmg equatlon (13) into equation (10) gives us
q _Tq- —a+bK+a-r r(q 1) bK K

(14) +b—,

~ ~

q q q q
wherewehaveusedthefactthatq*= 1sothat §=q-q*=q-1.

Dividing both sides of equation (10) by K and noting that q* = 1 we have

~
~

N4q
15 ———':.
(15) -

Equatrons (14) and (15) imply that the growth rates of q and K depend only on the ratio of § to K.
Given this, consider what happens if the values of q and K are such that § and K are falling at the same
rate. This implies that the ratio of q to K is not changing, and thus that their growth rates are not
changing. Thus q and K continue to fall at equal rates. In terms of a phase diagram, from a point at
which § and K are falling at equal rates, the economy simply moves along a straight-line saddle path to
(K*, q*) with the distance from (K*, q*) falling at a constant rate.

Let pt denote K / K. Then equation (15) implies
Nq
16) p=—-+,
(16) p =K
or solving for the ratio of q to K:
q ap
17) ==—.
an - N .
From equation (14), the condition that § / § always equals K / K is thus

(13) p=r+ (bNap),
or
(19) ap’-arp-bN=0.
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Using the quadratic formula to solve for  yields

artvVo’r? +4obN r+r® + (4bN/a)

20) p=
(20) pn 20 5

If u is positive, then §(t) = q(t) - q* and K(t) = K(t) - K* are growing. That is, instead of moving along a
straight line toward (K*, q*), the economy is moving on a straight line away from (K*, q*). Thus s must
be negative and hence

r— \/ 2 4 (4bN/o)

@y m= >

Thus equation (17) with p = p, tells us how q and K must be related on the saddle path. Substituting
equation (21) into equation (17) gives us

q* _a[r—\/rz +(4bN/a)]

q -—
22 =
@) K-K* 2N ’
or solving for q as a function of K:

rr—\/ 2 +(4bN/a) -!
2N

@3) q=q*+al J(K—K*).

e

Thus, the slope of the saddle path is

aq| ) r-yr? +(4bN/o) o

oK| 2N

Problem 8.10

(a) Consider the situation where a(t + 7) is certain to equal E; [a(t + )] for all T > 0 so that there is no
uncertainty. The value of q at some date t + t can then be written as the value of q in period t plus the
"sum" of all the changes in q from time t to time t + 7. More formally:

(1) §(t+1,t)=q(t)+ ] 4(t +s,t)ds,
s=t
where q(t + 7,t) denotes the path of q when a is certain to equal its expected value. Since

q =r1q - 7(K), then with this particular profit function we have 4 =rq - a + bK. Thus equation (1) can be
written as

2) qt+r,t)=q(t)+ I [rc’i(t +s,t) — E,[a(t + )] + bK(t + s,t)]ds,
s=t

where we have substituted in for a(t + s) = E, [a(t + s)] and where K() denotes the path of K given that a
is certain to equal its expected value.

Now consider the situation where a(t + ) is uncertain. Then the expected value, as of time t, of q at some
future date t + © can be written as the value of q in period t plus the "sum" of all the expected changes in q
from time t to time t + ©. More formally:

T
() Eilqt+1)]=qt)+ | E{[q(t +)kds.
s=t

Since equation (8.28) in the text, E, [q (t)] = rq(t) - =(K(t)), holds in all periods and since
n(K()) = a - bK(t), we can write

P
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@) Eus [t +5)]=rqt + s) - a(t +s) + bK(t +5).

Taking the expected value, as of information available at time t, of both sides of equation (4) yields

(5) E [4 (¢t +9)] = E: [q(t + 9)] - E: [at + 5)] + bE [K(t + )l

where we have used the law of iterated projections so that EEw[qt+s)]=E[dt+ s)]. Substituting
equation (5) into equation (3) gives us

T
©6) Eqt+d]=a®)+ | [rEt[q(t+s)]—Et[a(t+s)]+bEt[K(t+s)]]ds.
s=t

IfE, [qt + )] = 4(t + t,t) for all © > 0, then the right-hand sides of equations (2) and (6) must be equal for
all t > 0. Thus :

M qt)+ i [t +s,t) - E¢latt +9]+ bR(t+s,1)]ds=
t

=

q(t)+ I [1E [q(t + 9] - Eqla(t + 9]+ bE [K(t + 9)]]ds.
s=t

Again, using E, [q(t + 7)] = G(t +1,t) forall T2 0, this simplifies to

@® b } R(t +st)ds=b } E[K(t +95)lds.
s=t s=t
Canceling the b's and using Leibniz's rule to take the derivative of both sides of equation (8) with respect to
T gives us
©) R+t =E K¢+l
Equation (9) holds for all © > 0.

(b) Consider the situation where a(t + 7) is certain to equal E, [a(t + 7)] forall T2 0 so that there is no
uncertainty. Then from equation (3.22) in the text, we can write the market value of capital at time t as the
present value of its future marginal revenue products and so

[> o]
10) 4t = Je[Elatt+o)]- bRt +1,0)]dr,
=0
where we have used the facts that 7(K) =a -bK and a(t + 1) = E, [a(t + 7)]. Now { (t,t) denotes the value
of q given that a always equals its expected value and K (t + 7,t) has the same meaning as in part (a). It is
the path of K givén that a is always certain to equal its expected value. e

i . TR
Now consider the situation where a(t + 7) is uncertain. Then, using ©(K) = a - bK, equation (8.26) }xl‘thke‘ L

text becomes ol

b
RSt

2

i
. ‘:3“,‘

(1) q@)= 1 e [Eqla(t+o)]-bEKE+7)] de. o i BRI

1=0

As shown in part @), if Ec [qt + ©)] = § (¢ + ,t) for all £ 2 0, then E, [KE+ 9] = R@+) forall t2 0.0

This means that the right-hand sides of equations (10) and (11) are equal and so q(t) = § ¢t.0)- ‘That is, for .

the case in which 7 is linear and the uncertainty concerns the intercept of the © func.:tion, the market value
of capital is the same with the uncertainty as it is if the future values of the = function are certain to equal o
their expected values. o -

Even with uncertainty, each firm invests to the point at which the cost of acquiring a unit of new capital |
equals the market value of capital. That is, investment satisfies | e ; . ok

12) 1+C'A®) =4q0. | Lo

el .
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SinceC=al’/2, C'M =al. In addition, as we have just shown, q(t) = 4 (t,t). Thus equation (12) can be
rewritten as

(13) 1+alt) = 4 1)

By definition, the change in each firm's capital stock is equal to I(t). Since each firm faces the same q @),
they choose the same level of investment. Thus the change in the aggregate capital stock is given by

K@) = NI(t), where N is the number of firms. Substituting this expression into equation (13) yields

(14) 1+aK(t)/N=§(tt).

Solving (14) for K(t) gives us

(15) K(t) =N[§ (t.t) - 1)/

Under these special circumstances -- when 7 is linear, the uncertainty concerns the intercept of the
function, and adjustment costs are quadratic -- investment is the same with the uncertainty as it is if the
future values of the m function are certain to be equal to their expected values.

Problem 8.11

(a) If the firm does not undertake the investment, its expected profits are zero. Thus we have

(1) E[="°]=0.

If the firm does undertake the investment, its expected profits are the certain payoff in period 1 plus the
expected payoff in period 2 less the cost of undertaking the investment. Thus we have

() E[x"™ =7, +E[n,] -1

The firm will undertake the investment if its expected profits from doing so are greater than its expected
profits from not investing, or when

() E[zx™ 1> E[z"°],

or simply when

(4) U3 +E[7Cz] -1>0.

(b) Suppose the firm does not invest in period 1. Then in period 2, if n, > L, it will invest and eamn =, - I.
If 7, <1, it will not invest in period 2 and will eam zero. Thus the expected profits from not investing in
period 1 are

(5) E[x™°™'] = Prob(r, > DE[r, - I | , > 1.

From equation (2), the expected profits from investing in period 1 are

(6) E[n"**™']=m, +E[r,]-1. : -

Thus the difference in the firm's expected profits between not investing in period 1 and investing in period 1
are

(7) E[r"°™! ] - E[z"®*™! | = Prob(r, > DE[n; - 1| m> 1] - (my + E[m, ] - D).

Even if n, + E[n,]-1> 0, as long as Prob(n, > DE[r, - I| n; > 1] is greater than 7y + E[n; ] - I, the firm's
expected profits are higher if it does not invest in period 1 than if it does.

(c) The cost of waiting is that the firm foregoes any payoff in period 1. That is, it foregoes 7, and hence
(8) cost of waiting =, .

The benefit of waiting is that the firm can observe m; , see if it is less than I and decide not to invest and
avoid a loss if this is the case. The expected loss that the firm avoids by waiting is equal to the probability
that =, is less than I, multiplied by the expected loss given that n, < I, which is E[l - m; | 7, <I]. Hence
(9) benefit of waiting = Prob(r, < DE[l-m|n, <1

Note that by the definition of conditional ~expected values, we can write
(10) E[r; - I] = Prob(x, > DE[r-1|m,>1] + Prob(m, <) E[n, -1 |, < I].

o
’

%
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Substituting this into equation (7) yields

(11) E[x"°™']-E[x ™ ™!]=Prob(r, > I) E[x, - 1| n, > I] - m, - Prob(n, > I) E[x, - I | 7, > ] -
Prob(n; <1) E[n, - 1| ®; <1].

Note that we can write Prob(n; < DE[=, - I | n; <] = - Prob(xn, <I) E[I - &, | 7, <I]. Using this fact,

equation (11) becomes

(12) E[z°™' ] -E[x"™ ™" ] =, + Prob(r, <D E[I - 7 | @, <1].

Since m, is the cost of waiting and Prob(r, < I) E[I - n; | =, < I] is the benefit of waiting, we do have

(13) E[z"™'] - E[x" ™' ] = benefit of waiting - cost of waiting.

Problem 8.12
(a) Consider the value of a unit of debt. It pays off one unit of output at time t + 7, for all t > 0. The
consumer values this payoff according to the marginal utility of consumption at each time t + . Thus the
value of having one unit of output at time t + < rather than at t is equal to the discounted marginal utility of
consumption at time t + 1 relative to the marginal utility of consumption at time t, which is given by
€™ u'(C(t + 1))/u '(C(t)). Thus the value of a unit of debt at time t is simply the appropriately discounted
"sum" of all the future payoffs, or

> o} !
M Pw)= | ¢ E, [M] .

w(C())

1=0

Equity holders are the residual claimant and thus at time t + 7, t > 0, they receive the additional profit
generated by the marginal unit of capital, ©(K(t + 7)), minus the total amount paid to bond holders, which
is b (the total number of outstanding bonds). Again, individuals value this payoff at time t + t according to
the discounted marginal utility of consumption at time t + 7t relative to the marginal utility of consumption
at time t. Thus the value of the equity in the marginal unit of capital is

[u'(C(t+‘t))

@ V)= | ¢ E, 2 (CO)

(e(K(t +1)) - b)]dt :
=0
(b) Adding equation (2) to b times equation (1) gives us the following market value of the claim on the
marginal unit of capital:
® [w(c+1) ] ® [w(Ct+1
@) PMb+ V()= | ¢ 7bE, I_—L,—(——)—)Jdt + ] e7E, LEL—(——)l
0 w'(C()) 20 v'(C()
Combining the integrals yields

(=(K(t+7) - b)]dr.

® r.11'(C(t+‘r))
@ PMb+V(H)= | e P°E, (b+m(K(t+1))-b) |dr,

=0 L ll'( C(t))
and thus

[e o] [ 4
5) POb+V(®)= ] e, “(C(t”))u(K(tH))]dz. ;

0 L w'(cw)

The division of financing between bonds and equity as captured by b, the number of outstanding bonds,
does not affect the market value of the claims on the marginal unit of capital. The present discounted value
of that unit of capital is determined by its expected effect on the path of profits. Since the division of
n(K(t + 7)) between bonds and equity does not affect the size of n(K(t + 1)), it does not affect the market
value of the claim on the unit of capital.
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(c) The market value of each of the n assets is given by

6) Vi(t)= T e-mEt{tl:(l,(é(Tt;:);))di(t+r):‘dt.

=0
There will be n equations of the form of (6). Adding these n equations together gives us the following total
value of the n financial instruments:

™V (t)+...+Vn(t)=T£ 0 e "E -E{%;;—)l(dl(t+1:)+...+dn(t+t))}dt.

Sinced, t+1)+..+d, t+1)= 1:(_K(t + 1)), we can rewrite equation (7) as

(6) Vi(t)+.+V, ()= IO e P'E, L%n(mn»]m.
1=l

The total market value of the n financial instruments is determined by the expected effect on the path of
profits of the marginal unit of capital. It does not depend upon the individual payoffs to the assets.

-

(d) The value of a unit of debt continues to be given by equation (1). The value of a unit of equity is now

_ 7 erp | lCEED) - ]
©) V(t)-xioe Et[ (CO) {1-0)[x(Kct + 1)) - b]} |dr.

Adding equation (9) to b times equation (1) gives the following market value of the claims on the marginal
unit of capital:
® w(Ct+1) ®_ u(Cet+7))
(10) P(t)b+V(t)= | e P*bE [———]dt + | e7E | ————=2{1-0)[r{K(t+1) - b]} |de.
0 t u'(C(t)) 0 t u’(C(t)) { [ ( ) ]}
Combining the integrals yields

M[(] -0)n(K(t+1)) +9b]]dt :

[ o]

11) P(t)b+V(t)= | e PE
(1) Pb+VE® IO t[ (Cw)
Now the division of the financing between bonds and equity does matter. The number of bonds issued, b,
does affect the market value of the claim on the marginal unit of capital. The division of the additional
profits between bonds and capital does affect the size of those profits. Specifically, a switch toward debt
financing increases profits since interest payments are tax deductible. .
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Problem 9.1
(a) Substituting the expression for the average wage, w, = fw, + (1 - f)w, , into the expression for the
nonunion wage wll =(1 - bu)w, /(1 - B), yields

1) wy =22 [fw +(1-H)wy].
a-p .
Substituting the umon wage, W, = (1 + Ww, , into equation (1) yields
(a- _(I-buw
@ wa =" ﬂ) [f(l+p.)w +(1-fyw,| = (1 5 [+ pHyw,].
Simplifying gives us

3 A-bu)A+puH=(-p)
Since (1 - bu)(1 + pf) = 1 + pf - bu - bufu, equation (3) can be rewritten as
(4) -u® +bpf) =-p - uf,
and thus the equilibrium unemployment rate is
5) u B+uf
b(l +uf)’

(b) (i) Substituting p=£=0.15,=0.06and b= 1 into equatlon (5) gives us

© o _ (0.06) +(0.15)(015) 00825_0.081'
1+(015)(0.15) 10225

Equilibrium unemployment is approximately 8.1%, which is higher than the 6% obtained with B = 0.06 and
b =1 in the standard version of this model without a union sector.

In order to determine by what proportion the cost of effective labor in the union sector exceeds that in the
nonunion sector, we need to calculate the equilibrium effort level in each sector. The union wage as a
function of the average wage is

) wu=(1+pw,= (1 + )1 -buyw, (1 - B).

Substituting equation (7) and the definition of the index of labor-market conditions, x = (1 - bu)w, , into the
expression for effort, e = [(w - x)/x]P, gives us

© o [la+wa-buiw, /a-p] - a-buw, B_[(I+p)(1—bu)—(1—B)(l—bu)]ﬁ )
u (1-bu)w, - (1-B)(1-bu) ’
or simply -
_ 5 5
_ 1:*_»)} _(ﬂ)
® e 1-p = 1-pJ)

Substituting w, = (1 - bu)w, /(1 - ) into the expression for effort yields

[ buyw, /(1-B)] - (- buyw, | _[(1— bu)— (1= B)(I - bu)]"
(1-buyw, - (1-B)(1-bu) ’

10) e, =

or simply

1 P (p )"
an en:_l_——ﬂ—l_l = ‘l'_—s' .
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In the union sector, it costs a firm w, to buy one unit of labor which provides e, units of effective labor.
Thus it costs a firm w, /e, to buy one unit of effective labor. Using the fact that w, = (1 + w)w, and
equation (9), we can write

w 1+ wWw
azy e _ (I+wWw,

e [(u+py/a-p)P

Similarly, the cost to a nonunion firm of obtaining one unit of effective labor is w, /e, . Using equation
(11), we can write

(13) ﬁn__ Wn

en  [p/a-p)°
Dividing equation (12) by equation ( 13) gives us the following ratio of the cost of effective labor in the
union to the nonunion sector:

Wa/en  [(u+p)/a-p)P  wa
Substituting p = 0.15 and B = 0.06 into equation (14) gives us

(14)

Wy /ey 006006
(15) ———=115)—| =10667.
Wn/en 021

Note that although the cost of labor in the union sector exceeds the cost of labor in the nonunion sector bya

factor of (1 + p) = 1.15, the cost of effective labor is only higher by a factor of about 1.07. This is because
union workers exert more effort since they are paid a higher wage.

(®) (i) Substituting . =£=0.15, B =0.03 and b = 0.5 into equation (5) yields
(16) <009 +015(015) _ 00525
u= =

= =0103
05[1+(0.15)(015)] _ 051125

Equilibrium unemployment is now higher at about 10.3%. Substituting u = 0.15 and B = 0.03 into
equation (14) gives us

0.03
003
a7 WLkl:(l.lS)(—) =10898.
W, /e, 018

With the elasticity of effort with respect to the wage lower at = 0.03 and less weight on unemployment in
the index of labor-market conditions, the ratio of the cost of effective labor in the union sector to that in the
nonunion sector is now higher.

Problem 9.2
(a) (i) Withe=1 and taking w as given, the firm's problem is to choose L in order to maximize profits as
given by
(1) ==L%/a - wL.
The first-order condition is
() On/OL=L*'-w=0,
and thus the firm's choice of employment is
(3) L= w-l/(l-a)‘
Substituting equation (3) into the expression for profits yields
n=w e o | Wy _ W) [(1/a) - 1],
and thus the level of profits is .
@ m=[(1 - wajw,
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() (ii) Substituting equation (3) for L into the union's objective function, U = (w - X)L, gives us
() U=w-xx™",
Using equation (5) and equation (4) for profits gives us the following bargaining problem:
1-y
max (w-x)7 w1/~ r(l__ﬁ)w-a/(l—a)-l -
w l_ o _.I
It will simplify the algebra to maximize the log of U" n'” and so the problem becomes

. 1- 1-
max yln(w—x)——}-'—lnw+(l-y)ln( a)_ =) Inw
w I-a o

1-a
The first-order condition is

Y 1Y
(6) 6ln(U T )]=Y 1 _ ¥ i_“(l"')')i_o

ow w-x l-aw (I-a)w
Equation (6) can be rewritten as
1 y+a-ay 1

M v = —.

w—-X l-a w
Cross-multiplying yields
) (I -a)yyw=[a+7(1 - a)J(W - x).
Subtracting (1 - a)yw from both sides and rearranging yields
) aw=[a + (1 - w)ylx,
and thus finally, the wage chosen in the bargaining process is

10) w=2:_(1__a)7x_

(b) (i) Substituting e = [(w - x)/x] into the expression for profits allows us to write the firm's problem as

1(w-x)* a
(1) max n=— L" -wL.
L a\ x

The first-order condition is

0 -x\*
12) l:(uj ! _w=o,
oL X

and thus the firm's choice of employment is
- x \oB/(1-a)
13) L=(W x) w—l/(l—a).

Substituting equation (15) into the expression for profits yields

(14 ne l(w _ X)aﬂ(w _ x)a ﬁ/(l_a)w—a/(l—a) _ wl—[l/(l—a)](w _ x)aﬁ/(l—oc).

a\l x X X
Since af + [o B/(1 - )] = [af - o? B + o? BJA1 - a)=af/(1-ayand 1-[1/(1 -a)] =[(1 -a - D1 - a)]
=-a/(1 - ), equation (14) can be written as

15 == 1(“’ . ")aﬁ/(mwﬂ/<l—a> _w-a/(m)(u
0 4 X X

Jaﬁ/ (1-a)

Collecting terms and simplifying yields

16) n=1-2 (w - x)aﬁ/(m)
T=—o
o

-a/(1-at)

w
X

»
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(b) (ii) Substituting equation (13) for L into the union's objective function, U = (w - x)L, gives us
of off ~1

(A7) U=(w-x)(w-x) 1~ (I/x) -0 1~

which simplifies to
lo(-p) -1

(18) U=(w-x) @ (yx)layla, ‘

Using equation (18) and equation (16) for profits gives us the following bargaining problem:
(-a(1-B)ly i BN Y aB(l-y) of(l-y) -a(l-y)

max (w-x) I (Ix)l-o wl‘“( J (w-x) ¢ (I/x) 1o w I«
w
We will again maximize the log of U? 7' and 50, ignoring the terms not involving w, we have the following
bargaining problem:

[1-0;(1—3)]Yln

—_—

a(l-y)
-Q

1-
(W—x)—i—lnw+a~(—l)-ln(w-x)—
l-a l-a

max Inw.

w
The first-order condition is

a["‘(UY”H)]=[1—a(1—l3)ly L v 1 ,afQ-y) 1 al-p1_.

19
(19 ow l-a wW-X l-aw l-a w-x l-a w
which can be rewritten as

2

1 1 1 1
(20) [y -ay(1-B) +ap-apyl——=——[y +a-ay]—.
l1-a w-x l-a w
Multiplying both sides of (20) by (1 - @) and simplifying yields
1 1
@D [y-a(y-B)] =[a+(1-o)y]—.
w-X w
Cross-multiplying gives us :
@2) [y - aly - B)Iw = [ + (1 - o)y}(w - x).
Subtracting yw from both sides of (22) and simplifying yields
(23) -aly - Byw = (1 - )w - [ + (1 - a)y]x.
Collecting the terms in w gives us
Q9 [oy+aB-a+aylw=-[a+(1-ayx,
which simplifies to
(25) -[a(l-B)w=-[a + (1 - a)y]x, :
and thus finally, the wage chosen in the bargaining process is

(26) w= Lﬂlﬂ
(1-P)

Note that in the case of B = 0, equation (26) does simplify to equation (10).

(b) (iii) The proportional impact of workers' bargaining power on wages can be measured by the elasticity
O[Inw]/dy. In the absence of efficiency wages, the wage chosen in the bargaining process is given by
equation (10). Comparing equation ( 10) to equation (26) we can see that efficiency-wage considerations
simply raise the wage by a multiplicative factor of 1/(1 - B). Thus the presence of efficiency wages does
not affect the elasticity given by O[lnw]/0y. Thus in this model, the proportional impact on wages of
workers' bargaining power is not greater with efficiency wages than without and is not greater when
efficiency-wage effects are greater.
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Problem 9.3
The no-shirking condition (NSC) is given by
L e
) w—e+(p+ f—NLb 4
and the labor demand curve is given by
(2) F'(eL)=w/e.
Equation (2) states that firms choose L so that the marginal product of effective labor equals the margmnal
cost of effective labor, where the wage, w, is set to satisfy (1).

(a) An increase in p shifts up the no- NSC LS
shirking locus. From equation (1), for a :

given NL, the wage needed to get workers
to exert effort is now higher. Intuitively,
since workers discount the future more, it
matters less to them if they are caught
shirking, are fired and have to go through a
. period of unemployment. Thus at a given
level of employment, firms must pay a
higher wage to deter shirking. The labor
demand curve is unaffected. As shown in
the figure at right, equilibrium employment
falls and the equilibrium wage rises.

(b) An increase in the job breakup rate, b, shifts up the no-shirking locus. From equation (1), for a given
NL, the wage required to get workers to exert effort is now higher. Intuitively, since workers are more
likely to lose their job anyway, the value of being employed is lower. Thus workers are not as concerned
about being caught shirking and fired. So at a given level of employment, firms must pay a higher wage to
deter shirking. The labor demand curve is unaffected. Equilibrium employment falls and the wage rises. |

(¢) The rise in A shifts the labor demand NSC L°
curve to the right. The no-shirking locus is
unaffected. As shown in the figure at right,
the equilibrium wage rises as does the level
of employment. Note that if efficiency
wages were not present, inelastic labor
supply would mean that increases in
technology would lead only to increases in
the wage, not to increases in employment.
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(d) The vertical portion of the labor supply
curve shifts to the right. The labor demand NSC
curve is unaffected. The no-shirking locus
shifts down. Intuitively, at a given NL,

L - NL is now higher. Thus at a given
level of employment, if workers become
unemployed, they are likely to stay
unemployed longer. Thus at a given level
of employment, the cost of shirking is
greater for a worker and thus firms can get
away with paying a lower wage to deter
shirking. From the figure at right, the
equilibrium wage falls and employment
rises.

LS

N

b

L

(ol B

NL NL'

Problem 9.4

(a) The total number of unemployed workers is L - NL. If there is no shirking, the number of workers
becoming unemployed per unit time is the number of firms, N, times the number of workers per firm, L,
times the rate of job breakup, b. In a steady state, this is also the number of workers becoming employed
per unit time. If people who have been unemployed the longest are hired first, the length of time it takes to
get a job, which we can denote t*, is equal to the total number of unemployed workers divided by the
number of people who get hired per unit time. For example, if there are 1000 unemployed workers and 100

workers become employed per unit time, then the number of units of time it takes to get a job is 1000/100 =
10. Thus in general

(1) t*:L"NL.
~ NLb

(b) There is no uncertainty involved when calculating the value of becoming newly unemployed as a
function of the value of being employed. When a worker loses her job, she knows that she will be
unemployed for t* = (L - NL)/NLb units of time, at which point she will become employed again. Thus
the value of becoming newly unemployed is that t* units of time into the future, the individual will have the
value of being employed. The discounted value of being employed t* units of time into the future is given
bye™ Vg . Thus _

@) Vy=e PT-NDNLby

(c) As in the usual version of the Shapiro-Stiglitz model, the firm chooses a wage so that the value of being

employed, Vg , just equals the value of shirking, Vs . From equation (9.35) in the text, this implies

€
G) Vg -vU=;.

Substituting equation (2) into equation (3) yields
VE - e_pt*VE = —e'

q
Solving for Vg gives us

€
4) Vg =————

T I Y 3

Y T T T T
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The next step is to determine what the wage must be in order for the value of employment to be given by
equation (4). From equation (9.30) in the text for the retun from being employed, which is given by
pVe = (W - €) - b(Vg - Vy ), we can solve for w:

(5) w='e’+pVE+b(VE-VU).

Substituting equations (3) and (4) into equation (5) yields

b
© w=g+—— s
(1-¢")q 4a
Substituting t* = (L - NL)/NLb into equation (6) gives us

P g

(7 w=e+

Equation (7) is the no-shirking condition. Note that as NL — L (as unemployment goes to zero), there is
no wage that will deter shirking. This is because as the number of unemployed workers goes to zero, there
is no line to stand in and wait for a job. An individual who is caught shirking and is fired will be at the
front of the line and will be rehired instantly. As NL —> 0, the wage needed to deter shirking goes to

€ + (p + b)e/q. This is exactly the same wage needed to deter shirking as NL — 0 in the standard
Shapiro-Stiglitz model.

(d) In order to compare the equilibrium unemployment rate in this model with the equilibrium
unemployment rate in the Shapiro-Stiglitz model, we need to compare the two no-shirking loci. If the wage
needed to deter shirking for a given level of employment is higher in one of the two models, equilibrium
unemployment will be higher in that model.

Intuitively, in both models, the value of being newly unemployed comes from the possibility of becoming
employed. For a given level of employment, the expected time to becoming employed is the same in the
two models. Here it is certain; in the Shapiro-Stiglitz model it is uncertain. That is, in this model, the
newly unemployed worker knows that she will be rehired in t* units of time; in the Shapiro-Stiglitz model,
she has probability 1/t* per unit time of becoming employed again and thus on average will be employed
again in t* units of time.

Now, since ™" is convex in t, the uncertainty about the time it takes to get employed again in the Shapiro--
Stiglitz model raises Vy for a given Vi relative to this model. This means that firms must pay a higher
wage in the Shapiro-Stiglitz model, for a given level of employment, to deter shirking. Thus equilibrium
unemployment is higher in the Shapiro-Stiglitz model.

More formally, our claim is that
(8) NSC wage for a given NL in Shapiro-Stiglitz > NSC wage for a given NL in this model.
From equation (9.39) 11_1' the text and equation (7) here, the claim is
©) e+ p+= L bJ3>E+ —L_;+b 5.
L-NL g  L1-¢" q
Subtracting & from both sides and dividing both sides of the resulting expression by €/q leaves us with

L P
(10) p+= ——+b.
L-N —e Pt

b>
L 1

Now, using the definition of t* = (T - NL)/NLb, we can write NLbt* = L - NL or
(11) NL=L/(1 +bt*). L
Substituting equation (11) into [L/(L - NL)]b gives us
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L L 1+bt* 1+bt*
(12) = b= = b= .
L-NL L-[L/Q+bt¥)] (1+bt*)-1 t*
Substituting equation (12) into our claim gives us
i3 1+bt* P
13) p+—7 > TPt

Multiplying both sides of (13) by t* gives us the following equivalent expression:

pt*
(19 pt*+1+bt*>——_—t,-+bt*.
1-¢7P

Subtracting bt* from both sides of (14) and then multiplying both sides of the resulting expression by
(1 - ™) yields

(15) pt*—pt*e P +1-eP" > pt+.

Thus, finally, our original claim is equivalent to

(16) 1-e P —pt*e " 50.

We need to show that (16) actually holds. Note that it takes the form 1 - ¢™ - xe™ where x = pt*. This
expression is greater than zero for x > 0. To formally see this, let f(x) denote the left-hand side of equation
(16). Then f{0) = 0 and

(17) f'x)=e™+xe™-e*=xe™>0 forx > 0.

Thus, since f is equal to zero at zero and is increasing for all x greater than zero, it must be positive for all
x> 0. Therefore our claim holds and equilibrium unemployment is higher in the Shapiro-Stiglitz model
than it is in this model.

Problem 9.5
(a) The firm obtains e units of effective labor
for a wage cost of w. Thus the cost to the firm

le
of one unit of effective labor is w/e. W
For w/w* < 1, e = w/w* and so we have
w
aQ —= =w*,
© W/W * w

For w/w* 21, e =1 and so we have

w W
2) —=—=w.
e 1

1 w/iw*

See the figure at right, which plots the cost of
a unit of effective labor, w/e, as a function of
the firm's wage relative to the fair wage, w/w*. We can see that any wage such that w/w* < 1 or w < w*,
minimizes the cost of effective labor.

(b) (i) Given the assumption that the firm pays the highest wage in the range described in part (a), it
chooses w = w*; that is, in order to minimize the cost per unit of effective labor, the firm chooses to pay the
fair wage. Thus

(3) w=w +a-bu.
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(b) (i) Assume that there is positive unemployment. If this is the case, the firm is unconstrained in its
choice of the wage and therefore pays the fair wage, nothing more. Since this is true for all firms, the
average wage, W, must equal w. Thus we have

4) w=w+a-bu

Solving equation (4) for the unemployment rate yields

(6) u=a/b.

Note that the higher is a — the higher above the average wage is the perceived fair wage -- the higher is the
equilibrium unemployment rate. Also, the lower is b -- the less responsive is the fair wage to
unemployment - the higher is the equilibrium unemployment rate.

Since we have derived this under the assumption of positive unemployment, we need to verify that this is
actually the case. If u = 0, then the fair wage is w* = w + a, where we have used the fact that w = w (all
firms pay the same wage). But if a > 0, this means that w < w* and so firms are paying less than the fair
wage. But this violates our assumption that firms do not choose to pay below the fair wage. So as long as
a > 0, there will be positive unemployment in equilibrium.

(b) (ifi) From part (b), (ii), we can see that if a = 0, equilibrium unemployment will be zero. The fair wage
will equal the actual wage. If a <0, the perceived fair wage is always less than the average wage for any
value of unemployment. Thus the representative firm, taking the average wage as given, wants to pay less
than the average wage. Since workers are willing to work at any positive wage, firms need only pay €
above zero to get workers to be willing to work, even with zero unemployment.

(c) G) Analysis such as that in part (a) continues to hold for each type of worker. The representative firm
attempts to minimize the cost of effective labor for each type of worker. If the firm is unconstrained in its
choice of w, this can be accomplished by paying any wage such that w, < w,* for the high-productivity
workers and w, < w,* for the low-productivity workers. Assuming the firm pays the highest wage in these
ranges, neither type of worker will be paid less than its fair wage.

(c) (ii) Firms will hire each type of worker until the cost of one unit of effective labor is the same for each
type of worker. If this were not the case, firms could reduce their costs by hiring more of the workers with
lower effective labor costs and fewer of the workers with higher effective labor costs.

For a low-productivity worker, the firm obtains e; units of effective labor at a wage cost of w; . Thus the
cost to the firm of one unit of low-productivity effective labor is w; /e; . For a high-productivity worker,
the firm obtains Ae, units of effective labor at a wage cost of w; . Thus the cost to the firm of one unit of
high-productivity effective labor is w; /Ae; . Equating these effective labor costs gives us

W1 W2

7 —=—=.

( ) Ael €2 »
Since both types of workers are paid at least the fair wage, e, = ;=1 and so equation (7) can be rewritten
as
(8) w1 = AWz .
The wage for the high-productivity workers exceeds that of the low-productivity workers by a factor of A.

(¢) (iii) In equilibrium, there will be no unemployment among the high-productivity workers. Suppose
instead that there was. We have just shown that high-productivity workers have a higher wage than low-
productivity workers and so w is higher than the average wage or

(9) wi>(wi+w;)/2, '
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where we have used the fact that all firms pay the same wage so that W, = w; and W, =w; . Thus the fair
wage for high-productivity workers is

(10) W]* = (W] +w; )/2 - bu; <wi.

But inequality (10) says that the firm is paying a wage higher than the fair wage to a group that has
unemployment. But the firm does not need to do this; it is unconstrained in its choice of wy if u; > 0. It
could cut the wage down to the fair wage level. Thus there cannot be unemployment among the high-
productivity workers.

(c) (iv) In equilibrium, there will be unemployment among low-productivity workers. In part (c), (i1), we
explained that the low-productivity workers receive a lower wage than the high-productivity workers. This
means that their wage is less than the average wage, or

(1 1) w; < (W1 +wW, )/2

Now suppose that there was no unemployment among the low-productivity workers. Then the fair wage
for them would be :

(12) wy*=(w+wW, )2 >ws.

But inequality (12) violates our assumption that firms will not pay a wage below the fair wage. Thus there
must be some positive unemployment rate, u; > 0, such that w; = w,*.

Problem 9.6
(a) Suppose there are N states of the world. Then the firm's expected profits are

N
(1) E(m)= Zpi[AiF(Li) -CEL -G U(@- Li)] :
i=1

The expected utility of a representative worker is
N (L E L-L; U
Q) E@)= ‘Z]pi T [uc:®)-K] + = UGy
1=

The firm's problem is to choose the L; ‘s, C.'s and C;” 's in order to maximize equation (1) subject to
equation (2). Thus the Lagrangian is

N [N . T_1L.
4=3p;[AFL)-CEL -GV (@~ )]+ 7\{ Zp; {(k—‘x‘)[U(CiE) ~K] +[L —Li )U(CiU)} —ug }
i=1 i=1 L L ,

(b) The first-order conditions are
oL 1 . .
3 L piA;F'(L;)-p;CE +p; GV + kpi(fJ[U(CiE) _ K] _ xPi(f)U(CiU) _o,

1
oy L;
aCE -piLi + lpi(fl']U'(CiE) =0, and

74 — L-L;
&) E’Eiv=-Pi(L—Li)+7~Pi(—t—l)U'(CiU)=0.
Solving equation (4) for U’ (CE) gives us
6) U'(CE)=L/.
Equation (6) implies the marginal utility of consumption for the employed workers is constant across states
and thus, with U " (¢) < 0, consumption of the employed workers is constant across states.

4)

Solving equation (5) for U (CY)givesus .
M U'(CY)=L/A.
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Thus consumption of the unemployed workers is also constant across states. Comparing equations (6) and
(7), it is also true that the marginal utility of consumption is the same for both employed and unemployed
workers. This implies that the level of consumption of both types of workers is the same. That is,

(8) Ct=C"

So CE and CY do not depend on the state and are always equal to each other.

(c) The unemployed workers are actually better off. They consume the same amount as the employed
workers and do not suffer the disutility of work, K.

Problem 9.7
(a) We can maximize 2E(n) = Ag F(Lg) - wLo + Ap F(Lp) - wLp - fB(Lg - Ls ) subject to
(w -K) + (L /Lo )W - K) + [(Lg - Lp /L JB = 2u, . Thus the Lagrangian is
(1) £=AcF(@Ls)-wLs+ApF(Lp)-wLp - fB(Lg-Lg) +
A{w-K)+ (Ls /Lg)W-K) + [(Lg-Ls )/Lg ]B - 2uo }.

(b) The first-order conditions are

() 84 /ow=-Lg-Lg+A+AMLs L) =0,

(3) 84/0Lg = Ap F'(Lp ) - w + fB + (ML )W - K) - (\WLg)B =0, and
(4) 04/0Lg=AcF '(Lc) - W - fB - (\Lp /Ls" Jw - K) + (ALs /L5’ )B = 0.

(¢) We can solve equation (2) for A:
AM[(Ls+Lg)Lgl=Lc+Ls,
or simply
5) A=Lg.
Substituting equation (5) into equation (3) yields
ABF'(LB)-W"'fB"'(W-K)-B:O,
which implies
6) ApF'(Lz)-K-B(1-)=0.
Differentiating both sides of equation (6) with respect to f gives us
(7) AsF"(Lp) [OLs/0f] +B=0.
Solving equation (7) for OLg /0f yields
oLp -B
®) = >
of AgF'(Lp)
since B> 0, Ag > 0 and F "(¢) <0. Thus a fall in the fraction of the unemployment benefit paid by the firm
actually causes the firm to hire fewer workers in the bad state.

bl

Similarly, we can differentiate both sides of equation (6) with respect to B to yield
(9) AgF"(Lz) [0Lg/0B]-(1-f)=0.
Solving equation (9) for OLg /0B gives us

oLp (1-1)
(10) = <
6B AgF'(Lp)
as long as £ < 1. Thus a rise in the unemployment benefit causes the firm to hire fewer workers in the bad
state.

(d) Substituting equation (5) into equation (4) yields
AgF'(Lg) -w-fB - (Lp /Lg )W - K) + (La /Lg)B =0,
or simply : : .
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(1) AGF'(Lc)-w-fB - (Lp /L )w-K - B) = 0,

Equation (11) can be rearranged to obtain

(12) AcF'(Lc) -fB=w + (Lg /L )(w - K - B),

Multiplying both sides of the expected utility constraint by two yields
(13) (W -K) + (Lp /Lo W - K) + [(L - Ly )/Lg IB=2y,.

Equation (13) can be rearranged to obtain

(14) w+@Lp /Lo )w-K-B)=2u,+K - B,

Equations (12) and (14) therefore imply
(15) AcF'(Lg)-fB=2uy+K-B,

or simply

(16) AgF'(Lg)=(2u+K)-(1-HB.

Differentiating both sides of equation (16) with respect to f yields
(17) AGF "(Lg)[0Lg /0f] =B,
Solving equation (17) for 6L /0f yields

B

dLg
18) = <0,
of AGF'(Lg)
since B>0, Ag>0,and F "(¢) < 0. Thusa fall in the fraction of the unemployment benefit paid by the
firm actually causes the firm to hire more workers in the good state.

Similarly, differentiating both sides of equation (16) with respect to B yields
(19) A F "(Ls)[0L /6B] =- (1 - f).
Solving (19) for 0L /B gives us

OLg -(1-1)
(20) = >0,
0B AGF'(Lg)
aslong as f< 1. Thus a rise in the unemployment benefit causes the firm to hire more workers in the good
State.

So an increase in unemployment benefits or a reduction in the fraction of those benefits paid by firms will
increase employment fluctuations by causing firms to hire less labor in the bad state and more labor in the
good state.

Problem 9.8

(a) With efficient contracts, as shown in Section 9.5 of the text, C = wL is constant across states. In
addition, employment is increasing in A so that Lg > Ly . Given A and given the fact that wL is constant,
profit, © = AF(L) - wL, is increasing in employment. Thus when the true state is Ag , the firm is better off -
announcing that A is actually Ag and employing L; . When the true state is Ag, the firm is again better off '
announcing that A is Ag. Thus when the state is Ag, it is in the firm's interest to announce the true state.
However, in the bad state, it is not in the firm's interest to announce the true state and so the efficient
contract is not incentive-compatible.

(b) The incentive-compatibility constraint that is binding is that the firm not prefer to claim that A = Ag
when in fact A = Ap . Assuming that this constraint holds with equality, this requires

(1) AsF(Lg) - Cs = Ag F(Lg) - Cg .

The left-hand side of equation (1) is the firm's profit in the bad state if it announces the bad state whereas
the right-hand side of equation (1) is the firm's profit in the bad state if it announces the good state. The
other constraint is that workers' expected utility be equal to u, or
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@) [UCs) - Vs 2 + [UCe) - Va2 = 1.
The firm's expected profit is
() Elx] = [As F(Ls) - Ca V2 + [Ac F(Le) - Ca )2

The problem facing the firm is to choose L , Cs , L and Cg to maximize expected profits subject to

equations (1) and (2). The Lagrangian is

@) £=[As F(Ls) - Cs V2 +[AcF(La) - Co]2 + M {[UCs) - V@La))2 + [U(Ca) - V(L)V2 -}
+A, {[AB F(LB )- Cs ] - [AB F(Lc;) - Cgl}

The first-order conditions are

(5) oL /eCp=(-1/2) + Q20 U'(Cs)-22=0,

6) a£/6Ca=(-1/2) + 1/2)M U ' (Cs) + 22 =0,

() 84/0Lp = (1/2)As F'(Ls)-(1/2MV'(Ls) + MAgF'(Ls)=0,and
@®) 04/8Lg=(1/)AcF' (Ls) - (/DM V'(Lc)-MAsF'(Ls)=0.

(c) Adding equations (5) and (6) yields
A4+ @2 U Ce)+ (DM U '(Cg)=0.
Solving for A; gives us
2

© M=77 - .
U'(Cp) +U'(Cg)
Substituting equation (9) into equation (5) yields

he o1t 2U(Cp) =—U'(CB)-—U'(CG)+2U’(CB)

2 U'(Cp) +U'(Cq) U'(Cg) +U(Cg)
and thus

U'(Cp)-U'(Cg)

(10) Ay = .

27 3[unCp) + U(Co))
Substituting equations (9) and (10) into equation (7) yields \

, AxF(Lp)[UCy)-U'(C

(1) ~ApF(Lp)- Vg AsFe)|UCo) Col_,

2 U'(Cp) +U'(Cq) 2[U(Cp) +U"(Co)]

Multiplying both sides of equation (1 1) by 2[U" (Cs) +U' (Co)] gives us

(12) A F' (Ls)[U' (Cs) +U " (Co)l -2V'(LB)+ABF'(LB)[U'(CB)-U'(CG)]=0-
Simplifying yields

(13) 28 F' (Lz) U' (Ca) =2V ' (L),

and finally

(14) AgF'(Lp)= Vilg)
U'(Cp) ,

Equation (14) states that, in the bad state, the marginal product and the marginal disutility of labor are
equated.

(d) Substituting equations (9) and (10) into equatiBn (8) yields
1 V(L A-F(L:)|U(Cg)-U'(C
09 LagPo) -T2 )V -UCll_,
2 U(Cp)+U(Ce) - 2U(Cp)+U'(Co)l
Multiplying both sides of equation (15) by [U' (Cs) + U "' (Cg)] and rearranging yields
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AGF(L){U(CR)+U(Cs)| A F'(Lg)|U(Cg)-U"(Cs)
16 2oL - o)l _ApFLo)l (2‘3 G]=V'(LG).

Dividing both sides of equation (16) by U ' (C5 ) and factoring out an F ' (L ) from the left-hand side
leaves us with
[Ag Ap AgU(Cg)—-AgU'C V(L
¢ AB Ac (Cp)-Ap (B)F'(LG)= (G)_
| 2 2 2U'(Cg) U'(Cg)
This is equivalent to

_Ac:An AgUCH)-AUCH ] viLg)
_AG 2 T2 * 2U(Cg) ] (LG)‘U'(CG)'
Collecting terms yields
Al UCp) J Ag[ UrCp) ]} Vi(Lg)
~1]- ~1[P(Lg) = ,
"2 Uy T2 Luice) O Tie,)
and thus finally
‘ AG —AB U’(CB)- U'(CG) , _ V'(LG)
an {AG +( . ){ J}F(LG)-U,(CG).

U'(Cg)

The contract must clearly involve L > Ly and must therefore have Cs > Cg to be incentive-compatible.
[Note that if Lg = Ly , then Cg must equal Cg for incentive-compatibility. But then equation (10) implies
A, =0, which implies that equations (7) and (8) cannot both be satisfied.] Since Cg > Cp, it follows that
U'(Cs)>U"(Cg) and so the second term in brackets is positive. Thus V' (Lg )/U ' (Cg ) exceeds
AgF'(Lg). The marginal disutility of work exceeds the marginal product of labor in the good state or in
other words, there is overemployment in the good state.

(e) Given the fact that there is no unemployment in the bad state and overemployment in the good state,
this model does not appear to be helpful in understanding the high level of average unemployment. But
since it is in the good state that the overemployment occurs, the model does suggest a reason that
employment might be procyclical and more responsive to shocks than under symmetric information.

Problem 9.9

(a) (i) The firm chooses L in order to maximize profits as given by

(1) ®=AL* /o - wL.

The first-order condition is

() on/dL=AL""-w=0 = L*=w/A = L=@wA"""
and thus the firm's choice of L is

(3) L= Al/(l—a) W-l/(l.a).

(a) (ii) Substituting equation (3) for the firm's choice of L into the union's objective function yields
UY= [Uw) -K] AV 1) Uw,) [N - AV (1) 1
Collecting terms gives us
(4) UY= AV w09 [(w) - K - U(w, )] + U(w, N,
The union's problem is to choose w in order to maximize its utility as given in equation (4). The first-order
condition is
(5) OU” /ow = {1/(1 - )] A" wH DM [Uitw) - K - Ulw )] + A4 w0 [U ()] = 0.
Equation (5) can be written as N

IR I TR T P R L
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(/1 - 0] AV LA [UW) - K - Uw, )] = AV A1) (] 1 (),
which simplifies to
[1/(1 - )Iw" [UW) -K - Uw, )] = U (W),
and thus w is defined implicitly by
1 [ Uw)-K-Uw,)

1-al U'(w)

Although equation (6) only defines the union's choice of the wage implicitly, we can see that this choice
does not depend on the shock to labor demand, A. From equation (3), since w does not vary with A, the
elasticity of L with respect to A is

LA oJolnL 1

D AL mA 1-a

6) w=

(b) The union's objective function is
(8) UY=[Uw)-K]L + U(w,) [N -L].

If the wage is such that U(w) - K > U(w, ), then the
union's objective function is maximized by having all of
its members employed; that is, by choosing L =N. Ifthe
wage is such that that U(w) - K < U(w, ), the union's
objective function is maximized by having no one
employed. Finally, if the wage is such that that

U(w) - K = U(w, ), the union is indifferent as to how
many of its members are employed.

N L

The union's labor supply curve under spot markets is
depicted in the figure at right. The way in which the
wage and employment vary with A will depend on whether the labor demand curve intersects the
completely elastic or the completely inelastic portion of the labor supply curve.

So first of all, if the labor demand curve intersects the inelastic portion, L does not vary with A under spot
markets; employment does not vary in response to shocks to labor demand. Rearranging equation (3) to
solve for w yields

(9) w= AL-]/(I-(!.),

where L = N. Thus the elasticity of the wage with respect to A is

However, if the labor demand curve intersects the elastic portion of the labor supply curve, we get the
opposite result. The real wage does not respond at all to changes in A. From equation (3), this means that
the elasticity of employment with respect to A is 1/(1 - ).

(c) () With spot markets, the union takes w as given and chooses L to maximize U'=wL-[o/(c +
1)JLC"°_ The first-order condition is

(11) 8UY /L =w-L" =0,

and thus the union's choice of labor supply as a function of the wage is

(12) L=w°,

and so o represents the elasticity of labor supply with respect to the wage.
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Under spot markets, w will adjust to equate labor demand and labor supply. Setting the right-hand sides of
equations (3) and (12) equal to each other gives us :
(13) AV V() W = Awl= wo(l-a),
and thus the spot-market wage is
(14) w= Aot
The elasticity of the spot-market wage with respect to the labor demand shocks is
owA Ohhw B 1

as) ——-= = .
OAw O0lhA l+o(l-o)
Substituting equation (14) into either the demand or supply curve will give us equilibrium employment.
Substituting it into equation (12) yields
(16) L - AO’/[I*'O’(I—(X)].

The elasticity of employment with respect to the labor demand shocks is

an OLA oL c
OAL dlA l+o(l-a)

(c) (ii) Substituting equation (3) for the firm's choice of L into the union's objective function yields

The union's problem is to choose w in order to maximize its utility as given in equation (18). The first-
order condition is

6]

asy 29— _ (;";) A V(=00 ~1/(1-0) (L _OH1 1) ol-o)  [-(oH)-oli-a)ljotl-0) _ o
ow l-a c+1/o(l-a)

Equation (19) can be written as

(20) aA 1(1-0)  -1/(1-a) ___A(c+l)/c(l—a)w[-(o+])—c(l—a)]/c(l-ct.).

Taking both sides of equation (20) to the exponent o(1 - ) yields
(21) ac(l-ct) Ao w-c = Ao+l w-(c+l)-cr(l-a),

or simply

(22) w-[l+c(l—a)] = ac(l-a) A-l,

and thus the union's choice of w is

(23) w = o O-)/[1-o(1-)] Al/[1+0'(1‘05)].

And thus the elasticity of this wage determined by the union with respect to the labor demand shocks is
owA Ohw 1

24) ——= = .
Aw OlhA 1+o6(l-a)

This is exactly the same elasticity as when the wage was determined by the spot market. Thus with this

union objective function, the behavior of the wage in response to labor demand shocks does not depend on

whether or not unions get to set the wage or whether the wage is determined by supply and demand in a

spot market.

Substituting equation (23) into the firm's choice of L given in equation (3) yields
(25) L= A V(1-0) o —o(l-a)/(1-o) l+o(1-a)] A—l/(l-a)[l+o(l—a)]’
Combining the terms in A gives us

L = o~ 9Ito(1-a)] , [1+o(1-a)-1)/(1-o)[ 1+o(1-x)]

or simply
(26) L= a-c/[lm(l—a)]Ac/[lm(l—a)]_

The elasticity of equilibrium employment with respect to A is
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LA OlnL c
QN ——= = .

AL 0lmA l+o0(l-a)
Again, this is exactly the same elasticity as in the spot-market case. With this union objective function,
whether there is a spot market or whether the union sets the wage, the behavior of employment in response

to labor demand shocks is the same.

Problem 9.10

(a) () The union's problem is to choose w and L in order to maximize [Uw) - KJL + U(w, )[N - L] subject
to AL® /o - wL > 1, . Since the union has no reason to give the firm profits greater than o , it satisfies the
constraint with equality. The Lagrangian is

(1) £=[Uw) - K]L + U(w, )[N - L] + A[AL* /o - WL - 70 ].

(a) (i) The first-order conditions are : ) ;

Q) 8L/ow=U"'(W)L-AL=0, and (3) 6£/0L=U(w)-K-U(w.)+ AAL™ -Aw=0.

(a) (iii) The wage is the means by which the union extracts the rent from being able to reduce the firm's
profits to its minimum required level.

(a) (iv) From equation (2), A =U"'(w). Substituting this fact into equation (3) yields
@) Uw) -K-Uw, ) +U'WAL*" - U' (ww =0.

Rearranging equation (4) yields

(5) U' WAL*' =U' (w)w - Uw) + K + Ulwa),

and thus solving for the union's choice of L gives us

© L -[ U'(w)A ]‘/ (=)
LU (w)w - U(w) + K+ U(wy)
From equation (6), the elasticity of employment with respect to the labor demand shocks is
OLA 0L 1
AL oA l-a
In part (b) of Problem 9.9, if labor demand intersected the elastic portion of labor supply, the elasticity of
employment with respect to the labor demand shocks was the same as it is here.

(b) Now the union's problem is to choose w and L in order to maximize wL. - [o/(c + 1)JLC*V® subject to
AL® /o, - wL > o . The Lagrangian is
(8) £=wL - [o/(c + DIL° + A[AL® /o - wL - 70 ].

The first-order conditions are
) aL/ow=L-AL=0, and (10) 84 /0L =w -L" + AAL™ - Aw =0.
From equation (9), A = 1. Substituting this fact into equation (10) gives us
(11) w-L" + AL*! -w=0. |
Equation (11) can be written as
LI/U = ALa—l = L[l-o(a;-l)}’o — A,
and thus the union's choice of L is
(12) L= Ao

The elasticity of employment with respect to the labor demand shocks is
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13) LA oL c
AL O0lnA l+o(l-o)

Note that this is exactly the same elasticity as in the spot market case, see equation (17) in the solution to

Problem 9.9. Thus equilibrium employment varies in exactly the same way (due to the labor demand

shocks) regardless of whether the union controls the wage and employment or whether the labor market

equilibrium is determined by the forces of demand and supply.

Problem 9.11 -
(a) In equilibrium, the number of people in the primary sector will be equal to the number of employed
people, which in turn equals the number of primary sector jobs, N, , plus the number of unemployed people
in the economy, U. Since people are picked at random for jobs, in equilibrium, the probability of obtaining
a primary-sector job, q, is equal to the total number of jobs, N, , divided by the equilibrium pool of
primary-sector workers, N, + U. Thus in equilibrium
(1) q=N, /(N, + U),
In addition, in equilibrium, the expected utility of choosing the primary sector, qw, + (1 - @)b, must equal
the expected utility of choosing the secondary sector, w, . Thus in equilibrium
() qw,+(1-gb=w, .
Solving equation (2) for q gives us
(3) q=(w, - b)/(w, - b).
We have two conditions that q must satisfy in equilibrium. Setting the right-hand sides of equations (1) and
(3) equal, we have

Ny /(Np + U) = (w, - b)/(w, -b) = Np (W, - b) =N, (W, - b) + (w, - b)U.
Solving for equilibrium unemployment we have

(W - b)U = (w, - w, )N, , -
or simply

Wy =W
@ U= —T Np.

Wg —

(b) To see how an increase in the number of primary-sector jobs affects unemployment, take the derivative
of U with respect to N, :

oUu (wy,-w

6) = J >0,
ON, wy—b

since we are assuming b < w, < w;, . Equation (5) implies that a rise in the number of primary-sector jobs

actually increases equilibrium unemployment. The fact that there are more of these Jobs does, for a given

number of primary-sector workers, increase the likelihood of getting a job. But that very fact encourages

more people to choose the primary sector over the secondary sector. And indeed, so many more people
choose the primary sector that the number of primary-sector workers who do not get jobs actually rises.

(¢) To see the effects of an increase in the level of unemployment benefits, take the derivative of U with
respect to b:

oU  (wp-wy)
€ —~=—L—=N_>0.

ob  (wg-b)
Thus unemployment rises when b rises. Again, the intuition is that higher unemployment benefits make the
primary sector more attractive. Thus more people choose the primary sector. Since there are a fixed

number of jobs in the primary sector, more people will end up unemployed.
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Problem 9.12

(a) Note that V =E[w - Cn'] =E[w] - CE[n'] and is the expected value of the wage the worker will
eventually accept if she searches more minus the expected cost of further searching. The expected cost of
further searching is the expected number of jobs to be sampled multiplied by the (known) cost of sampling
each job. Thus V can be interpreted as the expected value of further searching. Clearly, if the worker is
offered a job that pays a wage of W, where W exceeds the expected value of further searching, it is optimal
to stop searching and take that job. However, if the wage offered is less than the expected value of further
searching, it is optimal to reject that job and continue searching.

(b) Note that
(1) V=F(V)V+ [wf(w)dw-C

w=V
can be rewritten as

[+ o]
fwf (w)dw
w=V C

) V= - .
1-F(V) 1-F(V)
Consider the first term on the right-hand side of equation (2). The denominator is the probability that a
wage drawn from the distribution will be greater than the cutoff, V. Thus this first term represents the
expected wage conditional on that wage being greater than the reservation wage of V.

>

Now consider the second term on the right-hand side of equation (2). Since 1 - F(V) is the probability of
drawing a wage greater than V, 1/[1 - F(V)] is the expected number of jobs that will need to be sampled in
order to draw a job with a wage greater than V. For example, if the probability of drawing a wage greater
than V is 1/2, then on average it will take two draws in order to obtain a wage greater than V. Therefore,
C/[1 - F(V)] is the expected cost of sampling jobs. Thus V = E[w] - CE[n'] must satisfy equation (2).

(¢) By Leibniz's rule and the chain rule, we have

[« 1 [ = 1
a[ Jweowydw | 8] Twh(w)dw J
w=V(C) _| l_w:V(C) oV ov
= - = —Vf(V) -
oC ov oC oC
Differentiating both sides of equation (1) with respect to C and using the result in equation (3) yields
@ L2y rn Ze-veen S
aC aC aC Yoc ™

Collecting terms in equation (4) gives us
) [1-FW)Jov/ioC =-1,

or simply
ov -1

6) —= :
oC 1-F()

With F(V) < 1, V/8C < 0 so that an increase in the cost of sampling jobs reduces the value of the
reservation wage.

(d) A searcher will never accept a job that she has previously rejected. From equation (2), V is a constant.
If a searcher rejects a job paying some wage W, it must mean that W is less than V and will always be less
* than V. Thus the worker will never accept the job paying w.
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Problem 9.13

(a) The distribution of wages is depicted at
right. The cost of sampling a job, C, is also
depicted under the assumption that C < p1. Over
the interval from (i - a) to (u + a), this uniform
distribution has a probability density function
given by .

(1) fiw) =1/2a, (172a) |-eeeeeee
and an associated cumulative distribution
function given by

@) F(w)= %—a)

f(w)

(n-a) Cu (n+a) w

As explained in the solution to part (b) of
Problem 9.12, the cutoff or reservation wage, V, must satisfy

p+a
() V=F(V)V+ [wf(w)dw-C.

w=V
Note that we can write the upper bound of the integral as (i + a) since fiw) = 0 for all w > (1 +a).
Substituting equations (1) and (2) into equation (3) yields

V= (u-—- p+a
@ Vv =[MJV+ J(w/2a)dw - C,
2a w=V
The value of the integral in equation (4) is
O pia 1[1 5 w=
G)  J(w/2a)dw = -2—[ 2

1 22
= =—[(n+a)” -V°|.
w=V a 2w w=V ] 4a[(}l 2

Substituting equation (5) into equation (4) and multiplying both sides of the resulting expression by 4a
gives us

(6) 4aV=2V?-2(u-a)V + (u + 2)*- V2 - 4aC.

Collecting terms yields

(7) V2-2(u+a)V+ (u+a)’-4aC = 0.

Using the quadratic formula, we have

W R E: V4 +2)? —4(u+a)2 +16aC 2+ a)+44aC

We can ignore the solution with V > (u + a) since (1 + a) is the highest possible wage. Thus V is given by
) V=(u+a)-2a"2C"

Note that if there is no cost to sampling a job so that C = 0, then V = (11 + a) meaning that the worker
simply keeps searching until she is offered the highest wage in the distribution. In addition, if C = a, then
V=(u+a)-2aorV=(u-a) meaning that the worker will accept any wage. Finally, if C > a, then

V <(u + a) and so again, the worker accepts any wage that is offered. ‘

To see how V varies with a (which measures the dispersion of wages); use equation (9) to find the
derivative of V with respect to a:
(10) 0V/da=1-a"2C" =1-(Cla)"?

With C < a, a rise in a increases the reservation wage, V. The fact that there are now more higher paying

jobs increases the value of further searching and thus increases the cutoff wage.
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Problem 9.14
(a) From equation (9.82) in the text, the rVy locus is given by
O Wy == 2o ar
Thus an increase in b directly reduces rVy for a given level of employment. However, o and a also depend
on b and so we must examine how a rise in b affects them for a given level of employment. From equation
(9.83) in the text, a, the rate at which unemployed workers find jobs, is

bE
Q) a= T_E
Thus a rise in b increases a for a given level of employment. From equation (1), a rise in a reduces rVy for
a given level of employment. From equation (9.86) in the text, a, the rate at which vacancies are filled, is
(3) a= KY (bE)(Y-l)/Y (I_J - E)B/Y.
With y < 1, a rise in b reduces o for a given level of employment. From equation (1),
@ olrVy] A@+a +2b+2r)-aA  A(@a+2b+2r) >0

da (a+a+2b+2r)°  (a+a+2b+2r)°

Thus a fall in o reduces rVy for a given level of employment. In summary, all of these effects work in the
same direction. The rise in the job breakup

rate, b, reduces rVy for a given level of Vv
employment. Thus the rVy locus shifts down A-C
as shown in the figure at right. l
The equilibrium level of employment, which is
given by the intersection of the rVy locus with E
the free-entry condition that implies rVy =0,
falls from Eto ™" .
-C

(b) We need to determine if the rVy locus shifts up or down as a result of the increase in r. At a given
level of employment, since a and o do not depend on r, we have
o[rVy] -2a0A
5) = 7 < 0.
or (a+a+2b+2r)

Thus the rVy locus shifts down; the equilibrium level of employment falls as a result of the increase in the
interest rate. See the figure from part (a).

(c) At a given level of employment, a, which is Vy
given by bE/(L - E) does not depend upon K.
At a given level of employment, o, which is A-C
given by K" (bE)*" (L - E)*", is increasing 1
in K. As shown in equation (4), a rise in &
causes rVy to rise for a given level of
employment. Thus an increase in the
effectiveness of matching, K, shifts the rVy
locus up as depicted in the figure at right. The
increase in the effectiveness of matching causes
the equilibrium level of employment to rise
from E to ENEW .
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Problem 9.15
(a) Substituting equation (9.77), (V& - Vy ) = w/(a + b + 1), and equation (9.78), which is given by
(Ve-Vy)= (A-w)/(a+b +71), into the assumption that fraction f of the surplus goes to the worker
whereas fraction (1 - ) goes to the firm yields
b a0l ]
) a-9 a+b+r a+b+rd’
We need to solve for w. Rearranging equation (1) and obtaining a common denominator gives us
@ w(@+b+r1)-w[f(a+b+r)]+w[f(a+b+r)) __fA

(@+b+r)(a+b+r) T a+b+r’
or simply ‘

) wla(l-f)+fa+b+r]=fA@@+b+r),
and thus w is given by

@ w fA(a+b+r) | ‘

=fa+(1—f)a+b+r'

Substituting equation (4) into equation (9.77), (Ve - Vy) =w/(a+Db + 1), yields
fA(a+b+r) fA
() VE-Vy= = -
(fa+(1-fla+b+rla+b+r) fa+(1-fla+b+r
Equation (9.75) in the text states that rVy equals -C + (Vg - Vy ). Our assumption about how the surplus
is split implies that Vi - Vy = [(1 - H)/f][V - Vy ]. Thus
6) rVy=-C+af(l -D/f][Ve-Vu].

Substituting equation (5) into equation (6) yields
1-f fA 1-f
7 vy =-c+ 2020 - (- Do

=-C+
f fa+(I-fla+b+r fa+(1-fHa+b+r
It is straightforward to verify that equation (7) reduces to equation (9.82) in the text when f= 1/2.

Recognizing the fact that a and a are functions of E, and imposing rVy = 0 gives us
(1-f)a(E)
@® -C+ A=0.
fa(E)+(1-f)a(E)+b+r

Equation (8) is analogous to equation (9.87) in the text.

(b) For a given level of E, a and a do not depend on f. Thus we can use equation (7) to examine the effect
of a change in f on the rVy locus. We have, for a given level of employment,
) o[rVy] _—oAlfa+(1-fla+b+r]-(1-flaA(a-a)
of fa+(Q-fa+b+r ' .
The sign of O[rVy /0f] will be determined by the sign of the numerator in equation (9). Simplifying that v
numerator, we have
<aAlffa+(1-Ha+b+r]-(1-fHoA@-a)=
“foha - (1-fa’ A- oA -aAb +1) - aha +fada + (1 -flo’ A=-aA@+b +r1) <0,
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Thus an increase in f causes rVy to
be lower for a given level of E. That
is, it causes the rVy locus to shift A-C
down as shown in the figure at right.
An increase in the fraction of the
surplus that goes to the worker
reduces the equilibrium level of
employment. Intuitively, the only
decision that a firm has is whether to
enter or not. If f rises, so that the
worker gets a bigger fraction of the
surplus from a job, entry is less
attractive. Thus the equilibrium
level of employment falls.

Vv

Problem 9.16

After the fall in A, there is no reason for firms whose positions are filled to discharge their workers. Thus
employment and unemployment do not change discontinuously at the time of the shock. The reduced
attractiveness of hiring does cause the value of a vacancy, Vv , to fall. However, since exiting is not
allowed, we do not require Vy = 0 and so vacancies do not change. Since employment, unemployment and
vacancies are not affected at the time of the fall in A, the number of new matches, M = KU®P V', continues
to equal the flows into unemployment, bE. In summary, if we rule out entry and exit, unemployment and
vacancies do not respond at all to the fall in A.

Problem 9.17
(a) In a steady state, M(U, V) = bE(N). The number of matches per unit time must equal the number of
jobs that end per unit time. In addition, the number of unemployed workers is U= L - E(N) and the
number of vacancies is V= N - E(N). Substituting these expressions for U and V into the matching
function, M(U, V) = KUP V", and setting it equal to bE(N), we have
(1) bEQN) =K[L - EQ)° [N - EN)Y'.
To find how E varies with N, differentiate both sides of equation (1) with respect to N:
@) bE' (N) =KB[L - EQDJ*' [N - EQ)]' [-E ' (N)] + K[L - EQ)J° y[N - EQ)J™ [1 - E* ()],
Simplifying yields
Kp[L - EN)]P[N - EQN)] " [-E'(N)] N Ky[L - EQ)]P[N - EQ0)]'[1- E'(N)]

L-E®N) N-EN) )
Using equation (1) for bE(N), equation (3) can be written as

oy PPEN) YBE(N) .

@) EMN =75 e [-E'N)] + NCEQ) [1-E'(V).
Collecting the terms in E ' (N) and dividing through by b yields

©) E,(N)[H_ﬁE(N) , _1E®) ]= 1EQ)_
L-E(N) N-EN). N-E®N)
or simply

(3) bE'(N) =
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YE(N) .
N - E(N) _ YE(N)[L - E(N)]
14 _BE®) +YEMN) “IN-EM)[T- E(N)] +BE(N)[N - E(N)] + yE(N)[L - E(N)]’
L-E(N) N-EN)

(6) E'(N) =

(b) Since welfare is given by W(N) = AE(N) - NC, the change in welfare due to a change in the number of
jobs is given by :
(M) W' N)=AE'(N)-C.
Substituting equation (6) into equation (7) yields
E(N)[L-E(N
® W)= _ YE(N)[L - E(N)] _ AC
[N-EM)][L - E(N)] + BE(N)[N - E(N)] +yE(N)[L - E(N)]

(¢) To simplify the notation, we can drop the "EQ" subscripts on N, recalling that N is the number of jobs
in equilibrium. In the case of r = 0, equation (9.82) in the text simplifies to
(9) C=0aA/(a+ o+ 2b).
Substituting a = bE(N)/[L - E(N)] and o = bE(N)/V(N) into equation (9) gives us
bE(N)/V(N)

(10) C= — A

bE(N)/[L - E(N)] + bE(N)/V(N) + 2b
Multiplying the top and bottom of the right-hand side of equation ( 10) by VON)[L - EN)J/b yields

E(N)[L-E(N)]

a1 C= = — A.

E(N)V(N) + E(N)[L ~ E(N)] + 2V(N) [T - E(N)]
Finally, using the definition of V(N) =N - E(N), equation (1 1) can be written as

E(N)[L-E(N)]

(12) C= — — A.

E(N)[N - E(N)] + EON)[L - E(N)] + 2N - E(N)][T- E(N)]

(d) Using the definitions of‘ UN)=L - E(N) and V(N) =N - E(N), equation (12) for C can be rewritten
as

(13) C= E(N)U(N)

E(N)V(N) + EIN)U(N) + 2ZV(N)U(N) A

Substituting equation (13) into equation (8) gives us the following expression for how welfare changes with
equilibrium employment:

(14 W(N)=A TE(N)UN) E(N)U(N) }

V(N)U(N) + BE(N)V(N) + YE(N)U(N) - E(N)V(N) + E(N)U(N) + 2V(N)U(N)
After obtaining a common denominator, the sign of W ' (N) will be determined by the sign of

YUNIEMN)VN) + ENUNN) + 2V(N)UM)] - UN)[VIN)UN) + BEM)V(N) + YEN)UNN)],
which simplifies to

(r - UMEM)V(N) + (7 - NEN)UN)® + (2 - )V(N)UN)? = UMV - BEM) + 2y - HUN)].

Thus the sign of W' (N) will be determined by the sign of (y - B)E(N) + (2y - HUN). Finally, using the
fact that UN) = L - E(N), the sign of W' (N) will be determined_by .
(15) signl(y - BEQN) + 2y - DL - 2y - DEN)] = signf(2y - 1), + (1-y-BEM)].

IfB +y =1 -- if matching has constant returns -- the sign of W' (N) is determined by the sign of (2y - 1).
Ify>1/2, W' (N) > 0 and thus an increase in the equilibrium number of jobs would raise welfare or in
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other words, equilibrium unemployment is inefficiently high. But ify <1/2, W' (N) <0 and thus an
increase in N reduces welfare and so equilibrium unemployment is inefficiently low.

If y = 1/2, the sign of W' (N) is determined by the sign of (1 -y - B) = [(1/2) - B]. Thus if B < 1/2 so that
y + B < 1 -- matching has decreasing returns - W' (N) > 0 and so equilibrium unemployment is
inefficiently high. But if B > 1/2 so that y + B > 1 - matching has increasing retums -- W'(N)<Oandso -
equilibrium unemployment is inefficiently low. Thus a greater role of unemployment in creating matches
(that is, a larger value of B given y) makes it more likely that the decentralized equilibrium involves too
many jobs.
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Problem 10.1

(a) From m, - p, = ¢ - b(E; pe+1 - ), collecting the terms in p, yields
p: (1 +b)=m;-c+bE;py,

and so p is given by

b 1
1) py= (1 b)Eth "'(m) (mt “C)-

(b) Equation (1) holds in all periods so that we can write p,.; as

b 1
() P =(m)Et+lpt+2 +(1+b) (mt+l ’C)-

Taking the expected value, as of time t, of both sides of equation (2) yields

b 1
() Epin —(1 bJEtpHZ +(l+bJ(Etmt+1 ‘C)’

where we have used the law of iterated projections, which states that E; Ey.; pi2 = E, p.., If this did not
hold, individuals would be expecting to revise their estimate of py, either up or down, which would imply
that their original estimate was not rational.

(c) Substituting equation (3) into equation (1) yields

@ pt= (1 bbJZEtPHz "’(ﬁj[(mt ‘¢)+(l_gg)(5tmt+l "‘C)] .

Again using the fact that equation (1) holds in all periods, we can write p,.; as

b 1
() Pty2 = +b EpoPrys +| T 1+b (mess ~c).
Taking the expected value, as of time t, of both sides of equation (5) gives us

b 1
(6) Eipryz = (1 b)Etpt+3+(1 bJ( tmt+2"°)’

where we have again used the law of iterated projections so that E, E..; pu3 = E; pus . Substituting equation
(6) into equation (4) leaves us with

M pe= (lbb)3EtPt+3 +(rlb')[(mt —c)+ (lfb)(Et";t+1 o)+ (l_f‘g)z(Etmnz ‘C)J-

The pattern should now be clear. We can write p, as the following infinite sum:
1 b b 2 b 3
®) pt= (1 b)[( t"C)+(_'l+b)(Etmt+1 -c)+(_l+b) (EthZ —c)+[T+—b_) (Etmt+3—c)+...J.

(d) With output and the real interest rate constant, the price level must adjust to clear the money market.
If my; is higher, p..; will need to be higher to clear the money market. Thus if individuals expect, in period
Myt , that my,; will be higher they will also expect py; to be higher. Thus in periodt +i - 1, expected
inflation will be higher. This reduces real money demand in periodt + i - 1. For a given value of my.;; ,
this means that pw;.; will need to rise to clear the money market. Now go back one more period. Suppose
that individuals expect, in period t + i - 2, that m,.; will be higher. Then they expect, through the reasoning
above, that pv.i.1 will be higher. Thus expected inflation in t + i - 2 will be higher, real money demand will
be lower and thus p.:., will be need to be higher to clear the money market. Reasoning backward, as soon
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as people expect the nominal money supply to rise in some future period, the price level will rise in the
current period.

(e) Equation (8) can be written using summation notation as
i
AR TS
9 pt 1+bz I+t ( M4 C)
Substituting the assumption that E; m.; = m, + gi into equation (9) yields

i) Lmo 8 S|
(10) p= l+b,§)(1+b] (m; +gi-c)= [(mt c)é:)1 5 +g,§)ll .
Now we can use the facts that

o 2] M e
i—o\1+b 1+b/ \1+b/ 7 1-[b/Q+b)]

and

i b/(1+b) b/(1+b)
12 ( )= =
( ),f\:o 1+b/  -[b/A+)}? 1/Q+b)?

Equation (12) uses the result that

®© .
13) 2ix'= .

i=0 (1-x»?
A (not entirely rigorous) way to see why (13) and thus (12) hold is to note that with x < 1, we have
(14) 1+ x+%2 +X 4. =—

- X

Differentiating both sides of equation (14) with respect to x (wlnch means differentiating term by term on
the left-hand side) gives us

(15) 1+2x+3x°+...=

=b(1+b).

1

2 .
(1-x%)
Multiplying both sides of equation (15) by x yields
(16) x+2x2 +3x3+...= —
(1-x)
Note that (16) and (13) are equivalent; the left-hand side of equation (13) is simply the leﬁ-hand side of
(16) written in summation notation.

2 .

Substituting equations (11) and (12) into equation (10) yields
1

a7) py =Tl_b[(m‘ ~c)(1+b) +gb(1+b)].
Thus the price level is given by
(18) pt=(m, - c) + bg.
To see how the price level changes when money growth changes, use equation (18) to take the derivative of
p: with respect to g:

Op;
(19) —=b>0.

0g

Thus a rise in money growth, even without a rise in the level of the current period's money supply, causes
an upward jump in the current price level.
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Problem 10.2

(a) Substituting the normalized, flexible-price level of output, y, = 0, into the IS equation, yo=c - ar,
gives us 0 = ¢ - ary . Solving for the real interest rate in period 0 yields

(1) rp=cla.

Since the nominal money stock is expected to be constant, the price level is expected to be constant and
thus expected inflation from period 0 to period 1 is

() Eo[p1]-po=0.

The nominal interest rate in period 0, iy = 1o + [Eo [p1 ] - po ], is simply equal to the real interest rate:
(3) ip=c/a.

Finally, substituting the assumptions that m, = 0 and y, = 0 as well as equation (3) into the LM curve,
my - po = b + hy, - kig , yields - po = b - (ck/a) or simply

(4) po=(ck/a)-b.

(b) In period 2, the economy is once again at the flexible-price equilibrium level of output, which is 0.
Substituting this fact into the IS equation allows us to solve for the real interest rate in period 2:
(5) r;=cla.
Since expected inflation from period 2 to period 3 is equal to g -- the price level is expected to rise by the
same amount as the nominal money supply each period -- the nominal interest rate in period 2 is given by
(6) i,=(c/a) +g.
Since m was equal to 0 in period 0 and then increases by g in each following period, the nominal money
supply in period 2 is m; = 2g. Substituting this fact as well as y, = 0 and i, = (c/a) + g into the LM
equation leaves us with

2g - p2=b - (ck/a) - kg.
Solving for p; gives us
(7) p2=-b+(ck/a) + (2 +k)g.

(c) The price level is completely unresponsive to unanticipated monetary shocks for one period. Thus the
price level in period 1 does not change from its period 0 value and hence

(8) p1=(ck/a)-b.

The expectation of inflation from period 1 to period 2, E; [p2 ] - p1, is therefore

) Ei[p:]-p1=-b+(ckla) + (2 +Kk)g - (ck/a) + b= (2 +K)g,

where we have used equations (7) and (8) to substitute for p, and p; .

Now substitute the IS equation, y; = ¢ - ar; , into the LM equation, m, - p; =b + hy; - ki; , to obtain

(10) m, - p; =b + hc - ahr, - ki; .

By assumption, the nominal money supply in period 1 is g. In addition, iy =y + [Ey [p2 ] - p1 ], which,
using equation (9), is equivalent to iy = r; + (2 + k)g. Substituting these facts as well as equation (8) for the
price level into equation (10) gives us

(11) g-(ck/a) +b=b +hc - ahr; - kr, - 2 + k)kg.

Simplifying and collecting the terms in 1, yields

(12) 1, [ah + k] =hc + (ck/a) - g - (2 + k)kg.

Thus the real interest rate in period 1 is given by

hc + (ck/a) - g — (2 +k)kg

(13) l'l=
ah+k
Finally, substituting equations (9) and (13) into i, =, + [E, [p2] - p1 ] gives us
he +(ck/a) - g - (2+k)k -g- k 2+k
a4) iy = c+(ck/a)-g—( )g+(2+k)g=hc+(ck/a) g-(2+k)kg+(2+k)ahg+(2+ )kg.
ah +k ah+k

Thus the nominal interest rate in period 1 is given by
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~ hc+(ck/a)-g+(2+ k)ahg
as) iy = — .

(d) Using equations (15) and (3), the change in the nominal interest rate from period 0 to period 1 is
o he + (ck/a) — g + (2 + k)ahg /) hc+ (ck/a)—-g+(2+k)ahg—hc—-(ck/a)
_ a)= .

W=t~ ah +k ah+k
Simplifying yields —
.. _(@+kahg-g
16) iy —ig=——""7"
(16) 1; =1 ah+k

We can determine the condition required of the parameters in order for the nominal interest rate to fall from
period 0 to period 1; that is, for i; - ip < 0. From equation (16), this condition s

g[(2 +k)ah-1] <0,

ah +k

or simply
(17) 2+kah<l
The smaller is a (the elasticity of output with respect to changes in the real interest rate), the smallerish
(the income elasticity of real money demand) and the smaller is k (the interest semi-elasticity of real money
demand), the more likely it is for the condition in (17) to be satisfied and thus the more likely it is for the
nominal interest rate to fall in response to the monetary expansion.

For the nominal interest rate, i =r + 7°, to fall, we need the liquidity effect to outweigh the expected
inflation effect. That is, we need the real interest rate to fall by more than expected inflation rises. With
the price level fixed by assumption in period 1, y and i must adjust to ensure money market equilibrium. If
k is small, changes in i will not affect real money demand very much. We need y to rise to increase real
money demand and get it equal to the new higher real money stock. Ifh is small, we need y to rise a lot in
order to accomplish this. Ify is to rise a lot, we need - from the IS equation — the real interest rate to fall

alot. If furthermore, a is small, we need r to fall a lot just to generate an mcrease in output. Thus small
values of k, h, and a all work to make the drop in r larger and thus make it more likely that i will fall.

Problem 10.3

(a) Any shock to the nominal money supply in period t + 1 is fully reflected in the price level by period

t + 2. That is, the only reason the price level will change from period t + 1 to period t + 2 is if there is a
non-zero realization of u in period t + 1. From the law of iterated projections, we have

1) E; [Ew [Pt+2] =P 1= E, [Pt+2 =P 1

Since the expected value, as of period t, of u. is zero, the price level is not expected to change from period
t+ 1 toperiod t + 2. Thus

(2) E[Ewmi [Per2] - P 1=0.

Since the LM equation must hold each period, we can write

(3) My =P = b + hyw - ke - k(w1 [Per2] - P ),

where we have substituted in for i1 = Ten + (Evnt [Pee2 ] - pert ). Taking the expected value of both sides of
equation (3) yields

(@) Eymy —Epyyy =b+hy -k,

where we have used the result from equation (2) that E. [Ew1 [Prs2] - P 1=0. In addition, since yw1 and
I+ will only depend on the uw shock, which is expected to be zero, they are expected to be equal to their
average values. -
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(b) Rearranging equation (4), we have

() Eip¢yy =Eym,, ~b-hy+kr.

Since My = my + Uy , Eymyy = m, | Using this fact and subtracting p, from both sides of equation (5)
yields

(6) Eipy4y —p; =(m, - Pp¢)-b-hy+kf.

As explained in part (a), expected inflation is equal to u, and thus we can write

(7) uy=(m; -p,)-b-hy+kt.

Substituting m, = m,, + u, into equation (7) and rearranging to solve for p: yields

() py=m, ; - b-hy+kf.

The next step is to solve for output in period t. Rearranging the LM equation to solve for iy yields
From equation (7), we have
Substituting equation (10) into equation (9) gives us
. b+hyt_ut‘b-hy+kf h(yt—y)"'kf—ut
1) iy = - = " .
Substituting equation (11) for i, and using the fact that n,° = u, , the IS equation becomes
h(y; -¥) +ki —u,
k
Collecting the terms in y, , we have
k +ah ahy — akt + au,
(13) " yi=¢+
which implies
kC + ah?— ak? + aut + kaut
(14) Yt = ,
k +ah
and thus output in period t is given by
15) v, = kc+a[hy - ki + (1+ k)u,]
1= k +ah '
In order to determine the real interest rate, rearrange the IS equation to obtain
(16) £ = (c/a) - (y. /a).
Substituting equation (15) into equation (16) yields
¢ kc+alhy~-ki+(1 +k)u,]

(12) Yt =C‘a[ +aut.

+au,,

17) r,=—-

17 r a a(k +ah) '

which implies

(18) 1, - K+ —ke-alhy - ki+(+k)ug] ch—[hy - kF + (1+k)u,]
b a(k +ah) - k+ah '

Thus the real interest rate in period t is
h(c-y)+ki-(1+k
a9 r, = (c-y)+kr-( )ut'
k +ah

The nominal interest rate is i, = r, + 7° , where n° =y, :

20) ik=r +u,.

Substituting equation (19) into equation (20) gives us

@1 i, = h(c—?)+kf—(l+k)ut +(k +ah)u, _ h(c-y)+kf+(ah - Du,
t= = .

k +ah k +ah
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(c) From equation (21), with 7’ =u,, we have

. h(c-P+kr ah-1
Q2) i = + Ty,

k +ah k +ah

From equation (22), we can see that changes in expected inflation are not reflected one-for-one in the
nominal rate. This is due to the fact that prices are completely unresponsive to the monetary disturbance
for one period. This means that, in general, output and the nominal interest rate will adjust to clear the
money market. In order for output to change, the real interest rate must change and therefore, in general,
the nominal interest rate will not move one-for-one with inflation.

Problem 10.4

(a) Under rational expectations,

(1) w1 =E e + 81, ‘ '

where €. is a disturbance that is uncorrelated with anything known at t. Now consider the regression:
Q) k=a+bmut+e.

Using the hint in the question, the OLS estimator of b is given by

. cov(i,Ts1)

3) b=

var(myyy)
Using i, = 1, + E; Ty and equation (1), we can write the covariance in the numerator as
@) cov(iy, M1 ) = cov(te + Et e , E; Tt + €61 ).
Since r; and E, 7 are uncorrelated and €1 is uncorrelated with anything known at t, this implies
(5) cov(ic, 1) = var(E; Tt ).
Again using equation (1), the variance in the denominator of equation (3) can be written as
(6) var(muy ) = var(E: e + €1 ) = var(E T ) + var(gw1 ),
where we have used the fact that cov(E: 1 , €1 ) =0. Substituting equations (5) and (6) into equation (3)
allows us to write the OLS estimator as
(7) f= var(Eqm¢y)

var(E ) + var(e 1)
The hypothesis that the real interest rate is constant, so that changes in expected inflation cause one-for-one

movements in the nominal interest rate, only predicts that the coefficient on 7.1 should be positive and less
than one, not that it will take on any specific value.

(b) Now consider a regression of the form
B8) m=a +bit+e
The OLS estimator of b' is of the form
©) 6, - COV(i‘ ’:"'t+l) .
var(i)
The covariance in the numerator of equation (9) is still given by equation (5). Since i = 1, + E, T , We can
write the denominator of equation (9) as
(10) var(i, ) = var(r) + var(E T ),
where we have used the fact that cov(r, E, w1 ) = 0. Substituting equations (5) and (10) into equation (9)
gives us the following OLS estimator:
an b= var(Em41)

var(r) + var(E{m )
The hypothesis that the real interest rate is constant, so that var(r) = 0, predicts a coefficient ofoneoni;.
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(¢) Consider the following regression:

(12) i=a+bym+by M+ ... + by T + & .

So, for example, the coefficient b, represents the direct impact on i, of a change in =, , holding the other #'s
constant.

Now suppose that the behavior of actual inflation is given by

(13) m=pnes +e.

If i, =r + E,; my; , with r constant, changes in expected inflation should cause one-for-one movements in i; .
Thus since 7. = p7, + €1 , @ change in 7, of A, will cause E, x,., , and thus i, , to change by pAn, . So
we would expect by = p in the above regression.

But now, controlling for =, , the other variables -- x.; , ..., M., - provide no new information about ., .
Any effect that =, , say, has on 7, is already captured indirectly by ..,'s impact on . . Thus we would
expect by = ... = b, = 0 in the above regression. Thus the claim is incorrect since we would have
bo+by+ ... +b,,=p,notbo+b1 +..+b,=1.

Problem 10.5

(a) Wehave m, =p, - pr1and m° =p° - pr.y . Thus 7 - 7" = (e~ Pet ) - (@ - Pr1 ) =pe - p° . We can
therefore write the Lucas supply function as
(1 =y +b@:-p’) ’
Setting aggregate supply equal to aggregate demand (which is given by y, = m, - p, ) gives us
(2) m-p.=5 +b@:-p’).
Solving equation (2) for p; yields
1 b . 1 _
©) pe= 1+6 T TP T e
With rational expectations, the expected value of both sides of equation (3) must be equal. Hence

1
@) pf=

! (m +a) L pf -——7F
1+p" v 1+b ' 1+b°°
where we have used the fact that the expected value of m, = m,, + a + g, is equal to m,; + a since € is white
noise. Subtracting equation (4) from equation (3) yields

1 1 1 (
&) Pt-Pt=1+bmt“l+b\mt—1 )" mg = mt—l'a)-

1+b
Substituting equation (5) into equation (1) gives us

b

©) y=y+ —(mt -my_ - a) .

1+b
(b) From equation (6), we can see that we also need to know a, as well as m, and m, , in order to
determine the current level of output. Intuitively, equation (6) says that only unexpected money affects
output since the difference between m, and (m,.; + a) is the random shock, &, . However, if we don't know a,
we cannot determine how much of the change in the nominal money stock from period t - 1 to period t was
due to a (and thus was expected) and how much was due to € (and thus was unexpected).

(c) Again, it must be true that with rational expectations, the expected value of both sides of equation (3)
must be equal. However, the expected value of m, is now m,.; + p(0) + (1 - p)a =m,,; + (1 - p)a since

private agents believe that the probability thata=0is p. Thus

1

7 ps +(1- +——— -—
D pi= [mt-l ( P)3] 1+ bpt 1+bY




Solutions to Lhapter 1V <13

Subtracting equation (7) from equation (3) yields

1
® po-pf =7 (M~ meg - (-pha].
Substituting equation (8) into equation (1) gives us

©) yi=y+ mg—my | - (I‘P)a]'

ol
(d) Equation (6) holds in any period in which there is no regime shift. Thus if there is no regime shift in
period t - 1, we can write

b
10) y g = Y+_(mt—1 -mg -a).

1+b
Subtracting equation (10) from equation (6) yields

b
an yo-yer =7 l(me-me) - (mey - m)].
Defining Ay; = y: - yi1 and Am, = m, - m,; , we have
b
(12) Ay, =m[Amt -Amy].

Equation (12) states that in the absence of regime shifts, output growth is determined by the change in
money growth.

If there is a regime shift in period t, equatlon (9) holds. Subtractmg equation (10) from equation (9) ylelds

b
Yt Yt—l—1+b[(mt mt-l) (mt—l mt2]+ [a (1- P)a]
or simply
13) Ay —Lab+——b—[Am Amy_i]
TR T

Under the null hypothesis of no credibility of the announcement of the regime shift, p = 0, the first term on
the right-hand side of equation (13) is equal to zero. Thus if the announcement is not believed, equations
(13) and (12) are identical. Thus we can run a regression of Ay, on [Am, - Am,, ] and a dummy variable
that equals one in the period of a regime shift. The coefficient on that dummy variable will reflect the
amount of credibility of the policymaker's announcement. In fact, since we will have an estimate of

b/(1 + b) and can determine a (the average change in the money stock before the regime shift), we can
calculate an estimate of p from the coefficient on the dummy variable.

Problem 10.6 7

(a) (i) The one-period nominal interest rate is given by i, = E, m.; since the real interest rate is assumed
constant at zero. Since 7. = Amy.; , we have

a itl =E Amyq .

Since money growth is given by

(2) Am;=kAm,, +¢&,,

and since equation (2) holds in all periods, we can write

(3) Amyyy =kAm, + €4 .

Substituting equation (3) into equation (1), we have

(@) i = E [kAm, + & ] = kAm,

where we have used the fact that Am, is known as of time t and E, [g.1 ] = 0.
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(a) (ii) The expectation, as of time t, of the nominal interest rate from periodt+ 1tot+2is
(5) Etiei' = E; s = E; Amy; .

Since equation (2) holds every period, we caff write

(6) Am'+2 = kAm.q +Eung.

Substituting equation (3) into equation (6) gives us Am., as a function of Am,

(7) Amy, = K Am; + ke + €4y .

Substituting equation (7) into equation (5) gives us

() E it+|l =E, [kz Am, + ke + €4y 1= K Am,,

where we have used the fact that Am, is known at t and the €'s are mean-zero disturbances.

(a) (iii) Under the rational-expectations theory of the term structure, the two-period interest rate is
©) i =[i' + Evier' 12.

Substituting equation (8) into equation (9), we have

(10) i’ = [i,' + k? Am, }/2.

From equation (4), kAm, = i,' and so equation (10) can be rewritten as

D i*=[i' +ki' Y2 =i' 1 +ky2.

(a) (iv) From equation (11), a rise in k will increase the two-period interest rate, i, , for any given one-
period rate. For a given level of inflation in period t, expected inflation for period t + 1 will now be higher.
Thus for a given one-period interest rate in t, the one-period rate in t + 1 is expected to be higher.
Therefore i* , which is the average of the one-period rate in t and the expected one-period rate in t + 1, will
now be higher for a given i, .

Note that as k goes to one, so that money growth and thus inflation approach a random walk, the two-
period interest rate becomes equal to the one-period interest rate. That is because with inflation a random
walk, next period's inflation (and thus next period's one-period nominal rate) is expected to be equal to this
period's inflation (and thus this period's one-period nominal rate).

(b) (i) Equation (4) holds in all periods and thus the actual one-period interest rate int + 1 is
(12) im' =kAmy, .
Substituting equation (3) into equation (12) yields
(13) ' =K* Am; + keyy .
Thus
(14) it+ll - itl = sznlt + ke - kAm, = k(k - 1)Am, + kews .
From equation (11), we can write
A5) i -3’ =[i! (1 + 2] - it = [i' (1 + k - 2)/2],
or substituting in for i/' = kAm, , we have
2 .1 k(k-1)Am,
16) iy -i; = —T—

Using the hint in the question, the OLS estimator of b in the following regression:
a7 it+|1 - itl =a+t b[itz - itl 1+ew,
is given by
1 1y 2 .1
~  cov[(ipy —iy),(if ~iy)]
(18) b= RS .
var(iy —iy)
Using equations (14) and (16), the covariance in the numerator of (18) can be written as
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k(k-1DAm
(19) covility —i1),Gf —i)] =°°V|:k(k —DAm, +key ’—(—2—)_—{' '

Since ¢ is white noise and var(Am; ) = o;’, we have

k2 (k-1)?
0) covilyy —il), (7 -i})]=——(—2—)—c§.

Using equation (16), the variance in the denominator of equation (18) can be written as

2 2
k“k-1
Q1) var(i? - ii):—(—z——)—cg.
Substituting equations (20) and (21) into equation (18) gives us
2 2
A 2 ce
(22) b= =2.
K->
———0
4 g

(b) (i) With the time-varying term premium, equation (16) becomes
2 .1 k(k-1)Am
@3) i{ —ig=— +8¢.
Using equations (14) and (23), the covariance in the numerator of equation (18) is now given by

@4) cov[Gil. —il), G2 —ily]= k(k - 1)Am,
V[(iyyg —1¢), (7 —ip)]=cov| k(k —1)Am, +ke, +6, |.

Since € and 0 are white noise, this is simply

P (e
©25) covi(il, —i), G2 - x})]:—z———caz.
This covariance is the same as it was without the time-varying term premium. However, the variance of
(i - iy' ) will change however. It is now given by
5 . K k-1
(26) var(iZ —i}) =—:—c,52 +0g2,

where we have used the fact that the covariance between € and 0 is zero.

Substituting equations (25) and (26) into equation (18) gives us

K&-1?
@n b= 2 2 .
[kjuﬁ 2} ) lf;m]
1 O |*oo +Lk2(k-—l)2

(®) (iii) Since k* (k- 1)? reaches a maximum at k = 1/2, the OLS estimator is highest when k = 1/2. For
k > 1/2, an increase in k (more persistent money growth and inflation), reduces the value of the OLS
estimator. As k approaches one, so that money growth, inflation and thus the one-period nominal interest
rate all approach random walks, the OLS estimator goes to zero.

Problem 10.7 ,
As described in the text, in equilibrium, output equals ¥ and inflation equals n* + (b/a)(y* - ¥).
Substituting these values into the loss function given by equation (10.11) in the text, which is given by
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L=y - y*)’ + (1/2)a(x - n*)?, yields the following value of the loss function in equilibrium:

2 2
EQ_li_ 2 l[k _—] “La g2 165
M LV =—(y-y") +52=(y*-) =5 (y*-3) oy,

or simply
1 2 b2
@ L == (y*-y) [H;J.

Output equals § in equilibrium, regardless of the value of a. Thus to see how the equilibrium loss varies
with a, use equation (2) to take the derivative of L*? with respect to a:

oLF?  _p2
3

-\2

oa = 232 Y*_Y) <0.
Equation (3) states that a fall in a increases LE2 That is, a reduction in the cost of inflation increases the
loss to society. It is true that any given deviation in inflation from its optimal level, ©*, has a lower cost to
society. However, the problem is that this causes the equilibrium level of inflation itself to be higher.
Intuitively, at a given n°, the marginal cost of additional inflation is now lower for the policymaker. For a
given 7°, it then becomes optimal to set a higher inflation rate. But the public knows this and thus the level
of n for which 7° = % is now higher. It turns out that the fact that #°2 exceeds n* by more than it used to,
outweighs the fact that any given deviation in 7*2 from 7* has a lower cost to society.

Problem 10.8

(a) Suppose that n differs from # in some period ty . Then 7° = b/a for all periods after t, . Substituting
this expression for expected inflation into the Lucas supply function, ¥%e=¥ +b(m - m"), gives us output in
each subsequent period:

(1) ye=7 +b(m - b/a) forallt>t,,

function for period t, w, = i - (an? /2), yields

(2) wi=§ +b(n, - b/a) - an2 /2 forallt>t,.

The first-order condition for the choice of inflation is

(3) ow /om=b-am, =0,

and thus the policymaker chooses

(4) m=>b/a forallt>t,.

Since m, = =,° = b/a, then from the Lucas supply function we have
O6) =7y forallt>t,.

(b) To keep things simple, we can assume that the monetary authority chooses to depart from 7 = 7 in
period 0. This does not alter the message. Since 7 has always been equalto 7, o’ = %, Substituting this
into the Lucas supply function gives us

(6) yo=§ + b(mo - b/a). o

Given the fact that the policymaker is choosing to depart from = = %, the particular choice of 7, does not
affect n° and thus the equilibrium in future periods. Thus only the current period's objective function
matters to the policymaker. She will choose T to maximize

(7) Wo= +b(m - &) - (amy’ /2). _

The first-order condition for the choice of Ty iS
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(8) aWo /aﬂo =b- any = 0,
and thus the policymaker chooses
(9) mo=Db/a.

With this choice of inflation, using the Lucas supply function, output in period 0 is given by

(10) yo=¥ +b[(b/a) - x].

Substituting equations (9) and (10) into the policymaker's objective function, Wo = Yo - (amo? /2), yields
(11) wo=7y + (b’ /a) - b#t - (b*/2a), 4

or simply
(12) wo=7 + (*/2a)-bx.

As shown in part (a), in all subsequent periods after the policymaker has deviated, . =b/aandy,=y .

Substituting these values of output and inflation into the objective function, w,=y: - (an’ /2), gives us
(13) w,=7 - (b*/2a) forallt>0.
Thus the policymaker's lifetime objective function if she deviates is given by

(14) WP =3+ (b? /22) - bit + Zp'[5- (b7 /22)].
t=1
Pulling the [y - (b® /2a)] out of the summation sign and using the fact that, since B < 1, we have
5) ZIBt =p+p% +p+..=p(1+B+p2+.)=p/A-P),
t=

we can write the lifetime objective function as

2 2 2
00 WP =5+ 2 v (L] 5 LHH_B_]?_W(I- AL

1-g)7 2a 1-p 1-)2a’
or simply
p_(_L ) (I—Zﬁ]f_
an w _(I—B)y b\ T3

If the policymaker chooses T = % every period, output will be equal to y every period. The policymaker's
objective function in each period is therefore given by

(18) w, =7y -(aft’/2). :

Thus the policymaker's lifetime objective function if she does not deviate is given by

[+ o]
19 WP = 2 p!y- @i /2)|.
t=0 _
Pulling the [¥ - (a®t?/2)] out of the summation sign and using the fact that, since B < 1, we have
[ o}
0) Ip'=1+B+p%+..=1/(1-P),
t=0

we can write the lifetime objective function as
aty W - (_1__ S_at
-l 2 |

(¢) One way of solving the problem is to calculate the benefit and cost of deviating as a function of & and
the other parameters. We can then examine the range of #'s over which the cost exceeds the benefit and
thus the range of & 's over which the policymaker will choose not to deviate from & = .
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The benefit of departing from & =% in some period t, is that welfare in period to is § + (b’ /2a) - bR [see
equation (12)] ratherthan y - (a2 /2) [see equation (18)]. Thus the benefit of deviating, B, is
B=7 + (b’ /22) -b# - § +(@®’/2),

or simply
(22) B= (b’ 2a) + (a®t®/2) - b,

The cost of deviating is that in all periods subsequent to to, welfare willbe ¥ - (b* /2a) [see equation (13)]
rather than 3 - (a#t*/2). Thus the cost of deviating in each future period isy -@r2/2)-y + (b 2a) or
simply (b /2a) - (a®t? /2). The total cost of deviating, discounted to time to is ‘

@3) C= = ﬁ“‘O[(b2/2a)-(a&2/2)] =[(b2/2a)-(afc2/2)](p+132+|33+...).
t=t,+1

Substituting the result in equation (15) into equation (23) gives us the following cost of deviating:

24) C-( B ﬁ_afcz
“U-pJ2a 2

We can plot the benefit and cost from deviating as a function of # . First, we will deal with the benefit
from deviating. From equation (22), we have

(25) #B/o% =a®t -b, and  (26) & B/orl=a>0.

Thus B is a parabola that reaches a minimum at & = b/a. From equation (22), at # =0 B=b’/2a
Finally, at its minimum at @ = b/a, B = (b /2a) + (b /2a) - (b /a) = 0. B, the benefit from deviating as a
function of 7, is plotted in both figures below.

Now dealing with the cost of deviation, we have from equation (24)

(27) éC/or =-[p/(1 -P)lan, and (28) & Clor*=-[p/(1-P)la<0.

Thus C is an inverted parabola that reaches a maximum at % =0. From equation (24), the value of the
cost of deviating at & = 0 is given by C = [B/(1 - B)](b? /2a). In addition, at & =b/a, C=0.

;
:
E
E
:
v

B,C

Cost
b’ /2a\ /Beneﬁt ‘ /

Cost Benefit

. _b(d-2p) n
T =——;— =

b B
W |
=B

The case of p < 1/2 - sothat B/(1-P) <1 - is depicted in the left figure. The case of p > 1/2 - so that
B/(1 - B) > 1 is depicted in the right figure.
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We needq to solve for the values of # where the benefit of deviating equals the cost of deviating. Setting the
right-hand sides of equations (22) and (24) equal to each other yields

-~ A2 A
L |07 _ak = (1+ p_\at’ b‘+(l- p o’

+——-bRi= -— —_ ~bR =0,
22 2 1-B|l2a 2 1-p) 2 1-B/2a
or simply '
(29)[ 1 a2 bA+(1-2B b? o
— -br+|—— =0.
1-p/ 2 1-B /2a

Multiplying both sides of equation (29) by (1 - B)2a gives us an equivalent condition for B=C:
(30) a’ 2% -2a(l - )bt +(1 - 2B)b? = 0.
Using the quadratic formula, we have
2,2 2 _4.242 - 2p2[1 - 2 _
2ab(1-p)i\/E b2(1-p)% —4a2b2(1-2p) 2abd B) £ 4a”b [1 2p+P 1+ZB]
- 2a2 - 2a® '

31 #

Some further algebra yields
-B)t -B)+
32) i= 2ab(1-p) £ 2abp _ b(1-p) £ bp ’

2a? a
and thus finally
. ba-py+bp b R 1-P) - 1-2
33) m =—————-( 2) P =2 and (34) my = L [:) bp = X " B) .
These two values of & for which the benefit of deviating just equals the cost of deviating are depicted in the
figures above. Note that for the case of B > 1/2 — the figure on the right — % , is negative and is thus not
relevant. We can now interpret the figures.

For the case of p > 1/2 — depicted in the figure on the right -- the cost of deviating exceeds the benefit of
deviating for any 7 such that 0 < # <b/a. With these values of the parameters, the policymaker will
choose not to deviate from = = & . Right at & = b/a, the policymaker is indifferent and in fact at & =b/a,
deviating is actually the same as producing © = % . Finally, for any value of T > b/a, the benefit of
deviating exceeds the cost of deviating and hence the policymaker will in fact deviate from 7 = .

For the case of P < 1/2 -- depicted in the figure on the left — the cost of deviating exceeds the benefit of
deviating for any value of 7 such that [b(l - 2B)V/a < & <b/a. With these values of the parameters, the
policymaker will choose not to deviate from 7 = #. Rightat # =b/aand & = [b(1 - 2B)V/a, the
policymaker is indifferent. Finally, for any value of & < [b(1 - 2P))/a or & > b/a, the benefit of deviating
exceeds the cost of deviating and hence the policymaker will in fact deviate from =&

For the policymaker to actually set © =0 if &# =0, we would need the cost of deviating to exceed the
benefit of deviating, evaluated at & = 0. From our earlier discussion, we know this will be true as long as
B > 1/2. Thus regardless of the values of a and b, the policymaker will choose to set inflation to zero if

# =0 as long as the discount rate is greater than 1/2.

Problem 10.9 _

(a) We can use the same technique as in part (c) of the solution to Problem 10.8. We can examine the
range of #'s over which the cost of deviating from setting @ = 7 exceeds the benefit of deviating. This
gives the range of & 's over which the policymaker chooses © = # each period. The benefit from deviating,

B, is the same as it was in Problem 10.8. Thus we have
(1) B=(*/2a) + (an’/2) - bx.
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The cost of deviating in some period is that in the following period, 7° = b/a rather than n° = &. As shown
in part (a) of the solution to Problem 10.8, when =° = b/a, the policymaker chooses 7 = b/a. Thus output is
equal to ¥ in the following period. Note that since the policymaker chooses = =° in the period after
deviating, expected inflation reverts to #° = & in all subsequent periods. Thus there is only a one-period
cost to deviating in this setup. Specxﬁcally, the cost is that in the penod after deviating, the value of the
policymaker's objective function is ¥ - (b’ /2a) rather than ¥ - (a®t */2). Discounting that back to the
period in which the deviation occurs yields the following cost, C:

@) C=B[7y -@a*/2)-§ + (b’ 2a)] = B[(b’ /2a) - (a* /2)].

We can now plot the benefit and cost of deviating as a function of 7. The benefit from deviating is the
same as in Problem 10.8 and so we can concentrate on the cost. From equation (2):

(3) 6C/on = -Pan, and 4) &#Clor’=-Ba<0.

Thus C is an inverted parabola that reaches a maximum at # = 0. From equation (2), the value of the cost
of deviating at & = 0 is given by C = B(b* /2a) < (b’ /2a) since B < 1. The next step is to solve for the
values of T where the benefit of deviating equals the cost of deviating. Setting the right-hand sides of
equations (1) and (2) equal to each other yields

2 a2 2 A2 2
b an . PBb° Barn - (1+B)a A2 _pas (1-B)b
22 2 2a 2 2 2a
Multiplying both sides of equation (5) by 2a gives us an equivalent condition for B = C:
6) (1+P)a*n*-2abwt +(1-B)*=0.
Using the quadratic formula, we have

2ab+ y/4a%b% - 42%b% (1+ B)(1 - ) 2ab+J4a b?[1- 1+B2]

=0. (5

() ==
2a2(1+P) 22 (1+P)
Some further algebra yields
. 2abt2abp b(1xp)
(8) n= 2 = ’
2a°(1+p) a(l+P)
and thus finally
_bQ+ b . b(-
©) # 1+P) _b and (10) #, = 1-p)
a(l +B) a a(1+p)

B.C ‘ From the figure at left, we can see that the cost of
deviating from © = Tt exceeds the benefit from
deviating for any 7 such that

b(1 - B)/a(l +B)<® <b/a.
b’ /2a J Benefit

With these values of the parameters, the
policymaker will choose not to deviate. For any
Cost value of %t greater than b/a or less than

b(1 - B)/a(1 + B), the benefit from deviating
exceeds the cost of deviating and hence the
policymaker will in fact deviate fromn =7 .

pv 2a)

. _b(d-P)

EH
b}

It

» |

"2 = 0+p)
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(b) Again, we will employ the same technique. The benefit from deviating remains the same; it is given by
equation (1), B= (b / 2a) + (a®? /2) - bi.

We need to determine the cost of deviating for the policymaker. Suppose the policymaker deviates in some
period t. Then in periodt + 1, m,.;° = my > b/a. We can also write this as ®..,° =b/a + x, x > 0. The
variable x will capture the extent of the punishment for deviating. When the policymaker takes expected
inflation as given, she chooses to set inflation equal to b/a. Thus, using the Lucas supply function, output
in period t + 1, the period after deviating, is :

an yy, =y+ bl(b/a)-(b/a)-x]=7-bx.

Thus output is below the natural rate the period after deviating. The value of the policymaker's objective
function in period t + 1 is

(12) Wy =y - (an? /2)=F - bx— (b2 / 2a).

Thus the cost of deviating in period t + 1 is that welfare is given by (12) rather than being equal to

y- (aft2 /2). Discounting this back to period t, we have the cost in periodt + 1:

(13) Cyyy =BIy- @i /2) - F+bx+(b? / 2a)],

or simply

(14) Cyyy =Blbx- (a2 /2) +(b? / 22)].

Now consider the situation in period t + 2, two periods after a deviation. Expected inflation equals b/a.
Taking expected inflation as given, the policymaker chooses to set inflation equal to b/a. Thus output is at
the natural rate. The value of the policymaker's objective function in t + 2 is

(15) Wiy =y ~@n? /2)=5- (b2 / 22).

Thus the cost of deviating in period t + 2 is that welfare is equalto y - (b2 / 2a) rather than y - (a1'i2 /12).
Discounting this back to period t, we have the cost in period t + 2:

(16) Cip =B [T~ (ak? /2) -5+ (b / 22)] = B2[(b? / 2) - (a2 /2)1.

In period t + 3, since actual inflation last period was equal to expected inflation last period, expected
inflation reverts to & and there is no further cost to the deviation in period t.

Thus the total cost of the deviation is

(17) C=PBlbx~(ar* /2)+(b? / 22)] + B2[(b2 / 22) - (a2 / 2)],
or simply

(18) C=Bbx+p(1+P)[(b? /2a) - (ait2 /2)].

From equation (18),

(19) oC/on=PB(1+P)[-2ar / 2]=—P(1+ Blatt, and (20) & 2C/61'c2 =-B(1+p)a<0.

Thus C is an inverted parabola that reaches a maximum at % = 0 The value of the cost of deviating at

% =0 is given by Bbx + B(1 + B)(b*/2a). From earlier analysis, we know that the benefit of deviating at
#=0 is b%/2a. Thus if the value of X, the excess punishment, is high enough, the cost of deviating at T =0
will exceed the benefit and there can be an equilibrium with zero inflation. Specifically, we need the
following condition to hold:

(20) Bbx + B(1 + B)(b*/2a) > b*/2a,

or

21) Bbx > (v/2a)[1 - B(1 + B)],
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or simply
(22) x> (b*2a)[1 - B(1 + B))/Pb.

We can determine the value of & at which C = 0. From equation (18), C = 0 when
(23) B(L+P)[(aR? /2) - (b2 /2a)] = Bbx,
which implies
4) (ar? /2)- (b2 /2a)=bx/(1+P),
and thus
(25) %2 =[2bx/a(1+B)] + (b2 / a?).
Therefore C = 0 when

2bx b2 b

+—>—.

a( 1+ [3) 32 a
Thus the cost of deviating is equal to zero at a value of 7 greater than the one for which the benefit of
deviating is equal to zero (which is * =b/a). The values of & for which it is an equilibrium for the
policymaker not to deviate are those -- just as in part (a) -- where the cost of deviating exceeds the benefit.
The basic idea here is that higher values of x lead to a wider range of & 's for which the cost exceeds the
benefit and thus a wider range of % 's for which the policymaker does not deviate.

(26) #=

(¢) As we have shown previously, if the policymaker takes expected inflation as given, she chooses
inflation equal to b/a. Thus if 7° = b/a, the policymaker chooses © = b/a, so that the public's expectation is
fulfilled and output is at the natural rate. There is no incentive for the policymaker to choose a different
inflation rate and there is no incentive for the public to change its expectation of inflation and thus

© = 1° = b/a will be an equilibrium for anya >0, b > 0.

Problem 10.10

Consider the situation in the last period, denoted T. The policymaker's choice of 7 has no effect on next
period's expected inflation, there is no next period. Thus the policymaker's problem in the final period is to
take expected inflation as given and choose = in order to maximize the period T objective function. From
previous analysis in the solution to Problem 10.8, we know that the policymaker's choice of inflation in this
type of situation is nr = b/a. Since the public knows how the policymaker behaves, expected inflation also
equals b/a and thus output equals y .

Now consider the situation in period T - 1. The important point is that the policymaker knows her choice
of 7r.; will have no bearing on what happens the next and final period. Regardless of the level of = she
chooses in period T - 1, expected inflation next period will be b/a, as described above. Since the
policymaker's problem has no impact on the future, she chooses =, taking =° as given, in order to maximize
the penod T - 1 objective function. Again, the optimal choice is 71, = b/a. The public knows this and so
r.” = b/a and thus output in period T - 1 equals ¥ .

Working backward, the same thing happens each period. The policymaker knows that expected inflation
the following period will be b/a regardless of what she does this period. Thus she acts to maximize the one-
period objective function and chooses % = b/a, which results in output equal to the natural rate. Therefore
the unique equilibrium for all periods is ©° =, =b/aand y, = §
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Problem 10.11 ,
(a) The policymaker wants to choose #, and 7, in order to maximize the objective function given by
(1) W =E[b(m - 1° ) + oy - (am? /2) + b(my - 15" ) + oz - (amz 12)].
Substituting 7, = &, + & and 7,° = a. + B, into the objective function given in equation (1) yields
@ W=E{b(ﬁ:1+s,-ul°)+c(ﬁ,+e,)-[a(ﬁ,+e,)2/2]+b[ﬁ2+sz-a-ﬁ(ﬁ:|+s,)]
te(fta+€) - [a(Ra+e2) 2]},
The first-order condition for the policymaker's choice of 7, is
(3) OW/or,=E[b+c-an,]=0.
Solving for &, , noting that ¢ is not uncertain from the policymaker's perspective, we have
@) n,=(@b+c)a
Substituting equation (4) into the expected value of the policymaker's second-period objective function
yields
r

: .
®) E[w2]=Etb(E-:ﬁ+82_nze]+c(b:c+82)_a[(b+c)/a+82] B

2

Since this expectation is being taken with respect to the policymaker's information set, ¢ is not random.
Thus equation (5) can be rewritten as

b b Tb+c)? 2(b+0)E
(© Epwy]= 201D _pp e, 01O 2 GO K +ORE] | B2y,
a 2| a2 a
Note that E[s,] =0 and E[e,” ] = o2. Thus equation (6) simplifies to
(b+c)? (b+c)? ac,? .
E = —bn,© - -
. (7) [WZ] a 1‘2 2a 2 ’
and thus finally
2 2
(b+c)” acg
8) E = - -b=,°.
(®) E[w;] o 5 Ty

(b) Using equation (2), the first-order condition for the policymaker's choice of Ty is

(9) OW/dR,=E[b +c-aft,-bp]=0.

Since nothing on the right-hand side of equation (9) is uncertain for the policymaker, solving for 1 gives
us :

(10) &, =[b(1-P) +cla.

(c) =, and 7, are linear functions of c and &, which are normal random variables. Thus =, and =, are also
normal random variables. Therefore we can use the following formula for the conditional expectation of a

normal;
cov(my,™

)
(1) E[ny|n;|=Eln, 1+ Var(nl)l [, - En,]].

Equation (11) is intuitive. Suppose that =, and =, have a positive covariance which means that 7, tends to
be above its mean when T, is above its mean. Then if we observe a realization of m, greater than its
expected value, the second term on the right-hand side of equation (11) is positive. This means that given
this realization of &, , we should expect the realization of =, to be greater than its unconditional mean of
E[‘Rz ] .

We need to solve for E[r, ], E[n, 1, cov(r, , ®; ) and var(n, ). We know that &, = &, + €; and thus
(12) E[r 1=E[#,]+E[s]=[b(1-P) + T
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We have used the fact that the public knows that the policymaker will choose 7 ; according to equation
(10). Thus with rational expectations, the expected value of 7 ; must equal the expected value of the right-
hand side of equation (10). In addition, we have used the fact that E[s;]=0.

Since 7, = =, + €, , we have

(13) E[r; ] =E[r,]+E[e;] = (b + T)a.

Again, we have used the fact that the public knows that the policymaker will choose # , according to
equation (4). Thus with rational expectations, the expected value of % , must equal the expected value of
the right-hand side of equation (4). In addition, we have used the fact that E[e;]=0.

Now we need to find the variance of inflation in period 1:
(14) var(m; ) = var(® 1 +&;) = var( [b(1 - B) + c)/a + & ).
Since ¢ and €, are independent, we have
(15) var(m, ) = (1/a* )oc? + o,
Finally, the covariance between 7, and ; is given by
(16) cov(m;, ) =cov([b(1-B)+cla+g,, (b+c)a+s, ).
Since €, , €, and ¢ are independent, this covariance is equal to
(17) cov(m , m; ) = cov(c/a, ¢/a) = var(c/a) = (1/a® Joc’.
Substituting equations (12), (13), (15) and (17) into equation (11) yields
|- (b+3) (1/a%)0c2 [n _ b(l—[})+6]
a (l/az)cs'c2 +c382|- : a ’
and thus B is given by
2y5.2
19) p=— 2% —.
(1/a%)oc” +o;

(18) E[n,|r,

The intuition behind equation (18) is as follows. The public wants to form its expectation of inflation in
period 2, given its observation of inflation in period 1. In order to do so, the public would like to know for
sure what the policymaker's taste for inflation, c, is. The problem is that actual inflation in period 1 does
depend on what the true c is, but it also depends upon the random, unobservable & shock. Now, if the
public sees a 7, greater than its expected value of [b(1 - ) + € J/a, it knows this could be due to a
policymaker with a higher than average c. If this is the case, the public should revise upward its estimate
of m from [b + T)/a, its unconditional mean. However, the fact that 7, is greater than its expected value
could also be due to a positive realization of ¢, . If this is the case, it should have no bearing on the public's
estimate of 7, . Equation (18) says that if the variance of the policymaker's taste for inflation, o¢’, is very
large relative to the variance of the random shocks, o2, B will be close to one. The public will attribute
most of the above average realization of =, to a policymaker with a higher than average ¢ and raise the
expectation of w, accordingly.

(d) The policymaker knows that her choice of 7 ; will affect the public's expectation of inflation in the
second period, m,°. When =, tumns out to be high, the public attributes some of this to a policymaker with a
high ¢ and accordingly raise #,". From equation (8), we can see that a higher value of n,° reduces the
expected value of the policymaker's second period objective function. Thus the policymaker chooses a
lower 7, to try and establish a "good reputation” as someone with a low c in order to keep =, down. Inthe
second period, however, there is no future period. Thus there is no need to worry about the effects that this
period’s inflation will have on future expected inflation.
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Problem 10.12

(a) The policymaker wants to choose inflation in order to maximize her objective function, which is given
by W=cyy - (an® /2), subject to output being given by the Lucas Supply function, y =¥ +b(m - 7).
Thus the policymaker’s problem is

max W =cy[§ +b(n -°)] - @an’ 12).
T

The first-order condition is _

(1) W/on =bcy -an=0.

Thus the policymaker's choice of 7 is
(2) ==bcy/a.

(b) The public knows the policymaker will set inflation according to equation (2). Thus with rational
expectations, expected inflation must equal the expectation of the right-hand side of equation 2):
(3) =n°=E[bey/a] = becE[y)/a = be¥ /a.

(¢) The true social welfare function is given by WS = yy - (an? /2). Taking the expectation of both sides
of this expression with respect to the public's information set, so that y is random, gives us

@) E[W*]=E[y(F +blr-°)) - @x’ /2)],

where we have substituted for y =y +b(n - 7°). Now substitute the policymaker's choice of =, equation
(2), and the public's expectation of inflation, equation (3), into equation 4):

= 2.2.2
®) E[WSOC]=E[7[?+b(b—°l—b°Y)]— ® - }
a a 2a

Simplifying yields

© EWS°C1=FElr]+
Since E[y] = ¥, equation (6) becomes

b2 b2c2Ely2

™ E[wS°C1=W+—a—°-[E[721—72]——12;—”-—].

Now use the facts that for a random variable X:

@) var(X) =E[X*]- X, and () E[X? ] = var(X) + EX]’.

Here, this means that we can write

(10) o2 =El1-7% and (D Elf1=o/+7"
Substituting equations (10) and (11) into equation (7) gives us the following expected value of the true
social welfare function:

12) EWSC1=y7+

b2cE[y?] bPeVE] b7 Ely’]
a 2a

2 2.2
bcoz_bc{

2 . =2
0.2 +7°).
2 na Y 7)

(d) To find the first-order condition for the maximization, use equation (12) to set the derivative of the
expected value of the social welfare function with respect to ¢ equal to zero:

SOC 2 2
OE[W b
13) _____l.__.b__ 2 ¢

2% g2 .52 =
| e N oy = " (oy +y )—0.
Solving for ¢ yields
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072

(14) c= —5 2

o< +Y
There is a tradeoff here. From equation (2), we can see that choosing a more "conservative" policymaker,
that is, one with a low c, produces a better performance in terms of average inflation. However, such a
policymaker would not respond well to the shocks. Thus there is some optimal level of "conservatism" that
balances these two forces.
The value of ¢ that maximizes the expected value of true social welfare is decreasing in the mean of v.
Since we know that ©° will equal 7 on average (since y will equal ¥ on average), output will equal full
employment output on average, regardless of the values of c or Y. From equation (2), we can see that if y
is higher on average, inflation will also be higher on average, for a given c. Thus it will be welfare-
improving to offset this and keep inflation lower on average by having a policymaker with a lower c; that
is, having a more "conservative" policymaker.

However, the value of ¢ that maximizes expected social welfare is increasing in the variance of the y shock.
The more variable is the shock, the less "conservative" the central banker should be. Since the policymaker
can act after y is realized, she can choose to offset any deviation in y from its expected value, which will
raise welfare. The policymaker will do this only to the extent that she cares about the shock's effect. Thus
the more that y varies, the better it is to have a policymaker who cares about the shock's effect and will act
to offset it.

Problem 10.13 .

(a) Social welfare is higher when the policymaker turns out to be a Type-1, the type that shares the
public's preferences concerning output and inflation. The choice of setting = =0 in both periods -- as the
Type-2 policymaker does -- is a choice available to the Type-1 policymaker. She chooses not to do this; in
order to maximize social welfare, she decides to choose another pair of inflation rates. Since she is
attempting to maximize social welfare, welfare must be higher under the choices made by the Type-1
policymaker. For example, as explained in the text, if f < 1/2, it is optimal for the Type-1 policymaker to
choose 7, = b/a and 7, = b/a. That must be because it achieves higher welfare than choosing %, =0,

T = 0.

(b) Expected inflation, 7°, is determined by the public's beliefs. So both the " a'" policymaker and the "a"
policymaker face the same =, since in either case, the public believes it is facing an " a' " policymaker.
Thus both policymakers have the same choice set. The "a" policymaker makes her choice to maximize true
social welfare, whereas the " a' " policymaker makes her choice to maximize something else. Thus social
welfare must be higher with the "a" policymaker.

Problem 10.14

(a) When the policymaker fixes i, the LM curve is irrelevant. Equilibrium output is determined by the IS
curve and the fixed nominal interest rate, 1 . Substituting 1 into the IS curve yields

(1) y=c-ai- + g5 .

The variance of y is simply

(2) var(y) = var(ess ) = stz.

(b) When the policymaker fixes m, the equilibrium level of output is determined by the intersection of the
IS and LM curves. Rearranging the IS curve to solve for i gives us
(B)i=(c+es-y)a.
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Substituting equation (3) and the assumption that m = T into the LM curve, m -p =hy - ki + g, gives
us
m -p =hy - [k(c + &is - y)/a] + ev = [h + (K/a)]y - (ke/a) - (K/a)ers + €1m -

Solving for y yields
@) y= - p+(ke/a) + (k/a)eis +epyy  a(M-p)+kc+kes +aepm
y= h+ (k/a) B ah + k '
The variance of y is
K 2 - ( a Y\
(5) var(y) =(—) ors” +( ) oM’
ah +k ah+k

(¢) If o1s” = 0 — if there are only LM shocks -- then from equations (2) and (5):

2
(6) var(y)li=;= , and (7) Vaf(Y)|m=ﬁ=( ahik) oM > 0.

Thus interest-rate targeting leads to a lower variance of output than money-stock targeting. In fact, output
in constant under interest targeting.

(d) If opp’ = 0 - if there are only IS shocks - then from equations (2) and (5):

2
2 2
(e} <O .
ah+k) I8 3

Thus money-stock targeting leads to a lower variance of output than interest-rate targeting.

®) var(y)|i=§ =o?, and (9) var(y)|m=_; =(

m

(e) Consider the situation in part (c) in which there are only LM shocks. If the policymaker targets the
nominal money stock, the LM shocks cause the LM curve to shift around and equilibrium output in the
economy is determined by the intersection of that shifting LM curve with the stable IS curve. If the
policymaker targets the nominal interest rate, it ensures that i remains constant in the face of any LM
shock. Since i is not allowed to change, planned expenditure does not change and thus the level of output
that equates planned and actual expenditure does not change in the face of an LM shock.

Consider the situation in part (d) in which there are only IS shocks. If the policymaker targets the nominal
interest rate, equilibrium output changes by the full extent of the shift in the IS curve caused by a shockto -
the IS curve. Now consider the case in which the policymaker targets the nominal money stock. A positive
IS shock shifts the IS curve to the right. With m fixed, as Y rises to equate planned and actual expenditure,
i rises as well in order for the money market to remain in equilibrium. This rise in i reduces planned
expenditure and thus mitigates some of the positive shock. Therefore Y does not end up rising as much.

The same idea is true in the opposite direction. A negative IS shock shifts IS to the left. If the policymaker
targets m, i will fall along with Y in order to keep the money market in equilibrium. This fall in i raises
planned expenditure and helps to offset the original negative shock to planned expenditure. Thus Y does
not fall as much as if the policymaker had kept 1 constant.

(f) If there are only IS shocks, it is possible to keep y constant at some target level y. By rearranging the
LM curve with y set to y , the nominal money supply must be such that
(10) m=p +hy -ki.

1
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The policymaker knows the fixed p, has picked
y herself and can observe i. Thus when i
changes - and since there are only IS shocks,
we know this must be due to a shift of the IS
curve -- the policymaker must change m
accordingly. As i rises, for example, the
policymaker must reduce m.

In the figure at right, as i rises due to the
rightward shift of the IS curve, the
policymaker reduces m which shifts up the LM
curve and increases i more. The policymaker
can stop reducing m when m and i are such
that equation (10) is satisfied. At that point,
LM™" will intersect IS"E" right at the target
level of y .

<>
<

Problem 10.15 :

(a) Using the fact that for a random variable X, var(X) = E[X2 1- E[X])? or E[X* ] = var(X) + (E[X])?,
we have

(1) El(y-y")'] = var(y - y*) + (Ely - y*D’.

Substituting the expression for output, y = x + (k + & )z + u, into var(y - y*) and simplifying yields
() var(y-y¥) =varx +kz+ g, z+u-y*) =2’ g’ + 5,2,

Substituting for output in (E[y -y*])* and simplifying yields

G) Ely y*D* = Elx+kz+ ez +u-y*])’ = (x +kz - y*,

where we have used the fact that €, and u both have mean zero. Substituting equations (2) and (3) into
equation (1) gives us ’

@ Ely-yY]=2 o’ +o.’ + (x + kz - y*).

(b) The policymaker wants to choose z in order to minimize E[(y - y*)*]. Using equation (4), the first-
order condition is

(5) S(E[(y - y*1)/6z = 2z0,% + 2k(x+ kz - y*) = 0.

Collecting the terms in z yields -
2o’ + k') = (y* - x)k,

and thus the optimal choice of z is

©) z-= (y*-x)k

O'k2 + k2

(c) To see how policy should respond to shocks (i.e. changes in x), use equation (6) to take the derivative
of z with respect to x:

ox O’k2 + k2
The fact that the derivative in (7) is negative implies that higher values of x should be offset with lower
values of z in order to keep output from varying as much.

<0.
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Note that 8z/0x does not depend upon c,%, which represents uncertainty about the state of the economy.
Thus in this model, the optimal degree of "fine-tuning" does not depend upon the amount of uncertainty
about the state of the economy.

(d) In contrast, dz/dx does depend upon o2, which represents uncertainty about the effects of the policy
instrument. In fact, we have

0[02/0x| k
Since 0z/0x is negatlve to begin with, a rise in o,” makes it less negative. That is, higher values of oy -

more uncertainty about the effects of the policy instrument -- reduces the amount that policy should
respond to shocks or in other words, reduces the amount of "fine-tuning" that should be done.

Problem 10.16

We can focus on a situation in which gy , 7, i, and r are constant and in which n° = n. Although not
technically correct — since Y and thus M/P are growing - such a situation will be referred to as a steady
state in what follows. Under these assumptions, it is therefore reasonable to assume that output, and the
real interest rate are unaffected by the rate of money growth and that actual and expected inflation are
equal. Taking the exponential function of both sides of the money demand function, which is given by
In(M(@®)/P(t)) = a - bi + InY(t), yields

1) MOPE =e* Y ().

The nominal interest rate is given by i =r+ n°. In steady state, n° and r are constant and thus so is the
nominal interest rate. Thus in steady state, the quantity of real balances must grow at the same rate as
Y(t). In other words, M(t)/M(t) - P(t)/P(t) = gy. Solving for inflation yields

(2) m=gm-8v,

where gy is the growth rate of the nominal money stock. This means that the nominal interest rate in
steady state is given by

B) i=T+r=T+g\ —8Y>

where we have used the fact that actual and expected inflation are equal Substituting equation (3) into
equation (1) gives steady-state real balances: :

@) M()/P(t) =ee PTBM 8 Y(p).

Seignorage is given by
M(t) M(t) M(t) M(t)
(% S®= = =EM 5o -
P(t) M(t) P(t) Pt)
Substituting equation (4) into equation (5) gives steady-state seignorage:
©6) S(t) =gpe’e PTEMEY)Y (1) = Cg e BMY(1),
where C=e% °T8Y) We need to find the choice of nominal money growth, gy , that maximizes steady-
state seignorage. Again, we are assuming that output is unaffected by money growth. The first-order
condition is
(7) 3S(t)/dgps = Ce PBMY (1) - bCgpre BMY(t) = 0,
which simplifies to
8) 1-bgu=0.
Thus seignorage is maximized when money growth is given by
©) gu=1/.
From equation (2), we know that t = gy - gy and thus the rate of inflation that maximizes seignorage is
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(10) == (1/b) - gy .
Equation (10) implies that the higher is the growth rate of real output, the lower is the rate of inflation that
maximizes steady-state seignorage.

Problem 10.17

(a) Desired real money holdings are given by

(1) m(t) = Ce~bn"(),

The assumption is that expected inflation adjusts gradually toward actual inflation, Specifically, our
assumption is

@) %) =Bla) - n° )], o

As usual, seignorage is given by M(t)/P(t) or equivalently [ M(t)/M(t)][M(t)/P(t)]. Assuming that the
nominal money supply is growing at rate 8um (t), we can write seignorage as

() SO = gu t)m(t).

To see the dynamics of inflation and money holdings formally, note that the growth rate of real money,
m(t)/m(t), equals the growth rate of nominal money, gy (t), minus the rate of inflation, n(t). Rewriting this
as an equation for inflation gives us

4 =) =gm @®) - [t ()/m()].

Define G as the amount of real purchases that the government needs to finance with seignorage. Thus from
equation (3), we have

() gm () = G/m(). _
Taking the time derivative of both sides of equation (1) yields

(6) r(t) = —bi®(t)Ce =" (V) |

Dividing both sides of equation (6) by m(t) gives us

(7) m(t)/m(t) = ~br® (t).

Substituting equations (5) and (7) into equation (4) yields

———— - e .
®) =)= m(t) +bx"(t).
Substituting equation (8) into equation (2) gives us
G
©) #°(t)=p| — + b (t) - nC(t) | .
m(t)
Collecting the terms in 7 (t) yields

[ G
°(t)[1- Bb] = BL;(E- ne(t)J,
and thus

10) #%(t) = I_pr[G-L((:))m(t)J'

(b) The assumption that G > S* (where S* represents the maximum steady-state value of seignorage) is
equivalent to G > n° m for al] possible values of 7°, Thys since b < 1, the right-hand side of equation (10)
is everywhere positive: regardless of where it starts, expected inflation grows without bound. To examine

the shape of the phase diagram, substitute m(t) = Ce~bn" (V) into equation (1 0):
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BG B
(1-pbyCe ™™ 1-Pb
The following derivatives will be useful:
dis(t bG brt(t) 2.e 2~ br®(t)
12) we()=ﬂ e _ B ’ a3) d“=n (t2)=Bb Ge .
dn®@t) (1-Bo)C  1-Pb dn(t)° (1-Bb)C

an =)= 7€ (t).

By setting the right-hand side of equation (12)
equal to zero, it is straightforward to show that | 7€ (¢)
#°(t) reaches a minimum at =° (t) =
[In(C/bG)]/b. Thus the phase diagram has the
shape depicted in the figure at right. From
equation (1), and since n° rises without bound,
the real money stock is continually falling. If
m(t) is continually falling, then from equation
(3), it must be the case that the growth rate of

the nominal money supply, gu (), is .
continually rising if the government is to . q
obtain G in seignorage. ~ 0

L2/

(¢) Now consider the case of G < S*. The left-hand figure below reproduces Figure 10.8 from the text. It
gives the amount of seignorage the government can obtain in steady state as a function of the growth rate of

the nominal money supply. In the case of G < S*, there are two possible growth rates of the nominal

money supply, labeled g; and g; in the figure, consistent with raising the amount G in seignorage. Recall
that in a steady state, expected inflation equals actual inflation which in tum equals the constant growth

rate of the nominal money supply. Thus, by assumption, 7° (t)m(t) = G at =° (t) = g1 and =° (t) = g,. From
equation (10) then, 7°(t) = 0 at «° (t) = g, and =° (t) = g, . From the figure on the left, when g; < 7° (t) <
g , we have 7° (t)m(t) > G and thus 7°(t) <0. Otherwise, 7° (t)m(t) < G and thus 7°(t) <0. Putting all
of this information together gives us the phase diagram depicted on the right. The low-inflation steady state

with 7° (t) = m(t) = g, is stable and the high-inflation steady state with 7° (t) = (t) = g is unstable.

gm (1)
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Problem 11.1

(a) () Taking the time derivative of d(t) = D(t)/Y(t) gives us

) d)= D@)Y(t) Iz)(t)Y(t) .

Y(t)

Substituting D(t) = 8(t) - the rate of change of the amount of debt outstanding equals the budget deficit —-
and the fact that Y(t) = Y(t)g, which follows from the fact that output grows at rate g, and simplifying

gives us
. _SLt)__ D(t)g
2 d(t)-Y(t) Yo

Substituting the assumption that the deficit-to-output ratio is constant -- 5(t)/Y (t) = a -- and using the
definition of d(t) = D(t)/Y(t), yields

(3) d(t)=a-gd(t).

(a) (ii) The phase diagram for the ratio of debt to
output is depicted in the figure at right.

In (d, d) space, equation (3) is a line with slope equal \a slope = -g

to -g. We can see that the system is stable. Ifthe debt-
to-output ratio is less than a/g, d(t) > 0 and so d(t) / |

rises toward a/g.
a/z& )
Note that the value of the debt-to-output ratio to which

the economy converges is increasing in the deficit-to-output ratio, a, and decreasing in the growth rate of
output, g.

Similarly, if the debt-to-output ratio is greater than a/g,
d(t) <0 and so d(t) falls toward a/g. ’

\ 4
v

(b) (i) Once again, taking the time derivative of d(t) = D(t)/Y(t) gives us :

. D()Y(t) - D(t)Y(t)
4) d(t)= .
4) d(t) YO
Substituting D(t) = 5(t) = aY(t) + r(d(t)) D(t) and the fact that Y(t) = Y(t)g into equation (4) and
simplifying gives us
) () cas "AODO DO

Y(t) Y()

Using the definition of d(t) = D(t)/Y(t), yields
(6) d(t)=a+[r(d(t)) - gld(t).

(b) (i) When plottedin (d, d) space, the slope of the locus given by equation (6) equals r(d(t)) - g. Given
the assumptions about the behavior of r, this slope is negative for large negative values of d(t) and
increases as d increases and so equation (6) defines a convex function as depicted in the figures below.

Once again, d(t) =a > 0 when d(t) equals zero.” And d(t) = 0 if d(t) = ————.
g—r(d(t)
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The case in which a is sufficiently small that d is negative for some values of d is depicted on the left-hand
side. In this case, d; is a stable equilibrium whereas d; is not. If the debt-to-output ratio starts off less than
d,, it converges to dy . If the debt-to-output ratio starts off greater than d, , it rises without bound.

The case in which a is sufficiently large that d is positive for all values of d is depicted in the figure on the
right-hand side below. In this case, d will always be rising and there is no stable equilibrium.

() : d(t)

a\

Ti~— & do 4 & do

L 2
17
v
4
v

Problem 11.2 :
Throughout, we will assume U ' (¢) >0 and U " (¢) <0. In addition, since the expected value of Y; is equal
to Y, , we can write Y, = Y; + € with E[g] = 0.

(a) The individual's problem is to choose C, and C; in order to maximize U(C, ) + E[U(C, )] subject to
1) G=>0-1)Y,i-Ci+(1-n)Y: te). '
We can substitute for C, and solve the unconstrained problem of choosing C; :
max U(Cp)+E[U((1- 7)Y, - €1 +(1-72)(Y; +9))].
The first-order condition is given by
U'(C,) +E[U(C)(-D)] =0,
or simply
@) U'(Cy)=E[U(Cy)]. S
If the individual is optimizing, the marginal utility of consumption in period one must equal the expected
marginal utility of consumption in period two.

(b) IfY; is not random, the first-order condition reduces to U'(C;) =U'(C,). With U"(9)<0
everywhere, this implies that C, = C,. If utility is quadratic then U'(C; ) is a linear function of C, and so
E[U'(C,)] = U'(E[C;]). Thus the first-order condition given by equation (2) can be rewritten as U'(C,) =
U'(E[C,)). Since U”(e) <0 everywhere, this implies that C, = E[C;).

(c) Now, U' () >0, U" (s) <0and U™ () > 0. Marginal utility is now a convex function of
consumption and so by Jensen's inequality E[U'(Cy)] > U(E[C)). Combining this with the first-order
condition, U'(C;) = E[U'(C2 )] , yields U'(Cy) > U'(E[C;]). Since U'(s)>0and U" (¢) <O we have
Ci < E[C;]. The individual plans in such a way that if second-period income turns out to be equal to its
expected value, C; would turn out to be higher than C,. Thus, in the face of uncertainty and with

U " (s) > 0, the individual undertakes "precautionary saving".
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(d) The government is cutting first-period taxes, 1, , and raising second-period taxes, 1, , in such a way
that expected tax revenue remains unchanged. Expected tax revenue, R, can be expressed as
1,Y; + 1, E[Y; +€]=R. Using the fact that E[e] = 0, we can solve for T, :

1Y +1Y =R = 1, =R/Y, -1, .

In order to keep R constant, the change in taxes must satisfy
(3) Oty /ot =-1.

The question is whether or not this change in the timing of taxes alters the individual's consumption
behavior. Substitute equation (1) into the first-order condition, equation (2), to obtain

@ U(C)=E[U(d-)Y, -C; + -1,V +e))].
Differentiating both sides of this equation with respect to 1, yields
U"(C,)8C, /81, = E{U"(C){-Y, - 6C, /ox, ~ (Y, +&) 01, ov, )],
and now using equation (3), 0t, /0t =-1, we have
U"(C,)8C, /o1, = E{U"(Cy)(-Y; - oC, for, + Y, +e)],
U"(C})C, /o, = E[U(C,)(~0C; for, )] + E[UA(C,)e],
or
[Uc)) + E[u(cy)]] oc, for, = E[U(C,)e]. |
Now use the fact that for any two random variables X and Y, E[XY] = E[X]JE[Y] + cov[X,Y]:
[un(c)) + E[Un(C,)]| oc, for, = E[U(C,)] Efs ] +cov[U(C, ) 6]
Finally, E[€] = 0 and thus the change in first-period consumption due to this change in the timing of taxes is
given by
5 S, cov[U"(C,)¢]
oty U"(C))+E[U"(Cy)]

(e) IfY; is not random then £ =0 always and thus the covariance in the numerator of equation (5) is 0. In

addition, if utility is quadratic, then U " () is a constant and again the covariance is 0. In both of these
cases, 0C, /0t =0 and thus first-period consumption does not change in response to the tax cut.

(f) In the case of U™ (¢) > 0 we need to show that 6C; /0t; <0. That is, we need to show that C, rises in
response to the reduction in 7,. Intuitively, the higher is ¢, the higher will be C;. The individual simply
consumes any extra random income in the second period. If U™ (e) > 0, then as C, rises so will U " (C)),
and thus it will be the case that cov{U " (C,),e] > 0. The denominator of equation (5) will be negative since
U " (#) <0 and thus 6C, /07, <0 as required. The intuition is that the change in the timing of taxes leaves
the individual with the same expected after-tax lifetime income, but more of it comes with certainty in the
first period. If the individual is undertaking precautionary saving -- and if U " (e) > 0 she is — the amount
of such saving will be reduced and she will consume more in the first period.

BT T A S A T

Problem 11.3
In the Barro tax-smoothing model in which output and the real interest rate are constant, the government
finds it optimal to set taxes equal to a constant such that its budget constraint is satisfied with equality.

Thus the government will find it optimal to set taxes such that T < Gy .That is, during the war from time
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0 <t <7, T < Gy and so the government runs a deficit and its debt will be growing over time. The deficit,
which equals the rate of change of debt, will be

(1) D(t)=Gy - T+1D(t)>0.

Even though the primary deficit, Gy - T, is constant, the total deficit will be rising over time since the
government debt outstanding and thus interest payments on that debt, rD(t), are rising.

At time 7, government debt will be positive: D(t) > 0. To satisfy its budget constraint at that time, taxes
must have been set so that T = G + rD(z) > G, . Thus for t > 1, the budget will balance so that the deficit
is zero and the debt will then be constant at its level as of time t. See the figures below.

T,G ‘ D

Gy

G

T time (t) T time (t)

Problem 11.4

(a) First, we will use dynamic programming (see Section 9.4, the Shapiro-Stiglitz model, for more
information regarding this technique) to find an expression for the expected present value of the revenue the
government must raise when G = Gy, denoted Vi (At). This expression is given by

(1) Vg(an= ? e ® (G + D)dt +e P e MV (AY) + (1- e ) VL (AD)].
t=0

The first term on the right-hand side of (1) reflects the revenue the govemment must raise during the

interval (0, At). The probability that govemment spending is still high at time t is €, in which case the
government must raise Gy + rD. The e™ term discounts this using the constant mterest rate, 1. The second
term reflects revenue needs after At. At time At, government purchases are still high with probability e
and have switched to being low with probability (1 - ™). Vg and Vy denote the expected present value of
the revenue the government must raise in each case. And this is then discounted by the e™ term.

The integral in (1) can be solved as follows:

At
(2) ? —(a"‘r)t (G + rD)dt (GH + rD) - —(a+r)t ,
=0 (a+ r) t=0
which simplifies to

' Gy +1D ‘
3) ?e_(aﬂ)t (Gy +1D)dt= H—r[l - e-(a+r)At] '
t=0 a+r
Substituting equation (3) into (1) yields
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Gy +1D
@) Vyay=—21—
a+r

and collecting terms in Vi (At) gives us

[1 _ e—(a+r)At ] + e—(8+f)AtVH (At) + e—rAt (l _ e—aAt )VL (At) ,

- Gy +1D _ _ _
() Vy(aD[l-e (“’“f)’”]:————z‘+r [1-e (@¥DA o—tMt (1 _o=20tyy. (AY),
or simply
G+ e ™ (-e
©6) Vi(at)=—1 ¢ ( Lv, (a9

+
a + r 1_e"(a+r)At

As described in Section 9.4, we now take the limit of the expression in (6) as the interval of time goes to
zero. This requires using 'Hopital's rule. The derivative with respect to At of the numerator of the second

term on the right-hand side of (6) is —re ™! + (a + r)e “®*V™  The limit of this as At —> 0 is a. The
derivative of the denominator of that same term is (a + r)e'("“)At which goes to (a + 1) as At = 0. Thus

as At - 0, we have
Gy +1D a
(7) Vg=—t—yt

b

Gy +1D+aVp

a+r a+r - a+r :
Rearranging (7) gives an expression that can be interpreted as an asset-pricing condition:

() rVg=(Gu+1D) -a(Vy- Vp).

Similar analysis to the above would yield the following expression for Vy , the expected present value of the
revenue the government must raise when G = G, :

(9 VL= (G +1D) - b(VL - V),

or

(10) V. =

GL +rD+bVH
b+r ’

We can now solve (7) and (10) for Vyand V; . Substituting equation (7) into equation (9) yields

Gy +1D+aV; )| Vi ~Gyy — 1D
an rvp =Gy, +rD—b[VL—( H a LJJ=GL+YD—‘J(T L +H r )
a+r

a+r
Collecting the terms in V; yields

br b
12 (+—)V =G; +D+——(G D),
( ) d a+r L L r a+r( H+r)

which simplifies to
+b+ b
+r a+r a+r
and thus we have
+1)Gp +bG
14 Vy = (a+nGy, H
r@a+b+r)

Substituting (14) into (7) yields
(a+ T)GL +bGH + D]
r@a+b+r)
a+r

Gy+rD+a

(15) V=
which implies

P R BT LT P
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aGy, +[r(a-&»b+r)-&~ab]GH-!.D
r(a+b+r) (a+rr(a+b+r)
Notethatr(a+b+r)+ab=br+r@+r)+ab=ba+r)+r(a+r)=(a+rn)b+r), and so
an v _aGL +(b+r)GH+D
H™ r(a+b+r)

(16) Vi =

Equations (14) and (17) give the expected present value of the revenue the government must raise as a
function of its expenditures, the amount of debt outstanding, and the parameters of the model. With
quadratic distortion costs and constant output, the optimal policy is for taxes to be expected to be constant
also. Thus, when government spending is high, the government expects to impose a tax, Ty, such that

<
(18) Je ™ Tydt=Vy.
t=0
Solving the integral and using equation (17) for Vy yields

1 aGy +(b+1r)Gy
19) -Ty= +D,
19 p r(@a+b+r)
or simply
G; +(b+1)G

@0) Ty= 5L+ 0400k
(a+b+r)

Similar analysis would show that when G = Gy, , the government sets taxes, Tr , equal to

(a+1)Gy, +bGy

Ql) Ty = +1D.

(a+b+r1)

(b) From equations (20) and (21) we can see that the path of taxes during an interval in which G is
constant is driven by the path of outstanding debt, D. In general, the change in debt -- or the budget deficit
- is given by

(22) D=G-T+1D. ,

From equation (20), the path of taxes during an interval in which G equals Gy is given by

(23) Ty =D =r(Gy - Ty + D).

Substituting equation (20) for Ty into equation (23) yields

. aG| +(b+ Gy 1
@) Ty=r|Gu -~ +rD+rDJ,

which simplifies to
: +b -aGy -(b+1)G
@9 T =1 (a+b+1Gy -aGp —(b+1) HW’
L a+b+r

or
. ar (G H™ G L )
26) Ty=——m"—m-—>
(26) Tu a+b+r
As long as G equals Gy , the government runs a deficit and taxes are thus increasing over time because of
the increased interest on the outstanding debt. Intuitively, the government knows there is a probability that

its expenditures will fall in the future and so it runs a deficit in order to smooth taxes over time.

0.

At the moment that G falls to G, , taxes will drop from Ty to Ty, . The path of taxes when G equals Gy is
again driven by the path of outstanding debt, so that

7 T, =D =r(G, - Ty, +1D).

Substituting equation (21) for Ty, yields
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. G; +bG
(28) T, =r GL-((aH) k H+rD)+rD],
L a+b+r

which simplifies to

o
09 1, =4 (a+b+1Gp -bGy - (a+1G, ]
L a+b+r

or
G0 T, =G-8 _

a+b+r
As long as G equals Gy , the government runs a surplus and taxes are thus decreasing over time because of
the decreased interest on the outstanding debt. Intuitively, the government knows there is a probability that
its expenditures will rise in the future and so it runs a surplus in order to smooth taxes over time.

Problem 11.5

It is true that the model has an implication about the long run that is clearly incorrect and undesirable. But
as with all models, we need to look at whether this is important for the issues the model was meant to
address. This implication about the long run does not mean that the model does not provide a good
approximation to actual and/or optimal fiscal policy in the short and medium terms.

The motive for studying tax smoothing was to examine its implications for the behavior of deficits over
short and moderate time frames. And in fact, the model does provide interesting implications for the
behavior of deficits during such short-run phenomena as wars and recessions. The simplifying assumptions
that give rise to the result that the tax rate is a random walk - and thus that the tax rate would eventually
exceed 100 percent or become negative -- should only be considered problematic if they cause the model to
give incorrect answers to the questions it was meant to address.

Problem 11.6

Assuming that everyone votes truthfully in each two-way contest, policy A would beat policy B by a vote
of two to one and policy B would beat policy C by a vote of two to one. If society's preferences as a whole
exhibited transitivity we would then expect policy A should beat policy C. But instead policy C would
defeat policy A by a vote of two to one. ’

Thus the order of the pairwise voting would determine the outcome. If policies A and B were voted on
first, C would be the eventual winner whereas, for example, if policies B and C were voted on first, A
would be the eventual winner. Thus the voting choice essentially reverts back to the choice of agenda.

Also note that this provides for the incentive not to vote truthfully. For example, consider Voter 2. If the

first vote is between policies B and C and Voter 2 votes truthfully (as do the other voters), then A -- Voter
2's least-desired outcome -- would be the eventual winner. If, however, Voter 2 casts her ballot for policy
C in the first vote then C wins that vote and goes on to beat A in the second vote. Thus Voter 2 winds up

better off with her second-best altemative by misrepresenting her preferences in that first vote.

Problem 11.7

Since the real interest rate is assumed to be zero, the period-1 policymaker has no interest payments on the
initial debt, Do . Thus the period-1 budget constraint remains

(1) Mi+N;=W+D, _

where W is the economy’s endowment and D is the amount of debt the period-1 policymaker issues. In
period 2, the policymaker must now pay off the initial debt, D, , plus whatever was borrowed in the first
period. Thus the period-2 constraint is
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2 M;+N,;=W-(D+Dy).

~ As explained in the text, the period-2 policymaker simply devotes all available resources, which are now
given by W - (D + Dy ), to the type of govemment purchases preferred by the period-2 median voter.

Consider the first period and assume the period-1 median voter has a. = 1. Her expected utility, denoted
E[V], as a function of D is given by

(3) E[V] = UW + D) + zUW - (D + Dy)) + (1 - m)U(0).

The first term on the right-hand side of (3) reflects the fact that with o = 1 for the median voter, the
period-1 policymaker chooses M; =W + D and N; =0 and thus receives utility UW + D). With
probability =, the period-2 median voter has o = 1 and devotes all available resources, W - (D + Do ), to
military goods giving utility UW - (D + Dy )) to the period-1 policymaker. Finally, with probability

(1 - 7), the period-2 median voter has a = 0 and so all available resources are devoted to non-military
goods giving U(0) to the period-1 policymaker.

The first-order condition for the period-1 policymaker's choice of D is
@) U'(W+D)-nU'(W-(D+D,))=0.
To see how the first-period deficit, D = M, + N; - W, responds to a change in Dy, implicitly differentiate
equation (4) with respect to Dy to obtain
(5) U"(W+D) D unW-(D+D ))( LY

- - - —_ =.

oD, 0 L oD,

Collecting the terms in 0D/OD, gives us

oD
6) [UUW+D)+ 7zU"W-(D+ Do))]53—= —-U"(W—-(D+Dy)),
0
and thus
D éD _ -nU'(W-(D+Dy))

oDy, U’(W+D)+aU"(W-(D+Dy))’
Since U "(¢) < 0 and 7 is between zero and one, we can see that -1 < oD/0D, < 0.

Similar analysis for the case in which the period-1 median voter has a. = 0 would yield the following
expression for the change in the first-period deficit due to a change in Dy :

® oD -(1-m)U"(W-(D+Dy))

0Dy T U (W+D)+(1-m)U"(W-(D+Dy)) ’

and so again we have -1 < 0D/dD, < 0.

Thus an increase in initial debt reduces the period-1 deficit; that is, it reduces borrowing by the first-period
policymaker. An increase in debt, all else equal, reduces the resources available to the period-2
policymaker since she is the one that has to pay off this initial debt. In this model, the reason there are
deficits is that there is a positive probability that the period-2 policymaker will devote the economy's
resources to an activity that, in the view of the period-1 policymaker, simply wastes resources. The
period-1 policymaker therefore has an incentive to reduce resources available in the second period by
transferring resources from the second period to the first period by borrowing.

There is, however, also a chance that the period-2 policymaker will share the same preferences as the
period-1 policymaker and devote all resources to the same type of purchases. But since an increase in
initial debt reduces the resources available in period two, it reduces the amount the period-2 policymaker
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can purchase and thus increases the marginal utility of purchases in the second period. Since it is optimal
to smooth purchases over time this would mean that the period-1 policymaker would actually have
incentive to transfer resources to the second period to the extent that it is possible that the period-2
policymaker shares the same preferences. And this competing incentive increases as initial debt increases.
Thus the period-1 policymaker borrows less the higher is the initial level of debt.

Problem 11.8

(a) Consider an individual with o = 1; that is, someone who prefers military goods. In period one, with
probability © the median voter also has o = 1 and so the policymaker purchases all military goods giving
the individual utility of U(W + D). With probability (1 - 7), the median voter has o = 0 resulting in the
purchase of all non-military goods giving the individual U(0).

Similarly in period two, with probability 7 the median voter has o = 1 and so the policymaker devotes all
available resources, W - D, to military goods giving utility of U(W - D) to the & = 1 individual. With
probability (1 - r), the median voter has ¢ = 0 resulting in the purchase of all non-military goods giving the
individual U(0).

Thus the individual with & = 1 has expected utility, denoted E[V], given by
(1) E[V]=2UW +D) +(1 - mU(0) + zUW - D) + (1 - )U(0).

(b) The first-order condition for this individual's most preferred value of D is

93] a(l;ZLV] =2U'(W+ D) +2U'(W - D)(-1) =0,
or

() U'W+D)=U'W-D).

With a well-behaved utility function, for example with U "(e) < 0 everywhere, this implies
4 W+D=wW-D,

and thus implies

(5) D=o. o

The individual prefers a balanced budget so that no debt is issued.

(c) Similarly for someone with o = 0 -- someone who prefers all non-military goods -- expected utility is
given by -

(6) E[V]==U(0) + (1 - m)UW + D) + nU(0) + (1-m)UW - D).

The first-order condition is given by

) 6%}\']= (1-m)U'(W+D) +(1- R)U’(W- D)(-D =0,

or
®) U'W+D)=U'W-D),
and thus, again, this implies
() D=0.

(d) Since all voters prefer D = 0, so does the median voter and thus the policymaker will pursue a balanced
budget policy and not issue any debt. .

(e) A balanced-budget requirement forces D = 0 for everyone. Without a requirement, the period-1
policymaker would choose D freely. Thus, it is possible that an o = 0 individual would choose a different
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D than an = 1 individual; in fact, unless & = 1/2, they definitely would choose different values of D.
Thus, answering part (d) does not answer the question of whether individuals will support a balanced-
budget requirement.

Problem 11.9

(a) Since o = 1, the period-1 median voter — who controls policy in both periods one and two — purchases
all military goods in those two periods giving utility of UW + Dy ) in the first period and U(W + D, ) in the
second period, where D; represents the amount of debt issued in period i. In the third period, with
probability = the period-3 median voter has o = 1 and devotes all available resources, W-D,-D;,to
military purchases giving utility of UW-D,-D;)tothea =1 individual. With probability (1 - =), the
period-3 median voter purchases all non-military goods giving utility of U(0) to the o = 1 individual. Thus
expected utility for someone with a = 1, denoted E[V], is

(1) E[V]=U(W+D,)+U(W+D2)+1tU(W-D. -D;) + (1 - m)U(0).

The period-1 median voter chooses D, and D, . The first-order conditions are

OE[V]

2) == =-U'(W+D;)-7U'(W-Dy -D,)=0,
oD,

and
0E[V]

3 L _U'(W+Dy)-nU'(W~-D; -D3)=0.
0D,

Equations (2) and (3) imply

@) U'W+D;)=U'W-D).

With U "(e) < 0 everywhere, this implies

(5) W+D, =W+D,,

and so

©) D= D,. _

Thus the policymaker issues the same amount of debt in each of the first two periods and so purchases in
each of the first two periods, M; =W + D, and M, =W + D, , must also be equal.

(b) To see how the amount of debt issued in period two, D , varies with 7 we can implicitly differentiate

the first-order condition given by equation (3) with respect to x. Note that we are treating D, as given since

we are assuming that the change in 7 occurs after period one and thus after D has been chosen. We have
oD, ( oD, )

(T) U"(W+Dy)—=+(-DU'W-D; - D,) +(-m)U"(W-D; - Dz)L"('a;‘J‘-'- 0.

Collecting the terms in 0D, /Or gives us
oD
(®) [U(W +D;)+mU"(W-D; ~Dp)—>=U'(W-D; ~Dy),

and thus

9 oDy U'(W-D; -D3)
( o U"(W+D,)+nU'(W-D;-D3)
since U'(e) > 0and U "(¢) <0. Thusa fall in 7 increases D, . Thus the policymaker issues more debt and
increases purchases in period two after the news that it is less likely that the period-3 median voter also
prefers military goods. Intuitively, since it is now more likely that the period-3 median voter will prefer
non-military goods, which the period-1 median voter deems wasteful, the period-1 median voter transfers
more resources from the third period to the second period by borrowing more and devotes the additional
resources with certainty to the type of good she prefers.

<0,
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Problem 11.10

(a) The period-2 policymaker's objective function is

(1) F2=U+0a; [V(G) + V(G)]

Substituting for private utility, U =W - C(T; ) - C(T ), and using the fact that taxes in period two must
equal government consumption plus debt, T, = G, + D, gives us

(2) F;=W-C(T;) - C(G; + D) + a; [V(G1 ) + V(G )].

The period-2 policymaker takes W, T, , and D as given and thus the first-order condition is

oF.
(3) —2=-C'(G, +D)+a,V(G,)=0.
G,

(b) Implicitly differentiating equation (3) with respect to D yields
0G, 0G, :
-C’ D) —=+1 , —==
4) -C"(Gy + )L D " J+a2V G2) =0,
or
) ) 0G, \
) [22V"(G,) - C"(G; +D)] —6—1—)~=c'(c;2 +D).
This implies
oG C"(G, +D
© —== G20 __,,
oD G.zV”(Gz)—C"(Gz +D)

since C"(#) > 0 and V"(¢) < 0. Thus an increase in debt reduces the period-2 policymaker's choice of
government consumption.

(c) The period-1 policymaker's objective function, substituting for private utility, is
(7) Fi=W-C(T;) - C(T) + o, [V(Gy) + V(G )].
Note that G, is a function of D or G, = G; (D), and that since D = G, - T, we can write T;=G; -D. In
addition, T, = G, + D. Thus (7) becomes
(8) F,=W-C(G; - D) - C(G; (D) + D) + a; [V(G1) + V(G (D))].
The first-order conditions for the choices of G, and D are
OF
(9) —-=-C(G; -D)+a;V'(G;) =0,
0G,
and

OF
(10 a_l; =-C'(Gy - D)(-1) - C'(G2(D) + D)[G5 (D) + 1]+, V'(G, (D))G2 (D) =0.

(d) Solving equation (3) for V'(G; (D)) gives us
C'(G,(D) +D)
(1) V/(G,(D))=—2=——.
@2
Substituting equation (11) into equation (10) yields
(12) C(G; -D)-C'(G,(D)+D)[G5(D) +1] + %—C'(Gz (D) +D)G5(D) =0,
2
which can be rewritten as

(13) C'(G; -D)-C'(G,(D)+D)=C'(G, (D) + D)G% (D) - Z_IC'(Gz (D) + D)G5 (D).
2
Collecting terms on the right-hand side of (13) gives us
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(14) C'(Gy - D)-C'(G, (D)+D)= C'(G,(D) + D)G) (D)(] - gl—)
2

As shown in part (b), G/'(D) <0 and since C '(¢) > 0, then if o; <z , the right-hand side of (14) is
negative. Thus

(15) C'(G:-D)-C'(G, (D) +D) <0,

or .

(16) C'(G:-D)<C'(G, (D) + D).

Since C "(¢) > 0 this implies

(17) G,-D<G; (D) +D.

SinceD=G,-TiorT1=G,-Dand T, =G, (D) + D, this is equivalent to

(18) T:<T,.

Intuitively, if o < o, this means the period-1 policymaker values govemment consumption less than the
period-2 policymaker. Thus the period-1 policymaker attempts to “enforce discipline" on the period-2
policymaker. The lower-a policymaker in period one keeps taxes low and thus passes along a relatively
higher level of D in order to force the period-2 policymaker to choose a lower level of government
consumption.

(e) Not necessarily. If a; <az, the period-1 policymaker will choose a lower level of govenment
purchases than the period-2 policymaker. To see this, substitute equations (3) and (9) into the first-order
condition given by (10):

19) o, V(G- a,V'(G, (D)[G,(D) +1] +a,V(G,(D))G5 (D) = 0,

which can be rewritten as

(20) o V'(G1) =V (G D)[-01 Gz '(D) + a2 (G(D) + 1)),

which implies . \
ey —8)__ 9—2-+L°‘2 A Joa.
V(G,(D)) o oy

Adding and subtracting (o - o Yo, from the right-hand side of (21) yields

V'(Gl) _2_2__(12—0.1 0.2—('1.1} ,
(22) VG,0) o % + o [G5(D) +1],
or simply '
V'(Gl) _ ((12 -al] ,
(23) VG, (D) =1+ o [G5(D) +1].

From equation (6), we can see that G;(D)>-10orG;'D) +1> 0. In addition, our assumption is that

o; -0 > 0. Thus

4) V@) _,

V(G2 (D))

or VY(G;) > V'(G; (D). Since V '(e) < 0, this implies G; < G2 (D). Thus, not only does the period-1
policymaker choose a lower level of taxes, she also chooses a lower level of government consumption than
the period-2 policymaker. Thus D = G, - T, = T2 - G, can be either positive or negative.

Problem 11.11 .
(a) As T, the amount of taxes that reform requires, falls then V'(X) at X = A also falls since

. [B-(W-T)]-2A
M VX=A)=—
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and we have
oV'(X=A) 1
) =

= >
oT B-A

0.

In the case in which V '(X) at X = A was already negative, it is now more negative and there is no effect on
workers' offer or the probability of reform. Workers continue to offer X* = A and the probability of
reform, P(X*), continues to equal one.

If initially V '(X) at X = A was positive and the change in T is small enough, V '(X = A) will still be
positive. In this case, from equation (11.36) in the text, workers' offer is

6 xo B=W-D
2 b

and so

4 oX* = —l- 0
@ 1 =7>0
Thus a fall in T reduces workers' offer. From equation (11.37) in the text, the probability of reform is

B+(W-T)
G PXN)=—r—/—,
2(B-A)
and so
OP(X* -1

© (X*) 0

= <V.
oT 2(B-A)
The fall in T increases the probability of reform in this case.

Finally, if V '(X) at X = A was initially positive and the change in T is large enough, it will become
negative. In this case, workers' offer will now be X* = A and reform will now occur with certainty.

(b) An increase in B, the upper bound on capitalists' pre-tax payoff from reform, means that V '(X) at
X = A also increases since

OV(X=A) (B-A)-[B-(W-T)+2A (W-T)+A o

Y] =
OB (B- A)? (B-A)?
Thus, if initially V '(X) at X = A was positive, it still will be. Workers' offer continues to be given by
equation (3) and
®) oxX* 1 0
=—>0,
oB 2

Thus workers' offer increases. That is, with an increase in the upper bound on capitalists' payoff, workers
ask capitalists to pay a greater share of the costs of reform. Using equation (5) we have
© OP(X*) 2(B-A)-[B+(W-D2 -[A+W-T)] 0
= = <
0B 4(B- A)? 2(B-A)?
The increase in B causes the probability of reform to fall.

If initially V '(X) at X = A was negative and the rise in B is small enough, it will continue to be negative.
There will be no effect on workers' offer, which continues to be X* = A, or on the probability of reform,
which continues to be one. If, however, the rise in B is large enough, V'(X) at X = A becomes positive in
which case workers' offer will now be greater than A and the probability of reform will fall below one.
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(¢) An upward shift in the distribution of capitalists' payoff -- an equal increase in A and B — means that
V '(X) at the new X = A" will be lower than V '(X) at the original X = A. We can see this since
[B-(W-T]-2A
10) VI(X=A)= .
(10) V'(X=A) -
An equal increase in A and B leaves the denominator unchanged and reduces the numerator.

In the case in which V '(X) at X = A was negative, it is now more negative at the new X = A". Thus
workers' offer rises and equals the new A’ and the probability of reform continues to be one.

If initially V '(X) at X = A was positive and the change in A and B is small enough, V' (X) will still be
positive at the new X = A'. Note that A does not enter workers' offer here and so we need only examine the
derivative of X* with respect to B:

11 ox* 0
a2 ~27"
Hence workers' offer rises proportionately less than B (or A). From equation (5) which gives the
probability of reform, we can see that the probability of reform increases since the numerator rises whereas
the denominator is unchanged.

Finally, if V '(X) at X = A was positive and the change in A and B is large enough, V '(X) at the new »
X = A' will be negative. Thus workers' offer will equal the new A' and the probability of reform becomes
one.

Problem 11.12
(a) If the capitalists accept the workers' proposal and reform occurs, their payoff is © - X. If they reject
the proposal, their payoff is now -C, C 2 0, rather than zero. They therefore accept when & - X > -C, or

x> X - C. Since  is distributed uniformly on [A, B] this probability is

1 if X-C<A or X<A+C
B-(X-C) :

1 PX)= ——é——A—- if A<X-C<B or A+C<X<B+C
[0 if X-C=B or X=2B+C,

where we have used the fact that for A +C <X<B+C,PX)=Pr>X-C)=1 - P(r < X - C) which in
turns equals 1 - [(X - C) - AJ/(B - A) or simply [B - (X - OB - A).

The workers receive (W - T) + X if their proposal is accepted and -C if it is rejected. Their expected

payoff, V(X), therefore equals POOI(W -T) + X] +[1 - P(X)](-C). Using equation (1), this equals

(W-T)+X if X<A+C
[B-(X-OJ(W-T)+X+F] +[1-(B—(X—C»](_C)

B-A B-A

l-c if X2B+C.

As in the model in the text, there are two possibilities. First, the workers may choose a value of X in the

interior of [A + C, B + C] so that the probability of the capitalists accepting the proposal is strictly between

zero and one. Second, the workers may make the least-generous proposal that they know will be accepted

for sure, which is X=A + C. :

if A+C<X<B+C

@ VX =

Using equation (2) to find the derivative of V(X) with respect to X for A + C <X < B+ Cyields
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‘ B-(W-T)-2X-C+ -W-1]-
3) VIO = W-T)-2X-C C=[B W-T) 2X‘
B-A B-A
Note that V "(X) is negative over the whole range we are considering. Thus if V '(X) is negative at
X =A+C, it is negative over all of [A+C, B+ C]. Inthis case, workers propose X = A + C, the least-
generous proposal they know will be accepted for sure. This occurs when V 'X=A+C)<0orwhen
[B-W-T)]-2(A+C)<0.

The alternative is for V '(X) to be positiveat X = A + C. In this case, the optimum is interior to the
interval [A + C, B + C] and is defined by V'(X) = 0. From equation (3), this occurs when
[B-(W-T)]-2X =0. Thus, analogous to equation (11.36) in the text, we have
A+C if [B-(W-1]-2(A+C)<0

4) X*=1B-(W-
@ # if [B-(W-T)]-2(A+C)>0.
Thus, using equation (1) and substituting for X* we have the following expression for the equilibrium
probability that the proposal is accepted:

1 if [B-(W-T]-2(A+C)<0
5) P(X*)={B+(W-T)+2C
©) PXY (B :) if [B~-(W-T)]-2(A+C)>0.

Equation (5) is analogous to equation (1 1.37) in the text.

(b) If, in equilibrium, V'(X) at X = A + C is less than or equal to zero, then workers offer X* = A + C and
P(X*) = 1. In this case, workers get (W - T) + (A + C) and capitalists expected payoff is E[xn] - (A + C).
Thus social welfare, SW(X*), is given by

© SW(X*)=(W-T)+(A+C)+E[1t]-(A+C)=(W-T)+E[7t]-

Since = is distributed uniformly on [A, B], E[r] = (A + B)/2 and thus

(7) SWX")=(W-T)+ (A +B)2.

From equation (3), we can see that V 'X) evaluatedat X =A + C is decreasing in C. Thus if V '(X) is
negative initially, it still will be after an increase in C and social welfare will remain unchanged as reform -
still occurs with probability one. Social welfare is higher with reform than without and so initially if
V'(X) at X = A + C is positive and the increase in C is large enough, it becomes negative at the new
X=A+C'" The reform now occurs with certainty and social welfare is therefore higher.

Finally, if V'(X) at X = C was initially positive and the rise in C is small enough, V '(X) at the new
X'= A + C'will still be positive. We need to determine equilibrium social welfare in this case and the
change in equilibrium social welfare due to a change in C.

For workers, the expected payoff, denoted V(X*), equals the probability of acceptance times the payoff
from acceptance plus the probability of rejection -- which is one minus the probability of acceptance --
times the payoff from rejection, or from equation (2),

o _ [B-(X*-OJ(W-T)+X*] [ _B-(X*-0)
(®) V(X*)= A +1 —
which can be rewritten as
—(X*- _ (X * (v
© VxnBZEX-OIW-T [B-(X*-OX JA-(xe-onc
B—A B_A B_A

:](-C) »
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For capitalists, if 7 turns out to be less than X* - C, they reject the proposal and receive -C. If = tumns out

to be greater than X* - C, they accept the proposal and receive T - X*. Since 7 is distributed uniformly on

[A, B}, the probability density function of w over that interval is f(r) = 1/(B - A). Thus, capitalists’ s

expected payoff, denoted K(X*), is given by
X-C _c P oa-xe

10) KxH= |

wa B-A pxec B-A

The first integral on the right-hand side of equation (10) is given by

e C.AEEL LS X*-0)IC

A B—A B-A B-A '

The second integral on the right-hand side of (10) is given by

no Xt e [(}_ 2 )B
(12) n:j*_c B_A dﬂ:—B_AL n°-X*n

or

dr.

-X* 1 1
? i dr = [ 2

nzxt_c B - A B - A 2
which can be factored as follows:

14) ? XY e

wx*-c B-A ~2(B-A)

—BX*-%(X"‘—C)2 +(X*—C)X*-_‘| ,

2 2]__ 1 p_(x*-
[B?-x*-0) ]—B_A[B (X*-O)X*.

Social welfare, which is the sum of the expected payoffs of workers and capitalists, can be obtained by
adding equations (9), (1 1), and (14):
[B-(X*-OIW-T) +2[A—(X“—C)]C +[Bz —(X*-0)’]
B-A B-A 2(B-A)

Since X* does not depend on C - see equation (4) -- the change in equilibrium social welfare due to a
change in the cost of crisis, C, is
16) OSW(X*) (W-T)+2A-2X*+4C N 2X*-2C 2(W-T) +4A +6C-2X*

aC B-A 2B-A) 2(B-A) '
Substituting for X* = [B - (W - T)}/2 gives us
an OSW(X*) 2(W-T)+4A +6C-B+(W-T) 3(W-T)+4A+6C-B

oc 2(B-A) - 2(B-A) ‘
Thus, depending on the magnitude of B relative to 3(W - T) + 4A + 6C, an increase in the cost of a crisis
can, but does not necessarily, increase social welfare. So, for example, a high value of B -- the upper
bound on capitalists' pre-tax payoff from reform -- makes it less likely that an increase in the cost of a
crisis will increase social welfare.

(15) SW(X*)=

Problem 11.13

If the capitalists accept the workers' proposal and reform occurs, their payoffis © + F - X, where F> 0 is
the amount of aid they receive from the international agency. If they reject the proposal, they receive zero.
They therefore accept whent+F-X>0,0orn>X-F. Sincen is distributed uniformly on [A, B] this
probability is :
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1 if X-F<A or X<A+F
B-(X-

(1) PX) = —B(TF—) if A<X-F<B or A+F<X<B+F
0 if X-F>2B or X>B+F,

where we have used the fact that for A+ F <X <B +F, PX)=P(r>X-F)=1-P(n<X-F)which in
tumns equals 1 - [(X - F) - AJ/(B - A) or simply [B - (X - F))/(B - A).

The workers receive (W - T) + X + F if their proposal is accepted and zero if it is rejected. Their expected
payoff, V(X), therefore equals P(X)[(W - T) + X + F]. Using equation (1), this equals

W-T+X+F if X<A+F
2 VX)) = [B_(X"F)EVA'T)’LX“LF] if A+F<X<B+F
0 . if X>B+F.

As in the model in the text, there are two possibilities. First, the workers may choose a value of X in the
interior of [A + F, B + F] so that the probability of the capitalists accepting the proposal is strictly between
zero and one. Second, the workers may make the least-generous proposal that they know will be accepted
for sure, which is X = A + F.

Using equation (2) to find the derivative of V(X) with respect to X for A + F < X <B + F yields
B-(W-T)-2X-F+F [B-(W-T)]-2X
3 V' = = .
3 VX B_A B_A
Note that V "(X) is negative over the whole range we are considering. Thus if V '(X) is negative at
X =A+F, it is negative over all of [A + F, B + F]. In this case, workers propose X = A + F, the least-
generous proposal they know will be accepted for sure. This occurs when V '(X = A + F) < 0 or when ;

[B-(W-T)]-2(A+F)<0.

The altemnative is for V '(X) to be positive at X = A + F. In this case, the optimum is interior to the interval
[A+F, B+ F] and is defined by V'(X) =0. From equation (3), this occurs when [B - (W - T)] - 2X = 0.
Thus, analogous to equation (11.36) in the text, we have

A+F if [B-(W-T)]-2(A+F)<0
* — - —
@ X B—(‘;V—n- if [B-(W-T)]-2(A+F)>0.

Thus, using equation (1) and substituting for X*, we have the following expression for the equilibrium
probability that the proposal is accepted:

1 if [B-(W-D]-2(A+F)<0
5) P(X*)=1B+(W-T)+2F
©) PXY) (\: 1A) if [B-(W-T)]-2(A+F)>0.
Comparing equation (5) to equation (11.37) in the text, we can see that the presence of F > 0, the positive
amount of aid, increases the probability of reform, if reform did not already occur with certainty. IfF is

large enough, reform now occurs with probability one since, as discussed above, reform occurs with
certainty if [B - (W - T)] - 2(A + F) < 0.

Otherwise, from equation (5), we can see that P(X*) rises as F rises since
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oPX*) 2
oF B-A

©) >0.

We now need to determine the impact of the intemational aid on social welfare, defined as the sum of the
expected payoffs of workers and capitalists. If, in equilibrium, V '(X) at X = A + F is less than or equal to
zero, then workers offer X* = A + F and P(X*) = 1. In this case, workers get (W - T) + X* + F or simply
(W -T) + A+ 2F. Capitalists expected payoff is E[r] - X* + F or simply E[r] - A. Thus social welfare,
SW(X™*), is given by

7 SWX*)=W-T)+A+2F +E[r] - A=(W-T)+2F + E[rn].

Since = is distributed uniformly on [A, B], E[x] = (A + B)/2 and thus

(8) SW(X*)=(W-T)+2F + (A +B)2.

From equation (3), we can see that V '(X) evaluated at X = A +F is decreasing in F. Thus if V'(X) is
negative initially, it still will be. Here, since reform would have occurred anyway, social welfare simply
increases by the total payoff from the intemational agency, which is 2F, and the entire amount of aid is
extracted by workers.

If initially, V '(X) at X = A was positive and F is large enough, the aid causes V '(X) at X = A + F to be
negative so that reform now occurs with certainty. Since social welfare is higher with reform, social
welfare is higher in this case also.

Finally, if V '(X) at X = A was initially positive and F is small enough, V'(X) at X=A +F will still be
positive. We need to determine equilibrium social welfare in this case. Equation (2) describes workers'
expected payoff. It equals the probability of acceptance times the payoff from acceptance; the payoff from
rejection is zero. Thus, from equation (2),

B-(X*- -T)+X*+
©) V(X¥)= [B-( F)]l;(wA T F] .
Substituting X* = [B - (W - T)]/2 into equation (9) gives us

o ().
(10) V(X*)= B_A ’

which simplifies to :
—— [ZB—B+(Wf1)+2F][2(W—1)+B—(\N—T)+2F]’
4(B-A)
and thus workers' expected payoff is given by
[B+(W-T)+2F
4(B-A) '

(12) V(X¥)=

For capitalists, if 7 tums out to be less than X* - F, they reject the proposal and receive zero. If ® tums out
to be greater than X* - F, they accept the proposal and receive @ - X* + F or © - (X* - F). Since w is
distributed uniformly on [A, B], the probability density function of & over that interval is
fir) = 1/(B - A). Thus, capitalists' expected payoff, denoted K(X*), is given by

—(X*- ;
(13) K(X*)= ? lr—gi-—F)dn.
z=x*-F B—A

Solving the integral in equation (13) gives us
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1 _(1 ) ]B }
(14) K(X*)——‘ 5 -(X*-F)rn ,

A- n=X*"-F
which simplifiesto
1
(15) K(X*)—ﬁ -2-B2—(X*-F)B——(X* F)2+(X*—F)2],
which can be factored as
16) K(X*)=——[B? ~2B(X*—F) + (X* _F)? B-(X*-
(16) KX =528 - 2B =B + (X *-F] = TR A)[ x*-p)*.

Substituting X* = [B - (W - T)]/2 into equation (16) gives us

A7) KX*)=—— [B'(wj"")]z: ——[B+W-T)+2
2(B-A) 2 8(B-A)

Total social welfare is the sum of the expected payoffs for workers and capitalists. Adding equations (12)
and (17) gives us
[B+(W-T)+2F]’ [B+(W-T)+2F’

(18) SW(X*) = V(X*)+K(X*) = 4(B-A) 8(B—A)

or simply
2
3[B+(W-T)+2F]
19) SW(X*) =
(19) SW(X*) SB-A)
From equation (19), we can see that social welfare is increasing in F and so the aid package from the
international agency does raise social welfare unambiguously.

Problem 11.14
(a) Ofthe fraction f of the population that knows its welfare under both policies, fraction o is better off
with Policy A. Thus fraction af of those who know their welfare prefer Policy A.

Ex ante, the individuals in the fraction (1 - f) of the population that does not know its welfare are all

identical. Each of these individuals will prefer Policy A if their expected utility from A exceeds that from

B. The expected utility from Policy A, relative to that from Policy B, denoted E[U* ], is given by -
(1) E[U*]=B+D+(1-B)-1)=2B-1,

since with probability B they will be one unit of utility better off and with probablhty (1 - B) they will be

one unit of utility worse off. These individuals will all prefer Policy Aif 2B -1>0o0r p > 1/2. If B < 1/2,
all of these individuals prefer Policy B and if B = 1/2, they are indifferent.

Thus the fraction of the population that prefers Policy A under uncertainty, denoted Xﬁ , is given by

aof +(1-f) if B>1/2
@ x2 ={ . /

af if B<l/2.

(Note that if § = 1/2, the fraction of the population that prefers Policy A would be af plus (1 - f) times the
fraction of those who are indifferent who decide to choose A.)

(b) Of the fraction f that always knows its welfare under both policies, fraction a prefer A. Now, of the
fraction (1 - f) that previously did not know its welfare, fraction B find out that they are definitely better off
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under Policy A. Thus B(1 - f) now prefer A. Thus the fraction of the population who prefer Policy A
under certainty, denoted X‘? , is given by
() X2 =of +p(-1).

(c) There are cases when whichever policy is initially in effect is retained. Suppose Policy A is in effect.
From equation (2) we can see that a proposal to switch to Policy B will be defeated if, for example, B > 1/2
and af + (1 - f) 2 1/2. The sum of the people who know their welfare and are better off with A, af, plus
the entire fraction of the population who are uncertain, (1 - f), vote to retain A in this case. If they
constitute at least half of the population, the proposal is defeated.

Suppose Policy B is in effect. We are assuming that no one votes for a switch to Policy A if they know
that once everyone's welfare is revealed, the majority would vote to revert back to Policy B. From equation
(3), once welfare is revealed, fraction af + (1 - f) prefer A. Ifthis is less than 1/2, the majority would
vote to return to Policy B.

Thus whichever policy is in effect would be retained if p > 1/2, af + (1 - ) > 1/2, and of + B(1 - ) < 1/2.
Because of + (1 - f) is greater than af + B(1 - f), it is easy to find parameter values that satisfy these
conditions. One example is £=0.5, a =0.2, and B = 0.6. In this particular example, everyone knows that
ex post, Policy B is preferred by the majority. Yet if Policy A is in effect, it is retained. This is driven by
the fact that the entire portion of the population that is uncertain about its welfare maximizes its expected
utility by voting for A but once that fraction of the population leams its welfare, not enough of them are
better under A to constitute a majority when joined with the others who always preferred A.

Problem 11.15

(a) The representative from district j will maximize the utility of the representative person in that district,
which is given by

(1) U;=E+V(G;)-C(D),

subject to the budget constraint given by

@ X% G;=MT,

which can be rewritten as

2 G

¢ T="5;
Substituting equation (3) into equation (1) gives us

)

C)) UJ-=E+V(G]-)—C

M
The first-order condition is given by
oU; MG
2 Gy | Sl | 2
or

1 M G;
© V(G j)=ﬁc'[§‘—-hjl——’].
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(b) We want a value of G, denoted GV, that is optimal for a representative to choose given that all other
representatives are choosing that level. Substituting that common choice of G for G; and all the G;'s in the
condition deﬁning the optimal choice of G, equation (6), gives us

N IMGN) 1 (meN)
M V(GM=1; [ Y J M)

or simply
1 -
®) VI(GN)=1-C(GM).

Representatives choose a level of the local public good, G~, such that the marginal utility of G" equals only
their district's share of the marginal distortion costs of the taxes needed to finance that good.

(c) To see if the Nash equilibrium is Pareto efficient, we can examine the social planner's problem. A
social planner would maximize the sum of the utilities of the representative person in each district, which is
given by

[ (TMg,
©) ZU Zﬁ‘i‘lLEW(G) CL ’M :

where we have already substituted for the budget constraint using equation (3). Equation (9) simplifies to

M M M G; MG
(10) 2U;=ME+27 V(Gj) - MC| =5 — M)

=
The social planner chooses the same level of the public good in each district, which we can denote G.
Thus equation (10) becomes

M M MG . ~
an ZUj=ME+Z ~ V(G) - MC( ) ME + MV(G) - MC(G).
=1

The first-order condition for the choice of G is
oXMU;
(12 —z—

or sunply

13) V(G =CG). -

The social planner equates the marginal utility of the level of the local public good with the total marginal
distortion costs of the taxes required to finance that good. Comparing equations (6) and (13), then since
V "(e) < 0, we can see that the social planner chooses a lower level of G for each district than the
representatives do in the Nash equilibrium. That is, the Nash equilibrium involves an inefficiently high
level of local public goods.

=MV'(G)- MC'(G)=0,

Intuitively, in the decentralized equilibrium, an increase in the level of a local public good in any given
district gives the representative person in that district marginal utility of V '(G). But the marginal cost of
the distortion caused by the extra taxation needed to finance that good is bore by all individuals in all
districts. Essentially, there is a negative externality from higher government purchases. Since individuals
in any given district do not bear all the costs of extra purchases in that district, purchases are inefficiently

high.




Solutions to Chapter 11 259

Problem 11.16

(a) The representative from district j will maximize the utility of the representative person in that district,
which is given by

1) Ui=E+ V(G;) - C(D),

subject to the budget constraint given by

@) D+23,G; =MT,

which can be rewritten as

M
D '=lGi =
3) T= MM
Substituting equation (3) into equation (1) gives us
M
D 225G
(@) U;=E+V(G)-C ﬁ+—1\4_ :
The first-order condition is given by \
oU; p XMG;l1
._J__ ! N_C'| — __# —_——
®) 3G, =V'(Gj)-C [M+ M JM 0.

The Nash equilibrium value of G, denoted GV, is the one that is optimal for a representative to choose given
that all other representatives are choosing that level. Substituting that common choice of G for G; and all
the G;'s into equation (5), the condition defining the optimal choice of G, gives us

Ny L .(2 N)_
©6) V(@G™) MC M+G =0.

To see how GV is affected by changes in the initial amount of debt, we can implicitly differentiate equation
(6) with respect to D, which yields

oGN 1 {D ) aGN 1
v N _ N -
M V(G 3D MC M+G [6D + 0.
Collecting the terms in 6G"/8D gives us

N
®) [V'(GN) - Kld—c{% + GN)MG . C’(GN + —D—) ,

oD M2 M
and thus
1 D
oGN M2 C{GN +ﬁ)
©) = <0,
oD . ANy _ L .(2 N)
vVi(G™) MC M+G

since C "() > 0 and V "(s) < 0. Thus an increase in initial debt reduces the Nash equilibrium level of the
local public good.

() As explained in the solution to Problem 11.15, the representatives would choose an inefficiently high
level of local public goods in the first period; the distortion costs of the taxation needed to finance those
goods would be inefficiently high. As shown in part (a), the representatives know that by having D > 0,
they can reduce the purchases of public goods and thus the distortion costs of the taxes because a positive
value of debt will reduce the inefficiently high level of govemment purchases in the second period.
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(c) If representatives were to choose D before the first-period value of G is determined, the representatives
would choose not to issue any debt. It is true that with D = 0, there will be distortion in the choice of local
public goods each period as shown in Problem 11.5; the level of local public goods will be inefficiently
high. Choosing D > 0 reduces the choice of local public goods in the second period, as shown in part (a),
which at the margin is desirable. But analogous reasoning would show that it would raise the choice of
local public goods in the first period, which at the margin is undesirable. Thus having D > 0 does not
clearly counteract the "common-pool" distortion. In addition, it introduces departures from tax-smoothing
and expenditure-smoothing, and thus it appears that representatives would not choose to issue any debt.

Problem 11.17
The probability density function of T is given by

1
— if p-x<T<p+x

M £(M=12X
L0 otherwise.
The associated cumulative distribution function is given by
0 if T<p-X
2) F(T'):*T——(P_—X) if p-x<T<p+x
2X
|1 if T>p-X

The probability of a default equals the probability that tax revenue, T, is less than the amount due on the
debt, RD, and thus equals F(RD). So from equation (2), we can see that the probability of default, =, is
given by

0 if RD<p-X or R<(u-X)/D
_ RD-(p-X) .
(3) n=F(RD)= ——ZX——- if u—x<RD<p+x or (u-x)/D<R<(u+x)/D
1 if RD>p+X or R>(u+X)/D.

The other equilibrium condition describing combinations of R and = for which investors are willing to hold
the economy's debt is still given by

@)n:R;R.

Equations (3) and (4) are depicted in the figure at
right. This shows the possible situation of multiple 1
equilibria. Under the plausible dynamics described in
the text, the equilibrium at A is stable whereas the
equilibrium at B is not. Another stable equilibrium
occurs when investors are unwilling to hold the
economy's debt at any interest rate.

(a) A rise in p represents an upward shift in the
distribution of possible tax revenue without a change
in its dispersion. The probability of default line shifts p-X
to the right by the change in u. The locus given by D D
equation (4) is unaffected. The stable equilibrium

u+X
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would now involve a lower interest factor and a lower probability of default.

(b) A fall in X represents a decrease in the dispersion of possible tax revenue without a change in its
expected value. The locus given by equation (4) is unaffected. The slope of the probability of default line
is given by on/0R = D/2X. Thus this line essentially rotates; it becomes steeper over a smaller range and
still goes through the point (z = 1/2, R = w/D). If the original intersection between the two equilibrium
conditions was at RD < p or R < /D (as in the case depicted in the figure above), the new stable
equilibrium would involve a lower interest factor and a lower probability of default.
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