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Preface

This book is an introduction to game theory from a mathematical perspective.
It is intended to be a first course for undergraduate students of mathematics,
but I also hope that it will contain something of interest to advanced students
or researchers in biology and economics who often encounter the basics of game
theory informally via relevant applications. In view of the intended audience,
the examples used in this book are generally abstract problems so that the
reader is not forced to learn a great deal of a subject – either biology or eco-
nomics – that may be unfamiliar. Where a context is given, these are usually
“classical” problems of the subject area and are, I hope, easy enough to follow.

The prerequisites are generally modest. Apart from a familiarity with (or
a willingness to learn) the concepts of a proof and some mathematical nota-
tion, the main requirement is an elementary understanding of probability. A
familiarity with basic calculus would be useful for Chapter 6 and some parts of
Chapters 1 and 8. The basic ideas of simple ordinary differential equations are
required in Chapter 9 and, towards the end of that chapter, some familiarity
with matrices would be an advantage – although the relevant ideas are briefly
described in an appendix.

I have tried to provide a unified account of single-person decision problems
(“games against nature”) as well as both classical and evolutionary game the-
ory, whereas most textbooks cover only one of these. There are two immediate
consequences of this broad approach. First, many interesting topics are left out.
However, I hope that this book will provide a good foundation for further study
and that the books suggested for further reading at the end of this volume will
go some way to filling the gaps. Second, the notation and terminology used
may be different in places from that which is commonly used in each of the
three separate areas. In this book, I have tried to use similar (combinations of)
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symbols to represent similar concepts in each part, and it should be clear from
the context what is meant in any particular case.

If time is limited, lecturers could make selections of the material according
to the interests and mathematical background of the students. For example,
a course on non-evolutionary game theory could include material from Chap-
ters 1, 2, and 4–7. A course on evolutionary game theory could include material
from Chapters 1, 2, 4, 8, and 9.

Finally, it is a pleasure to thank Vassili Kolokoltsov, Hristo Nikolov, and two
anonymous reviewers whose perceptive comments have helped to improve this
book immeasurably. Any flaws that remain are, of course, the responsibility of
the author alone.

Nottingham James Webb
May 2006
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Decisions



1
Simple Decision Models

1.1 Optimisation

Suppose we are faced with the problem of making a decision. One approach to
the problem might be to determine the desired outcome and then to behave in
a way that leads to that result. This leaves open the question of whether it is
always possible to achieve the desired outcome. An alternative approach is to
list the courses of action that are available and to determine the outcome of each
of those behaviours. One of these outcomes is preferred because it is the one that
maximises1 something of value (for example, the amount of money received).
The course of action that leads to the preferred outcome is then picked from the
available set. We will call the second approach “making an optimal decision”. In
this book, we will develop a mathematical framework for studying the problem
of making an optimal decision in a variety of circumstances.

Finding the maximum of something is a familiar procedure in basic calculus.
Suppose we are interested in finding the maximum of some function, let’s call
it f(x). We differentiate f and set the result equal to zero. A solution of this
equation gives us one or more values of x at which a maximum is attained,
which we might call x∗. The maximum value of the function is then f(x∗). (We
must also check that the value of the second derivative of f to make sure that
f(x∗) is really a maximum.)

In basic calculus, it is usually assumed (often without being mentioned) that

1 In some situations, the aim may be to minimise a loss. In this case, we can still
talk about maximisation by considering the negative of the loss as the outcome.
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the function we wish to maximise is defined for all real values of x (i.e., x ∈ R)
and is continuous. However, we will encounter problems in which one or both of
these assumptions are untrue: the function f(x) may only be defined for values
of x in a compact set X; the set X may be discrete; or the function being
maximised may be discontinuous by definition. These distinctions can have
important consequences, as is shown by the following example and exercises.

Example 1.1

Consider the function f(x) =
√

x. If this function is defined for all x ∈ [0,∞),
then it keeps increasing as x increases and so it does not have a maximum.
However, if the function is only defined for x ∈ [0, 4], then the function does
have a maximum. The maximum value of f is attained at one boundary x∗ = 4
and f(x∗) = 2.

Exercise 1.1

Maximise F (n) = 1 − n2 + 9
2n where n is integer. (Remember that n∗

must be an integer.)

Exercise 1.2

Let a, b and c be positive constants. Let

f(x) =
{(

1 − x

b

)
if 0 ≤ x ≤ b

0 otherwise

and

χ(x) =
{

1 if x > 0
0 if x ≤ 0

.

Maximise g(x) = axf(x) − cχ(x).

We will often wish to focus on the value of x at which the maximum is
achieved rather than the maximum value of the function itself, so we introduce
a new symbol argmax .

Definition 1.2

Suppose x is an arbitrary member of some set X. Let f(x) be some function
that is defined ∀x ∈ X. Then the symbol argmax is defined by the following
equivalence.

x∗ ∈ argmax
x∈X

f(x) ⇐⇒ f(x∗) = max
x∈X

f(x) .
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That is, x∗ is a value that maximises the function f(x). Note that we do not
write x∗ = argmaxx∈X f(x) because a function may take its maximum value
for more than one element in the set X. Because the symbol argmax returns
a set of values rather than a unique value, it is called a correspondence rather
than a function.

Example 1.3

Consider the function defined on x ∈ [−2, 2] by f(x) = x2 . This function
achieves its maximum at x∗ = ±2. So

argmax
x∈[−2,2]

x2 = {+2,−2} .

Exercise 1.3

(a) Let f(x) = 1 + 6x − x2 be defined ∀x ∈ R. Find argmaxx∈R
f(x).

(b) Let f(x) = 1+6x−x2 be defined ∀x ∈ [1, 2]. Find argmaxx∈[1,2] f(x).
(c) Let f(x) = (1 − x)2 be defined ∀x ∈ [0, 3]. Find argmaxx∈[0,3] f(x).

1.2 Making Decisions

The simplest case to consider is when there is no randomness in the environment
– once a choice has been made, the outcome is certain. To begin to build a
theory of optimal decisions, we make the following definitions.

Definition 1.4

A choice of behaviour in a single-decision problem is called an action. The set
of alternative actions available will be denoted A. This will either be a discrete
set, e.g., {a1, a2, a3, . . .}, or a continuous set, e.g., the unit interval [0, 1].

Definition 1.5

A payoff is a function π:A → R that associates a numerical value with every
action a ∈ A.
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Definition 1.6

An action a∗ is an optimal action if

π(a∗) ≥ π(a) ∀a ∈ A (1.1)

or, equivalently,
a∗ ∈ argmax

a∈A
π(a) . (1.2)

That is, the optimal decision is to choose an a∗ ∈ A that maximises the
payoff π(a). In general, a∗ need not be a unique choice of action: if two actions
lead to the same, maximal payoff, then either will do (notice the weak inequality
in the first form of the definition).

Example 1.7

A jobseeker is offered two jobs, J1 and J2. Their possible actions are ai = accept
Ji with i = 1, 2. The payoffs are the salaries on offer: J1 pays £15000, J2 pays
£17000. Because π(a1) = 15000 and π(a2) = 17000 the optimal decision is
a∗ = a2 (i.e., accept the second job).

Exercise 1.4

An investor going to invest £1000 for a year and has narrowed the choice
to one of two savings accounts. The two accounts differ only in the rate of
return: the first pays 6% annually, and the second pays 3% at six month
intervals. Which account should the investor choose? Does the answer
depend on whether or not the initial capital is included in the payoff?

In the previous example and exercise, the optimal decisions are not altered
if payoffs are given in U.S. dollars (or any other currency) rather than pounds;
nor are they altered if £1000 is added to each payoff. These alterations to the
payoffs are both examples of affine transformations.

Definition 1.8

An affine transformation changes payoffs π(a) into payoffs π′(a) according to
the rule

π′(a) = απ(a) + β

where α and β are constants independent of a and α > 0.
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Theorem 1.9

The optimal action is unchanged if payoffs are altered by an affine transforma-
tion.

Proof

Because α > 0 we have

argmax
a∈A

π′(a) = argmax
a∈A

[απ(a) + β]

= argmax
a∈A

π(a) .

We now consider some problems in which the action set is a continuous
subset of R. This can arise as a convenient approximation for models in which
a discrete action set has a large number of elements. For example, if we are
selling something, we might want to consider charging prices between £0.01
and £5.00. Because we can only charge prices in whole pennies, the action set
is discrete. But, rather than consider the consequences of 500 separate actions,
we treat price as continuous and employ the powerful features of calculus to
solve the problem.

Example 1.10

The Convent Fields Soup Company makes tomato soup. If it charges a price
of p pounds per litre, then the market will buy Q(p) litres, where

Q(p) =

{
Q0

(
1 − p

p0

)
if p < p0

0 if p ≥ p0
.

Q(p) is a non-increasing function of price p. So Q0 is a constant that gives
the maximum quantity that could be sold (at any price), and p0 is a constant
that gives the maximum price that the market would be prepared to pay. The
actions available to the company are the choice of a price p ∈ [0, p0]. There
is no point in setting a price above p0 because the company would sell no
soup. Suppose that the cost of producing soup is c pounds per litre. Taking
the company’s profit as its payoff, we have π(p) = (p − c)Q(p). The optimal
decision is to set a price p∗ that maximises the profit. To find this price, we
find the maximum of the payoff as a function of price. Because

dπ

dp
(p∗) = Q0

(
1 +

c

p0
− 2p∗

p0

)
= 0
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the optimal action is, therefore, to choose a price p∗ = 1
2 (p0 + c).

Example 1.11

In the previous example, we assumed that the soup factory has already been
constructed. The problem changes if the decision is being made before the
factory is built. For simplicity, let us assume that the marginal cost of pro-
duction is zero (the more general case is covered in Exercise 1.6) and suppose
that it costs an amount B to build the factory. The payoff then appears to be
π(p) = pQ(p) − B. Because B is a constant, the optimal price is p∗ = 1

2p0.
However, if soup is sold at this price, the profit made by the company is

π(p∗) =
Q0p0

4
− B

If B is large enough the company could make a loss by selling soup at this
price. The optimal action is, therefore, to choose a price

p∗ =
{

1
2 (p0 + c) if the profit will be positive
0 otherwise.

.

Exercise 1.5

A company makes small widgets. If the manufacturer produces q widgets
per day, they can be sold at a price P (q), where

P (q) = P0 max
{(

1 − q

q0

)
, 0
}

.

Assume the number of widgets produced is very large, so q can be treated
as a continuous variable. (a) What quantity should be made to maximise
the manufacturer’s income? (b) If manufacturing costs increase linearly
with the number of widgets made (i.e., cost = cq), what quantity max-
imises the manufacturer’s profit?

Exercise 1.6

A company is considering building a factory to make fertilizer. At a price
p, T (p) tonnes will be sold, where

T (p) = T0 max
{(

1 −
(

p

p0

))
, 0
}

.

Suppose manufacturing costs increase with the tonnage made, t, as
C(t) = c0 + c1t where c0 and c1 are non-negative constants. What price
would maximise the manufacturer’s income? Should the company build
the factory?
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So far, we have assumed that there is no uncertainty about the consequences
of any decisions. If uncertainty exists, we can compare the expected outcome
(in the probabilistic sense) for each action. Uncertainty about payoffs can be
represented as a random variable, X, which takes certain values corresponding
to possible “states of Nature” (e.g., economic conditions) with specified proba-
bilities. We will denote the set of “states of Nature” by X and the probability
with which a particular state x occurs will be denoted P (X = x). If the payoff
associated with action a when the state of Nature is x is π(a|x), then the payoff
for adopting action a is

π(a) =
∑
x∈X

π(a|x)P (X = x)

and an optimal action is

a∗ ∈ argmax
a∈A

∑
x∈X

π(a|x)P (X = x) .

Example 1.12

An investor has £1000 to invest for one year. Their2 available actions are

a1: Put the money in a building society account that yields 7% interest p.a.

a2: Invest in a share fund that gives a return of £1500 if the stock market
performs well and £600 (i.e., a loss of £400) if the stock market performs
badly.

The state of Nature is the performance of the stock market, which is good 50%
of the time and bad for the remaining 50% of the time. So we have the set
of states X = {Good, Bad} with P (X = Good) = P (X = Bad) = 0.5. The
expected payoffs (in pounds) for the two possible actions are

π(a1) = 1070

π(a2) =
1
2
1500 +

1
2
600 = 1050.

So, the optimal action is a1 (put the money in the building society).

2 As always, there is a problem in writing about individuals whose gender is irrel-
evant: which pronoun to use? Rather than make an invidious choice or use the
cumbersome “he or she”, I have opted to use “they”, “them”, and “their”. For
example, “they should use the following strategy”. The use of these grammatically
plural pronouns to refer to an individual is common in colloquial English and the
mismatch between grammatical and actual number also occurs in other languages
(for example, the polite use of “vous” in French).
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Exercise 1.7

Consider the following table of payoffs π(a|x) for action set A =
{a1, a2, a3} and states of nature X = {x1, x2, x3, x4}.

x1 x2 x3 x4

a1 3 0 3 0
a2 0 3 0 3
a3 1 1 1 1

What are the optimal actions if
(a) P (X = x1) = P (X = x2) = P (X = x3) = P (X = x4) = 1

4
(b) P (X = x1) = P (X = x3) = 1

8 and P (X = x2) = P (X = x4) = 3
8?

If X is a continuous random variable, then we use a density function f(x)
with P (x < X ≤ x + dx) ≡ f(x)dx. Then the expected payoff for adopting
action a is

π(a) =
∫

x∈X
π(a|x)f(x) dx

and an optimal action is

a∗ ∈ argmax
a∈A

∫
x∈X

π(a|x)f(x) dx .

Example 1.13

Suppose that an investor has a choice between two investments a1 and a2 with
payoffs π(a1|x) = w(1 + r) and π(a2|x) = w + X where X is a normally
distributed random variable, X ∼ N(µ, σ2). For example, a1 could represent
putting an initial capital w into a savings account with interest rate r and a2

could represent investing the same amount in the stock market. The expected
payoffs for the two actions are π(a1) = w(1 + r) and

π(a2) = w +
∫ +∞

−∞
xf(x) dx

= w + µ

so the optimal action is

a∗ =
{

a1 if wr > µ

a2 if wr < µ

If wr = µ then the investor is indifferent between a1 and a2 (i.e., both a1 and
a2 are optimal).
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Exercise 1.8

Each day a power company produces u units of power at a cost of c

dollars per unit and sells them at a price p dollars per unit. Suppose
that demand for power is exponentially distributed with mean d units,
i.e.,

f(x) =
1
d

exp
(
−x

d

)
.

If demand exceeds supply, then the company makes up the shortfall
by buying units from another company at a cost of k dollars per unit
(k > c). Show that the expected profit for the company (in dollars) is

π(u) = pd − cu − kde−u/d

and find the optimal level of production.

1.3 Modelling Rational Behaviour

Suppose a person is approached by a wealthy philanthropist who offers them
a choice between getting £1 for certain and a 50% chance of getting £3 (and
a 50% chance of nothing). Should the person choose the certain outcome or
the gamble? What should they choose if the sums involved were £1 million
and £3 million? Based on our procedure from the previous section, we might
be tempted to say that the person “should” choose the gamble in each case
because the expected amount of money received is higher than the amount of
money received if the gamble is refused. However, most people will gamble with
the low amounts but go for the certain million. Are they being inconsistent or
irrational?

Is maximising expected monetary value (EMV) what people should do?
There are several reasons why they might not. First, people value things other
than money: holidays, health, happiness, even the well-being of other people.
Second, for most people money is only a means to an end so the “real” value
of an amount of money need not be equal to its face value. Consider the case
of the wealthy philanthropist who is offering the choice involving millions of
pounds. Receiving £1 million will allow the recipient to retire and not have
to worry about pensions or life insurance. Receiving £3 million is better than
receiving £1 million but it isn’t 3 times as good because it is not possible
to retire three times over. Third, the reaction to uncertainty may depend on
personal circumstances.
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Example 1.14

When it sells some insurance, a company assesses the probabilities of various
payouts. From this it calculates its expected loss L. To this loss it adds its
profit P and charges C = L + P . Assuming that a customer agrees with the
company about the expected loss L, why do they buy insurance (given that
C > L)? Part of the reason may be that, although they can afford the expected
loss, they could not afford the actual loss if it occurred. So, maximising EMV is
appropriate for one “individual” (the insurance company), but not for another
(the customer).

Apart from these considerations, there is another – more important – rea-
son why we should not define rationality as maximising EMV: it switches the
origin of a behaviour with its consequence. What we would like to do is define
rationality in some way and then determine, as a consequence of this definition,
whether we can derive any quantity that rational people will maximise. If we
can do this, then we can use the procedures we have begun to develop with the
quantity we have found taking the place of EMV in our calculations. So how
can we define rationality?

The first thing to note is that rationality should not be equated with dis-
passionate reasoning (notwithstanding the view held by certain aliens from a
popular science fiction series). An individual’s desires lead to a ranking of out-
comes in terms of preference. These preferences need not accord with those of
another individual; however, they should be internally consistent, if they are
to form a basis for choice. Thus we will define a rational person as one who
has consistent preferences concerning outcomes and will attempt to achieve a
preferred outcome.

Suppose we have a set of possible outcomes (for example, eating a ham-
burger or eating a salad). When asked, people will express preferences con-
cerning these outcomes. These preferences are not necessarily the same for all
people: some may prefer the salad while others prefer the hamburger. Given
a free choice, people should choose their preferred outcome. (For the moment
we will assume that there is no uncertainty about the consequence of a choice:
choosing to act in a particular way definitely leads to the desired outcome.)
Anyone who really prefers the hamburger but then chooses to eat a salad would
be acting “irrationally”. Someone who says they prefer the hamburger but then
chooses to eat a salad because they are on a diet has not expressed their true
preferences because they have failed to include their desire to lose weight.

Let the set of possible outcomes be denoted by Ω = {ω1, ω2, ω3, . . .}. We
will write ω1 � ω2 if an individual strictly prefers outcome ω1 over outcome ω2.
We will write ω1 ∼ ω2 if an individual is indifferent between the two outcomes.
Weak preference will be expressed by the operator 
. The expression ω1 
 ω2
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means that an individual either prefers ω1 to ω2 or is indifferent between the
two outcomes.

Definition 1.15

An individual will be called rational under certainty if their preferences for
outcomes satisfy the following conditions:

1. (Completeness) Either ω1 
 ω2 or ω2 
 ω1.

2. (Transitivity) If ω1 
 ω2 and ω2 
 ω3 then ω1 
 ω3.

The completeness condition ensures that all outcomes can be compared
with each other. The transitivity condition implies that outcomes can be listed
in order of preference (possibly with ties between some outcomes). Together
these conditions imply that we can introduce the idea of a utility function.
An individual will be assumed to have a personal utility function u(ω) that
gives their utility for any outcome, ω. The outcome ω may be numeric (e.g., an
amount of money or a number of days of holiday) or less tangible (e.g., degree
of happiness). Whatever the reward is, the utility function assigns a number to
that reward and encapsulates everything about an outcome that is important
to the particular individual being considered.

Definition 1.16

A utility function is a function u:Ω → R such that:

u(ω1) > u(ω2) ⇐⇒ ω1 � ω2

u(ω1) = u(ω2) ⇐⇒ ω1 ∼ ω2

An immediate consequence of this definition is that an individual who is
rational under certainty should seek to maximise their utility. The relation
between the utility function u and the payoff function π is straightforward.
Suppose choosing action a produces outcome ω(a) then π(a) = u(ω(a)).

Now let us consider what happens when an action does not produce a
definite outcome and instead we allow each outcome to occur with a known
probability. Such uncertain outcomes will be called “lotteries”.

Definition 1.17

A simple lottery , λ, is a set of probabilities for the occurrence of every ω ∈ Ω.
We shall denote the probability that outcome ω occurs in lottery λ by p(ω|λ).
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The set of all possible lotteries will be denoted Λ. (Although the set of lotteries
depends on the basic set of outcomes Ω, we will not make this dependence
explicit.)

Definition 1.18

A compound lottery is a linear combination of simple lotteries (from the same
set Λ). For example, qλ1 + (1 − q)λ2 with 0 ≤ q ≤ 1 is a compound lottery.

A compound lottery can be regarded as a lottery in which the outcomes are
themselves lotteries. The example lottery given in the definition could be taken
to mean that simple lottery λ1 occurs with probability q and simple lottery
λ2 occurs with probability 1 − q. Compound lotteries are not really different
from simple lotteries: the compound lottery qλ1 + (1 − q)λ2 is equivalent to
a simple lottery λ with probabilities p(ω|λ), which can be determined from
the probabilities p(ω|λ1), p(ω|λ2) and the parameter q. However, the ability to
define lotteries as combinations of other lotteries is useful for the definition of
rationality.

Definition 1.19

An individual will be called rational under uncertainty or just rational if their
preferences for lotteries satisfy the following conditions:

1. (Completeness) Either λ1 
 λ2 or λ2 
 λ1.

2. (Transitivity) If λ1 
 λ2 and λ2 
 λ3 then λ1 
 λ3.

3. (Monotonicity) If λ1 � λ2 and q1 > q2 then q1λ1 + (1 − q1)λ2 � q2λ1 +
(1 − q2)λ2.

4. (Continuity) If λ1 
 λ2 and λ2 
 λ3 then there exists a probability q such
that λ2 ∼ qλ1 + (1 − q)λ3.

5. (Independence) If λ1 � λ2 then qλ1 + (1 − q)λ3 � qλ2 + (1 − q)λ3

As above, the completeness condition ensures that all lotteries can be com-
pared with each other and the transitivity condition implies that lotteries can
be listed in order of preference (possibly with ties). The monotonicity and con-
tinuity conditions assert that a lottery gets better smoothly as the probability
of a preferred outcome increases. The independence condition implies that pref-
erences only depend on the differences between lotteries; components that are
the same can be ignored.
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Suppose that choosing action a produces lottery λ(a). What is the payoff
π(a) that a rational individual will seek to maximise? We might try to introduce
a utility function for the expected outcome E(ω). There are two problems with
this. First, it is not clear what E(ω) would mean for outcomes that are not given
numerically. Second, even when the outcomes are given numerically, it seems
that people do not necessarily maximise any function of the expected outcome.
Consider the example of wealthy philanthropist again. If an individual takes the
gamble for the £3 million, then the expected outcome is £1.5 million. Because
people prefer the certain million to the gamble, it would seem – if they are
maximising some sort of “utility of the expected outcome” – that the utility
of £1 million is greater than the utility of £1.5 million, which seems highly
unlikely. An alternative to maximising the “utility” of the expected outcome is
maximising the expected utility.

Theorem 1.20 (Expected Utility Theorem)

If an individual is rational in the sense of Definition 1.19, then we can define a
utility function u:Ω → R and rational individuals act in a way that maximises
the payoff function π(a) (the expected utility) given by

π(a) =
∑
ω∈Ω

p(ω|λ(a))u(ω) . (1.3)

Proof

A more detailed discussion and proof of the Expected Utility Theorem is given
by Myerson (1991).

Remark 1.21

The conditions for rationality expressed in Definition 1.19 only determine the
utility function up to an affine transformation (see Definition 1.8). However,
this does not present a problem, because the optimality of any behaviour is not
altered by a change of this type (see Theorem 1.9).

The explicit construction of a utility function, which is important for con-
structing realistic models of a person’s behaviour (and is a problem that must
be solved for each model) will be ignored in this book. We will either assume
that maximising EMV is appropriate or specify a utility function. We will
also consider completely abstract situations and, in these cases, an individual’s
payoff will be tacitly specified in “units of utility” without worrying about the
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�

��

u(E(w))

E(u(w))
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u(w)

Figure 1.1 The utility function for the individual considered in Exercise 1.9.
The utility u(w) of wealth w is such that E(u(ω)) < u(E(ω)), so this individual
is risk averse.

various components of an outcome that actually determine this value.

Exercise 1.9

Consider an individual whose utility function of wealth, w, is given by
u(w) = 1 − exp(−kw) with k > 0. Assuming that wealth increments are
Normally distributed, show that an individual’s expected utility can be
represented as a trade-off between mean and variance, as in Equation
(1.4).

Definition 1.22

An individual whose utility function satisfies E(u(ω)) < u(E(ω)) is said (assum-
ing E(ω) can be defined) to be risk averse. If E(u(ω)) > u(E ω) the individual
is said to be risk prone. If E(u(ω)) = u(E ω) the individual is said to be risk
neutral .

Example 1.23

The individual considered in Exercise 1.9 is risk averse. (See Figure 1.1.)

Example 1.24

Consider the following classical portfolio choice problem. Two assets are avail-
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able to an investor. One is riskless (e.g., a bank account) providing a fixed return
of r on the initial sum; the other is risky (e.g., stock market) with a return,
having a mean µ and a standard deviation σ. If the investor is a straightforward
EMV-maximiser, then they should invest all of their money in stocks if µ > r.
However, in some circumstances, a risk-averse investor may prefer to trade-off
the expected return and its variance in a linear fashion (see Exercise 1.9). In
other words, they can reduce the variability of their return by constructing a
portfolio in which they place some fraction of their money in the bank and
invest the remainder in the stock market. If a is the fraction that they place
in stocks, then the expected return on the portfolio is aµ + (1 − a)r and its
variance is a2σ2. So the investor’s expected utility is

π(a) = aµ + (1 − a)r − k

2
a2σ2 (1.4)

where k represents the value that the investor places on the variance relative
to the expectation. This expected utility is maximised for

a∗ =

⎧⎪⎨
⎪⎩

0 if µ < r
µ − r

kσ2 if 0 < µ − r < kσ2

1 µ − r > kσ2

.

(Check that the second derivative is negative; or calculate π(a∗), π(0) and
π(1).)

Exercise 1.10

Consider an individual whose utility function of wealth, w, is quadratic:
u(w) = w−kw2 , where the constant k is such that u(w) is non-decreasing
over the allowed range for w. Repeat the portfolio problem from Exam-
ple 1.24.

1.4 Modelling Natural Selection

In this section, we will consider the – at first, rather surprising – proposition
that the mathematics describing optimal decisions by rational individuals can
also be applied to the behaviour of animals.

The assertion of optimal behaviour by animals rests on the following in-
terpretation of Natural Selection. In the past, a population of animals from a
single species contained several types of individual that were genetically pro-
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grammed to use one of a variety of behaviours.3 Some of these behaviours result
in the animals having few descendants, other behaviours result in animals hav-
ing many descendants. Through their genes, parents pass on their programmed
behaviour to their offspring and after many generations, the type of animal
that leaves the greatest number of descendants will be numerically dominant
in the population.

Example 1.25

Consider a population consisting of two types of individual, labelled i = 1, 2.
The animals live for a year, breed once and then die. Individuals of type i have
ri offspring, where we assume (without loss of generality) that r1 > r2. Suppose
that at time t there are ni(t) animals of type i, then at time t + 1 (i.e., the
following year) there will be ni(t+1) = rini(t) of each type. Starting from time
t = 0 when there are ni(0) animals of each type, there are

ni(1) = rini(0) at time t = 1;
ni(2) = rini(1) = r2

i ni(0) at time t = 2;
ni(3) = rini(2) = r2

i ni(1) = r3
i ni(0) at time t = 3;

...
...

ni(t) = rini(t − 1) = · · · = rt
ini(0) at time t.

So the ratio of the numbers of the two types at time t is

n2(t)
n1(t)

=
(

r2

r1

)t
n2(0)
n1(0)

This ratio tends to zero as t → ∞. In other words, the population comes to
be dominated by animals of type 1. We can paraphrase the action of Natural
Selection by saying that the animals should “choose” the behaviour that gives
the reproduction rate r1.

Exercise 1.11

Duck-billed platypuses lay n eggs, where n is a characteristic that varies
between individuals and is inherited by a platypus’s offspring. The prob-
ability that each egg hatches is H(n) = 1 − kn2 where k = 0.1. After
many generations of Natural Selection how many eggs will platypuses be
laying? (Remember that n is an integer.)

3 Actually the relationship between genetics and behaviour may be quite compli-
cated and is, in general, poorly understood. The procedure of treating particular
behaviours as heritable units is called the phenotypic gambit and has proved to be
a useful starting point.
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Definition 1.26

The fitness of a behaviour is defined to be the asymptotic growth rate of the
sub-population of animals using that behaviour. That is, for animals with be-
havioural type i we can define an annual growth rate as

ri(t) =
ni(t + 1)

ni(t)

and the fitness for this type is given by π(i) = limt→∞ ri(t).

It is, therefore, a matter of definition that Natural Selection acts in such a
way as to maximise fitness. If we want to explain (in evolutionary terms) the
behaviour of animals, we consider a set of plausible alternative behaviours and
find the one that maximises fitness: this is the behaviour that animals should be
using (provided Natural Selection has had enough time to act). When we use the
criterion that an animal should behave in a way that maximizes its fitness, we
don’t imagine that an individual animal is performing complex calculations in
order to do this. The language of choice and optimisation is used as a convenient
short-hand for the action of Natural Selection.

In Example 1.25, the fitnesses for the two behaviours were just the respective
reproduction rates ri. The next example shows that it is not always appropriate
to use the number of offspring produced during an animal’s life as a measure
of fitness.

Example 1.27

Suppose an animal has two possible behaviours:

a1: Produce 8 offspring, then die. (“Live fast and die young”.)

a2: Produce 5 offspring in the first year, produce 6 more offspring in a second
year and then die. (“Live slowly and die old”.)

The fitness for behaviour a1 is simply π(a1) = 8. Determining the fitness for
behaviour a2 is a bit more involved. In this case, the sub-population at time t

consists of f(t) first-year breeders and s(t) second-year breeders. These numbers
change from year to year according to

f(t + 1) = 5f(t) + 6s(t)

s(t + 1) = f(t) .

Adding these two equations gives us π(a2) = 6. The animal should, therefore,
choose a1. That is, Natural Selection should produce a population of animals
which “live fast and die young”. This tells us that we should avoid a common
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misinterpretation of the phrase “survival of the fittest”: it is genetic lines, not
individuals, which must survive.

In practice, even the expected number of offspring may not be calculated
explicitly. Instead some factor that affects fitness is considered, if it can be
reasonably assumed that this is the only component of fitness that is affected
by the variety of behaviours being considered.

Example 1.28

Suppose an animal chooses actions from a set A = {a1, a2} and the animal’s
probability of survival to the breeding season is Si if it chooses action ai. If the
animal survives to breed, it has n offspring. The payoff/fitness for adopting ai

is nSi. Because the factor n is common to the payoffs for all actions, we may
consider only the survival probabilities: π(ai) = Si. So a∗ = a1 if S1 > S2 and
a∗ = a2 if S1 < S2.

Exercise 1.12

Before migrating to its breeding site, a bird must try to build up its
energy reserves x. The bird can choose to forage in any one of three
sites, i = {1, 2, 3}. On each site the bird has a probability λi of being
eaten by a predator and at the end of the pre-migration foraging period
(if it has not been eaten) a bird’s reserves will be either high or low
with certain probabilities. The parameters for each site are given in the
following table.

Site 1 2 3
λ 0.2 0.1 0.05

P (x = high) 0.8 0.6 0.4

The probability of surviving migration is Mh = 0.9 if reserves are high
and Ml = 0.5 if reserves are low. If a bird survives, it produces a fixed
number of offspring during the next breeding season. Which site should
the bird choose?4

4 Remember, this is just a shorthand way of asking “what is the result of natural
selection acting for many years on a population of birds?”
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1.5 Optimal Behaviour

Up till now, we have considered the problem of finding an optimal action a∗

from a given set A. However, another type of behaviour may be available to
an individual: they may randomise. Does this allow an individual to achieve a
higher payoff than if they stick to picking an action?

Definition 1.29

We specify a general behaviour β by giving the list of probabilities with which
each available action is chosen. We denote the probability that action a is
chosen by p(a) and ∑

a∈A

p(a) = 1 .

The set of all possible randomising behaviours (for a given problem) will be
denoted by B.

The payoff for using a behaviour β is related to the payoffs for the actions
in the obvious way. The payoff for using β is given by

π(β) =
∑
a∈A

p(a)π(a) . (1.5)

In an uncertain world, we can also define the payoffs

π(β|x) =
∑
a∈A

p(a)π(a|x)

so that
π(β) =

∑
x∈X

P (X = x)π(β|x) . (1.6)

Exercise 1.13

Show that the payoff for a behaviour β is the same whether we define it
via Equation 1.5 or Equation 1.6.

Definition 1.30

An optimal behaviour β∗ is one for which

π(β∗) ≥ π(β) ∀β ∈ B (1.7)

or, if we focus on behaviours rather than payoffs,

β∗ ∈ argmax
β∈B

π(β) . (1.8)
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Definition 1.31

The support of a behaviour β is the set A(β) ⊆ A of all the actions for which
β specifies p(a) > 0.

Theorem 1.32

Let β∗ be an optimal behaviour with support A∗. Then π(a) = π(β∗) ∀a ∈ A∗.

Proof

If the set A∗ contains only one action, then the theorem is trivially true. Suppose
now that the set A∗ contains more than one action. If the theorem is not true,
then at least one action gives a higher payoff than π(β∗). Let a′ the action
which gives the greatest such payoff. Then

π(β∗) =
∑

a∈A∗
p∗(a)π(a)

=
∑
a�=a′

p∗(a)π(a) + p∗(a′)π(a′)

<
∑
a�=a′

p∗(a)π(a′) + p∗(a′)π(a′)

= π(a′)

which contradicts the original assumption that β∗ is optimal.

A consequence of this theorem is that if a randomising behaviour is optimal,
then two or more actions are optimal as well. So, randomisation is not necessary
to achieve an maximal payoff. However, it may be used as a tie-breaker for
choosing between two or more equally acceptable actions.

Exercise 1.14

A firm may make one of three marketing decisions {a1, a2, a3}. The profit
(in millions of pounds) for each decision depends on the state of the
economy X = {x1, x2, x3} as given in the table below.

x1 x2 x3

a1 6 5 3
a2 3 5 4
a3 5 9 1

If P (X = x1) = 1
2 and P (X = x2) = P (X = x3) = 1

4 , find all optimal
behaviours.



2
Simple Decision Processes

2.1 Decision Trees

A man hears that his young daughter always takes a nickel when an adult
relative offers her a choice between a nickel and a dime. He explains to his
daughter, “A dime is twice as valuable as a nickel, so you should always choose
the dime”. In a rather exasperated tone, his daughter replies “Daddy, but then
people will not offer me any money”.

This story is an example of a decision process: a sequence of decisions is
made, although the process may terminate before all potential decisions have
been taken. The story also illustrates two components of what is considered to
be strategic behaviour . First, immediate rewards are forgone in the expectation
of a payback in the future. Second, the behaviour of others is taken into account.
It is the former component that is the main subject of this chapter. While the
second component may be present in some of the situations we will look at, the
behaviour of all individuals other than the one being considered will be taken
as fixed. In Part II, we will allow all players to change their behaviour at will.

To represent the problems like the nickel and dime game pictorially, we
can draw a decision tree. The times at which decisions are made are shown
as small, filled circles. Leading away from these decision nodes is a branch for
every action that could be taken at that node. When every decision has been
made, one reaches the end of one path through the tree. At that point, the
payoff for following that path is written. The convention we will follow is for
time to increase as one goes down the page, so the tree is drawn “upside-down”.
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Figure 2.1 Choosing a nickel (N) or a dime (D) on (at most) two occasions.
The payoff in cents is given at the end of each branch of the tree.

Example 2.1

Suppose that the adult will offer the “nickel or dime” choice at most twice:
if the girl takes the dime on the first occasion, then the choice will be offered
only once. The nickel and dime problem can then be represented by the tree
shown in Figure 2.1. If she chooses a dime (action D) at the first opportunity,
then she receives ten cents and no further offer is made. On the other hand,
if she chooses the nickel (action N), she gets five cents and a second choice.
It is clear what the girl should do. If she chooses the nickel the first time and
then the dime, she gets a payoff of fifteen cents; if she follows any other course
of action, she gets only ten cents. Therefore, she should choose the nickel first
and then the dime.

2.2 Strategic Behaviour

The word “strategy” is derived from the Greek word strategos (στρατεγoς)
meaning “military commander” and, colloquially, a strategy is a plan of action.

Definition 2.2

A strategy is a rule for choosing an action at every point that a decision might
have to be made. A pure strategy is one in which there is no randomisation.
The set of all possible pure strategies will be denoted S.
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Figure 2.2 Two decision trees that could have the pure strategy set given in
Example 2.3.

Suppose that there are n decision nodes and that at each decision node i

there is an action set Ai describing the choices that can be made at that point.
Some or all of the sets Ai may be identical. Then the set of pure strategies S
is given by the cross-product of all the action sets: S = A1 × A2 × · · · × An.

Example 2.3

Suppose there are three decision nodes at which the action sets are A =
{a1, a2}, B = {b1, b2} and C = {c1, c2}. Then the set of pure strategies is
given by the set of eight triples

S = {a1b1c1, a1b1c2, a1b2c1, a1b2c2, a2b1c1, a2b1c2, a2b2c1, a2b2c2} .

This strategy set could apply to either of the decision trees illustrated in Figure
2.2.

Definition 2.4

The observed behaviour of an individual following a given strategy is called the
outcome of the strategy.
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The definition of a strategy leads to some redundancy in terms of outcomes.
A pure strategy picks a path through the decision tree from the initial point to
one of the terminal points. However, a pure strategy is not just a path through
the decision tree: a pure strategy specifies the action that would be taken at
every decision node including those that will not be reached if the strategy is
followed. In other words, the observed behaviour of an individual only provides
us with part of the strategy itself.

Example 2.5

Consider the “nickel or dime” game shown in Figure 2.1. The pure strategy set
is S = {NN, ND, DN, DD}, where each pair of actions represents the choices
made in the natural (time-increasing) order. Two of these strategies, DN and
DD, yield the same outcome because choosing the dime at the first decision
node means that no further decisions have to be made.

Because strategies that give the same outcome lead to the same payoff, it is
sometimes useful to introduce the concept of a “reduced” set of pure strategies,
which removes this redundancy from the discussion.

Definition 2.6

A reduced strategy set is the set formed when all pure strategies that lead to
indistinguishable outcomes are combined.

Example 2.7

For the “nickel or dime” game shown in Figure 2.1. The reduced strategy set
is SR = {NN, ND, DX}, where the combination DX means “dime at the first
decision node and anything at the other decision node”.

Exercise 2.1

(a) Consider a variant of the “nickel or dime” game from Example 2.1
where the child is offered nickels or dimes on three occasions at most.
Draw the tree for this decision problem, determine the pure-strategy
set and find the optimal strategy?

(b) Suppose the child is offered the nickel or dime choice on n occasions.
What is the optimal strategy?

(c) Suppose the adult offers the child a choice between a nickel or a
dime. If the child takes the dime, then the game stops. If the child
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takes the nickel, then the choice is offered again with probability p.
If p < 1, then the game will eventually terminate, perhaps because
the adult gets bored. What is the child’s optimal strategy?

2.3 Randomising Strategies

When there is only a single decision to be made, the sets of actions and pure
strategies are identical. There is also only one way of specifying randomising
behaviour.

Example 2.8

Suppose the action (or pure strategy) set is {a1, a2}. A general behaviour spec-
ifies using a1 with probability p and a2 with probability 1 − p. In Section 1.5,
we denoted this by β = (p, 1 − p).

When there is (potentially) more than one decision to be made, the ac-
tion sets and pure strategy sets are no longer identical and there are now two,
conceptually different ways of representing a randomizing behaviour. To dis-
tinguish between them we shall call one a “mixed strategy” and the other a
“behavioural strategy”.

Definition 2.9

A mixed strategy σ specifies the probability p(s) with which each of the pure
strategies s ∈ S is used.

Suppose the set of strategies is S = {sa, sb, sc, . . .}, then a mixed strategy
can be represented as a vector of probabilities:

σ = (p(sa), p(sb), p(sc), . . .) .

A pure strategy can then be represented as a vector where all the entries are
zero except one. For example,

sb = (0, 1, 0, . . .) .

Mixed strategies can, therefore, be represented as linear combinations of pure
strategies:

σ =
∑
s∈S

p(s)s .
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Remark 2.10

Often these linear combinations are written symbolically. For example, in the
“nickel or dime” game, the mixed strategy in which NN is used with probability
1
4 and DN is used with probability 3

4 might be written as

σ =
1
4
NN +

3
4
DN .

Definition 2.11

The support of a mixed strategy σ is the set S(σ) ⊆ S of all the pure strategies
for which σ specifies p(s) > 0.

For a mixed strategy, the randomisation takes place once before the decision
tree is traversed: once a strategy has been chosen, the path through the tree is
fixed.

Definition 2.12

Let the decision nodes be labelled by an indicator set I = {1, 2, 3, . . . n}. At
node i, the action set is Ai = {ai

1, a
i
2, . . . , a

i
ki

} (where we have allowed the
number of available actions ki to be different at each decision node i). An
individual’s behaviour at node i is determined by a probability vector pi where
pi = (p(ai

1), p(ai
2), . . . , p(ai

ki
)) and p(ai

j) is the probability with which he selects
action ai

j ∈ Ai (if, in fact, they reach decision node i). A behavioural strategy
β is the collection of probability vectors

β = {p1,p2, . . . ,pn} . (2.1)

In contrast to a mixed strategy, a behavioural strategy causes randomisation
to take place several times as the decision tree is traversed.

As we shall see, these two representations of randomising behaviour are
interchangeable in the sense that every mixed strategy has an equivalent be-
havioural representation and every behavioural strategy has an equivalent
mixed representation. In each case, a strategy defined in terms of one type
of representation may have more than one equivalent strategy defined in terms
of the other representation. Before we give a proper definition, let’s look at the
idea of equivalence by means of an example that illustrates two strategies that
are not equivalent.
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Example 2.13

Consider the “nickel or dime” game shown in figure 2.1. One mixed strategy for
this decision process is σ = 1

2NN + 1
2DD. It would be tempting to believe that

a behavioural equivalent to this strategy is β =
(( 1

2 , 1
2

)
,
( 1

2 , 1
2

))
, but this would

be incorrect. To see why, note that there are three paths through the decision
tree. Let’s call them “dime only”, “all nickels” and “nickel then dime”. The
mixed strategy σ picks out the paths “dime only” and “all nickels” each with
a probability 1

2 and picks “nickel then dime” with probability zero. However,
the behavioural strategy β specifies choosing the action D at the later decision
node with probability 1

2 . Therefore, the path “nickel then dime” would be
picked with probability 1

4 and not zero. The strategies σ and β are, therefore,
not equivalent.

Definition 2.14

A behavioural strategy and a mixed strategy are equivalent if they assign the
same probabilities to each of the possible pure strategies that are available.

It follows immediately that equivalent mixed and behavioural strategies
have the equal payoffs.

Example 2.15

A behavioural strategy which is equivalent to the mixed strategy σ in exam-
ple 2.13 is β =

(( 1
2 , 1

2

)
, (1, 0)

)
. Furthermore, any of the mixed strategies

σx =
1
2
NN +

(
1
2

− x

)
DD + xDN with x ∈

[
0,

1
2

]

is equivalent to the behavioural strategy β =
(( 1

2 , 1
2

)
, (1, 0)

)
.

Exercise 2.2

Show that the following behavioural and mixed strategies for the “nickel
or dime” game of Example 2.1 all have the same payoff.

β =
((

1
2
,
1
2

)
, (1, 0)

)

σ =
1
2
ND +

(
1
2

− x

)
DD + xDN with x ∈

[
0,

1
2

]
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Theorem 2.16

(a) Every behavioural strategy has a mixed representation and (b) every mixed
strategy has a behavioural representation.

Proof

(a) An individual using a pure strategy s ∈ S will pass through a set of decision
nodes I(s) ⊆ I, choosing some action ai(s) ∈ Ai for each i ∈ I(s). At each
decision node i ∈ I, a given behavioural strategy β would prescribe choosing
that action with probability p(ai(s)). So the probability that an individual
using β would traverse the decision tree via the decision nodes I(s) is

p(s) =
∏

i∈I(s)

p(ai(s)) .

A mixed strategy representation of β is then

σβ =
∑
s∈S

p(s)s

because ∑
s∈S

∏
i∈I(s)

p(ai(s)) = 1 .

(b) Let σ =
∑

s∈S p(s)s be some mixed strategy. For each pure strategy
s, let I(s) ⊆ I be the set of decision nodes an individual encounters when he
follows strategy s. For each decision node i ∈ I, let S(i) ⊆ S be the set of pure
strategies that reach decision node i. Then the probability that an individual
following the mixed strategy σ will reach decision node i is

pσ(i) =
∑

s∈S(i)

p(s) .

Let S(ai, i) ⊆ S(i) be the set of pure strategies that reach decision node i and
choose action ai ∈ Ai at that point. Then the probability that an individual
following the mixed strategy σ will reach decision node i and choose ai is

pσ(ai, i) =
∑

s∈S(ai,i)

p(s) .

Provided pσ(i) �= 0 we can define the probability of choosing ai at i as

p(ai) =
pσ(ai, i)
pσ(i)

.

If pσ(i) = 0 for some decision node i then any set of probabilities p(ai) with∑
ai∈Ai

p(ai) = 1 will suffice. Clearly
∑

ai∈Ai
p(ai) = 1 ∀i ∈ I, so the collection
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Figure 2.3 Decision tree for Exercise 2.3.

of these probabilities for all actions at all decision nodes forms a behavioural
representation of the mixed strategy σ.

It follows from this theorem that we are free to choose the representation
for strategies that best suits the problem in hand.

Exercise 2.3

Consider the decision tree shown in Figure 2.3. Find the all behavioural
strategy equivalents for the mixed strategies (a) σ = 1

2a1b1c1 + 1
2a2b2c2

and (b) σ = 1
3a1b1c1 + 1

3a1b2c1 + 1
3a1b1c2.

2.4 Optimal Strategies

In Chapter 1, we saw that randomising behaviour was not required for single
decisions, in the sense that an optimal action could always be found. A similar
result holds for decision processes.

Lemma 2.17

Let σ∗ be an optimal mixed strategy with support S∗. Then π(s) = π(σ∗)
∀s ∈ S∗.
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Proof

If the set S∗ contains only one strategy, then the theorem is trivially true.
Suppose now that the set S∗ contains more than one strategy. If the theorem
is not true, then at least one strategy gives a higher payoff than π(σ∗). Let s′

be the strategy that gives the greatest such payoff. Then

π(σ∗) =
∑
s∈S∗

p∗(s)π(s)

=
∑
s�=s′

p∗(s)π(s) + p∗(s′)π(s′)

<
∑
s�=s′

p∗(s)π(s′) + p∗(s′)π(s′)

= π(s′)

which contradicts the original assumption that σ∗ is optimal.

Theorem 2.18

For any decision process, an optimal pure strategy can always be found.

Proof

From Theorem 2.16, we know that every behavioural strategy has at least one
equivalent mixed strategy. It follows that no behavioural strategy can have a
payoff greater than that which could be achieved by using a mixed strategy. It,
therefore, follows from the preceding lemma that, if an optimal mixed strategy
exists, then an optimal pure strategy also exists.

So far, we have adopted a simple procedure for finding a optimal strategy:
list the possible pure strategies, calculate the payoff for each of these, and pick
one that gives the optimal payoff. However, the burden of the procedure in-
creases exponentially as the decision tree becomes larger. A tree with n decision
nodes each with 2 possible actions leads to 2n pure strategies. Fortunately, we
can reduce this burden by employing the Principle of Optimality . This principle
states that from any point on an optimal path, the remaining path is optimal
for the decision problem that starts at that point. In other words, to find the
optimal decision now, we should assume that we will behave optimally in the
future.
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Definition 2.19

A partial history h is the sequence of decisions that have been made by an
individual up to some specified time. At the start of a decision process (when
no decisions have been made), we have the null history , h = ∅. A full history
for a strategy s is the complete sequence of all decisions that would be made
by an individual following s and will be denoted H(s).

Remark 2.20

If an individual has perfect recall (i.e., remembers all their past decisions), then
each decision node has a unique history and each history specifies a unique
(current) decision node.

Define the subset of pure strategies S(h) ∈ S that contains all the strategies
with history h but that differ in the actions taken in the future. Then the
optimal payoff an individual can achieve given that they have history h is

π∗(s|h) = max
s∈S(h)

π(s).

Assume that the individual now has a choice from a set of actions A(h). After
that decision has been made, the history will be the sequence h with the chosen
action a appended. We will write this as h, a.

Theorem 2.21 (The Optimality Principle)

For an individual with perfect recall:

1. π∗(s|H(s)) = π(s)

2. π∗(s|h) = maxa∈A(h) π∗(s|h, a)

3. π∗ = maxs∈S(∅) π∗(s|∅)

Proof

1. By the definition of H(s), the individual has no more decisions to make
and the best payoff they can get is the payoff they have already achieved
by following the strategy s.

2. A pure strategy is a sequence of actions {a0, a1, . . . , ah, ah+1, ah+2, . . . , aH}
so

π(s) = π(a0, a1, . . . , ah, ah+1, ah+2, . . . , aH).
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Let the partial history h be a given sequence {a0, a1, . . . , ah} then

π∗(s|h) = max
ah+1

max
ah+2

. . .max
aH

π(a0, a1, . . . , ah, ah+1, ah+2, . . . , aH)

= max
ah+1

π∗(s|h, ah+1).

3. The history h = ∅ denotes optimisation problem starting from the very
beginning. So S(∅) = S and

max
s∈S(∅)

π∗(s|∅) = max
s∈S

π(s)

= π∗.

The Optimality Principle leads directly to a convenient method for solving
dynamic decision problems. If we wish to find the optimal decision now by
assuming that we will behave optimally in the future, it makes sense to sort
out the future decisions first. In other words, we should work backwards through
the decision tree – a procedure known as backward induction.

Example 2.22

Consider the decision tree shown in Figure 2.4. To work backwards through
this tree, we start at either decision node 2 or decision node 3. It does not
matter which: all that matters is that no decision node is considered before all
the decision nodes that follow on from it have been dealt with. At decision node
3 we would choose C (rather than D), which gives us a payoff of 8. At decision
node 2 we would choose D to get a payoff of 7. Now consider decision node
1. Assuming that we will choose optimally in the future whatever we do now,
choosing A leads to a final payoff of 7 whereas choosing B leads to a payoff of
8. The optimal strategy is therefore BDC (in the order of the labelling of the
decision nodes).

The previous example shows, at least, that backward induction produces
the same result as a complete strategic analysis. However, the advantages of the
approach seem fairly minimal. The real power of backward induction reveals
itself when we consider problems for which drawing a complete decision tree
is impractical if not actually impossible. Such problems are considered in the
next chapter.

Exercise 2.4

Consider a female bird choosing a mate from three displaying males. The
attributes of the males are summarised by the following table.
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Figure 2.4 Decision tree for Example 2.22.

Male Genetic quality Cares for chicks?
1 High No
2 Medium Yes
3 Low Yes

Suppose that the value of offspring depends on the genetic quality of
the father. The value of offspring is vH , vM , and vL for the males of
high, medium, and low quality, respectively, with vH > vM > vL. Once
she has mated, the female can choose to care for the chicks or desert
them. Chicks that are cared for by both parents will certainly survive;
those cared for by only one parent (of either sex) have a 50% chance of
survival; and those deserted by both parents will certainly die. Draw the
decision tree and find the female’s optimal strategy.
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Markov Decision Processes

3.1 State-dependent Decision Processes

In this chapter, we add an extra layer of complexity to our models of decision
making by introducing the idea of a state-dependent decision process. The
processes we will consider can either be deterministic or stochastic. To begin
with, we will assume that the process must terminate by an a priori fixed
time T (a “finite horizon” model). In principle, decisions can be made at times
t = 0, 1, 2, . . . , T − 1, although the actual number of decisions made may be
fewer than T if the process terminates early as a consequence of the actions
taken. Models that have no a priori restriction on the number of decisions to
be taken (“infinite horizon” models) will be considered in the next chapter.

We consider individuals to have some state variable x taken from a set
X that may be either discrete or continuous. This state could represent an
individual’s wealth, number of offspring, need for food, etc. We allow individuals
to condition their behaviour on the state they find themselves in at any given
time, and we will denote the set of actions available in state x at time t by
A(x, t). The action taken causes a transition to a new state: that is, at time
t, the action at induces a transition xt → xt+1. Thus we are considering a
deterministic process that consists of the sequence of pairs (xt, at) for t =
0, 1, 2, . . ..
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Definition 3.1

An alternating sequence of states and actions x0, a0, x1, a1, x2, . . . is called the
history of a process. We will denote by ht = (x0, a0, x1, a1, . . . , xt) the history
of the process up to time t.

How are decisions to be made? In its simplest form, a pure strategy s could
just be taken as a sequence of actions a0, a1, a2, . . .. More generally, we can allow
strategies to specify a choice of action a(x, t) for each state and each decision
time. Starting from x0, this strategy generates a history x0, a0, x1, a1, x2, . . .

where we have written at = a(xt, t). We will assume that this history generates
a sequence of rewards rt(xt, at) for t = 1, 2, . . . , T − 1. That is, an individual
in state xt at time t who uses action at will receive an immediate reward
of rt(xt, at). For finite processes, we also include an optional terminal reward
rT (xT ) that is received at the end of the process. The total reward obtained
starting in state x if an individual follows a strategy s is given by

π(x|s) =
T−1∑
t=0

rt(xt, at) + rT (xT ).

In some problems, the process may start in a known state x0. In which case,
we only have to consider one payoff, namely π(x0|s).

We have so far assumed that the state transition caused by choosing action a

is deterministic. We will now consider stochastic decision processes in which the
state at time t is a random variables, which we denote by Xt. The probabilities
for the state transition xt → xt+1 can, in general, depend on the whole history
of the process as well as the action chosen at

P (Xt+1 = xt+1) = p(xt+1|ht, at)

with ∑
xt+1∈X

p(xt+1|ht, at) = 1.

for all times, histories and actions. We should also consider randomising strate-
gies σ such that the action chosen is also a random variable At. The total reward
obtained starting in state x if an individual follows a strategy σ is given by

π(x|σ) = E

[
T−1∑
t=0

rt(Xt, At) + rT (XT )

]

=
T−1∑
t=0

E [rt(Xt, At)] + E [rT (XT )] .
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We will use the notation π∗(x) for the payoff obtained by following the optimal
strategy starting from state x. That is,

π∗(x) ≡ π(x|σ∗) .

An individual’s aim is to maximise this expected total reward.

3.2 Markov Decision Processes

There is a special class of decision processes in which the state transition prob-
abilities depend only upon the current state and not on how that state was
reached.

Definition 3.2

A decision process is said to have the Markov Property if p(xt+1|ht, at) =
p(xt+1|xt, at).

Definition 3.3

A decision process with the Markov property is called a Markov Decision Pro-
cess (MDP) (named in honour of the Russian mathematician Andrei Andree-
vich Markov).

From now on, we will consider only MDPs and not more general decision
processes. Clearly, it is not an easy task to compute the payoff for a general
strategy and hence find an optimal one. But for finite horizon MDPs the method
of backward induction (the Principle of Optimality – see Section 2.4) comes to
our rescue.

We begin our discussion of Markov Decision Processes by considering a
simple example. The example is deterministic and can be solved using the
Lagrangian method for constrained optimisation (see Appendix A). We will
show that the same optimal strategy can also be found by backward induction
(dynamic programming).

Example 3.4

Consider an investor making a sequence of decisions about how much of their
current capital to consume (i.e., spend on goods) and how much to invest.
That is, at time t the investor’s capital xt is reduced by an amount ct and the
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remainder is invested at an interest rate r − 1 to produce an amount of capital
r(xt − ct) at the next decision time. For simplicity, let us restrict ourselves to
the two-period problem of an investor who starts with known capital x0 and
makes decisions about consumption at t = 0 and t = 1. We assume that the
investor only gains immediate benefit from consumption (the only reason for
investment is to obtain the benefit of consumption in the future). We shall also
assume that the investor’s utility for consumption is logarithmic, i.e. π(c0, c1) =
ln(c0) + ln(c1).

First we solve this problem using the Lagrangian method. The state equa-
tion is x1 = r(x0 − c0) and we must have c1 ≤ x1 so the constraint equation is
c1 ≤ r(x0 −c0). Therefore, the Lagrangian is L(c0, c1) = ln(c0)+ln(c1)−λ(c1 +
rc0 − rx0) and we must simultaneously satisfy the following three equations.

1
c∗
0

− λr = 0

1
c∗
1

− λ = 0

c∗
1 + rc∗

0 − rx0 = 0

Solving the first pair of equations provides the following relation between the
consumptions during the two periods: c∗

1 = rc∗
0. Substituting this back into the

constraint equation gives the optimal strategy as

c∗
0 =

1
2
x0 and c∗

1 =
1
2
rx0

To solve the same problem again by the method of backward induction
we proceed as follows. At t = 1 the payoff is ln(c1) subject to the constraint
c1 ≤ x1 where x1 is the amount of capital that the investor has at this time.
The optimal decision is, therefore, c∗

1(x1) = x1. Note that we don’t know the
value of x1 because it depends on the behaviour at t = 0 through the state
equation x1 = r(x0 − c0). So what we have is an optimal decision for any value
of x1. At t = 0, the investor’s problem is to maximise the total payoff assuming
optimal behaviour at t = 1, i.e., find

c∗
0 ∈ argmax

c0∈[0,x0]
(ln(c0) + ln(x1(c0))) . (3.1)

Differentiating the payoff and setting the result to zero gives x1 − rc∗
0 = 0.

Substituting for x1 using the state equation gives c∗
0 = 1

2x0. (We could write this
as c∗

0(x0) but because x0 is assumed to be known, we can drop this dependence.)
Thus the optimal strategy can be written as s∗(x, t) = (c∗

0, c
∗
1(x1)) with

c∗
0 =

1
2
x0 and c∗

1(x1) = x1.
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Although this solution looks slightly different from the one found by the La-
grangian method it is, in fact, identical because

c∗
1(x1) = r(x0 − c∗

0)

=
1
2
rx0.

Exercise 3.1

Consider a three-period consumption and investment model with loga-
rithmic utility for consumption. Apart from the change to three periods,
make the same assumptions that were used in Example 3.4.

(a) Find the optimal consumption strategy using the Lagrangian method.
[Hint. We can rewrite the constraint for the two-period problem in the
form of total consumption discounted to initial (period 0) value

c0 +
c1

r
≤ x0.

You may find it useful to write the constraint for the current problem in
this way.]

(b) Solve the model by backward induction and show that the solution
is identical to the one obtained using the Lagrangian method.

Backward induction in a state-dependent problem is often called “dynamic
programming”. Equation 3.1 is an example of a dynamic programming equation,
and it is just the second equation from Theorem 2.21 written in a way that is
suitable for state-dependent decision processes. As a prelude to the introduction
of stochastic dynamic programming we will now develop a general form for the
dynamic programming equation in the deterministic case.

The basis of dynamic programming is answering the following question.
What is the best action now, assuming optimal behaviour at all potential future
decision points? The word “potential” is included to indicate that we have to
know what would be done in all future states, including those that may not
be reached once the optimal decision has been found and taken. Without that
information, we could not decide what is optimal. So, let us define π∗

t (x) to be
the future payoff for starting in state x at time t providing we behave optimally
for times t, t + 1, t + 2, . . . , T − 1. That is,

π∗
t (x) =

T−1∑
τ=t

rt(x∗
τ , a∗

τ ) + rT (x∗
T ) (3.2)

where xt = x and the sequence of states (x∗
τ )τ=t+1,...,T is generated by following

the sequence of optimal actions (a∗
τ )τ=t,...,T−1. We can then write the general
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form of the deterministic dynamic programming equation as

π∗
t (x) = max

a∈A(x)

[
rt(x, a) + π∗

t+1 (xt+1(a))
]

(3.3)

where xt+1(a) is the state reached from x by using an action a taken from the
set of actions available in state x, A(x). The backward induction process is
started by setting

π∗
T (x) = rT (xT ) ∀x ∈ X

and the payoff achieved by the optimal strategy s∗ for the starting state(s) of
interest x is given by π(x|s∗) = π∗

0(x).

Exercise 3.2

Relate the various elements of Example 3.4 to the elements in the general
description of dynamic programming.

3.3 Stochastic Markov Decision Processes

In a deterministic MDP, the choice of action in a particular state uniquely
determines the state of the process at the next decision point. (In some appli-
cations, therefore, the actions are conveniently described in terms of choosing
the next state.) For the rest of this chapter, we will consider decision processes
in which the transitions between states may be uncertain. We will assume that
these transition probabilities are time-independent: given that an individual is
in state x at time t and chooses action a, the probability that they find them-
selves in state x′ at time t + 1 is p(x′|x, a) ≤ 1, ∀x′ ∈ X. Although we have
made this “stationarity” assumption, the optimal strategy may nevertheless be
time-dependent. We have seen this already in Example 3.4 – a deterministic
MDP is, after all, just a stochastic MDP where all the transition probabilities
happen to be either 0 or 1. That example also clearly illustrates the fact that
the time dependence can arise from the finiteness of the problem, because we
have a zero terminal reward in every state.

Under certain conditions, a stochastic MDP has a simple diagrammatic
representation. These conditions are as follows: the number of states is small;
the number of actions available in each state is small and independent of time
(at least for t < T ); and the rewards obtained for each state-action pair are
independent of time (rt(x, a) = r(x, a) for t < T ). This diagrammatic repre-
sentation is best introduced by means of an example.
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Figure 3.1 Diagrammatic representation of the stochastic MDP described in
Example 3.5.

Example 3.5

The set of states is X = {x, y, z}. In states x and y, we can choose an action
from the sets A(x) = A(y) = {a, b}, and in state z we have the single-choice
set A(z) = {b}.1 If we choose action a in state x, then we receive a reward
r(x, a) = 2 and move to state y with probability 1. If we choose action b

in state x, then we receive a reward r(x, b) = 3 and remain in state x with
probability 1. In state y, if we choose a, then we receive r(y, a) = 5 and move
to state x with probability 1, whereas choosing b gives us r(y, b) = 10 and
we transfer to state z with 50% probability and remain in state y with 50%
probability. If we find ourselves in state z, then we can only choose b, which
gives us r(z, b) = 0 and we remain in state z with probability 1.

This lengthy description can be presented much more concisely by means
of the diagram shown in Figure 3.1. In the case of a finite horizon problem this
diagrammatic description must be supplemented by specifying the horizon T

and the final rewards rT (x), ∀x ∈ X.

Remark 3.6

Note that in Figure 3.1 the state z is absorbing : if the process ever arrives in
state z it stays there. Furthermore, the payoff received in state z is zero. The
existence of a zero-payoff, absorbing state is quite common in MDP models.
1 A choice without an alternative is often known as Hobson’s choice, though the

phrase is also applied to “take it or leave it” choices, which would be a two-
element set. The term is said to originate from Thomas Hobson (ca. 1544–1631)
who owned a livery stable at Cambridge, England. He allegedly required every
customer to take either the horse nearest the stable door or none at all.
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For example, in a biological context, a transition to state z could represent the
death of the organism.

To solve problems such as that given in Example 3.5, we will need a stochas-
tic version of the dynamic programming equation (Equation 3.3). Fortunately,
this is easy to write down. Define πt(x|a) to be the future payoff for choosing ac-
tion a in state x at time t and behaving optimally for times t+1, t+2, . . . , T −1.
That is,

πt(x|a) = r(x, a) +
∑

x′∈X

p(x′|x, a) π∗
t+1 (x′) .

Now define π∗
t (x) to be the future payoff for starting in state x at time t

providing we behave optimally for times t, t + 1, t + 2, . . . , T − 1. (As before,
π∗

t (x) is given by Equation 3.2.) The stochastic dynamic programming equation
is then

π∗
t (x) = max

a∈A
πt(a|x) (3.4)

= max
a∈A

[
rt(x, a) +

∑
x′∈X

p(x′|x, a) π∗
t+1 (x′)

]
. (3.5)

If two actions, say a and b, both lead to the maximum future payoff π∗(x),
then either can be chosen. (In fact, the combination “a with probability p and
b with probability 1 − p” also gives the same maximum future payoff, but in
this case the randomisation is best regarded as a way of breaking the tie rather
than as a necessity. See Theorems 1.32 and 2.18.)

Except in very rare cases, stochastic MDPs are not solved for arbitrary
parameter values. Take the problem shown in Figure 3.1, for example. If all the
rewards, transition probabilities, and the horizon T were left unspecified, there
would be 15 parameters to deal with. Even if an analytic solution could be
found (which would be difficult), understanding the way a solution changes as
all these parameters are varied is not really feasible. Instead, the usual approach
is to fix all of the parameter values and find a solution numerically. Often a
computer program is employed; but if the number of states, the number of
actions and the time horizon are all small it is possible to do this “by hand”.

Example 3.7

Consider the MDP shown in Figure 3.1. We will additionally assume that
decisions are to be made at times t = 0, 1 and 2 (i.e., T = 3) and that
r3(x) = r3(y) = r3(z) = 0.

The first thing to note is that in state z, there is no choice to be made:
a∗(z, t) = b and π∗

t (z) = 0, ∀t. The absence of a terminal reward rT (x) = 0
also gives us π∗

3(x) = π∗
3(y) = 0.
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At time t = 2 in state x, we have

π2(x|a) = 2 + π∗
3(y) = 2

π2(x|b) = 3 + π∗
3(x) = 3.

So a∗(x, 2) = b and π∗
2(x) = 3. In state y, we have

π2(y|a) = 5 + π∗
3(x) = 5

π2(y|b) = 10 +
1
2
π∗

3(y) +
1
2
π∗

3(z) = 10.

So a∗(y, 2) = b and π∗
2(y) = 10.

At time t = 1 in state x, we have

π1(x|a) = 2 + π∗
2(y) = 12

π1(x|b) = 3 + π∗
2(x) = 6.

So a∗(x, 1) = a and π∗
1(x) = 12. In state y, we have

π1(y|a) = 5 + π∗
2(x) = 8

π1(y|b) = 10 +
1
2
π∗

2(y) +
1
2
π∗

2(z) = 15.

So a∗(y, 2) = b and π∗
1(y) = 15.

At time t = 0 in state x, we have

π0(x|a) = 2 + π∗
1(y) = 17

π0(x|b) = 3 + π∗
1(x) = 15.

So a∗(x, 0) = a and π∗
0(x) = 17. In state y, we have

π0(y|a) = 5 + π∗
1(x) = 17

π0(y|b) = 10 +
1
2
π∗

1(y) +
1
2
π∗

1(z) = 17.5.

So a∗(y, 2) = b and π∗
0(y) = 17.5.

The solution of the problem is, therefore, the optimal strategy2

s∗ =

⎛
⎝

t = 0 t = 1 t = 2
x a a b

y b b b

z b b b

⎞
⎠ (3.6)

and a payoff of 17 if the process starts in state x or a payoff or 17.5 if the
process starts in state y.
2 At least, it is the optimal backward induction strategy. We will see later that it is,

in fact, optimal in the sense that it is the best of all possible strategies.
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Exercise 3.3

Use the strategy in Equation 3.6 to follow the decision process forward
in time (i.e., starting at t = 0 then moving to t = 1, etc.). Check that
the strategy, indeed, produces the expected payoffs π∗

0(x) and π∗
0(y) that

were found by backward induction.

3.4 Optimal Strategies for Finite Processes

We now turn to the question of whether the pure strategy found by dynamic
programming is truly optimal. It turns out that the strategy found by dynamic
programming is still optimal when the class of possible strategies is enlarged
to include more general types of strategy – while other strategies may do as
well as the dynamic programming strategy, none can do better. Let us first
consider the possibility of randomising strategies that depend only upon the
current state.

Definition 3.8

Denote the set of actions available in state x at time t by A(x, t). A general
Markov strategy β specifies using action a ∈ A(x, t) with probability f(a|x, t)
where ∑

a∈A(x,t)

f(a|x, t) = 1 .

The set of all Markov strategies will be denoted by B.

Theorem 3.9

Consider a finite-horizon Markov Decision Process and let s∗ be a strategy
found by dynamic programming. Then s∗ is an optimal Markov strategy for
that process.

Proof

The proof proceeds by induction on t (backward in time, naturally). Let πt(x|β)
be the expected future payoff at time t for using a strategy β given that the
decision process is in state x at that time. Assume that the backward induction
strategy is optimal for some time t + 1:

πt+1(x|β) ≤ πt+1(x|s∗) ≡ π∗
t+1(x) ∀x ∈ X and ∀β ∈ B. (3.7)
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Then (for arbitrary β)

πt(x|β) =
∑

a∈A(x,t)

f(a|x, t)

[
r(x, a) +

∑
x′∈X

p(x′|x, a)πt+1(x′|β)

]

≤
∑

a∈A(x,t)

f(a|x, t)

[
r(x, a) +

∑
x′∈X

p(x′|x, a)π∗
t+1(x

′)

]

≤
⎛
⎝ ∑

a∈A(x,t)

f(a|x, t)

⎞
⎠π∗

t (x)

= π∗
t (x)

where the first inequality follows from the inductive assumption (Equation 3.7)
and the second follows from the stochastic dynamic programming equation.
Because

πT (x|β) = rT (x) = π∗
T (x) ∀x ∈ X.

The inequality πt(x|β) ≤ π∗
t (x) holds for all x and t. In particular, the opti-

mality condition π0(x|β) ≤ π∗
0(x) ∀x ∈ X holds.

Having established that the strategy found by dynamic programming is
an optimal Markov strategy, we now consider whether enlarging the class of
available strategies leads to a better strategy.

Definition 3.10

Denote the set of actions available in state x at time t by A(x, t). For each
history ht(x) that leads to state x at time t, a behavioural strategy specifies
using action a ∈ A(x, t) with probability φ(a|ht(x), t), where∑

a∈A(x,t)

φ(a|ht(x), t) = 1.

Markov strategies are a subset of the set of behavioural strategies – the
subset where decisions are conditioned only on the part of the history that
specifies the current state.

Theorem 3.11

No behavioural strategy gives a higher payoff than the strategy found by dy-
namic programming.
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Proof

The proof proceeds by showing that for every general behavioural strategy,
there is a Markov strategy that gives the same expected payoff. Consequently,
no behavioural strategy can do better than every Markov strategy. Because
dynamic programming strategies are optimal Markov strategies, the desired
result follows. See Filar & Vrieze (1997) for details.

Exercise 3.4

Consider the MDP shown below with T = 3 and terminal rewards
r3(x) = r3(y) = r3(z) = 0. Find the optimal strategy.
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3.5 Infinite-horizon Markov Decision Processes

We now consider processes in which there is no a priori termination: the process
continues forever, unless some decision is taken that has the consequence of
ending the process.

When considering an infinite-horizon process, we might consider the payoff
when starting in state x as being given by limit as T → ∞ of the corresponding
payoff for a finite-horizon process.

π(x|σ) = E

[ ∞∑
t=0

rt(Xt, At)

]

=
∞∑

t=0

E [rt(Xt, At)] .

Obviously, because there is no a priori termination of the process, there are no
terminal rewards. The first question is: does the limit as T → ∞ exist for all
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possible strategies?

Example 3.12

Consider a very simple process with only one state, x. In that state, the action
set is A = {a1, a2} and r(x, a1) = 1 and r(x, a2) = 2, independent of time.
Whichever action is chosen the process (necessarily) returns to x. Suppose we
have two strategies: s1 = “always choose a1” and s2 = “always choose a2”.
Clearly, with the payoff defined as above, we have

π(x|s1) = π(x|s2) = ∞
so there is apparently no way of choosing the better strategy.

Instead of considering constant rewards, let us introduce the simple time
dependence: rt(x, a) = δtr(x, a). Provided the discount factor δ is such that
0 ≤ δ < 1 the payoff

π(x|σ) = E

∞∑
t=0

[
δtr(Xt, At)

]
(3.8)

is finite for all strategies σ and all initial states x.

Exercise 3.5

Consider the process described in Example 3.12. Find the payoffs for the
strategies s1 and s2 if rewards are discounted by an amount 0 ≤ δ < 1.

Why should discounting be introduced into a model? Apart from being a
mathematical “trick” to ensure the finiteness of all payoffs as already discussed,
there are two reasons. First, if the rewards are monetary, the discount factor δ

models a (constant) depreciation of value due to inflation: one unit of currency
next year will be worth less (i.e., buy less) than one unit of currency today.
Second, the discount factor can be viewed as the probability that the decision
process continues for at least one more time step. That is, with probability
1 − δ some catastrophe occurs (independently of any strategy adopted) that
terminates the decision process. In a biological context, 1− δ is the probability
that the organism dies as a result of factors not being explicitly considered in
the problem.
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3.6 Optimal Strategies for Infinite Processes

The dynamic programming equation (including discount factor) for a finite
horizon problem is

π∗
t (x) = max

a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗
t+1(x

′)

]
.

An infinite horizon model has the property that after a decision has been made
an individual will find themselves facing the same infinite horizon decision
problem as before, albeit starting in a different state. Therefore, it seems rea-
sonable to guess that the infinite-horizon dynamic programming equation can
be found by setting π∗

t (x) = π∗
t+1(x) = π∗(x) ∀x ∈ X in the equation above.

The following theorem shows that this guess is correct.

Theorem 3.13

The optimal payoffs satisfy the dynamic programming equation

π∗(x) = max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]
. (3.9)

Proof

Let σ be an arbitrary strategy that chooses action a at t = 0 with probability
f(a). Then

π(x|σ) =
∑

a∈A(x)

f(a)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π1(x′|σ)

]

where π1(x′|σ) is the payoff that σ achieves starting from state x′ at time t = 1.
Because π1(x′|σ) ≤ π∗(x′) we have

π(x|σ) ≤
∑

a∈A(x)

f(a)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]

≤
∑

a∈A(x)

f(a) max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]

= max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]
.
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Because the inequality is true for arbitrary σ, it holds for the optimal strategy.
Hence

π∗(x) ≡ π(x|σ∗)

≤ max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]
.

Now, in order to show that the opposite inequality also holds, let

â ∈ argmax
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]

and let σ(â) be the strategy that chooses â at t = 0 and then acts optimally
for the process starting at time t = 1. Then

π∗(x) ≥ π(x|σ(â))

= r(x, â) + δ
∑

x′∈X

p(x′|x, â)π∗(x′)

= max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]

Combining the two inequalities completes the proof.

Now we show that the optimal payoff is the unique solution of Equation 3.9.

Theorem 3.14

The payoff π∗(x) is the unique solution of Equation 3.9.

Proof

Suppose π1(x) and π2(x) both satisfy Equation 3.9. Then, setting

â(x) ∈ argmax
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π1(x′)

]

we have for each state x

π1(x) − π2(x) = δ max
a∈A(x)

∑
x′∈X

p(x′|x, a) [π1(x′) − π2(x′)]

= δ
∑

x′∈X

p(x′|x, â(x)) [π1(x′) − π2(x′)]
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≤ δ
∑

x′∈X

p(x′|x, â(x)) |π1(x′) − π2(x′)|

≤ δ
∑

x′∈X

p(x′|x, â(x)) max
x′∈X

|π1(x′) − π2(x′)|

= δ max
x′∈X

|π1(x′) − π2(x′)| .

Let
xm ∈ argmax

x′∈X
|π1(x′) − π2(x′)|

then we have
π1(xm) − π2(xm) ≤ δ |π1(xm) − π2(xm)| .

Reversing the roles of π1 and π2 gives

π2(xm) − π1(xm) ≤ δ |π2(xm) − π1(xm)| .

Combining the two inequalities yields

|π1(xm) − π2(xm)| ≤ δ |π1(xm) − π2(xm)|
and, because δ < 1, we must have

|π1(xm) − π2(xm)| = max
x′∈X

|π1(x′) − π2(x′)|
= 0 .

Hence
|π1(x) − π2(x)| = 0 ∀x ∈ X .

Now that we know that the optimal strategy gives the payoff which uniquely
satisfies Equation 3.9 we can use this fact to prove that a stationary and non-
randomising strategy is optimal.

Definition 3.15

Let s be a non-randomising and stationary strategy that selects action a(x) ∈
A(x) every time the process is in state x. Let g(x) : X → R be a bounded
function (i.e., g(x) < ∞ ∀x ∈ X). Define an operator Ts by

(Tsg)(x) = r(x, a(x)) + δ
∑

x′∈X

p(x′|x, a(x))g(x′).

Suppose we let Ts act on g(x) and then let Ts act on the result of the first
operation. We will denote the combined operation by (T 2

s g)(x). Similarly, the
n-fold action of Ts will be denoted Tn

s .
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Lemma 3.16

For any bounded, real function g(x), limn→∞(Tn
s g)(x) = π(x|s).

Proof

(Tn
s g)(x) = r(x, a(x)) + δ

∑
x′∈X

p(x′|x, a(x))(Tn−1
s g)(x′)

= r(x, a(x)) + δ
∑

x′∈X

p(x′|x, a(x))r(x′, a(x′))

+δ2
∑

x′′∈X

p(x′′|x′, a(x′))(Tn−2
s g)(x′′)

= E[r(X0, a0)|s] + E[r(X1, a1)|s]
+δ2

∑
x′′∈X

p(x′′|x′, a(x′))(Tn−2
s g)(x′′)

Continuing the expansion and because δ < 1 we have

lim
n→∞(Tn

s g)(x) =
∞∑

t=0

E[r(Xt, at)]

≡ π(x|s).

Theorem 3.17

Let

a∗(x) ∈ argmax
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π∗(x′)

]
∀x ∈ X (3.10)

and let s∗ be the non-randomising and stationary strategy that selects a∗(x)
every time the process is in state x. Then s∗ is optimal.

Proof

By the definition of s∗ and using the dynamic programming equation we have

(Ts∗π∗)(x) = π∗(x)

which implies that
(Tn

s∗π∗)(x) = π∗(x) ∀n.
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Figure 3.2 Diagrammatic representation of the Markov decision process for
Exercise 3.6.

Now, letting n → ∞ and using the result of Lemma 3.16, we have

π(x|s∗) = lim
n→∞(Tn

s∗π∗)(x)

= π∗(x).

If we can guess the optimal strategy, then all we have to do is check that
the actions a(x) specified by that strategy satisfy Equation 3.10.

Exercise 3.6

Consider the MDP shown in Figure 3.2. Assuming that this as a dis-
counted infinite-horizon problem with δ = 1

2 , show that the optimal
strategy is a∗(x) = a and a∗(y) = a. (Because being in state z gives the
highest reward, it seems worth trying a strategy that eventually puts the
process in state z starting from any state.) [Hint: solve the dynamic pro-
gramming equation to find the payoffs for following the specified strategy.
Then show that changing the action chosen in any state gives a lower
payoff.]

3.7 Policy Improvement

The dynamic programming equation suggests the following iterative procedure
for finding an optimal strategy and its associated payoffs in an infinite-horizon
MDP. This procedure is often called Policy Improvement because strategies are
called “policies” by people who study MDPs but not games.
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1. Start by picking an arbitrary strategy s that specifies using action a(x) in
state x.

2. Solve the set of simultaneous equations

π(x|s) = r(x, a) + δ
∑

x′∈X

p(x′|x, a)π(x′|s)

to find the payoffs for using that strategy.

3. Find an improved strategy by solving

â(x) ∈ argmax
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π(x′|s)
]

.

4. Repeat steps 2 and 3 until the strategy doesn’t change.

The following theorem proves that this algorithm works.

Theorem 3.18

Suppose we have some stationary pure strategy s that yields payoffs π(x|s).
Let

â(x) ∈ argmax
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π(x′|s)
]

∀x ∈ X

and let ŝ be the (non-randomising and stationary) strategy that selects â(x)
every time the process is in state x. Then ŝ is either a better strategy than s

or both strategies are optimal.

Proof

Consider the operator Tŝ associated with the new strategy ŝ acting on an
arbitrary bounded function g(x):

(Tŝg)(x) = r(x, â(x)) + δ
∑

x′∈X

p(x′|x, â(x))g(x′).

From the definition of â(x), we have

Tŝπ(x|s) ≥ π(x|s) ∀x ∈ X.

Acting repeatedly on this inequality with Tŝ gives

Tn
ŝ π(x|s) ≥ Tn−1

ŝ π(x|s) ≥ · · · ≥ π(x|s).
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Figure 3.3 Diagrammatic representation of the Markov decision process
solved in Example 3.19.

Now, letting n → ∞ and using the result of Lemma 3.16, we have

π(x|ŝ) ≥ π(x|s) ∀x ∈ X.

So we have shown that the new strategy ŝ is at least as good as the old one.
Next we will show that if the strategy ŝ is not strictly better than s in at least
one state, then both strategies are optimal.

We have just established that

π(x|ŝ) ≥ Tŝπ(x|s) ≥ π(x|s).
Now suppose that π(x|ŝ) = π(x|s) ∀x ∈ X. This implies that

π(x|ŝ) = Tŝπ(x|s)
= Tŝπ(x|ŝ)

= max
a∈A(x)

[
r(x, a) + δ

∑
x′∈X

p(x′|x, a)π(x′|ŝ)
]

.

So π(x|ŝ) satisfies the optimality equation. By the uniqueness of the solution
to that equation (Theorem 3.14) we must have

π(x|ŝ) = π∗(x) = π(x|s)
which proves that s and ŝ are both optimal strategies.

Example 3.19

Consider the problem shown in Figure 3.2 with discount factor δ = 9
10 . Let us

begin with the strategy s0 = {a(x) = b, a(y) = b}.
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Iteration 1: The payoffs for s0 are found from

π(x|s0) = 2 + δπ(x|s0) and

π(y|s0) = 5 +
1
2
δπ(y|s0)

which give π(x|s0) = 20 and π(y|s0) = 100
11 .

Then the payoffs for changing the action taken in each state to a are

r(x, a) + δπ(y|s0) = 1 +
9
10

100
11

=
101
11

and

r(y, a) +
1
2
δπ(x|s0) = 3 +

9
20

× 20 = 12

Because 101
11 < 20 and 12 > 100

11 , we can conclude that â(x) = b and â(y) = a.
Let us call this new strategy s1.

Iteration 2: The payoffs for s1 are found from

π(x|s1) = 2 + δπ(x|s1) and

π(y|s1) = 3 +
1
2
δπ(x|s1)

which give π(x|s1) = 20 and π(y|s1) = 12.
Then the payoffs for changing the action taken in each state are

r(x, a) + δπ(y|s1) = 1 +
9
10

× 12 =
118
10

and

r(y, b) +
1
2
δπ(x|s1) = 5 +

9
20

× 12 =
104
10

from which we can conclude that changing strategy does not yield a better
payoff. Therefore

s∗ = {a(x) = b, a(y) = a}
is an optimal strategy.

The optimal strategy that we have found is one that seems intuitively rea-
sonable for δ → 1 because it reduces the probability that the process will end
up in state z producing an “infinite” stream of zero rewards.

Exercise 3.7

Find the optimal strategy for the previous exercise by starting with
s = {a(x) = a, a(y) = a} or s = {a(x) = a, a(y) = b}.
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Interaction



4
Static Games

4.1 Interactive Decision Problems

An interactive decision problem involves two or more individuals making a
decision in a situation where the payoff to each individual depends (at least
in principle) on what every individual decides. Borrowing some terminology
from recreational games, which form only a subset of examples of interactive
decision problems, all such problems are termed “games” and the individuals
making the decisions are called “players”. However, recreational games may
have restrictive features that are not present in general games: for example, it
is not necessarily true that one player “wins” only if the other “loses”. Games
that have winners and losers in this sense are called zero-sum games; these are
considered in Section 4.7.3.

Definition 4.1

A static game is one in which a single decision is made by each player, and
each player has no knowledge of the decision made by the other players before
making their own decision.

Sometimes such games are referred to as simultaneous decision games because
any actual order in which the decisions are made is irrelevant. The most famous
example of an interactive decision problem is probably the Prisoners’ Dilemma.
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Example 4.2 (Prisoners’ Dilemma)

Two crooks are being questioned by the police in connection with a serious
crime. They are held in separate cells and cannot talk to each other. Without
a confession, the police only have enough evidence to convict the two crooks
on a lesser charge. The police make the following offer to both prisoners (in
separate rooms so that no communication between them is possible): if one
confesses that both committed the serious crime, then the confessor will be set
free and the other will spend 5 years in jail (4 for the crime and 1 for obstructing
justice); if both confess, then they will each get the 4-year sentence; if neither
confess, then they will each spend 2 years in jail for the minor offense.

We can describe this game more succinctly using the following table of
payoffs, where the possible courses of action open to each prisoner are (i) Q =
“Keep Quiet” or (ii) S = “Squeal”. The payoffs are given in terms of years of
freedom lost. The payoffs for the first prisoner (P1) are given first in each pair
of entries in the table; those for the other prisoner (P2) come second.

P2

P1

Q S

Q −2,−2 −5, 0
S 0,−5 −4,−4

What should each prisoner do? First, consider P1. If P2 keeps quiet, then
they should squeal because that leads to 0 years in jail rather than 2 years. On
the other hand, if P2 squeals, then they should also squeal because that leads
to 4 years in jail rather than 5. So whatever P2 does, P1 is better off if they
squeal. Similarly, P2 is better off squealing no matter what P1 does. So both
prisoners should squeal.

The interest in this game arises from the following observation. Both players,
by following their individual self-interest, end up worse off than if they had
kept quiet. This apparently paradoxical result encapsulates a major difference
between non-interactive and interactive decision models (games). It might be
argued that they should have had an agreement before being arrested that they
wouldn’t squeal (“honour among thieves”). However, each prisoner has no way
of ensuring that the other follows this agreement. Of course, a prisoner could
exact revenge in the future on a squealer – but that is another game (with
different payoffs).

Definition 4.3

A solution is said to be Pareto optimal (after the Italian economist Vilfredo
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Pareto) if no player’s payoff can be increased without decreasing the payoff to
another player. Such solutions are also termed socially efficient or just efficient.

The Prisoners’ Dilemma is often used as the starting point for a discussion
of the Social Contract (i.e., how societies form and how they are sustained)
because the socially inefficient nature of its solution is reminiscent of many
features of society. For example, consider paying taxes. Whatever anyone else
does, you are better off (more wealthy) if you do not pay your taxes. However,
if no-one pays any taxes (because, like you, they are following their own self-
interest), then there is no money to provide community services and everyone
is worse off than if everyone had paid their taxes.

Example 4.4 (Standardised Prisoners’ Dilemma)

Any game of the form

P2

P1

C D

C r, r s, t

D t, s p, p

with t > r > p > s is called a Prisoners’ Dilemma.1 A particularly common
version has payoffs given by t = 5, r = 3, p = 1, and s = 0. The available
courses of action are generically called “cooperation” (C) and “defection” (D).2

Analysis of this game tells us that we should expect both players to defect – a
solution that is socially inefficient.

4.2 Describing Static Games

To describe a static game, you need to specify:

1. the set of players, indexed by i ∈ {1, 2, . . .};

2. a pure strategy set, Si, for each player;
1 These letters are conventionally used to represent (t) the payoff for yielding to

temptation, (r) the reward for cooperating, (p) the punishment for defection, and
(s) the payoff for being a sucker and not retaliating to defection.

2 In the original version, the two prisoners are playing a game against each other, not
against the police. So keeping quiet can been viewed as cooperating and squealing
can be seen as defecting.
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3. payoffs for each player for every possible combination of pure strategies
used by all players.

To keep the notation simple, we will concentrate on two-player games for most
of this book. Games with more than two players are briefly considered in Sec-
tion 4.8. In the two-player case, it is conventional to put the strategy of player
1 first so that the payoffs to player i are written

πi(s1, s2) ∀s1 ∈ S1 and ∀s2 ∈ S2 .

Definition 4.5

A tabular description of a game, using pure strategies, is called the normal
form or strategic form of a game.

Remark 4.6

It is important to note that the strategic form uses pure strategies to describe
a game. For a static game, there is no real distinction between pure strategies
and actions. However, the distinction will become important when we consider
dynamic games. (See the discussion in Section 2.3 for the importance in non-
interactive decision problems.)

Example 4.7

The strategic form of the Prisoners’ Dilemma is the table shown in Example 4.2.
The pure strategy sets are S1 = S2 = {Q, S} and the payoffs are given in the
table, e.g.,

π1(Q, Q) = −2 π1(Q, S) = −5 π2(Q, S) = 0 .

Definition 4.8

A mixed strategy for player i gives the probabilities that action s ∈ Si will be
played. A mixed strategy will be denoted σi and the set of all possible mixed
strategies for player i will be denoted by Σi.

Remark 4.9

If a player has a set of strategies S = {sa, sb, sc, . . .} then a mixed strategy can
be represented as a vector of probabilities:

σ = (p(sa), p(sb), p(sc), . . .) .
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A pure strategy can then be represented as a vector where all the entries are
zero except one. For example,

sb = (0, 1, 0, . . .) .

Mixed strategies can, therefore, be represented as linear combinations of pure
strategies:

σ =
∑
s∈S

p(s)s .

Usually, we will denote the probability of using pure strategy s by p(s) for
player 1 and and q(s) for player 2. The payoffs for mixed strategies are then
given by

πi(σ1, σ2) =
∑

s1∈S1

∑
s2∈S2

p(s1)q(s2)πi(s1, s2) .

As usual, the payoffs are assumed to be a representation of the preferences of
rational individuals or of their biological fitness, so that an individual’s aim is
to maximise their payoff (see Sections 1.3 and 1.4). As we have already seen
in Example 4.2, this “maximisation” has to take into account the behaviour of
the other player and, as a result, the payoff achieved by any player may not be
the maximum of the available payoffs.

Notation 4.10

A solution of a game is a (not necessarily unique) pair of strategies that a
rational pair of players might use. Solutions will be denoted by enclosing a
strategy pair within brackets, such as (A, B) or (σ1, σ2), where we will put the
strategy adopted by player 1 first. For example, the solution of the Prisoners’
Dilemma can be represented by (S, S).

Exercise 4.1

In Puccini’s opera Tosca, Tosca’s lover has been condemned to death.
The police chief, Scarpia, offers to fake the execution if Tosca will sleep
with him. The bargain is struck. However, in order to keep her honour,
Tosca stabs and kills Scarpia. Unfortunately, Scarpia has also reneged on
the deal and Tosca’s lover has been executed. Construct a game theoretic
representation of this operatic plot.
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4.3 Solving Games Using Dominance

Because we solved the Prisoners’ Dilemma in an intuitively simple manner by
observing that the strategy of “Squealing” was always better than “Keeping
Quiet”, it seems reasonable to attempt to solve games by eliminating poor
strategies for each player.

Definition 4.11

A strategy for player 1, σ1, is strictly dominated by σ′
1 if

π1(σ′
1, σ2) > π1(σ1, σ2) ∀σ2 ∈ Σ2 .

That is, whatever player 2 does, player 1 is always better off using σ′
1 rather

than σ1. Similarly, a strategy for player 2, σ2, is strictly dominated by σ′
2 if

π2(σ1, σ
′
2) > π2(σ1, σ2) ∀σ1 ∈ Σ1 .

Definition 4.12

A strategy for player 1, σ1, is weakly dominated by σ′
1 if

π1(σ′
1, σ2) ≥ π1(σ1, σ2) ∀σ2 ∈ Σ2

and
∃σ′

2 ∈ Σ2 s.t. π1(σ′
1, σ

′
2) > π1(σ1, σ

′
2) .

A similar definition applies for player 2.

We have already solved the Prisoners’ Dilemma by the elimination of strictly
dominated strategies. The following example illustrates the solution of a game
by the elimination of weakly dominated strategies.

Example 4.13

Consider the following game.

P2

P1

L R

U 3, 3 2, 2
D 2, 1 2, 1
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For player 1, U weakly dominates D and, for player 2, L weakly dominates R.
Consequently, we expect that player 1 will not play D and player 2 will not
play R, leaving the solution (U, L).

To solve a game by the elimination of dominated strategies we have to
assume that the players are rational. However, we can go further, if we also
assume that:

1. The players are rational.

2. The players all know that the other players are rational.

3. The players all know that the other players know that they are rational.

4. . . . (in principle) ad infinitum.

This chain of assumptions is called Common Knowledge of Rationality, or CKR.
It encapsulates the idea of being able to “put oneself in another’s shoes”. By
applying the CKR assumption, we can solve a game by iterating the elimination
of dominated strategies.

Example 4.14

Consider the following game:

P2

P1

L M R

U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

Initially player 1 has no dominated strategies. For player 2, R is dominated by
M . So R is eliminated as a reasonable strategy for player 2. Now, for player 1,
D is dominated by U . So D is eliminated as a reasonable strategy for player 1.
Now, for player 2, L is dominated by M . Eliminating L, leaves (U, M) as the
unique solution. (The levels of CKR listed explicitly above have been used in
this example.)

There is a problem with the iterated elimination of dominated strategies
when it comes to dealing with weakly dominated strategies: the solution may
depend on the order in which strategies are eliminated.

Example 4.15

Consider the following game:
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P2

P1

L M R

U 10, 0 5, 1 4,−2
D 10, 1 5, 0 1,−1

Order 1: Eliminate D for player 1. Now eliminate L and R for player 2. The
remaining strategy pair (U, M) is postulated as the solution, but using a differ-
ent order of elimination we arrive at a different result. Order 2: Eliminate R for
player 2. Neither player now has any dominated strategies, so stop. There are
four remaining strategy pairs which could be the solution to the game, namely
(U, L), (U, M), (D, L) and (D, M).

Exercise 4.2

Solve the following abstract games using the (iterated) elimination of
dominated strategies. For the second game, does the solution depend on
the order of elimination?

(a) P2

P1

L R

U 3, 0 2, 1
D 2, 1 1, 0

(b) P2

P1

L R

U 0, 3 10, 2
C 10, 4 0, 0
D 3, 1 3, 1

4.4 Nash Equilibria

The next example shows that some games can only be trivially solved using
the (iterated) elimination of dominated strategies.

Example 4.16

Consider the game:

P2

P1

L M R

U 1, 3 4, 2 2, 2
C 4, 0 0, 3 4, 1
D 2, 5 3, 4 5, 6

From the start, neither player has any dominated strategies leading to the
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maximally imprecise prediction that anything can happen. (It is in this sense
that the solution is “trivial”.)

Nevertheless, there is an “obvious” solution to this game, namely (D, R),
which maximises the payoff to both players. Is it possible to define a solution in
terms of something other than the (iterated) elimination of dominated strate-
gies that both identifies such obvious solutions and keeps many of the results
derived using dominance techniques? Fortunately, the answer to this question is
“yes”: such a solution can be provided by the definition of a Nash equilibrium.

Definition 4.17

A Nash equilibrium (for two player games) is a pair of strategies (σ∗
1 , σ∗

2) such
that

π1(σ∗
1 , σ∗

2) ≥ π1(σ1, σ
∗
2) ∀σ1 ∈ Σ1

and
π2(σ∗

1 , σ∗
2) ≥ π2(σ∗

1 , σ2) ∀σ2 ∈ Σ2 .

In other words, given the strategy adopted by the other player, neither player
could do strictly better (i.e., increase their payoff) by adopting another strategy.

Example 4.18

Consider the game from Example 4.16. Let σ∗
2 = R and let σ1 = (p, q, 1−p−q)

(that is, σ1 is an arbitrary strategy that specifies using U with probability p,
C with probability q and D with probability 1 − p − q). Then

π1(σ1, R) = 2p + 4q + 5(1 − p − q)

= 5 − 3p − q

≤ 5

= π1(D, R) .

Now let σ∗
1 = D and let σ2 = (p, q, 1 − p − q). Then

π2(D, σ2) = 5p + 4q + 6(1 − p − q)

= 6 − p − 2q

≤ 6

= π2(D, R) .

Consequently the pair (D, R) constitutes a Nash equilibrium.
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Exercise 4.3

Consider the following game. Show that (D, L) and (U, M) are Nash
equilibria.

P2

P1

L M R

U 10, 0 5, 1 4,−2
D 10, 1 5, 0 1,−1

It is clear from Definition 4.17 and the previous exercise that a Nash equi-
librium never includes strictly dominated strategies, but it may include weakly
dominated strategies.

An alternative form of the definition of a Nash equilibrium is useful for find-
ing Nash equilibria rather than just checking that a particular pair of strategies
is a Nash equilibrium. First we define the concept of a best response strategy.

Definition 4.19

A strategy for player 1, σ̂1, is a best response to some (fixed) strategy for player
2, σ2, if

σ̂1 ∈ argmax
σ1∈Σ1

π1(σ1, σ2) .

Similarly, σ̂2 is a best response to some σ1 if

σ̂2 ∈ argmax
σ2∈Σ2

π2(σ1, σ2) .

An equivalent form of the definition of a Nash equilibrium, which focusses
on the strategies rather than the payoffs, is that σ∗

1 is a best response to σ∗
2

and vice versa.

Definition 4.20

A pair of strategies (σ∗
1 ,σ∗

2) is a Nash equilibrium if

σ∗
1 ∈ argmax

σ1∈Σ1

π1(σ1, σ
∗
2)

and
σ∗

2 ∈ argmax
σ2∈Σ2

π2(σ∗
1 , σ2) .

It is clear that a strictly dominated strategy is never a best response to
any strategy, whereas a weakly dominated strategy may be a best response to
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some strategy. This is why weakly dominated strategies may appear in Nash
equilibria but strictly dominated strategies do not.

To use this definition to find Nash equilibria we find, for each player, the
set of best responses to every possible strategy of the other player. We then
look for pairs of strategies that are best responses to each other.

Example 4.21 (Matching Pennies)

Two players each place a penny3 on a table, either “heads up” (strategy H)
or “tails up” (strategy T ). If the pennies match, player 1 wins (the pennies); if
the pennies differ, then player 2 wins (the pennies).

P2

P1

H T

H +1,−1 −1,+1
T −1,+1 +1,−1

Clearly, this is a game in which the two players have completely opposing
interests: one player only wins a penny when the other loses a penny. Because
a penny is a small amount of money (and anyway the coins may be used only
as a token for playing, with each player retaining their own coin), the payoff
may be interpreted as a utility (based on the pleasure of winning) of +1 for
winning the game and a utility of −1 for losing.

We can easily check that there is no pure strategy pair that is a Nash equi-
librium: (H, H) is not an equilibrium because P2 should switch to T ; (H, T ) is
not an equilibrium because P1 should switch to T ; (T,H) is not an equilibrium
because P1 should switch to H; and, finally, (T, T ) is not an equilibrium be-
cause P2 should switch to H. (Intuitively, the solution is obvious: each player
should randomise – by tossing the penny – and play H with probability 1

2 .)
Let us consider the mixed strategies σ1 = (p, 1 − p) for player 1 and σ2 =

(q, 1− q). That is, player 1 plays “Heads” with probability p and player 2 plays
“Heads” with probability q. The payoff to player 1 is

π1(σ1, σ2) = pq − p(1 − q) − (1 − p)q + (1 − p)(1 − q)

= 1 − 2q + 2p(2q − 1)

Clearly, if q < 1
2 then player 1’s best response is to choose p = 0 (i.e., σ̂1 = (0, 1)

or “play Tails”). On the other hand, if q > 1
2 then player 1’s best response is

to choose p = 1 (i.e., σ̂1 = (1, 0) or “play Heads”). If q = 1
2 then every mixed

(and pure) strategy is a best response.

3 In parts of Europe, you could use cents.
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Now consider the payoff to player 2.

π2(σ1, σ2) = −pq + p(1 − q) + (1 − p)q − (1 − p)(1 − q)

= −1 + 2p + 2q(1 − 2p)

Clearly, if p < 1
2 then player 2’s best response is to choose q = 1 (i.e., σ̂2 = (1, 0)

or “play Heads”). On the other hand, if p > 1
2 then player 2’s best response is

to choose q = 0 (i.e., σ̂2 = (0, 1) or “play Tails”). If p = 1
2 then every mixed

(and pure) strategy is a best response.
So the only pair of strategies for which each is best response to the other is

σ∗
1 = σ∗

2 = (1
2 , 1

2 ). That is,

[σ∗
1 , σ∗

2 ] =
[(

1
2
,
1
2

)
,

(
1
2
,
1
2

)]
is a Nash equilibrium and the expected payoffs for each player are

π1(σ∗
1 , σ∗

2) = π2(σ∗
1 , σ∗

2) = 0 .

Remark 4.22

In contrast to single-player decision models (see Theorem 1.32), there is no
solution to the Matching Pennies game involving only non-randomising strate-
gies. In any given realisation of the Matching Pennies game, the outcome will
be one of (H, H), (H, T ), (T,H), or (T, T ) each with probability 1

4 . The out-
come of a game occurs as a result of the strategies chosen by the players, but
a player’s strategy is not the same as a choice of outcome.

Exercise 4.4

Find all the Nash equilibria of the following games.

(a) P2

P1

L R

U 4, 3 2, 2
D 2, 2 1, 1

(b) P2

P1

R W

F 0, 0 2, 1
M 1, 2 0, 0

We can often simplify the process of finding Nash equilibria by making use
of the next two theorems. The first of these theorems makes it easy to find
pure-strategy Nash equilibria.

Theorem 4.23

Suppose there exists a pair of pure strategies (s∗
1, s

∗
2) such that

π1(s∗
1, s

∗
2) ≥ π1(s1, s

∗
2) ∀s1 ∈ S1
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and π2(s∗
1, s

∗
2) ≥ π2(s∗

1, s2) ∀s2 ∈ S2 .

Then (s∗
1, s

∗
2) is a Nash equilibrium.

Proof

For all σ1 ∈ Σ1 we have

π1(σ1, s
∗
2) =

∑
s∈S1

p(s)π1(s1, s
∗
2)

≤
∑
s∈S1

p(s)π1(s∗
1, s

∗
2)

= π1(s∗
1, s

∗
2) .

For all σ2 ∈ Σ2 we have

π2(s∗
1, σ2) =

∑
s∈S2

q(s)π2(s∗
1, s2)

≤
∑
s∈S2

q(s)π1(s∗
1, s

∗
2)

= π2(s∗
1, s

∗
2) .

Hence (s∗
1, s

∗
2) is a Nash equilibrium.

Example 4.24

Consider again the game from Example 4.16

P2

P1

L M R

U 1, 3 4, 2 2, 2
C 4, 0 0, 3 4, 1
D 2, 5 3, 4 5, 6

Payoffs corresponding to a pure strategy that is a best response to one of
the opponent’s pure strategies are underlined. Two underlinings coincide in
the entry (5, 6) corresponding to the strategy pair (D, R). The coincidence of
underlinings means that D is a best response to R and vice versa (i.e., the pair
of pure strategies (D, R) is a Nash equilibrium).

Exercise 4.5

Find the pure strategy Nash equilibria for the following game.
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P2

P1

L M R

U 4, 3 2, 7 0, 4
D 5, 5 5,−1 −4,−2

Exercise 4.6

A man has two sons. When he dies, the value of his estate (after tax) is
£1000. In his will it states that the two sons must each specify a sum of
money si that they are willing to accept. If s1 + s2 ≤ 1000, then each
gets the sum he asked for and the remainder (if there is any) goes to the
local home for spoilt cats. If s1 + s2 > 1000, then neither son receives
any money and the entire sum of £1000 goes to the cats’ home. Assume
that (i) the two men care only about the amount of money they will
inherit, and (ii) they can only ask for whole pounds. Find all the pure
strategy Nash equilibria of this game.

In the process of finding the Nash equilibrium in the Matching Pennies
game (see Example 4.21), we saw that, for each player, any strategy was a best
response to the Nash equilibrium strategy of the other player. In particular,
the payoff for playing H is equal to the payoff for playing T . Intuitively, the
reason for this is obvious: if the payoffs were not equal, then player i could
do better than the supposed mixed Nash equilibrium strategy σ∗

i by playing
the pure strategy that assigns probability 1 to whichever of H or T gives the
higher payoff. The following theorem shows that this result is generally true
for all two-player games.

Definition 4.25

The support of a strategy σ is the set S(σ) ⊆ S of all the strategies for which
σ specifies p(s) > 0.

Example 4.26

Suppose an individual’s pure strategy set is S = {L, M, R}. Consider a mixed
strategy of the form σ = (p, 1 − p, 0) where the probabilities are listed in the
same order as the set S and 0 < p < 1. The support of σ is S(σ) = {L, M}.

Theorem 4.27 (Equality of Payoffs)

Let (σ∗
1 , σ∗

2) be a Nash equilibrium, and let S∗
1 be the support of σ∗

1 . Then
π1(s, σ∗

2) = π1(σ∗
1 , σ∗

2) ∀s ∈ S∗
1.
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Proof

If the set S∗
1 contains only one strategy, then the theorem is trivially true.

Suppose now that the set S∗
1 contains more than one strategy. If the theorem

is not true, then at least one strategy gives a higher payoff to player 1 than
π1(σ∗

1 , σ∗
2). Let s′ be the action that gives the greatest such payoff. Then

π1(σ∗
1 , σ∗

2) =
∑
s∈S∗

1

p∗(s)π1(s, σ∗
2)

=
∑
s�=s′

p∗(s)π1(s, σ∗
2) + p∗(s′)π1(s′, σ∗

2)

<
∑
s�=s′

p∗(s)π1(s′, σ∗
2) + p∗(s′)π1(s′, σ∗

2)

= π1(s′, σ∗
2)

which contradicts the original assumption that (σ∗
1 , σ∗

2) is a Nash equilibrium.

The corresponding result for player 2 also holds. Namely, if σ∗
2 has support

S∗
2, then

π2(σ∗
1 , s) = π2(σ∗

1 , σ∗
2) ∀s ∈ S∗

2 .

The proof is analogous.

Remark 4.28

Because all strategies s ∈ S∗
1 give the same payoff as the randomising strategy

σ∗
1 , why does player 1 (or indeed player 2) randomise? The answer is that,

if player 1 were to deviate from this strategy, then σ∗
2 would no longer be a

best response and the equilibrium would disintegrate. This is why randomising
strategies are important for games, in a way that they weren’t for the single-
player optimisation problems covered in Part I.

We can use Theorem 4.27 to find mixed strategy Nash equilibria.

Example 4.29

Consider the Matching Pennies game in Example 4.21. Suppose player 2 plays
H with probability q and T with probability 1 − q. If player 1 is playing a
completely mixed strategy at the Nash equilibrium, then

π1(H, σ∗
2) = π1(T, σ∗

2)

⇐⇒ qπ1(H, H) + (1 − q)π1(H, T ) = qπ1(T,H) + (1 − q)π1(T, T )
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⇐⇒ q − (1 − q) = −q + (1 − q)

⇐⇒ 4q = 2

⇐⇒ q =
1
2

.

The same argument applies with the players swapped over, so the Nash equi-
librium is (σ∗

1 , σ∗
2) with σ∗

1 = σ∗
2 = (1

2 , 1
2 ) as we found before.

Exercise 4.7

Consider the children’s game “Rock-Scissors-Paper”, where 2 children
simultaneously make a hand sign corresponding to one of the three items.
Playing “Rock” (R) beats “Scissors” (S),“Scissors” beats “Paper” (P),
and “Paper” beats “Rock”. When both children play the same action
(both R, both S, or both P) the game is drawn. (a) Construct a payoff
table for this game with a payoff of +1 for a win, −1 for losing, and 0
for a draw. (b) Solve this game.

4.5 Existence of Nash Equilibria

John Forbes Nash Jr. proved the following theorem in 1950 as part of his PhD
thesis, which is why equilibrium solutions to games are called “Nash equilibria”.

Theorem 4.30 (Nash’s Theorem)

Every game that has a finite strategic form (i.e., with finite number of players
and finite number of pure strategies for each player) has at least one Nash
equilibrium (involving pure or mixed strategies).

Remark 4.31

A general proof of Nash’s theorem relies on the use of a fixed point theorem
(e.g., Brouwer’s or Kakutani’s). Roughly, these fixed point theorems state that
for some compact set S and a map f :S → S that satisfies various conditions,
the map has a fixed point, i.e., that f(p) = p for some p ∈ S. The proof of
Nash’s theorem then amounts to showing that the best response map satisfies
the necessary conditions for it to have a fixed point. Rather than spending a
great deal of effort to prove one of the fixed point theorems, it seems preferable
to restrict our attention to a class of games that is common and for which it
is easy to provide a self-contained proof. We refer the interested reader to the
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more general proofs contained in the books by Fudenberg & Tirole (1993) and
Myerson (1991).

Proposition 4.32

Every two player, two action game has at least one Nash equilibrium.

Proof

Consider a two player, two action game with arbitrary payoffs:

P2

P1

L R

U a, b c, d

D e, f g, h

First we consider pure-strategy Nash equilibria: if a ≥ e and b ≥ d then (U, L)
is a Nash equilibrium; if e ≥ a and f ≥ h then (D, L) is a Nash equilibrium;
if c ≥ g and d ≥ b then (U, R) is a Nash equilibrium; if g ≥ c and h ≥ f then
(D, R) is a Nash equilibrium. There is no pure strategy Nash equilibrium if
either

1. a < e and f < h and g < c and d < b, or

2. a > e and f > h and g > c and d > b.

In these cases, we look for a mixed strategy Nash equilibrium using the Equality
of Payoffs theorem (Theorem 4.27). Let σ∗

1 = (p∗, 1− p∗) and σ∗
2 = (q∗, 1− q∗).

Then

π1(U, σ∗
2) = π1(D, σ∗

2)

⇐⇒ aq∗ + c(1 − q∗) = eq∗ + g(1 − q∗)

⇐⇒ q∗ =
(c − g)

(c − g) + (e − a)

and

π2(σ∗
1 , L) = π2(σ∗

1 , R)

⇐⇒ bp∗ + f(1 − p∗) = dp∗ + h(1 − p∗)

⇐⇒ p∗ =
(h − f)

(h − f) + (b − d)

In both cases, we have 0 < p∗, q∗ < 1 as required for a mixed strategy Nash
equilibrium.
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Exercise 4.8

A general symmetric, 2 player, two strategy game has a payoff table

P2

P1

A B

A a, a b, c

B c, b d, d

Show that such a game always has at least one symmetric Nash equilib-
rium.

4.6 The Problem of Multiple Equilibria

Some games have multiple Nash equilibria and, therefore, more than one pos-
sible solution.

Example 4.33 (Battle of the Sexes)

This is the classic example of a coordination game.4 One modern version of the
story is that a married couple are trying to decide what to watch on television.
The husband would like to watch the football match and the wife would like
to watch the soap opera. The total values of their utilities are made up of
two increments. If they watch the programme of their choice, they get a utility
increment of 1 (and zero otherwise). If they watch television together, each gets
a utility increment of 2, whereas they get zero if they watch television apart –
obviously they must be a rich couple with two TVs. So, using the pure strategy
set S = “watch soap opera” and F = “watch football”, the payoff table is

Wife

Husband
F S

F 3, 2 1, 1
S 0, 0 2, 3

Clearly, this game has two pure-strategy Nash equilibria: (F, F ) and (S, S).

4 For biologists, the “Battle of the Sexes” is a different game – one that has no
pure-strategy Nash equilibria. See Maynard Smith (1982).
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There is also a mixed strategy Nash equilibrium (σ∗
h, σ∗

w) with

σ∗
h = (p(F ), p(S)) =

(
3
4
,
1
4

)

σ∗
w = (q(F ), q(S)) =

(
1
4
,
3
4

)
.

This mixed strategy Nash equilibrium can be found using the Equality of Pay-
offs theorem (Theorem 4.27) or the best response method of Section 4.4 (which
also finds the two pure-strategy equilibria).

In this game there is a problem with deciding what strategies will be adopted
by the players. How should the players decide between these three Nash equilib-
ria? Can they both decide on the same one? (This is not a problem with Game
Theory itself: it just demonstrates that even simple interactive decision prob-
lems do not necessarily have simple solutions.) Note that for the randomising
Nash equilibrium, the asymmetric outcomes can occur. The most likely outcome
of the game if both players randomise is (F, S), which occurs with probability
9
16 , despite the fact that both players would prefer to coordinate.

Responses to the existence of multiple Nash equilibria have included:

1. Using a convention. For example, in the Battle of the Sexes, possible con-
ventions are

a) The man will get what he wants, because women are generous.

b) The man should defer to the woman, because that’s what a gentleman
should do.

c) . . .

This then leads to the question of which convention will be used and to the
development of game-theoretic models of convention formation.

2. Refine the definition of a Nash equilibrium to eliminate some of the equilib-
ria from consideration. There have been several attempts to do this (“trem-
bling hand perfection”, etc.) but, despite the inherent interest of such re-
finements, they do not succeed in eliminating all but one equilibrium in
every case either one, many or (unfortunately) no refined equilibria may
exist.

3. Invoke the concept of evolution: there is a population of players who pair
up at various points in time to play this game. The proportion of players
using any given strategy changes over time depending on the success of that
strategy (either successful strategies are consciously imitated, or Natural
Selection sorts it out). The evolutionary interpretation of Nash equilibria
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can be viewed as a refinement of the Nash equilibrium concept (because
it favours some equilibria over others). However, it is also important in
its own right because of the application of game theory to evolutionary
biology.

4.7 Classification of Games

4.7.1 Affine Transformations

If it is only the equilibrium strategies, and not the payoffs, which are of interest,
then it is possible to convert a difficult calculation into a simpler one by means
of a generalised affine transformation.

Definition 4.34

A generalised affine transformation of the payoffs for player 1 is

π′
1(s1, s2) = α1π1(s1, s2) + β1(s2) ∀s1 ∈ S1

where α1 > 0 and β1(s2) ∈ R.5 Note that we may apply a different transfor-
mation for each possible pure strategy of player 2. Similarly, an affine transfor-
mation of the payoffs for player 2 is

π′
2(s1, s2) = α2π2(s1, s2) + β2(s1) ∀s2 ∈ S2 .

Example 4.35

The game

P2

P1

L R

U 3, 3 0, 0
D −1, 2 2, 8

can be transformed into
P2

P1

L R

U 2, 1 0, 0
D 0, 0 1, 2

5 A standard affine transformation has βi(·) = constant.
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by applying the affine transformations

α1 =
1
2

β1(L) = 1
2 β1(R) = 0

α2 =
1
3

β2(U) = 0 β2(D) = −2
3

.

Exercise 4.9

Demonstrate by explicit calculation that the two games in Example 4.35
have the same Nash equilibria.

Theorem 4.36

If the payoff table is altered by generalised affine transformations, the set of
Nash equilibria is unaffected.6

Proof

For player 1, we have

π′
1(σ

∗
1 , σ∗

2) ≥ π′
1(σ1, σ

∗
2)

⇐⇒
∑
s1

∑
s2

p∗(s1)q∗(s2)π′
1(s1, s2) ≥

∑
s1

∑
s2

p(s1)q∗(s2)π′
1(s1, s2)

⇐⇒ α1

∑
s1

∑
s2

p∗(s1)q∗(s2)π1(s1, s2) +
∑
s1

∑
s2

p∗(s1)q∗(s2)β(s2)

≥ α1

∑
s1

∑
s2

p(s1)q∗(s2)π1(s1, s2) +
∑
s1

∑
s2

p(s1)q∗(s2)β(s2)

⇐⇒ α1

∑
s1

∑
s2

p∗(s1)q∗(s2)π1(s1, s2) +
∑
s2

q∗(s2)β(s2)

≥ α1

∑
s1

∑
s2

p(s1)q∗(s2)π1(s1, s2) +
∑
s2

q∗(s2)β(s2)

⇐⇒ α1

∑
s1

∑
s2

p∗(s1)q∗(s2)π1(s1, s2) ≥ α1

∑
s1

∑
s2

p(s1)q∗(s2)π1(s1, s2)

⇐⇒
∑
s1

∑
s2

p∗(s1)q∗(s2)π1(s1, s2) ≥
∑
s1

∑
s2

p(s1)q∗(s2)π1(s1, s2)

⇐⇒ π1(σ∗
1 , σ∗

2) ≥ π1(σ1, σ
∗
2) .

The analogous argument for player 2 completes the proof.
6 Remember that the payoffs at those equilibria do change.
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4.7.2 Generic and Non-generic Games

Definition 4.37

A generic game is one in which a small change to any one of the payoffs7

does not introduce new Nash equilibria or remove existing ones. In practice,
this means that there should be no equalities between the payoffs that are
compared to determine a Nash equilibrium.

Most of the games we have considered so far (the Prisoners’ Dilemma,
Matching Pennies, the Battle of the Sexes) have been generic. The following is
an example of a non-generic game.

Example 4.38

Consider the game

P2

P1

L M R

U 10, 0 5, 1 4,−2
D 10, 1 5, 0 1,−1

This game is non-generic because (D, L) is obviously a Nash equilibrium, but
player 1 would get the same payoff by playing U rather than D (against L).
Similarly, (U, M) is obviously a Nash equilibrium, but player 1 would get the
same payoff by playing D rather than U (against M).

Theorem 4.39 (Oddness Theorem)

All generic games have an odd number of Nash equilibria.

Remark 4.40

A formal proof of the oddness theorem is rather difficult. Figure 4.1 shows
the best responses for the Battle of the Sexes game. The best response for
player 1 meets the best response for player 2 in three places. These are the
Nash equilibria. Drawing similar diagrams for other generic games supports
the truth of this theorem (at least for games between two players, each with
two pure strategies).

7 So this is not an affine transformation.
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4

Figure 4.1 Battle of the Sexes. The best responses for player 1 are shown by
a solid line and those for player 2 by a dotted line. Where they meet are the
Nash equilibria (circled).

In contrast, the number of Nash equilibria in a non-generic games is (usu-
ally) infinite.

Example 4.41

Consider the game shown in Example 4.38. Define σ1 = (p, 1 − p) and σ2 =
(q, r, 1 − q − r). Then

π1(σ1, σ2) = 1 + 9q + 4r + 3p(1 − q − r)

π2(σ1, σ2) = −(1 + p) + 2q + r(1 + 2p)

The best responses are

σ̂1 =
{

(1, 0) if q + r < 1
(x, 1 − x) with x ∈ [0, 1] if q + r = 1.

σ̂2 =

⎧⎨
⎩

(1, 0, 0) if p < 1
2

(0, 1, 0) if p > 1
2

(y, 1 − y, 0) with y ∈ [0, 1] if p = 1
2 .

So the Nash equilibria are

1. σ∗
1 = (x, 1 − x) with x ∈ [0, 1

2 ) and σ∗
2 = (1, 0, 0)

2. σ∗
1 = (x, 1 − x) with x ∈ ( 1

2 , 1] and σ∗
2 = (0, 1, 0)

3. σ∗
1 = (1

2 , 1
2 ) and σ∗

2 = (y, 1 − y, 0) with y ∈ [0, 1]
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Note that the strictly dominated strategy R ≡ (0, 0, 1) is not included in any
of these Nash equilibria.

Exercise 4.10

Find all the Nash equilibria for the following non-generic games. Draw
the best response graphs for the first game.

(a) P2

P1

C D

A 6, 0 5, 3
B 6, 1 0, 0

(b) P2

P1

B F H

G 5, 0 −1, 1 2, 0
J 5, 3 −2, 3 2, 3

Sometimes, however, the number of Nash equilibria in a non-generic game
may be finite and even.

Exercise 4.11

Consider the following game. Find all the Nash equilibria for every value
of λ ∈ (−∞,+∞).

P2

P1

L R

U λ, λ 1, 1
D 1, 1 2, 2

4.7.3 Zero-sum Games

As its name suggests, a zero-sum game is one in which the payoffs to the
players add up to zero. For example, the game “Matching Pennies” is a zero
sum game: if the first player uses a strategy σ1 = (p, 1−p) and the second uses
σ2 = (q, 1 − q) then their payoffs are

π1(σ1, σ2) = pq − p(1 − q) + (1 − p)q − (1 − p)(1 − q)

= (2q − 1)(2p − 1)

= −π2(σ1, σ2)

In such games the interests of the players are, therefore, exactly opposed: one
only wins what the other loses. This is in contrast to many other games – such
as the Prisoners’ Dilemma in which both players end up wining (or losing) the
same amount.

Zero-sum games were the first type of game to be studied formally. At that
time, the concept of a Nash equilibrium did not exist, and games were solved



4.7 Classification of Games 85

by finding what was referred to as the “minimax” or (“maximin”) solution.
Fortunately, the minimax solution is just the Nash equilibrium for a zero-sum
game. Let us define π(σ1, σ2) = π1(σ1, σ2), so π2(σ1, σ2) = −π(σ1, σ2) (in a
zero-sum game). Then the Nash equilibrium conditions

π1(σ∗
1 , σ∗

2) ≥ π1(σ1, σ
∗
2) ∀σ1 ∈ Σ1

and π2(σ∗
1 , σ∗

2) ≥ π2(σ∗
1 , σ2) ∀σ2 ∈ Σ2

can be rewritten as

π(σ∗
1 , σ∗

2) = max
σ1∈Σ1

π(σ1, σ
∗
2)

and π(σ∗
1 , σ∗

2) = min
σ2∈Σ2

π(σ∗
1 , σ2).

(Remember that, to maximise their own payoff, the second player must min-
imize the first player’s payoff.) By noting that each player should play a best
response to the other’s strategy, these two conditions can be combined

π(σ∗
1 , σ∗

2) = max
σ1∈Σ1

π(σ1, σ
∗
2)

= max
σ1∈Σ1

min
σ2∈Σ2

π(σ1, σ2)

or, equivalently

π(σ∗
1 , σ∗

2) = min
σ2∈Σ2

π(σ∗
1 , σ2)

= min
σ2∈Σ2

max
σ1∈Σ1

π(σ1, σ2) .

Exercise 4.12

“Ace-King-Queen” is a simple card game for two players, which is played
as follows. The players each bet a stake of $5. Each player then chooses
a card from the set {Ace, King, Queen} and places it face down on the
table. The cards are turned over simultaneously, and the winner of the
hand is decided by the following rules: an “Ace” (A) beats a “King”
(K); a “King” beats a “Queen” (Q); and a “Queen” beats an“Ace”. The
winning player takes the $10 in the pot. If both players choose the same
card (both A, both K, or both Q), the game is drawn and the $5 stake
is returned to each player. What is the unique Nash equilibrium for this
game?

Theorem 4.42

A generic zero-sum game has a unique solution.
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Proof

See Von Neuman & Morgenstern (1953).

Exercise 4.13

Consider the game shown below. Show that if the game is generic (i.e.,
a �= b, a �= c, etc.), then there is a unique Nash equilibrium. [Hint: there
are sixteen possible cases to consider.]

C D

A a,−a b, −b

B c,−c d, −d

4.8 Games with n-players

The extension of the theory to games with more than two players is straight-
forward, if notationally baroque. Let us label the players by i ∈ {1, 2, . . . , n}
Each player has a set of pure strategies Si and a corresponding set of mixed
strategies Σi. The payoff to player i depends on a list of strategies σ1, σ2, . . . , σn

– one for each player. For the definition of a Nash equilibrium, we will need to
separate out the strategy for each of the players, so we denote by σ−i the list
of strategies used by all the players except the i-th player.

Example 4.43

Consider a game with three players. The payoffs to each player can be written
as:

π1(σ1, σ−1) ≡ π1(σ1, σ2, σ3)

π2(σ2, σ−2) ≡ π2(σ1, σ2, σ3)

π3(σ3, σ−3) ≡ π3(σ1, σ2, σ3).

Suppose player i uses a mixed strategy σi which specifies playing pure strat-
egy s ∈ Si with probability pi(s). Payoffs for mixed strategies are then calcu-
lated from the payoff table with entries πi(s1, . . . , sn) by

πi(σi, σ−i) =
∑

s1∈S1

· · ·
∑

sn∈Sn

p1(s1) · · · pn(sn)πi(s1, . . . , sn)
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P2

P1

A L R

U 1, 1, 0 2, 2, 3
D 2, 2, 3 3, 3, 0

P2

P1

B L R

U −1,−1, 2 2, 0, 2
D 0, 2, 2 1, 1, 2

Figure 4.2 A representation of the three player game from example 4.45.

Definition 4.44

A Nash equilibrium in a n-player game is a list of mixed strategies σ∗
1 , σ∗

2 , . . . , σ∗
n

such that
σ∗

i ∈ argmax
σi∈Σi

πi(σi, σ
∗
−i) ∀i ∈ {1, 2, . . . , n}

Example 4.45

Consider a static three-player game where the first player chooses between U

and D, the second player chooses between L and R, and the third player chooses
between A and B. Instead of trying to draw a three-dimensional payoff table,
we represent this game by a pair of payoff tables such as the ones shown in
Figure 4.2. (We can interpret this as player 3 choosing the game that players
1 and 2 have to play, so long as we remember that players 1 and 2 do not
know which of the payoff tables player 3 has chosen.) We can find a Nash
equilibrium for the game with the payoffs shown in Figure 4.2 as follows. First,
suppose that player 3 chooses A. Then the best responses for players 1 and 2
are the strategies σ̂1 = σ̂2 = (0, 1). However, we do not have a Nash equilibrium
because choosing A is not player 3’s best response to this pair of strategies.
Now suppose that player 3 chooses B. Then the best responses for players 1
and 2 are the strategies σ̂1 = σ̂2 = (1

2 , 1
2 ). Because player 3 would get a payoff

of 3
2 if he switches to A, we have a Nash equilibrium (σ∗

1 , σ∗
2 , σ∗

3) with

σ∗
1 = (

1
2
,
1
2
) σ∗

2 = (
1
2
,
1
2
) σ∗

3 = (0, 1)

Exercise 4.14

Represent the game from Example 4.45 by a pair of payoff tables “cho-
sen” by player 2. Confirm that the game has the same Nash equilibrium
when represented in this way. [Hint: show that there are no pure strategy
Nash equilibria, then use the Equality of Payoffs theorem to find a Nash
equilibrium involving mixed strategies.]
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Finite Dynamic Games

5.1 Game Trees

So far we have considered static games in which decisions are assumed to be
made simultaneously (or, at least, in ignorance of the choices made by the other
players). However, there are many situations of interest in which decisions are
made at various times with at least some of the earlier choices being public
knowledge when the later decisions are being made. These games are called
dynamic games because there is an explicit time-schedule that describes when
players make their decisions.

Dynamic games can be represented by a game tree – the so-called extensive
form – which is an extension of the decision tree used in (single-person) decision
theory. The times at which decisions are made are shown as small, filled circles.
Leading away from these decision nodes is a branch for every action that could
be taken at that node. When every decision has been made, one reaches the
end of one path through the tree. At that point, the payoffs for following that
path is written. We will use the convention that the first payoff in each pair is
for the player who moves first. Time increases as one goes down the page, so
the tree is drawn “upside-down”.

Example 5.1 (Dinner Party Game)

Two people (“husband” and “wife”) are buying items for a dinner party. The
husband buys either fish (F ) or meat (M) for the main course; the wife buys
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M
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R

�
�
�
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�

W

Wife�

�
�

�
�

�
�

R

�
�
�
�
�
�

W

2, 1 0, 0 0, 0 1, 2

Figure 5.1 The game tree for the dinner party game of Example 5.1.

either red wine (R) or white wine (W ). Both people are rather conventional and
prefer red wine with meat and white wine with fish, rather than either of the
opposite combinations, which are equally displeasing. However, the husband
prefers meat over fish, while the wife prefers fish over meat. We can represent
these preferences as utility-based payoffs:

πh(M, R) = 2 πh(F, W ) = 1 πh(F, R) = πh(M, W ) = 0

πw(M, R) = 1 πw(F, W ) = 2 πw(F, R) = πw(M, W ) = 0

where the payoffs for the husband have been given a subscript h and those for
the wife a subscript w. So far the description of the game has been no different
from that of a static game. Let us now assume that the husband buys the main
course and tells his wife what was bought; his wife then buys some wine. The
game tree for this game is shown in Figure 5.1.

What is the solution of the dinner party game? The obvious way to solve
this game is by backward induction (i.e., to work backwards through the game
tree). Recall that the husband tells his wife whether fish or meat has been
purchased. So when she makes her decision about the wine, she knows what
main dish her husband will be cooking. If the husband has bought fish, then
his wife will buy white wine (because this gets her a payoff = 2, rather than a
payoff = 0 for having red wine with fish). On the other hand, if the husband
has bought meat, then his wife will buy red wine (a payoff = 1 rather than a
payoff = 0 for white wine with meat). So if the husband buys fish, then his
wife will buy white wine and he will get a payoff = 1. On the other hand, if the
husband buys meat, then his wife will buy red wine and he will get a payoff
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Figure 5.2 Game tree for Exercise 5.1.

= 2. So the husband prefers to buy meat and the dinner party will consist of
meat and red wine (and, hopefully, some other items).

Exercise 5.1

Find a solution using backward induction for the game shown in Fig-
ure 5.2.

5.2 Nash Equilibria

Is the solution we have just derived a Nash equilibrium? To answer this ques-
tion, we have to determine what the strategies are for each player. The action
sets for each player are Ah = {M, F} and Aw = {R, W}. The set of pure strate-
gies available to the husband is the same as his action set: Sh = {M, F}. How-
ever, the wife has four possible pure strategies: Sw = {RR, RW, WR, WW}
where1

RR ≡ “R if her husband chooses M and R if he chooses F”
RW ≡ “R if her husband chooses M and W if he chooses F”
WR ≡ “W if her husband chooses M and R if he chooses F”
WW ≡ “W if her husband chooses M and W if he chooses F”

So in strategic (or normal) form the game has the following payoff table (with
best responses underlined).

1 The wife’s strategy set clearly illustrates the difference between actions and strate-
gies – a distinction that cannot be made in static games.
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Wife

Husband
RR RW WR WW

M 2, 1 2, 1 0, 0 0, 0
F 0, 0 1, 2 0, 0 1, 2

Clearly there are three pure strategy Nash equilibria: (M, RR), (M, RW ), and
(F, WW ). Any pair (M, σ∗

2) where σ∗
2 assigns probability p to RR and 1 − p to

RW is also a Nash equilibrium. So the solution we found by backward induction
is a Nash equilibrium but there are many others.

Although there are many Nash equilibria, not all are equally believable if
we consider what they imply for the behaviour of one of the players. Consider
the wife’s strategy WW . This corresponds to the wife telling her husband that
if he buys meat she will, nevertheless, buy white wine. In response to this
announcement her husband should buy the fish that his wife prefers because,
if he does not, he will get one of his least preferred outcomes (white wine
with meat). However, if her husband has bought meat, then the wife should
buy red wine when she comes to her decision. This is because she prefers
red wine compared to white wine when the dinner is based on meat. So the
husband should not believe his wife when she threatens to buy white wine if he
buys meat. In other words, the Nash equilibrium (F, WW ) relies on the wife
threatening to choose an option she would not take if she were faced with the
decision of choosing a wine to go with meat.

Consider, now, the wife’s strategies RR and σ∗
2 . Both of these specify that

the wife will buy red wine if her husband buys meat, which is alright. However,
the first says that the wife would definitely buy red wine if her husband chose
fish and the second that she may (if p > 0) buy red wine to go with fish. Neither
of these is believable because the wife definitely prefers white wine with fish.
(Note that neither of these strategies can be called a “threat” because the
husband gets his most preferred outcome of meat and red wine in any case.)

The Nash equilibria found from the strategic form don’t all seem to capture
the essence of the dynamic game, because the order of the decisions is sup-
pressed. Rather, a subset of the Nash equilibria – the ones found by backward
induction on a game tree – seem more reasonable than the others when the
time structure is taken into account.

Exercise 5.2

Consider the game tree shown in Figure 5.3. Solve this game by backward
induction. Give the strategic form of the game and find all the pure
strategy equilibria.
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Figure 5.3 Game tree for Exercise 5.2.

5.3 Information Sets

The difference between static games and dynamic games is not that the former
can be represented in strategic form and the latter by a game tree. After all, we
have just taken a dynamic game and represented it in strategic form in order
to find all the Nash equilibria and, as we shall see, static games have a game
tree representation too.

The real distinction between static and dynamic games is what is known
by the players when they make their decisions. In the dinner party game, the
wife knew whether her husband had bought meat or fish when the time came
for her to choose between red wine and white wine. We formally specify what
is known to a player by giving their information set.

Definition 5.2

An information set for a player is a set of decision nodes in a game tree such
that:

1. the player concerned (and no other) is making a decision;

2. the player does not know which node has been reached (only that it is one
of the nodes in the set).

Note that the second part of this definition requires that a player must have
the same choices at all nodes included in an information set.
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Example 5.3

Consider a static version of the dinner party game. Suppose that, although the
husband chooses first, his wife does not know what main course ingredient has
been bought when she is trying to choose a wine. A game tree for this game
is shown in Figure 5.4(a) where the dotted line joining the wife’s two decision
nodes represents the fact that she does not know which node she is at (i.e.,
both her decision nodes constitute an information set). The strategic form of
this game has the payoff table shown below.

Wife

Husband
R W

M 2, 1 0, 0
F 0, 0 1, 2

Note that the wife only has two pure strategies in this case because she cannot
condition her actions on her husband’s behaviour (because she doesn’t know
it). Clearly, because the husband does not know what his wife will choose,
she could choose first (and not tell him what wine she has bought) without
changing the game. Therefore, a second possible game tree for this game is the
one shown in Figure 5.4(b).

Exercise 5.3

Draw two different trees for the static game below. Can any solutions be
found by backward induction?

P2

P1

L M R

U 4, 3 2, 7 0, 4
D 5, 5 5,−1 −4,−2

Exercise 5.4

Draw the game tree for a version of the Prisoners’ Dilemma where one
prisoner knows what the other has done. Is the outcome affected by the
decisions being sequential rather than simultaneous?
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Figure 5.4 Two possible game trees for the static version of the dinner party
game of Exercise 5.3. The dotted lines between decision nodes indicate that
those nodes belong to the same information set.

5.4 Behavioural Strategies

In general, a dynamic game a player may encounter an information set con-
taining two or more decision nodes. At this point, the player does not have
complete information about the behaviour of their opponent – the two players
are making “simultaneous decisions”. The presence of such information sets
means that we must allow for the possibility that players will randomise as
they might do in a single-decision, static game.
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Example 5.4

Consider a game in which player 1 chooses between actions A and B. If A is
chosen, then players 1 and 2 play a game of “matching pennies”. If player 1
chooses B, then player 2 chooses L or R. The tree for this game is shown in
Figure 5.5(a). Let us try to solve this game by an extended version of backward
induction. Let σ be the strategy “Play H with probability 1

2”, then (σ, σ) is the
unique Nash equilibrium for matching pennies. If we assume that the players
will indeed play the matching pennies game in this way, we can replace this
part of the tree with the expected payoffs for the two players – in this case
(0, 0). We then have the truncated game tree shown in Figure 5.5(b). On the
right-hand side of the tree player 2 should obviously choose R, which leads to
the truncated game tree shown in Figure 5.5(c). So, at the start of the game,
if player 1 chooses A they get an expected payoff of zero. On the other hand,
if they choose B, they get a payoff of -1. So the backward induction solution is
that player 1 should use the strategy “A then σ” and player 2 should use “σ if
A, R if B”. We can shorten this solution without ambiguity to (Aσ, σR).

As we saw in Section 2.3, there are two ways of defining a randomising strat-
egy. The randomising strategy we found in the previous example is known as
a behavioural strategy . In a behavioural strategy, the opportunity for randomi-
sation (by the appropriate player) occurs at each information set. In working
backwards through the game tree we found a best response at each information
set so the end result is an equilibrium in behavioural strategies. The alternative
is known as a mixed strategy, which is formed by taking weighted combinations
of pure strategies (see Section 4.2)

σ =
∑
s∈S

p(s)s with
∑
s∈S

p(s) = 1 .

It is randomising strategies defined in the second way that appear in the def-
inition of a Nash equilibrium. When we wish to distinguish between the two
sorts of strategy, we will denote a behavioural strategy by the symbol β.

In Section 5.2, we saw that the equilibrium in behavioural strategies was
equivalent to a Nash equilibrium of the strategic form game in a specific exam-
ple. The next theorem shows that for any equilibrium in behavioural strategies
there is a Nash equilibrium in mixed strategies that gives the same payoffs to
both players.

Theorem 5.5

Let (β∗
1 , β∗

2) be an equilibrium in behavioural strategies. Then there exist mixed
strategies σ∗

1 and σ∗
2 such that
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Figure 5.5 Solution of a general dynamic game containing both sequential
and simultaneous decisions by backward induction (a) Original game. (b) First
truncation. (c) Second truncation. (See Example 5.4 for a description of the
procedure.)

(a) πi(σ∗
1 , σ∗

2) = πi(β∗
1 , β∗

2) for i = 1, 2 and

(b) the pair of strategies (σ∗
1 , σ∗

2) is a Nash equilibrium.

Proof

(a) Consider one of the players. For any fixed strategy of the other player, it
follows from Theorem 2.16 (by replacing “decision nodes” with “information
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sets”) that every behavioural strategy has a mixed strategy representation.2

Because the two representations assign the same weight to each path through
the game tree, it follows that πi(σ∗

1 , σ∗
2) = πi(β∗

1 , β∗
2) for i = 1, 2.

(b) Suppose that, although (β∗
1 , β∗

2) is an equilibrium in behavioural strategies,
(σ∗

1 , σ∗
2) is not a Nash equilibrium. Then one of the players must have an al-

ternative strategy that yields a higher payoff. Without loss of generality, we
will assume this is player 1 and call this strategy σ′

1. Because this strategy has
a different payoff against σ∗

2 , its behavioural representation must be different
from β∗

1 . Let us call it β′
1. Then

π1(β′
1, β

∗
2) = π1(σ′

1, σ
∗
2)

> π1(σ∗
1 , σ∗

2)

= π1(β∗
1 , β∗

2)

which contradicts the assumption that (β∗
1 , β∗

2) is an equilibrium in behavioural
strategies.

Now that we have shown that equilibria in behavioural strategies are equiv-
alent to Nash equilibria, we can drop the distinction between behavioural and
mixed strategies and denote an arbitrary strategy by σ.

Exercise 5.5

Find the strategic form of the game from Example 5.4. Find mixed strate-
gies σ∗

1 and σ∗
2 that give both players the same payoff they achieve by

using the behavioural strategies found by backward induction. Show that
the pair (σ∗

1 , σ∗
2) is a Nash equilibrium.

Exercise 5.6

A firm (the “Incumbent”) has a monopoly in a market worth £6 million.
A second firm (the “Newcomer”) is thinking of entering this market.
If the Newcomer does enter the market, the Incumbent can either do
nothing or start a price war. The cost of a price war is £2 million to each
firm. If the Newcomer enters then the two firms share the market equally.
If the Newcomer does not enter then its next best option provides an
income of £2 million. (a) Draw a game tree for this situation and find an
equilibrium in behavioural strategies. (b) Construct the Strategic Form
of this game and find all the Nash equilibria.

2 We assume that the players have perfect recall – that is, they do not forget the
decisions they have made in the past. This ensures that each player makes a unique
sequence of decisions to arrive at any particular information set.
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5.5 Subgame Perfection

Using the extended form of backward induction to eliminate “unreasonable”
Nash equilibria finds what are known as subgame perfect Nash equilibria. In
this section, we give a formal definition of subgame perfection.

Definition 5.6

A subgame is a part (sub-tree) of a game tree that satisfies the following con-
ditions.

1. It begins at a decision node (for any player).

2. The information set containing the initial decision node contains no other
decision nodes. That is, the player knows all the decisions that have been
made up until that time.

3. The sub-tree contains all the decision nodes that follow the initial node
(and no others).

Example 5.7

In the sequential decision dinner party game of Figure 5.1, the subgames are
(i) the parts of the game tree beginning at each of the wife’s decision nodes
and (ii) the whole game tree.

Example 5.8

The only subgame of the “simultaneous” decision dinner party game (in either
version of the game tree shown in Figure 5.4) is the whole game.

Definition 5.9

A subgame perfect Nash equilibrium is a Nash equilibrium in which the be-
haviour specified in every subgame is a Nash equilibrium for the subgame.
Note that this applies even to subgames that are not reached during a play of
the game using the Nash equilibrium strategies.

Example 5.10

In the dinner party game of Example 5.1, the Nash equilibrium (M, RW ) is a
subgame perfect Nash equilibrium because (i) the wife’s decision in response
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Figure 5.6 A dynamic game with multiple subgame perfect Nash equilibria.
See Example 5.11 for a description of the solution.

to a choice of meat is to choose red wine, which is a Nash equilibrium in that
subgame; (ii) the wife’s decision in response to a choice of fish is to choose white
wine (a Nash equilibrium in that subgame); and (ii) the husband’s decision is
to choose meat, which (together with his wife’s strategy of RW , constitutes a
Nash equilibrium in the entire game. However, the Nash equilibrium (F, WW )
is not subgame perfect because it specifies a behaviour (choosing W ) that is
not a Nash equilibrium for the subgame beginning at the wife’s decision node
following a choice of meat by her husband.

It follows from the definition of a subgame perfect Nash equilibrium that
any Nash equilibrium that is found by backward induction is subgame perfect.
If a simultaneous decision subgame occurs, then all possible Nash equilibria of
this subgame may appear in some subgame perfect Nash equilibrium for the
whole game.

Example 5.11

Consider the game described by the game tree in Figure 5.6. The simultane-
ous decision subgame has three Nash equilibria: (C, C), (D, D), and a mixed
strategy equilibrium (σ∗

1 , σ∗
2) giving each player a payoff of 1

4 . So the subgame
perfect Nash equilibria are (AC, CL), (BD,DL), and (Bσ∗

1 , σ∗
2L).
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Figure 5.7 Game tree for Exercise 5.7.

Theorem 5.12

Every finite dynamic game has a subgame perfect Nash equilibrium.

Proof

The result follows immediately from Definition 5.9 together with Nash’s theo-
rem.

Exercise 5.7

Find all the subgame perfect Nash equilibria for the game shown in
Figure 5.7.

Exercise 5.8

Find all the subgame perfect Nash equilibria of the game shown in Fig-
ure 5.8.

5.6 Nash Equilibrium Refinements

Subgame perfection is one of many proposed Nash equilibrium refinements.
These attempt to supplement the definition of a Nash equilibrium with extra
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Figure 5.8 Game tree for Exercise 5.8.

conditions in order to reduce the number of equilibria to a more “reasonable”
set. Ideally, the number of equilibria would be reduced to one, and that equi-
librium would then be considered the solution of the game. There are two
problems with this approach. First, the definition of “reasonable” varies ac-
cording to the situation being modelled. Second, the number of equilibria that
satisfy the refinement conditions is rarely just one: often several equilibria re-
main – see Example 5.11. Moreover, while subgame perfect equilibria always
exist, other types of refinement may lead to some games having no equilibria
that satisfy the additional conditions.

Subgame perfection tries to select particular equilibria as being more rea-
sonable by moving backwards through the game tree. An alternative approach,
called forward induction, moves forward through the tree. Let us look again at
Example 5.11. The “problem” with subgame perfection in that game is that it
does not provide a way to select between the three possible Nash equilibrium
behaviours in the simultaneous decision subgame. However, if play has reached
that subgame, player 2 could reasonably assume that player 1 will use C be-
cause it is only the (C, C) equilibrium that will result in a payoff greater than
2 (which player 1 could have received by using B at the beginning). Player
1, realising that their opponent will reach this conclusion, is then confident of
receiving a payoff of 3 for choosing A at the beginning and, therefore, chooses
that action instead of B. Thus the equilibrium supported by forward induction
is (AC, CL).
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Figure 5.9 Game tree for Exercise 5.9.

Exercise 5.9

Consider the game shown in Figure 5.9. Find all the subgame perfect
Nash equilibria. Which of these equilibria is supported by a forward
induction argument?

A problem that is common to both subgame perfection and forward induc-
tion is that they assume the players will behave rationally (i.e., select Nash
equilibrium behaviours that satisfy all the supplementary conditions that have
been deemed reasonable) in parts of the game tree that would not be reached
if the players act as prescribed by the equilibrium. But if those parts of the
game tree will only be reached as a consequence of irrational behaviour by one
or more players, why should we – or, indeed, the players themselves – assume
that rational behaviour will reassert itself at that point?

Example 5.13

Consider the game shown in Figure 5.10. The unique subgame perfect Nash
equilibrium is one in which both players will play L at every opportunity.
Therefore, we (and the players) should expect player 1 to use L at the beginning
of the game – at which point the game ends. Suppose that, contrary to this
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Figure 5.10 A game that illustrates a problem with subgame perfection.
The unique subgame perfect Nash equilibrium leads to player 1 using L at
the beginning of the game. But what should player 2 do if player 1 behaves
irrationally and gives them the opportunity to make a decision?

expectation, player 1 uses R and consequently player 2 gets to make a decision.
What should player 2 do? The backward induction argument, which is based
on the assumption that player 1 will behave rationally in the future, would
suggest that player 2 should use L at this point. But player 1 has already
behaved irrationally once, so perhaps they will do so again. This argument
suggests that player 2 may be better off choosing R, thus giving player 1 the
opportunity to use R again.

The problem is that we are attempting to analyse irrational behaviour on
the basis that the players are rational. Although this appears to be a problem
that is impossible to solve, there is one way to cut the Gordian knot. This is
to assume that the players are perfectly rational in their intentions but that
they make mistakes in the execution of those intentions. In other words, the
unexpected behaviour is only apparently irrational. Think of a chess player
about to move a piece. Two legal moves are available, one of which is better
than the other. The player picks up the piece and moves it towards the better
of the finishing positions. However, at the last minute, their hand trembles and
they place the piece in the “wrong” square. Using this analogy, Nash equilibria
that remain when the possibility of (small) mistakes is taken into account are
called trembling hand Nash equilibria. Typically the probability of a mistake is
characterised by a number ε and the limit as ε → 0 is taken.

This characterisation of unexpected behaviour implies that a mistake by a
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player at one time does not make it more likely that the same player will make
another mistake in the future – the “trembles” are uncorrelated. This supports
the subgame perfect Nash equilibrium in the game shown in Figure 5.10: player
2 should use L if they get the opportunity, so long as the probability of making
a mistake is small enough.

Exercise 5.10

Consider the game from Example 5.13. Let the probability that player 1
makes a mistake be ε. Find an ε̄ such that for all ε < ε̄ player 2 should
use L if given the opportunity.



6
Games with Continuous Strategy Sets

6.1 Infinite Strategy Sets

For ease of exposition, most of this book is devoted to models in which players
have discrete and finite strategy sets. However, several classic games describe
situations in which the players do not choose actions from a discrete set; instead
their pure strategy sets are subsets of the real line. In this chapter, we give a
few examples to show how the concepts of game theory are easily extended to
such cases. Economic models of a duopoly provide examples with pure-strategy
Nash equilibria, and the so-called War of Attrition has an equilibrium involving
mixed strategies.

Suppose the pure strategy (action) sets are a subset of the real line [a, b].
A pure strategy is then a choice x ∈ [a, b] and a mixed strategy is defined by
giving a function p(x) such that the probability that the choice lies between x

and x+dx is p(x)dx. The existence of Nash equilibria for games with continuous
pure-strategy sets was proved independently by Debreu, Glicksburg, and Fan
in 1952 (see Myerson (1991) or Fudenberg & Tirole (1993) for details).

6.2 The Cournot Duopoly Model

A duopoly is a market in which two firms compete to supply the same set
of customers with the same product. There are three classic duopoly models:
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the Cournot duopoly, the Bertrand duopoly, and the Stackelberg duopoly –
all named after their originators. In the Bertrand duopoly, the amount of the
product consumed is determined by the price at which it is sold and the two
firms have to decide simultaneously the price at which they will try to sell
their stock. The firm that sets the lower price “captures the market” and the
firm that sets the higher price sells nothing. A simple analysis of this situation
using the elimination of dominated strategies shows that the firms should set a
price that exactly matches their costs of production (otherwise the other firm
could undercut their price). In the Cournot and Stackelberg duopoly models,
the two firms have to decide how much of their product to manufacture, and
the price at which the product is sold is determined by the total amount made.
In the Cournot model, the decisions are made simultaneously while in the
Stackelberg model the decisions are made sequentially with the decision of the
first firm being public knowledge. Economists sometimes call the solutions of
these three models a “Bertrand equilibrium”, a “Cournot equilibrium”, and a
“Stackelberg equilibrium”. However, they are all just Nash equilibria of their
respective models, with the equilibrium in the Stackelberg case being subgame
perfect.

Consider two firms competing for a market by making some infinitely divis-
ible product, such as petroleum. Cournot’s model is based on allowing the firms
to choose how much of the product they make, so the set of actions for each
firm is a range of quantities qi which it could produce. Because the product is
infinitely divisible, this action set is continuous.

If Firm i produces an amount qi of the product, the total amount produced
is Q = q1 + q2. The market price of the product is assumed to depend on the
total supply:

P (Q) =

{
P0

(
1 − Q

Q0

)
if Q < Q0

0 if Q ≥ Q0.

So the market price drops from a maximum of P0 when the product is very
scarce to zero when a quantity Q0 is is produced. The production costs are
assumed to be C(qi) = cqi (i.e., there are no fixed costs and the cost of making
a unit of the product is the same for each firm). The payoff for each firm is
given by the profit that it makes in a market determined by the behaviour of
both firms. The payoff to Firm i is, therefore,

πi(q1, q2) = qiP (Q) − cqi.

Notice that it certainly makes no sense for either firm to produce a quantity
greater than Q0, because that would certainly lead to a loss rather than a
profit. Consequently, we can restrict the action set to the range [0, Q0].

We begin by finding the best response for Firm 1 against every possible
production quantity that Firm 2 could choose. The best response is to choose
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a production quantity q̂1 that maximises the profit for Firm 1, given a value of
q2. So we solve

∂π1

∂q1
(q̂1, q2) = 0

to find

q̂1 =
Q0

2

(
1 − q2

Q0
− c

P0

)
.

To check that this is really a best response (and not a “worst response”) we
calculate

∂2π1

∂q2
1

(q̂1, q2) = −
(

P0

Q0

)
< 0 .

We also need to confirm that q̂1 + q2 ≤ Q0, so that the firms are making a
non-negative profit:

q̂1 + q2 =
Q0

2

(
1 − q2

Q0
− c

P0

)
+ q2

=
Q0

2
+

q2

2
− cQ0

2P0

≤ Q0

2
+

Q0

2
− cQ0

2P0

= Q0

(
1 − c

2P0

)
< Q0.

Similarly, we find the best response to a choice of q1 is for Firm 2 to produce

q̂2 =
Q0

2

(
1 − q1

Q0
− c

P0

)
.

A pure strategy Nash equilibrium is a pair (q∗
1 , q∗

2), each of which is a best
response to the other. Such a pair can be found by solving the simultaneous
equations

q∗
1 =

Q0

2

(
1 − q∗

2

Q0
− c

P0

)

q∗
2 =

Q0

2

(
1 − q∗

1

Q0
− c

P0

)
.

The solution is

q∗
1 = q∗

2 =
Q0

3

(
1 − c

P0

)
≡ q∗

c
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where we have defined q∗
c as the value of the quantity chosen at the equilibrium

by each firm. At this equilibrium the payoff to each firm is

π1(q∗
c , q∗

c ) = π2(q∗
c , q∗

c )

= q∗
cP (2q∗

c ) − cq∗
c

=
Q0P0

9

(
1 − c

P0

)2

Let us compare this competitive equilibrium with the situation that holds
under a monopoly. A monopolist maximises

πm(q) = qP (q) − cq

and the optimal strategy for a monopolist is, therefore,

q∗
m =

Q0

2

(
1 − c

P0

)
.

Because q∗
m < 2q∗

c , the price at which goods are sold is higher for the monopoly
than it is for the two competing firms. So the model indicates that competition
operates to benefit the consumer.

Suppose, instead, the two firms in the duopoly could form a cartel and agree
to use the strategies

q1 = q2 =
1
2
q∗
m .

That is they each produce half of the optimum quantity for a monopolist. Then
they would receive profits of

πi(
1
2
q∗
m,

1
2
q∗
m) =

1
2
q∗
mP (q∗

m) − 1
2
cq∗

m

=
Q0P0

8

(
1 − c

P0

)2

which are greater than the Cournot payoff, and the price paid by consumers
would be the same as they would pay under a monopoly. However, such col-
lusion is unstable, because the best response to a firm producing the cartel
quantity is to produce

q̂ =
Q0

2

(
1 − q∗

m

2Q0
− c

P0

)

=
3
4
q∗
m

>
1
2
q∗
m .

Note that we have not proved that cartels are impossible, only that they will
not occur in situations described by the Cournot model. We will return to this
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question in Chapter 7 where we will discuss a model in which cartels can arise.

Exercise 6.1

Consider the asymmetric Cournot duopoly game where the marginal
cost for Firm 1 is c1 and the marginal cost for Firm 2 is c2. If 0 < ci <
1
2P0 ∀i, what is the Nash equilibrium? If c1 < c2 < P0 but 2c2 > P0+c1,
what is the Nash equilibrium?

Exercise 6.2

Consider the n-player Cournot game. n identical firms (i.e., identical
costs) produce quantities q1, q2, . . . , qn. The market price is given by
P (Q) = P0(1 − Q/Q0) where Q =

∑n
i=1 qi. Find the symmetric Nash

equilibrium (i.e., q∗
i = q∗ ∀i). What happens to each firm’s profit as

n → ∞?

Exercise 6.3

Two adjacent countries (labelled by i = {1, 2}) each have industries that
emit pollution at a level ei tonnes per annum. Pollution from one country
has a reduced effect on the other, so that the total level of pollution in
country 1 is E1 = e1 + ke2 (where 0 < k < 1) and the total level of
pollution in country 2 is E2 = e2 + ke1. Initially, each country produces
an amount of pollution e0. However, the parliament in each country
can vote to reduce the amount of pollution that it produces at a cost
of c pounds per tonne per annum. The cost to the government-funded
health service in each country increases with the total level of pollution
as B0E

2
i . Construct the payoffs Bi(e1, e2) for each of the countries and

determine the equilibrium level of pollution produced in each country,
assuming that the parliaments vote simultaneously.

6.3 The Stackelberg Duopoly Model

In the Stackelberg model, two firms (i = 1, 2) are competing to sell a divisible
product and must decide how much of it to produce, qi. As in the Cournot
model, we assume that the market price for the product is given by

P (Q) = P0

(
1 − Q

Q0

)

where Q = q1 + q2 and that the cost of a unit of production for each firm is
c. Unlike the Cournot duopoly model, decisions are made sequentially: Firm
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1 (termed the “market leader”) decides on a quantity to produce and this
decision is observed by Firm 2 (the “market follower”), which then decides on
the quantity that it will produce. As usual, we assume that each firm wishes
to maximise its profit and that P0 > c.

We solve this game by backward induction to find a subgame perfect Nash
equilibrium. We begin by finding the best response of Firm 2, q̂2(q1), for every
possible choice of production quantity by Firm 1. Given that Firm 1 knows
Firm 2’s best response to every choice of q1, we can find a Nash equilibrium
for this game by determining the maximum payoff that Firm 1 can achieve
given that Firm 2 will always use its best response to any particular choice of
quantity by Firm 1.

Firm 2’s profit is π2(q1, q2) = q2[P (Q)−c] and the best response to a choice
of q1 is found by solving

∂π2

∂q2
(q1, q̂2) = 0

which gives

q̂2(q1) =
Q0

2

(
1 − q1

Q0
− c

P0

)

If Firm 1 chooses q1 and Firm 2 chooses the best response q̂2(q1), Firm 1’s
profit is

π1(q1, q̂2(q1)) = q1

[
P0

(
1 − q1 + q2(q1)

Q0

)
− c

]

= q1
P0

2

(
1 − q1

Q0
− c

P0

)
.

So Firm 1 maximises its profit at

q̂1 =
Q0

2

(
1 − c

P0

)
.

The Nash equilibrium is, therefore,

q∗
1 =

Q0

2

(
1 − c

P0

)
q∗
2 = q̂2(q∗

1)

=
Q0

4

(
1 − c

P0

)
.

It is interesting to note that although Firm 2 has more information than
Firm 1 – it knows Firm 1’s decision, which has already been made, whereas
Firm 1 does not know Firm 2’s decision which is still in the future – it is Firm
1 that makes the greater profit (because q∗

1 > q∗
2).



6.3 The Stackelberg Duopoly Model 113

Exercise 6.4

Do consumers do better in the Cournot or in the Stackelberg model?

The subgame perfect Nash equilibrium derived above is sometimes called
the “Stackelberg equilibrium”. However, it is not the only Nash equilibrium in
the Stackelberg model. Another Nash equilibrium is for Firm 1 to produce the
Cournot quantity and for Firm 2 to produce the Cournot quantity regardless
of the production of Firm 1. If q1 = q∗

c then

q̂2 =
Q0

2

(
1 − q∗

c

Q0
− c

P0

)
= q∗

c

So Firm 2’s best response to q1 = q∗
c is q̂2 = q∗

c . If Firm 2 always chooses
q2 = q∗

c then Firm 1’s profit is

π1(q1, q
∗
c ) = q1

[
P0

(
1 − q1 + q∗

c

Q0

)
− c

]

The best response (for Firm 1) to q2 = q∗
c is found from

∂π1

∂q1
(q̂1, q

∗
c ) = 0

which gives

q̂1 =
Q0

2

(
1 − q∗

c

Q0
− c

P0

)
= q∗

c .

So Firm 1’s best response to q2 = q∗
c is q̂1 = q∗

c . Because, for both firms, the
best response to the other firm producing quantity q∗

c is to produce the quantity
q∗
c . the pair of strategies (q∗

c , q∗
c ) is a Nash equilibrium. Although q2 = q∗

c is a
best response to q1 = q∗

c , it is not a best response to q1 �= q∗
c . Consequently the

Nash equilibrium (q∗
c , q∗

c ) is not subgame perfect.

Exercise 6.5

Suppose a firm (the “Entrant”) is considering diversifying into a mar-
ket that is currently monopolised by another firm (the “Incumbent”).
Assuming that the market price for the product is given by

P (Q) = P0

(
1 − Q

Q0

)

where Q = qI + qE the cost of a unit of production for each firm is c

and the cost to the Entrant of building manufacturing facilities is CE ,
should the Entrant diversify? If the Entrant does diversify, should the
incumbent reveal its production plans or keep them a secret?
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6.4 War of Attrition

In a War of Attrition, two players compete for a resource of value v. This
could be two animals competing for ownership of a breeding territory or two
supermarkets engaged in a price war. The strategy for each player is a choice
of a persistence time, ti. The model makes three assumptions:

1. The cost of the contest is related only to its duration. There are no other
costs (e.g., risk of injury).

2. The player that persists the longest gets all of the resource. If both players
quit at the same time, then neither gets the resource.

3. The cost paid by each player is proportional to the shortest persistence
time chosen. (That is, no costs are incurred after one player quits and the
contest ends.)

Under these assumptions, the payoffs for the two players are

π1(t1, t2) =
{

v − ct2 if t1 > t2
−ct1 if t1 ≤ t2

and

π2(t1, t2) =
{

v − ct1 if t2 > t1
−ct2 if t2 ≤ t1.

There are two pure strategy Nash equilibria. The first is

t∗1 = v/c and t∗2 = 0

giving π1(v/c, 0) = v and π2(v/c, 0) = 0. This is a Nash equilibrium because,
for player 1,

π1(t1, 0) = v ∀t1 > 0

π1(0, 0) = 0

which gives
π1(t1, t∗2) ≤ π1(t∗1, t

∗
2) ∀t1.

For player 2, we have

π2(v/c, t2) = −ct2 < 0 ∀t2 ≤ v/c

π2(v/c, t2) = 0 ∀t2 > v/c .

Hence
π2(t∗1, t2) ≤ π2(t∗1, t

∗
2) ∀t2 .
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The second pure strategy Nash equilibrium is

t∗1 = 0 and t∗2 = v/c

giving π1(0, v/c) = 0 and π2(0, v/c) = v. The conditions showing that this
strategy pair is a Nash equilibrium are the same as the conditions for the first
with players 1 and 2 swapped over.

To find a mixed-strategy Nash equilibrium, it is convenient to consider
strategies based on the costs of the contest, x ≡ ct1 and y ≡ ct2. In terms of
costs, the payoffs are

π1(x, y) =
{

v − y if x > y

−x if x ≤ y

for player 1, and

π2(x, y) =
{

v − x if y > x

−y if y ≤ x

for player 2. A mixed strategy σ1 specifies a choice of cost in the range x to
x + dx with probability p(x)dx; and σ2 specifies a similar probability density
q(y). The expected payoff to player 1 if he chooses a fixed cost x against a
mixed strategy σ∗

2 is

π1(x, σ∗
2) =

∫ x

0
(v − y)q(y)dy +

∫ ∞

x

(−x)q(y)dy

where the first term arises from the probability that player 2 chooses cost y ≤ x,
and the second term from the probability that player 2 chooses y > x.

By extension of the Equality of Payoffs Theorem (Theorem 4.27) for ran-
domising strategies, we must have π1(x, σ∗

2) = constant. That is, for fixed σ∗
2 ,

π1(x, σ∗
2) is independent of x so

∂π1

∂x
= 0 .

Now
∂π1

∂x
=

d

dx

∫ x

0
(v − y)q(y)dy −

∫ ∞

x

q(y)dy − x
d

dx

∫ ∞

x

q(y)dy .

Using the fundamental theorem of calculus, the first term is

d

dx

∫ x

0
(v − y)q(y)dy = (v − x)q(x) .

Using the fundamental theorem of calculus and the fact that q(y) is a proba-
bility density, we have

d

dx

∫ ∞

x

q(y)dy =
d

dx

[
1 −

∫ x

0
q(y)dy

]
= −q(x) .
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So, we have

∂π1

∂x
= (v − x)q(x) −

∫ ∞

x

q(y)dy + xq(x)

= vq(x) −
∫ ∞

x

q(y)dy

= 0 .

From this we can identify q(y) as an exponential probability density, so we
put q(y) = ke−ky where k is a normalisation constant. Because∫ ∞

x

q(y)dy = k

∫ ∞

x

e−kydy = e−kx

we have vke−kx − e−kx = 0 or k = 1
v . Hence

q(y) =
1
v

exp
(
−y

v

)
.

In other words, the distribution of costs chosen under the mixed strategy is
exponential with mean cost v. The same argument for the other player yields
the same distribution of costs:

p(x) =
1
v

exp
(
−x

v

)
(i.e., the equilibrium is symmetric).

Now that we have found a distribution in terms of costs chosen, we can
easily find the Nash equilibrium in terms of the distribution of persistence
times chosen. Using

p(t) = p(x)
dx

dt
we have

p(t) =
c

v
exp

(
−ct

v

)
.

That is the distribution of times chosen is exponential with mean v/c.
Although p(t) is the distribution of persistence times chosen by each player,

it is not the distribution of contest durations. This distribution can be found
as follows.

P (duration ≤ t) = 1 − P (contest is still going at time t)

= 1 − P (neither player has quit before t) .

Now

P (Player i doesn’t quit before t) =
∫ ∞

t

p(τ)dτ

= exp
(

−ct

v

)
.
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Because the players’ decisions are independent, we have

P (duration ≤ t) = 1 − exp
(

−ct

v

)
exp

(
−ct

v

)

= 1 − exp
(

−2ct

v

)

i.e., contest durations are exponentially distributed with mean v/(2c).

Exercise 6.6

Show that the expected payoff when following this strategy is zero.

Exercise 6.7

In this section, we assumed that the cost of a contest was linearly re-
lated to its duration. Find the mixed strategy equilibrium for a War of
Attrition in which cost = kt2.



7
Infinite Dynamic Games

7.1 Repeated Games

Consider the following two (related) questions. In the Prisoners’ Dilemma, un-
cooperative behaviour was the predicted outcome although cooperative be-
haviour would lead to greater payoffs for all players if everyone was coopera-
tive. Interpreting the Prisoners’ Dilemma as a generalised social interaction, we
can ask the question: Is external (e.g., governmental) force required in order to
sustain cooperation or can such behaviour be induced in a liberal, individually
rational way? In the Cournot duopoly, cartels were not stable. However, in
many countries, substantial effort is expended in making and enforcing anti-
collusion laws. So it seems that, in reality, there is a risk of cartel formation.
How can cartels be stable?

A clue to a possible resolution of these problems lies in the response many
people have to the original form of the Prisoners’ Dilemma: it is the fear of
retaliation in the future that prevents each crook from squealing. In societies,
individuals often interact many times during their lives, and the effect on the
future seems to be an important consideration when any decision is made.
In the business arena, firms make production decisions repeatedly rather than
just once. So perhaps the cartel can be sustained by making promises or threats
about what will be done in the future.

Inspired by these observations, we will now consider situations in which
players interact repeatedly. The payoffs obtained by players in the game will
depend on past choices, either because they may condition their strategies on
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the history of the interaction or because past choices have placed them into a
different “state”.

Let us consider first the case when there is only one state in which a partic-
ular, single-decision game is played. This game is often called the stage game.
After the stage game has been played, the players again find themselves facing
the same situation (i.e., the stage game is repeated). Taken one stage at a time,
the only sensible overall strategy is for a player to use their Nash equilibrium
strategy for the stage game each time it is played. However, if the game is
viewed as a whole, the strategy set becomes much richer. Players may condi-
tion their behaviour on the past actions of their opponents or make threats
about what they will do in the future if the course of the game does not follow
a satisfactory path.

We will restrict our consideration to stage games with a discrete and finite
strategy set. This may seem like we are ruling out the possibility of discussing
the stability of cartels. However, the restriction does not, in fact, prevent us
from considering such questions.

Exercise 7.1

Consider the following finite version of the Cournot duopoly model.
Marginal costs are the same for both firms, and the market price is
determined by P (Q) = P0(1 − Q/Q0) where Q = q1 + q2 (i.e., the sum
of the production quantities chosen by the two firms). Each firm has a
pure-strategy set {M, C}, where

M: produce half the monopolist’s optimum quantity 1
2q∗

m = Q0
4 (1−c/P0)

C: produce the Cournot equilibrium quantity q∗
c = Q0

3 (1 − c/P0)

Show that this game has the form of a Prisoners’ Dilemma.

So, rather than analyse the discrete Cournot game with its complicated
payoffs, we will look at a Prisoners’ Dilemma game with payoffs:

P2

P1

C D
C 3,3 0,5
D 5,0 1,1

The basis for our discussion of repeated games will be the “Iterated Prisoners’
Dilemma” in which this stage game will be repeated (iterated) some number
of times. Initially, we will discuss games with a finite number of repeats. Then
we will consider games with an “infinite” number of repeats, which can be
interpreted as meaning that the players are uncertain about when the game
will end (see Section 3.5).



7.2 The Iterated Prisoners’ Dilemma 121

7.2 The Iterated Prisoners’ Dilemma

First, let us suppose that the Prisoners’ Dilemma is repeated just once so
that there are 2 stages in all. We solve this just like any dynamic game by
backward induction. In the final stage, there is no future interaction so the
only consequences for any choice of strategy is the payoff to be gained in that
stage. Because the best response is to play D regardless of the opponent’s
strategy, (D, D) is the Nash equilibrium in this subgame giving a contribution
of 1 to the total payoff for each player.

Now consider the first stage. Note that this stage on its own is not a subgame
– the subgame starting at the beginning of this stage is the whole game. Because
the strategies have been fixed for the final stage, payoffs for the subgame can be
calculated by adding the payoffs for the Nash equilibrium in the final stage (i.e.,
1 to each player) to the payoffs for the first stage to create a payoff table for the
entire game. Note that the pure-strategy set for each player in the entire game
is S = {CC, DC, CD, DD} but, because we are only interested in a subgame
perfect Nash equilibrium, we only need to consider a subset of the payoff table.

P2

P1

CD DD

CD 4, 4 1, 6
DD 6, 1 2, 2

The Nash equilibrium in this game is (DD, DD). So the subgame perfect Nash
equilibrium for the whole game is to play D in both stages. Note that a player
cannot induce cooperation in the first stage by promising to cooperate in the
second stage because they would not keep their promise and the other player
knows this. Nor can they induce cooperation in the first stage by threatening
to defect in the second stage, because this is what happens anyway.

The argument from backward induction can easily be extended to any finite
number of repeats, leading to the conclusion that the only solution is for both
players to play D in every stage. In other words, bilateral cooperation (or a
cartel) is not stable in the finitely repeated Prisoners’ Dilemma.

Exercise 7.2

Consider the repeated Prisoners’ Dilemma game with 2 stages using the
full pure-strategy set S = {CC, DC, CD, DD}. Show that both players
defecting in each stage is the unique Nash equilibrium.

Now let us consider an infinite number of repeats, indexed by t = 0, 1, 2, . . ..
If there is no end to the game (or the players don’t know when it will end),
then there is no last stage to work backwards from. If the length of the game
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is infinite, then at any stage there is still an infinite number of stages to go.
This suggests we should look for a stationary strategy (because all subgames
look the same).

Definition 7.1

A stationary strategy is one in which the rule for choosing an action is the same
in every stage. Note that this does not necessarily mean that the action chosen
in each stage will be the same.

Example 7.2

The strategies “Play C in every stage” and “Play D in every stage” are obvi-
ously stationary strategies in the Iterated Prisoners’ Dilemma. The conditional
strategy “Play C if the other player has never played D and play D otherwise”
is also stationary.

The payoff for a stationary strategy is the infinite sum of the payoffs
achieved in each stage. Suppose that player i receives a payoff ri(t) in stage t.
Then their total payoff is

∞∑
t=0

ri(t) .

Unfortunately, this straightforward approach leads to a problem. Consider the
strategy sC =“Play C in every stage”. If both players use this strategy, the
total payoff to either player is

πi(sC , sC) =
∞∑

t=0

3

= ∞
whereas, if one player uses the strategy sD =“Play D in every stage”, then the
total payoff to the defector is

π1(sD, sC) = π2(sC , sD)

=
∞∑

t=0

5

= ∞
So it is impossible to decide (by comparing total payoffs) whether sD is better
than sC .
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One solution is to discount future payoffs by a factor δ with 0 < δ < 1 so
that a player’s total payoff is

∞∑
t=0

δtri(t) .

Depending on the situation being modelled, the discount factor δ represents
inflation, uncertainty about whether the game will continue, or a combination
of these.

Example 7.3

With the introduction of a discount factor, the payoff if both players always
cooperate is

πi(sC , sC) =
∞∑

t=0

3δt

=
3

1 − δ

and the payoff to a unilateral defector is

π1(sD, sC) = π2(sC , sD)

=
∞∑

t=0

1δt

=
5

1 − δ
.

So all payoffs are finite.

Now that we can sensibly compare payoffs achieved by different strategies,
can permanent cooperation (a cartel) be stable outcome of the infinitely re-
peated Prisoners’ Dilemma? An answer to this question is provided by the
following example.

Example 7.4

Consider the trigger strategy1sG = “Start by cooperating and continue to co-
operate until the other player defects, then defect forever after” (this strategy
is sometimes given the name Grim). If both players adopt this strategy, then

1 This strategy is called a trigger strategy because a change in behaviour is triggered
by a single defection.
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we would observe permanent cooperation and each player would achieve a total
payoff

πi(sG, sG) = 3 + 3δ + 3δ2 + · · ·
=

3
1 − δ

.

Is (sG, sG) a Nash equilibrium?
For simplicity, let us assume that both players are restricted to a pure-

strategy set S = {sG, sC , sD} (we will relax this constraint in the next section).
Suppose player 1 decides to use the strategy sC (“always cooperate”) instead.
Once again, we would observe permanent cooperation and the payoff to each
player would be

π1(sC , sG) = π2(sC , sG)

=
3

1 − δ
.

The same result applies if player 2 decides to switch instead, so neither player
can do better (against sG) by switching to sC . Now consider player 1 using
the alternative strategy sD (“always defect”) against an opponent who uses
the trigger strategy sG. Then the sequence of actions used by the players is as
follows:

t = 0 1 2 3 4 5 . . .
Player 1 (sD): D D D D D D . . .
Player 2 (sG): C D D D D D . . .

The payoff for player 1 is

π1(sD, sG) = 5 + δ + δ2 + δ3 + · · ·
= 5 +

δ

1 − δ
.

Player 1 cannot do better by switching to sD from sG if

3
1 − δ

≥ 5 +
δ

1 − δ
.

(The same inequality arises if it is player 2 that switches.) This inequality is
satisfied if

δ ≥ 1
2

.

So the pair of strategies (sG, sG) is a Nash equilibrium if the discounting factor
is high enough.
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Exercise 7.3

Consider the Iterated Prisoners’ Dilemma with pure strategy sets S1 =
S2 = {sD, sC , sT , sA}. The strategy sT is the famous Tit-For-Tat (“Be-
gin by cooperating; then do whatever the other player did in the previous
stage”), and sA is a cautious version of Tit-for-Tat with which a player
begins by defecting and then does whatever the other player did in the
previous stage. What condition does the discount factor have to satisfy
in order for (sT , sT ) to be a Nash equilibrium?

Exercise 7.4

Consider the Iterated Prisoners’ Dilemma with pure-strategy sets S1 =
S2 = {sD, sC , sG} (i.e., unconditional defection, unconditional coopera-
tion, and the conditional cooperation strategy “Grim”). Write down the
strategic form of the game and find all the Nash equilibria.

Exercise 7.5

Consider a game in which the stage game with the payoff table is given
below is repeated an infinite number of times and payoffs are discounted
by a factor δ (0 < δ < 1) that is common to both players.

A B

A 1, 2 3, 1
B 0, 5 2, 3

Assume that the players are limited to selecting pure strategies from the
following 3 options.

sA: Play A in every stage game.

sB : Play B in every stage game.

sC : Begin by playing B and continue to play B until your opponent plays
A. Once your opponent has played A, play A forever afterwards.

Find the condition on δ such that (sC , sC) is a Nash equilibrium.

7.3 Subgame Perfection

The Nash equilibrium where both players adopt the trigger strategy sG is not
a subgame perfect Nash equilibrium for the following reason. At any point in
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the game, the future of the game (i.e., a subgame) is formally equivalent to the
entire game. The possible subgames can be divided into 4 classes: (i) neither
player has played D; (ii) both players have played D; (iii) player 1 used D in
the last stage but player 2 did not; and (iv) player 2 used D in the last stage
but player 1 did not. What does the Nash equilibrium strategy pair (sG, sG)
specify as the strategies to be used in each of these subgame classes?

In classes (i) and (ii) there is no conflict with the concept of subgame
perfection. In class (i), neither player’s opponent has played D so the strategy
sG specifies that cooperation should continue until the other player defects (i.e.,
sG again). That is the strategy pair specified for class (i) subgames is (sG, sG),
which is a Nash equilibrium of the subgame because it is a Nash equilibrium
of the entire game. In class (ii), both player’s opponents have defected so the
Nash equilibrium strategy pair (sG, sG) specifies that each player should play D

forever. That is, the strategy pair adopted in this class of subgame is (sD, sD)
which is a Nash equilibrium of the subgame since it is a Nash equilibrium of
the entire game.

However, in class (iii), sG specifies that player 1 should switch to using D

forever because his opponent has just played D. However, player 1 has not yet
played D so player 2 should continue to use sG (which, indeed, results in the use
of D from the next round onwards). Thus the Nash equilibrium for the whole
game specifies that the strategy pair (sD, sG) should be adopted in subgames
of class (iii). However, this pair is not a Nash equilibrium for the subgame
because player 2 could obtain a greater payoff by using sD rather than sG. A
similar argument applies to class (iv) subgames. Hence the Nash equilibrium
for the entire game does not specify that players play a Nash equilibrium in
every possible subgame, hence the Nash equilibrium (sG, sG) is not subgame
perfect.

Although, (sG, sG) is not a subgame perfect Nash equilibrium, a very similar
strategy does lead to a subgame perfect Nash equilibrium when it is adopted
by both players. Let sg = “Start by cooperating and continue to cooperate
until either player defects, then defect forever after”. The pair (sg, sg) is a
subgame perfect Nash equilibrium because it specifies that the players should
play (sD, sD) in the subgames of classes (iii) and (iv).

Exercise 7.6

Consider the Iterated Prisoners’ Dilemma with our usual set of payoffs.
Show that both players using the strategy Tit-for-Tat (“Begin by coop-
erating; then do whatever the other player did in the last stage”) is not
a subgame perfect Nash equilibrium if the discount factor is δ > 2

3 .

So far we have allowed repeated games to have only a limited set of strate-
gies. Is it possible to allow more general strategies? If we have found a Nash
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equilibrium candidate from the limited strategy set, can we determine whether
any other strategy will do better? For example, in the Iterated Prisoners’
Dilemma is the strategy sG still a Nash equilibrium strategy if more strategies
are allowed? If we restrict ourselves to subgame perfect Nash equilibria, then
an answer to these questions is provided by the “one-stage deviation principle”
for repeated games.

Definition 7.5

A pair of strategies (σ1, σ2) satisfies the one-stage deviation condition if neither
player can increase their payoff by deviating (unilaterally) from their strategy
in any single stage and returning to the specified strategy thereafter.2

Example 7.6

Consider the Iterated Prisoners’ Dilemma and the subgame perfect Nash equi-
librium (sg, sg) with sg being the strategy “Start by cooperating and continue
to cooperate until either player defects, then defect forever after”. Does this
pair of strategies satisfy the one-stage deviation condition?

At any given stage, the game will be in one of two classes of subgame:
either both players have always cooperated or at least one player has defected
in a previous round. If both players have always cooperated, then sg specifies
cooperation in this stage. If either player changes to action D in this stage,
then sg specifies using D forever after. The expected future payoff for the
player making this change is

5 +
δ

1 − δ

which is less than the payoff for continued cooperation if δ > 1
2 (which is just

the condition for (sg, sg) to be a Nash equilibrium). If either player has defected
in the past, then sg specifies defection in this stage. If either player changes to
action C in this stage, then sg still specifies using D forever after. The expected
future payoff for the player if they make this change is

0 +
δ

1 − δ

which is less than the payoff for following the behaviour specified sg provided
δ < 1. Thus the pair (sg, sg) satisfies the one-stage deviation condition provided
1
2 < δ < 1.

2 Compare this with the policy improvement algorithm for Markov decision processes
in Section 3.7.
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Theorem 7.7 (One-stage Deviation Principle)

A pair of strategies is a subgame perfect Nash equilibrium for a discounted
repeated game if and only if it satisfies the one-stage deviation condition.

Proof

For finitely repeated games, the equivalence of subgame perfection and the one-
stage deviation condition is guaranteed by the backward induction method.
(In fact, this shows that a subgame perfect Nash equilibrium payoff cannot
be improved by deviating in any finite number of stages.) Because the defini-
tion of subgame perfection implies the one-stage deviation condition for both
finitely and infinitely repeated games, it only remains to prove that the one-
stage deviation condition implies that a pair constitutes a subgame perfect
Nash equilibrium in an infinitely repeated game.

Suppose that, contrary to the statement of the theorem, a strategy pair
(σ1, σ2) satisfies the one-stage deviation condition but is not a subgame perfect
Nash equilibrium. It follows that there is some stage t at which it would be
better for one of the players, say player 1, to adopt a different strategy σ̂1. That
is, there is an ε such that

π1(σ̂1, σ2) − π1(σ1, σ2) > 2ε.

Now consider a strategy σ′
1 that is the same as σ̂1 from stage t up to stage

T and is the same as σ1 from stage T onwards. Because future payoffs are
discounted

|π1(σ̂1, σ2) − π1(σ′
1, σ2)| ∝ δT−t

so we can choose a T such that

π1(σ̂1, σ2) − π1(σ′
1, σ2) < ε.

Combining the two inequalities, we get

π1(σ′
1, σ2) − π1(σ1, σ2) > ε.

But σ1 and σ′
1 differ at only a finite number of stages, so this inequality con-

tradicts the one-stage deviation principle for finitely repeated games. It follows
that a strategy pair cannot satisfy the one-stage deviation condition without
also being a subgame perfect Nash equilibrium.

Exercise 7.7

Consider an Iterated Prisoners’ Dilemma with the following payoffs for
the stage game.
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P2

P1

C D
C 4,4 0,5
D 5,0 1,1

Let sP be the strategy (sometimes called Pavlov) “defect if only one
player defected in the previous stage (regardless of which player it was);
cooperate if either both players cooperated or both players defected in
the previous stage”. Use the one-stage deviation principle to find a con-
dition for (sP , sP ) to be a subgame perfect Nash equilibrium.

7.4 Folk Theorems

The Folk Theorem was given that name because the result was widely known
long before anyone published a formal proof. Since the original result, there
have been many variants each of which proves a slightly different result based
on slightly different assumptions. However, the general flavour of the result is
always the same: if the Nash equilibrium in a static game is socially sub-optimal,
players can always do better if the game is repeated and the discount factor
is high enough. These theorems are often also called “folk theorems” despite
having a well-attested origin. We have just seen an example of a folk theorem in
action in the previous section. In the Prisoners’ Dilemma, the Nash equilibrium
gives each player a poor payoff of 1 compared to the socially optimal payoff
of 3. This higher payoff can be achieved (in each stage) by both players as an
equilibrium of the repeated game if the discount factor is large enough.

In order to be a bit more specific, we will consider a folk theorem that was
proved by Friedman in 1971. To do this, we need the following definitions.

Definition 7.8

Feasible payoff pairs are pairs of payoffs that can be generated by strategies
available to the players.

Definition 7.9

Suppose we have a repeated game with discount factor δ. If we interpret δ as
the probability that the game continues, then the expected number of stages
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in which the game is played is

T =
1

1 − δ

Suppose the two players adopt (not necessarily Nash equilibrium) strategies σ1

and σ2, then the total expected payoff to player i is πi(σ1, σ2) and the average
payoffs (per stage) are given by

1
T

πi(σ1, σ2) = (1 − δ)πi(σ1, σ2).

Remark 7.10

The range of feasible payoff pairs in a static game and the range of feasible
average payoff pairs if that game is repeated are the same.

Definition 7.11

Individually rational payoff pairs are those average payoffs that exceed the stage
game Nash equilibrium payoff for both players.

Example 7.12

In the static Prisoners’ Dilemma, pairs of payoffs (π1, π2) equal to (1, 1), (0, 5),
(5, 0), and (3, 3) are obviously feasible since they are generated by combinations
of pure strategies. However, although each player could get a payoff as low as
0, the payoff pair (0, 0) is not feasible since there is no strategy pair which
generates those payoffs for the two players. If player 1 and player 2 use strategy
C with probabilities p and q, respectively, the payoffs are given by

(π1, π2) = (1 − p + 4q − pq, 1 − q + 4p − pq).

Feasible payoff pairs are found by letting p and q take all values between 0
and 1. Individually rational payoff pairs are those for which the payoff to each
player is not less than the Nash equilibrium payoff of 1. See Figure 7.1.

Theorem 7.13 (Folk Theorem)

Let (π∗
1 , π∗

2) be a pair of Nash equilibrium payoffs for a stage game and let
(v1, v2) be a feasible payoff pair when the stage game is repeated. For every
individually rational pair (v1, v2) (i.e., a pair such that v1 > π∗

1 and v2 >
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π1

π2

(3, 3)

(0, 5)

(5, 0)
(1, 1)

Figure 7.1 Feasible payoffs for the Prisoners’ Dilemma lie within the quadri-
lateral with vertices (1, 1), (0, 5), (3, 3), and (5, 0). Feasible average per-stage
payoffs for the Iterated Prisoners’ Dilemma lie within the same quadrilateral.
Individually rational payoffs for the Iterated Prisoners’ Dilemma lie in the
shaded area.

π∗
2), there exists a δ such that for all δ > δ there is a subgame perfect Nash

equilibrium with payoffs (v1, v2).

Proof

Let (σ∗
1 , σ∗

2) be the Nash equilibrium that yields the payoff pair (π∗
1 , π∗

2). Now
suppose that the payoff pair (v1, v2) is produced by the players using the actions
a1 and a2 in every stage (we will consider shortly what happens when this
assumption is not valid). Consider the following trigger strategy

“Begin by agreeing to use action ai; continue to use ai as long as both
players use the agreed actions; if any player uses an action other than
ai, then use σ∗

1 for ever afterwards.”

By construction any Nash equilibrium involving these strategies will be sub-
game perfect, so we only need to find the conditions for a Nash equilibrium.
Consider another action a′

1 such that the payoff in the stage game for player
1 is π1(a′

1, a2) > v1. Then the total payoff for switching to a′
1 against a player

using the trigger strategy is not greater than

π1(a′
1, a2) + δ

π∗
1

1 − δ
.
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It is, therefore, not beneficial to switch to a′
1 if δ ≥ δ1 where

δ1 =
π1(a′

1, a2) − v1

π1(a′
1, a2) − π∗

1
.

By assumption π1(a′
1, a2) > v1 > π∗

1 , so 1 > δ1 > 0. A similar argument
for player 2 leads to a minimum discount factor δ2 for player 2. Taking δ =
max(δ1, δ2) completes this part of the proof.

Now we suppose that the payoffs vi are achieved by using randomising
strategies σi. Assume that there exists a randomising device whose output is
observed by both players. Assume also that there is an agreed rule for turning
the output of the randomising device into a choice of action for each player.3

These assumptions mean that the strategies themselves (and not just the ac-
tions that happen to be taken) are observable. If the strategies are observable
in this way, then the previous argument may be repeated with actions ai and
a′

i being replaced by strategies σi and σ′
i.

7.5 Stochastic Games

A stochastic game is defined by a set of states X with a stage game defined for
each state. In each state x, player i can choose actions from a set Ai(x). One
of these stage games is played at each of the discrete times t = 0, 1, 2, . . .. The
choice of actions taken by the players in a particular state determines both the
immediate rewards obtained by the players and the probability of arriving in
any other given state at the next decision point. That is, given that the players
are in state x and choose actions a1 ∈ A1(x) and a2 ∈ A2(x), the players
receive immediate rewards r1(x, a1, a2) and r2(x, a1, a2) and the probability
that they find themselves in state x′ for the next decision is p(x′|x, a1, a2).

Definition 7.14

A strategy is called a Markov strategy if the behaviour of a player at time t

depends only on the state x. A pure Markov strategy specifies an action a(x)
for each state x ∈ X.

In this section, we will make the following simplifying assumptions.
3 For example, if player 1 has a choice of three actions a, b, and c and is required to

choose according to p(a) = 1
6 , p(b) = 1

3 , and p(c) = 1
2 . Then the players may agree

that a normal die should be thrown and that player 1 should choose a if the score
is 1, b if the score is 2 or 3, and c if the score is 4 or more.
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1. The length of the game is not known to the players (i.e., the horizon is
infinite).

2. The rewards and transition probabilities are time-independent.

3. The strategies of interest are Markov.

If the number of states is small and the number of actions available in each
state is small, then a stochastic game has a simple diagrammatic representation.
This diagrammatic representation is best introduced by means of an example.
(Compare the description of Markov decision processes in Chapter 3.)

Example 7.15

The set of states is X = {x, z}. In state x, both players can choose an action
from the sets A(x) = A(y) = {a, b}. The immediate rewards for player 1 for
the game in state x are r1(x, a, a) = 4, r1(x, a, b) = 5, r1(x, b, a) = 3, and
r1(x, b, b) = 2. This is a zero-sum game so r2(x, a1, a2) = −r1(x, a1, a2) for all
action pairs. If players choose the action pair [a, b] in state x, then they move to
state z with probability 1

2 and remain in state x with probability 1
2 . If any other

action pair is chosen, the players remain in state x with probability 1. If the
players are in state z, then they have the single choice set A(z) = {b} and the
immediate rewards r1(z, b, b) = r2(z, b, b) = 0. Once the players have reached
state z, they remain there with probability 1 (so z is a zero-payoff absorbing
state). This lengthy description can be presented much more concisely by means
of the diagram shown in Figure 7.2.

Consider a game in state x at time t. If we knew the Nash equilibrium
strategies for both players from time t + 1 onwards, we could calculate the
expected future payoffs each player would receive from time t + 1 onwards
given that they are starting in a particular state. Let us denote the expected
future payoff for player i starting in state x by π∗

i (x) (with the ∗ indicating
that these payoffs are derived using the Nash equilibrium strategies for both
players). At time t, the players would then be playing a single-decision game
with payoffs given by

πi(a1, a2) =

(
r1(x, a1, a2) + δ

∑
x′∈X

p(x′|x, a1, a2)π∗
1(x′)

)

where we have assumed that future payoffs are discounted by a factor δ for
each time step. We will call this game the effective game in state x.

For a Markov strategy, the expected future payoffs in state x are indepen-
dent of time. Therefore, the payoffs for a Markov-strategy Nash equilibrium
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P1
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3, −3

4, −4

2, −2

5, −5

(1, 0)

(1, 0)

(1, 0)

( 1
2 , 1

2 )

State = x
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0, 0

(0, 1)

State = z

Figure 7.2 The payoffs and state transitions for the stochastic game described
in Example 7.15 and solved in Example 7.16 with a discount factor δ = 2

3 . In
state x, the players play a zero-sum game. State z is a zero-payoff absorbing
state.

are given by the joint solutions of the following pairs of equations (one for each
state x ∈ X).

π∗
1(x) = max

a1∈A1(x)

(
r1(x, a1, a

∗
2) + δ

∑
x′∈X

p(x′|x, a1, a
∗
2)π

∗
1(x′)

)

π∗
2(x) = max

a2∈A2(x)

(
r2(x, a∗

1, a2) + δ
∑

x′∈X

p(x′|x, a∗
1, a2)π∗

2(x′)

)

Unfortunately, there is no straightforward and infallible method for solving
these equations. Nevertheless, a solution can often be found relatively easily,
as shown by the following example.

Example 7.16

Consider the stochastic game with the state transitions and payoffs given in
Figure 7.2 and discount factor δ = 2

3 . The value of being in state z is zero for
both players. Let v be the present value4 for player 1 of being in state x (the
value for player 2 is −v because this is a zero-sum game). This means that in
state x, the players are facing the following effective game.
4 This value is the expected total future payoff.
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P2

P1

a b

a 4 + 2
3v,−4 − 2

3v 5 + 1
3v,−5 − 1

3v

b 3 + 2
3v,−3 − 2

3v 2 + 2
3v,−2 − 2

3v

Clearly (b, a) is not a Nash equilibrium for any value of v. Ignoring marginal
cases, the Nash equilibrium for the effective game in state x will be

1. (a, a) if v < 3

2. (b, b) if v > 9

3. (a, b) if 3 < v < 9

Suppose that the players choose (a, a), then v = 4 + 2
3v =⇒ v = 12, which is

inconsistent with the requirement v < 3. Now suppose the players choose (b, b),
then v = 2 + 2

3v =⇒ v = 6, which is inconsistent with the requirement v > 9.
Finally, suppose that the players choose (a, b), then v = 5 + 1

3v =⇒ v = 15
2 ,

which is consistent with the requirement 3 < v < 9. So the unique Markov-
strategy Nash equilibrium has the players using the pair of actions (a, b) in
state x.

Exercise 7.8

Construct a two-state stochastic game for an Iterated Prisoners’ Dilemma
problem in which the subgame perfect strategy sg (“start by cooperat-
ing and continue to cooperate until either player defects, then defect
forever after”) can be represented as a Markov strategy. Show that both
players using this strategy is a Markov-strategy Nash equilibrium for the
stochastic game if δ ≥ 1

2 .
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Evolution



8
Population Games

8.1 Evolutionary Game Theory

So far we have considered two-player games in the framework of Classical Game
Theory, where the outcome depends on the choices made by rational and con-
sciously reasoning individuals. The solution for this type of game (the Nash
equilibrium) was based on the idea that each player uses a strategy that is
a best response to the strategy chosen by the other, so neither would change
what they were doing. For symmetric Nash equilibria, (σ∗, σ∗), we can give
an alternative interpretation of the Nash equilibrium by placing the game in
a population context. In a population where everyone uses strategy σ∗, the
best thing to do is follow the crowd; so if the population starts with every-
one using σ∗, then it will remain that way – the population is in equilibrium.
Nash himself introduced this view, calling it the “mass action interpretation”.
A natural question to ask is then: What happens if the population is close to,
but not actually at, its equilibrium configuration? Does the population tend to
evolve towards the equilibrium or does it move away? This question can be in-
vestigated using Evolutionary Game Theory, which was invented for biological
models but has now been adopted by some economists.

Evolutionary Game Theory considers a population of decision makers. In
the population, the frequency with which a particular decision is made can
change over time in response to the decisions made by all individuals in the
population (i.e., the population evolves). In the biological interpretation of
this evolution, a population consists of animals each of which are genetically
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programmed to use some strategy that is inherited by its offspring1. Initially,
the population may consist of animals using different strategies. The payoff
to an individual adopting a strategy σ is identified with the fitness (expected
number of offspring) for that type in the current population. Animals with
higher fitness leave more offspring (by definition) so in the next generation the
composition of the population will change. In the economic interpretation, the
population changes because people play the game many times and consciously
switch strategies. People are likely to switch to those strategies that give better
payoffs and away from those that give poor payoffs.

8.2 Evolutionarily Stable Strategies

As with any dynamical system, one interesting question is: What are the end-
points (if there are any) of the evolution? One type of evolutionary end-point
is called an evolutionarily stable strategy (ESS).

Definition 8.1

Consider an infinite population of individuals that can use some set of pure
strategies, S. A population profile is a vector x that gives a probability x(s)
with which each strategy s ∈ S is played in the population.

A population profile need not correspond to a strategy adopted by any
member of the population.

Example 8.2

Consider a population of individuals that can use two strategies s1 and s2. If
every member of the population randomises by playing each of the two pure
strategies with probability 1

2 , then the population profile is x = ( 1
2 , 1

2 ). In
this case, the population profile is identical to the mixed strategy adopted
by all population members. On the other hand, if half the population adopt
the strategy s1 and the other half adopt the strategy s2, then the population
profile is again x = (1

2 , 1
2 ), which is not the same as the strategy adopted by

any member of the population.

1 This phenotypic gambit was discussed in Section 1.4.
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Exercise 8.1

(a) Give three ways in which a population with profile x =
( 5

12 , 7
12

)
might

arise. (b) Consider an strategy set S = {s1, s2, s3}. If the population
consists of 40% of individuals using the strategy (1

2 , 0, 1
2 ) and 60% using

( 1
4 , 3

4 , 0), what is the population profile?

Consider a particular individual in a population with profile x. If that indi-
vidual uses a strategy σ, then the payoff to that individual is denoted π(σ,x).
(Note that the other “player” is actually the population and does not have a
payoff.) The payoff for this strategy is calculated by

π(σ,x) =
∑
s∈S

p(s)π(s,x) .

These payoffs represent the number of descendants (either through breeding
or through imitation) that each type of individual has. Therefore, the payoffs
determine the evolution of the population.

Example 8.3

Consider a population of N animals in which individuals are programmed to
use one of two strategies s1 and s2. Suppose that 50% of the animals use each
of the strategies, i.e., x = (1

2 , 1
2 ) and that, for this current population profile,

π(s1,x) = 6 and π(s2,x) = 4 .

In the next generation, there will be 6N/2 individuals using s1 and 4N/2 indi-
viduals using s2, so the new population profile will be x = (0.6, 0.4).

In order to proceed with the next generation we need to determine how the
payoffs change when the population profile alters: that is, we need to know how
π(s,x) behaves as a function of x. Mathematically, the distinction is whether
the payoff is a linear or non-linear function of the various probabilities x(s).
From a modelling viewpoint, we distinguish between two types of population
game: games against the field and pairwise contests.

Definition 8.4

A game against the field is one in which there is no specific “opponent” for a
given individual – their payoff depends on what everyone in the population is
doing.
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Games against the field are quite different from the games considered by
Classical Game Theory: one consequence of the population-wide interaction is
that the payoff to the given individual is not (necessarily) linear in the proba-
bilities x(s) with which the pure strategies are played by population members.

Definition 8.5

A pairwise contest game describes a situation in which a given individual plays
against an opponent that has been randomly selected (by Nature) from the
population and the payoff depends just on what both individuals do.

Pairwise contests are much more like games from Classical Game Theory
in that we can write

π(σ,x) =
∑
s∈S

∑
s′∈S

p(s)x(s′)π(s, s′)

for suitably defined pairwise payoffs π(s, s′).
Sometimes games against the field are referred to as “frequency-dependent

selection”, and the word “game” is reserved for pairwise contests where there
is an identifiable interaction between two individuals. However, general popu-
lation games may include interactions of both types, so we will refer to both
of them as “games”. This will also help us to maintain the distinction between
Classical and Evolutionary Game Theory, which is often obscured when only
pairwise contests are considered.

We are interested in the end points of the evolution of the population. In
other words, we wish to find the conditions under which the population is stable.
Let x∗ be the profile generated by a population of individuals who all adopt
strategy σ∗ (i.e., x∗ = σ∗). A necessary condition for evolutionary stability is

σ∗ ∈ argmax
σ∈Σ

π(σ,x∗) .

So, at an equilibrium, the strategy adopted by individuals must be a best
response to the population profile that it generates. Furthermore, we have the
population equivalent of Theorem 4.27.

Theorem 8.6

Let σ∗ be a strategy that generates a population profile x∗. Let S∗ be the
support of σ∗. If the population is stable, then π(s,x∗) = π(σ∗,x∗) ∀s ∈ S∗.
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Proof

If the set S∗ contains only one strategy, then the theorem is trivially true.
Suppose now that the set S∗ contains more than one strategy. If the theorem
is not true, then at least one strategy gives a higher payoff than π(σ∗,x∗). Let
s′ be the action that gives the greatest such payoff. Then

π(σ∗,x∗) =
∑
s∈S∗

p∗(s)π(s,x∗)

=
∑
s�=s′

p∗(s)π(s,x∗) + p∗(s′)π(s′,x∗)

<
∑
s�=s′

p∗(s)π(s′,x∗) + p∗(s′)π(s′,x∗)

= π(s′,x∗)

which contradicts the original assumption that the population is stable.

If σ∗ is a unique best response to x∗, then the evolution of the population
clearly stops. However, if there is some other strategy that does equally well in
the population with profile x∗, then the population could drift in the direction
of the other strategy and its corresponding population profile – unless it is
prevented from doing so.

Definition 8.7

Consider a population where (initially) all the individuals adopt some strat-
egy σ∗. Now suppose a (genetic) mutation occurs and a small proportion ε of
individuals use some other strategy σ. The new population (i.e., after the ap-
pearance of the mutants) is called the post-entry population and will be denoted
by xε.

Example 8.8

Consider a population in which S = {s1, s2} and σ∗ = (1
2 , 1

2 ). Suppose the
mutant strategy is σ = (3

4 , 1
4 ). Then2

xε = (1 − ε)σ∗ + εσ

= (1 − ε)(
1
2
,
1
2
) + ε(

3
4
,
1
4
)

2 There is a slight abuse of notation here because strategies and population profiles
are different objects. What we mean is that the components of the two vectors are
equal, i.e., x(s) = p(s), ∀s ∈ S.
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= (
1
2

+
ε

4
,
1
2

− ε

4
)

Definition 8.9

A mixed strategy σ∗ is an ESS if there exists an ε̄ such that for every 0 < ε < ε̄

and every σ �= σ∗

π(σ∗,xε) > π(σ,xε) .

In other words, a strategy σ∗ is an ESS if mutants that adopt any other
strategy σ leave fewer offspring in the post-entry population, provided the
proportion of mutants is sufficiently small. In the next two sections, we consider
the application of this definition – first in a game against the field and then a
pairwise contest.

8.3 Games Against the Field

Have you ever wondered why the ratio of males to females in (most) human
(and other animal) populations is 50:50? One way of phrasing the answer is
because that ratio is an ESS.

Example 8.10

Consider game defined by the following conditions.

1. The proportion of males in the population is µ and the proportion of females
is 1 − µ.

2. Each female mates once and produces n offspring.

3. Males mate (1 − µ)/µ times, on average.

4. Only females “make decisions”3.

For simplicity, assume that the females’ available pure strategies are either to
produce no female offspring (s1) or to produce no male offspring (s2). With
this strategy set, a general strategy σ = (p, 1 − p) produces a proportion p of
male offspring. A population profile x = (x, 1 − x) produces a sex ratio µ = x,
so we can write the population profile naturally in terms of the sex ratio as
x = (µ, 1 − µ).

3 That is, only female genes affect the sex ratio of offspring, so Natural Selection
acts only on females.
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Because the number of offspring is fixed at n, that clearly cannot be used
as the payoff (fitness) for a strategy. However, the number of grandchildren
does vary, so we will use that as the payoff. So, in a population with profile
x = (µ, 1 − µ), the payoffs are

π(s1,x) = n2 1 − µ

µ
(8.1)

π(s2,x) = n2 (8.2)

(n female children each produce n grandchildren for the female, and n male
children each get (1 − µ)/µ matings and produce n grandchildren from each
mating). The fitness of a mixed strategy σ = (p, 1 − p) is, therefore,

π(σ,x) = n2
(

(1 − p) + p

(
1 − µ

µ

))
.

Because n is independent of the strategy chosen, we can set n = 1 for ease of
calculation (we are, after all, interested in the sex ratio).

At this point, it might be tempting to construct a payoff table for the game,
such as

Population

Female
x = 1 x = 0

s1 π(s1, x = 1) π(s1, x = 0)
s2 π(s2, x = 1) π(s2, x = 0)

or, even

Population

Female
s1 s2

s1 π(s1, s1) π(s1, s2)
s2 π(s2, s1) π(s2, s2)

However, we should not do this for two reasons. First, the profile (x0 = (0, 1))
leads to µ = 0, which means the payoff for s1 is undefined. Second, it might
tempt us to believe that the pure-strategy payoffs in a general population are

π(si,x) = xπ(si, s1) + (1 − x)π(si, s2)

which they are not: in Equation 8.1, the payoff to the strategy s1 is a non-linear
function of the population profile.

The first of these problems is an affliction of the simple way we have set up
the basic model. However, because the evolutionarily stable population will turn
out to be well away from this state, we can ignore this problem and continue to
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use the simple formulation. An alternative approach is to specify pure strategies
that always produce a non-zero proportion of males – see Exercise 8.3.

Let us now try to find an ESS. Consider the following three cases.

1. If µ < 1
2 , then females using s1 (all male offspring) have more grandchildren,

which (eventually) causes µ to rise. So, s1 is not an ESS.

2. If µ > 1
2 , then females using s2 (all female offspring) have more grandchil-

dren, which causes µ to fall. So, s2 is not an ESS.

3. σ∗ = (1
2 , 1

2 ) is a potential ESS, because by Theorem 8.6

π(s1,x∗) = π(s2,x∗) = π(σ∗,x∗) (8.3)

if the population profile is x∗ = (1
2 , 1

2 ) (i.e. µ = 1
2 ).

Because Equation 8.3 is a necessary but not sufficient condition for evolu-
tionary stability, we need to check that σ∗ = (1

2 , 1
2 ) is, in fact, an ESS. Let

σ = (p, 1 − p) then
xε = (1 − ε)σ∗ + εσ

and
µε =

1
2
(1 − ε) + εp =

1
2

+ ε(p − 1
2
) .

The ESS condition is
π(σ∗,xε) > π(σ,xε)

where
π(σ∗,xε) =

1
2

+
1
2

(
1 − µε

µε

)
and

π(σ,xε) = (1 − p) + p

(
1 − µε

µε

)
.

The difference between the payoffs is

π(σ∗,xε) − π(σ,xε) = (p − 1
2
) + (

1
2

− p)
(

1 − µε

µε

)

= (
1
2

− p)
[
1 − µε

µε
− 1
]

= (
1
2

− p)
[
1 − 2µε

µε

]

If this difference is positive for any σ = (p, 1 − p) with p �= 1
2 then σ∗ is an

ESS. Because

p <
1
2

=⇒ µε <
1
2

=⇒ π(σ∗,xε) > π(σ,xε)
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and

p >
1
2

=⇒ µε >
1
2

=⇒ π(σ∗,xε) > π(σ,xε)

the mixed strategy σ∗ = (1
2 , 1

2 ) is an ESS.

Note that we have shown that a monomorphic (“one form”) population
where everyone uses the strategy σ∗ is evolutionarily stable, with profile x∗.
However, in this population individuals using s1 and individuals using s2 have
the same fitness as individuals using σ∗. So is a polymorphic (“many form”)
population in which, for example, 50% of animals use s1 and 50% use s2 also
stable? This polymorphic population also generates a profile x∗, but neither of
these strategies is an ESS on its own and the ESS formalism cannot deal with
polymorphisms – we will address this question in the next chapter.

Exercise 8.2

Consider a simplified version of the Internet. There are two operating
systems available to computer users: L and W . A user of system W

has a basic utility of 1, but L is a better operating system so a user
of L has a basic utility of 2. If two computers have the same operating
system, then they can communicate over the network. (N.B. this is not a
necessary requirement on the real Internet.) A user’s utility rises linearly
with the proportion of computers that can be communicated with, up
to a maximum increment of 2. Let x be the proportion of W -users, then
π(W,x) = 1 + 2x and π(L, x) = 2 + 2(1 − x). What are the ESSs in this
population game?

Exercise 8.3

Consider a sex ratio game in which females can choose between two pure
strategies:

s1: produce n offspring in which the proportion of males is 0.8

s2: produce n offspring in which the proportion of males is 0.2

Consider a female using the mixed strategy σ = (p, 1 − p) in a popula-
tion with a proportion of males = µ. (a) Find the expected number of
grandchildren for this female. (b) Hence show that, in a monomorphic
population, the only possible evolutionarily stable sex ratio has µ = 1

2 .
(c) Find the strategy which leads to µ = 1

2 in a monomorphic population
and show that it is evolutionarily stable.
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8.4 Pairwise Contest Games

As an example of a pairwise contest, let’s look at one of the first evolutionary
games that was invented to model conflict between animals. The two basic types
are called “Hawks” and “Doves”. However, they are not intended to represent
two different species of animal; instead they represent two types of behaviour
(i.e., actions or pure strategies) that could be exhibited by animals of the
same species. The terminology arises from human behaviour where those who
advocate pre-emptive military solutions to international problems are called
“Hawks” while those who would prefer a more diplomatic approach are called
“Doves”.

The biological significance of the Hawk-Dove game is that it provides an
alternative to group-selectionist arguments for the persistence of species whose
members have potentially lethal attributes (teeth, horns, etc.). The question to
be answered is the following. Because it is obviously advantageous to fight for
a resource (having it all is better than sharing), why don’t animals always end
up killing (or at least seriously maiming) each other? The group-selectionist
answer is that any species following this strategy would die out pretty quickly,
so animals hold back from all out contests “for the good of the species”. The
“problem” with this is that it seems to require more than just individual-based
Natural Selection to be driving Evolution. So, if group selection is the only
possible answer, then that would be a very important result. However, the
Hawk-Dove game shows that there is an alternative – one that is based fairly
and squarely on the action of Natural Selection on individuals. So, applying
Occam’s Razor, there is no need to invoke group selection.4

Example 8.11 (The Hawk-Dove Game)

Individuals can use one of two possible pure strategies

H : Be aggressive (“be a Hawk”)
D : Be non-aggressive (“be a Dove”).

In general, an individual can use a randomised strategy which is to be aggressive
with probability p, i.e., σ = (p, 1−p). A population consists of animals that are
aggressive with probability x, i.e., x = (x, 1−x), which can arise because (i) in
a monomorphic population, everyone uses the strategy σ = (x, 1−x), or (ii) in

4 William of Occam (1285–1349) was a Franciscan friar. His logical principle, as ex-
pressed in Summa Totius Logicae, states “frustra fit per plura quod potest fieri
per pauciora” (it is pointless to do with more what can be done with less). This
approach was echoed later by Isaac Newton (1642–1727) in the Philosophiae Nat-
uralis Principia Mathematica: “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their appearances”.
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a polymorphic population a fraction x of the population use σH = (1, 0) and a
fraction 1−x use σD = (0, 1). We will consider only monomorphic populations
for the moment.

At various times, individuals in this population may come into conflict over
a resource of value v. This could be food, a breeding site, etc. The outcome
of a conflict depends on the types of the two individuals that meet. If a Hawk
and a Dove meet, then the Hawk gains the resource without a fight. If two
Doves meet, then they “share” the resource. If two Hawks meet, then there is
a fight and each individual has an equal chance of winning. The winner gets
the resource and the loser pays a cost (e.g., injury) of c. The payoffs for a focal
individual are then

π(σ,x) = px
v − c

2
+ p(1 − x)v + (1 − p)(1 − x)

v

2
.

To make things interesting, we assume v < c (this is then “the Hawk-Dove
game”). It is easy to see that there is no pure-strategy ESS. In a population of
Doves, x = 0, and

π(σ,xD) = pv + (1 − p)
v

2
= (1 + p)

v

2

so the best response to this population is to play Hawk (i.e., individuals using
the strategy σH = (1, 0) will do best in this population). As a consequence, the
proportion of more aggressive individuals will increase (i.e., x increases). In a
population of Hawks, x = 1, and

π(σ,xH) = p
v − c

2

so the best response to this population is to play Dove (i.e., p = 0 – remember
that we have assumed v < c).

Is there a mixed-strategy ESS, σ∗ = (p∗, 1 − p∗)? For σ∗ to be an ESS, it
must be a best response to the the population x∗ = (p∗, 1−p∗) that it generates.
In the population x∗, the payoff to an arbitrary strategy σ = (p, 1 − p) is

π(σ,x∗) = pp∗ v − c

2
+ p(1 − p∗)v + (1 − p)(1 − p∗)

v

2

= (1 − p∗)
v

2
+

pc

2

[v
c

− p∗
]

If p∗ < v/c then best response is p̂ = 1 (i.e., p̂ �= p∗). If p∗ > v/c, then the best
response is p̂ = 0 (i.e., p̂ �= p∗). If p∗ = v/c, then any choice of p (including p∗)
gives the same payoff (i.e., π(σ∗,x∗) = π(σ,x∗)) and is a best response to x∗.
So we have

σ∗ =
(v

c
, 1 − v

c

)
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(i.e., be aggressive with probability v/c) as a candidate for an ESS. Recall that
v < c, so this is a proper mixed strategy.

To confirm that σ∗ is an ESS we must show that, for every σ �= σ∗,

π(σ∗,xε) > π(σ,xε)

where the post-entry population profile is

xε = ((1 − ε)p∗ + εp, ((1 − ε)(1 − p∗) + ε(1 − p))

= (p∗ + ε(p − p∗), 1 − p∗ + ε(p∗ − p)) .

Now

π(σ∗,xε) = p∗(p∗ + ε(p − p∗))
v − c

2
+ p∗(1 − p∗ + ε(p∗ − p))v

+ (1 − p∗)(1 − p∗ + ε(p∗ − p))
v

2

and

π(σ,xε) = p(p∗ + ε(p − p∗))
v − c

2
+ p(1 − p∗ + ε(p∗ − p))v

+ (1 − p)(1 − p∗ + ε(p∗ − p))
v

2
.

So, after a few lines of algebra (using the fact that p∗ = v/c), we find

π(σ∗,xε) − π(σ,xε) =
εc

2
(p∗ − p)2

> 0 ∀p �= p∗ (i.e. ∀σ �= σ∗)

which proves that σ∗ is an ESS.

Exercise 8.4

Consider a Hawk-Dove game with v ≥ c. Show that playing H is an ESS.

In order to provide a change of emphasis, we will now consider an economic
model for the introduction of currency as a medium of exchange. Because we
do not want to get mired in the economic details, the model will be rather
schematic.

Example 8.12 (The Evolution of Money)

On a remote, tropical island the inhabitants realise that trade could be con-
ducted more efficiently if they used something as a token for buying and selling,
rather than exchanging goods directly. On the island there are two objects that
could be used for this purpose: beads and shells. Each individual can choose
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to use beads or to use shells, but he can only complete a transaction if the
person he is attempting to trade with uses the same token. For simplicity, we
will normalise the payoffs so that a trader gets a utility increment of 1 if the
transaction succeeds and 0 if it fails.

The general strategy available to an individual is to use beads with proba-
bility p: i.e., σ = (p, 1−p). A general population profile is x = (x, 1−x): i.e., the
proportion of individuals in the population who are using beads is x. Assuming
that an individual attempts to trade with a randomly selected member of the
population, his payoff is

π(σ,x) = px + (1 − p)(1 − x)

= (1 − x) + p(2x − 1) .

From this we see that

x >
1
2

=⇒ p̂ = 1 and p = 1 =⇒ x = 1

so σ∗
b = (1, 0) is a potential ESS, with a corresponding population profile

x = (1, 0). The post-entry population is

xε = (1 − ε)(1, 0) + ε(p, 1 − p)

= (1 − ε(1 − p), ε(1 − p))

In this population, the payoff for an arbitrary strategy is

π(σ,xε) = ε(1 − p) + p(1 − 2ε(1 − p))

and the payoff for the candidate ESS is

π(σ∗
b ,xε) = 1 − ε(1 − p) .

So

π(σ∗
b ,xε) − π(σ,xε) > 0

⇐⇒ (1 − p)(1 − 2ε(1 − p)) > 0 .

Now, ∀p �= p∗ we have 1 − p > 0, so σ∗
b is an ESS if and only if ε(1 − p) < 1

2 .
That is, the ε̄ mentioned in definition 8.9 of an ESS is equal to a half.

The strategy σ∗
s = (0, 1) is another ESS because in the relevant post-entry

population, xε = (εp, 1 − εp), the payoff for an arbitrary strategy is

π(σ,xε) = (1 − εp) − p(1 − 2εp)

and the payoff for the candidate ESS is

π(σ∗
b ,xε) = 1 − εp .
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So

π(σ∗
s ,xε) − π(σ,xε) > 0

⇐⇒ p(1 − 2εp) > 0 .

Now, ∀p �= p∗ we have p > 0, so σ∗
b is an ESS if and only if εp < 1

2 – i.e., ε̄ = 1
2 .

The final candidate for an ESS is σ∗
m =

( 1
2 , 1

2

)
, because

x =
1
2

=⇒ p̂ ∈ [0, 1] =⇒ x ∈ [0, 1]

(including, of course, x = 1
2 ). Consider the post-entry population

xε = (1 − ε)
(

1
2
,
1
2

)
+ ε(p, 1 − p)

=
(

1
2

− 1
2
ε(1 − 2p),

1
2

+
1
2
ε(1 − 2p)

)

The payoff for an arbitrary strategy is π(σ,xε) = 1
2 + 1

2ε(1−2p)2 and the payoff
for the candidate ESS is π(σ∗

m,xε) = 1
2 . So

π(σ∗
m,xε) − π(σ,xε) > 0

⇐⇒ −1
2
ε(1 − 2p)2 > 0 .

Because ε > 0 and p �= 1
2 , this condition cannot be satisfied; so σ∗

m is not an
ESS.

Putting the three results together, we can see that the population of is-
landers will evolve to use either beads or shells as currency; the final outcome
depends on the proportion of islanders that initially chooses beads.

Exercise 8.5

Consider a Prisoners’ Dilemma where the payoffs for an interaction be-
tween two individuals are given by

P2

P1

C D
C 3,3 0,5
D 5,0 1,1

If a population of individuals play this pairwise contest, what is the ESS?
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8.5 ESSs and Nash Equilibria

In this section, we show that the ESSs in a pairwise contest population game
correspond to a (possibly empty) subset of the set of Nash equilibria for an as-
sociated two-player game. We restrict our attention to pairwise contest games,
because the concept of a Nash equilibrium has no meaning for a game against
the field.

In a pairwise contest population game, the payoff to a focal individual using
σ in a population with profile x is

π(σ,x) =
∑
s∈S

∑
s′∈S

p(s)x(s′)π(s, s′) . (8.4)

This payoff is the same as would be achieved in a two-player game against
an opponent using a strategy σ′ that assigns p′(s) = x(s)∀s ∈ S, so we can
always associate a two-player game with a population game involving pairwise
contests.

Definition 8.13

If a pairwise contest population game has payoffs given by Equation 8.4, then
the associated two-player game is the game with payoffs given by the numbers5

π1(s, s′) = π(s, s′) = π2(s′, s).

In a monomorphic population, if σ∗ is an ESS, then x∗ = σ∗. So, if there
is a Nash equilibrium in the associated game corresponding to the ESS in the
population game, then it must be of the form (σ∗, σ∗). That is, a symmetric
Nash equilibrium can be associated with an ESS but an asymmetric one cannot.

Theorem 8.14

Let σ∗ be an ESS in a pairwise contest then, ∀σ �= σ∗ either

1. π(σ∗, σ∗) > π(σ, σ∗), or

2. π(σ∗, σ∗) = π(σ, σ∗) and π(σ∗, σ) > π(σ, σ)

Conversely, if either (1) or (2) holds for each σ �= σ∗ in a two-player game, then
σ∗ is an ESS in the corresponding population game.
5 By convention, player 1 is taken to be the focal player in the population game.
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Proof

If σ∗ is an ESS, then, by definition (for ε sufficiently small),

π(σ∗,xε) > π(σ,xε)

where xε = (1−ε)σ∗+εσ. For pairwise contests, this condition can be rewritten
as

(1 − ε)π(σ∗, σ∗) + επ(σ∗, σ) > (1 − ε)π(σ, σ∗) + επ(σ, σ) . (8.5)

Converse. If condition 1 holds, then Equation 8.5 can be satisfied for ε suf-
ficiently small. If condition 2 holds, then Equation 8.5 is satisfied for all
0 < ε < 1.
Direct. Suppose that π(σ∗, σ∗) < π(σ, σ∗), then ∃ε sufficiently small that Equa-
tion 8.5 is violated. So we have

(8.5) =⇒ π(σ∗, σ∗) ≥ π(σ, σ∗) .

If π(σ∗, σ∗) = π(σ, σ∗), then

(8.5) =⇒ π(σ∗, σ) > π(σ, σ) .

Remark 8.15

The Nash equilibrium condition is π(σ∗, σ∗) ≥ π(σ, σ∗) ∀σ �= σ∗ so the condi-
tion π(σ∗, σ) > π(σ, σ) in (2) is a supplementary requirement that eliminates
some Nash equilibria from consideration. In other words, there may be a Nash
equilibrium in the two-player game but no corresponding ESS in the popula-
tion game. The supplementary condition is particularly relevant in the case of
mixed-strategy Nash equilibria.

Theorem 8.14 gives us an alternative procedure for finding an ESS in a
pairwise contest population game:

1. write down the associated two-player game;

2. find the symmetric Nash equilibria of this game;

3. test the Nash equilibria using conditions (1) and (2) above.

Any Nash equilibrium strategy σ∗ that passes these tests is an ESS, leading to
a population profile x∗ = σ∗.
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Example 8.16

Consider The Hawk-Dove game again. The associated two-player game is

Player 2

Player 1

H D

H v−c
2 , v−c

2 v, 0

D 0, v v
2 , v

2

It is easy to see that (for v < c) there are no symmetric pure-strategy Nash
equilibria. To find a mixed-strategy Nash equilibrium, we use the Equality of
Payoffs theorem (Theorem 4.27)

π1(H, σ∗) = π1(D, σ∗)

⇐⇒ q∗ v − c

2
+ (1 − q∗)v = (1 − q∗)

v

2
⇐⇒ q∗ =

v

c
.

By the symmetry of the problem, we can deduce immediately that player 1 also
plays H with probability p∗ = v

c . To show that σ∗ = (p∗, 1 − p∗) is an ESS, we
must show that either condition (1) or condition (2) of Theorem 8.14 holds for
every σ �= σ∗. Because σ∗ is a mixed strategy, the Equality of Payoffs theorem
also tells us that that π(σ∗, σ∗) = π(σ, σ∗). So condition (1) does not hold, and
the ESS condition becomes

π(σ∗, σ) > π(σ, σ) .

Now
π(σ∗, σ) = p∗p

v − c

2
+ p∗(1 − p)v + (1 − p∗)(1 − p)

v

2
and

π(σ, σ) = p2 v − c

2
+ p(1 − p)v + (1 − p)2

v

2
.

So, after a few lines of algebra, we find

π(σ∗, σ) − π(σ, σ) =
c

2
(p∗ − p)2

> 0 ∀p �= p∗

which proves that σ∗ is an ESS.

Exercise 8.6

Find the ESSs for the population games defined by the following two-
player games.
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(a) P2

P1

R G B
R 1,1 0,0 0,0
G 0,0 1,1 0,0
B 0,0 0,0 1,1

(b) P2

P1

G H
G 3,3 2,2
H 2,2 1,1

(c) P2

P1

A B
A 4,4 0,1
B 1,0 2,2

(d) P2

P1

H D

H − 1
2 ,− 1

2 2,0

D 0,2 1,1

Exercise 8.7

A population of birds is distributed so that in any given area there are
only two females and two trees suitable for nesting (T1 and T2). If the
two females pick the same nesting site, then they each raise 2 offspring.
If they choose different sites, then they are more vulnerable to predators
and only raise 1 offspring each. This situation can be modelled as a
pairwise contest game. (a) Construct the 2-player payoff table and find
all the symmetric Nash equilibria of this game. (b) Determine which
of the Nash equilibria correspond to ESSs in the associated population
game.

Example 8.17

In Section 6.4, we saw that there is a symmetric, mixed-strategy Nash equi-
librium (σ∗, σ∗) for the War of Attrition game. An individual following this
strategy will persist for a time drawn at random from an exponential distribu-
tion with mean v/c (or, equivalently, will accept a cost x = ct drawn at random
from an exponential distribution with mean v). Is the strategy σ∗ an ESS?

Because the Nash equilibrium is mixed, we have

π(σ, σ∗) = π(σ∗, σ∗) ∀σ

(after all, that’s how the equilibrium was found). So we need to show that

π(σ∗, σ) > π(σ, σ) ∀σ

where σ is any pure or mixed strategy. This seems like a tall order, but fortu-
nately the task is easier than it appears. If we can show that

π(σ∗, x) − π(x, x) > 0 ∀x ∈ [0,∞)



8.6 Asymmetric Pairwise Contests 157

then it follows that

π(σ∗, σ) − π(σ, σ) = Ex [π(σ∗, x) − π(x, x)] > 0 ∀σ .

Now

π(σ∗, x) = (v − x)
∫ ∞

x

1
v

exp
(
−y

v

)
dy −

∫ x

0
y
1
v

exp
(
−y

v

)
dy

= 2v exp
(
−x

v

)
− v

and π(x, x) = −x. So

π(σ∗, x) − π(x, x) = 2v exp
(
−x

v

)
− v + x

which has a minimum value of v ln(2) at x = v ln(2). This proves that σ∗ is an
ESS.

8.6 Asymmetric Pairwise Contests

There are many situations in which the players engaged in a contest can be
distinguished. In economic contexts, they may be a buyer and a seller or they
may be a firm holding a monopoly in a market and a firm seeking to enter that
market. In biological problems, they may be male and female birds dividing up
the care of their offspring or they may be larger and smaller stags competing for
dominance over a harem of females. Such differences between individuals may
lead to an asymmetric payoff table: players may have different actions available
to them or the payoffs may differ according to whether the player is male or
female, a buyer or a seller. But even if no such payoff asymmetries arise, the
possibility that players can occupy different rôles in a game presents us with
a problem. For example, it may be reasonable for a male to do one thing and
a female to do another. How do we allow for such behaviour given that our
formulation of evolutionary stability requires a symmetric game?

In a population, an individual may find themselves playing a particular rôle
in one game and playing another rôle in a later encounter. Thus a general strat-
egy must specify behaviour for all rôles: use s in rôle r, use s′ in rôle r′, and
so on. By specifying rôle-conditioned strategies, we obtain a symmetric popu-
lation game. (At first sight, it may seem strange to specify strategies like “care
for offspring if male, leave if female” because any given individual is usually
either male or female throughout its entire life. In genetic terms, however, the
genes that are assumed to control behaviour will be passed down to offspring
that may be male or female, whatever the sex of the parent.) Payoffs can be
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calculated if we know how often an individual assumes a particular rôle and
how often the individuals who meet are playing in any two specified rôles. For
simplicity, we will assume that there are only two rôles of interest in any game
and that a player in one rôle always meets a player in the other rôle. Such
a game is said to possess “rôle asymmetry”. We will also assume, as is often
the case, that each individual finds themselves playing each rôle with equal
probability. For example, in a contest between males and females, a gene has
a 50% chance of finding itself controlling the behaviour of a male body, if the
sex ratio is 1:1.

Example 8.18

Consider a variation on the Hawk-Dove game in which two individuals are
contesting ownership of a territory that one of them currently controls. We
assume that the value of the territory and the costs of contest are the same for
both players. The difference with the standard Hawk-Dove game is that players
can now condition their behaviour on the rôle that they occupy – “owner” or
“intruder”. Therefore, pure strategies are now of the form “play Hawk if owner,
play Dove if intruder”, which we will represent by the pair of letters HD (a
strategy that is often called “Bourgeois”). The full set of pure strategies is HH,
HD, DH, and DD.6 We assume that any contest involves one player in each
rôle and that each player has an equal chance of being an owner or an intruder.
(In genetic terms, the genes that are currently in an owner may find themselves
passed on to an offspring that has yet to find a resource to control.) With these
assumptions, we can derive the payoff table shown in Figure 8.1. For example,
consider the expected payoff to players using HH against opponents who use
HD. Half the time they will be the owner using H against an intruder who
uses D, and half the time they will be an intruder using H against an owner
who also uses H. The expected payoff is

1
2
v +

1
2

v − c

2
=

3v − c

4
.

There are two symmetric pure-strategy Nash equilibria: [HD,HD] and
[DH, DH]. Because (for v < c)

v

2
>

3v − c

4
>

v

4
>

2v − c

4

the strategies HD and DH are both ESSs. There is no mixed strategy ESS
(see Exercise 8.8).

6 Surprisingly, the rather bizarre strategy “play Dove if owner, play Hawk if intruder”
is found in Nature (though rarely). See Maynard Smith (1982).
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Player 2

Player 1

HH HD DH DD

HH v−c
2 , v−c

2
3v−c

4 , v−c
4

3v−c
4 , v−c

4 v, 0

HD v−c
4 , 3v−c

4
v
2 , v

2
2v−c

4 , 2v−c
4

3v
4 , v

4

DH v−c
4 , 3v−c

4
2v−c

4 , 2v−c
4

v
2 , v

2
3v
4 , v

4

DD 0, v v
4 , 3v

4
v
4 , 3v

4
v
2 , v

2

Figure 8.1 Payoff table for the asymmetric Hawk-Dove game of Exam-
ple 8.18.

Exercise 8.8

Set v = 4 and c = 8 in the payoff table shown in Figure 8.1 and show
that there is no mixed strategy ESS.

The absence of mixed strategy ESSs is a general feature of games with rôle
asymmetry, as was shown by Selten in 1980. The proof is easier if we consider
behavioural rather than mixed strategies. We will consider only games with
two rôles and the same two actions in each rôle. In such a game, a general
behavioural strategy can be phrased as “use A with probability p1 in rôle 1,
use A with probability p2 in rôle 2”. If we denote a behavioural strategy by β

then we can write
β = (β1, β2)

where βi = (pi, 1 − pi) is the behaviour specified for rôle i. The payoff for β

against β′ is then

π(β, β′) =
1
2
π(β1, β

′
2) +

1
2
π(β2, β

′
1).

Theorem 8.19

In a pairwise contest game that possesses rôle asymmetry, all evolutionarily
stable strategies are pure.

Proof

Suppose that, contrary to the theorem, β∗ is a randomising behavioural strat-
egy that is an ESS. Then, by the equality of payoffs theorem, there is an-
other strategy β̂ for which π(β̂, β∗) = π(β∗, β∗). In fact, there will be many
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such strategies. Let us pick a β̂ that differs from β∗ in, say, rôle 1 so that
(β̂1, β̂2) = (β̂1, β

∗
2). Then

π(β̂, β∗) =
1
2
π(β̂1, β

∗
2) +

1
2
π(β̂2, β

∗
1)

=
1
2
π(β̂1, β

∗
2) +

1
2
π(β∗

2 , β∗
1)

which, together with the condition π(β̂, β∗) = π(β∗, β∗) implies

π(β̂1, β
∗
2) = π(β∗

1 , β∗
2).

Hence

π(β̂, β̂) =
1
2
π(β̂1, β̂2) +

1
2
π(β̂2, β̂1)

=
1
2
π(β̂1, β

∗
2) +

1
2
π(β∗

2 , β̂1)

=
1
2
π(β∗

1 , β∗
2) +

1
2
π(β∗

2 , β̂1)

=
1
2
π(β∗

1 , β̂2) +
1
2
π(β∗

2 , β̂1)

= π(β∗, β̂)

which contradicts our initial assumption.

Remark 8.20

A more general version of this theorem – for games with more than two actions
and more than two rôles – was established by Selten in 1980. However, it is
important to note that it only applies to pairwise contest games. It does not
hold in general population games that may have a non-linear population-wide
component.

8.7 Existence of ESSs

Unfortunately, it is not true that all games have an ESS, as is demonstrated
by the following example.

Example 8.21

Consider the two-player (children’s) game “Rock-Scissors-Paper”. The children
simultaneously make the shape of one of the items with their hand: Rock (R)
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beats Scissors (S); Scissors beat Paper (P); Paper beats Rock. If both play-
ers choose the same item, then then game is a draw. One payoff table that
corresponds to this game is

R S P

R 0, 0 1,−1 −1, 1
S −1, 1 0, 0 1,−1
P 1,−1 −1, 1 0, 0

This two-player game has a unique Nash equilibrium [σ∗, σ∗] with σ∗ =( 1
3 , 1

3 , 1
3

)
but this strategy is not an ESS in the corresponding population game,

because (for example)
π(σ∗, R) = 0 = π(R, R) .

However, one important class of games always has at least one ESS.

Theorem 8.22

All generic, two-action, symmetric pairwise contests have an ESS.

Proof

A symmetric two-player game has the following form.

P2

P1

A B

A a, a b, c

B c, b d, d

By applying affine transformations (see Definition 4.34), we can turn this into
the equivalent game

P2

P1

A B

A a − c, a − c 0, 0
B 0, 0 d − b, d − b

It is easy to see that the ESS conditions given in Theorem 8.14 are unaffected
by this transformation.

Because we are considering generic games, we have a �= c and b �= d. There
are three possibilities to consider.
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1. If a − c > 0, then π(A, A) > π(B,A) and hence σA = (1, 0) is an ESS, by
condition (1) in Theorem 8.14.

2. If d − b > 0, then π(B,B) > π(A, B) and hence σB = (0, 1) is an ESS, by
condition (1) in Theorem 8.14.

3. If a− c < 0 and d− b < 0, then there is a symmetric mixed strategy7 Nash
equilibrium [σ∗, σ∗] with σ∗ = (p∗, 1 − p∗) and

p∗ =
d − b

a − c + d − b
.

At this equilibrium, π(σ∗, σ∗) = π(σ, σ∗) for any strategy σ, so we have to
consider the inequality in condition (2) of Theorem 8.14. Now

π(σ∗, σ) = pp∗(a − c) + (1 − p)(1 − p∗)(d − b)

and
π(σ, σ) = p2(a − c) + (1 − p)2(d − b)

so

π(σ∗, σ) − π(σ, σ) = p(p∗ − p)(a − c) + (1 − p)(p − p∗)(d − b)

= (p∗ − p) [p(a − c + d − b) − (d − b)]

= −(a − c + d − b)(p∗ − p)2

> 0

So σ∗ is an ESS.

Hence, there is always an ESS in the pairwise contest population game that
corresponds to this two-player game.

Exercise 8.9

Determine whether the population games defined by the following two-
player games have an ESS.

(a) P2

P1

A B

A 1, 1 1, 1
B 1, 1 1, 1

(b) P2

P1

E F

E 1, 1 1, 2
F 2, 1 0, 0

(c) P2

P1

A B C

A 0, 0 1,−1 −3, 3
B −1, 1 0, 0 2,−2
C 3,−3 −2, 2 0, 0

7 See Exercise 4.8.
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Apart from the possibility that an ESS may not exist for a given game, it
is also the case that the interesting Nash equilibrium strategies in some dy-
namic games turn out not to be ESSs. For example, in the Iterated Prisoners’
Dilemma, the Nash equilibrium strategies that are introduced to ensure co-
operative behaviour – “Tit-for-Tat”, “Grim”, and similar strategies – are not
ESSs. For example, we have8

πi(σC , σC) = πi(σG, σC) and πi(σC , σG) = πi(σG, σG)

which means the ESS conditions in Theorem 8.14 do not hold. This problem
arises because the strategic form of the Iterated Prisoners’ Dilemma dynamic
game is non-generic and many of the Nash equilibria, therefore, occur in con-
tinuous sets that provide the same payoff for all points in the set. Because an
ESS must have a greater payoff than any other strategy in all nearby popu-
lations, none of these Nash equilibrium strategies can be an ESS. The failure
of many games to have (interesting) ESSs has led to the search for alternative
stability concepts that are weaker: these include Neutral Stability, Evolution-
arily Stable Sets, and Limit ESSs. However, none of these concepts has gained
universal popularity. So, instead, our focus will now shift from the strategies
to the evolution of the population structure itself.

8 See Section 7.2 for definitions of these strategies.
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9.1 Evolutionary Dynamics

In the previous chapter, we investigated the concept of an evolutionarily stable
strategy. Although this concept implicitly assumes the existence of some kind
of evolutionary dynamics, it gives an incomplete description. First, an ESS
may not exist – in which case the analysis tells us nothing about the evolution
of the system described by the game. Second, the definition of an ESS deals
only with monomorphic populations in which every individual uses the same
strategy. But, if the ESS is a mixed strategy, then all strategies in the support
of the ESS obtain the same payoff as the evolutionarily stable strategy itself.
So it is pertinent to ask whether a polymorphic population with the same
population profile as that generated by the ESS can also be stable. To address
these questions, we will look at a specific type of evolutionary dynamics, called
replicator dynamics.

We consider a population in which individuals, called “replicators”, exist in
several different types. Each type of individual uses a pre-programmed strategy
(for the game being considered explicitly) and passes this behaviour to its
descendants without modification. In the replicator dynamics, it is assumed
that individuals are programmed to use only pure strategies from a finite set
S = {s1, s2, . . . , sk}. Let ni be the number of individuals using si, then the
total population size is

N =
k∑

i=1

ni
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and the proportion of individuals using si is

xi =
ni

N
.

The population state can then be described by a vector x = (x1, x2, . . . , xk)
(together with the overall size of the population N , which will not interest us).
Let β and δ be the background per capita birth and death rates in the popu-
lation. That is, β and δ represent the contributions to the rates of appearance
and disappearance of individuals in the population which are independent of
the game in question. The background per capita rate of change of numbers,
β − δ, is modified by the payoff for using strategy si in the population game
under consideration. The rate of change of the number of individuals using si

is1

ṅi = (β − δ + π(si,x))ni

and the rate of change of the total population size is given by

Ṅ =
k∑

i=1

ṅi

= (β − δ)
k∑

i=1

ni +
k∑

i=1

π(si,x)ni

= (β − δ)N + N

k∑
i=1

xiπ(si,x)

= (β − δ + π̄(x))N .

where we have defined the average payoff in the population by

π̄(x) =
k∑

i=1

xiπ(si,x) .

Thus the population grows or declines exponentially. This may not be very
realistic, but we can improve the description by letting β and δ depend on N .
So long as the fitness increments π(si,x) depend only on the proportions xi

and not on the actual numbers ni, the game dynamics will be unchanged.
From a game-theoretic point of view, we are more interested in how the

proportions of each type change over time. Now

ṅi = Nẋi + xiṄ

so

Nẋi = ṅi − xiṄ

= (β − δ + π(si,x))xiN − xi(β − δ + π̄(x))N.

1 We use a dot to denote a time derivative so that, for example, ẋ = dx/dt.
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Cancelling and dividing by N , we have

ẋi = (π(si,x) − π̄(x))xi. (9.1)

In other words, the proportion of individuals using strategy si increases (de-
creases) if its payoff is bigger (smaller) than the average payoff in the popula-
tion.

Exercise 9.1

Clearly, at any time we should have
∑k

i=1 xi = 1. Show that if this
condition is satisfied at time t = 0, then it is satisfied for all t > 0.

Exercise 9.2

Show that the evolutionary dynamics is unchanged under an affine trans-
formation of the payoffs, provided the time parameter is scaled appro-
priately. (An affine transformation changes the payoffs by π → λπ + µ

where µ is a real number and λ is a positive real number.)

Definition 9.1

A fixed point of the replicator dynamics is a population that satisfies ẋi = 0
∀i. Fixed points describe populations that are no longer evolving.

Example 9.2

Consider a pairwise contest population game with action set A = {E, F} and
payoffs

π(E, E) = 1 π(E, F ) = 1 π(F, E) = 2 π(F, F ) = 0 .

So π(E,x) = x1 + x2 and π(F,x) = 2x1, which gives

π̄(x) = x1(x1 + x2) + x2(2x1)

= x2
1 + 3x1x2 .

The replicator dynamics for this game is

ẋ1 = x1(x1 + x2 − x2
1 − 3x1x2)

ẋ2 = x2(2x1 − x2
1 − 3x1x2) .

So the fixed points are (x1 = 0, x2 = 1), (x1 = 1, x2 = 1) and (x1 = 1
2 , x2 = 1

2 ).

Exercise 9.3

Consider the pairwise contest with payoffs given in the table below
(where a < b).
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A B

A a − b,a − b 2a,0
B 0,2a a,a

Derive the replicator dynamics equations for this game and find all the
fixed points.

9.2 Two-strategy Pairwise Contests

Dealing with general games requires some mathematical techniques that not
everyone will be familiar with. So, we will temporarily make a further simplifi-
cation and consider pairwise contest games that only have two pure strategies.
Suppose S = {s1, s2} and let x ≡ x1. Then x2 = 1 − x and ẋ2 = −ẋ1. So we
only need to consider a single differential equation

ẋ = (π(s1,x) − π̄(x))x.

We can simplify this further by substituting

π̄(x) = xπ(s1,x) + (1 − x)π(s2,x)

which gives
ẋ = x(1 − x)(π(s1,x) − π(s2,x)) .

Example 9.3

Consider a pairwise contest Prisoners’ Dilemma. The pure strategies are {C, D}
and the payoffs to the focal individual in the corresponding 2-player game are
π(C, C) = 3, π(C, D) = 0, π(D, C) = 5, and π(D, D) = 1. Let x be the
proportion of individuals using C, then

π(C,x) = 3x + 0(1 − x) = 3x

and
π(D,x) = 5x + 1(1 − x) = 1 + 4x .

The rate of change of the proportion of individuals using C is

ẋ = x(1 − x)(π(C,x) − π(D,x))

= x(1 − x)(3x − (1 + 4x))

= −x(1 − x)(1 + x) .
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The fixed points for this dynamical system are x∗ = 0 and x∗ = 1. We know that
the unique Nash equilibrium for the Prisoners’ Dilemma game is for everyone
to defect (play D). This means that x∗ = 0 corresponds to a Nash equilibrium
but x∗ = 1 does not. We also see that ẋ < 0 for x ∈ (0, 1). This means that
any population that is not at a fixed point of the dynamics will evolve towards
the fixed point that corresponds to the Nash equilibrium and away from the
other one.

Exercise 9.4

Derive the replicator dynamics for the Hawk-Dove game and show that
any population that is not at a fixed point will evolve towards the point
that corresponds to the unique symmetric Nash equilibrium.

It seems that every Nash equilibrium corresponds to a fixed point in the
replicator dynamics but not every fixed point corresponds to a Nash equilib-
rium. The following theorem proves this conjecture for pairwise contest games
with two pure strategies.

Theorem 9.4

Let S = {s1, s2} and let σ∗ = (p∗, 1 − p∗) be the strategy that uses s1 with
probability p∗. If (σ∗, σ∗) is a symmetric Nash equilibrium, then the population
x∗ = (x∗, 1 − x∗) with x∗ = p∗ is a fixed point of the replicator dynamics
ẋ = x(1 − x)(π(s1,x) − π(s2,x)).

Proof

If σ∗ is a pure strategy, then x∗ = 0 or x∗ = 1. In either case, we have ẋ = 0.
If σ∗ is a mixed strategy, then Theorem 4.27 says that π(s1, σ

∗) = π(s2, σ
∗).

Now, for a pairwise contest,

π(si, σ
∗) = p∗π(si, s1) + (1 − p∗)π(si, s2)

= π(si,x∗) .

So we have π(s1,x∗) = π(s2,x∗) and consequently ẋ = 0.

We have shown that Nash equilibria in two-player games and fixed points
in the replicator dynamics are related. Is there a consistent relation between
the ESSs in a population game and the fixed points?
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Example 9.5

Consider a pairwise contest with actions A and B and the following payoffs
in the associated two-player game: π(A, A) = 3, π(B,B) = 1 and π(A, B) =
π(B,A) = 0. The ESSs are for everyone to play A or for everyone to play
B. The mixed strategy σ = ( 1

4 , 3
4 ) is not an ESS. Let x be the proportion of

individuals using A, then the rate of change of the proportion of individuals
using A is

ẋ = x(1 − x)(π(A,x) − π(B,x))

= x(1 − x)(3x − (1 − x))

= x(1 − x)(4x − 1).

The fixed points for this dynamical system are x∗ = 0, x∗ = 1 and x∗ = 1
4 .

However, we can see that ẋ > 0 if x > 1
4 and ẋ < 0 if x < 1

4 , so only the pure-
strategy behaviours are evolutionary end points. If the population starts in a
state where more than 25% of individuals use strategy A, then the population
evolves until everyone uses A. On the other hand, If the population starts in a
state where fewer than 25% of individuals use strategy A, then the population
evolves until everyone uses B. This means that only the evolutionary end points
correspond to an ESS.

In the Hawk-Dove game, the correspondence between the evolutionary
end-point of the replicator dynamics and the ESS is a bit less direct (see
Exercise 9.4). The ESS is for each individual to play Hawk with probabil-
ity v/c. However, in the replicator dynamics, individuals cannot use mixed
strategies: an individual must either be a pre-programmed Hawk-user or a pre-
programmed Dove-user. Nevertheless, the population evolves towards a state in
which the proportion of Hawk-users is v/c, which is the polymorphic equivalent
of the monomorphic ESS.

Exercise 9.5

A population of birds is distributed so that in any given area there are
only two females and two trees suitable for nesting (T1 and T2). If the two
females pick the same nesting site, then they each raise 2 offspring. If they
choose different sites, then they are more vulnerable to predators and
only raise 1 offspring each. This situation can be modelled as a pairwise
contest game. Derive the replicator dynamics equation and show that
only the fixed points that correspond to an ESS are evolutionary end
points.
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9.3 Linearisation and Asymptotic Stability

In the examples considered in the previous section, an ESS always corresponds
to an evolutionary end point in the replicator dynamics. Do all ESSs have a cor-
responding end point and do all evolutionary end points have a corresponding
ESS? In this section, we continue to consider the special case of two-strategy
pairwise contest games. Later we will consider general n-strategy games and
reach a similar conclusion. Because the definition of an ESS considers small
deviations from a specified population, it makes sense to do the same in the
replicator dynamics.

Definition 9.6

A fixed point of the replicator dynamics (or any dynamical system) is said to
be asymptotically stable if any small deviations from that state are eliminated
by the dynamics as t → ∞.

Example 9.7

Consider a pairwise contest with pure strategies A and B and the following
payoffs in the associated two-player game

π(A, A) = 3 π(B,B) = 1 π(A, B) = π(B,A) = 0.

We know that the ESSs for this game are for everyone to play A or for everyone
to play B. The mixed strategy σ = (1

4 , 3
4 ) is a Nash equilibrium but it is not

an ESS. Let x be the proportion of individuals using A, then the replicator
dynamics is

ẋ = −x(1 − x)(1 − 4x)

with fixed points at x∗ = 0, x∗ = 1 and x∗ = 1
2 .

First, consider a population near to x∗ = 0. Let x = x∗ + ε = ε where we
must have ε > 0 to ensure x > 0. Then ẋ = ε̇ because x∗ is a constant. Thus
we have

ε̇ = −ε(1 − ε)(1 − 4ε) .

Because it is assumed that ε � 1, we can ignore terms proportional to εn where
n > 1. This procedure is called linearisation. Thus

ε̇ ≈ −ε

which has the solution
ε(t) = ε0e

−t.
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This tells us that the dynamics reduces small deviations from the population
state x = (0, 1) (i.e., ε → 0 as t → ∞). In other words, the fixed point x∗ = 0
is asymptotically stable.

Now consider a population near to x∗ = 1. Let x = x∗ − ε = 1 − ε with
ε > 0 (to ensure x < 1). Following the linearisation procedure we find that

ε̇ ≈ −3ε

which has the solution
ε(t) = ε0e

−3t.

i.e., x∗ = 1 is asymptotically stable.
Finally, consider a population near to x∗ = 1

4 . Let x = x∗ + ε = 1
4 + ε (with

no sign restriction on ε). Then we have

ε̇ ≈ 1
16

ε

with solution
ε(t) = ε0e

t/16

So x∗
3 = 1

4 is not asymptotically stable. (In fact, it is unstable.)
So in this case we find that a strategy is an ESS if and only if the corre-

sponding fixed point in the replicator dynamics is asymptotically stable.

Theorem 9.8

For any two-strategy pairwise contest, a strategy is an ESS if and only if the
corresponding fixed point in the replicator dynamics is asymptotically stable.

Proof

Consider a pairwise contest with strategies A and B. Let x be the proportion
of individuals using A, then the replicator dynamics is given by

ẋ = x(1 − x)[π(A,x) − π(B,x)].

There are three possible cases to consider: a single pure-strategy ESS or sta-
ble monomorphic population; two pure-strategy ESSs or stable monomorphic
populations; and one mixed strategy ESS or polymorphic population.

1. Let σ∗ = (1, 0). Then (for σ = (y, 1 − y) with y �= 1) σ∗ is an ESS if and
only if

π(A,xε) − π(σ,xε) > 0

⇐⇒ π(A,xε) − yπ(A,xε) − (1 − y)π(B,xε) > 0

⇐⇒ (1 − y)[π(A,xε) − π(B,xε)] > 0

⇐⇒ π(A,xε) − π(B,xε) > 0
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Let x = 1 − ε with ε > 0. Then

ε̇ = −ε[π(A,xε) − π(B,xε)].

So σ∗ = (1, 0) is an ESS if and only if the corresponding population x∗ = 1
is asymptotically stable.

2. Let σ∗ = (0, 1). Then, using a similar argument to the previous case, σ∗ is
an ESS if and only if

π(A,xε) − π(B,xε) < 0.

Let x = ε with ε > 0. Then

ε̇ = ε[π(A,xε) − π(B,xε)].

So σ∗ = (0, 1) is an ESS if and only if the corresponding population x∗ = 0
is asymptotically stable.

3. Let σ∗ = (p∗, 1 − p∗) with 0 < p∗ < 1. Then σ∗ is an ESS if and only
if π(σ∗, σ) > π(σ, σ). Taking σ = A and σ = B in turn, this condition
becomes the two conditions

π(A, A) < π(B,A) and π(B,B) < π(A, B) .

Let x = x∗ + ε. Then, for a pairwise contest, the replicator dynamics
equation

ẋ = x(1 − x)[π(A,xε) − π(B,xε)]

becomes

ε̇ = x∗(1 − x∗)ε ([π(A, A) − π(B,A)] + [π(B,B) − π(B,A)])

using the assumption that x∗ is a fixed point. So x∗ is asymptotically stable
if and only if σ∗ is an ESS.

Let F be the set of fixed points and let A be the set of asymptotically
stable fixed points in the replicator dynamics. Let N be the set of symmetric
Nash equilibrium strategies and let E be the set of ESSs in the symmetric
game corresponding to the replicator dynamics. Then we have shown that, for
any two-strategy pairwise-contest game, the following relationships hold for a
strategy σ∗ and the corresponding population state x∗:

1. σ∗ ∈ E ⇐⇒ x∗ ∈ A;
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2. x∗ ∈ A =⇒ σ∗ ∈ N;2

3. σ∗ ∈ N =⇒ x∗ ∈ F.

Allowing our now customary abuse of notation that identifies a strategy with
its corresponding population state, we can write these relations more concisely
as

E = A ⊆ N ⊆ F.

As we shall see, for pairwise-contest games with more than two strategies these
relations become

E ⊆ A ⊆ N ⊆ F.

Exercise 9.6

Consider the pairwise contest with payoffs given in the table below
(where a �= 0).

A B

A a,a 0,0
B 0,0 a,a

Find all the ESSs of this game for the cases a > 0 and a < 0. Derive
the replicator dynamics equation for the proportion of A-players x. Find
all the fixed points of the replicator dynamics equation (for a > 0 and
a < 0). Show that only the fixed points that correspond to an ESS are
asymptotically stable.

9.4 Games with More Than Two Strategies

If we increase the number of pure strategies to n, then we have n equations to
deal with.

ẋi = fi(x) i = 1, . . . , n .

Using the constraint
∑n

i=1 xi = 1, we can introduce a reduced state vector
(x1, x2, . . . , xn−1) and reduce the number of equations to n − 1.

ẋi = fi(x1, x2, . . . , xn−1) i = 1, . . . , n − 1 .

2 This follows from the first equivalence because σ∗ ∈ E =⇒ σ∗ ∈ N.
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We can write this dynamical system more compactly in vector format as3

ẋ = f(x) .

There is no confusion introduced by referring to both types of state with the
same symbol, x. It will be clear from the context which type of state is being
referred to.

Example 9.9

Consider the following pairwise contest game, which will be used as the basis
of all the examples in this section. The game has the payoff table

A B C

A 0, 0 3, 3 1, 1
B 3, 3 0, 0 1, 1
C 1, 1 1, 1 1, 1

The replicator dynamics for this game is

ẋ1 = x1(3x2 + x3 − π̄(x))

ẋ2 = x2(3x1 + x3 − π̄(x))

ẋ3 = x3(1 − π̄(x))

with π̄(x) = 6x1x2+x1x3+x2x3+x3. Writing x1 = x, x2 = y and x3 = 1−x−y,
this system can be reduced to the two-variable dynamical system

ẋ = x(1 − x + 2y − π̄(x, y))

ẏ = y(1 + 2x − y − π̄(x, y))

with π̄(x, y) = 1 + 4xy − x2 − y2.

Exercise 9.7

Find all the Nash equilibria and ESSs for the game in Example 9.9.
Show that the set of fixed points for the replicator dynamics is the same
whether we consider the full or the reduced system.

3 Readers who are not familiar with basic dynamical systems theory may find it
useful to read Appendix B.
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Definition 9.10

The replicator dynamics is defined on the simplex

∆ =

{
x1, x2, . . . , xn | 0 ≤ xi ≤ 1 ∀i &

n∑
i=1

xi = 1

}
.

An invariant manifold is a connected subset M ⊂ ∆ such that if x(0) ∈ M ,
then x(t) ∈ M for all t > 0.

It follows immediately from the definition that the fixed points of a dy-
namical system are invariant manifolds. Boundaries of the simplex ∆ (subsets
where one or more population types are absent) are also invariant because
xi = 0 =⇒ ẋi = 0.

Example 9.11

For the dynamical system

ẋ = x(1 − x + 2y − π̄(x, y))

ẏ = y(1 + 2x − y − π̄(x, y))

the obvious invariant manifolds are the fixed points (see previous exercise) and
the boundary lines x = 0 and y = 0. The boundary line x + y − 1 = 0 is
invariant because (on that line)

d

dt
(x + y) = ẋ + ẏ

= (x + y − 1)(1 − π̄(x, y))

= 0

The line x = y is also invariant because ẋ = ẏ on that line.

To obtain a qualitative picture of the solutions of the dynamical system, we
consider the behaviour of the solutions on (or close to) the invariant manifolds.
First, let us consider a fixed point x∗. By making a Taylor expansion of the
dynamical system about this fixed point, we obtain a linear approximation to
the dynamical system (remember that f(x∗) = 0 so the constant term vanishes):

ẋi =
n−1∑
j=1

(xj − x∗
j )

∂fi

∂xj
(x∗).
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Defining ξi = xi − x∗
i , we have

ξ̇i =
n−1∑
j=1

ξj
∂fi

∂xj
(x∗)

which is a linear system ξ̇ = Lξ with a fixed point at the origin. The matrix L

has constant components
Lij =

∂fi

∂xj
(x∗)

and its eigenvalues determine the behaviour of the linearised system at the
fixed point. Provided the fixed point is hyperbolic (i.e., all eigenvalues have
non-zero real part), the behaviour of the full, non-linear system is the same.4

Combining this information with the behaviour of solutions on the other invari-
ant manifolds is usually sufficient to determine a complete qualitative picture
of the solutions to the dynamical system.

Example 9.12

Returning to our example, let us consider the fixed point (x∗, y∗) = (1
2 , 1

2 ).
Close to this point we have the linear approximation(

ξ̇

η̇

)
=
( −1 1

2
1
2 −1

)(
ξ

η

)

The eigenvalues are found from the characteristic equation det(L − λI) = 0,
which yields λ1 = − 1

2 and λ2 = − 3
2 . Because the real parts of both eigenvalues

are negative, the fixed point is a stable node. Solving the eigenvector equation( −1 1
2

1
2 −1

)(
ξ

η

)
= λ

(
ξ

η

)

gives the eigenvectors corresponding to each eigenvalue. In this case, we find
the eigenvector corresponding to λ = − 3

2 is ξ = −η, which lies along the
boundary line x + y = 1. The eigenvector corresponding to λ = − 1

2 is ξ = η,
which lies along the line x = y. This eigenvector also passes through the fixed
point (x∗, y∗) = (0, 0), which is a good indication that the line x = y might be
invariant for this dynamical system – as, indeed, we have already shown that
it is.

The fixed points (x∗, y∗) = (1, 0) and (x∗, y∗) = (0, 1) both have eigenvalues
λ1 = 3 and λ2 = 1, so both points are unstable nodes. Close to the point
(x∗, y∗) = (0, 0) the linear approximation is(

ξ̇

η̇

)
=
(

0 0
0 0

)(
ξ

η

)
4 This is the Hartman-Grobman theorem. See Appendix B.
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�
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(0, 0) (1, 0)

(0, 1)

(1
2 , 1

2 )

Figure 9.1 The behaviour of the replicator dynamics system from Exam-
ple 9.9 can be constructed by linking the fixed points by smooth trajectories
that are consistent with behaviour of the system on or near to the invariant
manifolds (fixed points and invariant lines).

which is not hyperbolic (λ1 = λ2 = 0). So the linearisation tells us nothing
about the stability properties of this fixed point.

Let us now look at the behaviour of the system on the invariant lines. On
the line y = 0 we have ẋ = x2(x − 1), so ẋ < 0 for 0 < x < 1. Similarly,
on the line x = 0 we have ẏ < 0 for 0 < y < 1. On the line x = y we have
ẋ = x2(1 − 2x), so x and y are both increasing for 0 < x, y < 1

2 . On the line
x + y − 1 = 0 we have

ẋ = x(3 − 3x − π̄(x, 1 − x))

= x(3 − 9x + 6x2).

Hence x is increasing (y is decreasing) for 0 < x < 1
2 and x is decreasing (y is

increasing) for 1
2 < x < 1.5

Combining all this information we can produce the qualitative picture of
the dynamics shown in Figure 9.1.

Exercise 9.8

Draw a qualitative picture of the replicator dynamics for the pairwise
contest game with payoff table shown below.

5 Because the point x∗ = ( 1
2 , 1

2 ) is a stable node, any other behaviour would indicate
that a mistake had been made somewhere.
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A B C

A 3, 3 0, 0 1, 1
B 0, 0 3, 3 1, 1
C 1, 1 1, 1 1, 1

9.5 Equilibria and Stability

Let F be the set of fixed points and let A be the set of asymptotically sta-
ble fixed points in the replicator dynamics. Let N be the set of (symmetric)
Nash equilibrium strategies and let E be the set of ESSs in the symmetric
game corresponding to the replicator dynamics. We will show that, for any
pairwise-contest game, the following relationships hold for a strategy σ∗ and
the corresponding population state x∗:

1. σ∗ ∈ E =⇒ x∗ ∈ A;

2. x∗ ∈ A =⇒ σ∗ ∈ N;

3. σ∗ ∈ N =⇒ x∗ ∈ F.

Allowing our customary abuse of notation that identifies a strategy with its
corresponding population state, we can write these relations more concisely as

E ⊆ A ⊆ N ⊆ F.

First we consider the inclusion N ⊆ F.

Theorem 9.13

If (σ∗, σ∗) is a symmetric Nash equilibrium, then the population state x∗ = σ∗

is a fixed point of the replicator dynamics.

Proof

Suppose the Nash equilibrium strategy σ∗ is pure, so that every player in the
population uses some strategy sj . Then xi = 0 for i �= j and π̄(x∗) = π(sj ,x∗).
Hence ẋi = 0 ∀i.

Suppose the Nash equilibrium strategy σ∗ is mixed and let S∗ be the support
of σ∗ (i.e., S∗ contains only those pure strategies that are played with non-zero
probability under σ∗). The equality of payoffs theorem (Theorem 4.27) gives

π(s, σ∗) = π(σ∗, σ∗) ∀s ∈ S∗
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This implies that, in a polymorphic population with x∗ = σ∗, we must have
for all si ∈ S∗

π(si,x∗) =
k∑

j=1

π(si, sj)xj

=
k∑

j=1

π(si, sj)pj

= π(si, σ
∗)

= constant

For strategies si /∈ S∗, the condition x∗ = σ∗ gives us xi = 0 and hence ẋi = 0.
For strategies sj ∈ S∗ we have

ẋj = xj

(
π(sj ,x∗) −

k∑
i=1

xiπ(sj ,x∗)

)

= xj

⎛
⎝π(sj ,x∗) − π(sj ,x∗)

k∑
j=1

xj

⎞
⎠

= 0.

Remark 9.14

Theorem 9.13 shows that an evolutionary process can produce apparently ra-
tional (Nash equilibrium) behaviour in a population composed of individuals
who are not required to make consciously rational decisions. In populations
where the agents are assumed to have some critical faculties – such as human
populations – the requirements of rationality are much less stringent than they
are in classical game theory. Individuals are no longer required to be able to
work through the (possibly infinite) sequence of reaction and counter-reaction
to changes in behaviour. They merely have to be able to evaluate the conse-
quences of their actions, compare them to the results obtained by others who
behaved differently and swap to a better (not necessarily the best) strategy for
the current situation. The population is stable when, given what everyone else
is doing, no individual would get a better result by adopting a different strat-
egy. This population view of a Nash equilibrium was first advanced by Nash
himself, who called it the “mass action” interpretation.

Next we consider the inclusion A ⊆ N.
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Theorem 9.15

If x∗ is an asymptotically stable fixed point of the replicator dynamics, then
the symmetric strategy pair [σ∗, σ∗] with σ∗ = x∗ is a Nash equilibrium.

Proof

First, we observe that if x∗ is a fixed point with xi > 0 ∀i (i.e., all pure strategy
types are present in the population), then all pure strategies must earn the same
payoff in that population. It follows from the correspondence of σ∗ and x∗ that
π1(s, σ∗) = π(s,x∗) is also constant for all pure strategies s. Therefore, [σ∗, σ∗]
is a Nash equilibrium.

It remains for us to consider stationary populations where one or more pure
strategy types are absent. Denote the set of pure strategies that are present by
S∗ ⊂ S (i.e., S∗ is the support of the fixed point x∗ and the postulated Nash
equilibrium strategy σ∗). Because x∗ is a fixed point, we must have π(s,x∗) =
π̄(x∗) ∀s ∈ S∗ and π1(s, σ∗) = π1(σ∗, σ∗) ∀s ∈ S∗. Now suppose that [σ∗, σ∗]
is not a Nash equilibrium. Then there must be some strategy s′ /∈ S∗ for which
π1(s′, σ∗) > π1(σ∗, σ∗) and consequently for which π(s′,x∗) > π̄(x∗). Consider
a population xε that is close to the state x∗ but has a small proportion ε of s′

players. Then

ε̇ = ε (π(s′,xε) − π̄(xε))

= ε (π(s′,x∗) − π̄(x∗)) + O(ε2).

So the proportion of s′-players increases, contradicting the assumption that x∗

is asymptotically stable.

Finally we consider the inclusion E ⊆ A.

Definition 9.16

Let ẋ = f(x) be a dynamical system with a fixed point at x∗. Then a scalar
function V (x), defined for allowable states of the system close to x∗, such that

1. V (x∗) = 0

2. V (x) > 0 for x �= x∗

3. dV
dt < 0 for x �= x∗

is called a (strict) Lyapounov function. If such a function exists, then the fixed
point x∗ is asymptotically stable.
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Theorem 9.17

Every ESS corresponds to an asymptotically stable fixed point in the replica-
tor dynamics. That is, if σ∗ is an ESS, then the population with x∗ = σ∗ is
asymptotically stable.

Proof

If σ∗ is an ESS then, by definition, there exists an ε̄ such that for all ε < ε̄

π(σ∗, σε) > π(σ, σε) ∀σ �= σ∗

where σε = (1 − ε)σ∗ + εσ′. In particular, this holds for σ = σε, so π(σ∗, σε) >

π(σε, σε). This implies that in the replicator dynamics we have, for x∗ = σ∗,
x = (1 − ε)x∗ + εx′ and all ε < ε̄

π(σ∗, x) > π̄(x).

Now consider the relative entropy function

V (x) = −
k∑

i=1

x∗
i ln

(
xi

x∗
i

)

Clearly V (x∗) = 0 and (using Jensen’s inequality E f(x) ≥ f(E x) for any
convex function, such as a logarithm)

V (x) = −
k∑

i=1

x∗
i ln

(
xi

x∗
i

)

≥ − ln

(
k∑

i=1

x∗
i

xi

x∗
i

)

= − ln

(
k∑

i=1

xi

)

= − ln(1)

= 0.

The time derivative of V (x) along solution trajectories of the replicator dy-
namics is

d

dt
V (x) =

k∑
i=1

∂V

∂xi
ẋi

= −
k∑

i=1

x∗
i

xi
ẋi



9.5 Equilibria and Stability 183

= −
k∑

i=1

x∗
i

xi
xi(π(si, x) − π̄(x))

= − [π(σ∗, x) − π̄(x)] .

If σ∗ is an ESS, then we established above that there is a region near to x∗

where [π(σ∗, x) − π̄(x)] > 0 for x �= x∗. Hence

dV

dt
< 0

for population states sufficiently close to the fixed point. V (x) is therefore a
strict Lyapounov function in this region, and the fixed point x∗ is asymptoti-
cally stable.

The three preceding theorems establish the advertised relationship between
the sets of ESSs (E), symmetric Nash equilibria (N), fixed points (F), and
asymptotically stable fixed points (A):

E ⊆ A ⊆ N ⊆ F.

In general, there may be asymptotically stable fixed points in the replicator
dynamics which do not correspond to an ESS as is shown in the next exercise.

Exercise 9.9

Consider the pairwise contest game with the payoff table below. Show
that the polymorphic population x∗ =

( 1
3 , 1

3 , 1
3

)
is asymptotically stable

in the replicator dynamics, but that the strategy σ∗ =
( 1

3 , 1
3 , 1

3

)
is not

an ESS. [Hint: consider the strategy σ = (0, 1
2 , 1

2 )].

A B C
A 0,0 1,-2 1,1
B -2,1 0,0 3,1
C 1,1 1,3 0,0

If the derivative of the relative entropy function for a fixed point (taken
along solution trajectories) is positive, then the fixed point is unstable. If the
derivative is zero, then the fixed point is neither asymptotically stable nor
unstable: the evolution of the population is periodic around the fixed point.

Example 9.18

Consider the Rock-Scissors-Paper game. Let x1 be the proportion of R-players,
x2 be the proportion of S-players, and x3 be the proportion of P -players. Then
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11

22

Figure 9.2 A qualitative picture of the replicator dynamics for the Rock-
Scissors-Paper game analysed in Example 9.18. We have used the reduced state
vector description with x3 = 1 − x1 − x2.

the replicator dynamics system is

ẋ1 = x1(x2 − x3)

ẋ2 = x2(x3 − x1)

ẋ3 = x3(x1 − x2)

with fixed points (1, 0, 0), (0, 1, 0), (0, 0, 1), and
( 1

3 , 1
3 , 1

3

)
. It is easy to see by

considering the boundaries that the first three points are not stable. For ex-
ample, consider the invariant line x1 = 0 where, for 0 < x2, x3 < 1, we have
ẋ2 > 0 and ẋ3 < 0. The results from the three invariant lines together imply
that there is some kind of oscillatory behaviour about the polymorphic fixed
point

( 1
3 , 1

3 , 1
3

)
: if the fixed point is asymptotically stable, then trajectories will

spiral into toward it; if it is unstable, then trajectories will spiral out from it.
The third possibility is that solution trajectories form closed loops around the
fixed point. That this is, in fact, the case can be confirmed by observing that
the time derivative of the relative entropy along solution trajectories of the
replicator dynamics is

d

dt
V (x) = −1

3
(x2 − x3) − 1

3
(x3 − x1) − 1

3
(x1 − x2)

= 0.
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A qualitative picture of the replicator dynamics for the Rock-Scissors-Paper
game is shown in Figure 9.2.

Exercise 9.10

Consider a variation of the Rock-Scissors-Paper game in which there is
a cost to both players (payoff = −c) only if the result is a draw. Show
that x∗ =

( 1
3 , 1

3 , 1
3

)
is asymptotically stable in the replicator dynamics.



Part IV

Appendixes



A
Constrained Optimisation

Suppose we want to maximise a function of two variables, f(x, y), subject to
a constraint g(x, y) = 0 that expresses an implicit relation between x and y.
In some cases, this implicit relationship may be easily turned into an explicit
one of the form y = h(x), and the maximum of the function can be found by
differentiating f(x, h(x)) with respect to x.

Example A.1

To maximise the function f(x, y) = x − y2 subject to the constraint x − y = 0,
rewrite the constraint as y = x and differentiate f(x, x) = x−x2. The maximum
is then at (x∗, y∗) =

( 1
2 , 1

2

)
.

There is an alternative approach to constrained optimisation: the method
of Lagrange multipliers. (As we will show later, this method has the advantage
that it can also be applied in cases where the constraint is in the form g(x, y) ≤ 0
and direct substitution is impossible.) First we combine the function to be
maximised, f(x, y), and the function defining the constraint, g(x, y), into a
single function called the Lagrangian1

L(x, y) = f(x, y) − λg(x, y).

1 As this function is named after the French mathematician Joseph Louis Lagrange
(1736–1813), its name is sometimes written as “Lagrangean”.
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(The, as yet unknown, constant λ is called the Lagrange multiplier and will be
determined once we have found the maximum we require.) Then we perform an
unconstrained maximisation of the Lagrangian. One way of looking at this pro-
cedure is to view it as an unconstrained maximisation of the original function
f(x, y) with an additional penalty for violating the constraint g(x, y) = 0. The
following theorem shows that following this procedure does, indeed, produce a
maximum of the original function of interest subject to the imposed constraint.

Theorem A.2

If L(x∗, y∗) is an unconstrained maximum of the Lagrangian, then the maxi-
mum of the function f(x, y) subject to the constraint g(x, y) = 0 occurs at the
point (x∗, y∗).

Proof

The maximum of the Lagrangian is found by solving simultaneously the three
equations obtained by differentiating with respect to x, y, and λ.

∂f

∂x
− λ

∂g

∂x
= 0

∂f

∂y
− λ

∂g

∂y
= 0

g(x, y) = 0

Note that differentiating by λ will always lead to the constraint being satisfied
at the maximum, if one can be found: i.e., g(x∗, y∗) = 0. Then

f(x∗, y∗) = L(x∗, y∗) + λg(x∗, y∗)

= L(x∗, y∗)

≥ L(x, y) ∀x, y

= f(x, y) ∀x, y such that g(x, y) = 0

Example A.3

To maximise the function f(x, y) = x − y2 subject to the constraint x − y = 0,
introduce the Lagrangian

L(x, y) = x − y2 − λ(x − y).
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Differentiating with respect to x, y, and λ gives the three equations

1 − λ = 0

−2y∗ + λ = 0

x∗ − y∗ = 0

with the solution x∗ = y∗ = 1
2 . We also know that λ = 1 but that is not relevant

to the solution of our original problem.

We will now show how this method can be extended to situations in which
the constraint is a weak inequality rather than an equality: that is, g(x, y) ≤ 0.
It is, in fact, quite simple: we construct the same Lagrangian L(x, y) = f(x, y)−
λg(x, y), but now we also require λ ≥ 0.

Theorem A.4

If L(x∗, y∗) is an unconstrained maximum of the Lagrangian and λ ≥ 0, then
the maximum of the function f(x, y) subject to the constraint g(x, y) ≤ 0
occurs at the point (x∗, y∗).

Proof

Suppose that we have found an unconstrained maximum of the Lagrangian
with λ ≥ 0. Then, as before, we have g(x∗, y∗) = 0. So

f(x∗, y∗) = L(x∗, y∗)

≥ L(x, y) ∀x, y

= f(x, y) − λg(x, y)

≥ f(x, y) ∀x, y such that g(x, y) ≤ 0

The following example should help to clarify the use of Theorem A.4.

Example A.5

Suppose we wish to maximise the function f(x, y) = 2x2 + y2 subject to the
constraint x2+y2 ≤ 1. First we put the constraint in the required form: x2+y2−
1 ≤ 0. Then we construct the Lagrangian, L(x, y) = 2x2 + y2 − λ(x2 + y2 − 1).
The three equations that must be satisfied simultaneously are

x(2 − λ) = 0
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y(1 − λ) = 0

x2 + y2 = 1.

The solutions of these are (i) λ = 1, x = 0 and y = ±1 and (ii) λ = 2, x = ±1
and y = 0. In each case λ is positive, as required. But the points (x, y) = (0,±1)
and (x, y) = (±1, 0) are only extrema of the Lagrangian and not necessarily
maxima. Because f(0,±1) = 1 but f(±1, 0) = 2 only the points (x, y) = (±1, 0)
are maxima of f(x, y).



B
Dynamical Systems

Although it is easy to analyse the behaviour of a one-dimensional dynami-
cal system, such as the replicator dynamics for two-strategy pairwise contest
games, it is much more difficult to understand the behaviour of a system in
two dimensions or more. In Section 9.3, we introduced a linearisation proce-
dure to provide a connection between the stability of replicator dynamics fixed
points and ESSs. Because we can easily understand the behaviour of the full,
non-linear system, it is apparent that the picture of the behaviour near to
the fixed points is the same whether we consider the full system or its lin-
earised approximation. If this relationship holds true for systems with two or
more dimensions1, then we have some hope of understanding the full system
by considering its linearised approximation. With this in mind, we begin by
considering linear dynamical systems.

Linear Dynamical Systems

For simplicity, let us consider a two-dimensional linear dynamical system. This
can be written as

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2

1 It will turn out that this often, but not always, is the case.
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where a, b, c, and d are constants. (We have assumed that the unique fixed point
of the system occurs at the origin. If it doesn’t, we can just shift the coordinate
system so that it does.) We can also write this in matrix form as(

ẋ1

ẋ2

)
=
(

a b

c d

)(
x1

x2

)

or even more compactly as
ẋ = Lx (B.1)

where

L =
(

a b

c d

)
.

If the system happens to have the special form(
ż1

ż2

)
=
(

λ1 0
0 λ1

)(
z1

z2

)

then the solution is straightforward:

z(t) =
(

z1(t)
z2(t)

)
=
(

z1(0)eλ1t

z2(0)eλ2t

)
. (B.2)

We solve the more general case by finding a transformation of variables x → z
such that Equation (B.1) can be written as

ż = Λz (B.3)

with

Λ =
(

λ1 0
0 λ1

)
.

Suppose that such a transformation can be achieved through multiplication by
a matrix T : z = Tx. Then the solution x(t) of Equation (B.1) can be found by
applying the inverse transformation to Equation (B.2):

x(t) = T−1z(t) .

So we need to find out two things: what are the elements of the matrix T−1

and what are the constants λi? Applying T to Equation (B.1) gives

T ẋ = TLx

= TLT−1Tx .

Comparing this with Equation (B.3) shows that we must have

TLT−1 = Λ
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or
LT−1 = T−1Λ .

From this we see that the columns of the matrix T−1 must be the eigenvectors
of the matrix L and the constants λi are the associated eigenvalues.2

Now we can find the solution of the general linear dynamical system we
began with. Let us write

T−1 =
(

u1 u2

v1 v2

)
.

Then the solution is3

x(t) = T−1z(t)

=
(

u1 u2

v1 v2

)(
z1(t)
z2(t)

)

=
(

u1z1(t) + u2z2(t)
v1z1(t) + v2z2(t)

)
= v1z1(t) + v2z2(t)

= v1z1(0)eλ1t + v2z2(0)eλ2t

where we have introduced

vi =
(

ui

vi

)
which are the eigenvectors of L. This solution specifies an evolution of the
system x(t) = (x(t), y(t)) for each initial state x(0) = (x(0), y(0)). The initial
state determines values of the constants zi(0).

Remark B.1

Nothing in the previous discussion actually depends on the number of equations
being 2. So we can immediately find the solution of an n-dimensional linear
dynamical system ẋ = Lx (where L is an n × n matrix). It is

x(t) =
n∑

i=1

Civie
λit

where the vi are the eigenvectors and the λi are the eigenvalues of the matrix
L and the Ci are constants whose values depend on the initial state.
2 If v is the eigenvector of a matrix L with associated eigenvalue λ, then Lv = λv.
3 For simplicity, we are ignoring “degenerate cases” in which there is either a single

repeated eigenvalue or one or more of the eigenvalues is zero.
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Example B.2

Consider the system of equations

ẋ = x − y

ẏ = y − x

which can be written in matrix form with

L =
(

1 −1
−1 1

)
.

Solving the characteristic equation

0 = det(L − λI)

= det
(

1 − λ −1
−1 1 − λ

)
= (1 − λ)2 − 1

gives the two eigenvalues as λ1 = 2 and λ2 = 0. The corresponding eigenvectors
are found from the equation Lx = λx. For λ1 = 2 we have(

1 −1
−1 1

)(
x

y

)
= 2

(
x

y

)

which gives x = y. Thus, the vector

v1 =
(

1
1

)

(or any scalar multiple of it) is an eigenvector corresponding to the eigenvalue
λ1 = 2. Similarly, an eigenvector for the eigenvalue λ2 = 0 is

v2 =
(

1
−1

)
.

Therefore, the solution of the dynamical system is

x(t) = z1(0)e2t + z2(0)

y(t) = z1(0)e2t − z2(0)

where the constants zi(0) are determined by the initial state of the system,
x(0) and y(0).

Remark B.3

In general, both the eigenvalues and the eigenvectors of the matrix L may be
complex. However, the constants zi(0) will also be complex in such a way that
the final expressions for x(t) are always real.
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We will not be concerned with the exact solution of a linear dynamical
system because it will, in general, only be an approximation to the full non-
linear system that we are really interested in. What will be of interest is the
qualitative behaviour of the system near the fixed point. The solution is the
sum of terms involving eλt where each complex eigenvalue can be written in
the form λ = α + iω. Because

e(α+iω)t = eαt(cos ωt + i sin ωt)

we can make the following observations:

1. If α < 0 for all eigenvalues, then x(t) approaches the fixed point at t → ∞.
That is, the fixed point is asymptotically stable.

2. If α > 0 for one or more eigenvalues, then x(t) diverges from the fixed
point along the directions of the corresponding eigenvectors. That is, the
fixed point is unstable.

3. For ω �= 0, there is some sort of cyclic behaviour. If the fixed point is stable,
then x(t) spirals in towards the fixed point as t → ∞. If the fixed point is
unstable, then x(t) spirals out from the fixed point. If all eigenvalues are
imaginary (i.e., have α = 0) then trajectories form ellipses around the fixed
point.

Table B.1 shows the classification of the fixed points of a linear dynamical
system ẋ = Lx according to the nature of the eigenvalues of the matrix L.

Table B.1 Classification of the fixed points of the linear dynamical system
ẋ = Lx according to the real and imaginary parts of the eigenvalues of L. In
the case “All α �= 0”, some are positive and some negative.

All α < 0 ω = 0 Stable node
All α > 0 ω = 0 Unstable node
All α �= 0 ω = 0 Saddle point
All α < 0 ω �= 0 Stable spiral
All α > 0 ω �= 0 Unstable spiral
All α = 0 ω �= 0 Centre
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Non-linear Dynamical Systems

To obtain a qualitative understanding of a non-linear dynamical system, we
follow a 4-step procedure:

1. Find the fixed points of the non-linear system.

2. Derive a linear approximation of the system close to each fixed point.

3. Determine the properties of the fixed point in the linearised system (see
Table B.1).

4. Combine this information to produce a sketch of the full, non-linear system.

Example B.4

Consider the two-dimensional dynamical system

ẋ = x(1 − x)(1 − 2y)

ẏ = y(1 − y)(1 − 2x)

defined on the unit square (i.e., 0 ≤ x, y ≤ 1). The fixed points (x∗, y∗) of this
system are the set of points

{
(0, 0)(0, 1)(1, 0)(1, 1)( 1

2 , 1
2 )
}
. Now we linearise the

system close to each of the fixed points in turn.

(x∗, y∗) = (0, 0)
Write ξ = x − x∗ = x and η = y − y∗ = y then

ξ̇ = ξ(1 − ξ)(1 − 2η)

η̇ = η(1 − η)(1 − 2ξ) .

Ignoring non-linear terms (i.e., terms of the form ξnηm with n + m > 1), we
have the linear approximation

ξ̇ = ξ

η̇ = η .

Clearly this fixed point is an unstable node (λ1 = λ2 = 1).

(x∗, y∗) = (0, 1)
Write ξ = x − x∗ = x and η = y − y∗ = y − 1, then

ξ̇ = ξ(1 − ξ)(1 − 2(1 − η))

η̇ = −(1 + η)η(1 − 2ξ) .
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Ignoring non-linear terms, we have the linear approximation

ξ̇ = −ξ

η̇ = −η .

Clearly this fixed point is a stable node (λ1 = λ2 = −1).

(x∗, y∗) = (1, 0)
Writing ξ = 1 − x and η = y − 0, we find that this fixed point is an unstable
node.

(x∗, y∗) = (1, 1)
Writing ξ = 1 − x and η = 1 − y, we find that this fixed point is a stable
node.

(x∗, y∗) = (1
2 , 1

2 )
Write ξ = x − 1

2 and η = y − 1
2 , then

ξ̇ = (
1
2

− ξ)2(−2η)

η̇ = (
1
2

− η)2(−2ξ).

Ignoring non-linear terms, we have the linear approximation

ξ̇ = −1
2
η

η̇ = −1
2
ξ.

Because the matrix

L =
(

0 − 1
2

− 1
2 0

)

has eigenvalues λ1 = 1
2 and λ2 = − 1

2 with corresponding eigenvectors

e1 =
(

1
−1

)
and e2 =

(
1
1

)
.

this fixed point is a saddle point with stable direction x = y and unstable
direction x = −y.

The behaviour of the (linearised) system near each of the fixed points is
shown in Figure B.1. Based on this, it seems reasonable that the behaviour
of solutions of the full system should (qualitatively) look like that shown in
Figure B.2.
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� �
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�

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure B.1 The behaviour of the linearised system from Example B.4 near
each of the fixed points.

� �

��

�

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure B.2 Solutions of the full system from Example B.4 can be constructed
by linking the fixed points in a way indicated by their properties in the linearised
system, as shown in Figure B.1.

In the previous example, we went from the picture of a system that was
based on a linear approximation near the fixed points to a more complete
(although qualitative) picture of the full system. We did this by joining up
the fixed points in a way indicated by the properties of the fixed points in the
linearised system. This procedure relies on two assumptions. First, we have
assumed that the properties of fixed points in the full system are similar to
the properties of those fixed points in the linearised approximation. Second, we
have assumed that the solution that passes through any given point that is not
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a fixed point is unique and that the solution changes continuously as the given
point is varied. The validity of these assumptions is confirmed by the following
two theorems, which we state without proof.

Definition B.5

A fixed point of a dynamical system is called hyperbolic if the linearisation of
the system near the fixed points has no eigenvalues with a zero real part.

Theorem B.6

The Hartman-Gobman theorem. If a fixed point is hyperbolic, then the topology
of the fixed point in the full, non-linear system is the same as the topology of
the fixed point in the linearised system.

Remark B.7

The Hartman-Grobman theorem justifies the use of the linearisation approach
to discovering the properties of fixed points in a dynamical system in most
cases. The exceptions are situations where one or more eigenvalues are purely
imaginary. In such cases, the stability (or otherwise) of the fixed point must be
determined by other means.

Theorem B.8

Consider a dynamical system ẋ = f(x). If the vector field f has continuous first
derivatives at a point x(0), then (i) there is a unique solution x(t) that passes
through x(0) and (ii) the solution x(t) changes smoothly as the point x(0) is
varied.

Remark B.9

In the replicator dynamics for pairwise contest games, the functions f are poly-
nomials and are, therefore, always suitably well-behaved. In particular, this
theorem means that trajectories in the replicator dynamics cannot cross.

As we have already remarked, the stability (or otherwise) of a non-hyperbolic
fixed point cannot be determined by linearisation. The linearised system has
eigenvalues with real parts that are zero, and the stability of the system is deter-
mined by higher order terms in expansion about the fixed point. In such cases,
we can make use of the direct Lyapounov method (named after the Russian
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mathematician who devised it).

Theorem B.10

Let ẋ = f(x) be a dynamical system with a fixed point at x∗. If we can find
a scalar function V (x), defined for allowable states of the system close to x∗,
such that4

1. V (x∗) = 0

2. V (x) > 0 for x �= x∗

3. dV
dt < 0 for x �= x∗

then the fixed point x∗ is asymptotically stable.

Proof

The third condition implies that V is strictly decreasing along solution tra-
jectories of the dynamical system. Because V (x) ≥ 0 with equality only for
x = x∗, this implies that limt→∞ V = 0 and hence limt→∞ x(t) = x∗.

Remark B.11

The drawback of the direct Lyapounov method is that there is no general
procedure (apart from trial and error) for constructing a Lyapounov function.
For the replicator dynamics, however, a class of functions known as relative
entropy functions seems to work well in many cases.

Example B.12

Consider the dynamical system

ẋ = −y

ẏ = x − x2y.

In the linearised system

ξ̇ = −η

η̇ = ξ.

4 A function with these properties is called a strict Lyapounov function.
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the fixed point at the origin is a centre (both eigenvalues are purely imaginary).
Because

d

dt

(
ξ2 + η2) = 2ξξ̇ + 2ηη̇

= 0

trajectories (in the linear system) form concentric circles about the origin:
ξ(t)2 +η(t)2 = constant. This tells us nothing about the full non-linear system,
but it does give the hint that we should try V = x2 + y2 as a Lyapounov
function. Clearly this function satisfies the first two conditions, and because

dV

dt
= 2xẋ + 2yẏ

= 2x(−y) + 2y(x − x2y)

= −2x2y2

< 0 for x �= x∗

it satisfies the third as well. The origin is, therefore, an asymptotically stable
fixed point.
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Chapter 1

1.1 Value of F (n) for various n is

n 0 1 2 3 4 5+

F (n) 1 9/2 6 11/2 3 < 0

So n∗ = 2 and F (n∗) = 6.

1.2 Because g(0) = 0 and g(b/2) < 0 for ab < 4c

x∗ =
{ b

2 if ab > 4c
0 otherwise

.

1.3 (a) x∗ = 3 (f ′(3) = 0 & f ′′(3) < 0).
(b) x∗ = 2 (f ′(x) > 0 for x ∈ [1, 2]).
(c) x∗ = 3 (f ′′(x) > 0).

1.4 The payoff function is the return on the investment, because the two accounts
are otherwise identical. Let us first assume that the initial capital is included.
Then π(a1) = £1000×1.06 = £1060 and π(a2) = £1000×(1.03)2 = £1060.90.
So the investor should choose the second account, which pays 3% at six-month
intervals. The result will be the same if the initial sum is not included (it is an
affine transformation).

1.5 (a) Income = qP (q), which is maximised at q̂ = 1
2q0.

(b) Profit = q(P (q) − c), which is maximised at

q∗ =
q0

2

(
1 − c

P0

)
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1.6 Profit = (p − c1)T (p) − c0, which is maximised at

p∗ =
p0 + c1

2
.

The maximum profit is only positive if T (p∗ − c1)(p∗)− c0 > 0. This condition
is satisfied if

T0

(
1 − c1

p0

)2

> 4
c0

p0
.

If this condition is not satisfied, then the factory should not be built.

1.7 (a) π(a1) = π(a2) = 1.5 and π(a3) = 1. So a∗ = a1 or a2 but not a3.
(b) π(a1) = 0.75, π(a2) = 2.25 and π(a3) = 1. So a∗ = a2.

1.8 The expected profit is

π(u) =
∫ u

0
(px − cu)f(x) dx +

∫ ∞

u

(px − cu − k(x − u))f(x) dx

=
∫ ∞

0
(px − cu)f(x) dx − k

∫ ∞

u

(x − u)f(x) dx

= pd − cu − k

∫ ∞

u

xf(x) dx + ku

∫ ∞

u

f(x) dx .

Using ∫ ∞

u

xf(x) dx = (u + d)e−u/d and
∫ ∞

u

f(x) dx = e−u/d

we obtain
π(u) = pd − cu − kde−u/d .

Differentiating with respect to u and setting the result equal to zero, we find

u∗ = d ln
(

k

c

)
.

1.9 Because w ∼ N(µ, σ2), the expected utility is

E(u(w)) = 1 − 1√
2πσ

∫ ∞

−∞
e−kwe−(w−µ)2/2σ2

.

By completing the square, we find

(w − µ)2

2σ2 + kw =
w − µ + kσ2

2σ2 + kµ − k2σ2

2

and

E(u(w)) = 1 − exp
[
−

(
kµ − k2σ2

2

)]
.

So

argmax E(u(w)) = argmax
(

kµ − k2σ2

2

)

= argmax
(

µ − k

2
σ2

)
.
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1.10 The expected utility is

π = E(w) − k E(w2)

= E(w) − k (E(w))2 − kVar(w) .

From example (1.24) we have

E(w) = r + a(µ − r) and Var(w) = a2σ2

so

π(a) = r − kr2 + a(µ − r) − 2akr(µ − r) − ka2(µ − r)2 − ka2σ2 .

This payoff has a maximum at

â =
(µ − r)(1 − 2kr)

2k(µ − r)2 + 2kσ2 .

So

a∗ =

{
0 if â < 0
â if 0 < â < 1
1 â > 1

.

1.11 Expected number of surviving offspring is nH(n).

n 0 1 2 3 4+

nH(n) 0 0.9 1.2 0.3 < 0

So nH(n) has a maximum at n∗ = 2

1.12 Maximising the expected number of offspring is equivalent to maximising the
adult’s probability of survival. The probability of survival, if the bird “chooses”
site i, is

S(i) = (1 − λi) (PiMh + (1 − Pi)Ml) .

So
S(1) = 0.656 S(2) = 0.666 S(3) = 0.627

which gives the optimal patch choice as i∗ = 2.

1.13 The payoff for a general behaviour β is∑
a∈A

p(a)π(a) =
∑
a∈A

p(a)
∑
x∈X

P (X = x)π(a|x)

=
∑
x∈X

P (X = x)
∑
a∈A

p(a)π(a|x)

=
∑
x∈X

P (X = x)π(β|x) .

1.14 Because π(a1) = π(a3) = 5 and π(a2) = 3 3
4 , optimal randomising behaviours

have support A∗ = {a1, a2} with p(a1) = p and p(a3) = 1 − p (0 < p < 1).
Using either a1 or a3 with probability 1 is also an optimal behaviour.
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Chapter 2

2.1 (a) The decision tree is

1
�������

D
������

N

2
�������

D
������

N

3
�������

D
������

N

10

15

20 15

The pure-strategy set is

S = {NNN, NND, NDN, NDD, DNN, DND, DDN, DDD}
and the optimal strategy is NND, which gives a payoff of 20 cents.
(b) If play has reached the last choice, then it is optimal to choose the dime
rather than the nickel. At any other point, it is optimal to choose the nickel
because, for example, choosing the nickel now and the dime next time gives
a total future payoff of 15 cents compared to the 10 cents gained by choosing
the dime now.
(c) At any decision point, the probability that the game will continue for
another n choices is

∑n
k=1 pk, so the expected future number of decisions is

∞∑
k=1

pk =
p

1 − p

In this sense, all decision points are the same, so if it is optimal to choose an
action now, it will be optimal to choose the same action in the future (i.e., the
optimal strategy is stationary). The expected future payoff for choosing the
nickel is

5 +
5p

1 − p

whereas the payoff for choosing the dime is just 10 (because the game then
stops). So it is optimal to choose the nickel every time if p > 1

2 .

2.2 The payoff for the behavioural strategy is

π(β) =
1
2

× 15 +
1
2

× 10 = 12.5

The payoff for the mixed strategies is

π(σ) =
1
2

× 15 +
(

1
2

− x

)
× 10 + x × 10 = 12.5
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2.3 (a) Because all decision points are reached with positive probability by playing
the mixed strategy, the behavioural equivalent β =

(( 1
2 , 1

2

)
, (1, 0), (0, 1)

)
is

unique.
(b) Because decision point 3 is not reached by playing the mixed strategy,
any choice at that point gives a behavioural equivalent. So the equivalent
behavioural strategies are all of the form

β =
(

(1, 0),
(

2
3
,
1
3

)
, (x, 1 − x)

)

with x ∈ [0, 1].

2.4 (a) Using the notation C for care, D for desert, and H, M , and L for the choice
of the high-quality, medium-quality or low-quality male, the decision tree is

1
����������

���������

H
M

L

�

�
�

�
�

�
�

�
�
�
�
�
�

2

C D

�

�
�

�
�

�
�

�
�
�
�
�
�

3

C D

�

�
�

�
�

�
�

�
�
�
�
�
�

4

C D

1
2 vH 0 vM

1
2 vM vL

1
2 vL

(b) The female should always care and should choose her mate according to
the rule:

Choose

{
H if 1

2vH > vM

M if 1
2vH < vM

L never
.

Chapter 3

3.1 (a) The payoff is

π(c0, c1, c2) = ln(c0) + ln(c1) + ln(c2)

and the constraint is
c0 +

c1

r
+

c2

r2 ≤ x0

which gives the solution

ct+1 = rct with c0 =
x0

3
.

(b) By backward recursion the solution is

c∗
2 = x2 c∗

1 =
1
2
x1 c∗

0 =
x0

3
.
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Substituting in the state equation, we find

c∗
1 =

1
2
r(x0 − c0) =

1
2
r
2
3
x0 = rc∗

0

c∗
2 = r(x1 − c1) = r

1
2
x1 = rc∗

1

3.2 The correspondence is given in the following table.

General description Example 3.4

rT (xT ) 0

rt(xt, at) ln(ct)

p(x′|x, a) p(x′ = r(x − c)|x, c) = 1

a(xt, t) ct(xt)

s (c0(x0), c1(x1))

X [0, ∞]

A(x, t) [0, xt]

3.3 Beginning in state x, the process proceeds as follows

t = 0 t = 1 t = 2 t = 3

p = 1 p = 1
2 p = 1

2

(x, a) 	 (y, b) 	 (y, b) 	 y

�
�

��


�
�

��


p = 1
2 p = 1

2

z z

and the expected payoff is 2+10+ 1
210 = 17. Beginning in state y, the process

proceeds as follows

t = 0 t = 1 t = 2 t = 3

p = 1
2 p = 1

2 p = 1
2

(y, b) 	 (y, b) 	 (y, b) 	 y

�
�

��


�
�

��


�
�

��


p = 1
2 p = 1

2 p = 1
2

z z z

and the expected payoff is 10 + 1
210 + 1

410 = 17.5.

3.4 In state z, there is no choice to be made and π∗
t (z) = 0, ∀t. The absence of a

terminal reward rT also gives us π∗
3(x) = π∗

3(y) = 0.
At time t = 2 in state x, we have

π2(x|a) = 1 + π∗
3(y) = 1

π2(x|b) = 2 + π∗
3(x) = 2
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so a∗(x, 2) = b and π∗
2(x) = 2. In state y, we have

π2(y|a) = 3 + π∗
3(x) = 3

π2(y|b) = 5 +
1
4
π∗

3(y) +
3
4
π∗

3(z) = 5

so a∗(y, 2) = b and π∗
2(y) = 5.

At time t = 1 in state x, we have

π1(x|a) = 1 + π∗
2(y) = 6

π1(x|b) = 2 + π∗
2(x) = 4

so a∗(x, 1) = a and π∗
1(x) = 6. In state y, we have

π1(y|a) = 3 + π∗
2(x) = 5

π1(y|b) = 5 +
1
4
π∗

2(y) +
3
4
π∗

2(z) = 6
1
4

so a∗(y, 2) = b and π∗
1(y) = 6 1

4 .
At time t = 0 in state x, we have

π0(x|a) = 1 + π∗
1(y) = 7

1
4

π0(x|b) = 2 + π∗
1(x) = 8

so a∗(x, 0) = b and π∗
0(x) = 8. In state y, we have

π0(y|a) = 3 + π∗
1(x) = 9

π0(y|b) = 5 +
1
4
π∗

1(y) +
3
4
π∗

1(z) =
105
16

= 6.5625

so a∗(y, 2) = a and π∗
0(y) = 9.

The solution of the problem is, therefore, the optimal strategy

s∗ =
( t = 0 t = 1 t = 2

x b a b
y a b b

)

where we have ignored state z because it is irrelevant whether we say that the
action in state z is a or b. The payoff is 8 if the process starts in state x or 9
if the process starts in state y.

3.5 The payoffs are

π(s1) =
∞∑

t=0

δt =
1

1 − δ

π(s2) =
∞∑

t=0

2δt =
2

1 − δ

so s2 is better than s1 as we thought it should be.
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3.6 Following the strategy s = {a(x) = a, a(y) = a} gives

π(x|s) = 2 +
1
2
π(y|s)

π(y|s) =
1
2
π(z|s)

π(z|s) = 6 +
1
2
π(x|s) .

These can be solved (find π(z|s) first) to give π(x|s) = π(y|s) = 4 and π(z|s) =
8. Swapping to action b in state x yields a payoff of 1+ 1

2π(x|s) = 3. Swapping
to action b in state y yields a payoff of 1 + 1

2π(x|s) = 3. From this we can
conclude that the strategy we guessed is optimal.

3.7 The optimal strategy is the same as the one found in Example 3.19.

Chapter 4

4.1 One possible payoff table is

Scarpia

Tosca

Fake Real

execution execution

Kill πT (K, F ), πS(K, F ) πT (K, R), πS(K, R)

Sleep πT (S, F ), πS(S, F ) πT (S, R), πS(S, R)

Because Tosca (presumably) prefers to keep her honour in any case, we have
πT (K, F ) > πT (S, F ) and πT (K, R) > πT (S, R). Because Scarpia (presum-
ably) prefers to do his duty in any case, we have πS(K, R) > πS(K, F ) and
πS(S, R) > πS(S, F ). These conditions mean the game inevitably has the
stated outcome.

4.2 (a) Eliminate D; then eliminate L, leaving (U, R). (b) Eliminate D (it is dom-
inated by the mixed strategy of playing U and C each with probability 1

2 );
then eliminate R; then eliminate U , leaving (C, L). Alternatively, eliminate R,
then eliminate U and D, leaving (C, L).

4.3 The pair (D, L) is a Nash equilibrium because

π1(σ1, L) = 10p + 10(1 − p) = 10 = π1(D, L)

and
π2(D, σ2) = p − (1 − p − q) ≤ p ≤ π2(D, L) .

Similarly, the pair (U, M) is a Nash equilibrium because

π1(σ1, M) = 5 = π1(U, M)

and
π2(U, σ2) = q − 2(1 − p − q) ≤ q ≤ π2(U, M) .
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4.4 (a) Let σ1 = (p, 1 − p) and σ2 = (q, 1 − q), then

π1(σ1, σ2) = 1 + q + p(1 + q) .

So the best response for player 1 is σ̂1 = (1, 0) (i.e., use U) whatever player 2
does. Similarly

π2(σ1, σ2) = 1 + q + p .

So player 2’s best response is always σ̂2 = (1, 0) (i.e., use L). The unique Nash
equilibrium is, therefore, (U, L).
(b) Let σ1 = (p, 1 − p) and σ2 = (q, 1 − q), then π1(σ1, σ2) = q + p(2 − 3q) so
the best responses for P1 are

σ̂1 =

⎧⎨
⎩

(0, 1) if q > 2
3

(1, 0) if q < 2
3

(x, 1 − x) with x ∈ [0, 1] if q = 2
3 .

Similarly, π2(σ1, σ2) = p + q(2 − 3p) so the best responses for P2 are

σ̂2 =

⎧⎨
⎩

(0, 1) if p > 2
3

(1, 0) if p < 2
3

(y, 1 − y) with y ∈ [0, 1] if p = 2
3 .

So the complete set of Nash equilibria is (M, R), (F, W ) and (σ∗
1 , σ∗

2) with
σ∗

1 = σ∗
2 =

( 2
3 , 1

3

)
.

4.5 We underline the best responses for each player.

P2

P1

L M R

U 4, 3 2, 7 0, 4

D 5, 5 5, −1 −4, −2

So the unique pure-strategy Nash equilibrium is (D, L).

4.6 Let K be the set of integers from 0 to 1000, i.e., K = {0, 1, 2, ..., 999, 1000}.
The best responses for si ∈ K are

ŝ1 = 1000 − s2

ŝ2 = 1000 − s1 .

So any pair of sums of money s∗
1 ∈ K and s∗

2 ∈ K with s∗
1 + s∗

2 = 1000 is a
Nash equilibrium. (There is also an infinite number of Nash equilibria where
both sons choose an amount of money greater than £1000!)

4.7 (a) The payoff table is

R S P

R 0, 0 1, −1 −1, 1

S −1, 1 0, 0 1, −1

P 1, −1 −1, 1 0, 0
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(b) There are clearly no pure-strategy Nash equilibria. Find a mixed-strategy
equilibrium using the Equality of Payoffs theorem. Let σ2 = (r, s, 1 − r − s),
then

π1(R, σ2) = π1(S, σ2) = π1(P, σ2)

2s + r − 1 = 1 − s − 2r = r − s .

which can be solved to give r = s = 1
3 . By following the analogous procedure for

player 2, we find the unique Nash equilibrium is (σ∗, σ∗) with σ∗ =
( 1

3 , 1
3 , 1

3

)
.

4.8 (i) If a ≥ c, then (A, A) is a symmetric Nash equilibrium. (ii) If d ≥ b, then
(B, B) is a symmetric Nash equilibrium. (iii) If a < c and d < b, then there is
no symmetric pure strategy Nash equilibrium, so we look for a mixed strategy
Nash equilibrium using the Equality of Payoffs theorem. Let σ∗

1 = (p∗, 1 − p∗)
and σ∗

2 = (q∗, 1 − q∗). Then

π1(A, σ∗
2) = π1(B, σ∗

2)
⇐⇒ aq∗ + b(1 − q∗) = cq∗ + d(1 − q∗)

⇐⇒ q∗ =
(b − d)

(c − a) + (b − d)

and

π2(σ∗
1 , A) = π2(σ∗

1 , B)
⇐⇒ ap∗ + b(1 − p∗) = cp∗ + d(1 − p∗)

⇐⇒ p∗ =
(b − d)

(c − a) + (b − d)
.

We have 0 < p∗ = q∗ < 1 as required for a symmetric mixed strategy Nash
equilibrium.

4.9 The Nash equilibria for both games are (U, L), (D, R) and
(( 2

3 , 1
3

)
,
( 1

3 , 2
3

))
.

4.10 (a) Let σ1 = (p, 1−p) and σ2 = (q, 1− q). Then π1(σ1, σ2) = 6q +5p(1− q), so

σ̂1 =
{

(1, 0) ∀q < 1
(x, 1 − x) with x ∈ [0, 1] for q = 1 .

Now π2(σ1, σ2) = 3p + q(1 − 4p), so

σ̂2 =

⎧⎨
⎩

(1, 0) ∀p < 1
4

(0, 1) ∀p > 1
4

(y, 1 − y) with y ∈ [0, 1] for p = 1
4 .

Therefore, the Nash equilibria are

(σ∗
1 , σ∗

2) =
{

((x, 1 − x), C) with x ∈ [0, 1
4 ]

(B, D) .

(b) Let σ1 = (p, 1−p) and σ2 = (q, r, 1−q−r). Then π1(σ1, σ2) = 2+3q−4r+pr,
so

σ̂1 =
{

(1, 0) if r > 0 and ∀q ∈ [0, 1)
(x, 1 − x) with x ∈ [0, 1] if r = 0 and ∀q ∈ [0, 1] .
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Now π2(σ1, σ2) = 3(1 − p) + rp, so

σ̂2 =
{

(0, 1, 0) if p > 0
(y, z, 1 − y − z) with y, z, y + z ∈ [0, 1] if p = 0 .

Therefore, the Nash equilibria are

(σ∗
1 , σ∗

2) =
{

(J, (y, 0, 1 − y)) with y ∈ [0, 1]
(G, F ) .

The best responses for the first game are shown in the figure below. The best
responses for player 1 are shown by a solid line and those for player 2 by a
dotted line. Where they meet are the Nash equilibria (indicated by the circle
and the thick line)

�0

1

0 1

q

p

4.11 Let p = P (player 1 plays A) and q = P (player 2 plays C), then

π1(σ1, σ2) = (2 − q) + p(λq − 1)
π2(σ1, σ2) = (2 − p) + q(λp − 1) .

For λ < 1, the best responses are p̂ = q̂ = 0 so (D, R) is the unique Nash
equilibrium. For λ ≥ 1, the best responses are

p̂ =

⎧⎨
⎩

1 if q < 1
λ

0 if q > 1
λ

any x ∈ [0, 1] if q = 1
λ

.

and

q̂ =

⎧⎨
⎩

1 if p < 1
λ

0 if p > 1
λ

any y ∈ [0, 1] if p = 1
λ

.

The Nash equilibria are (U, L), (D, R), and (σ∗
1 , σ∗

2) with

σ∗
1 = σ∗

2 =
(

1
λ

,
λ − 1

λ

)
.

As λ → 1, (σ∗
1 , σ∗

2) → (U, L).
For λ �= 1, the game is generic and the number of equilibria is odd. For λ = 1,
the game is non-generic and the number of equilibria is even.
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4.12 The payoff table is

A K Q

A 0, 0 5, −5 −5, 5

K −5, 5 0, 0 5, −5

Q 5, −5 −5, 5 0, 0

This game is just an affine transformation of “Rock-Scissors-Paper” so the
unique equilibrium is (σ∗, σ∗] with σ∗ =

( 1
3 , 1

3 , 1
3

)
(see problem 4.7).

4.13 Take each of the sixteen possible cases, one-by-one.

Sign of Pure-strategy Mixed-strategy

(d − b) (a − c) (d − c) (a − b) equilibrium equilibrium

+ + + + None p∗, q∗

+ + + - (U, L) None

+ + - + (D, R) None

+ + - - Inconsistent

+ - + + (D, L) None

+ - + - (D, L) None

+ - - + (D, R) None

+ - - - (D, R) None

- + + + (U, R) None

- + + - (U, L) None

- + - + (U, R) None

- + - - (U, L) None

- - + + Inconsistent

- - + - (D, L) None

- - - + (U, R) None

- - - - None p∗, q∗

Where

p∗ =
(d − c)

(d − c) + (a − b)
and q∗ =

(d − b)
(d − b) + (a − c)

.

The two inconsistent cases arise because d − b > 0 and a − c > 0 imply that
a − b − c + d > 0, whereas d − c < 0 and a − b < 0 imply a − b − c + d < 0 (and
vice versa).

4.14 The game can be represented by the pair of payoff tables shown below.
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P3

P1

L A B

U 1, 1, 0 2, 2, 3

D 2, 2, 3 3, 3, 0

P3

P1

R A B

U −1, −1, 2 2, 0, 2

D 0, 2, 2 1, 1, 2

By inspection, there are no pure strategy equilibria. Let player 1 choose U
with probability p, let player 2 choose L with probability q, and let player 3
choose A with probability r. The three equations that must be satisfied for
mixed strategies are

π1(U, σ2, σ3) = π1(D, σ2, σ3)
π2(σ1, L, σ3) = π2(σ1, R, σ3)
π3(σ1, σ2, A) = π3(σ1, σ2, B).

These yield the following three conditions for p, q, and r:

2(q + r − qr) − 1 = 0
2(p + r − pr) − 1 = 0

3(p + q − 2pq) = 2.

The first two conditions tell us that p = q. Because the third condition has
no real solutions if p = q, player 3 cannot employ a mixed strategy. Suppose
r = 1, then either of the first two conditions produces the contradiction 1 = 0.
If r = 0, then we deduce that p = q = 1

2 .

Chapter 5

5.1 The equilibrium can be written unambiguously as (AEE, CR).

5.2 The second player’s strategies are triples XY Z meaning “play X after L, Y
after M and Z after R”. The backward induction solution is (L, BBB) and
the payoff table is

P2

P1

AAA AAB ABA ABB BAA BAB BBA BBB

L 0, 0 0, 0 0, 0 0, 0 6,2 6,2 6,2 6,2

M 1, 3 1, 3 5, 4 5,4 1, 3 1, 3 5, 4 5, 4

R 6, 2 1,3 6, 2 1, 3 6, 2 1, 3 6, 2 1, 3

where the pure strategy Nash equilibria are shown in bold type.

5.3 The game has two trees as follows
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U D U D U D

No backward induction solutions are possible because the player that decides
“second” does not know what the other player “has” done.

5.4 Based on the version in Example 4.2, the game tree is

P1 �

�
�

�
�

�
�

Q

�
�

�
�

�
�

S

P2 �
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�

Q

�
�
�
�
�
�

S

P2�

�
�

�
�

�
�

Q

�
�
�
�
�
�

S

−2, −2 −5, 0 0, −5 −4, −4
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Both players should “squeal” just as they do in the static game.

5.5 The strategic form is

P2

P1

LH LT RH RT

AH 1, −1 −1, 1 1, −1 −1, 1

AT −1, 1 1, −1 −1, 1 1, −1

BH 3, 1 3, 1 −1, 2 −1, 2

BT 3, 1 3, 1 −1, 2 −1, 2

The mixed strategies σ∗
1 = 1

2AH + 1
2AT and σ∗

2 = 1
2RH + 1

2RT give
π1(σ∗

1 , σ∗
2) = π2(σ∗

1 , σ∗
2) = 0. Because π1(AH, σ∗

2) = π1(AT, σ∗
2) = 0 and

π1(BH, σ∗
2) = π1(BT, σ∗

2) = −1, we have π1(σ∗
1 , σ∗

2) ≥ π1(σ1, σ
∗
2) ∀σ1 ∈ Σ1.

Because π2(σ∗
1 , s2) = 0 ∀s2 ∈ S2, we have π2(σ∗

1 , σ∗
2) ≥ π2(σ∗

1 , σ2) ∀σ2 ∈ Σ2.
Hence (σ∗

1 , σ∗
2) is a Nash equilibrium.

5.6 The Newcomer’s pure strategies are to “enter the market” (E) or to “stay out”
(S). The Incumbent’s pure strategies are to “engage in a price war” (W ) or to
“accept the competition” (A). The game tree is

Newcomer�

�
�

�
��

�
�

�
��

S E

2,6

Incumbent�

�
�

�
��

�
�

�
��

W A

2,3 0,0

and (E, A) is the unique behavioural strategy equilibrium.
The strategic form is

W A

S 2, 6 2, 6

E 1, 1 3, 3

Let p = P (Newcomer plays S) and q = P (Incumbent plays W ), then

πN (σN , σI) = 3 − 2q + p(2q − 1)

and
πI(σN , σI) = 3 + 3p + 2q(p − 1)
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So the best responses for the Newcomer are

σ̂N =

⎧⎨
⎩

(0, 1) if q < 1
2

(1, 0) if q > 1
2

(x, 1 − x) with x ∈ [0, 1] if q = 1
2

and the best responses for the Incumbent are

σ̂I =
{

(0, 1) if p < 1
(y, 1 − y) with y ∈ [0, 1] if p = 1

So the Nash equilibria are (E, A) and (S, σ∗) where σ∗ = (y, 1−y) with y ≥ 1
2 .

5.7 In the subgame beginning at the right-hand decision node, player 2 will always
choose R. The simultaneous decision subgame beginning at the second player’s
left-hand decision node has 3 Nash equilibria: (a) (C, C), (b) (D, D), and (c)
(σ, σ) where σ = ( 1

2 , 1
2 ). These yield payoff pairs (a) (3,1), (b) (1,3), and

(c) (1.5,0.5). So there are three subgame perfect Nash equilibria: (AC, CR),
(AD, DR), and (Bσ, σR).

5.8 Nash equilbria for the simultaneous choice subgame are (A, a), (B, b), and
(σ∗, σ∗) with σ∗ = ( 1

2 , 1
2 ). Because πi(σ∗, σ∗) = 2 for i = 1, 2, the subgame

perfect Nash equilibria are (Ra, A), (Rb, B) and (Lσ∗, σ∗).

5.9 The Nash equilibria for the simultaneous decision subgame are (A, a), (B, b),
and (σ∗

1 , σ∗
2) with σ∗

1 = (1/4, 3/4) and σ∗
2 = (1/6, 5/6). Payoffs for the mixed

strategy equilbrium are π1(σ∗
1 , σ∗

2) = 5/6 and π2(σ∗
1 , σ∗

2) = 3/4. Therefore, the
three subgame perfect Nash equilibria are (Lσ∗

1 , rσ∗
2), (LB, rb), and (RA, �a).

The equilibrium (RA, �a) is supported by the following forward induction ar-
gument. If player 1 plays R, then player 2 would reason that player 1 will
play A in the simultaneous subgame because that is the only way they will
get a payoff greater than 4. So player 2 knows that they should coordinate on
the Nash equilibrium (A, a) in that subgame. Because player 1 “knows” that
player 2 will reason in this way, they will indeed play R with the expectation
of receiving 5 rather than the 4 that would be achieved for playing L.

5.10 Player 2 should choose L if their payoff for doing so exceeds the expected payoff
for choosing R. That is, they should choose L if and only if 2 > 3ε + (1 − ε),
which reduces to ε < 1

2 . (i.e., ε̄ = 1
2 .)

Chapter 6

6.1 Payoffs are

πi(q1, q2) = qi

[
P0

(
1 − q1 + q2

Q0

)
− ci

]
so the best responses are

q̂1 =
Q0

2

(
1 − q2

Q0
− c1

P0

)
and q̂2 =

Q0

2

(
1 − q1

Q0
− c2

P0

)
.
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Therefore, Nash equilibrium strategies are found by solving the simultaneous
equations

q∗
1 =

Q0

2

(
1 − q∗

2

Q0
− c1

P0

)

q∗
2 =

Q0

2

(
1 − q∗

1

Q0
− c2

P0

)
which gives

q∗
1 =

Q0

3

(
1 − 2c1 − c2

P0

)

q∗
2 =

Q0

3

(
1 − 2c2 − c1

P0

)
.

For this to be a Nash equilibrium, we must also have q∗
1 > 0 and q∗

2 > 0, which
implies that we must have 2c1 − c2 < P0 and 2c2 − c1 < P0. Suppose that
0 < c1, c2 < 1

2P0, then these conditions are satisfied. So the pair of quantities
q∗
1 and q∗

2 given above is indeed a Nash equilibrium. On the other hand, if
2c2 > P0 + c1 then q∗

2 < 0 by the formula above, so it cannot be part of a Nash
equilibrium. In this case, the Nash equilibrium is

q∗
1 =

Q0

2

(
1 − c1

P0

)
q∗
2 = 0

because the q∗
1 given above is the best response to q2 = 0 from the equation

for q̂1, and, given that Firm 1 is producing this quantity, the payoff for Firm
2 is maximised on the domain 0 ≤ q2 < ∞ at q2 = 0.

6.2 Because we are looking for a symmetric Nash equilibrium, assume that all the
firms except the first are producing a quantity q and Firm 1 is producing a
(possibly different) quantity q1. Then

π1(q1, q, q, . . . , q) = q1

[
P0

(
1 − q1 + (n − 1)q

Q0

)
− c

]
The best response for Firm 1 is then

q̂1 =
Q0

2

(
1 − (n − 1)

q

Q0
− c

P0

)
.

So the symmetric Nash equilibrium quantity q∗ is

q∗ =
Q0

2

(
1 − (n − 1)

q∗

Q0
− c

P0

)

=
Q0

n + 1

(
1 − c

P0

)
This gives a profit to each firm of

πi(q∗, q∗, . . . , q∗) = q∗
[
P0

(
1 − nq∗

Q0

)
− c

]

=
Q0P0

(n + 1)2

(
1 − c

P0

)2

.

So limn→∞ πi = 0.
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6.3 The payoffs are

B1(e1, e2) = B0(e1 + ke2)2 + c(e0 − e1)

and
B2(e1, e2) = B0(e2 + ke1)2 + c(e0 − e2) .

Each country wants to minimise its Bi, so the best response for Country 1 to
some fixed level of pollution e2 is found by (check the second derivative)

∂B1

∂e1
(ê1, e2) = 0

which gives
ê1 =

c

2B0
− ke2 .

By symmetry
ê2 =

c

2B0
− ke1 .

A Nash equilibrium is a pair of strategies e∗
1 and e∗

2 that are best responses to
each other. Using symmetry, we must have e∗

1 = e∗
2 = e∗ where

e∗ =
c

2B0
− ke∗

=
c

2B0(1 + k)

At equilibrium, the total amount of pollution in each country is

E∗ =
c

2B0

which is independent of the amount of pollution coming from the adjacent
country (i.e., the more one country affects the other, the larger is each country’s
abatement) and the total amount of pollution is high when costs of cleaning
up are high.

6.4 The aggregate quantity produced in the Stackelberg model is

Q∗
S = q∗

1 + q∗
2 =

3
4
Q0

(
1 − c

P0

)

which is larger than the aggregate quantity produced in the Cournot model

Q∗
C = 2q∗

C =
2
3
Q0

(
1 − c

P0

)

which implies that the market price of a single item is smaller in the Stackelberg
model than in the Cournot model.

6.5 In the event that the Entrant does diversify, the incumbent will make a greater
profit if it reveals its production levels (i.e., in a Stackelberg duopoly), so the
Entrant will be a market follower and will make a profit

π∗
2 =

P0Q0

16

(
1 − c

P0

)2

.

The Entrant will diversify if potential profits exceed the cost of entering the
market:

P0Q0

16

(
1 − c

P0

)2

> CE .



Solutions 223

6.6 The result can be found by explicit calculation of the expected payoff

π1(σ∗
1 , σ∗

2) =
∫ ∞

0
p(x)

[∫ x

0
(v − y)q(y)dy − x

∫ ∞

x

q(y)dy

]
dx .

or by observing that π1(0, σ∗
2) = 0 together with the condition

∂

∂x
π1(x, σ∗

2) = 0

implies that π1(x, σ∗
2) = 0 ∀x. Hence

π1(σ1, σ
∗
2) = 0

for all σ1 including σ1 = σ∗
1 .

6.7 Because the analysis in the text was done in terms of costs, we still have

p(x) =
1
v

exp
(
−x

v

)
.

But

p(t) = p(x)
dx

dt

=
2kt

v
exp

(
−kt2

v

)

which is not exponential and which, in turn, leads to a non-exponential distri-
bution of contest durations.

Chapter 7

7.1 Ignoring a common factor of

Q0P0

(
1 − c

P0

)2

the payoff table is

Firm 2

Firm 1

M C

M 1
8 , 18

5
48 , 5

36

C 5
36 , 5

48
1
9 , 19

Setting

r =
1
8

t =
5
36

s =
5
48

p =
1
9

we see this game has the structure of a Prisoners’ Dilemma because t > r >
p > s.



224 Solutions

7.2 Payoff table is

P2

P1

CC CD DC DD

CC 6, 6 3, 8 3, 8 0, 10

CD 8, 3 4, 4 5, 5 1, 6

DC 8, 3 5, 5 4, 4 1, 6

DD 10, 0 6, 1 6, 1 2, 2

All strategies are dominated except DD for both players, so (DD, DD) is the
unique Nash equilibrium (not just in pure strategies).

7.3 Comparison of π1(sT , sT ), π1(sC , sT ), and π1(sD, sT ) leads to δ ≥ 1
2 as in

Example 7.4. But we must also compare π1(sT , sT ) and π1(sA, sT ). Because

π1(sA, sT ) = 5 + 0 + 5δ2 + 0 + 5δ4 + . . .

=
5

1 − δ2

we require δ ≥ 2
3 .

7.4 Ignoring the (irrelevant) common factor of (1 − δ)−1 the payoff table is

Player 2

Player 1

sD sC sG

sD 1, 1 5, 0 5 − 4δ,δ

sC 0, 5 3, 3 3, 3

sG δ,5 − 4δ 3, 3 3, 3

The pair (sD, sD) is always a Nash equilibrium because δ < 1. The pair (sG, sG)
is a Nash equilibrium if 3 ≥ 5 − 4δ, which reduces to δ ≥ 1

2 . For δ < 1
2 , only

sD is undominated, so [sD, sD] is the unique Nash equilibrium in this case. For
δ ≥ 1

2 , the game is not generic.
Let σ1 = (p, q, 1 − p − q) and σ2 = (r, s, 1 − r − s). Then

π1(σ1, σ2) = 3 − (3 − δ)r + p[2 − r − 4δ + 3rδ + 4sδ] − q[rδ]

So the best responses are (with p̂, q̂ ∈ [0, 1] and p̂ + q̂ = 1)

σ̂1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sD if r > 0 and 2 − 4δ + (3δ − 1)r + 4δs > 0
(p̂, 0, 1 − p̂) if r > 0 and 2 − 4δ + (3δ − 1)r + 4δs = 0
sG if r > 0 and 2 − 4δ + (3δ − 1)r + 4δs < 0
sD if r = 0 and s > 1 − (2δ)−1

(p̂, q̂, 1 − p̂ − q̂) if r = 0 and s = 1 − (2δ)−1

(0, q̂, 1 − q̂) if r = 0 and s < 1 − (2δ)−1

σ̂2 is similar with p ↔ r and q ↔ s. Hence the Nash equilibria are
a) Always defect: (sD, sD).
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b) A specific mixture of defection (sD) and conditional cooperation (sG):
((x, 0, 1 − x), (x, 0, 1 − x)) with x = (4δ − 2)/(3δ − 1).

c) A set of mixtures of conditional (sG) and unconditional cooperation (sC):
((0, q, 1 − q), (0, s, 1 − s)) with q, s ≤ 1 − (2δ)−1.

7.5 Changing from sC to sB will not increase the payoff for either player. Only
changing to sA has the potential to do this. The critical value of δ for player
1 is given by the inequality

π1(sC , sC) ≥ π1(sA, sC)

⇐⇒ 2
1 − δ

≥ 3 +
δ

1 − δ

⇐⇒ δ ≥ 1
2

.

The critical value of δ for player 2 is given by the inequality

π2(sC , sC) ≥ π2(sC , sA)

⇐⇒ 3
1 − δ

≥ 5 +
2δ

1 − δ

⇐⇒ δ ≥ 2
3

.

Because the actual discount factor is common to both players, we must have

δ ≥ max
(

1
2
,
2
3

)
=

2
3

for (sC , sC) to be a Nash equilibrium.

7.6 Let sT denote the Tit-for-Tat strategy. Now consider a stage t when player
2 defects but player 1 does not. In stage t + 1, the Nash equilibrium (sT , sT )
specifies that player 1 should defect and player 2 should cooperate. These be-
haviours are then reversed for stage t+2, and so on. So in the subgame starting
at stage t + 1, player 2 uses the strategy sT and player 1 uses the cautious
version of Tit-for-Tat (sA), which begins by defecting rather than cooperating
(see Exercise 7.3). Because δ > 2/3, (sA, sT ) is not a Nash equilibrium for the
subgame starting at stage t + 1, as

π1(sA, sT ) = 5 + 5δ2 + 5δ4 + . . .

=
5

1 − δ2

<
3

1 − δ

= π1(sT , sT )

for δ > 2
3 .

7.7 Because the strategy sP only depends on the behaviour of the players in the
previous stage, we consider the possible behaviours at state t − 1 and examine
what happens if player 1 deviates from sP at stage t. (The game is symmetric
so we don’t need to consider player 2 separately.)
Consider the case when one of the players has used D at stage t − 1 and the
other has used C (it does not matter which). Then sP specifies using D in
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stage t (for both players). The total future payoff to player 1 (including that
from stage t) is then

π1(sP , sP ) = 1 +
4δ

1 − δ
.

Suppose that, instead of using D, player 1 uses C in stage t and then reverts
to sP for stages t + 1 onwards. Let us denote this strategy by s′. The total
future payoff to player 1 is then

π1(s′, sP ) = 0 + δ +
4δ2

1 − δ
.

Player 1 does not benefit from the switch if π1(sP , sP ) ≥ π1(s′, sP ), which is
true for all values of δ.
Consider the case when both players have used D at stage t − 1 or both have
used C (it does not matter which). Then sP specifies using C in stage t (for
both players). The total future payoff to player 1 (including that from stage t)
is then

π1(sP , sP ) =
4

1 − δ
.

Suppose that, instead of using C, player 1 uses D in stage t and then reverts
to sP for stages t + 1 onwards. Let us denote this strategy by s′′. The total
future payoff to player 1 is then

π1(s′′, sP ) = 5 + δ +
4δ2

1 − δ
.

Player 1 does not benefit from the switch if π1(sP , sP ) ≥ π1(s′′, sP ), which
is true if 4 + 4δ ≥ 5 + δ. Consequently, (sP , sP ) is a subgame perfect Nash
equilibrium if δ ≥ 1

3 .

7.8 A suitable stochastic game is shown below.

P1

D

C

P2
C D

������������

������������

5, 0

3, 3

1, 1

0, 5

(0, 1)

(1, 0)

(0, 1)

(0, 1)

State = x

P1

D

C

P2
C D

������������

������������

5, 0

3, 3

1, 1

0, 5

(0, 1)

(0, 1)

(0, 1)

(0, 1)

State = y

The game starts in state x and the Markov equivalent to σg is the pair {a(x) =
C, a(y) = D} (which we will write as CD).
In state y, the effective game is just the Prisoners’ Dilemma itself so the equi-
librium is for both players to use D. So we have

π∗
i (y) =

1
1 − δ

.

In state x, the effective game is
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P2

P1

C D

C 3 + δπ∗
1(x),3 + δπ∗

2(x) δπ∗
1(y),5 + δπ∗

2(y)

D 5 + δπ∗
1(y),δπ∗

2(y) 1 + δπ∗
1(y),1 + δπ∗

2(y)
or

P2

P1

C D

C 3 + δπ∗
1(x),3 + δπ∗

2(x) δ
1−δ

,5 + δ
1−δ

D 5 + δ
1−δ

, δ
1−δ

1
1−δ

, 1
1−δ

Clearly (D, C) and (C, D) are never an equilibrium of this effective game, and
(D, D) is an equilibrium for all values of δ. The pair of actions (C, C) is an
equilibrium if (for i = 1, 2)

3 + δπi(x) ≥ 5 +
δ

1 − δ

which means that we would have

πi(x) ≥ 2 − δ

δ(1 − δ)
.

Suppose that both players choose cooperation in state x. Then

πi(x) = 3 + δπi(x)

=⇒ πi(x) =
3

1 − δ
.

Now
3

1 − δ
≥ 2 − δ

δ(1 − δ)
⇐⇒ δ ≥ 1

2

so (CD, CD) is a Markov-strategy Nash equilibrium if δ ≥ 1
2 .

Chapter 8

8.1 (a) There are two obvious ways: (i) 100% of the population uses the mixed
strategy

( 5
12 , 7

12

)
; (ii) 5

12 of the population use the pure strategy (1, 0) and 7
12

use the pure strategy (0, 1). There are many possible, less obvious alternatives.
For example, 1

3 of the population uses the mixed strategy
( 3

4 , 1
4

)
and 2

3 use the
mixed strategy

( 1
4 , 3

4

)
.

(b) x = 4
10

( 1
2 , 0, 1

2

)
+ 6

10

( 1
4 , 3

4 , 0
)

=
( 7

20 , 9
20 , 4

20

)
.

8.2 Candidate ESSs are
σW : Everyone uses W , then x = 1 and π(W, 1) > π(L, 1).
σL : Everyone uses L, then x = 0 and π(L, 0) > π(W, 0).
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σm : A mixed strategy in which W is used 3
4 of the time, then x = 3

4 and
π(W, 3

4 ) = π(L, 3
4 ).

Now xε = (p∗ + ε(p − p∗), 1 − p∗ − ε(p − p∗)). So

δπ ≡ π(σ∗,xε) − π(σ,xε)
= p∗π(W,xε) + (1 − p∗)π(L,xε) − pπ(W,xε) − (1 − p)π(L,xε)
= (p∗ − p) (π(W,xε) − π(L,xε))
= (p∗ − p)(4p∗ − 3 − 4ε(p∗ − p))

Taking each of the candidate ESSs in turn, we have
σW : p∗ = 1, so δπ = (1 − p)(1 − 4ε(1 − p)) > 0 ∀p �= 1 and for ε < ε̄ = 1

4 .
So σW is an ESS.

σL : p∗ = 0, so δπ = p(3 − 4εp) > 0 ∀p �= 0 and for ε < ε̄ = 3
4 . So σL is an

ESS.
σm : p∗ = 3

4 , so δπ = −4ε( 3
4 − p)2 < 0 ∀p �= 3

4 and ∀ε > 0. So σm is not an
ESS.

8.3 (a) Each female child gets 1 mating with n offspring per mating and each male
child gets (1 − µ)/µ matings with n offspring per mating. So the expected
number of grandchildren for a female using σ = (p, 1 − p) is

n2
[
p

(
0.8

1 − µ

µ
+ 0.2

)
+ (1 − p)

(
0.2

1 − µ

µ
+ 0.8

)]

which simplifies to
n2

5

[
3µ + 1

µ
+ 3p

(
1 − 2µ

µ

)]
(b) Because µ = 1

2 cannot be produced by either pure strategy, it must be
produced by a mixed strategy. If this mixed strategy is an ESS, then its pay-
off must be independent of p (or, equivalently, the payoffs to the two pure
strategies must be the same). From the expression given above, this requires
µ = 1

2 .
(c) The sex ratio produced by a strategy σ = (p, 1 − p) is

µ = 0.8p + 0.2(1 − p) =
1
5
(1 + 3p) .

So to produce a sex ratio of µ = 1
2 we must have p∗ = 1

2 and σ∗ = ( 1
2 , 1

2 ). To
prove that σ∗ is an ESS, we need to check that

π(σ∗,xε) > π(σ,xε) ∀σ �= σ∗

where xε = (1−ε)σ∗+εσ. Let σ = (p, 1−p) with p �= p∗. Then xε = (pε, 1−pε)
with pε = (1−ε)p∗ +εp, which leads to a proportion of males in the population

µε =
1
5
(1 + 3pε)

Now,

π(σ∗,xε) > π(σ,xε)

⇐⇒ (p∗ − p)
(

1 − 2µε

µε

)
> 0

However, if p > 0.5 then pε > 0.5 and, hence, µε > 0.5. Conversely, if p < 0.5
then pε < 0.5 and, hence, µε < 0.5. So the inequality is satisfied for any p �= p∗,
and hence σ∗ is an ESS.
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8.4 Let p be the probability of playing H, then σ = (p, 1 − p), σ∗ = (1, 0) and
xε = (1 − ε + εp, ε − εp).

π(σ∗, νε) = (1 − ε + εp)
(v − c

2

)
+ ε(1 − p)v

π(σ, νε) = p(1 − ε + εp)
(v − c

2

)
+ pε(1 − p)v + ε(1 − p)2

v

2
So

π(σ∗,xε) − π(σ,xε) = (1 − p)
[v − c

2
+ ε(1 − p)

c

2

]
> 0 ∀p �= 1

because v ≥ c.

8.5 Let p be the probability of cooperating (i.e., playing C), then σ = (p, 1 − p),
σ∗ = (0, 1), and xε = (εp, 1 − εp). Then

π(σ∗,xε) = 1 + 4εp

π(σ,xε) = (1 − p) + εp(4 − p)

So

π(σ∗,xε) − π(σ,xε) = p(1 + εp)
> 0 ∀p �= 0

8.6 (a) The three pure strategies R ≡ (1, 0, 0), G ≡ (0, 1, 0), and B ≡ (0, 0, 1) are
all ESSs. The mixed strategy Nash equilibrium with σ∗ =

( 1
3 , 1

3 , 1
3

)
is not an

ESS.
(b) G ≡ (1, 0) is the only ESS, because π(G, G) > π(H, G).
(c) A ≡ (1, 0) and B ≡ (0, 1) are both ESSs. The mixed-strategy Nash equi-
librium σ∗ = (p∗, 1 − p∗) with p∗ = 2

5 is not an ESS because

π(σ∗, σ) − π(σ, σ) = −5(p − p∗)2 .

(d) The strategy σ∗ = (2/3, 1/3) is the unique ESS because

π(σ∗, σ) − π(σ, σ) = 4 − 12p − 9p2

which is positive for all p �= 2
3 .

8.7 (a) The payoff table is

T1 T2

T1 2,2 1,1

T2 1,1 2,2

By inspection, (T1, T1) and (T2, T2) are symmetric Nash equilibria. Find mixed
strategy Nash equilibria using the equality of payoffs theorem.

π1(A, σ∗
2) = π1(B, σ∗

2)
=⇒ 2q∗ + (1 − q∗) = q∗ + 2(1 − q∗)

=⇒ q∗ =
1
2
.

By symmetry p∗ = 1
2 , so the mixed strategy Nash equilibrium is (( 1

2 , 1
2 ), ( 1

2 , 1
2 )).

(b) Both T1 and T2 are ESSs for the following reasons. Let σ = (p, 1 − p), so
T1 corresponds to p = 1 and T2 corresponds to p = 0.
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– π(T1, T1) = 2 and π(σ, T1) = 1 + p. Hence π(T1, T1) > π(σ, T1) ∀p �= 1.
– π(T2, T2) = 2 and π(σ, T2) = 2 − p. Hence π(T2, T2) > π(σ, T2) ∀p �= 0.
The mixed strategy σ∗ = ( 1

2 , 1
2 ) is not an ESS because (for example)

π(σ∗, σ∗) = π(T1, σ
∗) =

3
2

∀σ �= σ∗

but π(T1, T1) = 2.

8.8 Let w, x, y, and z be the probabilities of playing HH, HD, DH, and DD, re-
spectively, at a mixed strategy Nash equilibrium [σ∗, σ∗] with σ∗ = (w, x, y, z).
Then

π(HH, σ∗) = −2w + x + y + z

π(HD, σ∗) = −w + 2x + 3z

π(DH, σ∗) = −w + 2y + 3z

π(DD, σ∗) = x + y + 2z

Equating these payoffs in all possible combinations and using the constraint
w + x + y + z = 1 gives w = z, x = y and w + x = 1

2 . Hence

π(HH, σ∗) = π(HD, σ∗) = π(DH, σ∗) = π(DD, σ∗) = π(σ∗, σ∗) = 1.

Now π(σ∗, HD) = w + 2x + z = 1 but π(HD, HD) = 2 so σ∗ is not an ESS.

8.9 (a) This game has no ESSs, because the payoff is the same for all possible
strategies.
(b) There are no pure-strategy ESSs. The symmetric mixed-strategy Nash
equilibrium has σ∗ = ( 1

2 , 1
2 ). Because π(σ∗, σ) = 1

2 + p and π(σ, σ) = 3p − 2p2

(where p is the probability of playing E), we have π(σ∗, σ) > π(σ, σ) ∀p �= 1
2 .

(c) There are no pure-strategy ESSs. The mixed-strategy Nash equilibrium
with σ∗ =

( 1
3 , 1

2 , 1
6

)
is also not an ESS because π(σ∗, σ) = π(σ, σ) = 0 ∀σ.

Chapter 9

9.1 Because

k∑
i=1

ẋi = (π(si,x) − π̄(x))xi

=
k∑

i=1

(π(si,x)xi − π̄(x))
k∑

i=1

xi

= π̄(x)) − π̄(x))
= 0

the result follows.
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9.2 Under the affine transformation π̄(x) → λπ̄(x) − µ, so Equation 9.1 becomes

dxi

dt
= λ((π(si,x) − π̄(x))xi .

Introducing an adjusted time parameter τ = λt, we can write this as

dxi

dτ
= ((π(si,x) − π̄(x))xi

which is exactly the same form as the original equation.

9.3 Because

π(A,x) = (a − b)x1 + 2ax2

π(B,x) = ax2

the average payoff is π̄(x = (a−b)x2
1+2ax1x2+ax2

2 and the replicator dynamics
is

ẋ1 = x1((a − b)x1 + 2ax2 − π̄(x))
ẋ2 = x2(ax2 − π̄(x)) .

Clearly the populations (x1 = 1, x2 = 0) and (x1 = 0, x2 = 1) are fixed points.
At the polymorphic fixed point, we must have

(a − b)x1 + 2ax2 − π̄(x) = 0 = ax2 − π̄(x)

which gives (a−b)x1 = −ax2. Substituting this into the equation ax2−π̄(x) = 0
gives x1 = a

b
.

9.4 Let x be the proportion of H-players, then

ẋ =
c

2
x(1 − x)

(v

c
− x

)
with fixed points x∗ = 0, x∗ = 1, and x∗ = v/c. If x < v/c, then ẋ > 0 and
if x > v/c, then ẋ < 0. So x → v/c for any initial population that is not at a
fixed point.

9.5 The replicator dynamics equation for the proportion of T1-players is

ẋ = x(1 − x) (π(T1,x) − π(T2,x))
= x(1 − x)(2x − 1) .

If x > 1
2 , then x → 1 and if x < 1

2 , then x → 0. From Exercise 8.7 the ESSs
are T1 and T2, which correspond to these evolutionary end points.

9.6 When a > 0, both A and B are ESSs. For a < 0, the game has a unique ESS,
σ∗ = (1/2, 1/2). The replicator dynamics equation is

ẋ = ax(1 − x)(2x − 1)

with fixed points x∗ = 0, x∗ = 1 and x∗ = 1
2 .

First, consider a population near to x∗ = 0. Let x = x∗ + ε = ε. Then we have

ε̇ = aε(1 − ε)(2ε − 1)
≈ −aε .
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So the fixed point x∗ = 0 is asymptotically stable if a > 0 and unstable if
a < 0.
Now consider a population near to x∗ = 1. Let x = x∗ − ε = 1 − ε. Then we
have

ε̇ = −a(1 − ε)(ε)(2(1 − ε) − 1)
≈ −aε

So x∗ = 1 is asymptotically stable if a > 0 and unstable if a < 0.
Finally, consider a population near to x∗ = 1

2 . Let x = x∗ + ε = 1
2 + ε. Then

we have

ε̇ = a(
1
2

+ ε)(1 − 1
2

− ε)(1 + 2ε − 1)

≈ 1
2
aε .

So x∗
3 = 1

2 is asymptotically stable if a < 0 and unstable if a > 0.
Overall a fixed point is asymptotically stable if and only if the corresponding
strategy is an ESS.

9.7 The fixed points are (1, 0, 0), (0, 1, 0), and (0, 0, 1) in both cases.

9.8 The replicator dynamics equations are

ẋ = x(1 + 2x − y − π̄(x, y))
ẏ = y(1 − x + 2y − π̄(x, y))

with
π̄(x, y) = 1 + 2x2 + 2y2 − 2xy .

The fixed points are (0, 0), (0, 1), (1, 0), and ( 1
2 , 1

2 ). The points (0, 1) and (1, 0)
are stable nodes (eigenvalues −2 and −3 in both cases). The point ( 1

2 , 1
2 ) is a

saddle point (eigenvalues 1
2 and − 3

2 with eigenvectors x + y = 1 and x = y,
respectively). The point (0, 0) is non-hyperbolic. On the invariant lines x = 0,
y = 0, and x = y, the population moves away from (0, 0). So a qualitative
picture of the replicator dynamics looks like the figure below.

�

� �

�

(0, 0) (1, 0)

(0, 1)

(1
2 , 1

2 )
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9.9 Let x be the proportion of A-players and let y be the proportion of B-players.
Set x = 1

3 + ξ and y = 1
3 + η and linearise about the fixed point x∗ = y∗ = 1

3
to get (

ξ̇
η̇

)
= L

(
ξ
η

)
with

L =
1
9

(
1 2

−8 −7

)

The eigenvalues of the matrix L are both − 1
3 . Hence the fixed point is asymp-

totically stable. Because σ∗ =
( 1

3 , 1
3 , 1

3

)
is a mixed Nash equilibrium strategy,

we have, for σ = (0, 1
2 , 1

2 ),

π(σ, σ∗) = π(σ∗, σ∗) =
2
3
.

But

π(σ∗, σ) =
5
6

< 1
= π(σ, σ)

so σ∗ is not an ESS.

9.10 The payoff table is (c > 0)

R S P

R −c, −c 1,-1 -1,1

S -1,1 −c, −c 1,-1

P 1,-1 -1,1 −c, −c

Let x, y, and z be the proportions of R-, S-, and P -players. Then the replicator
dynamics system is

ẋ = x(−cx + y − z − π̄(x))
ẏ = y(−x − cy + z − π̄(x))
ż = z(x − y − cz − π̄(x))

with π̄(x) = −c(x2 + y2 + z2). It is easy to check that the point x = y = z = 1
3

is a fixed point. Let V be the relative entropy function, then

dV

dt
= − [π(σ∗,x) − π̄(x)]

=
c

3
− c(x2 + y2 + z2)

< 0 for x �=
(

1
3
,
1
3
,
1
3

)
.



Further Reading

Part I

A detailed, technical exposition of utility theory is given by Myerson (1991);
Allingham (2002) provides a more conceptual account. The philosophical back-
ground to rational behaviour is explored by Hargreaves Heap & Varoufakis
(1995). Grafen (1991) gives a biological introduction to modelling animal be-
haviour, and the mathematical foundations for the concept of fitness are dis-
cussed by Houston & McNamara (1999). Markov decision processes are covered
in detail by Ross (1995) and Puterman (1994). Biological applications of such
processes are discussed by Mangel & Clark (1988).

Part II

Myerson (1991) and Fudenberg & Tirole (1993) give theoretical introductions
to game theory and include many ideas not covered in this book. Good sources
of game-theoretic models include Gibbons (1992), Gintis (2000), and Romp
(1997). Brams (1983) provides a highly unusual, but thought-provoking, ap-
plication of game theory. Game-theoretic models with continuous strategy sets
are discussed by Gabszewicz (1999) and Martin (1993). The various Nash equi-
librium refinements are discussed in detail by van Damme (1991). Stochastic
games are covered by Filar & Vrieze (1997).
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Part III

The classic text on evolutionary game theory was written by Maynard Smith
(1982). More recent, biologically-oriented texts include those by Dugatkin &
Reeve (1998) and Houston & McNamara (1999). The evolution of the Social
Contract is discussed by Skyrms (1996). Replicator dynamics and other forms
of evolutionary dynamics are covered by Weibull (1995), Vega-Redondo (1996),
and Hofbauer & Sigmund (1998). Young (1998) emphasises stochastic evolu-
tionary dynamics.
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