
CHAPTER 1 
 

TEACHING NOTES 
 
You have substantial latitude about what to emphasize in Chapter 1.  I find it useful to talk about 
the economics of crime example (Example 1.1) and the wage example (Example 1.2) so that 
students see, at the outset, that econometrics is linked to economic reasoning, if not economic 
theory. 
 
I like to familiarize students with the important data structures that empirical economists use, 
focusing primarily on cross-sectional and time series data sets, as these are what I cover in a 
first-semester course.  It is probably a good idea to mention the growing importance of data sets 
that have both a cross-sectional and time dimension. 
 
I spend almost an entire lecture talking about the problems inherent in drawing causal inferences 
in the social sciences.  I do this mostly through the agricultural yield, return to education, and 
crime examples.  These examples also contrast experimental and nonexperimental data.  Students 
studying business and finance tend to find the term structure of interest rates example more 
relevant, although the issue there is testing the implication of a simple theory, as opposed to 
inferring causality.  I have found that spending time talking about these examples, in place of a 
formal review of probability and statistics, is more successful (and more enjoyable for the 
students and me). 
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CHAPTER 2 
 

TEACHING NOTES 
 
This is the chapter where I expect students to follow most, if not all, of the algebraic derivations.  
In class I like to derive at least the unbiasedness of the OLS slope coefficient, and usually I   
derive the variance.  At a minimum, I talk about the factors affecting the variance.  To simplify 
the notation, after I emphasize the assumptions in the population model, and assume random 
sampling, I just condition on the values of the explanatory variables in the sample.  Technically, 
this is justified by random sampling because, for example, E(ui|x1,x2,…,xn) = E(ui|xi) by 
independent sampling.  I find that students are able to focus on the key assumption SLR.3 and 
subsequently take my word about how conditioning on the independent variables in the sample is 
harmless.  (If you prefer, the appendix to Chapter 3 does the conditioning argument carefully.)  
Because statistical inference is no more difficult in multiple regression than in simple regression, 
I postpone inference until Chapter 4.  (This reduces redundancy and allows you to focus on the 
interpretive differences between simple and multiple regression.) 
 
You might notice how, compared with most other texts, I use relatively few assumptions to 
derive the unbiasedness of the OLS slope estimator, followed by the formula for its variance.  
This is because I do not introduce redundant or unnecessary assumptions.  For example, once 
SLR.3 is assumed, nothing further about the relationship between u and x is needed to obtain the 
unbiasedness of OLS under random sampling. 
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SOLUTIONS TO PROBLEMS 
 
2.1 (i) Income, age, and family background (such as number of siblings) are just a few 
possibilities.  It seems that each of these could be correlated with years of education.  (Income 
and education are probably positively correlated; age and education may be negatively correlated 
because women in more recent cohorts have, on average, more education; and number of siblings 
and education are probably negatively correlated.) 
 
 (ii) Not if the factors we listed in part (i) are correlated with educ.  Because we would like to 
hold these factors fixed, they are part of the error term.  But if u is correlated with educ then 
E(u|educ) ≠ 0, and so SLR.3 fails. 
 
2.2 In the equation y = β0 + β1x + u, add and subtract α0 from the right hand side to get y = (α0 + 
β0) + β1x + (u − α0).  Call the new error e = u − α0, so that E(e) = 0.  The new intercept is α0 + β0, 
but the slope is still β1. 
 

2.3 (i) Let yi = GPAi, xi = ACTi, and n = 8.  Then  x = 25.875, y  = 3.2125, (x
1

n

i=
∑ i – x )(yi – y ) = 

5.8125, and (x
1

n

i=
∑ i – x )2 = 56.875.  From equation (2.9), we obtain the slope as 1̂β = 

5.8125/56.875  .1022, rounded to four places after the decimal.  From (2.17), ≈ 0β̂  = y  – 

1̂β x   3.2125 – (.1022)25.875  .5681.  So we can write ≈ ≈
 
   =  .5681 + .1022 ACT �GPA

 n = 8. 
 

The intercept does not have a useful interpretation because ACT is not close to zero for the 
population of interest.  If ACT is 5 points higher,  increases by .1022(5) = .511. �GPA
 
 (ii) The fitted values and residuals — rounded to four decimal places — are given along with 
the observation number i and GPA in the following table: 
 
 

i GPA �GPA       û

1 2.8 2.7143 .0857
2 3.4 3.0209 .3791
3 3.0 3.2253 –.2253
4 3.5 3.3275 .1725
5 3.6 3.5319 .0681
6 3.0 3.1231 –.1231
7 2.7 3.1231 –.4231
8 3.7 3.6341 .0659

 
You can verify that the residuals, as reported in the table, sum to −.0002, which is pretty close to 
zero given the inherent rounding error. 
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 (iii) When ACT = 20, = .5681 + .1022(20) ˆGPA ≈  2.61.   
 

 (iv) The sum of squared residuals, 2

1

ˆ
n

i
i

u
=
∑ , is about .4347 (rounded to four decimal places), 

and the total sum of squares, (y
1

n

i=
∑ i – y )2, is about 1.0288.  So the R-squared from the 

regression is 
 

R2  =  1 – SSR/SST ≈  1 – (.4347/1.0288) ≈  .577. 
 
 

Therefore, about 57.7% of the variation in GPA is explained by ACT in this small sample of 
students. 
 
2.4 (i) When cigs = 0, predicted birth weight is 119.77 ounces. When cigs = 20,  = 109.49.  
This is about an 8.6% drop. 

�bwght

 
 (ii) Not necessarily.  There are many other factors that can affect birth weight, particularly 
overall health of the mother and quality of prenatal care.  These could be correlated with 
cigarette smoking during birth.  Also, something such as caffeine consumption can affect birth 
weight, and might also be correlated with cigarette smoking. 
 
 (iii) If we want a predicted bwght of 125, then cigs = (125 – 119.77)/( –.524) –10.18, or 
about –10 cigarettes!  This is nonsense, of course, and it shows what happens when we are trying 
to predict something as complicated as birth weight with only a single explanatory variable.  The 
largest predicted birth weight is necessarily 119.77.  Yet almost 700 of the births in the sample 
had a birth weight higher than 119.77. 

≈

 
 (iv) 1,176 out of 1,388 women did not smoke while pregnant, or about 84.7%. 
 
2.5 (i) The intercept implies that when inc = 0, cons is predicted to be negative $124.84.  This, of 
course, cannot be true, and reflects that fact that this consumption function might be a poor 
predictor of consumption at very low-income levels.  On the other hand, on an annual basis, 
$124.84 is not so far from zero. 
 
 (ii) Just plug 30,000 into the equation:   = –124.84 + .853(30,000) = 25,465.16 dollars. �cons
 
 (iii) The MPC and the APC are shown in the following graph.  Even though the intercept is 
negative, the smallest APC in the sample is positive.  The graph starts at an annual income level 
of $1,000 (in 1970 dollars). 
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2.6 (i) Yes.  If living closer to an incinerator depresses housing prices, then being farther away 
increases housing prices. 
 
 (ii) If the city chose to locate the incinerator in an area away from more expensive 
neighborhoods, then log(dist) is positively correlated with housing quality.  This would violate 
SLR.3, and OLS estimation is biased. 
 
 (iii) Size of the house, number of bathrooms, size of the lot, age of the home, and quality of 
the neighborhood (including school quality), are just a handful of factors.  As mentioned in part 
(ii), these could certainly be correlated with dist [and log(dist)]. 
 
2.7 (i) When we condition on inc in computing an expectation, inc  becomes a constant.  So 
E(u|inc) = E( inc ⋅ e|inc) = inc ⋅E(e|inc) = inc ⋅0 because E(e|inc) = E(e) = 0. 
 
 (ii) Again, when we condition on inc in computing a variance, inc  becomes a constant.  So 
Var(u|inc) = Var( inc ⋅ e|inc) = ( inc )2Var(e|inc) = 2

eσ inc because Var(e|inc) = 2
eσ . 

 
 (iii) Families with low incomes do not have much discretion about spending; typically, a 
low-income family must spend on food, clothing, housing, and other necessities.  Higher income 
people have more discretion, and some might choose more consumption while others more 
saving.  This discretion suggests wider variability in saving among higher income families. 
 
 
2.8 (i) From equation (2.66),  
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Plugging in yi = β0 + β1xi + ui gives 
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After standard algebra, the numerator can be written as 
 

2
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1 1 1
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Putting this over the denominator shows we can write 1β%  as 
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Conditional on the xi, we have 
 

E( 1β% ) = β0
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because E(ui) = 0 for all i.  Therefore, the bias in 1β%  is given by the first term in this equation.  

This bias is obviously zero when β0 = 0.  It is also zero when 
1

n

i
i

x
=
∑  = 0, which is the same as 

x  = 0.  In the latter case, regression through the origin is identical to regression with an intercept. 
  (ii) From the last expression for 1β% in part (i) we have, conditional on the xi, 
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 (iii) From (2.57), Var( 1̂β ) = σ2/ 2
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 (iv) For a given sample size, the bias in 1β%  increases as x  increases (holding the sum of the 
2
ix  fixed).  But as x  increases, the variance of 1̂β increases relative to Var( 1β% ).  The bias in 1β%  

is also small when 0β  is small.  Therefore, whether we prefer 1β%  or 1̂β  on a mean squared error 

basis depends on the sizes of 0β , x , and n (in addition to the size of 2

1

n

i
i

x
=
∑ ). 

 
2.9 (i) We follow the hint, noting that 1c y  = 1c y  (the sample average of  is c1 ic y 1 times the 

sample average of yi) and 2c x  = 2c x .  When we regress c1yi on c2xi (including an intercept) we 
use equation (2.19) to obtain the slope: 
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From (2.17), we obtain the intercept as 0β%  = (c1 y ) – 1β% (c2 x ) = (c1 y ) – [(c1/c2) 1̂β ](c2 x ) = 

c1( y  – 1̂β x ) = c1 0β̂ ) because the intercept from regressing yi on xi is ( y  – 1̂β x ). 
 
 (ii) We use the same approach from part (i) along with the fact that 1(c y+ )  = c1 + y  and 

2(c x+ )  = c2 + x .  Therefore,  1 1( ) (ic y c y+ − + )  = (c1  +  yi) – (c1 + y ) = yi – y  and (c2 + xi) – 

2(c x+ )  = xi – x .  So c1 and c2 entirely drop out of the slope formula for the regression of (c1 + 

yi) on (c2 + xi), and 1β%  = 1̂β .  The intercept is 0β%  = 1( )c y+  – 1β% 2(c x)+  = (c1 + y ) – 1̂β (c2 + 

x ) = ( 1
ˆy xβ− ) + c1 – c2 1̂β  = 0β̂  + c1 – c2 1̂β , which is what we wanted  to show. 

 
 (iii) We can simply apply part (ii) because 1 1log( ) log( ) log( )ic y c yi= + .  In other words, 
replace c1 with log(c1), yi with log(yi), and set c2 = 0. 
 
 (iv) Again, we can apply part (ii) with c1 = 0 and replacing c2 with log(c2) and xi with log(xi).  
If 0

垐 and 1β β  are the original intercept and slope, then 1
ˆ

1β β=%  and 0 0 2
垐 log( )c 1β β β= −% . 

 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
2.10 (i) The average prate is about 87.36 and the average mrate is about .732. 
 
 (ii) The estimated equation is 
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 �prate = 83.05 + 5.86 mrate 

 n = 1,534,  R2 = .075. 
 

 (iii)  The intercept implies that, even if mrate = 0, the predicted participation rate is 83.05 
percent.  The coefficient on mrate implies that a one-dollar increase in the match rate – a fairly 
large increase – is estimated to increase prate by 5.86 percentage points.  This assumes, of 
course, that this change prate is possible (if, say, prate is already at 98, this interpretation makes 
no sense). 
 
 (iv)  If we plug mrate = 3.5 into the equation we get ˆprate = 83.05 + 5.86(3.5) = 103.59.  
This is impossible, as we can have at most a 100 percent participation rate.  This illustrates that, 
especially when dependent variables are bounded, a simple regression model can give strange 
predictions for extreme values of the independent variable.  (In the sample of 1,534 firms, only 
34 have mrate ≥ 3.5.) 
 
 (v)  mrate explains about 7.5% of the variation in prate.  This is not much, and suggests that 
many other factors influence 401(k) plan participation rates. 
 
2.11 (i) Average salary is about 865.864, which means $865,864 because salary is in thousands 
of dollars.  Average ceoten is about 7.95. 
 
 (ii) There are five CEOs with ceoten = 0.  The longest tenure is 37 years. 
 
 (iii) The estimated equation is 
 
 = 6.51 + .0097 ceoten �log ( )salary

 n = 177,  R2 = .013. 
 

We obtain the approximate percentage change in salary given Δceoten = 1 by multiplying the 
coefficient on ceoten by 100, 100(.0097) = .97%.  Therefore, one more year as CEO is predicted 
to increase salary by almost 1%. 
 
2.12 (i) The estimated equation is  
 
 = 3,586.4 – .151 totwrk �sleep

 n = 706,  R2 = .103. 
 

The intercept implies that the estimated amount of sleep per week for someone who does not 
work is 3,586.4 minutes, or about 59.77 hours.  This comes to about 8.5 hours per night. 
 
 (ii) If someone works two more hours per week then Δtotwrk = 120 (because totwrk is 
measured in minutes), and so = –.151(120) = –18.12 minutes.  This is only a few minutes 

a night.  If someone were to work one more hour on each of five working days, =  

�sleepΔ
�sleepΔ

–.151(300) = –45.3 minutes, or about five minutes a night. 
 
2.13 (i) Average salary is about $957.95 and average IQ is about 101.28.  The sample standard 
deviation of IQ is about 15.05, which is pretty close to the population value of 15. 
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 (ii) This calls for a level-level model: 
 
  = 116.99 + 8.30 IQ �wage

 n = 935,  R2 = .096. 
 

An increase in IQ of 15 increases predicted monthly salary by 8.30(15) = $124.50 (in 1980 
dollars).  IQ score does not even explain 10% of the variation in wage. 
 
 (iii) This calls for a log-level model: 
 

�log ( )wage = 5.89 + .0088 IQ 

n = 935,  R2 = .099. 
 

If ΔIQ = 15 then  = .0088(15) = .132, which is the (approximate) proportionate 
change in predicted wage.  The percentage increase is therefore approximately 13.2. 

�log ( )wageΔ

 
2.14 (i) The constant elasticity model is a log-log model: 
 

log(rd) = 0β  + 1β log(sales) + u, 
 

where 1β  is the elasticity of rd with respect to sales. 
 
 (ii) The estimated equation is 
 
 = –4.105 + 1.076 log(sales) �lo g( )rd

 n  =  32,   R2  =  .910. 
 

The estimated elasticity of rd with respect to sales is 1.076, which is just above one.  A one 
percent increase in sales is estimated to increase rd by about 1.08%. 
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CHAPTER 3 
 

TEACHING NOTES 
 
For undergraduates, I do not do most of the derivations in this chapter, at least not in detail.  
Rather, I focus on interpreting the assumptions, which mostly concern the population.  Other 
than random sampling, the only assumption that involves more than population considerations is 
the assumption about no perfect collinearity, where the possibility of perfect collinearity in the 
sample (even if it does not occur in the population) should be touched on.  The more important 
issue is perfect collinearity in the population, but this is fairly easy to dispense with via examples.  
These come from my experiences with the kinds of model specification issues that beginners 
have trouble with. 
 
The comparison of simple and multiple regression estimates – based on the particular sample at 
hand, as opposed to their statistical properties – usually makes a strong impression.  Sometimes I 
do not bother with the “partialling out” interpretation of multiple regression. 
 
As far as statistical properties, notice how I treat the problem of including an irrelevant variable:  
no separate derivation is needed, as the result follows form Theorem 3.1. 
 
I do like to derive the omitted variable bias in the simple case.  This is not much more difficult 
than showing unbiasedness of OLS in the simple regression case under the first four Gauss-
Markov assumptions.  It is important to get the students thinking about this problem early on, 
and before too many additional (unnecessary) assumptions have been introduced. 
 
I have intentionally kept the discussion of multicollinearity to a minimum.  This partly indicates 
my bias, but it also reflects reality.  It is, of course, very important for students to understand the 
potential consequences of having highly correlated independent variables.  But this is often 
beyond our control, except that we can ask less of our multiple regression analysis.  If two or 
more explanatory variables are highly correlated in the sample, we should not expect to precisely 
estimate their ceteris paribus effects in the population. 
 
I find extensive treatments of multicollinearity, where one “tests” or somehow “solves” the 
multicollinearity problem, to be misleading, at best.  Even the organization of some texts gives 
the impression that imperfect multicollinearity is somehow a violation of the Gauss-Markov 
assumptions:  they include multicollinearity in a chapter or part of the book devoted to “violation 
of the basic assumptions,” or something like that.  I have noticed that master’s students who have 
had some undergraduate econometrics are often confused on the multicollinearity issue.  It is 
very important that students not confuse multicollinearity among the included explanatory 
variables in a regression model with the bias caused by omitting an important variable. 
 
I do not prove the Gauss-Markov theorem.  Instead, I emphasize its implications.  Sometimes, 
and certainly for advanced beginners, I put a special case of Problem 3.12 on a midterm exam, 
where I make a particular choice for the function g(x).  Rather than have the students directly 
compare the variances, they should appeal to the Gauss-Markov theorem for the superiority of 
OLS over any other linear, unbiased estimator. 
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SOLUTIONS TO PROBLEMS 
 
3.1 (i) hsperc is defined so that the smaller it is, the lower the student’s standing in high school.  
Everything else equal, the worse the student’s standing in high school, the lower is his/her 
expected college GPA. 
 
 (ii) Just plug these values into the equation: 
 

colgpa$  = 1.392 − .0135(20) + .00148(1050) = 2.676. 
 

 (iii) The difference between A and B is simply 140 times the coefficient on sat, because 
hsperc is the same for both students.  So A is predicted to have a score .00148(140)  .207 
higher. 

≈

 
 (iv) With hsperc fixed, Δ col  = .00148Δsat.  Now, we want to find Δsat such that 

Δ col  = .5, so .5 = .00148(Δsat) or Δsat = .5/(.00148) 

gpa$

gpa$ ≈  338.  Perhaps not surprisingly, a 
large ceteris paribus difference in SAT score – almost two and one-half standard deviations – is 
needed to obtain a predicted difference in college GPA or a half a point. 
 
3.2 (i) Yes.  Because of budget constraints, it makes sense that, the more siblings there are in a 
family, the less education any one child in the family has.  To find the increase in the number of 
siblings that reduces predicted education by one year, we solve 1 = .094(Δsibs), so Δsibs = 
1/.094  10.6. ≈
 
 (ii) Holding sibs and feduc fixed, one more year of mother’s education implies .131 years 
more of predicted education.  So if a mother has four more years of education, her son is 
predicted to have about a half a year (.524) more years of education. 
 
 (iii) Since the number of siblings is the same, but meduc and feduc are both different, the 
coefficients on meduc and feduc both need to be accounted for.  The predicted difference in 
education between B and A is .131(4) + .210(4) = 1.364. 
 
3.3 (i) If adults trade off sleep for work, more work implies less sleep (other things equal), so 

1β  < 0. 
 
 (ii) The signs of 2β  and 3β  are not obvious, at least to me.  One could argue that more 
educated people like to get more out of life, and so, other things equal, they sleep less ( 2β  < 0).  
The relationship between sleeping and age is more complicated than this model suggests, and 
economists are not in the best position to judge such things. 
 
 (iii) Since totwrk is in minutes, we must convert five hours into minutes:  Δtotwrk = 
5(60) = 300.  Then sleep is predicted to fall by .148(300) = 44.4 minutes.  For a week, 45 
minutes less sleep is not an overwhelming change. 
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 (iv) More education implies less predicted time sleeping, but the effect is quite small.  If 
we assume the difference between college and high school is four years, the college graduate 
sleeps about 45 minutes less per week, other things equal. 
 
 (v) Not surprisingly, the three explanatory variables explain only about 11.3% of the 
variation in sleep.   One important factor in the error term is general health.  Another is marital 
status, and whether the person has children.  Health (however we measure that), marital status, 
and number and ages of children would generally be correlated with totwrk.  (For example, less 
healthy people would tend to work less.) 
 
3.4 (i) A larger rank for a law school means that the school has less prestige; this lowers 
starting salaries.  For example, a rank of 100 means there are 99 schools thought to be better. 
 
 (ii) 1β  > 0, 2β  > 0.  Both LSAT and GPA are measures of the quality of the entering class.  
No matter where better students attend law school, we expect them to earn more, on average.  3β , 

4β  > 0.  The number of volumes in the law library and the tuition cost are both measures of the 
school quality.  (Cost is less obvious than library volumes, but should reflect quality of the 
faculty, physical plant, and so on.) 
 
 (iii) This is just the coefficient on GPA, multiplied by 100:  24.8%. 
 
 (iv) This is an elasticity:  a one percent increase in library volumes implies a .095% 
increase in predicted median starting salary, other things equal. 
 
 (v) It is definitely better to attend a law school with a lower rank.  If law school A has a 
ranking 20 less than law school B, the predicted difference in starting salary is 100(.0033)(20) = 
6.6% higher for law school A. 
 
3.5 (i) No.  By definition, study + sleep + work + leisure = 168.  So if we change study, we 
must change at least one of the other categories so that the sum is still 168. 
 
 (ii) From part (i), we can write, say, study as a perfect linear function of the other 
independent variables:  study = 168 − sleep − work − leisure. This holds for every observation, 
so MLR.4 is violated. 
 
 (iii) Simply drop one of the independent variables, say leisure: 
 

GPA = 0β  + 1β study + 2β sleep + 3β work + u. 
 

Now, for example, 1β  is interpreted as the change in GPA when study increases by one hour, 
where sleep, work, and u are all held fixed.  If we are holding sleep and work fixed but increasing 
study by one hour, then we must be reducing leisure by one hour.  The other slope parameters 
have a similar interpretation. 
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3.6 Conditioning on the outcomes of the explanatory variables, we have $
1E( )θ  = E( 1̂β  + 

2β̂ ) = E( 1̂β ) + E( 2β̂ ) = β1 + β2 = 1θ . 
 
3.7 Only (ii), omitting an important variable, can cause bias, and this is true only when the 
omitted variable is correlated with the included explanatory variables.  The homoskedasticity 
assumption.  MLR.5, played no role in showing that the OLS estimators are unbiased.  
(Homoskedasticity was used to obtain the standard variance formulas for the ˆ

jβ .)  Further, the 
degree of collinearity between the explanatory variables in the sample, even if it is reflected in a 
correlation as high as .95, does not affect the Gauss-Markov assumptions.  Only if there is a 
perfect linear relationship among two or more explanatory variables is MLR.4 violated. 
 
3.8 We can use Table 3.2.  By definition, 2β  > 0, and by assumption, Corr(x1,x2) < 0.  

Therefore, there is a negative bias in 1β% :  E( 1β% ) < 1β .  This means that, on average, the simple 
regression estimator underestimates the effect of the training program.  It is even possible that 
E( 1β% ) is negative even though 1β  > 0. 
 
3.9 (i) 1β  < 0 because more pollution can be expected to lower housing values; note that 1β  is 
the elasticity of price with respect to nox.  2β  is probably positive because rooms roughly 
measures the size of a house.  (However, it does not allow us to distinguish homes where each 
room is large from homes where each room is small.) 
 
 (ii) If we assume that rooms increases with quality of the home, then log(nox) and rooms 
are negatively correlated when poorer neighborhoods have more pollution, something that is 
often true.  We can use Table 3.2 to determine the direction of the bias.  If 2β  > 0 and 

Corr(x1,x2) < 0, the simple regression estimator 1β%  has a downward bias.  But because 1β  < 0, 

this means that the simple regression, on average, overstates the importance of pollution.  [E( 1β% ) 
is more negative than 1β .] 
 
 (iii) This is what we expect from the typical sample based on our analysis in part (ii).  The 
simple regression estimate, −1.043, is more negative (larger in magnitude) than the multiple 
regression estimate, −.718.  As those estimates are only for one sample, we can never know 
which is closer to 1β .  But if this is a “typical” sample, 1β  is closer to −.718. 
 
3.10 From equation (3.22) we have  
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where the  are defined in the problem.  As usual, we must plug in the true model for y1îr i: 
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The numerator of this expression simplifies because 1
1
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.  These all follow from the fact that the  are the residuals from the regression of 
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2ix :  the  have zero sample average and are uncorrelated in sample with 1îr 2ix .  So the numerator 

of 1β%  can be expressed as 
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Putting these back over the denominator gives 
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Conditional on all sample values on x1, x2, and x3, only the last term is random due to its 
dependence on ui.  But E(ui) = 0, and so  
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which is what we wanted to show.  Notice that the term multiplying 3β  is the regression 
coefficient from the simple regression of xi3 on . 1îr
 
3.11 (i) The shares, by definition, add to one.  If we do not omit one of the shares then the 
equation would suffer from perfect multicollinearity.  The parameters would not have a ceteris 
paribus interpretation, as it is impossible to change one share while holding all of the other 
shares fixed. 
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 (ii) Because each share is a proportion (and can be at most one, when all other shares are 
zero), it makes little sense to increase sharep by one unit.  If sharep increases by .01 – which is 
equivalent to a one percentage point increase in the share of property taxes in total revenue – 
holding shareI, shareS, and the other factors fixed, then growth increases by 1β (.01).  With the 
other shares fixed, the excluded share, shareF, must fall by .01 when sharep increases by .01. 
 

3.12 (i) For notational simplicity, define szx = 
1

( )
n

i
i

z z x
=

−∑ ;i  this is not quite the sample 

covariance between z and x because we do not divide by n – 1, but we are only using it to 
simplify notation.  Then we can write 1β%  as 
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This is clearly a linear function of the yi:  take the weights to be wi = (zi − z )/szx.  To show 
unbiasedness, as usual we plug yi = 0β  + 1β xi + ui into this equation, and simplify: 
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where we use the fact that 
1

(
n

i
i

z z
=

−∑ )  = 0 always.  Now szx is a function of the zi and xi and the 

expected value of each ui is zero conditional on all zi and xi in the sample.  Therefore, conditional 
on these values,  
 

1
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because E(ui) = 0 for all i. 
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 (ii) From the fourth equation in part (i) we have (again conditional on the zi and xi in the 
sample), 
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1 1
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because of the homoskedasticity assumption [Var(ui) = σ2 for all i].  Given the definition of szx, 
this is what we wanted to show. 
 

 (iii) We know that Var( 1̂β ) = σ2/ 2

1
[ ( ) ]

n

i
i

x x
=

−∑ .   Now we can rearrange the inequality in the 

hint, drop x  from the sample covariance, and cancel n-1 everywhere, to get 2 2

1
[ ( ) ] /

n

i z
i

z z s
=

−∑ x  ≥ 

2

1
1/[ ( ) ].

n

i
i

x x
=

−∑   When we multiply through by σ2 we get Var( 1β% )  ≥ Var( 1̂β ), which is what 

we wanted to show. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
3.13 (i) Probably 2β  > 0, as more income typically means better nutrition for the mother and 
better prenatal care. 
 
 (ii) On the one hand, an increase in income generally increases the consumption of a good, 
and cigs and faminc could be positively correlated.  On the other, family incomes are also higher 
for families with more education, and more education and cigarette smoking tend to be 
negatively correlated.  The sample correlation between cigs and faminc is about −.173, indicating 
a negative correlation. 
 
 (iii) The regressions without and with faminc are 
 
  � 119.77 .514bwght cigs= −

  21,388, .023n R= =
and 
  � 116.97 .463 .093bwght cigs faminc= − +

  21,388, .030.n R= =

 18



 
The effect of cigarette smoking is slightly smaller when faminc is added to the regression, but the 
difference is not great.  This is due to the fact that cigs and faminc are not very correlated, and 
the coefficient on faminc is practically small.  (The variable faminc is measured in thousands, so 
$10,000 more in 1988 income increases predicted birth weight by only .93 ounces.) 
 
3.14 (i) The estimated equation is  
 
  � 19.32 .128 15.20price sqrft bdrms= − + +

  288, .632n R= =
 

 (ii) Holding square footage constant,  = 15.20 �priceΔ ,bdrmsΔ  and so ˆprice  increases by 
15.20, which means $15,200. 
 
 (iii) Now  = .128  + 15.20�priceΔ sqrftΔ bdrmsΔ  = .128(140) + 15.20 = 33.12, or $33,120.  
Because the size of the house is increasing, this is a much larger effect than in (ii). 
 
 (iv) About 63.2%. 
 
 (v) The predicted price is –19.32 + .128(2,438) + 15.20(4) = 353.544, or $353,544. 
 
 (vi) From part (v), the estimated value of the home based only on square footage and 
number of bedrooms is $353,544.  The actual selling price was $300,000, which suggests the 
buyer underpaid by some margin.  But, of course, there are many other features of a house (some 
that we cannot even measure) that affect price, and we have not controlled for these. 
 
3.15 (i) The constant elasticity equation is 
 
  �log ( ) 4.62 .162 log( ) .107 log( )salary sales mktval= + +

  2177, .299.n R= =
 
 (ii) We cannot include profits in logarithmic form because profits are negative for nine of 
the companies in the sample.  When we add it in levels form we get 
 
  �log ( ) 4.69 .161 log( ) .098 log( ) .000036salary sales mktval profits= + + +

  2177, .299.n R= =
 

The coefficient on profits is very small. Here, profits are measured in millions, so if profits 
increase by $1 billion, which means profitsΔ  = 1,000 – a huge change – predicted salary 
increases by about only 3.6%.  However, remember that we are holding sales and market value 
fixed. 
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 Together, these variables (and we could drop profits without losing anything) explain 
almost 30% of the sample variation in log(salary).  This is certainly not “most” of the variation. 
 
 (iii) Adding ceoten to the equation gives 
 

�log ( ) 4.56 .162 log( ) .102 log( ) .000029 .012salary sales mktval profits ceoten= + + + +  

  2177, .318.n R= =
 

This means that one more year as CEO increases predicted salary by about 1.2%. 
 
 (iv) The sample correlation between log(mktval) and profits is about .78, which is fairly 
high.  As we know, this causes no bias in the OLS estimators, although it can cause their 
variances to be large.  Given the fairly substantial correlation between market value and firm 
profits, it is not too surprising that the latter adds nothing to explaining CEO salaries.  Also, 
profits is a short term measure of how the firm is doing while mktval is based on past, current, 
and expected future profitability. 
 
3.16 (i) The minimum, maximum, and average values for these three variables are given in the 
table below:   
 

Variable Average Minimum Maximum
atndrte 
priGPA 

ACT 

 81.71 
 2.59 
 22.51 

 6.25 
 .86 
 13 

 100 
 3.93 
 32 

 
 (ii) The estimated equation is 
 
  � 75.70 17.26 1.72atndrte priGPA ACT= + −

 n  =  680,   R2  =  .291. 
 
The intercept means that, for a student whose prior GPA is zero and ACT score is zero, the 
predicted attendance rate is 75.7%.  But this is clearly not an interesting segment of the 
population.  (In fact, there are no students in the college population with priGPA = 0 and ACT = 
0.) 
 
 (iii) The coefficient on priGPA means that, if a student’s prior GPA is one point higher 
(say, from 2.0 to 3.0), the attendance rate is about 17.3 percentage points higher.  This holds ACT 
fixed.  The negative coefficient on ACT is, perhaps initially a bit surprising.  Five more points on 
the ACT is predicted to lower attendance by 8.6 percentage points at a given level of priGPA.  As 
priGPA measures performance in college (and, at least partially, could reflect, past attendance 
rates), while ACT is a measure of potential in college, it appears that students that had more 
promise (which could mean more innate ability) think they can get by with missing lectures. 
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 (iv) We have  = 75.70 + 17.267(3.65) – 1.72(20) �atndrte ≈  104.3.  Of course, a student 
cannot have higher than a 100% attendance rate.  Getting predications like this is always possible 
when using regression methods with natural upper or lower bounds on the dependent variable.  
In practice, we would predict a 100% attendance rate for this student.  (In fact, this student had 
an attendance rate of only 87.5%.) 
 
 (v) The difference in predicted attendance rates for A and B is 17.26(3.1 − 2.1) − (21 − 
26) = 25.86. 
 
3.17  The regression of educ on exper and tenure yields 
 
 educ = 13.57 − .074 exper + .048 tenure + . 1̂r

 n  =  526,   R2  =  .101. 
 

Now, when we regress log(wage) on  we obtain 1̂r
 
 �log ( )wage = 1.62 + .092  1̂r

 n  =  526,   R2  =  .207. 
 

As expected, the coefficient on  in the second regression is identical to the coefficient on educ 
in equation (3.19).  Notice that the R-squared from the above regression is below that in (3.19).  
In effect, the regression on  only uses the part of educ that is uncorrelated with exper and 
tenure to explain log(wage). 

1̂r

1̂r

 
3.18 (i) The slope coefficient from the regression IQ on educ is (rounded to five decimal places) 

 1 3.53383.δ =%

 
 (ii) The slope coefficient from log(wage) on educ is  1 .05984.β =%

 
 (iii) The slope coefficients from log(wage) on educ, IQ are 

respectively. 1 2
垐 .03912 and .00586,β β= =

 
 (iv) We have which is very close to .05984 
(subject to rounding error). 

1 1 2
垐 .03912 3.53383(.00586) .05983,β δ β+ = + ≈%
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CHAPTER 4 
 

TEACHING NOTES 
 
The structure of this chapter allows you to remind students that a specific error distribution 
played no role in the results of Chapter 3.  Normality is needed, however, to obtain exact normal 
sampling distributions (conditional on the explanatory variables).  I emphasize that the full set of 
CLM assumptions are used in this chapter, but that in Chapter 5 we relax the normality 
assumption and still perform approximately valid inference.  One could argue that the classical 
linear model results could be skipped entirely, and that only large-sample analysis is needed.  
But, from a practical perspective, students still need to know where the t distribution comes from, 
because virtually all regression packages report t statistics and obtain p-values off of the t 
distribution.  I then find it very easy to cover Chapter 5 quickly, by just saying we can drop 
normality and still use t statistics and the associated p-values as being approximately valid.  
Besides, occasionally students will have to analyze smaller data sets, especially if they do their 
own small surveys for a term project. 
 
It is crucial to emphasize that we test hypotheses about unknown, population parameters.  I tell 
my students that they will be punished if they write something like H0: 1̂β  = 0 on an exam or, 
even worse, H0: .632 = 0. 
 
One useful feature of Chapter 4 is its emphasis on rewriting a population model so that it 
contains the parameter of interest in testing a single restriction.  I find this is easier, both 
theoretically and practically, than computing variances that can, in some cases, depend on 
numerous covariance terms.  The example of testing equality of the return to two- and four-year 
colleges illustrates the basic method, and shows that the respecified model can have a useful 
interpretation. 
 
One can use an F test for single linear restrictions on multiple parameters, but this is less 
transparent than a t test and does not immediately produce the standard error needed for a 
confidence interval or for testing a one-sided alternative.  The trick of rewriting the population 
model is useful in several instances, including obtaining confidence intervals for predictions in 
Chapter 6, as well as for obtaining confidence intervals for marginal effects in models with 
interactions (also in Chapter 6). 
 
The major league baseball player salary example illustrates the difference between individual 
and joint significance when explanatory variables (rbisyr and hrunsyr in this case) are highly 
correlated.  I tend to emphasize the R-squared form of the F statistic because, in practice, it is 
applicable a large percentage of the time, and it is much more readily computed.  I do regret that 
this example is biased toward students in countries where baseball is played.  Still, it is one of the 
better examples of multicollinearity that I have come across, and students of all backgrounds 
seem to get the point. 
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SOLUTIONS TO PROBLEMS 
 
4.1 (i) and (iii) generally cause the t statistics not to have a t distribution under H0.  
Homoskedasticity is one of the CLM assumptions.  An important omitted variable violates 
Assumption MLR.3.  The CLM assumptions contain no mention of the sample correlations 
among independent variables, except to rule out the case where the correlation is one. 
 
4.2 (i) H0: 3β  = 0.  H1: 3β  > 0. 
 
 (ii) The proportionate effect on salary is .00024(50) = .012.  To obtain the percentage effect, 
we multiply this by 100:  1.2%.  Therefore, a 50 point ceteris paribus increase in ros is predicted 
to increase salary by only 1.2%.  Practically speaking this is a very small effect for such a large 
change in ros. 
 
 (iii) The 10% critical value for a one-tailed test, using df = ∞, is obtained from Table G.2 as 
1.282.  The t statistic on ros is .00024/.00054 ≈  .44, which is well below the critical value.  
Therefore, we fail to reject H0 at the 10% significance level. 
 
 (iv) Based on this sample, the estimated ros coefficient appears to be different from zero only 
because of sampling variation.  On the other hand, including ros may not be causing any harm; it 
depends on how correlated it is with the other independent variables (although these are very 
significant even with ros in the equation). 
 
4.3 (i) Holding profmarg fixed,  = .321 Δlog(sales) = 
(.321/100)[100 ]  .00321(%Δsales).  Therefore, if %Δsales = 10, 

  .032, or only about 3/100 of a percentage point.  For such a large percentage 
increase in sales, this seems like a practically small effect. 

ˆrdintensΔ
log( )sales⋅Δ ≈

ˆrdintensΔ ≈

 
 (ii) H0: 1β  = 0 versus H1: 1β  > 0, where 1β  is the population slope on log(sales).  The t 
statistic is .321/.216 ≈  1.486.  The 5% critical value for a one-tailed test, with df = 32 – 3 = 29, 
is obtained from Table G.2 as 1.699; so we cannot reject H0 at the 5% level.  But the 10% critical 
value is 1.311; since the t statistic is above this value, we reject H0 in favor of H1 at the 10% 
level. 
 
 (iii) Not really.  Its t statistic is only 1.087, which is well below even the 10% critical value 
for a one-tailed test. 
 
4.4 (i) H0: 3β  = 0.  H1: 3β  ≠ 0. 
 
 (ii) Other things equal, a larger population increases the demand for rental housing, which 
should increase rents.  The demand for overall housing is higher when average income is higher, 
pushing up the cost of housing, including rental rates. 
 
 (iii) The coefficient on log(pop) is an elasticity.  A correct statement is that “a 10% increase 
in population increases rent by .066(10) = .66%.” 
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 (iv) With df = 64 – 4 = 60, the 1% critical value for a two-tailed test is 2.660.  The t statistic 
is about 3.29, which is well above the critical value.  So 3β  is statistically different from zero at 
the 1% level. 
 
4.5 (i) .412 ± 1.96(.094), or about .228 to .596. 
 
 (ii) No, because the value .4 is well inside the 95% CI. 
 
 (iii) Yes, because 1 is well outside the 95% CI. 
 
4.6  (i) With df = n – 2 = 86, we obtain the 5% critical value from Table G.2 with df = 90.  
Because each test is two-tailed, the critical value is 1.987.  The t statistic for H0: 0β  = 0 is about -
.89, which is much less than 1.987 in absolute value.  Therefore, we fail to reject 0β  = 0.  The t 
statistic for H0: 1β  = 1 is (.976 – 1)/.049 ≈  -.49, which is even less significant.  (Remember, we 
reject H0 in favor of H1 in this case only if |t| > 1.987.) 
 
 (ii) We use the SSR form of the F statistic.  We are testing q = 2 restrictions and the df in the 
unrestricted model is 86.  We are given SSRr = 209,448.99 and SSRur = 165,644.51.  Therefore,  
 

(209,448.99 165,644.51) 86 11.37,
165,644.51 2

F − ⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

≈  

 
which is a strong rejection of H0:  from Table G.3c, the 1% critical value with 2 and 90 df is 4.85. 
 
 (iii) We use the R-squared form of the F statistic.  We are testing q = 3 restrictions and there 
are 88 – 5 = 83 df in the unrestricted model.  The F statistic is [(.829 – .820)/(1 – .829)](83/3) ≈  
1.46.  The 10% critical value (again using 90 denominator df in Table G.3a) is 2.15, so we fail to 
reject H0 at even the 10% level.  In fact, the p-value is about .23. 
 
 (iv) If heteroskedasticity were present, Assumption MLR.5 would be violated, and the F 
statistic would not have an F distribution under the null hypothesis.  Therefore, comparing the F 
statistic against the usual critical values, or obtaining the p-value from the F distribution, would 
not be especially meaningful. 
 
4.7 (i) While the standard error on hrsemp has not changed, the magnitude of the coefficient has 
increased by half.  The t statistic on hrsemp has gone from about –1.47 to –2.21, so now the 
coefficient is statistically less than zero at the 5% level.  (From Table G.2 the 5% critical value 
with 40 df is –1.684.  The 1% critical value is –2.423, so the p-value is between .01 and .05.) 
 
 (ii) If we add and subtract 2β log(employ) from the right-hand-side and collect terms, we 
have 
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 log(scrap) = 0β  + 1β hrsemp + [ 2β log(sales) – 2β log(employ)] 

   + [ 2β log(employ) + 3β log(employ)] + u 

  = 0β  + 1β hrsemp + 2β log(sales/employ)  

   + ( 2β  + 3β )log(employ) + u, 

where the second equality follows from the fact that log(sales/employ) = log(sales) – 
log(employ).  Defining 3θ  ≡ 2β  + 3β  gives the result. 
 
 (iii) No.  We are interested in the coefficient on log(employ), which has a t statistic of .2, 
which is very small.  Therefore, we conclude that the size of the firm, as measured by employees, 
does not matter, once we control for training and sales per employee (in a logarithmic functional 
form). 
 
 (iv) The null hypothesis in the model from part (ii) is H0: 2β  = –1.  The t statistic is [–.951 – 
(–1)]/.37 = (1 – .951)/.37  .132; this is very small, and we fail to reject whether we specify a 
one- or two-sided alternative. 

≈

 
4.8 (i) We use Property VAR.3 from Appendix B:  Var( 1̂β  − 3 2β̂ ) = Var ( 1̂β ) + 9 Var ( 2β̂ ) – 6 

Cov ( 1̂β , 2β̂ ). 
 
 (ii) t = ( 1̂β − 3 2β̂  − 1)/se( 1̂β − 3 2β̂ ), so we need the standard error of 1̂β  − 3 2β̂ . 
 
 (iii) Because 1θ  = 1β  – 3β2, we can write 1β  = 1θ  + 3β2.  Plugging this into the population 
model gives 
  y = 0β  + ( 1θ  + 3β2)x1 + 2β x2 + 3β x3 + u 

  = 0β  + 1θ x1 + 2β (3x1 + x2) + 3β x3 + u. 
This last equation is what we would estimate by regressing y on x1, 3x1 + x2, and x3.  The 
coefficient and standard error on x1 are what we want. 
 
4.9 (i) With df = 706 – 4 = 702, we use the standard normal critical value (df = ∞ in Table G.2), 
which is 1.96 for a two-tailed test at the 5% level.  Now teduc = −11.13/5.88  −1.89, so |t≈ educ| = 
1.89 < 1.96, and we fail to reject H0: educβ  = 0 at the 5% level.  Also, tage ≈  1.52, so age is also 
statistically insignificant at the 5% level. 
 
 (ii) We need to compute the R-squared form of the F statistic for joint significance.  But F = 
[(.113 − .103)/(1 − .113)](702/2)  3.96.  The 5% critical value in the F≈ 2,702 distribution can be 
obtained from Table G.3b with denominator df = ∞:  cv = 3.00.  Therefore, educ and age are 
jointly significant at the 5% level (3.96 > 3.00).  In fact, the p-value is about .019, and so educ 
and age are jointly significant at the 2% level. 
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 (iii) Not really.  These variables are jointly significant, but including them only changes the 
coefficient on totwrk from –.151 to –.148. 
 
 (iv) The standard t and F statistics that we used assume homoskedasticity, in addition to the 
other CLM assumptions.  If there is heteroskedasticity in the equation, the tests are no longer 
valid. 
 
4.10 (i) We need to compute the F statistic for the overall significance of the regression with 
n = 142 and k = 4:  F = [.0395/(1 – .0395)](137/4) ≈  1.41.  The 5% critical value with 4 
numerator df and using 120 for the numerator df, is 2.45, which is well above the value of F.  
Therefore, we fail to reject H0: 1β  = 2β  = 3β  = 4β  = 0 at the 10% level.  No explanatory 
variable is individually significant at the 5% level.  The largest absolute t statistic is on dkr, tdkr ≈  
1.60, which is not significant at the 5% level against a two-sided alternative. 
 
 (ii) The F statistic (with the same df) is now [.0330/(1 – .0330)](137/4)  1.17, which is 
even lower than in part (i).  None of the t statistics is significant at a reasonable level. 

≈

 
 (iii) It seems very weak.  There are no significant t statistics at the 5% level (against a two-
sided alternative), and the F statistics are insignificant in both cases.  Plus, less than 4% of the 
variation in return is explained by the independent variables. 
 
4.11 (i) In columns (2) and (3), the coefficient on profmarg is actually negative, although its t 
statistic is only about –1.  It appears that, once firm sales and market value have been controlled 
for, profit margin has no effect on CEO salary. 
 
 (ii) We use column (3), which controls for the most factors affecting salary.  The t statistic on 
log(mktval) is about 2.05, which is just significant at the 5% level against a two-sided alternative.  
(We can use the standard normal critical value, 1.96.)  So log(mktval) is statistically significant.  
Because the coefficient is an elasticity, a ceteris paribus 10% increase in market value is 
predicted to increase salary by 1%.  This is not a huge effect, but it is not negligible, either. 
 
 (iii) These variables are individually significant at low significance levels, with tceoten ≈  3.11 
and  tcomten  –2.79.  Other factors fixed, another year as CEO with the company increases salary 
by about 1.71%.  On the other hand, another year with the company, but not as CEO, lowers 
salary by about .92%.  This second finding at first seems surprising, but could be related to the 
“superstar” effect:  firms that hire CEOs from outside the company often go after a small pool of 
highly regarded candidates, and salaries of these people are bid up.  More non-CEO years with a 
company makes it less likely the person was hired as an outside superstar. 

≈

 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
4.12 (i) Holding other factors fixed,  
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1

log( ) ( /100)[100 log( )]
( /100)(% ),

voteA expendA expendA
expendA

β β
β

Δ = Δ = ⋅Δ
≈ Δ

 

 
where we use the fact that 100  log( )expendA⋅Δ ≈  % expendAΔ .  So 1β /100 is the (ceteris paribus) 
percentage point change in voteA when expendA increases by one percent. 
 
 (ii) The null hypothesis is H0: 2β  = – 1β , which means a z% increase in expenditure by A 
and a z% increase in expenditure by B leaves voteA unchanged.  We can equivalently write H0: 

1β  + 2β  = 0. 
 
 (iii) The estimated equation (with standard errors in parentheses below estimates) is  
 
  = 45.08  + 6.083 log(expendA)  – 6.615 log(expendB)  + .152 prtystrA   ˆvoteA
   (3.93)  (0.382)  (0.379)  (.062) 

 n  =  173,   R2  =  .793. 
 
The coefficient on log(expendA) is very significant (t statistic ≈  15.92), as is the coefficient on 
log(expendB) (t statistic  –17.45).  The estimates imply that a 10% ceteris paribus increase in 
spending by candidate A increases the predicted share of the vote going to A by about .61 
percentage points.  [Recall that, holding other factors fixed, 

≈

�voteAΔ ≈ (6.083/100)%ΔexpendA).]  
Similarly, a 10% ceteris paribus increase in spending by B reduces  by about .66 
percentage points.  These effects certainly cannot be ignored. 

�voteA

 While the coefficients on log(expendA) and log(expendB) are of similar magnitudes (and 
opposite in sign, as we expect), we do not have the standard error of 1̂β  + 2β̂ , which is what we 
would need to test the hypothesis from part (ii). 
 
 (iv) Write 1θ  = 1β  + 2β , or 1β  = 1θ – 2β .  Plugging this into the original equation, and 
rearranging, gives 
 
  =  �voteA 0β  + 1θ log(expendA) + 2β [log(expendB) – log(expendA)] + 3β prtystrA + u, 
 
When we estimate this equation we obtain $1θ  ≈  –.532 and se( $1θ )≈  .533.  The t statistic for the 
hypothesis in part (ii) is –.532/.533  –1.  Therefore, we fail to reject H≈ 0: 2β  = – 1β . 
 
4.13 (i) In the model 
 

log(salary) = 0β + 1β LSAT + 2β GPA + 3β log(libvol) + 4β log(cost)+ 5β rank + u, 
 
the hypothesis that rank has no effect on log(salary) is H0: 5β  = 0.  The estimated equation (now 
with standard errors) is  
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    = 8.34  + .0047 LSAT  + .248 GPA + .095 log(libvol) �log ( )salary
   (0.53) (.0040) (.090) (.033) 

 + .038 log(cost) – .0033 rank 
  (.032)  (.0003) 

 n  =  136,    R2 = .842. 
 
The t statistic on rank is –11, which is very significant.  If rank decreases by 10 (which is a move 
up for a law school), median starting salary is predicted to increase by about 3.3%. 
 
 (ii) LSAT is not statistically significant (t statistic ≈  1.18) but GPA is very significance (t 
statistic  2.76).  The test for joint significance is moot given that GPA is so significant, but for 
completeness the F statistic is about 9.95 (with 2 and 130 df) and p-value 

≈
≈  .0001. 

 
 (iii) When we add clsize and faculty to the regression we lose five observations.  The test of 
their joint significant (with 2 and 131 – 8 = 123 df) gives F ≈  .95 and p-value  .39.  So these 
two variables are not jointly significant unless we use a very large significance level. 

≈

 
 (iv) If we want to just determine the effect of numerical ranking on starting law school 
salaries, we should control for other factors that affect salaries and rankings.  The idea is that 
there is some randomness in rankings, or the rankings might depend partly on frivolous factors 
that do not affect quality of the students.  LSAT scores and GPA are perhaps good controls for 
student quality.  However, if there are differences in gender and racial composition across 
schools, and systematic gender and race differences in salaries, we could also control for these.  
However, it is unclear why these would be correlated with rank.  Faculty quality, as perhaps 
measured by publication records, could be included.  Such things do enter rankings of law 
schools. 
 
4.14 (i) The estimated model is 
 
    11.67  + .000379 sqrft   + .0289 bdrms �log ( )price =
   (0.10) (.000043) (.0296) 

 n = 88,  R2 = .588. 
 
Therefore, 1̂θ = 150(.000379) + .0289 = .0858, which means that an additional 150 square foot 
bedroom increases the predicted price by about 8.6%. 
 
 (ii) 2β = 1θ  – 150 1β , and so 
 
 log(price) = 0β + 1β sqrft  + ( 1θ  – 150 1β )bdrms  + u 

   = 0β + 1β (sqrft  – 150 bdrms) + 1θ bdrms + u. 
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 (iii) From part (ii), we run the regression 
 
 log(price) on (sqrft – 150 bdrms) and bdrms,  

 
and obtain the standard error on bdrms.  We already know that 1̂θ = .0858; now we also get 

se( 1̂θ ) = .0268.  The 95% confidence interval reported by my software package is .0326 to .1390 
(or about 3.3% to 13.9%). 
 
4.15  The R-squared from the regression bwght on cigs, parity, and faminc, using all 1,388 
observations, is about .0348.  This means that, if we mistakenly use this in place of .0364, which 
is the R-squared using the same 1,191 observations available in the unrestricted regression, we 
would obtain F = [(.0387 − .0348)/(1 − .0387)](1,185/2) ≈  2.40, which yields p-value  .091 in 
an F distribution with 2 and 1,1185 df.  This is significant at the 10% level, but it is incorrect.  
The correct F statistic was computed as 1.42 in Example 4.9, with p-value ≈  .242. 

≈

 
4.16 (i) If we drop rbisyr the estimated equation becomes 
 
    = 11.02  + .0677 years  + .0158 gamesyr �log ( )salary
   (0.27) (.0121) (.0016) 

  +  .0014 bavg   + .0359 hrunsyr 
   (.0011) (.0072) 
 n  = 353,   R2 = .625. 
 
Now hrunsyr is very statistically significant (t statistic ≈  4.99), and its coefficient has increased 
by about two and one-half times. 
 
 (ii) The equation with runsyr, fldperc, and sbasesyr added is  
 
  = 10.41  + .0700 years  + .0079 gamesyr �log ( )salary
  (2.00) (.0120) (.0027) 

 +  .00053 bavg   + .0232 hrunsyr 
  (.00110) (.0086) 

 +  .0174 runsyr   + .0010 fldperc  – .0064 sbasesyr 
  (.0051) (.0020) (.0052) 

 n  =  353,   R2 = .639. 
 
Of the three additional independent variables, only runsyr is statistically significant (t 
statistic = .0174/.0051 ≈  3.41).  The estimate implies that one more run per year, other factors 
fixed, increases predicted salary by about 1.74%, a substantial increase.  The stolen bases 
variable even has the “wrong” sign with a t statistic of about –1.23, while fldperc has a t statistic 
of only .5.  Most major league baseball players are pretty good fielders; in fact, the smallest 
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fldperc is 800 (which means .800).  With relatively little variation in fldperc, it is perhaps not 
surprising that its effect is hard to estimate. 
 
 (iii) From their t statistics, bavg, fldperc, and sbasesyr are individually insignificant.  The F 
statistic for their joint significance (with 3 and 345 df) is about .69 with p-value  .56.  
Therefore, these variables are jointly very insignificant. 

≈

 
4.17 (i) In the model 
 

log(wage)  = 0β  + 1β educ  + 2β exper  +  3β tenure  + u 
 

the null hypothesis of interest is H0:  2β  = 3β . 
 
 (ii) Let 2θ  = 2β  – 3β . Then we can estimate the equation 
 

log(wage)  = 0β  + 1β educ  + 2θ exper  +  3β (exper + tenure)  + u 
 

to obtain the 95% CI for 2θ .  This turns out to be about .0020 ± 1.96(.0047), or about -.0072 
to .0112.  Because zero is in this CI, 2θ  is not statistically different from zero at the 5% level, 
and we fail to reject H0: 2β  = 3β  at the 5% level. 
 
4.18  (i) The minimum value is 0, the maximum is 99, and the average is about 56.16. 
 
  (ii) When phsrank is added to (4.26), we get the following: 
 
  1.459  −   .0093 jc  +   .0755 totcoll  +   .0049 exper  +  .00030 phsrank �log ( )  wage =
   (0.024)     (.0070)        (.0026)                (.0002)              (.00024) 
 
 n = 6,763,  R2 = .223 
 
So phsrank has a t statistic equal to only 1.25; it is not statistically significant.  If we increase 
phsrank by 10, log(wage) is predicted to increase by (.0003)10 = .003.  This implies a .3% 
increase in wage, which seems a modest increase given a 10 percentage point increase in phsrank.  
(However, the sample standard deviation of phsrank is about 24.) 
 
 (iii) Adding phsrank makes the t statistic on jc even smaller in absolute value, about 1.33, but 
the coefficient magnitude is similar to (4.26).  Therefore, the base point remains unchanged:  the 
return to a junior college is estimated to be somewhat smaller, but the difference is not 
significant and standard significant levels. 
 
 (iv) The variable id is just a worker identification number, which should be randomly 
assigned (at least roughly).  Therefore, id should not be correlated with any variable in the 
regression equation.  It should be insignificant when added to (4.17) or (4.26).  In fact, its t 
statistic is about .54. 
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4.19 (i) There are 2,017 single people in the sample of 9,275. 
 
   (ii) The estimated equation is  
 
  =   −43.04   +   .799 inc  +   .843 age    $nett fa
   ( 4.08)     (.060)           (.092)                
 
 n = 2,017,  R2 = .119. 
 
The coefficient on inc indicates that one more dollar in income (holding age fixed) is reflected in 
about 80 more cents in predicted nettfa; no surprise there.  The coefficient on age means that, 
holding income fixed, if a person gets another year older, his/her nettfa is predicted to increase 
by about $843.  (Remember, nettfa is in thousands of dollars.)  Again, this is not surprising. 
 
 (iii) The intercept is not very interesting, as it gives the predicted nettfa for inc = 0 and age = 
0.  Clearly, there is no one with even close to these values in the relevant population. 
 
 (iv) The t statistic is (.843 − 1)/.092 ≈ −1.71.  Against the one-sided alternative H1: β2 < 1, 
the p-value is about .044.  Therefore, we can reject H0: β2 = 1 at the 5% significance level 
(against the one-sided alternative). 
 
 (v) The slope coefficient on inc in the simple regression is about .821, which is not very 
different from the .799 obtained in part (ii).  As it turns out, the correlation between inc and age 
in the sample of single people is only about .039, which helps explain why the simple and 
multiple regression estimates are not very different; refer back to page 79 of the text. 
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CHAPTER 5 
 

TEACHING NOTES 
 
Chapter 5 is short, but it is conceptually more difficult than the earlier chapters; it requires some 
knowledge of asymptotic properties of estimators.  In class, I give a brief, heuristic description of 
consistency and asymptotic normality before stating the consistency and asymptotic normality of 
OLS.  (Conveniently, the same assumptions that work for finite sample analysis work for 
asymptotic analysis.)  More advanced students can follow the proof of consistency of the slope 
coefficient in the bivariate regression case.  Section E.4 contains a full matrix treatment of 
asymptotic analysis appropriate for a master’s level course. 
 
An explicit illustration of what happens to standard errors as the sample size grows emphasizes 
the importance of having a larger sample.  I do not usually cover the LM statistic in a first-
semester course, and I only briefly mention the asymptotic efficiency result.  Without full use of 
matrix algebra combined with limit theorems for vectors and matrices, it is very difficult to prove 
asymptotic efficiency of OLS. 
 
I think the conclusions of this chapter are important for students to know, even though they may 
not grasp the details.  On exams I usually include true-false type questions, with explanation, to 
test the students’ understanding of asymptotics.  [For example:  “In large samples we do not have 
to worry about omitted variable bias.”  (False).  Or “Even if the error term is not normally 
distributed, in large samples we can still compute approximately valid confidence intervals under 
the Gauss-Markov assumptions.”  (True).] 
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SOLUTIONS TO PROBLEMS 
 
5.1  Write y = 0β  + 1β x1 + u, and take the expected value:  E(y) = 0β  + 1β E(x1) + E(u), or µy = 

0β  + 1β µx since E(u) = 0, where µy = E(y) and  µx = E(x1).  We can rewrite this as 0β  = µy - 

1β µx.  Now, 0β̂  = y  − 1̂β 1x .  Taking the plim of this we have plim( 0β̂ ) = plim( y  − 1̂β 1x ) = 

plim( y ) – plim( 1̂β ) ⋅plim( 1x ) = µy − 1β µx, where we use the fact that plim( y ) = µy and 

plim( 1x ) = µx by the law of large numbers, and plim( 1̂β ) = 1β .  We have also used the parts of 
Property PLIM.2 from Appendix C. 
 
5.2  A higher tolerance of risk means more willingness to invest in the stock market, so 2β  > 0.  
By assumption, funds and risktol are positively correlated.  Now we use equation (5.5), where 
δ1 > 0: plim( 1β% ) = 1β  + 2β δ1 > 1β , so 1β%  has a positive inconsistency (asymptotic bias).  This 
makes sense:  if we omit risktol from the regression and it is positively correlated with funds, 
some of the estimated effect of funds is actually due to the effect of risktol. 
 
5.3  The variable cigs has nothing close to a normal distribution in the population.  Most people 
do not smoke, so cigs = 0 for over half of the population.  A normally distributed random 
variable takes on no particular value with positive probability.  Further, the distribution of cigs is 
skewed, whereas a normal random variable must be symmetric about its mean. 
 
5.4  Write y = 0β  + 1β x + u, and take the expected value:  E(y) = 0β  + 1β E(x) + E(u), or μy = 

0β  + 1β μx, since E(u) = 0, where  μy = E(y) and µx  = E(x).  We can rewrite this as 0β  = µy − 

1β µx.  Now, 0β%  = y  − 1β% x .  Taking the plim of this we have plim( 0β% ) = plim( y  − 1β% x ) = 

plim( y ) – plim( 1β% )⋅plim( x ) = μy − 1β μx, where we use the fact that plim( y ) = μy and 

plim( x ) = μx by the law of large numbers, and plim( 1β% ) = 1β .  We have also used the parts of 
the Property PLIM.2 from Appendix C. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
5.5 (i)  The estimated equation is  
 
  = −2.87 + .599 educ + .022 exper + .169 tenure �wage
   (0.73) (.051)  (.012)  (.022) 

 n = 526,    R2 = .306,   σ̂  = 3.085. 
 
Below is a histogram of the 526 residual, , i = 1, 2 , ..., 526.  The histogram uses 27 bins, 
which is suggested by the formula in the Stata manual for 526 observations.  For comparison, the 
normal distribution that provides the best fit to the histogram is also plotted. 

ˆiu
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 (ii)  With log(wage) as the dependent variable the estimated equation is  
 
   = .284 + .092 educ + .0041 exper + .022 tenure �log ( )wage
   (.104)  (.007)  (.0017)  (.003) 

 n = 526,    R2 = .316,   σ̂  = .441. 
 
The histogram for the residuals from this equation, with the best-fitting normal distribution 
overlaid, is given below: 
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 (iii)  The residuals from the log(wage) regression appear to be more normally distributed.  
Certainly the histogram in part (ii) fits under its comparable normal density better than in part (i), 
and the histogram for the wage residuals is notably skewed to the left.  In the wage regression 
there are some very large residuals (roughly equal to 15) that lie almost five estimated standard 
deviations (σ̂  = 3.085) from the mean of the residuals, which is identically zero.  This does not 
appear to be nearly as much of a problem in the log(wage) regression. 
 
5.6 (i)  The regression with all 4,137 observations is  
 
  = 1.392 − .01352 hsperc + .00148 sat �colg pa
   (0.072)  (.00055)  (.00007)  

 n = 4,137,    R2 = .273. 
 
 (ii)  Using only the first 2,070 observations gives 
 
  = 1.436 − .01275 hsperc + .00147 sat �colg pa
   (0.098)  (.00072)  (.00009)  

 n = 2,070,    R2 = .283. 
 
 (iii)  The ratio of the standard error using 2,070 observations to that using 4,137 observations 
is about 1.31.  From (5.10) we compute (4,137 / 2,070)  ≈  1.41, which is somewhat above the 
ratio of the actual standard errors. 
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5.7 We first run the regression colgpa on cigs, parity, and faminc using only the 1,191 
observations with nonmissing observations on motheduc and fatheduc.  After obtaining these 
residuals, , these are regressed on cigsiu% i, parityi, faminci, motheduci, and fatheduci, where, of 
course, we can only use the 1,197 observations with nonmissing values for both motheduc and 
fatheduc.  The R-squared from this regression, , is about .0024.  With 1,191 observations, the 
chi-square statistic is (1,191)(.0024) 

2
uR

≈   2.86.  The p-value from the 2
2χ  distribution is about .239, 

which is very close to .242, the p-value for the comparable F test.  
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CHAPTER 6 
 

TEACHING NOTES 
 
I cover most of Chapter 6, but not all of the material in great detail.  I use the example in Table 
6.1 to quickly run through the effects of data scaling on the important OLS statistics.  (Students 
should already have a feel for the effects of data scaling on the coefficients, fitting values, and R-
squared because it is covered in Chapter 2.)  At most, I briefly mention beta coefficients; if 
students have a need for them, they can read this subsection. 
 
The functional form material is important, and I spend some time on more complicated models 
with logarithms, quadratics, and interactions.  An important point for models with quadratics, 
and especially interactions, is that we need to evaluate the partial effect at interesting values of 
the explanatory variables.  Often, zero is not an interesting value for an explanatory variable and 
is well outside the range in the sample.  Using the methods from Chapter 4, it is easy to obtain 
confidence intervals for the effects at interesting x values. 
 
As far as goodness-of-fit, I only introduce the adjusted R-squared, as I think using a slew of 
goodness-of-fit measures to choose a model can be confusing (and is not representative of most 
empirical analyses).  It is important to discuss how, if we fixate on a high R-squared, we may 
wind up with a model that has no interesting ceteris paribus interpretation. 
 
I often have students and colleagues ask if there is a simple way to predict y when log(y) has 
been used as the dependent variable, and to obtain a goodness-of-fit measure for the log(y) model 
that can be compared with the usual R-squared obtained when y is the dependent variable.  The 
methods described in Section 6.4 are easy to implement and, unlike other approaches, do not 
require normality. 
 
The section on prediction and residual analysis contains several important topics, including 
constructing prediction intervals.  It is useful to see how much wider the prediction intervals are 
than the confidence interval for the conditional mean.  I usually discuss some of the residual-
analysis examples, as they have real-world applicability. 
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SOLUTIONS TO PROBLEMS 
 
6.1 The generality is not necessary.  The t statistic on roe2 is only about −.30, which shows that 
roe2 is very statistically insignificant.  Plus, having the squared term has only a minor effect on 
the slope even for large values of roe.  (The approximate slope is .0215 − .00016 roe, and even 
when roe = 25 – about one standard deviation above the average roe in the sample – the slope 
is .211, as compared with .215 at roe = 0.) 
 
6.2  By definition of the OLS regression of c0yi on c1xi1, K , ckxik, i = 2, K , n, the jβ%  solve 
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[We obtain these from equations (3.13), where we plug in the scaled dependent and independent 
variables.]  We now show that if 0β%  = 0 0

ˆc β  and jβ%  = 0( / )j jc c β% ,  j = 1,…,k, then these k + 1 
first order conditions are satisfied, which proves the result because we know that the OLS 
estimates are the unique solutions to the FOCs (once we rule out perfect collinearity in the 
independent variables).  Plugging in these guesses for the jβ%  gives the expressions 
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for j = 1,2,…,k.  Simple cancellation shows we can write these equations as  
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or, factoring out constants, 
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But the terms multiplying c0 and c0cj are identically zero by the first order conditions for the ˆ
jβ  

since, by definition, they are obtained from the regression yi on xi1, K , xik, i = 1,2,..,n.  So we 
have shown that 0β%  = c0 0β̂  and jβ%  = (c0/cj) ˆ

jβ , j = 1, K , k solve the requisite first order 
conditions. 
 
6.3 (i) The turnaround point is given by 1̂β /(2| 2β̂ |), or .0003/(.000000014)  21,428.57; 
remember, this is sales in millions of dollars. 

≈

 
 (ii) Probably.  Its t statistic is about –1.89, which is significant against the one-sided 
alternative H0: 1β  < 0 at the 5% level (cv ≈  –1.70 with df = 29).  In fact, the p-value is 
about .036. 
 
 (iii) Because sales gets divided by 1,000 to obtain salesbil, the corresponding coefficient gets 
multiplied by 1,000:  (1,000)(.00030) = .30.  The standard error gets multiplied by the same 
factor.  As stated in the hint, salesbil2 = sales/1,000,000, and so the coefficient on the quadratic 
gets multiplied by one million:  (1,000,000)(.0000000070) = .0070; its standard error also gets 
multiplied by one million.  Nothing happens to the intercept (because rdintens has not been 
rescaled) or to the R2:  
 
  = 2.613 + .30 salesbil – .0070 salesbil�rdintens 2

   (0.429)  (.14)  (.0037)  

 n = 32,    R2 = .1484. 
 
 (iv) The equation in part (iii) is easier to read because it contains fewer zeros to the right of 
the decimal.  Of course the interpretation of the two equations is identical once the different 
scales are accounted for. 
 
6.4 (i) Holding all other factors fixed we have 
 

1 2 1 2log( ) ( ) .wage educ educ pareduc pareduc educβ β β βΔ = Δ + Δ ⋅ = + Δ  
 
Dividing both sides by ∆educ gives the result.  The sign of 2β  is not obvious, although 2β  > 0 if 
we think a child gets more out of another year of education the more highly educated are the 
child’s parents. 
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 (ii) We use the values pareduc = 32 and pareduc = 24 to interpret the coefficient on 
educ ⋅pareduc.  The difference in the estimated return to education is .00078(32 – 24) = .0062, or 
about .62 percentage points. 
 
 (iii) When we add pareduc by itself, the coefficient on the interaction term is negative.  The t 
statistic on educ ⋅pareduc is about –1.33, which is not significant at the 10% level against a two-
sided alternative.  Note that the coefficient on pareduc is significant at the 5% level against a 
two-sided alternative.  This provides a good example of how omitting a level effect (pareduc in 
this case) can lead to biased estimation of the interaction effect. 
 
6.5 This would make little sense.  Performance on math and science exams are measures of 
outputs of the educational process, and we would like to know how various educational inputs 
and school characteristics affect math and science scores.  For example, if the staff-to-pupil ratio 
has an effect on both exam scores, why would we want to hold performance on the science test 
fixed while studying the effects of staff on the math pass rate?  This would be an example of 
controlling for too many factors in a regression equation.  The variable scill could be a dependent 
variable in an identical regression equation. 
 
6.6 The extended model has df = 680 – 9 = 671, and we are testing two restrictions.  Therefore, 
F = [(.232 – .229)/(1 – .232)](671/2) ≈  1.31, which is well below the 10% critical value in the F 
distribution with 2 and ∞ df:  cv = 2.30.  Thus, atndrte2 and ACT ⋅atndrte are jointly insignificant.  
Because adding these terms complicates the model without statistical justification, we would not 
include them in the final model. 
 
6.7 The second equation is clearly preferred, as its adjusted R-squared is notably larger than that 
in the other two equations.  The second equation contains the same number of estimated 
parameters as the first, and the one fewer than the third.  The second equation is also easier to 
interpret than the third. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
6.8 (i) The causal (or ceteris paribus) effect of dist on price means that 1β  ≥ 0:  all other relevant 
factors equal, it is better to have a home farther away from the incinerator.  The estimated 
equation is 
 
  = 8.05 + .365 log(dist) �log ( )price
   (0.65)  (.066) 

 n = 142,  R2 = .180,  2R  = .174, 
 
which means a 1% increase in distance from the incinerator is associated with a predicted price 
that is about .37% higher. 
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 (ii) When the variables log(inst), log(area), log(land), rooms, baths, and age are added to the 
regression, the coefficient on log(dist) becomes about .055 (se ≈  .058).  The effect is much 
smaller now, and statistically insignificant.  This is because we have explicitly controlled for 
several other factors that determine the quality of a home (such as its size and number of baths) 
and its location (distance to the interstate).  This is consistent with the hypothesis that the 
incinerator was located near less desirable homes to begin with. 
 
 (iii) When [log(inst)]2 is added to the regression in part (ii), we obtain (with the results only 
partially reported) 
 
 log( p̂rice ) = –3.32 + .185 log(dist) + 2.073 log(inst) – .1193 [log(inst)]2  + K  
   (2.65)  (.062)  (0.501)  (.0282) 

 n = 142,  R2 = .778,  2R  = .764. 
 
The coefficient on log(dist) is now very statistically significant, with a t statistic of about three.  
The coefficients on log(inst) and [log(inst)]2 are both very statistically significant, each with t 
statistics above four in absolute value.  Just adding [log(inst)]2 has had a very big effect on the 
coefficient important for policy purposes.  This means that distance from the incinerator and 
distance from the interstate are correlated in some nonlinear way that also affects housing price. 
 We can find the value of log(inst) where the effect on log(price) actually becomes negative:  
2.073/[2(.1193)]  8.69.  When we exponentiate this we obtain about 5,943 feet from the 
interstate.  Therefore, it is best to have your home away from the interstate for distances less than 
just over a mile.  After that, moving farther away from the interstate lowers predicted house price. 

≈

 
 (iv) The coefficient on [log(dist)]2, when it is added to the model estimated in part (iii), is 
about -.0365, but its t statistic is only about -.33.  Therefore, it is not necessary to add this 
complication. 
 
6.9 (i) The estimated equation is  
 
  = .128 + .0904 educ + .0410 exper –  .000714 exper�log ( )wage 2

   (.106)  (.0075)  (.0052)  (.000116) 
 
 n = 526,   R2 = .300,   2R  = .296. 
 
 (ii) The t statistic on exper2 is about –6.16, which has a p-value of essentially zero.  So exper 
is significant at the 1% level(and much smaller significance levels). 
 
 (iii) To estimate the return to the fifth year of experience, we start at exper = 4 and increase 
exper by one, so Δexper = 1: 
 

ˆ% 100[.0410 2(.000714)4] 3.53%.wageΔ ≈ − ≈  
 
Similarly, for the 20th year of experience,  
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ˆ% 100[.0410 2(.000714)19] 1.39%wageΔ ≈ − ≈  

 
 (iv) The turnaround point is about .041/[2(.000714)] ≈  28.7 years of experience.  In the 
sample, there are 121 people with at least 29 years of experience.  This is a fairly sizeable 
fraction of the sample. 
 
6.10 (i) Holding exper (and the elements in u) fixed, we have 
 
 1 3 1 3log( ) ( ) ( ) ,wage educ educ exper exper educβ β β βΔ = Δ + Δ = + Δ  
 
or 

 1 3
log( ) ( )wage exper

educ
β βΔ

= +
Δ

.  

 
This is the approximate proportionate change in wage given one more year of education. 
 
 (ii) H0: 3β  = 0.  If we think that education and experience interact positively – so that people 
with more experience are more productive when given another year of education – then 3β  > 0 
is the appropriate alternative. 
 
 (iii) The estimated equation is 
 
 log( ) = 5.95 + .0440 educ – .0215 exper + .00320 educ ⋅ exper ˆwage
   (0.24)  (.0174)  (.0200)  (.00153) 

 n = 935,   R2 = .135,   2R  = .132. 
 
The t statistic on the interaction term is about 2.13,which gives a p-value below .02 against H1: 

3β  > 0.  Therefore, we reject H0: 3β  = 0 against H1: 3β  > 0 at the 2% level. 
 
 (iv) We rewrite the equation as 
 

log(wage)  =  0β  + 1θ educ + 2β exper + 3β educ(exper – 10) + u, 
 

and run the regression log(wage) on educ, exper, and educ(exper – 10).  We want the coefficient 
on educ.  We obtain 1̂θ ≈  .0761 and se( 1̂θ )≈  .0066.  The 95% CI for 1θ  is about .063 to .089. 
 
6.11 (i) The estimated equation is 
 
  = 997.98 + 19.81 hsize – 2.13 hsizeˆsat 2

   (6.20)  (3.99)  (0.55) 

 n = 4,137,   R2 = .0076. 
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The quadratic term is very statistically significant, with t statistic ≈  –3.87. 
 
 (ii) We want the value of hsize, say hsize*, where  reaches its maximum.  This is the 
turning point in the parabola, which we calculate as hsize* = 19.81/[2(2.13)]  4.65.  Since hsize 
is in 100s, this means 465 students is the “optimal” class size.  Of course, the very small R-
squared shows that class size explains only a tiny amount of the variation in SAT score. 

ˆsat
≈

 
 (iii) Only students who actually take the SAT exam appear in the sample, so it is not 
representative of all high school seniors.  If the population of interest is all high school seniors, 
we need a random sample of such students who all took the same standardized exam. 
 
 (iv) With log(sat) as the dependent variable we get 
 
 log( ) = 6.896 + .0196 hsize – .00209 hsizeˆsat 2

   (0.006)  (.0040)   (.00054) 

 n = 4,137,   R2 = .0078. 
 
The optimal class size is now estimated as about 469, which is very close to what we obtained 
with the level-level model. 
 
6.12 (i) The results of estimating the log-log model (but with bdrms in levels) are 
 
 log( p̂rice ) = 5.61 + .168 log(lotsize) + .700 log (sqrft) + .037 bdrms 
   (0.65)  (.038)  (.093)    (.028) 

 n = 88,   R2 = .634,   2R  = .630. 
 
 (ii) With lotsize = 20,000, sqrft = 2,500, and bdrms = 4, we have 
 

�lprice   =  5.61 + .168 log(20,000) + .700⋅ ⋅ log(2,500) + .037(4) ≈  12.90 
 

where we use lprice to denote log(price).  To predict price, we use the equation ˆprice  = 

0α̂ exp( ), where �lprice 0α̂  is the slope on  ≡ exp( ) from the regression priceˆ im �
ilprice i on , i = 

1,2, K , 88 (without an intercept).  When we do this regression we get 
ˆ im

0α̂ ≈  1.023.  Therefore, 

for the values of the independent variables given above, ˆprice ≈  (1.023)exp(12.90)  $409,519 
(rounded to the nearest dollar).  If we forget to multiply by 

≈

0α̂  the predicted price would be 
about $400,312. 
 
 (iii) When we run the regression with all variables in levels, the R-squared is about .672.  
When we compute the correlation between pricei and the  from part (ii), we obtain about .859.  
The square of this, or roughly .738, is the comparable goodness-of-fit measure for the model 

ˆ im
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with log(price) as the dependent variable.  Therefore, for predicting price, the log model is 
notably better. 
 
6.13 (i) For the model 
 

voteA  =  0β  + 1β prtystrA + 2β expendA + 3β expendB + 4β expendA ⋅ expendB + u, 
 
the ceteris paribus effect of expendB on voteA is obtained by taking changes and holding prtystrA, 
expendA, and u fixed: 
 

ΔvoteA  =  3β ΔexpendB + 4β expendA(ΔexpendB)  =  ( 3β  + 4β expendA) ΔexpendB, 
or 

ΔvoteA/ΔexpendB  =  3β  + 4β expendA. 
 

We think 3β < 0 if a ceteris paribus increase in spending by B lowers the share of the vote 
received by A.  But the sign of 4β  is ambiguous:  Is the effect of more spending by B smaller or 
larger for higher levels of spending by A? 
 
 (ii) The estimated equation is 
 
  = 32.12 + .342 prtystrA + .0383 expendA – .0317 expendB ˆvoteA
   (4.59)  (.088)  (.0050)  (.0046) 

 – .0000066 expendA ⋅ expendB 
  (.0000072) 

    n = 173,   R2 = .571,   2R  = .561. 
 
The interaction term is not statistically significant, as its t statistic is less than one in absolute 
value. 
 
 (iii) The average value of expendA is about 310.61, or $310,610.  If we set expendA at 300, 
which is close to the average value, we have  
 

ˆvoteAΔ   =  [–.0317 – .0000066 ⋅ (300)] ΔexpendB ≈  –.0337(ΔexpendB). 
 

So, when ΔexpendB = 100,  –3.37, which is a fairly large effect.  (Note that, given the 
insignificance of the interaction term, we would be justified in leaving it out and reestimating the 
model.  This would make the calculation easier.) 

ˆvoteAΔ ≈

 
 (iv) Now we have 
 

ˆvoteAΔ   =  ( 2β̂  + 4β̂ expendB)ΔexpendA ≈  .0376(ΔexpendA)  = 3.76 
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when ΔexpendA = 100.  This does make sense, and it is a nontrivial effect. 
 
 (v) When we replace the interaction term with shareA we obtain  
 
  = 18.20 + .157 prtystrA − .0067 expendA + .0043 expendB + .494 shareA ˆvoteA
   (2.57)  (.050)  (.0028)  (.0026)  (.025) 

 n = 173,   R2 = .868,   2R  = .865. 
 
Notice how much higher the goodness-of-fit measures are as compared with the equation 
estimated in part (ii), and how significant shareA is.  To obtain the partial effect of expendB on 

we must compute the partial derivative.  Generally, we have ˆvoteA
 

 3 4

ˆ
垐voteA shareA

expendB expendB
β β

⎛ ⎞∂ ∂
= + ⎜ ⎟∂ ∂⎝ ⎠

, 

 
where shareA = 100[expendA/(expendA + expendB)].  Now  
 
  

 2100 .
( )

shareA expendA
expendB expendA expendB

⎛ ⎞∂
= − ⎜ ⎟∂ +⎝ ⎠

 

 
Evaluated at expendA = 300 and expendB = 0, the partial derivative is –100(300/3002) = −1/3, 
and therefore 
 

 3 4

ˆ
垐 (1/ 3) .0043 .494 / 3 .164.voteA

expendB
β β∂

= + = − ≈ −
∂

 

 
So falls by .164 percentage points given the first thousand dollars of spending by 
candidate B, where A’s spending is held fixed at 300 (or $300,000).  This is a fairly large effect, 
although it may not be the most typical scenario (because it is rare to have one candidate spend 
so much and another spend so little).  The effect tapers off as expendB grows.  For example, at 
expendB = 100, the effect of the thousand dollars of spending is only about .0043 − .494(.188)

ˆvoteA

≈  
–.089. 
 
6.14 (i) If we hold all variables except priGPA fixed and use the usual approximation Δ(priGPA2) 

 2(priGPA) ΔpriGPA, then we have ≈
 

  
2

2 4 6

2 4 6

( ) ( )
( 2 ) ,

stndfnl priGPA priGPA priGPA atndrte
priGPA atndrte priGPA

β β β
β β β

Δ = Δ + Δ + Δ
≈ + + Δ
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and dividing by ∆priGPA gives the result.  In equation (6.19) we have 2β̂  = −1.63, 4β̂  = .296, 

and 6β̂ = .0056.  When priGPA = 2.59 and atndrte = .82 we have 
 

ˆ
1.63 2(.296)(2.59) .0056(.82) .092.stndfnl

priGPA
Δ

= − + + ≈−
Δ

 

 
 (ii) First, note that (priGPA – 2.59)2 = priGPA2 – 2(2.59)priGPA + (2.59)2 and 
priGPA(atndrte − .82) = priGPA ⋅atndrte – (.82)priGPA.  So we can write equation 6.18) as 
 

 

2
0 1 2 3 4

2 2
4 4 5

6 6
2

0 4 1

2 4 6 3

4

( 2.59)

[2(2.59) ] (2.59)
( .82) (.82)

[ (2.59) ]
[ 2 (2.59) (.82)]

( 2.59

stndfnl atndrte priGPA ACT priGPA

priGPA ACT
priGPA atndrte priGPA u

atndrte
priGPA ACT

priGPA

β β β β β

β β β
β β

β β β
β β β β

β

= + + + + −

+ − +
+ − + +

= − +
+ + + +

+ − 2 2
5 6

2
0 1 2 3 4

2
5 6

) ( .82)

( 2.59)

( .82) .

ACT priGPA atndrte u

atndrte priGPA ACT priGPA

ACT priGPA atndrte u

β β

θ β θ β β

β β

+ + −

≡ + + + + −

+ + − +

+

 

 
When we run the regression associated with this last model, we obtain 2̂θ ≈  -.091 (which differs 

from part (i) by rounding error) and se( 2̂θ ) ≈  .363.  This implies a very small t statistic for 2̂θ . 
 
6.15 (i) The estimated equation (where price is in dollars) is  
  
 ˆprice  = −21,770.3 + 2.068 lotsize + 122.78 sqrft + 13,852.5 bdrms 
   (29,475.0)  (0.642)  (13.24)  (9,010.1) 

  n = 88,   R2 = .672,   2R  = .661,   σ̂  = 59,833. 
 
The predicted price at lotsize = 10,000, sqrft = 2,300, and bdrms = 4 is about $336,714. 
 
 (ii) The regression is pricei on (lotsizei – 10,000), (sqrfti – 2,300), and (bdrmsi – 4).  We want 
the intercept and the associated 95% CI from this regression.  The CI is approximately 
336,706.7 ± 14,665, or about $322,042 to $351,372 when rounded to the nearest dollar. 
 
 (iii) We must use equation (6.36) to obtain the standard error of  and then use equation 
(6.37) (assuming that price is normally distributed).  But from the regression in part (ii), 
se(

0ê

0ŷ )  7,374.5 and ≈ σ̂ ≈  59,833.  Therefore, se( )0ê ≈  [(7,374.5)2 + (59,833)2]1/2≈  60,285.8.  
Using 1.99 as the approximate 97.5th percentile in the t84 distribution gives the 95% CI for price0, 
at the given values of the explanatory variables, as 336,706.7 ± 1.99(60,285.8) or, rounded to the 
nearest dollar, $216,738 to $456,675.  This is a fairly wide prediction interval.  But we have not 
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used many factors to explain housing price.  If we had more, we could, presumably, reduce the 
error standard deviation, and therefore σ̂ , to obtain a tighter prediction interval.  
 
6.16 (i) The estimated equation is  
 
 �points  = 35.22  +  2.364 exper − .0770 exper2 − 1.074 age − 1.286 coll 
   (6.99)     (.405)  (.0235)  (.295)  (.451) 

 n = 269,   R2 = .141,   2R  = .128. 
 
 (ii) The turnaround point is 2.364/[2(.0770)] ≈ 15.35.  So, the increase from 15 to 16 years of 
experience would actually reduce salary.  This is a very high level of experience, and we can 
essentially ignore this prediction:  only two players in the sample of 269 have more than 15 years 
of experience. 
 
 (iii) Many of the most promising players leave college early, or, in some cases, forego 
college altogether, to play in the NBA.  These top players command the highest salaries.  It is not 
more college that hurts salary, but less college is indicative of super-star potential. 
 
 (iv) When age2 is added to the regression from part (i), its coefficient is .0536 (se = .0492).  
Its t statistic is barely above one, so we are justified in dropping it.  The coefficient on age in the 
same regression is –3.984 (se = 2.689).  Together, these estimates imply a negative, increasing, 
return to age.  The turning point is roughly at 74 years old.  In any case, the linear function of 
age seems sufficient. 
 
 (v) The OLS results are  
 
   6.78  +   .078 points  +   .218 exper  −   .0071 exper�log ( )wage = 2  − .048 age  −   .040 coll 
  (.85)  (.007) (.050) (.0028) (.035) (.053) 
 
 n = 269, R2 = .488, 2R = .478 
 
 (vi) The joint F test produced by Stata is about 1.19.  With 2 and 263 df, this gives a p-value 
of roughly .31.  Therefore, once scoring and years played are controlled for, there is no evidence 
for wage differentials depending on age or years played in college. 
 
6.17 (i) The estimated equation is  
 
   7.958  +   .0189 npvis  −    .00043 npvis�log ( )bwght = 2

  (.027)  (.0037)     (.00012)  
 
 n = 1,764, R2 = .0213, 2R = .0201 
 
The quadratic term is very significant; its t statistic is above 3.5 in absolute value. 
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 (ii) The turning point calculation is by now familiar: , or 
about 22.  In the sample, 89 women had 22 or more prenatal visits. 

* .0189 /[2(.00043)] 21.97npvis = ≈

 
 (iii) While prenatal visits are a good thing for helping to prevent low birth weight, a woman 
having many prenatal visits is a possible indicator of a pregnancy with difficulties.  So it does 
make sense that the quadratic has a hump shape. 
 
 (iv) With mage added in quadratic form, we get  
 
   7.584  +   .0180 npvis  −    .00041 npvis�log ( )bwght = 2  +   .0254 mage  −  .00041 mage2

  (.137)  (.0037)     (.00012)  (.0093) (.00015) 
 
 n = 1,764, R2 = .0256, 2R = .0234 
 
The birth weight is maximized at mage ≈ 31.  746 women are at least 31 years old; 605 are at 
least 32. 
 
 (v) These variables explain on the order of 2.6% of the variation in log(bwght), or even less 
based on 2R , which is not very much. 
 
 (vi) If we regress bwght on npvis, npvis2, mage, and mage2, then R2 = .0192.  But remember, 
we cannot compare this directly with the R-squared from part (iv).  Instead, we compute an R-
squared for the log(bwght) model that can be compared with .0192.  From Section 6.4, we 
compute the squared correlation between bwght and , where  denotes the 
fitted values from the log(bwght) model.  The correlation is .1362, so its square is about .0186.  
Therefore, for explaining bwght, the model with bwght actually fits slightly better (but nothing to 
make a big deal about). 

�exp( )lbwght �lbwght
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CHAPTER 7 
 

TEACHING NOTES 
 
This is a fairly standard chapter on using qualitative information in regression analysis, although 
I try to emphasize examples with policy relevance (and only cross-sectional applications are 
included.). 
 
In allowing for different slopes, it is important, as in Chapter 6, to appropriately interpret the 
parameters and to decide whether they are of direct interest.  For example, in the wage equation 
where the return to education is allowed to depend on gender, the coefficient on the female 
dummy variable is the wage differential between women and men at zero years of education.   It 
is not surprising that we cannot estimate this very well, nor should we want to.  In this particular 
example we would drop the interaction term because it is insignificant, but the issue of 
interpreting the parameters can arise in models where the interaction term is significant. 
 
In discussing the Chow test, I think it is important to discuss testing for differences in slope 
coefficients after allowing for an intercept difference.  In many applications, a significant Chow 
statistic simply indicates intercept differences.  (See the example in Section 7.4 on student-
athlete GPAs in the text.)  From a practical perspective, it is important to know whether the 
partial effects differ across groups or whether a constant differential is sufficient. 
 
An unconventional feature of this chapter is its introduction of the linear probability model.  I 
cover the LPM here for several reasons.  First, the LPM is being used more and more.  Empirical 
researchers find it much easier to interpret than probit or logit models, and, once the proper 
scalings are done, the estimated effects are often similar near the mean or median values of the 
explanatory variables.  The theoretical drawbacks of the LPM are often of secondary importance 
in practice.  Computer Exercise 7.17 is a good one to illustrate that, even with over 9,000 
observations, the LPM can deliver fitted values strictly between zero and one for all observations. 
 
If the LPM is not covered, many students will never be exposed to using econometrics to explain 
qualitative outcomes.  This would be especially unfortunate for students who might need to read 
an article that uses an LPM or who might want to estimate an LPM for a term paper or senior 
thesis. 
 
A useful modification of the LPM estimated in equation (7.29) is to drop kidsge6 (since it is not 
significant) and then define two dummy variables, one for kidslt6 equal to one and the other for 
kidslt6 at least two.  These can be included in place of kidslt6 (with no young children being the 
base group).  This allows a diminishing marginal effect in an LPM.  Perhaps surprisingly, the 
diminishing effect does not materialize. 
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SOLUTIONS TO PROBLEMS 
 
7.1 (i) The coefficient on male is 87.75, so a man is estimated to sleep almost one and one-half 
hours more per week than a comparable woman.  Further, tmale = 87.75/34.33 ≈ 2.56, which is 
close to the 1% critical value against a two-sided alternative (about 2.58).  Thus, the evidence for 
a gender differential is fairly strong. 
 
 (ii) The t statistic on totwrk is −.163/.018 ≈ −9.06, which is very statistically significant.  The 
coefficient implies that one more hour of work (60 minutes) is associated with .163(60) ≈ 9.8 
minutes less sleep. 
 
 (iii) To obtain , the R-squared from the restricted regression, we need to estimate the 
model without age and age

2
rR

2.  When age and age2  are both in the model, age has no effect only if 
the parameters on both terms are zero. 
 
7.2 (i) If Δcigs = 10 then  = −.0044(10) = −.044, which means about a 4.4% lower 
birth weight. 

�lo g( )bwghtΔ

 
 (ii) A white child is estimated to weigh about 5.5% more, other factors in the first equation 
fixed.  Further, twhite ≈ 4.23, which is well above any commonly used critical value.  Thus, the 
difference between white and nonwhite babies is also statistically significant. 
 
 (iii) If the mother has one more year of education, the child’s birth weight is estimated to 
be .3% higher.  This is not a huge effect, and the t statistic is only one, so it is not statistically 
significant. 
 
 (iv) The two regressions use different sets of observations.  The second regression uses fewer 
observations because motheduc or fatheduc are missing for some observations.  We would have 
to reestimate the first equation (and obtain the R-squared) using the same observations used to 
estimate the second equation. 
 
7.3 (i) The t statistic on hsize2 is over four in absolute value, so there is very strong evidence that 
it belongs in the equation.  We obtain this by finding the turnaround point;  this is the value of 
hsize that maximizes  (other things fixed):  19.3/(2ˆsat ⋅2.19) ≈ 4.41.  Because hsize is measured 
in hundreds, the optimal size of graduating class is about 441. 
 
 (ii) This is given by the coefficient on female (since black = 0):  nonblack females have SAT 
scores about 45 points lower than nonblack males.  The t statistic is about –10.51, so the 
difference is very statistically significant.  (The very large sample size certainly contributes to 
the statistical significance.) 
 
 (iii) Because female = 0, the coefficient on black implies that a black male has an estimated 
SAT score almost 170 points less than a comparable nonblack male.  The t statistic is over 13 in 
absolute value, so we easily reject the hypothesis that there is no ceteris paribus difference. 
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 (iv) We plug in black = 1, female = 1 for black females and black = 0 and female = 1 for 
nonblack females.  The difference is therefore –169.81 + 62.31 = −107.50.  Because the estimate 
depends on two coefficients, we cannot construct a t statistic from the information given.  The 
easiest approach is to define dummy variables for three of the four race/gender categories and 
choose nonblack females as the base group.  We can then obtain the t statistic we want as the 
coefficient on the black females dummy variable. 
 
7.4 (i) The approximate difference is just the coefficient on utility times 100, or –28.3%.  The t 
statistic is −.283/.099 ≈ −2.86, which is very statistically significant. 
 
 (ii) 100 ⋅ [exp(−.283) – 1) ≈ −24.7%, and so the estimate is somewhat smaller in magnitude. 
 
 (iii) The proportionate difference is .181 − .158 = .023, or about 2.3%.  One equation that can 
be estimated to obtain the standard error of this difference is 
 
 log(salary)  =  0β  + 1β log(sales) + 2β roe + 1δ consprod +  2δ utility + 3δ trans + u, 
 
where trans is a dummy variable for the transportation industry.  Now, the base group is finance, 
and so the coefficient 1δ  directly measures the difference between the consumer products and 
finance industries, and we can use the t statistic on consprod. 
 
7.5 (i) Following the hint,  = �colGPA 0β̂  + 0̂δ (1 – noPC) + 1̂β hsGPA + 2β̂ ACT = ( 0β̂  + 0̂δ ) − 

0̂δ noPC + 1̂β hsGPA + 2β̂ ACT.  For the specific estimates in equation (7.6), 0β̂  = 1.26 and 

0̂δ  = .157, so the new intercept is 1.26 + .157 = 1.417.  The coefficient on noPC is –.157. 
 
 (ii) Nothing happens to the R-squared.  Using noPC in place of PC is simply a different way 
of including the same information on PC ownership. 
 
 (iii) It makes no sense to include both dummy variables in the regression:  we cannot hold 
noPC fixed while changing PC.  We have only two groups based on PC ownership so, in 
addition to the overall intercept, we need only to include one dummy variable.  If we try to 
include both along with an intercept we have perfect multicollinearity (the dummy variable trap). 
 
7.6 In Section 3.3 – in particular, in the discussion surrounding Table 3.2 – we discussed how to 
determine the direction of bias in the OLS estimators when an important variable (ability, in this 
case) has been omitted from the regression.  As we discussed there, Table 3.2 only strictly holds 
with a single explanatory variable included in the regression, but we often ignore the presence of 
other independent variables and use this table as a rough guide.  (Or, we can use the results of 
Problem 3.10 for a more precise analysis.)  If less able workers are more likely to receive 
training than train and u are negatively correlated.  If we ignore the presence of educ and exper, 
or at least assume that train and u are negatively correlated after netting out educ and exper, then 
we can use Table 3.2:  the OLS estimator of 1β  (with ability in the error term) has a downward 
bias.  Because we think 1β  ≥ 0, we are less likely to conclude that the training program was 

 51



effective.  Intuitively, this makes sense:  if those chosen for training had not received training, 
they would have lowers wages, on average, than the control group. 
 
7.7 (i) Write the population model underlying (7.29) as  
 
  inlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
    + 6β kidslt6 + 7β kidsage6 + u,    
 
plug in inlf = 1 – outlf, and rearrange: 
 
  1 – outlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
   + 6β kidslt6 + 7β kidsage6 + u, 
or 
  outlf  =  (1 − 0β ) − 1β nwifeinc − 2β educ − 3β exper  − 4β exper2 − 5β age 
   − 6β kidslt6 − 7β kidsage6 − u, 
 
The new error term, −u, has the same properties as u.  From this we see that if we regress outlf on 
all of the independent variables in (7.29), the new intercept is 1 − .586 = .414 and each slope 
coefficient takes on the opposite sign from when inlf is the dependent variable.  For example, the 
new coefficient on educ is −.038 while the new coefficient on kidslt6 is .262. 
 
 (ii) The standard errors will not change.  In the case of the slopes, changing the signs of the 
estimators does not change their variances, and therefore the standard errors are unchanged (but 
the t statistics change sign).  Also, Var(1 − 0β̂ ) = Var( 0β̂ ), so the standard error of the intercept 
is the same as before. 
 
 (iii) We know that changing the units of measurement of independent variables, or entering 
qualitative information using different sets of dummy variables, does not change the R-squared.  
But here we are changing the dependent variable.  Nevertheless, the R-squareds from the 
regressions are still the same.  To see this, part (i) suggests that the squared residuals will be 
identical in the two regressions.  For each i the error in the equation for outlfi is just the negative 
of the error in the other equation for inlfi, and the same is true of the residuals.  Therefore, the 
SSRs are the same.  Further, in this case, the total sum of squares are the same.  For outlf we 
have  
 

SST = 2 2

1 1
( ) [(1 ) (1 )]

n n

i i
i i

outlf outlf inlf inlf
= =

− = − − −∑ ∑ = 2 2

1 1
( ) ( )

n n

i i
i i

inlf inlf inlf inlf
= =

− + = −∑ ∑ ,  

 
which is the SST for inlf.  Because R2 = 1 – SSR/SST, the R-squared is the same in the two 
regressions. 
 
7.8 (i) We want to have a constant semi-elasticity model, so a standard wage equation with 
marijuana usage included would be  
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 log(wage)  =  0β  + 1β usage + 2β educ + 3β exper + 4β exper2 + 5β female + u. 

 
Then 100⋅ 1β  is the approximate percentage change in wage when marijuana usage increases by 
one time per month. 
 
 (ii) We would add an interaction term in female and usage: 
 
 log(wage)  =  0β  + 1β usage + 2β educ + 3β exper + 4β exper2 + 5β female  
  + 6β female ⋅usage + u. 
 
The null hypothesis that the effect of marijuana usage does not differ by gender is H0: 6β  = 0. 
 
 (iii) We take the base group to be nonuser.  Then we need dummy variables for the other 
three groups:  lghtuser, moduser, and hvyuser.  Assuming no interactive effect with gender, the 
model would be  
 
 log(wage)  =  0β  + 1δ lghtuser + 2δ moduser + 3δ hvyuser + 2β educ + 3β exper 
  + 4β exper2 + 5β female + u. 
 
 (iv) The null hypothesis is H0: 1δ  = 0, 2δ = 0, 3δ  = 0, for a total of q = 3 restrictions.  If n is 
the sample size, the df in the unrestricted model – the denominator df in the F distribution – is 
n – 8.  So we would obtain the critical value from the Fq,n-8 distribution. 
 
 (v) The error term could contain factors, such as family background (including parental 
history of drug abuse) that could directly affect wages and also be correlated with marijuana 
usage.  We are interested in the effects of a person’s drug usage on his or her wage, so we would 
like to hold other confounding factors fixed.  We could try to collect data on relevant background 
information. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
7.9 (i) The estimated equation is 
 
  = 1.26 + .152 PC + .450 hsGPA + .0077 ACT − .0038 mothcoll ˆcolGPA
   (0.34)  (.059)  (.094)  (.0107)  (.0603) 

  + .0418 fathcoll 
   (.0613) 

 n = 141 ,    R2 = .222. 
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The estimated effect of PC is hardly changed from equation (7.6), and it is still very significant, 
with tpc ≈  2.58. 
 
 (ii) The F test for joint significance of mothcoll and fathcoll, with 2 and 135 df, is about .24 
with p-value  .78; these variables are jointly very insignificant.  It is not surprising the 
estimates on the other coefficients do not change much when mothcoll and fathcoll are added to 
the regression. 

≈

 
 (iii) When hsGPA2 is added to the regression, its coefficient is about .337 and its t statistic is 
about 1.56.  (The coefficient on hsGPA is about –1.803.)  This is a borderline case.  The 
quadratic in hsGPA has a U-shape, and it only turns up at about hsGPA* = 2.68, which is hard to 
interpret.  The coefficient of main interest, on PC, falls to about .140 but is still significant.  
Adding hsGPA2 is a simple robustness check of the main finding. 
 
7.10 (i) The estimated equation is 
 
  = 5.40 + .0654 educ + .0140 exper + .0117 tenure �log ( )wage
   (0.11)  (.0063)  (.0032)  (.0025) 

        + .199 married − .188 black − .091 south + .184 urban 
   (.039)  (.038)  (.026)  (.027)  

 n = 935 ,    R2 = .253. 
 
The coefficient on black implies that, at given levels of the other explanatory variables, black 
men earn about 18.8% less than nonblack men.  The t statistic is about –4.95, and so it is very 
statistically significant. 
 
 (ii) The F statistic for joint significance of exper2  and tenure2, with 2 and 925 df, is about 
1.49 with p-value  .226.  Because the p-value is above .20, these quadratics are jointly 
insignificant at the 20% level. 

≈

 
 (iii) We add the interaction black ⋅ educ to the equation in part (i).  The coefficient on the 
interaction is about −.0226 (se  .0202).  Therefore, the point estimate is that the return to 
another year of education is about 2.3 percentage points lower for black men than nonblack men.  
(The estimated return for nonblack men is about 6.7%.)  This is nontrivial if it really reflects 
differences in the population.  But the t statistic is only about 1.12 in absolute value, which is not 
enough to reject the null hypothesis that the return to education does not depend on race. 

≈

 
 (iv) We choose the base group to be single, nonblack.  Then we add dummy variables 
marrnonblck, singblck, and marrblck for the other three groups.  The result is 
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  = 5.40 + .0655 educ + .0141 exper + .0117 tenure �log ( )wage
   (0.11)  (.0063)  (.0032)  (.0025) 

        − .092 south + .184 urban + .189 marrnonblck 
   (.026)  (.027)  (.043)  

        − .241 singblck + .0094 marrblck 
   (.096)  (.0560) 

 n = 935 ,    R2 = .253. 
 
We obtain the ceteris paribus differential between married blacks and married nonblacks by 
taking the difference of their coefficients:  .0094 − .189 = −.1796, or about −.18.  That is, a 
married black man earns about 18% less than a comparable, married nonblack man. 
 
7.11 (i) H0: 13β = 0.  Using the data in MLB1.RAW gives 13β̂  ≈  .254, se( 13β̂ ) ≈  .131.  The t 
statistic is about 1.94, which gives a p-value against a two-sided alternative of just over .05.  
Therefore, we would reject H0 at just about the 5% significance level.  Controlling for the 
performance and experience variables, the estimated salary differential between catchers and 
outfielders is huge, on the order of 100⋅[exp(.254) – 1] ≈  28.9% [using equation (7.10)]. 
 
 (ii) This is a joint null, H0: 9β  = 0, 10β  = 0, K , 13β  = 0.  The F statistic, with 5 and 339 df, 
is about 1.78, and its p-value is about .117.  Thus, we cannot reject H0 at the 10% level. 
 
 (iii) Parts (i) and (ii) are roughly consistent.  The evidence against the joint null in part (ii) is 
weaker because we are testing, along with the marginally significant catcher, several other 
insignificant variables (especially thrdbase and shrtstop, which has absolute t statistics well 
below one). 
 
7.12 (i) The two signs that are pretty clear are 3β < 0 (because hsperc is defined so that the 
smaller the number the better the student) and 4β > 0.  The effect of size of graduating class is 
not clear.  It is also unclear whether males and females have systematically different GPAs.  We 
may think that 6β < 0, that is, athletes do worse than other students with comparable 
characteristics.  But remember, we are controlling for ability to some degree with hsperc and sat. 
 
 (ii) The estimated equation is 
 
  = 1.241 − .0569 hsize + .00468 hsize�colg pa 2 − .0132 hsperc 
   (0.079)  (.0164)  (.00225)  (.0006) 

        + .00165 sat + .155 female + .169 athlete 
    (.00007)  (.018)  (.042) 
 
 n = 4,137,   R2 = .293. 
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Holding other factors fixed, an athlete is predicted to have a GPA about .169 points higher than a 
nonathlete.  The t statistic .169/.042 ≈  4.02, which is very significant. 
 
 (iii) With sat dropped from the model, the coefficient on athlete becomes about .0054 
(se≈  .0448), which is practically and statistically not different from zero.  This happens because 
we do not control for SAT scores, and athletes score lower on average than nonathletes.  Part (ii) 
shows that, once we account for SAT differences, athletes do better than nonathletes.  Even if we 
do not control for SAT score, there is no difference. 
 
 (iv) To facilitate testing the hypothesis that there is no difference between women athletes 
and women nonathletes, we should choose one of these as the base group.  We choose female 
nonathletes.  The estimated equation is 
 
  = 1.396 − .0568 hsize + .00467 hsize�colg pa 2 − .0132 hsperc 
   (0.076)  (.0164)  (.00225)  (.0006) 

        + .00165 sat + .175 femath + .013 maleath − .155 malenonath 
   (.00007)  (.084)  (.049)  (.018) 

 n = 4,137,   R2 = .293. 
 
The coefficient on femath = female ⋅athlete shows that colgpa is predicted to be about .175 points 
higher for a female athlete than a female nonathlete, other variables in the equation fixed. 
 
 (v) Whether we add the interaction female ⋅ sat to the equation in part (ii) or part (iv), the 
outcome is practically the same.  For example, when female ⋅ sat is added to the equation in part 
(ii), its coefficient is about .000051 and its t statistic is about .40.  There is very little evidence 
that the effect of sat differs by gender. 
 
7.13 The estimated equation is 
 
  = 4.30 + .288 log(sales) + .0167 roe − .226 rosneg �log ( )salary
   (0.29)  (.034)    (.0040)  (.109) 

 n = 209,   R2 = .297,   2R = .286. 
 
The coefficient on rosneg implies that if the CEO’s firm had a negative return on its stock over 
the 1988 to 1990 period, the CEO salary was predicted to be about 22.6% lower, for given levels 
of sales and roe.  The t statistic is about –2.07, which is significant at the 5% level against a two-
sided alternative. 
 
7.14 (i) The estimated equation for men is 
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  = 3,648.2 − .182 totwrk − 13.05 educ + 7.16 age − .0448 age�sleep 2 + 60.38 yngkid 
   (310.0)  (.024)  (7.41)  (14.32)  (.1684)  (59.02) 

 n = 400,   R2 = .156. 
 
The estimated equation for women is 
 
  = 4,238.7 − .140 totwrk − 10.21 educ −  30.36 age − .368 age�sleep 2 − 118.28 yngkid 
   (384.9)  (.028)  (9.59)  (18.53)  (.223)  (93.19) 

 n = 306,   R2 = .098. 
 
There are certainly notable differences in the point estimates.  For example, having a young child 
in the household leads to less sleep for women (about two hours a week) while men are 
estimated to sleep about an hour more.  The quadratic in age is a hump-shape for men but a U-
shape for women.  The intercepts for men and women are also notably different. 
 
 (ii) The F statistic (with 6 and 694 df) is about 2.12 with p-value≈  .05, and so we reject the 
null that the sleep equations are the same at the 5% level. 
 
 (iii) If we leave the coefficient on male unspecified under H0, and test only the five 
interaction terms, male ⋅ totwrk, male ⋅ educ, male ⋅age, male ⋅age2, and male yngkid, the F 
statistic (with 5 and 694 df) is about 1.26 and p-value

⋅
≈  .28. 

 
 (iv) The outcome of the test in part (iii) shows that, once an intercept difference is allowed, 
there is not strong evidence of slope differences between men and women.  This is one of those 
cases where the practically important differences in estimates for women and men in part (i) do 
not translate into statistically significant differences.  We apparently need a larger sample size to 
determine whether there are differences in slopes.  For the purposes of studying the sleep-work 
tradeoff, the original model with male added as an explanatory variable seems sufficient. 
 
7.15 (i) When educ = 12.5, the approximate proportionate difference in estimated wage between 
women and men is −.227 − .0056(12.5) = −.297.  When educ = 0, the difference is −.227.  So the 
differential at 12.5 years of education is about 7 percentage points greater. 
 
 (ii) We can write the model underlying (7.18) as 
 
 log(wage) = 0β  + 0δ  female + 1β educ + 1δ  female ⋅ educ + other factors 

  = 0β  + ( 0δ  + 12.5 1δ ) female + 1β educ + 1δ  female ⋅ (educ – 12.5) 

    + other factors 

  ≡ 0β  + 0θ  female + 1β educ + 1δ  female ⋅ (educ – 12.5) + other factors, 
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where 0θ  ≡ 0δ  + 12.5 1δ  is the gender differential at 12.5 years of education.  When we run this 
regression we obtain about –.294 as the coefficient on female (which differs from –.297 due to 
rounding error).  Its standard error is about .036. 
 
 (iii) The t statistic on female from part (ii) is about –8.17, which is very significant.  This is 
because we are estimating the gender differential at a reasonable number of years of education, 
12.5, which is close to the average.  In equation (7.18), the coefficient on female is the gender 
differential when educ = 0.  There are no people of either gender with close to zero years of 
education, and so we cannot hope – nor do we want to – to estimate the gender differential at 
educ = 0. 
 
7.16 (i) If the appropriate factors have been controlled for, 1β > 0 signals discrimination against 
minorities:  a white person has a greater chance of having a loan approved, other relevant factors 
fixed. 
 
 (ii) The simple regression results are 
 
  = .708 + .201 white ˆapprove
   (.018)  (.020) 

 n = 1,989,   R2 = .049. 
 
The coefficient on white means that, in the sample of 1,989 loan applications, an application 
submitted by a white application was 20.1% more likely to be approved than that of a nonwhite 
applicant.  This is a practically large difference and the t statistic is about 10.  (We have a large 
sample size, so standard errors are pretty small.) 
 
 (iii) When we add the other explanatory variables as controls, we obtain 1̂β ≈  .129, 

se( 1̂β ) ≈  .020.  The coefficient has fallen by some margin because we are now controlling for 
factors that should affect loan approval rates, and some of these clearly differ by race.  (On 
average, white people have financial characteristics – such as higher incomes and stronger credit 
histories – that make them better loan risks.)  But the race effect is still strong and very 
significant (t statistic  6.45). ≈
 
 (iv) When we add the interaction white ⋅obrat to the regression, its coefficient and t statistic 
are about .0081 and 3.53, respectively.  Therefore, there is an interactive effect:  a white 
applicant is penalized less than a nonwhite applicant for having other obligations as a larger 
percent of income. 
 
 (v) The trick should be familiar by now.  Replace white ⋅obrat with white ⋅ (obrat – 32); the 
coefficient on white is now the race differential when obrat = 32.  We obtain about .113 and 
se≈  .020.  So the 95% confidence interval is about .113 ± 1.96(.020) or  about .074 to .152.  
Clearly, this interval excludes zero, so at the average obrat there is evidence of discrimination 
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(or, at least loan approval rates that differ by race for some other reason that is not captured by 
the control variables). 
7.17 (i) About .392, or 39.2%. 
 
 (ii) The estimated equation is  
 
  =  −.506 + .0124 inc  − .000062 inc�e401k 2  +  .0265 age  −  .00031 age2 − .0035 male 
   (.081)  (.0006)  (.000005)    (.0039)  (.00005)  (.0121) 

 n = 9,275,   R2 = .094. 
 
 (iii) 401(k) eligibility clearly depends on income and age in part (ii).  Each of the four terms 
involving inc and age have very significant t statistics.  On the other hand, once income and age 
are controlled for, there seems to be no difference in eligibility by gender.  The coefficient on 
male is very small – at given income and age, males are estimated to have a .0035 probability 
less of being 401(k) eligible – and it has a very small t statistic. 
 
 (iv) Perhaps surprisingly, out of 9,275 fitted values, none is outside the interval [0,1].  The 
smallest fitted value is about .030 and the largest is about .697.  This means one theoretical 
problem with the LPM – the possibility of generating silly probability estimates – does not occur 
in this application. 
 
 (v) The estimated equation is  
 
  =  −.502 + .0123 inc  − .000061 inc�e401k 2  +  .0265 age  −  .00031 age2  
   (.081)  (.0006)  (.000005)    (.0039)  (.00005)   

− .0038 male  +   .0198 pira 
  (.0121)   (.0122) 

 n = 9,275,   R2 = .095. 
 
The coefficient on pira means that, other things equal, IRA ownership is associated with about 
a .02 higher probability of being eligible for a 401(k) plan.  However, the t statistic is only about 
1.62, which gives a two-sided p-value = .105.  So pira is not significant at the 10% level against 
a two-sided alternative. 
 
7.18 (i) The estimated equation is  
 
 ˆpoints  = 4.76  +  1.28 exper − .072 exper2 +  2.31 guard + 1.54 forward 
   (1.18)     (.33)  (.024)   (1.00)  (1.00) 

 n = 269,   R2 = .091,   2R  = .077. 
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 (ii) Including all three position dummy variables would be redundant, and result in the 
dummy variable trap.  Each player falls into one of the three categories, and the overall intercept 
is the intercept for centers. 
 
 (iii) A guard is estimated to score about 2.3 points more per game, holding experience fixed.  
The t statistic is 2.31, so the difference is statistically different from zero at the 5% level, against 
a two-sided alternative. 
 
 (iv) When marr is added to the regression, its coefficient is about .584 (se = .740).  Therefore, 
a married player is estimated to score just over half a point more per game (experience and 
position held fixed), but the estimate is not statistically different from zero (p-value = .43).  So, 
based on points per game, we cannot conclude married players are more productive. 
 
 (v) Adding the terms  leads to complicated signs on the three 
terms involving marr.  The F test for their joint significance, with 3 and 261 df, gives F = 1.44 
and p-value = .23.  Therefore, there is not very strong evidence that marital status has any partial 
effect on points scored. 

2 and marr exper marr exper⋅ ⋅

=

 
 (vi) If in the regression from part (iv) we use assists as the dependent variable, the coefficient 
on marr becomes .322 (se = .222).  Therefore, holding experience and position fixed, a married 
man has almost one-third more assist per game.  The p-value against a two-sided alternative is 
about .15, which is stronger, but not overwhelming, evidence that married men are more 
productive when it comes to assists. 
 
7.19 (i) The average is 19.072, the standard deviation is 63.964, the smallest value is –502.302, 
and the largest value is 1,536.798.  Remember, these are in thousands of dollars. 
 
 (ii) This can be easily done by regressing nettfa on e401k and doing a t test on ; the 
estimate is the average difference in nettfa for those eligible for a 401(k) and those not eligible.  
Using the 9,275 observations gives  Therefore, we strongly 
reject the null hypothesis that there is no difference in the averages.  The coefficient implies that, 
on average, a family eligible for a 401(k) plan has $18,858 more on net total financial assets. 

ˆ
e401kβ

ˆ 18.858 and 14.01.e401k e401ktβ =

 
 (iii) The equation estimated by OLS is  
 
   = 23.09  +  9.705 e401k   −   .278 inc  +  .0103 inc$nett fa 2  −   1.972 age  +   .0348 age2

  (9.96)  (1.277)     (.075) (.0006) (.483) (.0055)  
 
 n = 9,275,  R2 = .202 
 
Now, holding income and age fixed, a 401(k)-eligible family is estimated to have $9,705 more in 
wealth than a non-eligible family.  This is just more than half of what is obtained by simply 
comparing averages. 
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 (iv) Only the interaction e401k⋅(age − 41) is significant.  Its coefficient is .654 (t = 4.98).  It 
shows that the effect of 401(k) eligibility on financial wealth increases with age.  Another way to 
think about it is that age has a stronger positive effect on nettfa for those with 401(k) eligibility.  
The coefficient on e401k⋅(age − 41)2 is −.0038 (t statistic = −.33), so we could drop this term. 
 
 (v) The effect of e401k in part (iii) is the same for all ages, 9.705.  For the regression in part 
(iv), the coefficient on e401k from part (iv) is about 9.960, which is the effect at the average age, 
age = 41.  Including the interactions increases the estimated effect of e401k, but only by $255.  If 
we evaluate the effect in part (iv) at a wide range of ages, we would see more dramatic 
differences. 
 
 (vi) I chose fsize1 as the base group.  The estimated equation is  
 
   = 16.34  +  9.455 e401k   −   .240 inc  +  .0100 inc$nett fa 2  −   1.495 age  +   .0290 age2

  (10.12)  (1.278)     (.075) (.0006) (.483) (.0055)  
 
    −   .859 fsize2  −  4.665 fsize3  −  6.314 fsize4  −  7.361 fsize5 
  (1.818) (1.877) (1.868) (2.101) 
 
 n = 9,275,  R2 = .204,  SSR = 30,215,207.5 
 
The F statistic for joint significance of the four family size dummies is about 5.44.  With 4 and 
9,265 df, this gives p-value = .0002.  So the family size dummies are jointly significant. 
 
 (vii) The SSR for the restricted model is from part (vi):  SSRr = 30,215,207.5.  The SSR for 
the unrestricted model is obtained by adding the SSRs for the five separate family size 
regressions.  I get SSRur = 29,985,400.  The Chow statistic is F = [(30,215,207.5 − 29,985,400)/ 
29,985,400]*(9245/20) ≈ 3.54.  With 20 and 9,245 df, the p-value is essentially zero.  In this case, 
there is strong evidence that the slopes change across family size.  Allowing for intercept 
changes alone is not sufficient.  (If you look at the individual regressions, you will see that the 
signs on the income variables actually change across family size.) 
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CHAPTER 8 
 
TEACHING NOTES 
 
This is a good place to remind students that homoskedasticity played no role in showing that 
OLS is unbiased for the parameters in the regression equation.  In addition, you should probably  
mention that there is nothing wrong with the R-squared or adjusted R-squared as goodness-of-fit 
measures.  The key is that these are estimates of the population R-squared, 1 – [Var(u)/Var(y)], 
where the variances are the unconditional variances in the population.  The usual R-squared, and 
the adjusted version, consistently estimate the population R-squared whether or not Var(u|x) = 
Var(y|x) depends on x.  Of course, heteroskedasticity causes the usual standard errors, t statistics, 
and F statistics to be invalid, even in large samples, with or without normality. 
 
By explicitly stating the homoskedasticity assumption as conditional on the explanatory 
variables that appear in the conditional mean, it is clear that only heteroskedasticity that depends 
on the explanatory variables in the model affects the validity of standard errors and test statistics.  
This is why the Breusch-Pagan test, as I have presented it, and the White test, are ideally suited 
for testing for relevant forms of heteroskedasticity.  If heteroskedasticity depends on an 
exogenous variable that does not also appear in the mean equation, this can be exploited in 
weighted least squares for efficiency, but only rarely is such a variable available.  One case 
where such a variable is available is when an individual-level equation has been aggregated.  I 
discuss this case in the text but I rarely have time to teach it. 
 
As I mention in the text, other traditional tests for heteroskedasticity, such as the Park and 
Glejser tests, do not directly test what we want, or are too restrictive.  The Goldfeld-Quandt test 
only works when there is a natural way to order the data based on one independent variable.  
This is rare in practice, especially for cross-sectional applications. 
 
Some argue that weighted least squares is a relic, and is no longer necessary given the 
availability of heteroskedasticity-robust standard errors and test statistics.  While I am somewhat 
sympathetic to this argument, it presumes that we do not care much about efficiency.  Even in 
large samples, the OLS estimates may not be precise enough to learn much about the population 
parameters.  With substantial heteroskedasticity, we might do better with weighted least squares, 
even if the weighting function is misspecified.  As mentioned in Question 8.4 on page 280, one 
can (and perhaps should) compute robust standard errors after weighted least squares.  These 
would be directly comparable to the heteroskedasiticity-robust standard errors for OLS. 
 
Weighted least squares estimation of the LPM is a nice example of feasible GLS, at least when 
all fitted values are in the unit interval.  Interestingly, in the LPM examples and exercises, the 
heteroskedasticity-robust standard errors often differ by only small amounts from the usual 
standard errors.  However, in a couple of cases the differences are notable, as in Computer 
Exercise 8.12.
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SOLUTIONS TO PROBLEMS 
 
8.1 Parts (ii) and (iii).  The homoskedasticity assumption played no role in Chapter 5 in showing 
that OLS is consistent.  But we know that heteroskedasticity causes statistical inference based on 
the usual t and F statistics to be invalid, even in large samples.  As heteroskedasticity is a 
violation of the Gauss-Markov assumptions, OLS is no longer BLUE. 
 
8.2 With Var(u|inc,price,educ,female) = σ2inc2, h(x) = inc2, where h(x) is the heteroskedasticity 
function defined in equation (8.21).  Therefore, ( )h x = inc, and so the transformed equation is 
obtained by dividing the original equation by inc: 
 

 0 1 2 3 4(1/ ) ( / ) ( / ) ( / ) ( / )beer inc price inc educ inc female inc u inc
inc

β β β β β= + + + + + .  

 
Notice that 1β , which is the slope on inc in the original model, is now a constant in the 
transformed equation.  This is simply a consequence of the form of the heteroskedasticity and the 
functional forms of the explanatory variables in the original equation. 
 
8.3 False.  The unbiasedness of WLS and OLS hinges crucially on Assumption MLR.4, and, as 
we know from Chapter 4, this assumption is often violated when an important variable is omitted.  
When MLR.4 does not hold, both WLS and OLS are biased.  Without specific information on 
how the omitted variable is correlated with the included explanatory variables, it is not possible 
to determine which estimator has a small bias.  It is possible that WLS would have more bias 
than OLS or less bias. 
 
8.4 (i) These variables have the anticipated signs.  If a student takes courses where grades are, on 
average, higher – as reflected by higher crsgpa – then his/her grades will be higher.  The better 
the student has been in the past – as measured by cumgpa, the better the student does (on average) 
in the current semester.  Finally, tothrs is a measure of experience, and its coefficient indicates 
an increasing return to experience. 
 The t statistic for crsgpa is very large, over five using the usual standard error (which is the 
largest of the two).  Using the robust standard error for cumgpa, its t statistic is about 2.61, which 
is also significant at the 5% level.  The t statistic for tothrs is only about 1.17 using either 
standard error, so it is not significant at the 5% level. 
 
 (ii) This is easiest to see without other explanatory variables in the model.  If crsgpa were the 
only explanatory variable, H0: crsgpaβ = 1 means that, without any information about the student, 
the best predictor of term GPA is the average GPA in the students’ courses; this holds essentially 
by   definition.  (The intercept would be zero in this case.)  With additional explanatory variables 
it is not necessarily true that crsgpaβ = 1 because crsgpa could be correlated with characteristics of 
the student.  (For example, perhaps the courses students take are influenced by ability – as 
measured by test scores – and past college performance.)  But it is still interesting to test this 
hypothesis. 
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 The t statistic using the usual standard error is t = (.900 – 1)/.175 ≈  −.57; using the hetero-
skedasticity-robust standard error gives t ≈  −.60.  In either case we fail to reject H0: crsgpaβ = 1 at 
any reasonable significance level, certainly including 5%. 
 
 (iii) The in-season effect is given by the coefficient on season, which implies that, other 
things equal, an athlete’s GPA is about .16 points lower when his/her sport is competing.  The t 
statistic using the usual standard error is about –1.60, while that using the robust standard error is 
about –1.96.  Against a two-sided alternative, the t statistic using the robust standard error is just 
significant at the 5% level (the standard normal critical value is 1.96), while using the usual 
standard error, the t statistic is not quite significant at the 10% level (cv ≈  1.65).  So the standard 
error used makes a difference in this case.  This example is somewhat unusual, as the robust 
standard error is more often the larger of the two. 
 
8.5 (i) No.  For each coefficient, the usual standard errors and the heteroskedasticity-robust ones 
are practically very similar. 
 
 (ii) The effect is −.029(4) = −.116, so the probability of smoking falls by about .116. 
 
 (iii) As usual, we compute the turning point in the quadratic:  .020/[2(.00026)]  38.46, so 
about 38 and one-half years. 

≈

 
 (iv) Holding other factors in the equation fixed, a person in a state with restaurant smoking 
restrictions has a .101 lower chance of smoking.  This is similar to the effect of having four more 
years of education. 
 
 (v) We just plug the values of the independent variables into the OLS regression line: 
 
  2ˆ .656 .069 log(67.44) .012 log(6,500) .029(16) .020(77) .00026(77 ) .0052.smokes = − ⋅ + ⋅ − + − ≈
 
Thus, the estimated probability of smoking for this person is close to zero.  (In fact, this person is 
not a smoker, so the equation predicts well for this particular observation.) 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
8.6 (i) Given the equation 
 
  2

0 1 2 3 4 5 6 ,sleep totwrk educ age age yngkid male uβ β β β β β β= + + + + + + +
 
the assumption that the variance of u given all explanatory variables depends only on gender is 
 
 0 1( | , , , , ) ( | )Var u totwrk educ age yngkid male Var u male maleδ δ= = +  
 
Then the variance for women is simply 0δ  and that for men is 0δ + 1δ ; the difference in 
variances is δ1. 
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 (ii) After estimating the above equation by OLS, we regress  on male2ˆiu i, i = 1,2, K ,706 
(including, of course, an intercept).  We can write the results as 
 
  = 189,359.2 – 28,849.6 male + residual 2û
   (20,546.4)  (27,296.5) 

 n  =  706,   R2  = .0016. 
 
Because the coefficient on male is negative, the estimated variance is higher for women. 
 
 (iii) No.  The t statistic on male is only about –1.06, which is not significant at even the 20% 
level against a two-sided alternative. 
 
8.7  (i) The estimated equation with both sets of standard errors (heteroskedasticity-robust 
standard errors in brackets) is 
 
  �price  = −21.77 + .00207 lotsize + .123 sqrft  + 13.85 bdrms 
    (29.48) (.00064)  (.013)  (9.01) 
    [36.28] [.00122]  [.017]  [8.28] 

  n  =  88,   R2 = .672.  
 
The robust standard error on lotsize is almost twice as large as the usual standard error, making 
lotsize much less significant (the t statistic falls from about 3.23 to about 1.70).  The t statistic on 
sqrft also falls, but it is still very significant.  The variable bdrms actually becomes somewhat 
more significant, but it is still barely significant.  The most important change is in the 
significance of lotsize. 
 
 (ii) For the log-log model,  
 
 �log ( )price  = 5.61 + .168 log(lotsize) + .700 log(sqrft)  + .037 bdrms 
   (0.65) (.038)  (.093)  (.028) 
   [0.76] [.041]  [.101]  [.030] 

 n  =  88,   R2 = .643.  
 
Here, the heteroskedasticity-robust standard error is always slightly greater than the 
corresponding usual standard error, but the differences are relatively small.  In particular, 
log(lotsize) and log(sqrft) still have very large t statistics, and the t statistic on bdrms is not 
significant at the 5% level against a one-sided alternative using either standard error. 
 
 (iii) As we discussed in Section 6.2, using the logarithmic transformation of the dependent 
variable often mitigates, if not entirely eliminates, heteroskedasticity.  This is certainly the case 
here, as no important conclusions in the model for log(price) depend on the choice of standard 
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error.  (We have also transformed two of the independent variables to make the model of the 
constant elasticity variety in lotsize and sqrft.) 
 
8.8 After estimating equation (8.18), we obtain the squared OLS residuals .  The full-blown 
White test is based on the R-squared from the auxiliary regression (with an intercept),  

2û

 
2û on llotsize, lsqrft, bdrms, llotsize2, lsqrft2, bdrms2,  
llotsize ⋅ lsqrft, llotsize ⋅bdrms, and lsqrft ⋅bdrms, 

 
 where “l ” in front of lotsize and sqrft denotes the natural log.  [See equation (8.19).]  With 88 
observations the n-R-squared version of the White statistic is 88(.109) ≈ 9.59, and this is the 
outcome of an (approximately) 2

9χ  random variable.  The p-value is about .385, which provides 
little evidence against the homoskedasticity assumption. 
 
8.9 (i) The estimated equation is 
 
  = 37.66 + .252 prtystrA + 3.793 democA + 5.779 log(expendA) ˆvoteA
   (4.74)  (.071)  (1.407)  (0.392) 

        − 6.238 log(expendB) +  û
   (0.397)  

 n  =  173,   R2  =  .801,  2R  =  .796. 
 
You can convince yourself that regressing the on all of the explanatory variables yields an R-
squared of zero, although it might not be exactly zero in your computer output due to rounding 
error.  Remember, this is how OLS works:  the estimates 

ˆiu

ˆ
jβ are chosen to make the residuals be 

uncorrelated in the sample with each independent variable (as well as have zero sample average). 
 
 (ii) The B-P test entails regressing the  on the independent variables in part (i).  The F 
statistic for joint significant (with 4 and 168 df) is about 2.33 with p-value  .058.  Therefore, 
there is some evidence of heteroskedasticity, but not quite at the 5% level. 

2ˆiu
≈

 
 (iii) Now we regress  on  and ( )2ˆiu ˆ

ivoteA ˆ
ivoteA 2, where the are the OLS fitted values 

from part (i).  The F test, with 2 and 170 df, is about 2.79 with p-value 
ˆ

ivoteA
≈ .065.  This is slightly 

less evidence of heteroskedasticity than provided by the B-P test, but the conclusion is very 
similar. 
 
8.10 (i) By regressing sprdcvr on an intercept only we obtain μ̂ ≈ .515 se  .021).  The 
asymptotic t statistic for H

≈
0: µ = .5 is (.515 − .5)/.021≈ .71, which is not significant at the 10% 

level, or even the 20% level. 
 
 (ii) 35 games were played on a neutral court. 
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 (iii) The estimated LPM is 
 
  = .490 + .035 favhome + .118 neutral − .023 fav25 + .018 und25 ˆsprdcvr
   (.045)  (.050)  (.095)  (.050)  (.092) 

 n  =  553,   R2  =  .0034. 
 
The variable neutral has by far the largest effect – if the game is played on a neutral court, the 
probability that the spread is covered is estimated to be about .12 higher – and, except for the 
intercept, its t statistic is the only t statistic greater than one in absolute value (about 1.24). 
 
 (iv) Under H0: 1β  = 2β  = 3β = 4β = 0, the response probability does not depend on any 
explanatory variables, which means neither the mean nor the variance depends on the 
explanatory variables.  [See equation (8.38).] 
 
 (v) The F statistic for joint significance, with 4 and 548 df, is about .47 with p-value≈ .76.  
There is essentially no evidence against H0.   
 
 (vi) Based on these variables, it is not possible to predict whether the spread will be covered.  
The explanatory power is very low, and the explanatory variables are jointly very insignificant.  
The coefficient on neutral may indicate something is going on with games played on a neutral 
court, but we would not want to bet money on it unless it could be confirmed with a separate, 
larger sample. 
 
8.11 (i) The estimates are given in equation (7.31).  Rounded to four decimal places, the smallest 
fitted value is .0066 and the largest fitted value is .5577. 
 
 (ii) The estimated heteroskedasticity function for each observation i is , 
which is strictly between zero and one because 0 < < 1 for all i.  The weights for WLS are 

1/ .  To show the WLS estimate of each parameter, we report the WLS results using the same 
equation format as for OLS: 

ˆ 垐 (1 )i ih arr86 arr86= − i

ˆ iarr86

îh

 
ˆarr86   = .448 − .168 pcnv + .0054 avgsen − .0018 tottime − .025 ptime86  

   (.018)  (.019)  (.0051)  (.0033)  (.003)   

  − .045 qemp86 
   (.005) 

  n =  2,725,   R2  =  .0744. 
 
The coefficients on the significant explanatory variables are very similar to the OLS estimates.  
The WLS standard errors on the slope coefficients are generally lower than the nonrobust OLS 
standard errors.  A proper comparison would be with the robust OLS standard errors. 
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 (iii) After WLS estimation, the F statistic for joint significance of avgsen and tottime, with 2 
and 2,719 df, is about .88 with p-value ≈ .41.  They are not close to being jointly significant at 
the 5% level.  If your econometrics package has a command for WLS and a test command for 
joint hypotheses, the F statistic and p-value are easy to obtain.  Alternatively, you can obtain the 
restricted R-squared using the same weights as in part (ii) and dropping avgsen and tottime from 
the WLS estimation.  (The unrestricted R-squared is .0744.) 
 
8.12 (i) The heteroskedasticity-robust standard error for ˆ

whiteβ ≈ .129 is about .026, which is 
notably higher than the nonrobust standard error (about .020).  The heteroskedasticity-robust 
95% confidence interval is about .078 to .179, while the nonrobust CI is, of course, narrower, 
about .090 to .168.  The robust CI still excludes the value zero by some margin. 
 
 (ii) There are no fitted values less than zero, but there are 231 greater than one.  Unless we 
do something to those fitted values, we cannot directly apply WLS, as  will be negative in 231 
cases. 

îh

 
8.13 (i) The equation estimated by OLS is  
 
   = 1.36  +   .412 hsGPA  +   .013 ACT  −  .071 skipped  +   .124 PC �colGPA
  (.33) (.092) (.010) (.026) (.057) 
 
 n = 141,  R2 = .259,  2 .238R =  
 
 (ii) The F statistic obtained for the White test is about 3.58.  With 2 and 138 df, this gives p-
value ≈ .031.  So, at the 5% level, we conclude there is evidence of heteroskedasticity in the 
errors of the colGPA equation.  (As an aside, note that the t statistics for each of the terms is very 
small, and we could have simply dropped the quadratic term without losing anything of value.) 
 
 (iii) In fact, the smallest fitted value from the regression in part (ii) is about .027, while the 
largest is about .165.  Using these fitted values as the  in a weighted least squares regression 
gives the following: 

îh

 
   = 1.40  +   .402 hsGPA  +   .013 ACT  −  .076 skipped  +   .126 PC �colGPA
  (.30) (.083) (.010) (.022) (.056) 
 
 n = 141,  R2 = .306,  2 .286R =  
 
There is very little difference in the estimated coefficient on PC, and the OLS t statistic and WLS 
t statistic are also very close.  Note that we have used the usual OLS standard error, even though 
it would be more appropriate to use the heteroskedasticity-robust form (since we have evidence 
of heteroskedasticity).  The R-squared in the weighted least squares estimation is larger than that 
from the OLS regression in part (i), but, remember, these are not comparable. 
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 (iv) With robust standard errors – that is, with standard errors that are robust to misspecifying 
the function h(x) – the equation is  
 
   = 1.40  +   .402 hsGPA  +   .013 ACT  −  .076 skipped  +   .126 PC �colGPA
  (.31) (.086) (.010) (.021) (.059) 
 
 n = 141,  R2 = .306,  2 .286R =  
 
The robust standard errors do not differ by much from those in part (iii); in most cases, they are 
slightly higher, but all explanatory variables that were statistically significant before are still 
statistically significant.  But the confidence interval for βPC is a bit wider. 
 
8.14 (i) I now get R2 = .0527, but the other estimates seem okay. 
 
 (ii) One way to ensure that the unweighted residuals are being provided is to compare them 
with the OLS residuals.  They will not be the same, of course, but they should not be wildly 
different. 
 
 (iii) The R-squared from the regression 2 2on ,  ,  1,...,807i i iu y y i =( ( (  is about .027.  We use this 
as 2

2
û

R  in equation (8.15) but with k = 2.  This gives F = 11.15, and so the p-value is about zero.   
 
 (iv) The substantial heteroskedasticity found in part (iii) shows that the feasible GLS 
procedure described on page 279 does not, in fact, eliminate the heteroskedasticity.  Therefore, 
the usual standard errors, t statistics, and F statistics reported with weighted least squares are not 
valid, even asymptotically. 
 
 (v) The weighted least squares equation with robust standard errors is  
 
   = 5.64  +  1.30 log(income)  −   2.94 log(cigpric)  −   .463 educ �cigs
   (37.31) (.54) (8.97) (.149) 
 
  +   .482 age  −   .0056 age2  −  3.46 restaurn 
   (.115) (.0012) (.72) 
 
 n = 807,  R2 = .1134 
 
The substantial differences in standard errors compare with equation (8.36) is another indication 
that our proposed correction for heteroskedasticity did not really do the trick.  With the exception 
of restaurn, all standard errors got notably bigger; for example, the standard error for log(cigpric)  
doubled.  All variables that were significant with the nonrobust standard errors remain significant, 
but the confidence intervals are much wider in several cases.   
 
[ Instructor’s Note:  You can also do this exercise with regression (8.34) used in place of (8.32).  
This gives a somewhat larger estimated income effect.] 
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8.15 (i) In the following equation, estimated by OLS, the usual standard errors are in (⋅) and the 
heteroskedasticity-robust standard errors are in [⋅]: 
 
  =  −.506 + .0124 inc  − .000062 inc�e401k 2  +  .0265 age  −  .00031 age2 − .0035 male 
    (.081)  (.0006)  (.000005)    (.0039)  (.00005)  (.0121) 
    [.079]  [.0006]  [.000005]  [.0038]  [.00004]  [.0121] 

 n = 9,275,   R2 = .094. 
 
There are no important differences; if anything, the robust standard errors are smaller. 
 
 (ii) This is a general claim.  Since Var(y|x) = ( )[1 ( )]p p−x x

2 2 v
, we can write 

.  Written in error form, 2E( | ) ( ) [ ( )]u p p= −x x x 2 ( ) [ ( )]u p p= −x x +
2 v

.  In other words, we 
can write this as a regression model 2

0 1 2( ) [ ( )]u p pδ δ δ= + +x x + , with the restrictions δ0 = 0, 
δ1 = 1, and δ2 = -1.  Remember that, for the LPM, the fitted values, ˆiy , are estimates of 

0 1 1( ) ...i i k ikp x xβ β β= + + +x .  So, when we run the regression  (including an 
intercept), the intercept estimates should be close to zero, the coefficient on 

2垐 �on ,i iu y 2
iy

ˆiy  should be close to 
one, and the coefficient on  should be close to –1. 2ˆiy
 
 (iii) The White F statistic is about 310.32, which is very significant.  The coefficient on 

 is about 1.010, the coefficient on is about −.970, and the intercept is about -.009.  
This accords quite well with what we expect to find. 

ˆ401e k 2ˆ401e k

 
 (iv) The smallest fitted value is about .030 and the largest is about .697.  The WLS estimates 
of the LPM are  
 
  =  −.488 + .0126 inc  − .000062 inc�e401k 2  +  .0255 age  −  .00030 age2 − .0055 male 
    (.076)  (.0005)  (.000004)    (.0037)  (.00004)  (.0117) 
 
  n = 9,275,   R2 = .108. 
 
There are no important differences with the OLS estimates.  The largest relative change is in the 
coefficient on male, but this variable is very insignificant using either estimation method. 
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CHAPTER 9 
 

TEACHING NOTES 
 
The coverage of RESET in this chapter recognizes that it is a test for neglected nonlinearities, 
and it should not be expected to be more than that.  (Formally, it can be shown that if an omitted 
variable has a conditional mean that is linear in the included explanatory variables, RESET has 
no ability to detect the omitted variable.  Interested readers can consult my chapter in Companion 
to Theoretical Econometrics, 2001, edited by Badi Baltagi.)  I would just teach students the F 
statistic version of the test, although the LM version is easier to make robust to heteroskedasticity.  
(However, some econometrics packages, including Eviews and Stata, have simple commands for 
obtaining a heteroskedasticity-robust F-type statistic.) 
 
The Davidson-MacKinnon test can be useful for detecting functional form misspecification, 
especially when one has in mind a specific alternative, nonnested model.  It is always a one 
degree of freedom test. 
 
I think the proxy variable material is important, but the main points can be made with Examples 
9.3 and 9.4.  The first shows that controlling for IQ can substantially change the estimated return 
to education, and the omitted ability bias is in the expected direction.  Interestingly, education 
and ability do not appear to have an interactive effect.  Example 9.4 is a nice example of how 
controlling for a previous value of the dependent variable – something that is often possible with 
survey and nonsurvey data – can greatly affect a policy conclusion.  Computer Exercise 9.8 is 
also a good illustration of this method. 
 
I rarely get to teach the measurement error material, although the attenuation bias result for 
classical errors-in-variables is worth mentioning. 
 
The result on exogenous sample selection is easy to discuss, with more details given in Chapter 
17.  The effects of outliers can be illustrated using the examples.  I think the infant mortality 
example, Example 9.10, is useful for illustrating how a single influential observation can have a 
large effect on the OLS estimates. 
 
With the growing importance of least absolute deviations, it makes sense to at least discuss the 
merits of LAD, at least in more advanced courses.  Computer Exercise 9.14 is a good example to 
show how mean and median effects can be very different, even though there may not be 
“outliers” in the usual sense. 
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SOLUTIONS TO PROBLEMS 
 
9.1 There is functional form misspecification if 6β ≠ 0 or 7β ≠ 0, where these are the population 
parameters on ceoten2 and comten2, respectively.  Therefore, we test the joint significance of 
these variables using the R-squared form of the F test:  F = [(.375 − .353)/(1 − .375)][(177 – 
8)/2]  2.97.  With 2 and ∞ df, the 10% critical value is 2.30 awhile the 5% critical value is 3.00.  
Thus, the p-value is slightly above .05, which is reasonable evidence of functional form 
misspecification.  (Of course, whether this has a practical impact on the estimated partial effects 
for various levels of the explanatory variables is a different matter.) 

≈

 
9.2 [Instructor’s Note:  Out of the 186 records in VOTE2.RAW, three have voteA88 less than 50, 
which means the incumbent running in 1990 cannot be the candidate who received voteA88 
percent of the vote in 1988.  You might want to reestimate the equation dropping these three 
observations.] 
 
 (i) The coefficient on voteA88 implies that if candidate A had one more percentage point of 
the vote in 1988, she/he is predicted to have only .067 more percentage points in 1990.  Or, 10 
more percentage points in 1988 implies .67 points, or less than one point, in 1990.  The t statistic 
is only about 1.26, and so the variable is insignificant at the 10% level against the positive one-
sided alternative.  (The critical value is 1.282.)  While this small effect initially seems surprising, 
it is much less so when we remember that candidate A in 1990 is always the incumbent.  
Therefore, what we are finding is that, conditional on being the incumbent, the percent of the 
vote received in 1988 does not have a strong effect on the percent of the vote in 1990. 
 
 (ii) Naturally, the coefficients change, but not in important ways, especially once statistical 
significance is taken into account.  For example, while the coefficient on log(expendA) goes from 
−.929 to −.839, the coefficient is not statistically or practically significant anyway (and its sign is 
not what we expect).  The magnitudes of the coefficients in both equations are quite similar, and 
there are certainly no sign changes.  This is not surprising given the insignificance of voteA88. 
 
9.3 (i) Eligibility for the federally funded school lunch program is very tightly linked to living in 
poverty.  Therefore, the percentage of students eligible for the lunch program is very similar to 
the percentage of students living in poverty. 
 
 (ii) We can use our usual reasoning on omitting important variables from a regression 
equation.  The variables log(expend) and lnchprg are negatively correlated:  school districts with 
poorer children spend, on average, less on schools.   Further, 3β < 0.  From Table 3.2, omitting 
lnchprg (the proxy for poverty) from the regression produces an upward biased estimator of 1β  
(ignoring the presence of log(enroll) in the model).  So when we control for the poverty rate, the 
effect of spending falls. 
 
 (iii) Once we control for lnchprg, the coefficient on log(enroll) becomes negative and has a t 
of about –2.17, which is significant at the 5% level against a two-sided alternative.  The 
coefficient implies that  −(1.26/100)(%Δenroll) = −.0126(%Δenroll).  Therefore, a 
10% increase in enrollment leads to a drop in math10 of .126 percentage points. 

�10mathΔ ≈
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 (iv) Both math10 and lnchprg are percentages.  Therefore, a ten percentage point increase in 
lnchprg leads to about a 3.23 percentage point fall in math10, a sizeable effect. 
 
 (v) In column (1) we are explaining very little of the variation in pass rates on the MEAP 
math test:  less than 3%.  In column (2), we are explaining almost 19% (which still leaves much 
variation unexplained).  Clearly most of the variation in math10 is explained by variation in 
lnchprg.  This is a common finding in studies of school performance:  family income (or related 
factors, such as living in poverty) are much more important in explaining student performance 
than are spending per student or other school characteristics. 
 
9.4 (i) For the CEV assumptions to hold, we must be able to write tvhours = tvhours* + e0, 
where the measurement error e0 has zero mean and is uncorrelated with tvhours* and each 
explanatory variable in the equation.  (Note that for OLS to consistently estimate the parameters 
we do not need e0 to be uncorrelated with tvhours*.) 
 
 (ii) The CEV assumptions are unlikely to hold in this example.  For children who do not 
watch TV at all, tvhours* = 0, and it is very likely that reported TV hours is zero.  So if 
tvhours* = 0 then e0 = 0 with high probability.  If tvhours* > 0, the measurement error can be 
positive or negative, but, since tvhours ≥ 0, e0 must satisfy e0 ≥ −tvhours*.  So e0 and tvhours* 
are likely to be correlated.  As mentioned in part (i), because it is the dependent variable that is 
measured with error, what is important is that e0 is uncorrelated with the explanatory variables.  
But this is unlikely to be the case, because tvhours* depends directly on the explanatory 
variables.  Or, we might argue directly that more highly educated parents tend to underreport 
how much television their children watch, which means e0 and the education variables are 
negatively correlated. 
 
9.5 The sample selection in this case is arguably endogenous.  Because prospective students may 
look at campus crime as one factor in deciding where to attend college, colleges with high crime 
rates have an incentive not to report crime statistics. If this is the case, then the chance of 
appearing in the sample is negatively related to u in the crime equation.  (For a given school size, 
higher u means more crime, and therefore a smaller probability that the school reports its crime 
figures.) 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
9.6 (i) To obtain the RESET F statistic, we estimate the model in Problem 7.13 and obtain the 
fitted values, say .  To use the version of RESET in (9.3), we add ( )�

ilsalary �
ilsalary 2 and 

( )�
ilsalary 3 and obtain the F test for joint significance of these variables.  With 2 and 203 df, the 

F statistic is about 1.33 and p-value ≈ .27, which means that there is not much concern about 
functional form misspecification. 
 
 (ii) Interestingly, the heteroskedasticity-robust F-type statistic is about 2.24 with p-value 

 .11, so there is stronger evidence of some functional form misspecification with the robust test.  
But it is probably not strong enough to worry about. 
≈
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9.7 [Instructor’s Note:  If educ ⋅KWW is used along with KWW, the interaction term is significant.  
This is in contrast to when IQ is used as the proxy.  You may want to pursue this as an additional 
part to the exercise.] 
 
 (i) We estimate the model from column (2) but with KWW in place of IQ.  The coefficient on 
educ becomes about .058 (se  .006), so this is similar to the estimate obtained with IQ, although 
slightly larger and more precisely estimated. 

≈

 
 (ii) When KWW and IQ are both used as proxies, the coefficient on educ becomes about .049 
(se ≈ .007).  Compared with the estimate when only KWW is used as a proxy, the return to 
education has fallen by almost a full percentage point. 
 
 (iii) The t statistic on IQ is about 3.08 while that on KWW is about 2.07, so each is significant 
at the 5% level against a two-sided alternative.  They are jointly very significant, with F2,925≈ 
8.59 and p-value  .0002. ≈
 
9.8 (i) If the grants were awarded to firms based on firm or worker characteristics, grant could 
easily be correlated with such factors that affect productivity.  In the simple regression model, 
these are contained in u. 
 
 (ii) The simple regression estimates using the 1988 data are  
 
     = .409 + .057 grant �log ( )scrap
       (.241)  (.406) 

    n  =  54,   R2  =  .0004. 
 
The coefficient on grant is actually positive, but not statistically different from zero. 
 
 (iii) When we add log(scrap87) to the equation, we obtain 
 
     = .021 − .254 grant�

88log ( )scrap 88 + .831 log(scrap87) 
       (.089)  (.147)  (.044) 

   n  =  54,   R2  =  .873, 
 
where the year subscripts are for clarity.  The t statistic for H0: grantβ = 0 is −.254/.147  -1.73.  
We use the 5% critical value for 40 df in Table G.2:  -1.68.  Because t = −1.73 < −1.68, we reject 
H

≈

0 in favor of H1: grantβ < 0 at the 5% level.  
 
 (iv) The t statistic is (.831 – 1)/.044≈ −3.84, which is a strong rejection of H0. 
 
 (v) With the heteroskedasticity-robust standard error, the t statistic for grant88 is −.254/.142≈ 
−1.79, so the coefficient is even more significantly less than zero when we use the 
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heteroskedasticity-robust standard error.  The t statistic for H0: 
87log( )scrap

β = 1 is (.831 – 1)/.071 ≈ 

−2.38, which is notably smaller than before, but it is still pretty significant. 
 
9.9 (i) Adding DC to the regression in equation (9.37) gives 
 
   = 23.95 − .567 log(pcinc) − 2.74 log(physic) + .629 log(popul) + 16.03 DC �in fmort
   (12.42)  (1.641)  (1.19)   (.191)  (1.77) 

  n  =  51,   R2  =  .691,   2R =  .664. 
 
The coefficient on DC means that even if there was a state that had the same per capita income, 
per capita physicians, and population as Washington D.C., we predict that D.C. has an infant 
mortality rate that is about 16 deaths per 1000 live births higher.  This is a very large difference.   
 
 (ii) In the regression from part (i), the intercept and all slope coefficients, along with their 
standard errors, are identical to those in equation (9.38), which simply excludes D.C.  (Of course, 
equation (9.38) does not have DC in it, so we have nothing to compare with its coefficient and 
standard error.)  Therefore, for the purposes of obtaining the effects and statistical significance of 
the other explanatory variables, including a dummy variable for a single observation is identical 
to just dropping that observation when doing the estimation. 
 The R-squareds and adjusted R-squareds from (9.38) and the regression in part (i) are not the 
same.  They are much larger when DC is included as an explanatory variable because we are 
predicting the infant mortality rate perfectly for D.C.  You might want to confirm that the 
residual for the observation corresponding to D.C. is identically zero. 
 
9.10 With sales defined to be in billions of dollars, we obtain the following estimated equation 
using all companies in the sample: 
 
     = 2.06 + .317 sales − .0074 sales�rdintens 2 + .053 profmarg 
     (0.63)  (.139)  (.0037)  (.044) 

    n  =  32,   R2  =  .191,   2R =  .104. 
 
When we drop the largest company (with sales of roughly $39.7 billion), we obtain 
 
     = 1.98 + .361 sales − .0103 sales�rdintens 2 + .055 profmarg 
     (0.72)  (.239)  (.0131)  (.046) 

    n  =  31,   R2  =  .191,   2R =  .101. 
 
When the largest company is left in the sample, the quadratic term is statistically significant, 
even though the coefficient on the quadratic is less in absolute value than when we drop the 
largest firm.  What is happening is that by leaving in the large sales figure, we greatly increase 
the variation in both sales and sales2; as we know, this reduces the variances of the OLS 
estimators (see Section 3.4).  The t statistic on sales2 in the first regression is about –2, which 
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makes it almost significant at the 5% level against a two-sided alternative.  If we look at Figure 
9.1, it is not surprising that a quadratic is significant when the large firm is included in the 
regression:  rdintens is relatively small for this firm even though its sales are very large 
compared with the other firms.  Without the largest firm, a linear relationship between rdintens 
and sales seems to suffice. 
 
9.11 (i) Only four of the 408 schools have b/s less than .01. 
 
 (ii) We estimate the model in column (3) of Table 4.3, omitting schools with b/s < .01: 
 
   = 10.71 − .421 (b/s) + .089 log(enroll) − .219 log (staff) �log ( )salary
   (0.26)  (.196)    (.007)   (.050) 

       − .00023 droprate + .00090 gradrate 
   (.00161)  (.00066) 

 n  =  404,   R2  =  .354. 
 
Interestingly, the estimated tradeoff is reduced by a nontrivial amount (from .589 to .421).  This 
is a pretty large difference considering only four of 408 observations, or less than 1%, were 
omitted. 
 
9.12 (i) 205 observations out of the 1,989 records in the sample have obrate > 40.  (Data are 
missing for some variables, so not all of the 1,989 observations are used in the regressions.) 
 
 (ii) When observations with obrat > 40 are excluded from the regression in part (iii) of 
Problem 7.16, we are left with 1,768 observations.  The coefficient on white is about .129 (se 

 .020).  To three decimal places, these are the same estimates we got when using the entire 
sample (see Computer Exercise 7.16).  Perhaps this is not very surprising since we only lost 203 
out of 1,971 observations.  However, regression results can be very sensitive when we drop over 
10% of the observations, as we have here.   

≈

 
 (iii) The estimates from part (ii) show that  does not seem very sensitive to the sample 
used, although we have tried only one way of reducing the sample. 

ˆ
whiteβ

 
9.13 (i) The mean of stotal is .047, its standard deviation is .854, the minimum value is –3.32, 
and the maximum value is 2.24. 
 
 (ii) In the regression jc on stotal, the slope coefficient is .011 (se = .011).  Therefore, while 
the estimated relationship is positive, the t statistic is only one:  the correlation between jc and 
stotal is weak at best.  In the regression univ on stotal, the slope coefficient is 1.170 (se = .029), 
for a t statistic of 38.5.  Therefore, univ and stotal are positively correlated (with correlation 
= .435). 

 
(iii) When we add stotal to (4.17) and estimate the resulting equation by OLS, we get  
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�log ( )wage =   1.495  +   .0631 jc  +   .0686 univ  +   .00488 exper  +   .0494 stotal 
 (.021) (.0068) (.0026) (.00016) (.0068) 
 
n = 6,758,  R2 = .228 
 

For testing βjc = βuniv, we can use the same trick as in Section 4.4 to get the standard error of the 
difference:  replace univ with totcoll = jc + univ, and then the coefficient on jc is the difference 
in the estimated returns, along with its standard error.  Let θ1 = βjc − βuniv.  Then 

.  Compared with what we found without stotal, the evidence is even 
weaker against H

1̂ .0055 (se .0069)θ = − =

1: βjc < βuniv.  The t statistic from equation (4.27) is about –1.48, while here we 
have obtained only −.80.   
 
 (iv) When stotal2 is added to the equation, its coefficient is .0019 (t statistic = .40).  
Therefore, there is no reason to add the quadratic term. 
 
 (v) The F statistic for the significance of the interaction terms stotal⋅jc and stotal⋅univ is 
about 1.96; with 2 and 6,756, this gives p-value = .141.  So, even at the 10% level, the 
interaction terms are jointly insignificant.  It is probably not worth complicating the basic model 
estimated in part (iii). 
 
 (vi) I would just use the model from part (iii), where stotal appears only in level form.  The 
other embellishments were not statistically significant at small enough significance levels to 
warrant the additional complications. 
 
9.14 (i) The equation estimated by OLS is  
 
   =  21.198  −  .270 inc  +  .0102 inc$nett fa 2  −   1.940 age  +   .0346 age2  
  ( 9.992) (.075) (.0006) (.483) (.0055) 
 
  +  3.369 male  +   9.713 e401k 
  (1.486) (1.277) 
 
 n = 9,275,  R2 = .202 
 
The coefficient on e401k means that, holding other things in the equation fixed, the average level 
of net financial assets is about $9,713 higher for a family eligible for a 401(k) than for a family 
not eligible. 
 
 (ii) The OLS regression of on inc2ˆiu i, , age2

iinc i, , male2
iage i, and e401ki gives 2

2
û

R =  .0374, 
which translates into F = 59.97.  The associated p-value, with 6 and 9,268 df, is essentially zero.  
So there is strong evidence of heteroskedasticity, which means u and the explanatory variables 
cannot be independent [even though E(u|x1,x2,…,xk) = 0 is possible]. 
 
 (iii) The equation estimated by LAD is  

 77



 
  =   12.491  −  .262 inc  +  .00709 inc$nett fa 2  −   .723 age  +   .0111 age2  
  ( 1.382) (.010) (.00008) (.067) (.0008) 
 
  +  1.018 male  +   3.737 e401k 
  (.205) (.177) 
 
 n = 9,275,  Psuedo R2 = .109 
 
Now, the coefficient on e401k means that, at given income, age, and gender, the median 
difference in net financial assets between a families with and without 401(k) eligibility is about 
$3,737. 
 
 (iv) The findings from parts (i) and (iii) are not in conflict.  We are finding that 401(k) 
eligibility has a larger effect on mean wealth than on median wealth.  Finding different mean and 
median effects for a variable such as nettfa, which has a skewed distribution, is not surprising.  
Apparently, 401(k) eligibility has some large wealth effects, and these are reflected in the mean.  
The median is much less sensitive to effects at the upper end of the distribution. 
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CHAPTER 10 
 

TEACHING NOTES 
 
Because of its realism and its care in stating assumptions, this chapter puts a somewhat heavier 
burden on the instructor and student than traditional treatments of time series regressions, but I 
think it is worth it.  It is important that students learn that there are potential pitfalls inherent in 
using regression with time series data that are not present for cross-sectional applications.  
Trends, seasonality, and high persistence are ubiquitous in time series data.  By this time, 
students should have a firm grasp of multiple regression mechanics and inference, and so you 
can focus on those features that make time series applications different from cross-sectional ones. 
 
I think it is useful to discuss static and finite distributed lag models at the same time, as these at 
least have a shot at satisfying the Gauss-Markov assumptions.  Many interesting examples have 
distributed lag dynamics.  In discussing the time series versions of the CLM assumptions, I rely 
mostly on intuition.  The notion of strict exogeneity is easy to discuss in terms of feedback.  It is 
also pretty apparent that, in many applications, there are likely to be some explanatory variables 
that are not strictly exogenous.  What the student should know is that, to conclude that OLS is 
unbiased – as opposed to consistent – we need to assume a very strong form of exogeneity of the 
regressors.  Chapter 11 shows that only contemporaneous exogeneity is needed for consistency. 
 
Although the text is careful in stating the assumptions, in class, after discussing strict exogeneity, 
I leave the conditioning on X implicit, especially when I discuss the no serial correlation 
assumption.  As this is a new assumption I spend some time on it.  (I also discuss why we did not 
need it for random sampling.) 
 
Once the unbiasedness of OLS, the Gauss-Markov theorem, and the sampling distributions under 
the classical linear model assumptions have been covered – which can be done rather quickly – I 
focus on applications.  Fortunately, the students already know about logarithms and dummy 
variables.  I treat index numbers in this chapter because they arise in many time series examples. 
 
A novel feature of the text is the discussion of how to compute goodness-of-fit measures with a 
trending or seasonal dependent variable.  While detrending or deseasonalizing y is hardly perfect 
(and does not work with integrated processes), it is better than simply reporting the very high R-
squareds that often come with time series regressions with trending variables. 
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SOLUTIONS TO PROBLEMS 
 
10.1 (i) Disagree.  Most time series processes are correlated over time, and many of them 
strongly correlated.  This means they cannot be independent across observations, which simply 
represent different time periods.  Even series that do appear to be roughly uncorrelated – such as 
stock returns – do not appear to be independently distributed, as you will see in Chapter 12 under 
dynamic forms of heteroskedasticity. 
 
 (ii) Agree.  This follows immediately from Theorem 10.1.  In particular, we do not need the 
homoskedasticity and no serial correlation assumptions. 
 
 (iii) Disagree.  Trending variables are used all the time as dependent variables in a regression 
model.  We do need to be careful in interpreting the results because we may simply find a 
spurious association between yt and trending explanatory variables.  Including a trend in the 
regression is a good idea with trending dependent or independent variables.  As discussed in 
Section 10.5, the usual R-squared can be misleading when the dependent variable is trending. 
 
 (iv) Agree.  With annual data, each time period represents a year and is not associated with 
any season. 
 
10.2 We follow the hint and write 
 

gGDPt-1  =  α0 + δ0intt-1 + δ1intt-2 + ut-1, 
 

and plug this into the right-hand-side of the intt equation: 
 
 intt = γ0 + γ1(α0 + δ0intt-1 + δ1intt-2 + ut-1 – 3) + vt

  = (γ0 + γ1α0 – 3γ1) + γ1δ0intt-1 + γ1δ1intt-2 +  γ1ut-1 + vt. 
 
Now by assumption, ut-1 has zero mean and is uncorrelated with all right-hand-side variables in 
the previous equation, except itself of course.  So 
 

Cov(int,ut-1)  =  E(intt ⋅ut-1)  =  γ1E( 2
1tu − ) > 0 

 
because γ1 > 0.  If 2

uσ = E( ) for all t then Cov(int,u2
tu t-1) = γ1

2
uσ .  This violates the strict 

exogeneity assumption, TS.2.  While ut is uncorrelated with intt, intt-1, and so on, ut is correlated 
with intt+1. 
 
10.3 Write 
 

y*  =  α0 + (δ0 + δ1 + δ2)z*  =  α0 + LRP ⋅ z*, 
 

and take the change:  Δy*  =  LRP ⋅ Δz*. 
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10.4 We use the R-squared form of the F statistic (and ignore the information on 2R ).  The 10% 
critical value with 3 and 124 degrees of freedom is about 2.13 (using 120 denominator df in 
Table G.3a).  The F statistic is 
 

F  =  [(.305 − .281)/(1 − .305)](124/3) ≈ 1.43, 
 

which is well below the 10% cv.  Therefore, the event indicators are jointly insignificant at the 
10% level.  This is another example of how the (marginal) significance of one variable (afdec6) 
can be masked by testing it jointly with two very insignificant variables. 
 
10.5 The functional form was not specified, but a reasonable one is 
 

log(hsestrtst)  =  α0 + α1t + δ1Q2t + δ2Q3t + δ3Q3t + β1intt +β2log(pcinct) + ut, 
 

Where Q2t, Q3t, and Q4t are quarterly dummy variables (the omitted quarter is the first) and the 
other variables are self-explanatory.  This inclusion of the linear time trend allows the dependent 
variable and log(pcinct) to trend over time (intt probably does not contain a trend), and the 
quarterly dummies allow all variables to display seasonality.  The parameter β2 is an elasticity 
and 100 ⋅ β1 is a semi-elasticity. 
 
10.6 (i) Given δj = γ0 + γ1 j + γ2 j2 for j = 0,1, K ,4, we can write 
 
 yt = α0 + γ0zt + (γ0 + γ1 + γ2)zt-1 + (γ0 + 2γ1 + 4γ2)zt-2 + (γ0 + 3γ1 + 9γ2)zt-3

   + (γ0 + 4γ1 + 16γ2)zt-4 + ut

  = α0 + γ0(zt + zt-1 + zt-2 + zt-3 + zt-4) + γ1(zt-1 + 2zt-2 + 3zt-3 + 4zt-4) 

   + γ2(zt-1 + 4zt-2 + 9zt-3 + 16zt-4) +  ut. 
 
 (ii) This is suggested in part (i). For clarity, define three new variables:  zt0 = (zt + zt-1 + zt-2 + 
zt-3 + zt-4), zt1 = (zt-1 + 2zt-2 + 3zt-3 + 4zt-4), and zt2 = (zt-1 + 4zt-2 + 9zt-3 + 16zt-4).  Then, α0, γ0, γ1, 
and γ2 are obtained from the OLS regression of yt on zt0, zt1, and zt2, t = 1, 2, K , n.  (Following 
our convention, we let t = 1 denote the first time period where we have a full set of regressors.)  
The ˆ

jδ  can be obtained from ˆ
jδ = 0γ̂ + 1̂γ j + 2γ̂ j2. 

 
 (iii) The unrestricted model is the original equation, which has six parameters (α0 and the 
five δj).  The PDL model has four parameters.  Therefore, there are two restrictions imposed in 
moving from the general model to the PDL model.  (Note how we do not have to actually write 
out what the restrictions are.)  The df in the unrestricted model is n – 6.  Therefore, we would 
obtain the unrestricted R-squared,  from the regression of y2

urR t on zt, zt-1, K , zt-4 and the 
restricted R-squared from the regression in part (ii), .  The F statistic is 2

rR
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Under H0 and the CLM assumptions, F ~ F2,n-6. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
10.7 Let post79 be a dummy variable equal to one for years after 1979, and zero otherwise.  
Adding post79 to equation 10.15) gives 
 
  = 1.26 + .592 inf�3ti t + .478 deft + 1.41 post79t
   (0.43)  (.074)  (.154)  (0.66) 

 n  =  49,   R2  =  .725,   2R  = .707. 
 
The coefficient on post79 is statistically significant (t statistic≈ 2.14) and economically large:  
accounting for inflation and deficits, i3 was about 1.4 points higher on average in years after 
1979.  The coefficient on def falls substantially once post79 is included in the regression. 
 
10.8 (i) Adding a linear time trend to (10.22) gives 
 
  = −2.37 − .686 log(chempi) + .466 log(gas) + .078 log(rtwex)  �log ( )chnimp
     (20.78)  (1.240)  (.876)  (.472) 

         + .090 befile6 + .097 affile6 − .351 afdec6 + .013 t 
     (.251)  (.257)  (.282)  (.004) 

 n  =  131,   R2  =  .362,   2R  = .325. 
 
Only the trend is statistically significant.  In fact, in addition to the time trend, which has a t 
statistic over three, only afdec6 has a t statistic bigger than one in absolute value.  Accounting for 
a linear trend has important effects on the estimates. 
 
 (ii) The F statistic for joint significance of all variables except the trend and intercept, of 
course) is about .54.  The df in the F distribution are 6 and 123.  The p-value is about .78, and so 
the explanatory variables other than the time trend are jointly very insignificant.  We would have 
to conclude that once a positive linear trend is allowed for, nothing else helps to explain 
log(chnimp).  This is a problem for the original event study analysis. 
 
 (iii) Nothing of importance changes.  In fact, the p-value for the test of joint significance of 
all variables except the trend and monthly dummies is about .79.  The 11 monthly dummies 
themselves are not jointly significant:  p-value≈ .59. 
 
10.9 Adding log(prgnp) to equation (10.38) gives 
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  �log ( )tprepop  = −6.66 − .212 log(mincovt) + .486 log(usgnpt) + .285 log(prgnpt) 
    (1.26)  (.040)  (.222)  (.080) 

   − .027 t 
    (.005) 

  n  =  38,   R2  =  .889,   2R  = .876. 
 
The coefficient on log(prgnpt) is very statistically significant (t statistic≈ 3.56).  Because the 
dependent and independent variable are in logs, the estimated elasticity of prepop with respect to 
prgnp is .285.  Including log(prgnp) actually increases the size of the minimum wage effect:  the 
estimated elasticity of prepop with respect to mincov is now −.212, as compared with −.169 in 
equation (10.38). 
 
10.10 If we run the regression of gfrt on pet, (pet-1 – pet), (pet-2 – pet), ww2t, and pillt, the 
coefficient and standard error on pet are, rounded to four decimal places, .1007 and .0298, 
respectively.  When rounded to three decimal places we obtain .101 and .030, as reported in the 
text. 
 
10.11 (i) The coefficient on the time trend in the regression of log(uclms) on a linear time trend 
and 11 monthly dummy variables is about −.0139 (se≈ .0012), which implies that monthly 
unemployment claims fell by about 1.4% per month on average.  The trend is very significant.  
There is also very strong seasonality in unemployment claims, with 6 of the 11 monthly dummy 
variables having absolute t statistics above 2.  The F statistic for joint significance of the 11 
monthly dummies yields p-value  .0009. ≈
 
 (ii) When ez is added to the regression, its coefficient is about −.508 (se  .146).  Because 
this estimate is so large in magnitude, we use equation (7.10):  unemployment claims are 
estimated to fall 100[1 – exp(−.508)] 

≈

≈ 39.8% after enterprise zone designation. 
 
 (iii) We must assume that around the time of EZ designation there were not other external 
factors that caused a shift down in the trend of log(uclms).  We have controlled for a time trend 
and seasonality, but this may not be enough. 
 
10.12 (i) The regression of gfrt on a quadratic in time gives 
 
   = 107.06 + .072 t - .0080 tˆ

tgfr 2

    (6.05)  (.382)  (.0051) 

  n  =  72,   R2  =  .314. 
 
Although t and t2 are individually insignificant, they are jointly very significant (p-value≈ .0000). 
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 (ii) Using  as the dependent variable in (10.35) gives Rtgfr&& 2≈.602, compared with about .727 
if we do not initially detrend.  Thus, the equation still explains a fair amount of variation in gfr 
even after we net out the trend in computing the total variation in gfr. 
 
 (iii) The coefficient and t statistic on t3 are about −.00129 and .00019, respectively, which 
results in a very significant t statistic.  It is difficult to know what to make of this.  The cubic 
trend, like the quadratic, is not monotonic.  So this almost becomes a curve-fitting exercise. 
 
10.13 (i) The estimated equation is 
 
   = .0081 + .571 gy�

tgc t

    (.0019)  (.067) 

  n  =  36,   R2  =  .679. 
 
This equation implies that if income growth increases by one percentage point, consumption 
growth increases by .571 percentage points.  The coefficient on gyt is very statistically significant 
(t statistic≈ 8.5). 
 
 (ii) Adding gyt-1 to the equation gives 
 
  = .0064 + .552 gy�

tgc t + .096 gyt-1

   (.0023)  (.070)  (.069) 

 n  =  35,   R2  =  .695. 
 
The t statistic on gyt-1 is only about 1.39, so it is not significant at the usual significance levels.  
(It is significant at the 20% level against a two-sided alternative.)  In addition, the coefficient is 
not especially large.  At best there is weak evidence of adjustment lags in consumption. 
 
 (iii) If we add r3t to the model estimated in part (i) we obtain 
 
  = .0082 + .578 gy�

tgc t + .00021 r3t

   (.0020)  (.072)  (.00063) 

 n  =  36,   R2  =  .680. 
 
The t statistic on r3t is very small.  The estimated coefficient is also practically small:  a one-
point increase in r3t reduces consumption growth by about .021 percentage points. 
 
10.14 (i) The estimated equation is 
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  = 92.05 + .089 peˆ
tgfr t − .0040 pet-1 + .0074 pet-2 + .018 pet-3 + .014 pet-4

   (3.33)  (.126)  (.1531)  (.1651)  (.154)  (.105) 

       − 21.34 ww2t − 31.08 pillt
   (11.54)  (3.90) 

 n  =  68,   R2  =  .537,   2R  = .483. 
 
The p-value for the F statistic of joint significance of pet-3 and pet-4 is about .94, which is very 
weak evidence against H0. 
 
 (ii) The LRP and its standard error can be obtained as the coefficient and standard error on 
pet in the regression 
 

gfrt on pet,  (pet-1 – pet),  (pet-2 – pet),  (pet-3 – pet),   (pet-4 – pet),  ww2t,  pillt   
 

We get  .129 (se  .030), which is above the estimated LRP with only two lags (.101).  
The standard errors are the same rounded to three decimal places. 

ˆLRP ≈ ≈

 
 (iii) We estimate the PDL with the additional variables ww22 and pillt.  To estimate γ0, γ1, 
and γ2, we define the variables 
 
 z0t = pet + pet-1 + pet-2 + pet-3 + pet-4

 z1t = pet-1 + 2pet-2 + 3pet-3 + 4pet-4 

 z2t = pet-1 + 4pet-2 + 9pet-3 + 16pet-4. 
 
Then, run the regression gfrtt on z0t, z1t, z2t, ww2t, pillt.  Using the data in FERTIL3.RAW gives 
(to three decimal places) 0γ̂ = .069, 1̂γ = –.057, 2γ̂ = .012.  So 0̂δ = 0γ̂  = .069, 1̂δ = .069 -

 .057 + .012 = .024, 2̂δ = .069 – 2(.057) + 4(.012) = .003, 3̂δ = .069 – 3(.057) + 9(.012) = .006, 

4̂δ = .069 – 4(.057) + 16(.012) = .033.  Therefore, the LRP is .135.  This is slightly above 
the .129 obtained from the unrestricted model, but not much. 
 Incidentally, the F statistic for testing the restrictions imposed by the PDL is about [(.537 -
 .536)/(1 − .537)](60/2)  .065, which is very insignificant.  Therefore, the restrictions are not 
rejected by the data.  Anyway, the only parameter we can estimate with any precision, the LRP, 
is not very different in the two models. 

≈

 
10.15 (i) The sign of 2β  is fairly clear-cut:  as interest rates rise, stock returns fall, so 2β < 0.  
Higher interest rates imply that T-bill and bond investments are more attractive, and also signal a 
future slowdown in economic activity.  The sign of 1β  is less clear.  While economic growth can 
be a good thing for the stock market, it can also signal inflation, which tends to depress stock 
prices. 
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 (ii) The estimated equation is 
 
    = 18.84 + .036 pcip�

trs p500 t −1.36 i3t

     (3.27)  (.129)  (0.54) 

   n  =  557,   R2  =  .012. 
 
A one percentage point increase in industrial production growth is predicted to increase the stock 
market return by .036 percentage points (a very small effect).  On the other hand, a one 
percentage point increase in interest rates decreases the stock market return by an estimated 1.36 
percentage points. 
 
 (iii) Only i3 is statistically significant with t statistic≈ −2.52. 
 
 (iv) The regression in part (i) has nothing directly to say about predicting stock returns 
because the explanatory variables are dated contemporaneously with resp500.  In other words, 
we do not know i3t before we know rsp500t.  What the regression in part (i) says is that a change 
in i3 is associated with a contemporaneous change in rsp500. 
 
10.16 (i) The sample correlation between inf and def is only about .048, which is very small.  
Perhaps surprisingly, inflation and the deficit rate are practically uncorrelated over this period.  
Of course, this is a good thing for estimating the effects of each variable on i3, as it implies 
almost no multicollinearity. 
 
 (ii) The equation with the lags is 
 
  = 1.23 + .425 inf�3ti t + .273 inft-1 + .163 deft + .405 deft-1
   (0.44)  (.129)  (.141)  (.257)  (.218) 

 n  =  48,   R2  =  .724,   2R  = .699. 
 
 (iii) The estimated LRP of i3 with respect to inf is .425 + .273 = .698, which is somewhat 
larger than .613, which we obtain from the static model in (10.15).  But the estimates are fairly 
close considering the size and marginal significance of the coefficient on inft-1. 
 
 (iv) The F statistic for significance of inft-1 and deft-1 is about 2.18, with p-value≈ .125.  So 
they are not jointly significant at the 5% level.  But the p-value may be small enough to justify 
their inclusion, especially since the coefficient on deft-1 is practically large. 
 
10.17 (i) The variable beltlaw becomes one at t = 61, which corresponds to January, 1986.  The 
variable spdlaw goes from zero to one at t = 77, which corresponds to May, 1987. 
 
 (ii) The OLS regression gives  
 
    = 10.469  +   .00275 t   −   .0427 feb  +  .0798 mar  +   .0185 apr  �log ( )totacc
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   (.019) (.00016) (.0244) (.0244) (.0245) 
 
  +   .0321 may  +   .0202 jun  +  .0376 jul  +   .0540 aug 
   (.0245) (.0245) (.0245) (.0245) 
 
  +   .0424 sep  +   .0821 oct  +   .0713 nov  +   .0962 dec 
   (.0245) (.0245) (.0245) (.0245) 
    
 n = 108,  R2 = .797 
 
When multiplied by 100, the coefficient on t gives roughly the average monthly percentage 
growth in totacc, ignoring seasonal factors.  In other words, once seasonality is eliminated, 
totacc grew by about .275% per month over this period, or, 12(.275) = 3.3% at an annual rate.   
 
There is pretty clear evidence of seasonality.  Only February has a lower number of total 
accidents than the base month, January.  The peak is in December:  roughly, there are 9.6% 
accidents more in December over January in the average year.  The F statistic for joint 
significance of the monthly dummies is F = 5.15.  With 11 and 95 df, this give a p-value 
essentially equal to zero. 
 

(iii) I will report only the coefficients on the new variables: 
 

   10.640  +  … +    .00333 wkends   −   .0212 unem   �log ( )totacc =
   (.063) (.00378) (.0034) 
 
  −   .0538 spdlaw  +   .0954 beltlaw 
   (.0126) (.0142) 
    
 n = 108,  R2 = .910 
 
The negative coefficient on unem makes sense if we view unem as a measure of economic 
activity.  As economic activity increases – unem decreases – we expect more driving, and 
therefore more accidents.  The estimate that a one percentage point increase in the 
unemployment rate reduces total accidents by about 2.1%.  A better economy does have costs in 
terms of traffic accidents. 
 
 (iv) At least initially, the coefficients on spdlaw and beltlaw are not what we might 
expect.  The coefficient on spdlaw implies that accidents dropped by about 5.4% after the 
highway speed limit was increased from 55 to 65 miles per hour.  There are at least a couple of 
possible explanations.  One is that people because safer drivers after the increased speed limiting, 
recognizing that the must be more cautious.  It could also be that some other change – other than 
the increased speed limit or the relatively new seat belt law – caused lower total number of 
accidents, and we have not properly accounted for this change.   
 
The coefficient on beltlaw also seems counterintuitive at first.  But, perhaps people became less 
cautious once they were forced to wear seatbelts. 
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 (v) The average of prcfat is about .886, which means, on average, slightly less than one 
percent of all accidents result in a fatality.  The highest value of prcfat is 1.217, which means 
there was one month where 1.2% of all accidents resulting in a fatality. 
 
 (vi) As in part (iii), I do not report the coefficients on the time trend and seasonal dummy 
variables:   
 
 �prcf at =  1.030  +  … +    .00063 wkends   −   .0154 unem   
  (.103) (.00616) (.0055) 
 
  +   .0671 spdlaw   −   .0295 beltlaw 
   (.0206) (.0232) 
    
 n = 108,  R2 = .717 
 
Higher speed limits are estimated to increase the percent of fatal accidents, by .067 percentage 
points.  This is a statistically significant effect.  The new seat belt law is estimated to decrease 
the percent of fatal accidents by about .03, but the two-sided p-value is about .21.   
 
Interestingly, increased economic activity also increases the percent of fatal accidents.  This may 
be because more commercial trucks are on the roads, and these probably increase the chance that 
an accident results in a fatality.  
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CHAPTER 11 
 

TEACHING NOTES 
 
Much of the material in this chapter is usually postponed, or not covered at all, in an introductory 
course.  However, as Chapter 10 indicates, the set of time series applications that satisfy all of 
the classical linear model assumptions might be very small.  In my experience, spurious time 
series regressions are the hallmark of many student projects that use time series data.  Therefore, 
students need to be alerted to the dangers of using highly persistent processes in time series 
regression equations.  (The spurious regression problem, and the relatively recent notion of 
cointegration, are covered in more detail in Chapter 18.) 
 
It is fairly easy to heuristically describe the difference between a weakly dependent process and 
an integrated process.  Using the MA(1) and the stable AR(1) examples is usually sufficient. 
 
When the data are weakly dependent and the explanatory variables are contemporaneously 
exogenous, OLS is consistent.  This result has many applications, including the stable AR(1) 
regression model.  When we add the appropriate homoskedasticity and no serial correlation 
assumptions, the usual test statistics are asymptotically valid. 
 
The random walk process is a good example of a unit root (highly persistent) process.  In a one-
semester course, the issue comes down to whether or not to first difference the data before 
specifying the linear model.  While unit root tests are covered in Chapter 18, just computing the 
first-order autocorrelation is often sufficient, perhaps after detrending.  The examples in Section 
11.3 illustrate how different first-difference results can be from estimating equations in levels. 
 
Section 11.4 is novel in an introductory text, and simply points out that, if a model is 
dynamically complete in a well-defined sense, it should not have serial correlation.  Therefore, 
we need not worry about serial correlation when, say, we test the efficient market hypothesis.  
Section 11.5 further investigates the homoskedasticity assumption, and, in a time series context, 
emphasizes that what is contained in the explanatory variables determines what kind of hetero-
skedasticity is ruled out.  These two sections could be skipped without loss of continuity. 
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SOLUTIONS TO PROBLEMS 
 
11.1 Because of covariance stationarity, γ0 = Var(xt) does not depend on t, so sd(xt+h) = 0γ  for 

any h ≥ 0.  By definition, Corr(xt,xt+h) = Cov(xt,xt+h)/[sd(xt) ⋅ sd(xt+h)] = 0 0/( ) / .h h 0γ γ γ γ γ⋅ =  
 
11.2 (i) E(xt) = E(et) – (1/2)E(et-1) + (1/2)E(et-2) = 0 for t = 1,2, K   Also, because the et are 
independent, they are uncorrelated and so Var(xt) = Var(et) + (1/4)Var(et-1) + (1/4)Var(et-2) = 1 + 
(1/4) + (1/4) = 3/2 because Var (et) = 1 for all t. 
 
 (ii) Because xt has zero mean, Cov(xt,xt+1) = E(xtxt+1) = E[(et – (1/2)et-1 + (1/2)et-2)(et+1 – 
(1/2)et + (1/2)et-1)] = E(etet+1) – (1/2)E( ) + (1/2)E(e2

te tet-1) – (1/2)E(et-1et+1) + (1/4(E(et-1et) – 
(1/4)E( ) + (1/2)E(e2

1te − t-2et+1) – (1/4)E(et-2et) +(1/4)E(et-2et-1) = – (1/2)E( ) – (1/4)E( ) =  2
te 2

1te −

–(1/2) – (1/4) = –3/4; the third to last equality follows because the et are pairwise uncorrelated 
and E( ) = 1 for all t.  Using Problem 11.1 and the variance calculation from part (i), 
Corr(x

2
te

txt+1) = – (3/4)/(3/2) = –1/2. 
 Computing Cov(xt,xt+2) is even easier, because only one of the nine terms has expectation not 
equal to zero:  (1/2)E( ) = ½.  Therefore, Corr(x2

te t,xt+2) = (1/2)/(3/2) = 1/3. 
 
 (iii) Corr(xt,xt+h) = 0 for h >2 because for h > 2, xt+h depends at most on et+j for j > 0, while xt 
depends on et+j, j ≤ 0. 
 
 (iv) Yes, because terms more than two periods apart are actually uncorrelated, and so it is 
obvious that Corr(xt,xt+h) → 0 as h → ∞. 
 
11.3 (i) E(yt) = E(z + et) = E(z) + E(et) = 0.  Var(yt) = Var(z + et) = Var(z) + Var(et) + 
2Cov(z,et) = 2

zσ  + 2
eσ  + 2 ⋅0 = 2

zσ  + 2
eσ .  Neither of these depends on t. 

 
 (ii) We assume h > 0; when h = 0 we obtain Var(yt).  Then Cov(yt,yt+h) = E(ytyt+h) = E[(z + 
et)(z + et+h)] = E(z2) + E(zet+h) + E(etz) + E(etet+h) = E(z2) = 2

zσ  because {et} is an uncorrelated 
sequence (it is an independent sequence and z is uncorrelated with et for all t.  From part (i) we 
know that E(yt) and Var(yt) do not depend on t and we have shown that Cov(yt,yt+h) depends on 
neither t nor h.  Therefore, {yt} is covariance stationary. 
 
 (iii) From Problem 11.1 and parts (i) and (ii), Corr(yt,yt+h) = Cov(yt,yt+h)/Var(yt) = 2

zσ /( 2
zσ  + 

2
eσ ) > 0. 

 
 (iv) No.  In fact, the correlation between yt and yt+h is the same positive value obtained in part 
(iii) for any h > 0.  In other words, no matter how far apart yt and yt+h are, their correlation is 
always the same.  Of course this is due to the presence of the time-constant variable, z. 
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11.4 Assuming y0 = 0 is a special case of assuming y0 nonrandom, and so we can obtain the 
variances from (11.21):  Var(yt) = 2

eσ t and Var(yt+h) = 2
eσ (t + h), h > 0.  Because E(yt) = 0 for all 

t (since E(y0) = 0), Cov(yt,yt+h) = E(ytyt+h) and, for h > 0, 
 

  E(ytyt+h) = E[(et + et-1 + K  e1)(et+h + et+h-1 + K  + e1)] 

 = E( ) + E(2
te 2

1te − ) + K  + E( ) = 2
1e 2

eσ t, 
 
where we have used the fact that {et} is a pairwise uncorrelated sequence.  Therefore, 
Corr(yt,yt+h) = Cov(yt,yt+h)/ Var( ) Var( )t ty y +⋅ h  = t/ ( )t t h+  = /(t t h+ . 
 
11.5 (i) The following graph gives the estimated lag distribution: 
 

lag

0 1 2 3 4 5 6 7 8 9 10 11 12

coefficient

0

.04

.08

.12

.16

 
By some margin, the largest effect is at the ninth lag, which says that a temporary increase in 
wage inflation has its largest effect on price inflation nine months later.  The smallest effect is at 
the twelfth lag, which hopefully indicates (but does not guarantee) that we have accounted for 
enough lags of gwage in the FLD model. 
 
 (ii) Lags two, three, and twelve have t statistics less than two.  The other lags are statistically 
significant at the 5% level against a two-sided alternative.  (Assuming either that the CLM 
assumptions hold for exact tests or Assumptions TS.1′ through TS.5′ hold for asymptotic tests.) 
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 (iii) The estimated LRP is just the sum of the lag coefficients from zero through twelve:  
1.172.  While this is greater than one, it is not much greater, and the difference could certainly be 
due to sampling error. 
 
 (iv) The model underlying and the estimated equation can be written with intercept α0 and 
lag coefficients δ0, δ1, K , δ12.  Denote the LRP by θ0 = δ0 + δ1 + K  + δ12.  Now, we can write 
δ0 = θ0 − δ1 − δ2 − K  − δ12.  If we plug this into the FDL model we obtain (with yt = gpricet and 
zt = gwaget) 
 
 yt = α0 + (θ0 − δ1 − δ2 − K  − δ12)zt + δ1zt-1 + δ2zt-2 + K  + δ12zt-12 + ut

  = α0 + θ0zt + δ1(zt-1 – zt) + δ2(zt-2 – zt) + K  + δ12(zt-12 – zt) + ut. 
 
 
Therefore, we regress yt on zt, (zt-1 – zt), (zt-2 – zt), K , (zt-12 – zt) and obtain the coefficient and 
standard error on zt as the estimated LRP and its standard error. 
 
 (v) We would add lags 13 through 18 of gwaget to the equation, which leaves 273 – 6 = 267 
observations.  Now, we are estimating 20 parameters, so the df in the unrestricted model is dfur = 
267.  Let  be the R-squared from this regression.  To obtain the restricted R-squared, , we 
need to reestimate the model reported in the problem but with the same 267 observations used to 
estimate the unrestricted model.  Then F = [( − )/(1 − )](247/6).  We would find the 
critical value from the F

2
urR 2

rR

2
urR 2

rR 2
urR

6,247 distribution. 
 
[Instructor’s Note:  As a computer exercise, you might have the students test whether all 13 lag 
coefficients in the population model are equal.  The restricted regression is gprice on (gwage + 
gwage-1 + gwage-2 + K  gwage-12), and the R-squared form of the F test, with 12 and 259 df, can 
be used.] 
 
11.6 (i) The t statistic for H0: β1 = 1 is t = (1.104 – 1)/.039 ≈ 2.67.  Although we must rely on 
asymptotic results, we might as well use df = 120 in Table G.2.  So the 1% critical value against 
a two-sided alternative is about 2.62, and so we reject H0: β1 = 1 against H1: β1 ≠ 1 at the 1% 
level.  It is hard to know whether the estimate is practically different from one without 
comparing investment strategies based on the theory (β1 = 1) and the estimate ( 1̂β = 1.104).  But 
the estimate is 10% higher than the theoretical value. 
 
 (ii) The t statistic for the null in part (i) is now (1.053 – 1)/.039 ≈ 1.36, so H0: β1 = 1 is no 
longer rejected against a two-sided alternative unless we are using more than a 10% significance 
level.  But the lagged spread is very significant (contrary to what the expectations hypothesis 
predicts): t = .480/.109≈ 4.40.  Based on the estimated equation, when the lagged spread is 
positive, the predicted holding yield on six-month T-bills is above the yield on three-month T-
bills (even if we impose β1 = 1), and so we should invest in six-month T-bills. 
 
 (iii) This suggests unit root behavior for {hy3t}, which generally invalidates the usual t-
testing procedure. 
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 (iv) We would include three quarterly dummy variables, say Q2t, Q3t, and Q4t, and do an F 
test for joint significance of these variables.  (The F distribution would have 3 and 117 df.) 
 
11.7 (i) We plug the first equation into the second to get 
 
 yt – yt-1 = λ(γ0 + γ1xt + et – yt-1) + at, 

 
and, rearranging, 
 
 yt = λγ0

 + (1 − λ)yt-1 + λγ1xt + at + λet, 

  ≡ β0 + β1yt-1 + β2 xt + ut, 
 
where β0 ≡ λγ0, β1 ≡ (1 − λ), β2 ≡ λγ1, and ut ≡ at + λet. 
 
 (ii) An OLS regression of yt on yt-1 and xt produces consistent, asymptotically normal 
estimators of the βj.  Under E(et|xt,yt-1,xt-1, K ) = E(at|xt,yt-1,xt-1, K ) = 0 it follows that 
E(ut|xt,yt-1,xt-1, K ) = 0, which means that the model is dynamically complete [see equation 
(11.37)].  Therefore, the errors are serially uncorrelated.  If the homoskedasticity assumption 
Var(ut|xt,yt-1) = σ2 holds, then the usual standard errors, t statistics and F statistics are 
asymptotically valid. 
 
 (iii) Because β1 = (1 − λ), if 1β̂ = .7 then λ̂ = .3.  Further, 2β̂ = 1

ˆ ˆλγ , or 1̂γ = 

2β̂ / λ̂ = .2/.3 ≈ .67. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
11.8 (i) The first order autocorrelation for log(invpc) is about .639.  If we first detrend log(invpc) 
by regressing on a linear time trend, 1ρ̂  ≈ .485.  Especially after detrending there is little 
evidence of a unit root in log(invpc).  For log(price), the first order autocorrelation is about .949, 
which is very high.  After detrending, the first order autocorrelation drops to .822, but this is still 
pretty large.  We cannot confidently rule out a unit root in log(price). 
 
 (ii) The estimated equation is 
 
  log( ) = −.853 + 3.88 ∆log(priceˆ tinvpc t) + .0080 t 
    (.040)  (0.96)   (.0016) 

  n  =  41,   R2  =  .501. 
 
The coefficient on Δlog(pricet) implies that a one percentage point increase in the growth in price 
leads to a 3.88 percent increase in housing investment above its trend.  [If Δlog(pricet) = .01 then 
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Δlog( ) = .0388; we multiply both by 100 to convert the proportionate changes to 
percentage changes.] 

ˆ tinvpc

 
 (iii) If we first linearly detrend log(invpct) before regressing it on Δlog(pricet) and the time 
trend, then R2 = .303, which is substantially lower than that when we do not detrend.  Thus,  
∆log(pricet) explains only about 30% of the variation in log(invpct) about its trend. 
 
 (iv) The estimated equation is 
 
  Δlog( ) = .006 + 1.57 Δlog(priceˆ tinvpc t) + .00004t 
    (.048)  (1.14)   (.00190) 

  n  =  41,   R2  =  .048. 
 
The coefficient on Δlog(pricet) has fallen substantially and is no longer significant at the 5% 
level against a positive one-sided alternative.  The R-squared is much smaller; Δlog(pricet) 
explains very little variation in Δlog(invpct).  Because differencing eliminates linear time trends, 
it is not surprising that the estimate on the trend is very small and very statistically insignificant. 
 
11.9 (i) The estimated equation is 
 
  = –.010 + .728 goutphrˆ tghrwage t + .458 goutphrt-1

    (.005)  (.167)   (.166) 

 n  =  39,   R2  =  .493,   2R  = .465. 
 
The t statistic on the lag is about 2.76, so the lag is very significant. 
 
 (ii) We follow the hint and write the LRP as θ = β1 + β2, and then plug β1 = θ  – β2 into the 
original model: 
 
 ghrwaget = β0 + θ goutphrt + β2(goutphrt-1 – goutphrt) + ut. 
 
Therefore, we regress ghrwaget onto goutphrt, and (goutphrt-1 – goutphrt) and obtain the standard 
error for θ̂ .  Doing this regression gives 1.186 [as we can compute directly from part (i)] and 
se(θ̂ ) = .203.  The t statistic for testing H0: θ = 1 is (1.186 – 1)/.203 ≈ .916, which is not 
significant at the usual significance levels (not even 20% against a two-sided alternative). 
 
 (iii) When goutphrt-2 is added to the regression from part (i), and we use the 38 observations 
now available for the regression, 3β̂ ≈ .065 with a t statistic of about .41.  Therefore, goutphrt-2 
need not be in the model. 
 
11.10 (i) The estimated equation is 
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  = .226 + .049 ˆ
treturn 1treturn −  − .0097  2

1treturn −

   (.087)  (.039)   (.0070) 

   n  =  689,   R2  =  .0063. 
 
 (ii) The null hypothesis is H0: β1 = β2 = 0.  Only if both parameters are zero does 
E(returnt|returnt-1) not depend on returnt-1.  The F statistic is about 2.16 with p-value  .116.  
Therefore, we cannot reject H

≈
0 at the 10% level. 

 
 (iii) When we put returnt-1 ⋅ returnt-2 in place of 2

1treturn −  the null can still be stated as in part 
(ii):  no past values of return, or any functions of them, should help us predict returnt.  The R-
squared is about .0052 and F  1.80 with p-value≈ ≈ .166.  Here, we do not reject H0 at even the 
15% level. 
 
 (iv) Predicting returnt based on past returns does not appear promising.  Even though the F 
statistic from part (ii) is almost significant at the 10% level, we have many observations.  We 
cannot even explain 1% of the variation in returnt. 
 
11.11 (i) The estimated equation in first differences is 
 
   = –.078 – .842 Δunem ˆinfΔ
   (.348)  (.314) 

 n  =  48,   R2  =  .135,   2R  = .116. 
 
The coefficient on Δunem has the sign that implies an inflation-unemployment tradeoff, and the 
coefficient is quite large in magnitude.  The t statistic on Δunem is about –2.68, which is very 
significant.  In fact, the estimated coefficient is not statistically different from –1:  (-.842 + 
1)/.314  .5, which would imply a one-for-one tradeoff. ≈
 
 (ii) Based on the R-squareds (or adjusted R-squareds), the model from part (i) explains Δinf 
better than (11.19):  the model with Δunem as the explanatory variable explains about three 
percentage points more of the variation in Δinf. 
 
11.12 (i) The estimated equation is 
 
  = −1.27 − .035 Δpe − .013 ΔpeˆgfrΔ -1 − .111 Δpe-2 + .0079 t 
   (1.05)  (.027)  (.028)  (.027)  (.0242) 

 n  =  69,   R2  =  .234,   2R  = .186. 
 
The time trend coefficient is very insignificant, so it is not needed in the equation. 
 
 (iii) The estimated equation is 
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  = −.650 − .075 Δpe − .051 ΔpeˆgfrΔ -1 + .088 Δpe-2 + 4.84 ww2 - 1.68 pill 
   (.582)  (.032)  (.033)  (.028)  (2.83)  (1.00) 

 n  =  69,   R2  =  .296,   2R  = .240. 
 
The F statistic for joint significance is F = 2.82 with p-value≈ .067.  So ww2 and pill are not 
jointly significant at the 5% level, but they are at the 10% level. 
 
 (iii) By regressing Δgfr on Δpe, (Δpe-1 − Δpe).  (Δpe-2 − Δpe), ww2, and pill, we obtain the 
LRP and its standard error as the coefficient on Δpe:  −.075, se = .032.  So the estimated LRP is 
now negative and significant, which is very different from the equation in levels, (10.19) (the 
estimated LRP was .101 with a t statistic of about 3.37).  This is a good example of how 
differencing variables before including them in a regression can lead to very different 
conclusions than a regression in levels. 
 
[Instructor’s Note:  A variation on this exercise is to start with the model in levels and then 
difference all of the independent variables, including the dummy variables ww2 and pill.] 
 
11.13 (i) The estimated accelerator model is 
 
  = 2.59 + .152 ΔGDPˆ tinvenΔ t

   (3.64)  (.023) 

    n  =  36,   R2  =  .554. 

 
Both inven and GDP are measured in billions of dollars, so a one billion dollar change in GDP 
changes inventory investment by $152 million.  1̂β  is very statistically significant, with t ≈ 6.61. 
 
 (ii) When we add r3t, we obtain 
 
  = 3.00 + .159 ΔGDPˆ tinvenΔ t − .895 r3t

   (3.69)  (.025)  (1.101) 

    n  =  36,   R2  =  .562. 

 
The sign of 2β̂  is negative, as predicted by economic theory, and it seems practically large:  a 

one percentage point increase in r3t reduces inventories by almost $1 billion.  However, 2β̂  is 
not statistically different from zero.  (Its t statistic is less than one in absolute value.) 
 If Δr3t is used instead, the coefficient becomes about −.470, se = 1.540.  So this is even less 
significant than when r3t is in the equation.  But, without more data, we cannot conclude that 
interest rates have a ceteris paribus effect on inventory investment. 
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11.14 (i) If E(gct|It-1) = E(gct) – that is, E(gct|It-1) = does not depend on gct-1, then β1 = 0 in gct = 
β0 + β1gct-1 + ut.  So the null hypothesis is H0: β1 = 0 and the alternative is H1: β1 ≠ 0.  Estimating 
the simple regression using the data in CONSUMP.RAW gives 
 
  = .011 + .446 gc�

tgc t-1

   (.004)  (.156) 

 n  =  35,   R2  =  .199.    
 
The t statistic for 1̂β  is about 2.86, and so we strongly reject the PIH.  The coefficient on gct-1 is 
also practically large, showing significant autocorrelation in consumption growth. 
 
 (ii) When gyt-1 and i3t-1 are added to the regression, the R-squared becomes about .288.  The 
F statistic for joint significance of gyt-1 and i3t-1, obtained using the Stata “test” command, is 1.95, 
with p-value  .16.  Therefore, gy≈ t-1 and i3t-1 are not jointly significant at even the 15% level. 
 
11.15 (i) The estimated AR(1) model is 
 
  = 1.57 + .732 unem�

tunem t-1

    (0.58)  (.097) 

 n  =  48,   R2  =  .554,   σ̂  = 1.049. 
 
In 1996 the unemployment rate was 5.4, so the predicted unemployment rate for 1997 is 
1.57 + .732(5.4)  5.52.  From the 1998 Economic Report of the President (p. 330), the U.S. 
civilian unemployment rate was 4.9.  Therefore, the equation overpredicts the 1997 
unemployment rate by a nontrivial margin. 

≈

 
 (ii) When we add inft-1 to the equation we get 
 
  = 1.30 + .647 unem�

tunem t-1 + .184 inft-1

   (0.49)  (.084)  (.041) 

 n  =  48,   R2  =  .691,   σ̂  = .883. 
 
Lagged inflation is very statistically significant, with a t statistic of almost 4.5. 
 
 (iii) To use the equation from part (ii) to predict unemployment in 1997, we also need the 
inflation rate for 1996.  This is given in PHILLIPS.RAW as 3.0.  Therefore, the prediction of 
unem in 1997 is 1.30 + .647(5.4) + .184(3.0) ≈ 5.35.  This is still too large, but it is closer to 4.9 
than the prediction from part (i). 
 
 (iv) We use the model from part (iii) because inft-1 is very significant.  To use the 95% 
prediction interval from Section 6.4, we assume that unemt has a conditional normal distribution.  
As shown in equation (6.36), we need the standard error of the predicted value as well as the 
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standard error of the regressions.  The latter is given in part (ii), σ̂  = .883.  To obtain the 
standard error of the predicted value, se( 0ŷ ) in the notation of Chapter 6, we need to find the 

standard error of 0β̂  + (5.4) 1̂β  + (3.0) 2β̂ .  We use the method described in Section 6.4:  we run 
the regression unemt on (unemt-1 – 5.4) and (inft-1 – 3.0), and obtain the intercept and standard 
error from this regression.  We know the intercept must be (approximately) 5.35 from part (iii).  
The standard error is about .137.  Therefore, from equation (6.36), 
 

se( 0ŷ )  =  [(.137)2 + (.883)2]1/2 ≈ .894. 
 

Although the OLS estimators are only approximately normally distributed, we use the 97.5th 
percentile from the t distribution with 40 df (this is the closest to the 45 df actually in the 
estimated model).  The 5% critical value for a test against a two-sided alternative is 2.021, so the 
95% prediction for a test against a two-sided alternative is 2.021, so the 95% prediction interval 
for 1997 unemployment is 5.35 ±  2.021(.893), or about 3.54 to 7.16.  The actual income for 
1997, 4.9, is comfortably in this interval.  (If we forget to include σ̂  in obtaining the standard 
error of the future value, the CI would be about 5.07 to 5.62, which excludes 4.9.  But this is not 
the correct prediction interval as it ignores the unobservables that affect unem in 1997.) 
 
[Instructor’s Note:  This problem can be redone using more recent data, reported below in 
Computer Exercise 11.17.] 
 
11.16 (i) The first order autocorrelation for prcfat is .709, which is high but not necessarily a 
cause for concern.  For unem, 1ˆ .950ρ = , which is cause for concern in using unem as an 
explanatory variable in a regression. 
 
 (ii) If we use the first differences of prcfat and unem, but leave all other variables in their 
original form, we get the following: 
 
 �prcf atΔ =  −.127  +  … +    .0068 wkends   +   .0125 unemΔ    
  (.105) (.0072) (.0161) 
 
  −   .0072 spdlaw   +   .0008 bltlaw 
   (.0238) (.0265) 
    
 n = 107,  R2 = .344, 
 
where I have again suppressed the coefficients on the time trend and seasonal dummies.  This 
regression basically shows that the change in prcfat cannot be explained by the change in unem 
or any of the policy variables.  It does have some seasonality, which is why the R-squared is .344. 
 
 (iii) This is an example about how estimation in first differences loses the interesting 
implications of the model estimated in levels.  Of course, this is not to say the levels regression is 
valid.  But, as it turns out, we can reject a unit root in prcfat, and so we can at least justify using 
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it in level form; see Computer Exercise 18.22.  Generally, the issue of whether to take first 
differences is very difficult, even for professional time series econometricians. 
 
11.17 (i) I got the unemployment rates from Table B−43 of the 2001 Economic Report of the 
President and the inflation rates from Table B−63 from the same year.  The numbers are in the 
following table: 
 

Year 1997 1998 1999

unem 4.9 4.5 4.2

inf 2.3 1.6 2.2

 
Using the three new years of data gives the following: 
 
    2.85  −   .520 unemtinfΔ = t

   (1.30) (.220) 
 
   n = 51,  R2 = .103 
 
These estimates are similar to those obtained in equation (11.19), as we would hope.  Both the 
intercept and slope have gotten a little smaller in magnitude. 
 
 (ii) The estimate of the natural rate is obtained as in Example 11.5.  The new estimate is 
2.85/.052 ≈ 5.48, which is slightly smaller than the 5.58 obtained using only the data through 
1996. 
 
 (iii) The first order autocorrelation of unem is about .75.  This is one of those tough cases:  
the correlation between unemt and unemt-1 is large, but it is not especially close to one. 
 
 (iv) As with the earlier data, the model with tunemΔ  as the explanatory variable fits 
somewhat better:   
 
   −.109   −   .829 ˆ tinfΔ = tunemΔ  
   (.329) (.304) 
 
   n = 51,  R2 = .132 
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CHAPTER 12 
 

TEACHING NOTES 
 
Most of this chapter deals with serial correlation, but it also explicitly considers 
heteroskedasticity in time series regressions.  The first section allows a review of what 
assumptions were needed to obtain both finite sample and asymptotic results.  Just as with 
heteroskedasticity, serial correlation itself does not invalidate R-squared.  In fact, if the data are 
stationary and weakly dependent, R-squared and adjusted R-squared consistently estimate the 
population R-squared (which is well-defined under stationarity). 
 
Equation (12.4) is useful for explaining why the usual OLS standard errors are not generally 
valid with AR(1) serial correlation.  It also provides a good starting point for discussing serial 
correlation-robust standard errors in Section 12.5.  The subsection on serial correlation with 
lagged dependent variables is included to debunk the myth that OLS is always inconsistent with 
lagged dependent variables and serial correlation.  I do not teach it to undergraduates, but I do to 
master’s students. 
 
Section 12.2 is somewhat untraditional in that it begins with an asymptotic t test for AR(1) serial 
correlation (under strict exogeneity of the regressors).  It may seem heretical not to give the 
Durbin-Watson statistic its usual prominence, but I do believe the DW test is less useful than the 
t test.  With nonstrictly exogenous regressors I cover only the regression form of Durbin’s test, as 
the h statistic is asymptotically equivalent and not always computable. 
 
Section 12.3, on GLS and FGLS estimation, is fairly standard, although I try to show how 
comparing OLS estimates and FGLS estimates is not so straightforward.  Unfortunately, at the 
beginning level (and even beyond), it is difficult to choose a course of action when they are very 
different. 
 
I do not usually cover Section 12.5 in a first-semester course, but, because some econometrics 
packages routinely compute fully robust standard errors, students can be pointed to Section 12.5 
if they need to learn something about what the corrections do.  I do cover Section 12.5 for a 
master’s level course in applied econometrics (after the first-semester course). 
 
I also do not cover Section 12.6 in class; again, this is more to serve as a reference for more 
advanced students, particularly those with interests in finance.  One important point is that 
ARCH is heteroskedasticity and not serial correlation, something that is confusing in many texts.  
If a model contains no serial correlation, the usual heteroskedasticity-robust statistics are valid.  I 
have a brief subsection on correcting for a known form of heteroskedasticity and AR(1) errors in 
models with strictly exogenous regressors. 
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SOLUTIONS TO PROBLEMS 
 
12.1 We can reason this from equation (12.4) because the usual OLS standard error is an 
estimate of / xSSTσ .  When the dependent and independent variables are in level (or log) form, 
the AR(1) parameter, ρ, tends to be positive in time series regression models.  Further, the 
independent variables tend to be positive correlated, so (xt − x )(xt+j − x ) – which is what 
generally appears in (12.4) when the {xt} do not have zero sample average – tends to be positive 
for most t and j.  With multiple explanatory variables the formulas are more complicated but 
have similar features. 
 If ρ < 0, or if the {xt} is negatively autocorrelated, the second term in the last line of (12.4) 
could be negative, in which case the true standard deviation of 1̂β  is actually less than / xSSTσ . 
 
12.2 This statement implies that we are still using OLS to estimate the βj.  But we are not using 
OLS; we are using feasible GLS (without or with the equation for the first time period).  In other 
words, neither the Cochrane-Orcutt nor the Prais-Winsten estimators are the OLS estimators (and 
they usually differ from each other). 
 
12.3 (i) Because U.S. presidential elections occur only every four years, it seems reasonable to 
think the unobserved shocks – that is, elements in ut – in one election have pretty much 
dissipated four years later.  This would imply that {ut} is roughly serially uncorrelated. 
 
 (ii) The t statistic for H0: ρ = 0 is −.068/.240 ≈ −.28, which is very small.  Further, the 
estimate ρ̂  = −.068 is small in a practical sense, too.  There is no reason to worry about serial 
correlation in this example. 
 
 (iii) Because the test based on ˆtρ  is only justified asymptotically, we would generally be 
concerned about using the usual critical values with n = 20 in the original regression.  But any 
kind of adjustment, either to obtain valid standard errors for OLS as in Section 12.5 or a feasible 
GLS procedure as in Section 12.3, relies on large sample sizes, too.  (Remember, FGLS is not 
even unbiased, whereas OLS is under TS.1 through TS.3.)  Most importantly, the estimate of ρ is 
practically small, too.  With ρ̂  so close to zero, FGLS or adjusting the standard errors would 
yield similar results to OLS with the usual standard errors. 
 
12.4 This is false, and a source of confusion in several textbooks.  (ARCH is often discussed as a 
way in which the errors can be serially correlated.)  As we discussed in Example 12.9, the errors 
in the equation returnt = β0 + β1returnt-1 + ut are serially uncorrelated, but there is strong 
evidence of ARCH; see equation (12.51). 
 
12.5 (i) There is substantial serial correlation in the errors of the equation, and the OLS standard 
errors almost certainly underestimate the true standard deviation in ˆ

EZβ .  This makes the usual 
confidence interval for βEZ and t statistics invalid. 
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 (ii) We can use the method in Section 12.5 to obtain an approximately valid standard error.  
[See equation (12.43).]  While we might use g = 2 in equation (12.42), with monthly data we 
might want to try a somewhat longer lag, maybe even up to g = 12. 
 
12.6 With the strong heteroskedasticity in the errors it is not too surprising that the robust 
standard error for 1̂β  differs from the OLS standard error by a substantial amount:  the robust 
standard error is almost 82% larger.  Naturally, this reduces the t statistic.  The robust t statistic 
is .059/.069  .86, which is even less significant than before.  Therefore, we conclude that, once 
heteroskedasticity is accounted for, there is very little evidence that return

≈
t-1 is useful for 

predicting returnt. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
12.7 Regressing  on , using the 69 available observations, givesˆtu 1ˆtu − ρ̂ ≈ .292 and 
se( ρ̂ ) ≈ .118.  The t statistic is about 2.47, and so there is significant evidence of positive AR(1) 
serial correlation in the errors (even though the variables have been differenced).  This means we 
should view the standard errors reported in equation (11.27) with some suspicion. 
 
12.8 (i) After estimating the FDL model by OLS, we obtain the residuals and run the regression 

 on , using 272 observations.  We get ˆtu 1ˆtu − ρ̂ ≈ .503 and ˆtρ ≈ 9.60, which is very strong 
evidence of positive AR(1) correlation. 
 
 (ii) When we estimate the model by iterated C-O, the LRP is estimated to be about 1.110. 
 
 (iii) We use the same trick as in Problem 11.5, except now we estimate the equation by 
iterated C-O.  In particular, write 
 
 gpricet = α0 + θ0gwaget + δ1(gwaget-1 – gwaget) + δ2(gwaget-2 – gwaget)  

   + K  + δ12(gwaget-12 – gwaget) + ut, 
 
Where θ0 is the LRP and {ut} is assumed to follow an AR(1) process.  Estimating this equation 
by C-O gives 0̂θ ≈ 1.110 and se( 0̂θ )≈ .191.  The t statistic for testing H0: θ0 = 1 is (1.110 – 
1)/.191  .58, which is not close to being significant at the 5% level.  So the LRP is not 
statistically different from one. 

≈

 
12.9 (i) The test for AR(1) serial correlation gives (with 35 observations) ρ̂ ≈ –.110, 
se( ρ̂ )  .175.  The t statistic is well below one in absolute value, so there is no evidence of serial 
correlation in the accelerator model.  If we view the test of serial correlation as a test of dynamic 
misspecification, it reveals no dynamic misspecification in the accelerator model. 

≈

 
 (ii) It is worth emphasizing that, if there is little evidence of AR(1) serial correlation, there is 
no need to use feasible GLS (Cochrane-Orcutt or Prais-Winsten). 
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12.10 (i) After obtaining the residuals  from equation (11.16) and then estimating (12.48), we 

can compute the fitted values  = 4.66 – 1.104 return

ˆtu

t̂h t for each t.  This is easily done in a single 
command using most software packages.  It turns out that 12 of 689 fitted values are negative.  
Among other things, this means we cannot directly apply weighted least squares using the 
heteroskedasticity function in (12.48). 
 
 (ii) When we add  to the equation we get 2

1treturn −

 
  = 3.26 − .789 return2ˆiu t-1 + .297 2

1treturn −  + residualt

   (0.44)  (.196)  (.036) 

 n  =  689,   R2  =  .130. 
 
So the conditional variance is a quadratic in returnt-1, in this case a U-shape that bottoms out 
at .789/[2(.297)]  1.33.  Now, there are no fitted values less than zero. ≈
 
 (iii) Given our finding in part (ii) we can use WLS with the  obtained from the quadratic 

heteroskedasticity function.  When we apply WLS to equation (12.47) we obtain 
t̂h

0β̂ ≈ .155 

(se≈ .078) and 1̂β ≈ .039 (se  .046).  So the coefficient on return≈ t-1, once weighted least 
squares has been used, is even less significant (t statistic ≈ .85) than when we used OLS. 
 
 (iv) To obtain the WLS using an ARCH variance function we first estimate the equation in 
(12.51) and obtain the fitted values, .  The WLS estimates are now t̂h 0β̂ ≈ .159 (se  .076) and ≈

1̂β ≈ .024 (se ≈ .047).  The coefficient and t statistic are even smaller.  Therefore, once we 
account for heteroskedasticity via one of the WLS methods, there is virtually no evidence that 
E(returnt|returnt-1) depends linearly on returnt-1. 
 
12.11 (i) Using the data only through 1992 gives 
 
  = .441 − .473 partyWH + .479 incum + .059 partyWH ⋅gnews �demwins
   (.107) (.354)  (.205)  (.036) 

      − .024 partyWH ⋅ inf 
    (.028) 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
The largest t statistic is on incum, which is estimated to have a large effect on the probability of 
winning.  But we must be careful here.  incum is equal to 1 if a Democratic incumbent is running 
and –1 if a Republican incumbent is running.  Similarly, partyWH is equal to 1 if a Democrat is 
currently in the White House and –1 if a Republican is currently in the White House.  So, for an 
incumbent Democrat running, we must add the coefficients on partyWH and incum together, and 
this nets out to about zero. 
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 The economic variables are less statistically significant than in equation (10.23).  The gnews 
interaction has a t statistic of about 1.64, which is significant at the 10% level against a one-sided 
alternative.  (Since the dependent variable is binary, this is a case where we must appeal to 
asymptotics.  Unfortunately, we have only 20 observations.)  The inflation variable has the 
expected sign but is not statistically significant. 
 
 (ii) There are two fitted values less than zero, and two fitted values greater than one. 
 
 (iii) Out of the 10 elections with demwins = 1, 8 of these are correctly predicted.  Out of the 
10 elections with demwins = 0, 7 are correctly predicted.  So 15 out of 20 elections through 1992 
are correctly predicted.  (But, remember, we used data from these years to obtain the estimated 
equation.) 
 
 (iv) The explanatory variables are partyWH = 1, incum = 1, gnews = 3, and inf = 3.019.  
Therefore, for 1996, 
 

    =   .441  −  .473  +  .479  +  .059(3)  −  .024(3.019)  .552. �demwins ≈
 
Because this is above .5, we would have predicted that Clinton would win the 1996 election, as 
he did. 
 
 (v) The regression of  on  produces ˆtu 1ˆtu − ρ̂  ≈ -.164 with heteroskedasticity-robust standard 
error of about .195.  (Because the LPM contains heteroskedasticity, testing for AR(1) serial 
correlation in an LPM generally requires a heteroskedasticity-robust test.)  Therefore, there is 
little evidence of serial correlation in the errors.  (And, if anything, it is negative.) 
 
 (vi) The heteroskedasticity-robust standard errors are given in [ ⋅ ] below the usual standard 
errors: 
 
   = .441   − .473 partyWH   + .479 incum  + .059 partyWH gnews �demwins ⋅
  (.107) (.354) (.205) (.036) 
  [.086] [.301] [.185] [.030] 

      – .024 partyWH ⋅ inf 
    (.028) 
    [.019] 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
In fact, all heteroskedasticity-robust standard errors are less than the usual OLS standard errors, 
making each variable more significant.  For example, the t statistic on partyWH gnews becomes 
about 1.97, which is notably above 1.64.  But we must remember that the standard errors in the 
LPM have only asymptotic justification.   With only 20 observations it is not clear we should 
prefer the heteroskedasticity-robust standard errors to the usual ones. 

⋅
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12.12 (i) The regression  on  (with 35 observations) gives ˆtu 1ˆtu − ρ̂ ≈ −.089 and se( ρ̂ )  .178; 
there is no evidence of AR(1) serial correlation in this equation, even though it is a static model 
in the growth rates. 

≈

 
 (ii) We regress gct on gct-1 and obtain the residuals .  Then, we regress  on gcˆtu 2ˆtu t-1 and 

(using 35 observations), the F statistic (with 2 and 32 df) is about 1.08.  The p-value is 
about .352, and so there is little evidence of heteroskedasticity in the AR(1) model for gc

2
1tgc −

t.  This 
means that we need not modify our test of the PIH by correcting somehow for heteroskedasticity. 
 
12.13 (i) The iterated Prais-Winsten estimates are given below.  The estimate of ρ is, to three 
decimal places, .293, which is the same as the estimate used in the final iteration of Cochrane-
Orcutt: 
 
    −37.08  +   2.94 log(chempi)  +   1.05 log(gas)  +   1.13 log(rtwex) �log ( )chnimp =
  (22.78) (.63) (.98) (.51) 
 

− .016 befile6  −  .033 affile6  −  .577 afdec6 
 (.319) (.322) (.342) 

 
 n = 131,  R2 = .202 
 
 (ii) Not surprisingly, the C-O and P-W estimates are quite similar.  To three decimal places, 
they use the same value of ρ̂  (to four decimal places it is .2934 for C-O and .2932 for P-W).  
The only practical difference is that P-W uses the equation for t = 1.  With n = 131, we hope this 
makes little difference. 
 
12.14 (i) This is the model that was estimated in part (vi) of Computer Exercise 10.17.  After 
getting the OLS residuals, , we run the regression ˆtu 1垐on , 2,...,108.t tu u t− =   (Included an 
intercept, but that is unimportant.)  The coefficient on 1ˆtu −  is ρ̂ = .281 (se = .094).  Thus, there is 
evidence of some positive serial correlation in the errors (t ≈ 2.99).  I strong case can be made 
that all explanatory variables are strictly exogenous.  Certainly there is no concern about the time 
trend, the seasonal dummy variables, or wkends, as these are determined by the calendar.  It is 
seems safe to assume that unexplained changes in prcfat today do not cause future changes in the 
state-wide unemployment rate.  Also, over this period, the policy changes were permanent once 
they occurred, so strict exogeneity seems reasonable for spdlaw and beltlaw.  (Given legislative 
lags, it seems unlikely that the dates the policies went into effect had anything to do with recent, 
unexplained changes in prcfat. 
 
 (ii) Remember, we are still estimating the βj by OLS, but we are computing different 
standard errors that have some robustness to serial correlation.  Using Stata 7.0, I get 

 and .  The t statistic for 
spdlaw has fallen to about 2.5, but it is still significant.  Now, the t statistic on beltlaw is less than 
one in absolute value, so there is little evidence that beltlaw had an effect on prcfat. 

垐 .0671,  se( ) .0267spdlaw spdlawβ β= = 垐 .0295,  se( ) .0331beltlaw beltlawβ β= − =
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 (iii) For brevity, I do not report the time trend and monthly dummies.  The final estimate of ρ 
is ˆ .289 :ρ =   
 
  1.009  +  … +    .00062 wkends   −   .0132 unem   �prcf at =
  (.102) (.00500) (.0055) 
 
  +   .0641 spdlaw   −   .0248 beltlaw 
   (.0268) (.0301) 
    
 n = 108,  R2 = .641 
 
There are no drastic changes.  Both policy variable coefficients get closer to zero, and the 
standard errors are bigger than the incorrect OLS standard errors [and, coincidentally, pretty 
close to the Newey-West standard errors for OLS from part (ii)].  So the basic conclusion is the 
same:  the increase in the speed limit appeared to increase prcfat, but the seat belt law, while it is 
estimated to decrease prcfat, does not have a statistically significant effect. 
 
12.15 (i) Here are the OLS regression results: 
 
     −.073  −  .0040 t  −   .0101 mon  −   .0088 tues  +   .0376 wed  +  .0906 thurs �log ( )avgprc =
  (.115) (.0014) (.1294) (.1273) (.1257) (.1257) 
 
  n = 97,  R2 = .086 
 
The test for joint significance of the day-of-the-week dummies is F = .23, which gives p-value 
= .92.  So there is no evidence that the average price of fish varies systematically within a week. 
 
 (ii) The equation is  
 
     −.920  −  .0012 t  −   .0182 mon  −   .0085 tues  +   .0500 wed  +  .1225 thurs �log ( )avgprc =
  (.190) (.0014) (.1141) (.1121) (.1117) (.1110) 
 
  +  .0909 wave2  +   .0474 wave3 
  (.0218) (.0208) 
 
  n = 97,  R2 = .310 
 
Each of the wave variables is statistically significant, with wave2 being the most important.  
Rough seas (as measured by high waves) would reduce the supply of fish (shift the supply curve 
back), and this would result in a price increase.  One might argue that bad weather reduces the 
demand for fish at a market, too, but that would reduce price.  If there are demand effects 
captured by the wave variables, they are being swamped by the supply effects. 
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 (iii) The time trend coefficient becomes much smaller and statistically insignificant.  We can 
use the omitted variable bias table from Chapter 3, Table 3.2 (page 92) to determine what is 
probably going on.  Without wave2 and wave3, the coefficient on t seems to have a downward 
bias.  Since we know the coefficients on wave2 and wave3 are positive, this means the wave 
variables are negatively correlated with t.  In other words, the seas were rougher, on average, at 
the beginning of the sample period.  (You can confirm this by regressing wave2 on t and wave3 
on t.) 
 
 (iv) The time trend and daily dummies are clearly strictly exogenous, as they are just 
functions of time and the calendar.  Further, the height of the waves is not influenced by past 
unexpected changes in log(avgprc). 
 
 (v) We simply regress the OLS residuals on one lag, getting ˆ垐 .618,se( ) .081, 7.63.tρρ ρ= = =   
Therefore, there is strong evidence of positive serial correlation. 
 
 (vi) The Newey-West standard errors are  Given the 
significant amount of AR(1) serial correlation in part (v), it is somewhat surprising that these 
standard errors are not much larger compared with the usual, incorrect standard errors.  In fact, 
the Newey-West standard error for is actually smaller than the OLS standard error. 

2 3
垐se( ) .0234 and se( ) .0195.wave waveβ β= =

3
ˆ

waveβ
 
 (vii) The Prais-Winsten estimates are  
 
     −.658  −  .0007 t  +   .0099 mon  +   .0025 tues  +   .0624 wed  +  .1174 thurs �log ( )avgprc =
  (.239) (.0029) (.0652) (.0744) (.0746) (.0621) 
 
  +  .0497 wave2  +   .0323 wave3 
  (.0174) (.0174) 
 
  n = 97,  R2 = .135 
 
The coefficient on wave2 drops by a nontrivial amount, but it still has a t statistic of almost 3.  
The coefficient on wave3 drops by a relatively smaller amount, but its t statistic (1.86) is 
borderline significant.  The final estimate of ρ is about .687. 
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CHAPTER 13 
 

TEACHING NOTES 
 
While this chapter falls under “Advanced Topics,” most of this chapter requires no more 
sophistication than the previous chapters.  (In fact, I would argue that, with the possible 
exception of Section 13.5, this material is easier than some of the time series chapters.) 
 
Pooling two or more independent cross sections is a straightforward extension of cross-sectional 
methods.  Nothing new needs to be done in stating assumptions, except possibly mentioning that 
random sampling in each time period is sufficient.  The practically important issue is allowing 
for different intercepts, and possibly different slopes, across time. 
 
The natural experiment material and extensions of the difference-in-differences estimator is 
widely applicable and, with the aid of the examples, easy to understand. 
 
Two years of panel data are often available, in which case differencing across time is a simple 
way of removing g unobserved heterogeneity.  If you have covered Chapter 9, you might 
compare this with a regression in levels using the second year of data, but where a lagged 
dependent variable is included.  (The second approach only requires collecting information on 
the dependent variable in a previous year.)  These often give similar answers.  Two years of 
panel data, collected before and after a policy change, can be very powerful for policy analysis. 
 
Having more than two periods of panel data causes slight complications in that the errors in the 
differenced equation may be serially correlated.  (However, the traditional assumption that the 
errors in the original equation are serially uncorrelated is not always a good one.  In other words, 
it is not always more appropriate to used fixed effects, as in Chapter 14, than first differencing.)  
With large N and relatively small T, a simple way to account for possible serial correlation after 
differencing is to compute standard errors that are robust to arbitrary serial correlation and 
heteroskedasticity.  Econometrics packages that do cluster analysis (such as Stata) often allow 
this by specifying each cross-sectional unit as its own cluster. 
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SOLUTIONS TO PROBLEMS 
 
13.1 Without changes in the averages of any explanatory variables, the average fertility rate fell 
by .545 between 1972 and 1984; this is simply the coefficient on y84.  To account for the 
increase in average education levels, we obtain an additional effect:  –.128(13.3 – 12.2) ≈ –.141.  
So the drop in average fertility if the average education level increased by 1.1 is .545 
+ .141 = .686, or roughly two-thirds of a child per woman. 
 
13.2 The first equation omits the 1981 year dummy variable, y81, and so does not allow any 
appreciation in nominal housing prices over the three year period in the absence of an incinerator.  
The interaction term in this case is simply picking up the fact that even homes that are near the 
incinerator site have appreciated in value over the three years.  This equation suffers from 
omitted variable bias.  
 The second equation omits the dummy variable for being near the incinerator site, nearinc, 
which means it does not allow for systematic differences in homes near and far from the site 
before the site was built.  If, as seems to be the case, the incinerator was located closer to less 
valuable homes, then omitting nearinc attributes lower housing prices too much to the 
incinerator effect.  Again, we have an omitted variable problem.  This is why equation (13.9) (or, 
even better, the equation that adds a full set of controls), is preferred. 
 
13.3 We do not have repeated observations on the same cross-sectional units in each time period, 
and so it makes no sense to look for pairs to difference.  For example, in Example 13.1, it is very 
unlikely that the same woman appears in more than one year, as new random samples are 
obtained in each year.  In Example 13.3, some houses may appear in the sample for both 1978 
and 1981, but the overlap is usually too small to do a true panel data analysis. 
 
13.4 The sign of β1 does not affect the direction of bias in the OLS estimator of 1β , but only 
whether we underestimate or overestimate the effect of interest.  If we write Δcrmrtei = δ0 + 
β1Δunemi + Δui, where Δui and Δunemi are negatively correlated, then there is a downward bias 
in the OLS estimator of β1.  Because β1 > 0, we will tend to underestimate the effect of 
unemployment on crime. 
 
13.5 No, we cannot include age as an explanatory variable in the original model.  Each person in 
the panel data set is exactly two years older on January 31, 1992 than on January 31, 1990.  This 
means that ∆agei = 2 for all i.  But the equation we would estimate is of the form 
 

Δsavingi  =  δ0 + β1Δagei + …, 
 

where δ0 is the coefficient the year dummy for 1992 in the original model.  As we know, when 
we have an intercept in the model we cannot include an explanatory variable that is constant 
across i; this violates Assumption MLR.3.  Intuitively, since age changes by the same amount for 
everyone, we cannot distinguish the effect of age from the aggregate time effect. 
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13.6 (i) Let FL be a binary variable equal to one if a person lives in Florida, and zero otherwise.  
Let y90 be a year dummy variable for 1990.  Then, from equation (13.10), we have the linear 
probability model 
 

arrest  =  β0 + δ0y90 + β1FL + δ1y90⋅FL  + u. 
 

The effect of the law is measured by δ1, which is the change in the probability of drunk driving 
arrest due to the new law in Florida.  Including y90 allows for aggregate trends in drunk driving 
arrests that would affect both states; including FL allows for systematic differences between 
Florida and Georgia in either drunk driving behavior or law enforcement. 
 
 (ii) It could be that the populations of drivers in the two states change in different ways over 
time.  For example, age, race, or gender distributions may have changed.  The levels of education 
across the two states may have changed.  As these factors might affect whether someone is 
arrested for drunk driving, it could be important to control for them.  At a minimum, there is the 
possibility of obtaining a more precise estimator of δ1 by reducing the error variance.  Essentially, 
any explanatory variable that affects arrest can be used for this purpose.  (See Section 6.3 for 
discussion.) 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
13.7 (i) The F statistic (with 4 and 1,111 df) is about 1.16 and p-value ≈ .328, which shows that 
the living environment variables are jointly insignificant. 
 
 (ii) The F statistic (with 3 and 1,111 df) is about 3.01 and p-value ≈ .029, and so the region 
dummy variables are jointly significant at the 5% level. 
 
 (iii) After obtaining the OLS residuals, , from estimating the model in Table 13.1, we run 
the regression  on y74, y76, …,  y84 using all 1,129 observations.  The null hypothesis of 
homoskedasticity is H

û
2û

0: γ1 = 0, γ2 = 0, … , γ6 = 0.  So we just use the usual F statistic for joint 
significance of the year dummies.  The R-squared is about .0153 and F ≈ 2.90; with 6 and 1,122 
df, the p-value is about .0082.  So there is evidence of heteroskedasticity that is a function of 
time at the 1% significance level.  This suggests that, at a minimum, we should compute 
heteroskedasticity-robust standard errors, t statistics, and F statistics.  We could also use 
weighted least squares (although the form of heteroskedasticity used here may not be sufficient; 
it does not depend on educ, age, and so on). 
 
 (iv) Adding y74 ⋅ educ, K , y84 ⋅ educ allows the relationship between fertility and education 
to be different in each year; remember, the coefficient on the interaction gets added to the 
coefficient on educ to get the slope for the appropriate year. When these interaction terms are 
added to the equation, R2  .137.  The F statistic for joint significance (with 6 and 1,105 df) is 
about 1.48 with p-value  .18.  Thus, the interactions are not jointly significant at even the 10% 
level.  This is a bit misleading, however.  An abbreviated equation (which just shows the 
coefficients on the terms involving educ) is 

≈
≈
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�kids  = −8.48 − .023 educ + K  − .056 y74 ⋅ educ − .092 y76 educ  ⋅

  (3.13)  (.054)   (.073)  (.071) 

 − .152 y78 ⋅ educ − .098 y80 ⋅ educ − .139 y82 ⋅ educ − .176 y84 ⋅ educ. 
  (.075)    (.070)  (.068)  (.070) 
 

Three of the interaction terms, y78 educ, y82⋅ ⋅ educ, and y84 ⋅ educ are statistically significant at 
the 5% level against a two-sided alternative, with the p-value on the latter being about .012.  The 
coefficients are large in magnitude as well.  The coefficient on educ – which is for the base year, 
1972 – is small and insignificant, suggesting little if any relationship between fertility and 
education in the early seventies.  The estimates above are consistent with fertility becoming more 
linked to education as the years pass.  The F statistic is insignificant because we are testing some 
insignificant coefficients along with some significant ones. 
 
13.8 (i) The coefficient on y85 is roughly the proportionate change in wage for a male (female = 
0) with zero years of education (educ = 0).  This is not especially useful since we are not 
interested in people with no education. 
 
 (ii) What we want to estimate is θ0 = δ0 + 12δ1; this is the change in the intercept for a male 
with 12 years of education, where we also hold other factors fixed.  If we write δ0 = θ0 − 12δ1, 
plug this into (13.1), and rearrange, we get 
 
 log(wage) = β0 + θ0y85 + β1educ + δ1y85 ⋅ (educ – 12) + β2exper + β3exper2

   + β4union + β5female + δ5y85 ⋅ female + u. 
 
Therefore, we simply replace y85 educ with y85⋅ ⋅ (educ – 12), and then the coefficient and 
standard error we want is on y85.  These turn out to be 0̂θ  =  .339 and se( 0̂θ ) = .034.  Roughly, 
the nominal increase in wage is 33.9%, and the 95% confidence interval is 33.9 ± 1.96(3.4), or 
about 27.2% to 40.6%.  (Because the proportionate change is large, we could use equation (7.10), 
which implies the point estimate 40.4%; but obtaining the standard error of this estimate is 
harder.) 
 
 (iii) Only the coefficient on y85 differs from equation (13.2).  The new coefficient is about  
–.383 (se ≈ .124).  This shows that real wages have fallen over the seven year period, although 
less so for the more educated.  For example, the proportionate change for a male with 12 years of 
education is –.383 + .0185(12) = −.161, or a fall of about 16.1%.  For a male with 20 years of 
education there has been almost no change [–.383 + .0185(20) = –.013]. 
 
 (iv) The R-squared when log(rwage) is the dependent variable is .356, as compared with .426 
when log(wage) is the dependent variable.  If the SSRs from the regressions are the same, but the 
R-squareds are not, then the total sum of squares must be different.  This is the case, as the 
dependent variables in the two equations are different. 
 

 111



 (v) In 1978, about 30.6% of workers in the sample belonged to a union.  In 1985, only about 
18% belonged to a union.  Therefore, over the seven-year period, there was a notable fall in 
union membership. 
 
 (vi) When y85 ⋅union is added to the equation, its coefficient and standard error are about 
−.00040 (se  .06104).  This is practically very small and the t statistic is almost zero.  There has 
been no change in the union wage premium over time. 

≈

 
 (vii) Parts (v) and (vi) are not at odds.  They imply that while the economic return to union 
membership has not changed (assuming we think we have estimated a causal effect), the fraction 
of people reaping those benefits has fallen. 
 
13.9 (i) Other things equal, homes farther from the incinerator should be worth more, so δ1 > 0.  
If β1 > 0, then the incinerator was located farther away from more expensive homes. 
 
 (ii) The estimated equation is 
 
  = 8.06 − .011 y81 + .317 log(dist) + .048 y81 ⋅ log(dist) �log ( )price
   (0.51)  (.805)  (.052)  (.082) 

 n  =  321,   R2  =  .396,   2R  = .390. 
 
While 1̂δ  = .048 is the expected sign, it is not statistically significant (t statistic  .59). ≈
 
 (iii) When we add the list of housing characteristics to the regression, the coefficient on 
y81 ⋅ log(dist) becomes .062 (se = .050).  So the estimated effect is larger – the elasticity of price 
with respect to dist is .062 after the incinerator site was chosen – but its t statistic is only 1.24.  
The p-value for the one-sided alternative H1: δ1 > 0 is about .108, which is close to being 
significant at the 10% level. 
 
13.10 (i) In addition to male and married, we add the variables head, neck, upextr, trunk, 
lowback, lowextr, and occdis for injury type, and manuf and construc for industry.  The 
coefficient on afchnge ⋅highearn becomes .231 (se ≈ .070), and so the estimated effect and t 
statistic are now larger than when we omitted the control variables.  The estimate .231 implies a 
substantial response of durat to the change in the cap for high-earnings workers. 
 
 (ii) The R-squared is about .041, which means we are explaining only a 4.1% of the variation 
in log(durat).  This means that there are some very important factors that affect log(durat) that 
we are not controlling for.  While this means that predicting log(durat) would be very difficult 
for a particular individual, it does not mean that there is anything biased about 1̂δ :  it could still 
be an unbiased estimator of the causal effect of changing the earnings cap for workers’ 
compensation. 
 
 (iii) The estimated equation using the Michigan data is 
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  = 1.413 + .097 afchnge + .169 highearn + .192 afchnge highearn �log ( )durat ⋅
     (0.057)  (.085)  (.106)  (.154) 

 n  =  1,524,   R2  =  .012. 
 
The estimate of δ1, .192, is remarkably close to the estimate obtained for Kentucky (.191).  
However, the standard error for the Michigan estimate is much higher (.154 compared with .069).  
The estimate for Michigan is not statistically significant at even the 10% level against δ1 > 0.  
Even though we have over 1,500 observations, we cannot get a very precise estimate.  (For 
Kentucky, we have over 5,600 observations.) 
 
13.11 (i) Using pooled OLS we obtain  
 
  = −.569 + .262 d90 + .041 log(pop) + .571 log(avginc) +  .0050 pctstu �log ( )rent
     (.535)  (.035)  (.023)  (.053)  (.0010) 

 n  =  128,   R2  =  .861. 
 
The positive and very significant coefficient on d90 simply means that, other things in the 
equation fixed, nominal rents grew by over 26% over the 10 year period.  The coefficient on 
pctstu means that a one percentage point increase in pctstu increases rent by half a percent (.5%).  
The t statistic of five shows that, at least based on the usual analysis, pctstu is very statistically 
significant. 
 
 (ii) The standard errors from part (i) are not valid, unless we thing ai does not really appear in 
the equation.  If ai is in the error term, the errors across the two time periods for each city are 
positively correlated, and this invalidates the usual OLS standard errors and t statistics. 
 
 (iii) The equation estimated in differences is 
 
  = .386 + .072 Δlog(pop) + .310 log(avginc) +  .0112 Δpctstu �log ( )rentΔ
    (.037)  (.088)  (.066)  (.0041) 

 n  =  64,   R2  =  .322. 
 
Interestingly, the effect of pctstu is over twice as large as we estimated in the pooled OLS 
equation.  Now, a one percentage point increase in pctstu is estimated to increase rental rates by 
about 1.1%.  Not surprisingly, we obtain a much less precise estimate when we difference 
(although the OLS standard errors from part (i) are likely to be much too small because of the 
positive serial correlation in the errors within each city).  While we have differenced away ai, 
there may be other unobservables that change over time and are correlated with Δpctstu. 
 
 (iv) The heteroskedasticity-robust standard error on Δpctstu is about .0028, which is actually 
much smaller than the usual OLS standard error.  This only makes pctstu even more significant 
(robust t statistic ≈ 4).  Note that serial correlation is no longer an issue because we have no time 
component in the first-differenced equation. 
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13.12 (i) You may use an econometrics software package that directly tests restrictions such as 
H0: β1 = β2 after estimating the unrestricted model in (13.22).  But, as we have seen many times, 
we can simply rewrite the equation to test this using any regression software.  Write the 
differenced equation as 
 

Δlog(crime)  =  δ0 + β1Δclrprc-1 + β2Δclrprc-2 + Δu. 
 

Following the hint, we define θ1 = β1 − β2, and then write β1 = θ1 + β2.  Plugging this into the 
differenced equation and rearranging gives 
 

Δlog(crime)  =  δ0 + θ1Δclrprc-1 + β2(Δclrprc-1 + Δclrprc-2) + Δu. 
 

Estimating this equation by OLS gives 1̂θ = .0091, se( 1̂θ ) = .0085.  The t statistic for H0: β1 = β2 
is .0091/.0085  1.07, which is not statistically significant. ≈
 
 (ii) With β1 = β2 the equation becomes (without the i subscript) 
 

Δlog(crime)  =  δ0 + β1(Δclrprc-1 + Δclrprc-2) + Δu 

                    = δ0 + δ1[(Δclrprc-1 + Δclrprc-2)/2] + Δu, 
 
where δ1 = 2β1.  But (Δclrprc-1 + Δclrprc-2)/2 = Δavgclr. 
 
 (iii) The estimated equation is 
 
  = .099 − .0167 Δavgclr �log ( )crimeΔ
   (.063)  (.0051) 

 n  =  53,   R2  =  .175,   2R  = .159. 
 
Since we did not reject the hypothesis in part (i), we would be justified in using the simpler 
model with avgclr.  Based on adjusted R-squared, we have a slightly worse fit with the restriction 
imposed.  But this is a minor consideration.  Ideally, we could get more data to determine 
whether the fairly different unconstrained estimates of β1 and β2 in equation (13.22) reveal true 
differences in β1 and β2. 
 
13.13 (i) Pooling across semesters and using OLS gives 
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  = −1.75 − .058 spring + .00170 sat − .0087 hsperc �trmg pa
   (0.35)  (.048)  (.00015)  (.0010) 

  + .350 female − .254 black − .023 white − .035 frstsem 
   (.052)  (.123)  (.117)  (.076) 

  − .00034 tothrs + 1.048 crsgpa − .027 season 
   (.00073)  (0.104)    (.049) 

 n  =  732,   R2  =  .478,   2R  = .470. 
 
The coefficient on season implies that, other things fixed, an athlete’s term GPA is about .027 
points lower when his/her sport is in season.  On a four point scale, this a modest effect (although 
it accumulates over four years of athletic eligibility).  However, the estimate is not statistically 
significant (t statistic  −.55). ≈
 
 (ii) The quick answer is that if omitted ability is correlated with season then, as we know 
form Chapters 3 and 5, OLS is biased and inconsistent.  The fact that we are pooling across two 
semesters does not change that basic point. 
 If we think harder, the direction of the bias is not clear, and this is where pooling across 
semesters plays a role.  First, suppose we used only the fall term, when football is in season.  
Then the error term and season would be negatively correlated, which produces a downward bias 
in the OLS estimator of βseason.  Because βseason is hypothesized to be negative, an OLS regression 
using only the fall data produces a downward biased estimator.  [When just the fall data are used, 
ˆ

seasonβ  = −.116 (se = .084), which is in the direction of more bias.]  However, if we use just the 
spring semester, the bias is in the opposite direction because ability and season would be positive 
correlated (more academically able athletes are in season in the spring).  In fact, using just the 
spring semester gives ˆ

seasonβ  = .00089 (se = .06480), which is practically and statistically equal 
to zero.  When we pool the two semesters we cannot, with a much more detailed analysis, 
determine which bias will dominate. 
 
 (iii) The variables sat, hsperc, female, black, and white all drop out because they do not vary 
by semester.  The intercept in the first-differenced equation is the intercept for the spring.  We 
have 
 
  = −.237 + .019 Δfrstsem + .012 Δtothrs + 1.136 Δcrsgpa − .065 season �trmg paΔ
   (.206)  (.069)  (.014)  (0.119)  (.043) 

 n  =  366,   R2  =  .208,   2R  = .199. 
 
Interestingly, the in-season effect is larger now:  term GPA is estimated to be about .065 points 
lower in a semester that the sport is in-season.  The t statistic is about –1.51, which gives a one-
sided p-value of about .065. 
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 (iv) One possibility is a measure of course load.  If some fraction of student-athletes take a 
lighter load during the season (for those sports that have a true season), then term GPAs may 
tend to be higher, other things equal.  This would bias the results away from finding an effect of 
season on term GPA. 
 
13.14 (i) The estimated equation using differences is 
 
  = −2.56 − 1.29 Δlog(inexp) − .599 Δlog(chexp) + .156 Δincshr  �voteΔ
   (0.63)  (1.38)  (.711)  (.064) 

 n  =  157,   R2  =  .244,   2R  = .229. 
 
Only Δincshr is statistically significant at the 5% level (t statistic ≈ 2.44, p-value  .016).  The 
other two independent variables have t statistics less than one in absolute value. 

≈

 
 (ii) The F statistic (with 2 and 153 df) is about 1.51 with p-value ≈ .224.  Therefore, 
Δlog(inexp) and Δlog(chexp) are jointly insignificant at even the 20% level. 
 
 (iii) The simple regression equation is 
 
  = −2.68 + .218 Δincshr  �voteΔ
   (0.63)  (.032) 

 n  =  157,   R2  =  .229,   2R  = .224. 
 
This equation implies that a 10 percentage point increase in the incumbent’s share of total 
spending increases the percent of the incumbent’s vote by about 2.2 percentage points. 
 
 (iv) Using the 33 elections with repeat challengers we obtain 
 
  = −2.25 + .092 Δincshr  �voteΔ
   (1.00)  (.085) 

 n  =  33,   R2  =  .037,   2R  = .006. 
 
The estimated effect is notably smaller and, not surprisingly, the standard error is much larger 
than in part (iii).  While the direction of the effect is the same, it is not statistically significant (p-
value ≈ .14 against a one-sided alternative). 
 
13.15 (i) When we add the changes of the nine log wage variables to equation (13.33) we obtain 
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  = .020 − .111 d83 − .037 d84 − .0006 d85 + .031 d86 + .039 d87  �log ( )crmrteΔ
   (.021)  (.027)  (.025)  (.0241)  (.025)  (.025) 

  − .323 Δlog(prbarr) − .240 Δlog(prbconv) − .169 Δlog(prbpris) 
   (.030)  (.018)  (.026) 

  − .016 Δlog(avgsen) + .398 Δlog(polpc) − .044 Δlog(wcon)  
   (.022)  (.027)  (.030) 

  + .025 Δlog(wtuc)  − .029 Δlog(wtrd) + .0091 Δlog(wfir)     
   (0.14)  (.031)  (.0212) 

  + .022 Δlog(wser) − .140 Δlog(wmfg) − .017 Δlog(wfed) 
   (.014)  (.102)  (.172) 

  − .052 Δlog(wsta) − .031 Δlog(wloc) 
   (.096)  (.102) 

 n  =  540,   R2  =  .445,   2R  = .424. 
 
The coefficients on the criminal justice variables change very modestly, and the statistical 
significance of each variable is also essentially unaffected. 
 
 (ii) Since some signs are positive and others are negative, they cannot all really have the 
expected sign.  For example, why is the coefficient on the wage for transportation, utilities, and 
communications (wtuc) positive and marginally significant (t statistic ≈ 1.79)?  Higher 
manufacturing wages lead to lower crime, as we might expect, but, while the estimated 
coefficient is by far the largest in magnitude, it is not statistically different from zero (t 
statistic  –1.37).  The F test for joint significance of the wage variables, with 9 and 529 df, 
yields F ≈ 1.25 and p-value  .26. 

≈
≈

 
13.16 (i) The estimated equation using the 1987 to 1988 and 1988 to 1989 changes, where we 
include a year dummy for 1989 in addition to an overall intercept, is 
 
  = –.740 + 5.42 d89 + 32.60 Δgrant + 2.00 ΔgrantˆhrsempΔ -1 + .744 Δlog(employ) 
   (1.942)  (2.65)  (2.97)  (5.55)  (4.868) 

 n  =  251,   R2  =  .476,   2R  = .467. 
  
There are 124 firms with both years of data and three firms with only one year of data used, for a 
total of 127 firms; 30 firms in the sample have missing information in both years and are not 
used at all.  If we had information for all 157 firms, we would have 314 total observations in 
estimating the equation. 
 
 (ii) The coefficient on grant – more precisely, on Δgrant in the differenced equation – means 
that if a firm received a grant for the current year, it trained each worker an average of 32.6 hours 
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more than it would have otherwise.  This is a practically large effect, and the t statistic is very 
large. 
 
 (iii) Since a grant last year was used to pay for training last year, it is perhaps not surprising 
that the grant does not carry over into more training this year.  It would if inertia played a role in 
training workers. 
 
 (iv) The coefficient on the employees variable is very small:  a 10% increase in employ 
increases hours per employee by only .074.  [Recall: �hrsempΔ ≈ (.744/100)(%Δemploy).]  This 
is very small, and the t statistic is also rather small. 
 
13.17. (i) Take changes as usual, holding the other variables fixed: Δmath4it = β1Δlog(rexppit) = 
(β1/100)⋅[ 100⋅Δlog(rexppit)] ≈ (β1/100)⋅( %Δrexppit).  So, if %Δrexppit = 10, then Δmath4it = 
(β1/100)⋅(10) = β1/10. 
 
 (ii) The equation, estimated by pooled OLS in first differences (except for the year dummies), 
is  
 
   =  5.95  +   .52 y94  +  6.81 y95   −   5.23 y96   −   8.49 y97   +   8.97 y98 � 4mathΔ
  (.52) (.73) (.78) (.73) (.72) (.72) 
 
  −  3.45 Δlog(rexpp)  +  .635 Δlog(enroll)    +   .025 Δlunch 
  (2.76) (1.029) (.055) 
 
 n  =  3,300,   R2  =  .208. 
 
Taken literally, the spending coefficient implies that a 10% increase in real spending per pupil 
decreases the math4 pass rate by about 3.45/10 ≈ .35 percentage points. 
 
 (iii) When we add the lagged spending change, and drop another year, we get  
 
   =  6.16  +  5.70 y95   −  6.80 y96   −   8.99 y97   +   8.45 y98 � 4mathΔ
  (.55) (.77) (.79) (.74) (.74) 
 
  −  1.41 Δlog(rexpp)  + 11.04 Δlog(rexpp-1)   + 2.14 Δlog(enroll)   
    (3.04) (2.79) (1.18) 
 
  +   .073 Δlunch 
   (.061) 
 
 n  =  2,750,   R2  =  .238. 
 
The contemporaneous spending variable, while still having a negative coefficient, is not at all 
statistically significant.  The coefficient on the lagged spending variable is very statistically 
significant, and implies that a 10% increase in spending last year increases the math4 pass rate 
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by about 1.1 percentage points.  Given the timing of the tests, a lagged effect is not surprising.  
In Michigan, the fourth grade math test is given in January, and so if preparation for the test 
begins a full year in advance, spending when the students are in third grade would at least partly 
matter. 
 
 (iv) The heteroskedasticity-robust standard error for is about 4.28, which reduces 
the significance of Δlog(rexpp) even further.  The heteroskedasticity-robust standard error of 

is about 4.38, which substantially lowers the t statistic.  Still, Δlog(rexpp

log( )  
ˆ

rexppβΔ

1log( )  
ˆ

rexppβ
−Δ -1) is 

statistically significant at just over the 1% significance level against a two-sided alternative. 
 
 (v) The fully robust standard error for is about 4.94, which even further reduces 

the t statistic for Δlog(rexpp).  The fully robust standard error for is about 5.13, 
which gives Δlog(rexpp

log( )  
ˆ

rexppβΔ

1log( )  
ˆ

rexppβ
−Δ

-1) a t  statistic of about 2.15.  The two-sided p-value is about .032. 
 
 (vi) We can use four years of data for this test.  Doing a pooled OLS regression of , 1垐on it i tr r − , 
using years 1995, 1996, 1997, and 1998 gives ρ̂ =  −.423 (se = .019), which is strong negative 
serial correlation. 
 
 (vii) The fully robust “F” test for Δlog(enroll) and Δlunch, reported by Stata 7.0, is .93.  With 
2 and 549 df, this translates into p-value = .40.  So we would be justified in dropping these 
variables, but they are not doing any harm. 
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CHAPTER 14 
 

TEACHING NOTES 
 
My preference is to view the fixed and random effects methods of estimation as applying to the 
same underlying unobserved effects model.  The name “unobserved effect” is neutral to the issue 
of whether the time-constant effects should be treated as fixed parameters or random variables.  
With large N and relatively small T, it almost always makes sense to treat them as random 
variables, since we can just observed the ai as being drawn from the population along with the 
observed variables.  Especially for undergraduates and master’s students, it seems sensible to not 
raise the philosophical issues underlying the professional debate.  In my mind, the key issue in 
most applications is whether the unobserved effect is correlated with the observed explanatory 
variables.  The fixed effect transformation eliminates the unobserved effect entirely while the 
random effects transformation accounts for the serial correlation in the composite error via GLS.  
(Alternatively, the random effects transformation only eliminates part of the unobserved effect.) 
 
As a practical matter, the fixed effect and random effect estimates are closer when T is large or 
when the variance of the unobserved effect is large relative to the variance of the idiosyncratic 
error.  I think Example 14.4 is representative of what often happens in applications that apply 
pooled OLS, random effects, and fixed effects, at least on the estimates of the marriage and 
union wage premiums.  The random effects estimates are below pooled OLS and the fixed 
effects estimates are below the random effects estimates. 
 
Choosing between the fixed effects transformation and first differencing is harder, although 
useful evidence can be obtained by testing for serial correlation in the first-difference estimation.  
If the AR(1) coefficient is significant and negative (say, less than −.3, to pick a not quite  
arbitrary value), perhaps fixed effects is preferred. 
 
Matched pairs samples have been profitably used in recent economic applications, and 
differencing or random effects methods can be applied.  In an equation such as (14.12), there is 
probably no need to allow a different intercept for each sister provided that the labeling of sisters 
is random.  The different intercepts might be needed if a certain feature of a sister that is not 
included in the observed controls is used to determine the ordering.  A statistically significant 
intercept in the differenced equation would be evidence of this. 
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SOLUTIONS TO PROBLEMS 
 
14.1 First, for each t > 1, Var(Δuit) = Var(uit – ui,t-1) = Var(uit) + Var(ui,t-1) = 22 uσ , where we use 
the assumptions of no serial correlation in {ut} and constant variance.  Next, we find the 
covariance between Δuit and Δui,t+1.  Because these each have a zero mean, the covariance is 
E(Δuit ⋅ Δui,t+1) = E[(uit – ui,t-1)(ui,t+1 – uit)] = E(uitui,t+1) – E( ) – E(u2

itu i,t-1ui,t+1) + E(ui,t-1uit) = 
−E( ) = 2

itu 2
uσ−  because of the no serial correlation assumption.  Because the variance is constant 

across t, by Problem 11.1, Corr(Δuit, Δui,t+1) = Cov(Δuit, Δui,t+1)/Var(∆uit) = 2 /(2 )u u
2σ σ−  = −.5. 

 
14.2 (i) The between estimator is just the OLS estimator from the cross-sectional regression of 

iy  on ix  (including an intercept).  Because we just have a single explanatory variable ix  and the 
error term is ai + iu , we have, from Section 5.1, 
 

plim 1β%   =  β1 + Cov( ix ,ai + iu )/Var( ix ). 
 
But E(ai + iu ) = 0 so Cov( ix ,ai + iu ) = E( ix (ai + iu )] = E( ix ai) + E( ix iu ) = E( ix ai) because 

E( ix iu ) = Cov( ix , iu ) = 0 by assumption.  Now E( ix ai) =  = σ1

1
E( )

T

it i
t

T x−

=
∑ a xa.  Therefore, 

 
plim 1β%   =  β1 + σxa/Var( ix ), 

 
which is what we wanted to show. 
 
 (ii) If {xit} is serially uncorrelated with constant variance 2

xσ  then Var( ix ) = 2
xσ /T, and so 

plim 1β%  = β1 + σxa/( 2
xσ /T) = β1 + T(σxa/ 2

xσ ). 
 
 (iii) As part (ii) shows, when the xit are pairwise uncorrelated the magnitude of the 
inconsistency actually increases linearly with T.  The sign depends on the covariance between xit 
and ai. 
 
14.3 (i) E(eit) = E(vit − ivλ ) = E(vit) − λE( iv ) = 0 because E(vit) = 0 for all t.   
 
 (ii) Var(vit − ivλ ) = Var(vit) + λ2Var( iv ) − 2λ⋅Cov(vit, iv ) = 2

vσ  + λ2 E( 2
iv ) − 2λ E(v⋅ it iv ).  

Now, 2 2 2E( )v it av 2
uσ σ σ= = +  and E(vit iv ) =  = 1

1
( )

T

it is
s

T E v v−

=
∑ 1T − [ 2

aσ  + 2
aσ  + K  + ( 2

aσ  + 2
uσ ) + 

 + K 2
aσ ] = 2

aσ  + 2
uσ /T.  Therefore, E( 2

iv ) = 1

1
( )

T

it i
t

T E v v−

=
∑  = 2

aσ  + 2
uσ /T.  Now, we can collect 

terms:  
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   Var(vit − ivλ )  =  . 2 2 2 2 2 2 2( ) ( / ) 2 ( /a u a u a uT Tσ σ λ σ σ λ σ σ+ + + − + )
 
Now, it is convenient to write λ = 1 − /η γ , where η ≡ 2

uσ /T and γ ≡ 2
aσ  + 2

uσ /T.  Then  
 
 Var(vit − ivλ )  =  ( 2

aσ  + 2
uσ ) − 2λ( 2

aσ  + 2
uσ /T) + λ2( 2

aσ  +  2
uσ /T) 

  = ( 2
aσ  + 2

uσ )  − 2(1 − /η γ )γ + (1 − /η γ )2γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + γ − 2 η γ⋅  + η 

  = ( 2
aσ  + 2

uσ )  + η − γ = 2
uσ . 

 
This is what we wanted to show. 
 
 (iii) We must show that E(eiteis) = 0 for t ≠ s.  Now E(eiteis) = E[(vit − ivλ )(vis − ivλ )] = 
E(vitvis) − λE( iv vis) − λE(vit iv ) + λ2E( 2

iv ) = 2
aσ  − 2λ( 2

aσ  + 2
uσ /T) + λ2E( 2

iv ) = 2
aσ  − 2λ( 2

aσ  + 
2
uσ /T) + λ2( 2

aσ  + 2
uσ /T).  The rest of the proof is very similar to part (ii):   

 
 E(eiteis) = 2

aσ  − 2λ( 2
aσ  + 2

uσ /T) + λ2( 2
aσ  +  2

uσ /T) 

  = 2
aσ  − 2(1 − /η γ )γ + (1 − /η γ )2γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + γ − 2 η γ⋅  + η 

  = 2
aσ  + η − γ = 0. 

 
14.4 (i) Men’s athletics are still the most prominent, although women’s sports, especially 
basketball but also gymnastics, softball, and volleyball, are very popular at some universities.  
Winning percentages for football and men’s and women’s basketball are good possibilities, as 
well as indicators for whether teams won conference championships, went to a visible bowl 
game (football), or did well in the NCAA basketball tournament (such as making the Sweet 16).  
We must be sure that we use measures of athletic success that are available prior to application 
deadlines.  So, we would probably use football success from the previous school year; basketball 
success might have to be lagged one more year. 
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 (ii) Tuition could be important:  ceteris paribus, higher tuition should mean fewer 
applications.  Measures of university quality that change over time, such as student/faculty ratios 
or faculty grant money, could be important. 
 
 (iii) An unobserved effects model is 
 
 log(appsit)  =  δ1d90t + δ2d95t + β1athsuccit + β2log(tuitionit) + K  + ai + uit, t = 1,2,3. 
 
The variable athsuccit is shorthand for a measure of athletic success; we might include several 
measures.  If, for example, athsuccit is football winning percentage, then 100β1 is the percentage 
change in applications given a one percentage point increase in winning percentage.  It is likely 
that ai is correlated with athletic success, tuition, and so on, so fixed effects estimation is 
appropriate.  Alternatively, we could first difference to remove ai, as discussed in Chapter 13. 
 
14.5 (i) For each student we have several measures of performance, typically three or four, the 
number of classes taken by a student that have final exams.  When we specify an equation for 
each standardized final exam score, the errors in the different equations for the same student are 
certain to be correlated.  Students who have more (unobserved) ability tend to do better on all 
tests. 
 
 (ii) An unobserved effects model is 
 
 scoresc  =  θc + β1atndrtesc + β2majorsc + β3SATs + β4cumGPAs + as + usc, 
 
where as is the unobserved student effect.  Because SAT score and cumulative GPA depend only 
on the student, and not on the particular class he/she is taking, these do not have a c subscript.  
The attendance rates do generally vary across class, as does the indicator for whether a class is in 
the student’s major.  The term θc denotes different intercepts for different classes.  Unlike with a 
panel data set, where time is the natural ordering of the data within each cross-sectional unit, and 
the aggregate time effects apply to all units, intercepts for the different classes may not be 
needed.  If all students took the same set of classes then this is similar to a panel data set, and we 
would want to put in different class intercepts.  But with students taking different courses, the 
class we label as “1” for student A need have nothing to do with class “1” for student B.    Thus, 
the different class intercepts based on arbitrarily ordering the classes for each student probably 
are not needed.  We can replace θc with β0, an intercept constant across classes. 
 
 (iii) Maintaining the assumption that the idiosyncratic error, usc, is uncorrelated with all 
explanatory variables, we need the unobserved student heterogeneity, as, to be uncorrelated with 
atndrtesc.  The inclusion of SAT score and cumulative GPA should help in this regard, as as, is 
the part of ability that is not captured by SATs and cumGPAs.  In other words, controlling for 
SATs and cumGPAs could be enough to obtain the ceteris paribus effect of class attendance. 
 
 (iv) If SATs and cumGPAs are not sufficient controls for student ability and motivation, as is 
correlated with atndrtesc, and this would cause pooled OLS to be biased and inconsistent.  We 
could use fixed effects instead.  Within each student we compute the demeaned data, where, for 
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each student, the means are computed across classes.  The variables SATs and cumGPAs drop out 
of the analysis. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
14.6 (i) This is done in Problem 13.11(i). 
 
 (ii) See Problem 13.11(ii). 
 
 (iii) See Problem 13.11(iii). 
 
 (iv) This is the only new part.  The fixed effects estimates, reported in equation form, are 
 
  = .386 y90�log ( )itrent t + .072 log(popit) + .310 log(avgincit) + .0112 pctstuit, 
   (.037)  (.088)  (.066)  (.0041) 

 N  =  64,   T  =  2. 
 
(There are N = 64 cities and T = 2 years.)  We do not report an intercept because it gets removed 
by the time demeaning.  The coefficient on y90t is identical to the intercept from the first 
difference estimation, and the slope coefficients and standard errors are identical to first 
differencing.  We do not report an R-squared because none is comparable to the R-squared 
obtained from first differencing. 
 
[Instructor’s Note:  Some econometrics packages do report an intercept for fixed effects 
estimation; if so, it is usually the average of the estimated intercepts for the cross-sectional units, 
and it is not especially informative.  If one obtains the FE estimates via the dummy variable 
regression, an intercept is reported for the base group, which is usually an arbitrarily chosen 
cross-sectional unit.] 
 
14.7 (i) We report the fixed effects estimates in equation form as 
 
  = .013 d82�log ( )itcrmrte t − .079 d83t − .118 d84t − .112 d85t

   (.022)  (.021)  (.022)  (.022) 

  − .082 d86t − .040 d87t − .360 log(prbarrit) − .286 log(prbconvit) 
   (.021)  (.021)  (.032)  (.021) 

  − .183 log(prbprisit) − .0045 log(avgsenit) + .424 log(polpcit) 
   (.032)  (.0264)  (.026) 

 N  =  90,   T  =  7. 
 
There is no intercept because it gets swept away in the time demeaning.  If your econometrics 
package reports a constant or intercept, it is choosing one of the cross-sectional units as the base 
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group, and then the overall intercept is for the base unit in the base year.  This overall intercept is 
not very informative because, without obtaining each , we cannot compare across units. ˆia
 Remember that the coefficients on the year dummies are not directly comparable with those 
in the first-differenced equation because we did not difference the year dummies in (13.33).  The 
fixed effects estimates are unbiased estimators of the parameters on the time dummies in the 
original model. 
 The first-difference and fixed effects slope estimates are broadly consistent.  The variables 
that are significant with first differencing are significant in the FE estimation, and the signs are 
all the same.  The magnitudes are also similar, although, with the exception of the insignificant 
variable log(avgsen), the FE estimates are all larger in absolute value.  But we conclude that the 
estimates across the two methods paint a similar picture. 
 
 (ii) When the nine log wage variables are added and the equation is estimated by fixed 
effects, very little of importance changes on the criminal justice variables.  The following table 
contains the new estimates and standard errors. 
 

Independent
Variable 

 
Coefficient

Standard
Error 

log(prbarr) –.356 .032 
log(prbconv) –.286 .021 
log(prbpris) –.175 .032 
log(avgsen) –.0029 .026 
log(polpc) .423 .026 

 
The changes in these estimates are minor, even though the wage variables are jointly significant.  
The F statistic, with 9 and N(T – 1) – k = 90(6) – 20 = 520 df, is F≈ 2.47 with p-value  .0090. ≈
 
14.8 (i) 135 firms are used in the FE estimation.  Because there are three years, we would have a 
total of 405 observations if each firm had data on all variables for all three years.  Instead, due to 
missing data, we can use only 390 observations in the FE estimation.  The fixed effects estimates 
are 
 
  = −1.10 d88�

ithrsemp t + 4.09 d89t + 34.23 grantit

   (1.98)  (2.48)  (2.86) 

  + .504 granti,t-1 − .176 log(employit) 
   (4.127)    (4.288) 

 n  =  390,   N  =  135,   T  =  3. 
 
 (ii) The coefficient on grant means that if a firm received a grant for the current year, it 
trained each worker an average of 34.2 hours more than it would have otherwise.  This is a 
practically large effect, and the t statistic is very large. 
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 (iii) Since a grant last year was used to pay for training last year, it is perhaps not surprising 
that the grants does not carry over into more training this year.  It would if inertia played a role in 
training workers. 
 
 (iv) The coefficient on the employees variable is very small:  a 10% increase in employ 
increases predicted hours per employee by only about .018.  [Recall:   (.176/100) 
(%Δemploy).]  This is very small, and the t statistic is practically zero. 

�hrsempΔ ≈

 
14.9 (i) Write the equation for times t and t – 1 as 
 
 log(uclmsit) = ai + cit + β1ezit + uit, 

 log(uclmsi,t-1) = ai + ci(t – 1) + β1ezi,t-1 + ui,t-1
 

and subtract the second equation from the first.  The ai are eliminated and cit – ci(t – 1) = ci.  So, 
for each t ≥ 2, we have 
 
 Δlog(uclmsit) = ci + β1Δezit + uit. 
 
 (ii) Because the differenced equation contains the fixed effect ci, we estimate it by FE.  We 
get 1̂β  = –.251, se( 1̂β ) = .121.  The estimate is actually larger in magnitude than we obtain in 

Example 13.8 (where 1̂β  = –1.82, se( 1̂β ) = .078), but we have not yet included year dummies.  
In any case, the estimated effect of an EZ is still large and statistically significant. 
 
 (iii) Adding the year dummies reduces the estimated EZ effect, and makes it more 
comparable to what we obtained without cit in the model.  Using FE on the first-differenced 
equation gives 1̂β  = –.192, se( 1̂β ) = .085, which is fairly similar to the estimates without the 
city-specific trends. 
 
14.10 (i) Different occupations are unionized at different rates, and wages also differ by 
occupation.  Therefore, if we omit binary indicators for occupation, the union wage differential 
may simply be picking up wage differences across occupations.  Because some people change 
occupation over the period, we should include these in our analysis. 
 
 (ii) Because the nine occupational categories (occ1 through occ9) are exhaustive, we must 
choose one as the base group.  Of course the group we choose does not affect the estimated 
union wage differential.  The fixed effect estimation on union, to four decimal places, is .0804 
with standard error = .0194.  There is practically no difference between this estimate and 
standard error and the estimate and standard error without the occupational controls 
( = .0800, se = .0193). ˆ

unionβ
 
14.11 First, the random effects estimate on unionit becomes .174 (se ≈ .031), while the 
coefficient on the interaction term unionit ⋅ t is about –.0155 (se ≈ .0057).  Therefore, the 
interaction between the union dummy and time trend is very statistically significant (t statistic ≈ 
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–2.72), and is important economically.  While at a given point in time there is a large union 
differential, the projected wage growth is less for unionized workers (on the order of 1.6% less 
per year). 
 The fixed effects estimate on unionit becomes .148 (se ≈ .031), while the coefficient on the 
interaction unionit ⋅ t  is about −.0157 (se ≈ .0057).  Therefore, the story is very similar to that for 
the random effects estimates. 
  
14.12 (i) If there is a deterrent effect then β1 < 0.  The sign of β2 is not entirely obvious, although 
one possibility is that a better economy means less crime in general, including violent crime 
(such as drug dealing) that would lead to fewer murders.  This would imply β2 > 0. 
 
 (ii) The pooled OLS estimates using 1990 and 1993 are  
 
    =  −5.28  −   2.07 d93�

itmrdrte t  +  .128 execit  +   2.53 unemit 

   (4.43) (2.14) (.263) (.78) 
    
   N = 51,  T = 2,  R2 = .102 
 
There is no evidence of a deterrent effect, as the coefficient on exec is actually positive (though 
not statistically significant). 
 
 (iii) The first-differenced equation is  
 
    =  .413   −  .104 Δexec�

imrdrteΔ i   −   .067 Δunemi 

   (.209) (.043) (.159) 
    
  n = 51,  R2 = .110 
 
Now, there is a statistically significant deterrent effect:  10 more executions is estimated to 
reduce the murder rate by 1.04, or one murder per 100,000 people.  This me not seem especially 
large, but murder rates are not especially large to begin with.  (In 1993, the average murder rate 
was about 8.7.) 
 
 (iv) The heteroskedasticity-robust standard error for Δexeci is .017.  Somewhat surprisingly, 
this is well below the nonrobust standard error.  If we use the robust standard error, the statistical 
evidence for the deterrent effect is quite strong (t ≈ −6.1). 
 
 (v) Texas had by far the largest value of exec, 34.  The next highest state was Virginia, with 
11.  These are three-year totals. 
 
 (vi) Without Texas, we get the following, with heteroskedasticity-robust standard errors in [⋅]: 
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    =  .413   −  .067 Δexec�
imrdrteΔ i   −   .070 Δunemi 

   (.211) (.105) (.160) 
   [.200] [.079] [.146] 
    
  n = 50,  R2 = .013 
 
Now the estimated deterrent effect is smaller.  Perhaps more importantly, the standard error on 
Δexeci  has increased by a substantial amount.  This happens because, when we drop Texas, we 
lose much of the variation in the key explanatory variable, Δexeci. 
 
 (vii) When we apply fixed effects using all three years of data and all states we get  
 
    =  1.73 d90�

itmrdrte t   +   1.70 d93t    −  .054 execit  +   .395 unemit 

   (.75) (.71) (.160) (.285) 
    
   N = 51,  T = 3,  R2 = .068 
 
The size of the deterrent effect is only about half as big as when 1987 is not used.  Plus, the t 
statistic, about −.34, is very small.  The earlier finding of a deterrent effect does not seem to be 
very robust. 
 
14.13 (i) The pooled OLS estimates are  
 
   =  − 31.66  +   6.38 y94   +   18.65 y95   +   18.03 y96   +  15.34 y97  +  30.40 y98 � 4math
  (10.30) (.74) (.79) (.77) (.78) (.78) 
 
  +   .534 log(rexpp)  +  9.05 log(rexpp-1)   + .593 log(enrol)  −  .407 lunch 
   (2.428) (2.31) (.205) (.014) 
 
 N  =  550,  T = 6,  R2 = .505 
 
 (ii) The lunch variable is the percent of students in the district eligible for free or reduced-
price lunches, which is determined by poverty status.  Therefore, lunch is effectively a poverty 
rate.  We see that the district poverty rate has a large impact on the math pass rate:  a one 
percentage point increase in lunch reduces the pass rate by about .41 percentage points. 
 
 (iii) I ran the pooled OLS regression , 1垐on it i tv v −  using the years 1994 through 1998 (since the 
residuals are first available for 1993).  The coefficient on , 1î tv −  is ρ̂ =  .504 (se = .017), so there is 
very strong evidence of positive serial correlation.  There are many reasons for positive serial 
correlation.  In the context of panel data, it indicates the presences of a time-constant unobserved 
effect, ai. 
 
 (iv) The fixed effects estimates are  
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   =   6.18 y94   +   18.09 y95   +   17.94 y96   +  15.19 y97  +  29.88 y98 � 4math
  (.56) (.69) (.76) (.80) (.84) 
 
  −   .411 log(rexpp)  +  7.00 log(rexpp-1)   + .245 log(enrol)  +   .062 lunch 
   (2.458) (2.37) (1.100) (.051) 
 
 N  =  550,  T = 6,  R2 = .603 
 
The coefficient on the lagged spending variable has gotten somewhat smaller, but its t statistic is 
still almost three.  Therefore, there is still evidence of a lagged spending effect after controlling 
for unobserved district effects. 
 
 (v) The change in the coefficient and significance on the lunch variable is most dramatic.  
Both enrol and lunch are slow to change over time, which means that their effects are largely 
captured by the unobserved effect, ai.  Plus, because of the time demeaning, their coefficients are 
hard to estimate.  The spending coefficients can be estimated more precisely because of a policy 
change during this period, where spending shifted markedly in 1994 after the passage of 
Proposal A in Michigan, which changed the way schools were funded. 
 
 (vi) The estimated long-run spending effect is 1̂θ  = 6.59, se( 1̂θ ) = 2.64. 
 
14.14 (i) The OLS estimates are  
 
 �pctstck =   128.54  +   11.74 choice  +   14.34 prftshr  +  1.45 female  − 1.50 age 
  (55.17) (6.23) (7.23) (6.77) (.78) 
 
  + .70 educ   −   15.29 finc25  +   .19 finc35  −   3.86 finc50     
   (1.20) (14.23) (14.69) (14.55)   
 

−   13.75 finc75  −   2.69 finc100  −  25.05 finc101  −  .0026 wealth89 
 (16.02) (15.72) (17.80) (.0128) 
 
+   6.67 stckin89  −   7.50 irain89   
 (6.68) (6.38)     

 
 n = 194,  R2 = .108 
 
Investment choice is associated with about 11.7 percentage points more in stocks.  The t statistic 
is 1.88, and so it is marginal significant. 
 
 (ii) These variables are not very important.  The F test for joint significant is 1.03.  With 9 
and 179 df, this gives p-value = .42.  Plus, when these variables are dropped from the regression, 
the coefficient on choice only falls to 11.15. 
 
 (iii) There are 171 different families in the sample. 
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 (iv) I will only report the cluster-robust standard error for choice:  6.20.  Therefore, it is 
essentially the same as the usual OLS standard error.  This is perhaps not very surprising since at 
least 171 of the 194 observations can be assumed independent of one another.  The explanatory 
variables may adequately capture the within-family correlation. 
 
 (v) There are only 23 families with spouses in the data set. Differencing within these families 
gives  
 
 �pctstckΔ =   15.93  +   2.28 Δchoice  −   9.27Δprftshr  +  21.55 Δfemale  − 3.57 Δage 
  (10.94) (15.00) (16.92) (21.49) (9.00) 
 
  −1.22 Δeduc 
   (3.43) 
 
 n = 23,  R2 = .206,  2R =  −.028 
 
All of the income and wealth variables, and the stock and IRA indicators, drop out, as these are 
defined at the family level (and therefore the same for the husband and wife). 
 
 (vi) None of the explanatory variables is significant in part (v), and this is not too surprising.  
We have only 23 observations, and we are removing much of the variation in the explanatory 
variables (except the gender variable) by using within-family differences. 
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CHAPTER 15 
 

TEACHING NOTES 
 
When I wrote the first edition, I took the novel approach of introducing instrumental variables as 
a way of solving the omitted variable (or unobserved heterogeneity) problem.  Traditionally, a 
student’s first exposure to IV methods comes by way of simultaneous equations models.  
Occasionally, IV is first seen as a method to solve the measurement error problem.  I have even 
seen texts where the first appearance of IV methods is to obtain a consistent estimator in an 
AR(1) model with AR(1) serial correlation. 
 
The omitted variable problem is conceptually much easier than simultaneity, and stating the 
conditions needed for an IV to be valid in an omitted variable context is straightforward.  
Besides, most modern applications of IV have more of an unobserved heterogeneity motivation.  
A leading example is estimating the return to education when unobserved ability is in the error 
term.   We are not thinking that education and wages are jointly determined; for the vast majority 
of people, education is completed before we begin collecting information on wages or salaries.  
Similarly, in studying the effects of attending a certain type of school on student performance, 
the choice of school is made and then we observe performance on a test.  Again, we are primarily 
concerned with unobserved factors that affect performance and may be correlated with school 
choice; it is not an issue of simultaneity. 
 
The asymptotics underlying the simple IV estimator are no more difficult than for the OLS 
estimator in the bivariate regression model.  Certainly consistency can be derived in class.  It is 
also easy to demonstrate how, even just in terms of inconsistency, IV can be worse than OLS if 
the IV is not completely exogenous. 
 
At a minimum, it is important to always estimate the reduced form equation and test whether the 
IV is partially correlated with endogenous explanatory variable.  The material on 
multicollinearity and 2SLS estimation is a direct extension of the OLS case.  Using equation 
(15.43), it is easy to explain why multicollinearity is generally more of a problem with 2SLS 
estimation. 
 
Another conceptually straightforward application of IV is to solve the measurement error 
problem, although, because it requires two measures, it can be hard to implement in practice. 
 
Testing for endogeneity and testing any overidentification restrictions is something that should 
be covered in second semester courses.  The tests are fairly easy to motivate and are very easy to 
implement. 
 
While I provide a treatment for time series applications in Section 15.7, I admit to having trouble 
finding compelling time series applications.  These are likely to be found at a less aggregated 
level, where exogenous IVs have a chance of existing.  (See also Chapter 16.) 
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SOLUTIONS TO PROBLEMS 
 
15.1 (i) It has been fairly well established that socioeconomic status affects student performance.  
The error term u contains, among other things, family income, which has a positive effect on 
GPA and is also very likely to be correlated with PC ownership. 
 
 (ii) Families with higher incomes can afford to buy computers for their children.  Therefore, 
family income certainly satisfies the second requirement for an instrumental variable:  it is 
correlated with the endogenous explanatory variable [see (15.5) with x = PC and z = faminc].  
But as we suggested in part (i), faminc has a positive affect on GPA, so the first requirement for a 
good IV, (15.4), fails for faminc.  If we had faminc we would include it as an explanatory 
variable in the equation; if it is the only important omitted variable correlated with PC, we could 
then estimate the expanded equation by OLS. 
 
 (iii) This is a natural experiment that affects whether or not some students own computers.  
Some students who buy computers when given the grant would not have without the grant.  
(Students who did not receive the grants might still own computers.)  Define a dummy variable, 
grant, equal to one if the student received a grant, and zero otherwise.  Then, if grant was 
randomly assigned, it is uncorrelated with u.  In particular, it is uncorrelated with family income 
and other socioeconomic factors in u.  Further, grant should be correlated with PC:  the 
probability of owning a PC should be significantly higher for student receiving grants.  
Incidentally, if the university gave grant priority to low-income students, grant would be 
negatively correlated with u, and IV would be inconsistent. 
 
15.2 (i) It seems reasonable to assume that dist and u are uncorrelated because classrooms are not 
usually assigned with convenience for particular students in mind. 
 
 (ii) The variable dist must be partially correlated with atndrte.  More precisely, in the 
reduced form 
 

atndrte  =  π0 + π1priGPA + π2ACT + π3dist + v, 
 
we must have π3 ≠ 0.  Given a sample of data we can test H0: π3 = 0 against H1: π3 ≠ 0 using a t 
test. 
 
 (iii) We now need instrumental variables for atndrte and the interaction term, 
priGPA⋅atndrte.  (Even though priGPA is exogenous, atndrte is not, and so priGPA⋅atndrte is 
generally correlated with u.)  Under the exogeneity assumption that E(u|priGPA,ACT,dist) = 0, 
any function of priGPA, ACT, and dist is uncorrelated with u.  In particular, the interaction 
priGPA⋅dist is uncorrelated with u.  If dist is partially correlated with atndrte then priGPA⋅dist is 
partially correlated with priGPA⋅atndrte.  So, we can estimate the equation 
 

stndfnl  =  β0 + β1atndrte + β2priGPA + β3ACT + β4priGPA⋅atndrte + u 
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by 2SLS using IVs dist, priGPA, ACT, and priGPA⋅dist.  It turns out this is not generally optimal.  
It may be better to add priGPA2 and priGPA⋅ACT to the instrument list.  This would give us 
overidentifying restrictions to test.  See Wooldridge (2002, Chapters 5 and 9) for further 
discussion. 
 
15.3 It is easiest to use (15.10) but where we drop z .  Remember, this is allowed because 
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∑ 1 = iy , the average of the yi over the i with zi = 1.  So far, we have shown that the 

numerator in 1̂β  is n1( iy  – y ).  Next, write y  as a weighted average of the averages over the 
two subgroups:   
 

y   =  (n0/n) 0y  + (n1/n) 1y , 
 

where n0 = n – n1.  Therefore, 
 

1y  – y   =  [(n – n1)/n] 1y  – (n0/n) 0y   =  (n0/n) ( 1y  - 0y ). 
 
Therefore, the numerator of 1̂β  can be written as 
 

(n0n1/n)( 1y  – 0y ). 
 

By simply replacing y with x, the denominator in 1̂β  can be expressed as (n0n1/n)( 1x  – 0x ).  
When we take the ratio of these, the terms involving n0, n1, and n, cancel, leaving 
 

1̂β   =  ( 1y  – 0y )/( 1x  – 0x ). 
 

15.4 (i) The state may set the level of its minimum wage at least partly based on past or expected 
current economic activity, and this could certainly be part of ut.  Then gMINt and ut are 
correlated, which causes OLS to be biased and inconsistent. 
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 (ii) Because gGDPt controls for the overall performance of the U.S. economy, it seems 
reasonable that gUSMINt is uncorrelated with the disturbances to employment growth for a 
particular state. 
 
 (iii) In some years, the U.S. minimum wage will increase in such a way so that it exceeds the 
state minimum wage, and then the state minimum wage will also increase.  Even if the U.S. 
minimum wage is never binding, it may be that the state increases its minimum wage in response 
to an increase in the U.S. minimum.  If the state minimum is always the U.S. minimum, then 
gMINt is exogenous in this equation and we would just use OLS. 
 
15.5 (i) From equation (15.19) with σu = σx, plim 1̂β  = β1 + (.1/.2) = β1 + .5, where 1̂β  is the IV 
estimator.  So the asymptotic bias is .5. 
 
 (ii) From equation (15.20) with σu = σx, plim 1β%  = β1 + Corr(x,u), where 1β%  is the OLS 
estimator.  So we would have to have Corr(x,u) > .5 before the asymptotic bias in OLS exceeds 
that of IV.  This is a simple illustration of how a seemingly small correlation (.1 in this case) 
between the IV (z) and error (u) can still result in IV being more biased than OLS if the 
correlation between z and x is weak (.2). 
 
15.6 (i) Plugging (15.26) into (15.22) and rearranging gives 
 
 y1 = β0 + β1(π0 + π1z1 +  π2z2 + v2) + β2z1 + u1

  = (β0 + β1π0) + (β1π1 + β2)z1 + β1π2z2 + u1 + β1v2, 
 
and so α0 = β0 + β1π0, α1 = β1π1 + β2, and α2 = β1π2. 
 
 (ii) From the equation in part (i), v1 = u1 + β1v2.  
 
 (iii) By assumption, u1 has zero mean and is uncorrelated with z1 and z2, and v2 has these 
properties by definition.  So v1 has zero mean and is uncorrelated with z1 and z2, which means 
that OLS consistently estimates the αj.  [OLS would only be unbiased if we add the stronger 
assumptions E(u1|z1,z2) = E(v2|z1,z2) = 0.] 
 
15.7 (i) Even at a given income level, some students are more motivated and more able than 
others, and their families are more supportive (say, in terms of providing transportation) and 
enthusiastic about education.  Therefore, there is likely to be a self-selection problem:  students 
that would do better anyway were also more likely to attend a choice school. 
 
 (ii) Assuming we have the functional form for faminc correct, the answer is yes.  Since u1 
does not contain income, random assignment of grants within income class means that grant 
designation is not correlated with unobservables such as student ability, motivation, and family 
support. 
 
 (iii) The reduced form is 
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choice  =  π0 + π1faminc + π2grant + v2, 

 
and we need π2 ≠ 0.  In other words, after accounting for income, the grant amount must have 
some affect on choice.  This seems reasonable, provided the grant amounts differ within each 
income class. 
 
 (iv) The reduced form for score is just a linear function of the exogenous variables (see 
Problem 15.6): 
 

score  =  α0 + α1faminc + α2grant + v1. 
 

This equation allows us to directly estimate the effect of increasing the grant amount on the test 
score, holding family income fixed.  From a policy perspective this is itself of some interest. 
 
15.8 (i) Family income and background variables, such as parents’ education. 
 
 (ii) The population model is 
 

score  =  β0 + β1girlhs + β2faminc + β3meduc + β4feduc + u1, 
 

where the variables are self-explanatory. 
 
 (iii) Parents who are supportive and motivated to have their daughters do well in school may 
also be more likely to enroll their daughters in a girls’ high school.  It seems likely that girlhs 
and u1 are correlated. 
 
 (iv) Let numghs be the number of girls’ high schools within a 20-mile radius of a girl’s home.  
To be a valid IV for girlhs, numghs must satisfy two requirements:  it must be uncorrelated with 
u1 and it must be partially correlated with girlhs.  The second requirement probably holds, and 
can be tested by estimating the reduced form 
 

girlhs  =  π0 + π1faminc + π2meduc + π3feduc + π4numghs + v2
 

and testing numghs for statistical significance.  The first requirement is more problematical.  
Girls’ high schools tend to locate in areas where there is a demand, and this demand can reflect 
the seriousness with which people in the community view education.  Some areas of a state have 
better students on average for reasons unrelated to family income and parents’ education, and 
these reasons might be correlated with numghs.  One possibility is to include community-level 
variables that can control for differences across communities. 
 
15.9 Just use OLS on an expanded equation, where SAT and cumGPA are added as proxy 
variables for student ability and motivation; see Chapter 9. 
 
15.10 (i) Better and more serious students tend to go to college, and these same kinds of students 
may be attracted to private and, in particular, Catholic high schools.  The resulting correlation 
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between u and CathHS is another example of a self-selection problem:  students self select 
toward Catholic high schools, rather than being randomly assigned to them. 
 
 (ii) A standardized score is a measure of student ability, so this can be used as a proxy 
variable in an OLS regression.  Having this measure in an OLS regression should be an 
improvement over having no proxies for student ability. 
 
 (iii) The first requirement is that CathRe1 must be uncorrelated with unobserved student 
motivation and ability (whatever is not captured by any proxies) and other factors in the error 
term.  This holds if growing up Catholic (as opposed to attending a Catholic high school) does 
not make you a better student.  It seems reasonable to assume that Catholics do not have more 
innate ability than non-Catholics.  Whether being Catholic is unrelated to student motivation, or 
preparation for high school, is a thornier issue. 
 The second requirement is that being Catholic has an effect on attending a Catholic high 
school, controlling for the other exogenous factors that appear in the structural model.  This can 
be tested by estimating the reduced form equation of the form CathHS = π0 + π1CathRel + (other 
exogenous factors) + (reduced form error). 
 
 (iv) Evans and Schwab (1995) find that being Catholic substantially increases the probability 
of attending a Catholic high school.  Further, it seems that assuming CathRe1 is exogenous in the 
structural equation is reasonable.  See Evans and Schwab (1995) for an in-depth analysis. 
 
15.11 (i) We plug *

tx  = xt – et into yt = β0 + β1
*
tx  + ut: 

 
 yt = β0 + β1(xt – et) + ut  =  β0 + β1xt + ut – β1et

  ≡ β0 + β1xt + vt, 
 
where vt ≡ ut – β1et.  By assumption, ut is uncorrelated with *

tx  and et; therefore, ut is 
uncorrelated with xt.  Since et is uncorrelated with *

tx , E(xtet) = E[( *
tx  + et)et] = E( *

tx et) + 
E( ) = 2

te 2
eσ .  Therefore, with vt defined as above, Cov(xt,vt) = Cov(xt,ut)  – β1Cov(xt,et) =  

–β1
2
eσ  < 0 when β1 > 0.  Because the explanatory variable and the error have negative 

covariance, the OLS estimator of β1 has a downward bias [see equation (5.4)]. 
 
 (ii) By assumption E( *

1tx − ut) = E(et-1ut) = E( *
1tx − et) = E(et-1et) = 0, and so E(xt-1ut) = E(xt-1et) = 

0 because xt = *
tx  + et.  Therefore, E(xt-1vt) = E(xt-1ut) – β1E(xt-1et) = 0. 

 
 (iii) Most economic time series, unless they represent the first difference of a series or the 
percentage change, are positively correlated over time.  If the initial equation is in levels or logs, 
xt and xt-1 are likely to be positively correlated.  If the model is for first differences or percentage 
changes, there still may be positive or negative correlation between xt and xt-1. 
 
 (iv) Under the assumptions made, xt-1 is exogenous in 
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yt  =  β0 + β1xt + vt, 

 
as we should in part (ii):  Cov(xt-1,vt) = E(xt-1vt) = 0.  Second, xt-1 will often be correlated with xt, 
and we can check this easily enough by running a regression of xt of xt-1.  This suggests 
estimating the equation by instrumental variables, where xt-1 is the IV for xt.  The IV estimator 
will be consistent for β1 (and β0), and asymptotically normally distributed. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
15.12 (i) The regression of log(wage) on sibs gives 
 
  = 6.861 − .0279 sibs �log ( )wage
   (0.022)  (.0059) 

 n  = 935,   R2  =  .023. 
 
This is a reduced form simple regression equation.  It shows that, controlling for no other factors, 
one more sibling in the family is associated with monthly salary that is about 2.8% lower.  The t 
statistic on sibs is about –4.73.  Of course sibs can be correlated with many things that should 
have a bearing on wage including, as we already saw, years of education. 
 
 (ii) It could be that older children are given priority for higher education, and families may 
hit budget constraints and may not be able to afford as much education for children born later.  
The simple regression of educ on brthord gives 
 
  = 14.15 − .283 brthord �educ
   (0.13)  (.046) 

 n  = 852,   R2  =  .042. 
 
(Note that brthord is missing for 83 observations.)  The equation predicts that every one-unit 
increase in brthord reduces predicted education by about .28 years.  In particular, the difference 
in predicted education for a first-born and fourth-born child is about .85 years. 
 
 (iii) When brthord is used as an IV for educ in the simple wage equation we get 
 
  = 5.03 + .131 educ �log ( )wage
   (0.43)  (.032) 

 n  = 852. 
 
(The R-squared is negative.)  This is much higher than the OLS estimate (.060) and even above 
the estimate when sibs is used as an IV for educ (.122).  Because of missing data on brthord, we 
are using fewer observations than in the previous analyses. 
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 (iv) In the reduced form equation  
 

educ  =  π0 + π1sibs + π2brthord + v, 
 

we need π2 ≠ 0 in order for the βj to be identified.  We take the null to be H0: π2 = 0, and look to 
reject H0 at a small significance level.  The regression of educ on sibs and brthord (using 852 
observations) yields 2π̂  = −.153 and se( 2π̂ ) = .057.  The t statistic is about –2.68, which rejects 
H0 fairly strongly.  Therefore, the identification assumptions appears to hold. 
 
 (v) The equation estimated by IV is 
 
  = 4.94 + .137 educ + .0021 sibs �log ( )wage
   (1.06)  (.075)  (.0174) 

 n  = 852. 
 
The standard error on ˆ

educβ is much larger than we obtained in part (iii).  The 95% CI for educβ  is 
roughly −.010 to .284, which is very wide and includes the value zero.  The standard error of 
ˆ

sibsβ  is very large relative to the coefficient estimate, rendering sibs very insignificant. 
 
 (vi) Letting  be the first-stage fitted values, the correlation between  and sibs�

ieduc �
ieduc i is 

about −.930, which is a very strong negative correlation.  This means that, for the purposes of 
using IV, multicollinearity is a serious problem here, and is not allowing us to estimate βeduc with 
much precision. 
 
15.13 (i) The equation estimated by OLS is 
 
  = −4.138 − .0906 educ + .332 age − .00263 age�children 2

   (0.241)  (.0059)  (.017)  (.00027) 

 n  =  4.361,   R2  =  .569. 
 
Another year of education, holding age fixed, results in about .091 fewer children.  In other 
words, for a group of 100 women, if each gets another of education, they collectively are 
predicted to have about nine fewer children. 
 
 (ii) The reduced form for educ is 
 

educ  =  π0 + π1age + π2age2 + π3frsthalf + v, 
 
and we need π3 ≠ 0.  When we run the regression we obtain 3π̂  = −.852 and se( 3π̂ ) = .113.  
Therefore, women born in the first half of the year are predicted to have almost one year less 
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education, holding age fixed.  The t statistic on frsthalf is over 7.5 in absolute value, and so the 
identification condition holds. 
 
 (iii) The structural equation estimated by IV is 
 
  = −3.388 − .1715 educ + .324 age − .00267 age�children 2

   (0.548)  (.0532)  (.018)  (.00028) 

 n  =  4.361,   R2  =  .550. 
 
The estimated effect of education on fertility is now much larger.  Naturally, the standard error 
for the IV estimate is also bigger, about nine times bigger.  This produces a fairly wide 95% CI 
for β1. 
 
 (iv) When we add electric, tv, and bicycle to the equation and estimate it by OLS we obtain 
 
  = −4.390 − .0767 educ + .340 age − .00271 age�children 2 − .303 electric 
   (.0240)  (.0064)  (.016)  (.00027)  (.076) 

  − .253 tv + .318 bicycle 
   (.091)  (.049) 

 n  =  4,356,   R2  =  .576. 
 
The 2SLS (or IV) estimates are 
 
  = −3.591 − .1640 educ + .328 age − .00272 age�children 2 − .107 electric 
   (0.645)  (.0655)  (.019)  (.00028)  (.166) 

  − .0026 tv + .332 bicycle 
   (.2092)  (.052) 

 n  =  4,356,   R2  =  .558. 
 
Adding electric, tv, and bicycle to the model reduces the estimated effect of educ in both cases, 
but not by too much.  In the equation estimated by OLS, the coefficient on tv implies that, other 
factors fixed, four families that own a television will have about one fewer child than four 
families without a TV.  Television ownership can be a proxy for different things, including 
income and perhaps geographic location.  A causal interpretation is that TV provides an 
alternative form of recreation. 
 Interestingly, the effect of TV ownership is practically and statistically insignificant in the 
equation estimated by IV (even though we are not using an IV for tv).  The coefficient on electric 
is also greatly reduced in magnitude in the IV estimation.  The substantial drops in the 
magnitudes of these coefficients suggest that a linear model might not be the functional form, 
which would not be surprising since children is a count variable.  (See Section 17.4.) 
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15.14 (i) IQ scores are known to vary by geographic region, and so does the availability of four 
year colleges.  It could be that, for a variety of reasons, people with higher abilities grow up in 
areas with four year colleges nearby. 
 
 (ii) The simple regression of IQ on nearc4 gives 
 
 �IQ  = 100.61 + 2.60 nearc4 
   (0.63)  (0.74) 

 n  =  2,061,   R2  =  .0059, 
 
which shows that predicted IQ score is about 2.6 points higher for a man who grew up near a 
four-year college.  The difference is statistically significant (t statistic ≈ 3.51). 
 
 (iii) When we add smsa66, reg662, K , reg669 to the regression in part (ii), we obtain 
 
 �IQ  = 104.77 + .348 nearc4 + 1.09 smsa66  + …  
   (1.62)  (.814)  (0.81) 

 n  =  2,061,   R2  =  .0626, 
 
where, for brevity, the coefficients on the regional dummies are not reported.  Now, the 
relationship between IQ and nearc4 is much weaker and statistically insignificant.  In other 
words, once we control for region and environment while growing up, there is no apparent link 
between IQ score and living near a four-year college. 
 
 (iv) The findings from parts (ii) and (iii) show that it is important to include smsa66, 
reg662, …, reg669 in the wage equation to control for differences in access to colleges that 
might also be correlated with ability. 
 
15.15 (i) The equation estimated by OLS, omitting the first observation, is  
 
  = 2.37 + .692 inf�3ti t
   (0.47)  (.091) 

 n  =  48,   R2  =  .555. 
 
 (ii) The IV estimates, where inft-1 is an instrument for inft, are  
 
  = 1.50 + .907 inf�3ti t
   (0.65)  (.143) 

 n  =  48,   R2  =  .501. 
 
The estimate on inft is no longer statistically different from one.  (If β1 = 1, then one percentage 
point increase in inflation leads to a one percentage point increase in the three-month T-bill rate.) 
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 (iii) In first differences, the equation estimated by OLS is 
 
  = .105 + .211 Δinf�3tiΔ t
   (.186)  (.073) 

 n  =  48,   R2  =  .154. 
 
This is a much lower estimate than in part (i) or part (ii). 
 
 (iv) If we regress Δinft on Δinft-1 we obtain 
 
  = .088 + .0096 Δinfˆ tinfΔ t-1

   (.325)  (.1266) 

 n  =  47,   R2  =  .0001. 
 
Therefore, Δinft and Δinft-1 are virtually uncorrelated, which means that Δinft-1 cannot be used as 
an IV for Δinft. 
 
15.16 (i) When we add  to the original equation and estimate it by OLS, the coefficient on  
is about –.057 with a t statistic of about –1.08.  Therefore, while the difference in the estimates of 
the return to education is practically large, it is not statistically significant. 

2v̂ 2v̂

 
 (ii) We now add nearc2 as an IV along with nearc4.  (Although, in the reduced form for educ, 
nearc2 is not significant.)  The 2SLS estimate of β1 is now .157, se( 1̂β ) = .053.  So the estimate 
is even larger. 
 
 (iii) Let be the 2SLS residuals.  We regress these on all exogenous variables, including 
nearc2 and nearc4.  The n-R-squared statistic is (3,010)(.0004) 

ˆiu
≈ 1.20.  There is one over-

identifying restriction, so we compute the p-value from the 2
1χ  distribution:  p-value = P( 2

1χ  > 
1.20) ≈ .55, so the overidentifying restriction is not rejected. 
 
15.17 (i) Sixteen states executed at least one prisoner in 1991, 1992, or 1993.  (That is, for 1993, 
exec is greater than zero for 16 observations.)  Texas had by far the most executions with 34. 
 
 (ii) The results of the pooled OLS regression are 
 
  = –5.28 – 2.07 d93 + .128 exec + 2.53 unem �mrdrte
   (4.43)  (2.14)  (.263)  (0.78) 

 n  =  102,   R2  =  .102,   2R  = .074. 
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The positive coefficient on exec is no evidence of a deterrent effect.  Statistically, the coefficient 
is not different from zero.  The coefficient on unem implies that higher unemployment rates are 
associated with higher murder rates. 
 
 (iii) When we difference (and use only the changes from 1990 to 1993), we obtain 
 
  = .413 – .104 Δexec – .067 Δunem �mrdrteΔ
   (.209)  (.043)  (.159) 

 n  =  51,   R2  =  .110,   2R  = .073. 
 
The coefficient on Δexec is negative and statistically significant (p-value ≈ .02 against a two-
sided alternative), suggesting a deterrent effect.  One more execution reduces the murder rate by 
about .1, so 10 more executions reduce the murder rate by one (which means one murder per 
100,000 people).  The unemployment rate variable is no longer significant. 
 
 (iv) The regression Δexec on Δexec-1 yields 
 
  = .350 – 1.08 Δexec�execΔ -1
   (.370)  (0.17) 

 n  =  51,   R2  =  .456,   2R  = .444, 
 
which shows a strong negative correlation in the change in executions.  This means that, 
apparently, states follow policies whereby if executions were high in the preceding three-year 
period, they are lower, one-for-one, in the next three-year period. 
 Technically, to test the identification condition, we should add Δunem to the regression.  But 
its coefficient is small and statistically very insignificant, and adding it does not change the 
outcome at all. 
 
 (v) When the differenced equation is estimated using Δexec-1 as an IV for Δexec, we obtain 
 
  = .411 – .100 Δexec – .067 Δunem �mrdrteΔ
   (.211)  (.064)  (.159) 

 n  =  51,   R2  =  .110,   2R  = .073. 
 
This is very similar to when we estimate the differenced equation by OLS.  Not surprisingly, the 
most important change is that the standard error on 1̂β  is now larger and reduces the statistically 

significance of 1̂β . 
 
[Instructor’s Note:  As an illustration of how important a single observation can be, you might 
want the students to redo this exercise dropping Texas, which accounts for a large fraction of 
executions; see also Computer Exercise 14.12.  The results are not nearly as significant.  Does 
this mean Texas is an “outlier”?  Not necessarily, especially given that we have differenced to 
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remove the state effect.  But we reduce the variation in the explanatory variable, Δexec, 
substantially by dropping Texas.] 
 
15.18 (i) As usual, if unemt is correlated with et, OLS will be biased and inconsistent for 
estimating β1. 
 
 (ii) If E(et|inft-1,unemt-1, K ) = 0 then unemt-1 is uncorrelated with et, which means unemt-1 
satisfies the first requirement for an IV in 
 

Δinft  = β0 + β1unemt + et. 
 

 (iii) The second requirement for unemt-1 to be a valid IV for unemt is that unemt-1 must be 
sufficiently correlated.  The regression unemt on unemt-1 yields 
 
  = 1.57 + .732 unem�

tunem t-1

   (0.58)  (.097) 

 n  =  48,   R2  =  .554. 
 
Therefore, there is a strong, positive correlation between unemt and unemt-1. 
 
 (iv) The expectations-augmented Phillips curve estimated by IV is 
 
  = .694 − .138 unemˆ tinfΔ t

   (1.883)  (.319) 

 n  =  48,   R2  =  .048. 
 
The IV estimate of β1 is much lower in magnitude than the OLS estimate (−.543), and 1̂β  is not 
statistically different from zero.  The OLS estimate had a t statistic of about –2.36 [see equation 
(11.19)]. 
 
15.19 (i) The OLS results are  
 
   −.198  +  .054 p401k  +   .0087 inc  −   .000023 inc�pira = 2  −   .0016 age  +  .00012 age2

  (.069) (.010) (.0005) (.000004) (.0033) (.00004) 
 
 n = 9,275,  R2 = .180 
 
The coefficient on p401k implies that participation in a 401(k) plan is associate with a .054 
higher probability of having an individual retirement account, holding income and age fixed. 
 
 (ii) While the regression in part (i) controls for income and age, it does not account for the 
fact that different people have different taste for savings, even within given income and age 
categories.  People that tend to be savers will tend to have both a 401(k) plan as well as an IRA.  
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(This means that the error term, u, is positively correlated with p401k.)  What we would like to 
know is, for a given person, if that person participates in a 401(k) does it make it less likely or 
more likely that the person also has an IRA.  This ceteris paribus question is difficult to answer 
by OLS without many more controls for the taste for saving. 
 
 (iii) First, we need e401k to be partially correlated with p401k; not surprisingly, this is not an 
issue, as being eligible for a 401(k) plan is, by definition, necessary for participation.  (The 
regression in part (iv) verifies that they are strongly positively correlated.)  The more difficult 
issue is whether e401k can be taken as exogenous in the structural model.  In other words, is 
being eligible for a 401(k) correlated with unobserved taste for saving?  If we think workers that 
like to save for retirement will match up with employers that provide vehicles for retirement 
saving, then u and e401k would be positively correlated.  Certainly we think that e401k is less 
correlated with u than is p401k.  But remember, this alone is not enough to ensure that the IV 
estimator has less asymptotic bias than the OLS estimator; see page 493. 
 
 (iv) The reduced form equation, estimated by OLS but with heteroskedasticity-robust 
standard errors, is  
 
  .059  + .689 e401k  +   .0011 inc  −   .0000018 inc�401p k = 2  −  .0047 age  +  .000052 age2

  (.046) (.008) (.0003) (.0000027) (.0022) (.000026) 
 
 n = 9,275,  R2 = .596 
 
The t statistic on e401k is over 85, and its coefficient estimate implies that, holding income and 
age fixed, eligibility in a 401(k) plan increases the probability of participation in a 401(k) by .69.  
Clearly, e401k passes one of the two requirements as an IV for p401k. 
 
 (v) When e401k is used as an IV for p401k we get the following, with heteroskedasticity-
robust standard errors: 
 
   −.207  +  .021 p401k  +   .0090 inc  −   .000024 inc�pira = 2  −   .0011 age  +  .00011 age2

  (.065) (.013) (.0005) (.000004) (.0032) (.00004) 
 
 n = 9,275,  R2 = .180 
 
The IV estimate of βp401k is less than half as large as the OLS estimate, and the IV estimate has a 
t statistic roughly equal to 1.62.  The reduction in ˆ

p401kβ  is what we expect given the unobserved 
taste for saving argument made in part (ii).  But we still do not estimate a tradeoff between 
participating in a 401(k) plan and participating in an IRA.  This conclusion has prompted some 
in the literature to claim that 401(k) saving is additional saving; it does not simply crowd out 
saving in other plans. 
 
 (vi) After obtaining the reduced form residuals from part (iv), say , we add these to the 
structural equation and run OLS.  The coefficient on  is .075 with a heteroskedasticity-robust t 

îv

îv
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= 3.92.  Therefore, there is strong evidence that p401k is endogenous in the structural equation 
(assuming, of course, that the IV, e401k, is exogenous). 
 
15.20 (i) The IV (2SLS) estimates are  
 
   5.22  +   .0936 educ  +  .0209 exper  +  .0115 tenure  −   .183 black �log ( )wage =
  (.54) (.0337) (.0084) (.0027) (.050) 
 
 n = 935,  R2 = .169 
 
 (ii) The coefficient on  in the second stage regression is, naturally, .0936.  But the 
reported standard error is .0353, which is slightly too large. 

�
ieduc

 
 (iii) When instead we (incorrectly) use  in the second stage regression, its coefficient 
is .0700 and the corresponding standard error is .0264.  Both are too low.  The reduction in the 
estimated return to education from about 9.4% to 7.0% is not trivial.  This illustrates that it is 
best to avoid doing 2SLS manually. 

�
ieduc

 
15.21 (i) The simple regression gives  
 
 �log ( )wage =   1.09  +   .101 educ 
  (.09) (.007)  
 
 n = 1,230,  R2 = .162 
 
Given the above estimates, the 95% confidence interval for the return to education is roughly 
8.7% to 11.5%. 
 
 (ii) The simple regression of educ on ctuit gives  
 
  �educ =   13.04     −   .049 ctuit 
   (.07) (.084) 
 
  n = 1,230,  R2 = .0003 
 
While the correlation between educ and ctuit has the expected negative sign, the t statistic is only 
about −.59, and this is not nearly large enough to conclude that these variables are correlated.  
This means that, even if ctuit is exogenous in the simple wage equation, we cannot use it as an 
IV for educ. 
 
 (iii) The multiple regression equation, estimated by OLS, is  
 
   −.507  +   .137 educ  +  .112 exper  −   .0030 exper�log ( )wage = 2  −   .017 ne  −   .017 nc 
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  (.241) (.009) (.027) (.0012) (.086) (.071) 
 
              + .018 west  +  .156 ne18  +  .011 nc18  −  .030 west18  + .205 urban  +   .126 urban18 
 (.081) (.087) (.073) (.086) (.042) (.049) 
 
 n = 1,230,  R2 = .219 
 
The estimated return to a year of schooling is now higher, 13.7%. 
 
 (iv) In the multiple regression of educ on ctuit and the other explanatory variables in part (iii), 
the coefficient on ctuit is −.165, t statistic = −2.77.  So an increase of $1000 in tuition reduces 
years of education by about .165 (since the tuition variables are measured in thousands). 
 
 (v) Now we estimate the multiple regression model by IV, using ctuit as an IV for educ.  The 
IV estimate of educβ is .250 (se = .122).  While the point estimate seems large, the 95% 
confidence interval is very wide:  about 1.1% to 48.9%.  Other than rejecting the value zero for 

educβ , this confidence is too wide to be useful. 
 
 (vi) The very large standard error of the IV estimate in part (v) shows that the IV analysis is 
not very useful.  This is as it should be, as ctuit is not especially convincing as an IV.  While it is 
significant in the reduced form for educ with other controls, the fact that it was insignificant in 
part (ii) is troubling.  If we changed the set of explanatory variables slightly, would educ and 
ctuit cease to be partially correlated? 
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CHAPTER 16 
 

TEACHING NOTES 
 
I spend some time in Section 16.1 trying to distinguish between good and inappropriate uses of 
SEMs.  Naturally, this is partly determined by my taste, and many applications fall into a gray 
area.  But students who are going to learn about SEMS should know that just because two (or 
more) variables are jointly determined does not mean that it is appropriate to specify and 
estimate an SEM.  I have seen many bad applications of SEMs where no equation in the system 
can stand on its own with an interesting ceteris paribus interpretation.  In most cases, the 
researcher either wanted to estimate a tradeoff between two variables, controlling for other 
factors – in which case OLS is appropriate – or should have been estimating what is (often 
derogatorily) called the “reduced form.” 
 
The identification of a two-equation SEM in Section 16.3 is fairly standard except that I 
emphasize that identification is a feature of the population.  (The early work on SEMs also had 
this emphasis.)  Given the treatment of 2SLS in Chapter 15, the rank condition is easy to state 
(and test). 
 
Romer’s (1993) inflation and openness example is a nice example of using aggregate cross-
sectional data.  Purists may not like the labor supply example, but it has become common to 
view labor supply as being a two-tier decision.  While there are different ways to model the two 
tiers, specifying a standard labor supply function conditional on working is not outside the realm 
of reasonable models. 
 
Section 16.5 begins by expressing doubts of the usefulness of SEMs for aggregate models such 
as those that are specified based on standard macroeconomic models.  Such models raise all 
kinds of thorny issues; these are ignored in virtually all texts, where such models are still used to 
illustrate SEM applications. 
 
SEMs with panel data, which are covered in Section 16.6, are not covered in any other 
introductory text.  Presumably, if you are teaching this material, it is to more advanced students 
in a second semester, perhaps even in a more applied course.  Once students have seen first 
differencing or the within transformation, along with IV methods, they will find specifying and 
estimating models of the sort contained in Example 16.8 straightforward.  Levitt’s example 
concerning prison populations is especially convincing because his instruments seem to be truly 
exogenous. 

 147



SOLUTIONS TO PROBLEMS 
 
16.1 (i) If α1 = 0 then y1 = β1z1 + u1, and so the right-hand-side depends only on the exogenous 
variable z1 and the error term u1.  This then is the reduced form for y1.  If α1 = 0, the reduced 
form for y1 is y1 = β2z2 + u2.  (Note that having both α1 and α2 equal zero is not interesting as it 
implies the bizarre condition u2 – u1 =  β1z1 − β2z2.) 
 If α1 ≠ 0 and α2 = 0, we can plug y1 = β2z2 + u2 into the first equation and solve for y2: 
 

β2z2 + u2  = α1y2 + β1z1 + u1
or 

α1y2  =  β1z1 − β2z2 + u1 – u2. 
 
Dividing by α1 (because α1 ≠ 0) gives 
 
 y2 = (β1/α1)z1 – (β2/α1)z2 + (u1 – u2)/α1

  ≡ π21z1 + π22z2 + v2, 
 
where π21 = β1/α1, π22 = −β2/α1, and v2 = (u1 – u2)/α1.  Note that the reduced form for y2 
generally depends on z1 and z2 (as well as on u1 and u2). 
 
 (ii) If we multiply the second structural equation by (α1/α2) and subtract it from the first 
structural equation, we obtain 
 
 y1 – (α1/α2)y1 = α1y2 − α1y2 + β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2

  = β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2
 
or 
 

[1 – (α1/α2)]y1  =  β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2. 
 

Because α1 ≠ α2, 1 – (α1/α2) ≠ 0, and so we can divide the equation by 1 – (α1/α2) to obtain the 
reduced form for y1:  y1 = π11z1 + π12z2 + v1, where π11 = β1/[1 – (α1/α2)], π12 = −(α1/α2)β2/[1 – 
(α1/α2)], and v1 = [u1 – (α1/α2)u2]/[1 – (α1/α2)]. 
 A reduced form does exist for y2, as can be seen by subtracting the second equation from the 
first: 
 

0  =  (α1 – α2)y2 + β1z1 – β2z2 + u1 – u2; 
 

because α1 ≠ α2, we can rearrange and divide by α1 − α2 to obtain the reduced form. 
 
 (iii) In supply and demand examples, α1 ≠ α2 is very reasonable.  If the first equation is the 
supply function, we generally expect α1 > 0, and if the second equation is the demand function, 
α2 < 0.  The reduced forms can exist even in cases where the supply function is not upward 
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sloping and the demand function is not downward sloping, but we might question the usefulness 
of such models. 
 
16.2 Using simple economics, the first equation must be the demand function, as it depends on 
income, which is a common determinant of demand.  The second equation contains a variable, 
rainfall, that affects crop production and therefore corn supply. 
 
16.3 No.  In this example, we are interested in estimating the tradeoff between sleeping and 
working, controlling for some other factors.  OLS is perfectly suited for this, provided we have 
been able to control for all other relevant factors.  While it is true individuals are assumed to 
optimally allocate their time subject to constraints, this does not result in a system of 
simultaneous equations.  If we wrote down such a system, there is no sense in which each 
equation could stand on its own; neither would have an interesting ceteris paribus interpretation.  
Besides, we could not estimate either equation because economic reasoning gives us no way of 
excluding exogenous variables from either equation.  See Example 16.2 for a similar discussion. 
 
16.4 We can easily see that the rank condition for identifying the second equation does not hold:  
there are no exogenous variables appearing in the first equation that are not also in the second 
equation.  The first equation is identified provided γ3 ≠ 0 (and we would presume γ3 < 0).  This 
gives us an exogenous variable, log(price), that can be used as an IV for alcohol in estimating 
the first equation by 2SLS (which is just standard IV in this case). 
 
16.5 (i) Other things equal, a higher rate of condom usage should reduce the rate of sexually 
transmitted diseases (STDs).  So β1 < 0. 
 
 (ii) If students having sex behave rationally, and condom usage does prevent STDs, then 
condom usage should increase as the rate of infection increases. 
 
 (iii) If we plug the structural equation for infrate into conuse = γ0 + γ1infrate + …, we see 
that conuse depends on γ1u1.  Because γ1 > 0, conuse is positively related to u1.  In fact, if the 
structural error (u2) in the conuse equation is uncorrelated with u1, Cov(conuse,u1) = γ1Var(u1) > 
0.  If we ignore the other explanatory variables in the infrate equation, we can use equation (5.4) 
to obtain the direction of bias:  1

ˆplim( )β  − β1 > 0 because Cov(conuse,u1) > 0, where 1̂β  denotes 
the OLS estimator.  Since we think β1 < 0, OLS is biased towards zero.  In other words, if we use 
OLS on the infrate equation, we are likely to underestimate the importance of condom use in 
reducing STDs.   (Remember, the more negative is β1, the more effective is condom usage.) 
 
 (iv) We would have to assume that condis does not appear, in addition to conuse, in the 
infrate equation.  This seems reasonable, as it is usage that should directly affect STDs, and not 
just having a distribution program.  But we must also assume condis is exogenous in the infrate:  
it cannot be correlated with unobserved factors (in u1) that also affect infrate. 
 We must also assume that condis has some partial effect on conuse, something that can be 
tested by estimating the reduced form for conuse.  It seems likely that this requirement for an IV 
– see equations (15.30) and (15.31) – is satisfied. 
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16.6 (i) It could be that the decision to unionize certain segments of workers is related to how a 
firm treats its employees.  While the timing may not be contemporaneous, with the snapshot of a 
single cross section we might as well assume that it is. 
 
 (ii) One possibility is to collect information on whether workers’ parents belonged to a union, 
and construct a variable that is the percentage of workers who had a parent in a union (say, 
perpar).  This may be (partially) correlated with the percent of workers that belong to a union. 
 
 (iii) We would have to assume that percpar is exogenous in the pension equation.  We can 
test whether perunion is partially correlated with perpar by estimating the reduced form for 
perunion and doing a t test on perpar. 
 
16.7 (i) Attendance at women’s basketball may grow in ways that are unrelated to factors that we 
can observe and control for.  The taste for women’s basketball may increase over time, and this 
would be captured by the time trend. 
 
 (ii) No. The university sets the price, and it may change price based on expectations of next 
year’s attendance; if the university uses factors that we cannot observe, these are necessarily in 
the error term ut.  So even though the supply is fixed, it does not mean that price is uncorrelated 
with the unobservables affecting demand. 
 
 (iii) If people only care about how this year’s team is doing, SEASPERCt-1 can be excluded 
from the equation once WINPERCt has been controlled for.  Of course, this is not a very good 
assumption for all games, as attendance early in the season is likely to be related to how the team 
did last year.  We would also need to check that 1PRICEt is partially correlated with 
SEASPERCt-1 by estimating the reduced form for 1PRICEt. 
 
 (iv) It does make sense to include a measure of men’s basketball ticket prices, as attending a 
women’s basketball game is a substitute for attending a men’s game.  The coefficient on 
1MPRICEt would be expected to be negative.  The winning percentage of the men’s team is 
another good candidate for an explanatory variable in the women’s demand equation. 
 
 (v) It might be better to use first differences of the logs, which are then growth rates.  We 
would then drop the observation for the first game in each season. 
 
 (vi) If a game is sold out, we cannot observe true demand for that game.  We only know that 
desired attendance is some number above capacity.  If we just plug in capacity, we are 
understating the actual demand for tickets.  (Chapter 17 discusses censored regression methods 
that can be used in such cases.) 
 
16.8 We must first eliminate the unobserved effect, ai1.  If we difference, we have 
 
 Δ1HPRICEit = δt + β1ΔlEXPENDit + β2Δ1POLICEit + β3Δ1MEDINCit  

   + β4ΔPROPTAXit + Δuit, 
 

 150



for t = 2,3.  The δt here denotes different intercepts in the two years.  The key assumption is that 
the change in the (log of) the state allocation, Δ1STATEALLit, is exogenous in this equation.  
Naturally, Δ1STATEALLit is (partially) correlated with Δ1EXPENDit because local expenditures 
depend at least partly on the state subsidy.  The policy change in 1994 means that there should be 
significant variation in Δ1STATEALLit, at least for the 1994 to 1996 change.  Therefore, we can 
estimate this equation by pooled 2SLS, using Δ1STATEALLit as an IV for Δ1EXPENDit; of 
course, this assumes the other explanatory variables in the equation are exogenous.  (We could 
certainly question the exogeneity of the policy and property tax variables.)  Without a policy 
change, Δ1STATEALLit would probably not vary sufficiently across i or t. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
16.9 (i) Assuming the structural equation represents a causal relationship, 100⋅β1 is the 
approximate percentage change in income if a person smokes one more cigarette per day. 
 
 (ii) Since consumption and price are, ceteris paribus, negatively related, we expect γ5 ≤ 0 
(allowing for γ5) = 0.  Similarly, everything else equal, restaurant smoking restrictions should 
reduce cigarette smoking, so γ5 ≤ 0. 
 
 (iii) We need γ5 or γ6 to be different from zero.  That is, we need at least one exogenous 
variable in the cigs equation that is not also in the log(income) equation. 
 
 (iv) OLS estimation of the log(income) equation gives 
 
  = 7.80 + .0017 cigs + .060 educ + .058 age − .00063 age�log ( )income 2

   (0.17)  (.0017)  (.008)  (.008)  (.00008) 

 n  =  807,   R2
  =  .165. 

 
The coefficient on cigs implies that cigarette smoking causes income to increase, although the 
coefficient is not statistically different from zero.  Remember, OLS ignores potential 
simultaneity between income and cigarette smoking. 
 
 (v) The estimated reduced form for cigs is 
 
  = 1.58 − .450 educ + .823 age − .0096 age�cigs 2 − .351 log(cigpric) 
   (23.70)  (.162)  (.154)  (.0017)  (5.766) 

  − 2.74 restaurn 
   (1.11) 

 n  =  807,   R2  =  .051. 
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While log(cigpric) is very insignificant, restaurn had the expected negative sign and a t statistic 
of about –2.47.  (People living in states with restaurant smoking restrictions smoke almost three 
fewer cigarettes, on average, given education and age.)  We could drop log(cigpric) from the 
analysis but we leave it in.  (Incidentally, the F test for joint significance of log(cigpric) and 
restaurn yields p-value  .044.) ≈
 
 (vi) Estimating the log(income) equation by 2SLS gives 
 
  = 7.78 − .042 cigs + .040 educ + .094 age − .00105 age�log ( )income 2

   (0.23)  (.026)  (.016)  (.023)  (.00027) 

 n  =  807. 
 
Now the coefficient on cigs is negative and almost significant at the 10% level against a two-
sided alternative.  The estimated effect is very large:  each additional cigarette someone smokes 
lowers predicted income by about 4.2%.  Of course, the 95% CI for βcigs is very wide. 
 
 (vii) Assuming that state level cigarette prices and restaurant smoking restrictions are 
exogenous in the income equation is problematical.  Incomes are known to vary by region, as do 
restaurant smoking restrictions.  It could be that in states where income is lower (after controlling 
for education and age), restaurant smoking restrictions are less likely to be in place. 
 
16.10 (i) We estimate a constant elasticity version of the labor supply equation (naturally, only 
for hours > 0), again by 2SLS.  We get 
 
  = 8.37 + 1.99 log(wage) − .235 educ − .014 age �log ( )hours
   (0.69)  (0.56)  (.071)  (.011) 

  − .465 kidslt6 − .014 nwifeinc 
   (.219)  (.008) 

 n  =  428, 
 
which implies a labor supply elasticity of 1.99.  This is even higher than the 1.26 we obtained 
from equation (16.24) at the mean value of hours (1303). 
 
 (ii) Now we estimate the equation by 2SLS but allow log(wage) and educ to both be 
endogenous.  The full list of instrumental variables is age, kidslt6, nwifeinc, exper, exper2, 
motheduc, and fatheduc.  The result is  
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  = 7.26 + 1.81 log(wage) − .129 educ − .012 age �log ( )hours
   (1.02)  (0.50)  (.087)  (.011) 

  − .543 kidslt6 − .019 nwifeinc 
   (.211)  (.009) 

 n  =  428. 
 
The biggest effect is to reduce the size of the coefficient on educ as well as its statistical 
significance.  The labor supply elasticity is only moderately smaller. 
 
 (iii) After obtaining the 2SLS residuals, , from the estimation in part (ii), we regress these 
on age, kidslt6, nwifeinc, exper, exper

1̂u
2, motheduc, and fatheduc.  The n-R-squared statistic is 

408(.0010) = .428.  We have two overidentifying restrictions, so the p-value is roughly 
P( 2

2χ  > .43)  .81.  There is no evidence against the exogeneity of the IVs. ≈
 
16.11 (i) The OLS estimates are 
 
  = 25.23 − .215 open ˆinf
   (4.10)  (.093) 

 n  =  114,   R2  =  .045. 
 
The IV estimates are 
 
  = 29.61 − .333 open ˆinf
   (5.66)  (.140) 

 n  =  114,   R2  =  .032. 
 
The OLS coefficient is the same, to three decimal places, when log(pcinc) is included in the 
model.  The IV estimate with log(pcinc) in the equation is −.337, which is very close to −.333.  
Therefore, dropping log(pcinc) makes little difference. 
 
 (ii) Subject to the requirement that an IV be exogenous, we want an IV that is as highly 
correlated as possible with the endogenous explanatory variable.  If we regress open on land we 
obtain R2 = .095.  The simple regression of open on log(land) gives R2 = .448.  Therefore, 
log(land) is much more highly correlated with open.  Further, if we regress open on log(land) 
and land we get 
 
  = 129.22 − 8.40 log(land) + .0000043 land �o pen
   (10.47)  (0.98)  (.0000031) 

 n  =  114,   R2  =  .457. 
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While log(land) is very significant, land is not, so we might as well use only log(land) as the IV 
for open. 
 
[Instructor’s Note:  You might ask students whether it is better to use log(land) as the single IV 
for open or to use both land and land2.  In fact, log(land) explains much more variation in open.] 
 
 (iii) When we add oil to the original model, and assume oil is exogenous, the IV estimates 
are 
 
  = 24.01 − .337 open + .803 log(pcinc) − 6.56 oil ˆinf
   (16.04)  (.144)  (2.12)  (9.80) 

 n  =  114,   R2  =  .035. 
 
Being an oil producer is estimated to reduce average annual inflation by over 6.5 percentage 
points, but the effect is not statistically significant.  This is not too surprising, as there are only 
seven oil producers in the sample. 
 
16.12 (i) The usual form of the test assumes no serial correlation under H0, and this appears to be 
the case.  We also assume homoskedasticity.  After estimating (16.35), we obtain the 2SLS 
residuals, .  We then run the regression on gcˆtu ˆtu t-1, gyt-1, and r3t-1.  The n-R-squared statistic is 
35(.0613) ≈ 2.15.  With one df the (asymptotic) p-value is P( 2

1χ  > 2.15) ≈ .143, and so the 
instruments pass the overidentification test at the 10% level. 
 
 (ii) If we estimate (16.35) but with gct-2, gyt-2, and r3t-2 as the IVs, we obtain, with n = 34, 
 
  = −.0054 + 1.204 gy�

tgc t − .00043 r3t. 
   (.0274)  (1.272)  (.00196)  
 
The coefficient on gyt has doubled in size compared with equation (16.35), but it is not 
statistically significant.  The coefficient on r3t is still small and statistically insignificant. 
 
 (iii) If we regress gyt on gct-2, gyt-2, and r3t-2 we obtain 
 
  = .021 − .070 gc�

tgy t-2 + .094 gyt-2 + .00074 r3t-2

   (.007)  (.469)  (.330)  (.00166) 

 n  =  34,   R2  =  .0137. 
 
The F statistic for joint significance of all explanatory variables yields p-value  .94, and so 
there is no correlation between gy

≈
t and the proposed IVs, gct-2, gyt-2, and r3t-2.  Therefore, we 

never should have done the IV estimation in part (ii) in the first place. 
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[Instructor’s Note:  There may be serial correlation in this regression, in which case the F 
statistic is not valid.  But the point remains that gyt is not at all correlated with two lags of all 
variables.] 
 
16.l3 This is an open-ended question without a unique answer.  Even if we settle on extending 
the data through a particular year, we might want to change the disposable income and 
nondurable consumption numbers in earlier years, as these are often recalculated.  For example, 
the value for real disposable personal income in 1995, as reported in Table B-29 of the 1997 
Economic Report of the President (ERP), is $4,945.8 billions.  In the 1999 ERP, this value has 
been changed to $4,906.0 billions (see Table B-31).  All series can be updated using the latest 
edition of the ERP.  The key is to use real values and make them per capita by dividing by 
population.  Make sure that you use nondurable consumption. 
 
16.14 (i) If we estimate the inverse supply function by OLS we obtain (with the coefficients on 
the monthly dummies suppressed) 
 
  = .0144 − .0443 gcem�

tg prc t + .0628 gprcpett  +  K  
   (.0032)  (.0091)  (.0153) 

 n  =  298,   R2  =  .386. 
 
Several of the monthly dummy variables are very statistically significant, but their coefficients 
are not of direct interest here.  The estimated supply curve slopes down, not up, and the 
coefficient on gcemt is very statistically significant (t statistic ≈ −4.87). 
 
 (ii) We need grdefst to have a nonzero coefficient in the reduced form for gcemt.  More 
precisely, if we write 
 

gcemt  =  π0 + π1grdefst + π2gprcpett + π3febt + K  + π13dect + vt, 
 

then identification requires π1 ≠ 0.  When we run this regression, 1π̂  = −1.054 with a t statistic of 
about –0.294.  Therefore, we cannot reject H0: π1 = 0 at any reasonable significance level, and 
we conclude that grdefst is not a useful IV for gcemt (even if grdefst is exogenous in the supply 
equation). 
 
 (iii) Now the reduced form for gcem is 
 

gcemt  =  π0 + π1grrest + π2grnont + π3gprcpett + π4febt + K  + π14dect + vt, 
 

and we need at least one of π1 and π2 to be different from zero.  In fact, 1π̂  = .136, t( 1π̂ ) = .984 
and 2π̂  = 1.15, t( 2π̂ ) = 5.47.  So grnont is very significant in the reduced form for gcemt, and we 
can proceed with IV estimation. 
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 (iv) We use both grrest and grnont as IVs for gcemt and apply 2SLS, even though the former 
is not significant in the RF.  The estimated labor supply function (with seasonal dummy 
coefficients suppressed) is now 
 
  = .0228 − .0106 gcem�

tg prc t + .0605 gprcpett  + K  
   (.0073)  (.0277)  (.0157) 

 n  =  298,   R2  =  .356. 
 
While the coefficient on gcemt is still negative, it is only about one-fourth the size of the OLS 
coefficient, and it is now very insignificant.  At this point we would conclude that the static 
supply function is horizontal (with gprc on the vertical axis, as usual).  Shea (1993) adds many 
lags of gcemt and estimates a finite distributed lag model by IV, using leads as well as lags of 
grrest and grnont as IVs.  He estimates a positive long run propensity. 
 
16.15 (i) If county administrators can predict when crime rates will increase, they may hire more 
police to counteract crime.  This would explain the estimated positive relationship between 
Δlog(crmrte) and Δlog(polpc) in equation (13.33). 
 
 (ii) This may be reasonable, although tax collections depend in part on income and sales 
taxes, and revenues from these depend on the state of the economy, which can also influence 
crime rates. 
 
 (iii) The reduced form for Δlog(polpcit), for each i and t, is 
 
 Δlog(polpcit) = π0 + π1d83t + π2d84t + π3d85t + π4d86t + π5d87t

   + π6Δlog(prbarrit) + π7Δlog(prbconvit) + π8Δlog(prbprisit) 

   + π9Δlog (avgsenit) + π10Δlog(taxpcit) + vit. 
 
We need π10 ≠ 0 for Δlog(taxpcit) to be a reasonable IV candidate for Δlog(polpcit).  When we 
estimate this equation by pooled OLS (N = 90, T = 6 for n = 540), we obtain 10π̂  = .0052 with a t 
statistic of only .080.  Therefore, Δlog(taxpcit) is not a good IV for Δlog(polpcit). 
 
 (iv) If the grants were awarded randomly, then the grant amounts, say grantit for the dollar 
amount for county i and year t, will be uncorrelated with Δuit, the changes in unobservables that 
affect county crime rates.  By definition, grantit should be correlated with Δlog(polpcit) across i 
and t.  This means we have an exogenous variable that can be omitted from the crime equation 
and that is (partially) correlated with the endogenous explanatory variable.  We could reestimate 
(13.33) by IV. 
 
16.16 (i) To estimate the demand equations, we need at least one exogenous variable that appears 
in the supply equation. 
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 (ii) For wave2t and wave3t to be valid IVs for log(avgprct), we need two assumptions.  The 
first is that these can be properly excluded from the demand equation.  This may not be entirely 
reasonable, and wave heights are determined partly by weather, and demand at a local fish 
market could depend on demand.  The second assumption is that at least one of wave2t and 
wave3t appears in the supply equation.  There is indirect evidence of this in part three, as the two 
variables are jointly significant in the reduced form for log(avgprct). 
 
 (iii) The OLS estimates of the reduced form are  
 
   −1.02  −   .012 mon�log ( )tavg prc = t  −  .0090 tuest  +   .051 wedt  +   .124 thurst 

  (.14) (.114) (.1119) (.112) (.111) 
 
  +  .094 wave2t  +  .053 wave3t
  (.021) (.020) 
      
 n = 97,  R2 = .304 
 
The variables wave2t and wave3t are jointly very significant:  F = 19.1, p-value = zero to four 
decimal places. 
 
 (iv) The 2SLS estimates of the demand function are  
 
    8.16  −   .816 log(avgprc�log ( )ttotqty = t)  −  .307 mont  −  .685 tuest  
  (.18) (.327)  (.229) (.226) 
 
  −  .521 wedt  +   .095 thurst
  (.224) (.225) 
 
 n = 97,  R2 = .193 
 
The 95% confidence interval for the demand elasticity is roughly −1.47 to −.17.  The point 
estimate, −.82, seems reasonable:  a 10 percent increase in price reduces quantity demanded by 
about 8.2%. 
 
 (v) The coefficient on  is about .294 (se = .103), so there is strong evidence of positive 
serial correlation, although the estimate of ρ is not huge.  One could compute a Newey-West 
standard error for 2SLS in place of the usual standard error. 

, 1ˆi tu −

 
 (vi) To estimate the supply elasticity, we would have to assume that the day-of-the-week 
dummies do not appear in the supply equation, but they do appear in the demand equation.  Part 
(iii) provides evidence that there are day-of-the-week effects in the demand function.  But we 
cannot know about the supply function. 
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 (vii) Unfortunately, in the estimation of the reduced form for log(avgprct) in part (iii), the 
variables mon, tues, wed, and thurs are jointly insignificant [F(4,90) = .53, p-value = .71.]  This 
means that, while some of these dummies seem to show up in the demand equation, things cancel 
out in a way that they do not affect equilibrium price, once wave2 and wave3 are in the equation.  
So, without more information, we have no hope of estimating the supply equation. 
 
[Instructor’s Note:  You could have the students try part (vii), anyway, to see what happens.  
Also, you could have them estimate the demand function by OLS, and compare the estimates 
with the 2SLS estimates in part (iv).  You could also have them compute the test of the single 
overidentification condition.]  
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CHAPTER 17 
 

TEACHING NOTES 
 
I emphasize to the students that, first and foremost, the reason we use the probit and logit models 
is to obtain more reasonable functional forms for the response probability.  Once we move to a 
nonlinear model with a fully specified conditional distribution, it makes sense to use the efficient 
estimation procedure, maximum likelihood.  It is important to spend some time on interpreting 
probit and logit estimates.  In particular, the students should know the rules-of-thumb for 
comparing probit, logit, and LPM estimates.  Beginners sometimes mistakenly think that, 
because the probit and especially the logit estimates are much larger than the LPM estimates, the 
explanatory variables now have larger estimated effects on the response probabilities than in the 
LPM case.  This may or may not be true. 
 
I view the Tobit model, when properly applied, as improving functional form for corner solution 
outcomes.  In most cases it is wrong to view a Tobit application as a data-censoring problem 
(unless there is true data censoring in collecting the data or because of institutional constraints).  
For example, in using survey data to estimate the demand for a new product, say a safer pesticide 
to be used in farming, some farmers will demand zero at the going price, while some will 
demand positive pounds per acre.  There is no data censoring here; some farmers find it optimal 
to use none of the new pesticide.  The Tobit model provides more realistic functional forms for 
E(y|x) and E(y|y > 0,x) than a linear model for y.  With the Tobit model, students may be tempted 
to compare the Tobit estimates with those from the linear model and conclude that the Tobit 
estimates imply larger effects for the independent variables.  But, as with probit and logit, the 
Tobit estimates must be scaled down to be comparable with OLS estimates in a linear model.  
(See Equation (17.27); for an example, see Computer Exercise 17.10.) 
 
Poisson regression with an exponential conditional mean is used primarily to improve over a 
linear functional form for E(y|x).  The parameters are easy to interpret as semi-elasticities or 
elasticities.  If the Poisson distributional assumption is correct, we can use the Poisson 
distribution compute probabilities, too.  But overdispersion is often present in count regression 
models, and standard errors and likelihood ratio statistics should be adjusted to reflect this.  
Some reviewers of the first edition complained about either the inclusion of this material or its 
location within the chapter.  I think applications of count data models are on the rise:  in 
microeconometric fields such as criminology, health economics, and industrial organization, 
many interesting response variables come in the form of counts.  One suggestion was that 
Poisson regression should not come between the Tobit model in Section 17.2 and Section 17.4, 
on censored and truncated regression.  In fact, I put the Poisson regression model between these 
two topics on purpose:  I hope it helps emphasize that the material in Section 17.2 is purely about 
functional form, as is Poisson regression.  Sections 17.4 and 17.5 deal with underlying linear 
models, but where there is a data-observability problem. 
 
Censored regression, truncated regression, and incidental truncation are used for missing data 
problems.  Censored and truncated data sets usually result from sample design, as in duration 
analysis.  Incidental truncation often arises from self-selection into a certain state, such as 
employment or participating in a training program.  It is important to emphasize to students that 
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the underlying models are classical linear models; if not for the missing data or sample selection 
problem, OLS would be the efficient estimation procedure. 
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SOLUTIONS TO PROBLEMS 
 
17.1 (i) Let m0 denote the number (not the percent) correctly predicted when yi = 0 (so the 
prediction is also zero) and let m1 be the number correctly predicted when yi = 1.  Then the 
proportion correctly predicted is (m0 + m1)/n, where n is the sample size.  By simple algebra, we 
can write this as (n0/n)(m0/n0) + (n1/n)(m1/n1) = (1 − y )(m0/n0) + y (m1/n1), where we have used 
the fact that y  = n1/n (the proportion of the sample with yi = 1) and 1 − y  = n0/n (the proportion 
of the sample with yi = 0).  But m0/n0 is the proportion correctly predicted when yi = 0, and m1/n1 
is the proportion correctly predicted when yi = 1.  Therefore, we have 
 

(m0 + m1)/n  =  (1 − y )(m0/n0) + y (m1/n1). 
 

If we multiply through by 100 we obtain 
 

p̂   =  (1 − y )  + 0q̂ y ⋅ , 1̂q
 

where we use the fact that, by definition, p̂  = 100[(m0 + m1)/n],  = 100(m0q̂ 0/n0), and  = 
100(m

1̂q
1/n1). 

 
 (ii) We just use the formula from part (i):  p̂  = .30(80) + .70(40) = 52.  Therefore, overall we 
correctly predict only 52% of the outcomes.  This is because, while 80% of the time we correctly 
predict y = 0, yi = 0 accounts for only 30 percent of the outcomes.  More weight (.70) is given to 
the predictions when yi = 1, and we do much less well predicting that outcome (getting it right 
only 40% of the time). 
 
17.2 We need to compute the estimated probability first at hsGPA = 3.0, SAT = 1,200, and 
study = 10 and subtract this from the estimated probability with hsGPA = 3.0, SAT = 1,200, and 
study = 5.  To obtain the first probability, we start by computing the linear function inside Λ(⋅): 
−1.77 + .24(3.0) + .00058(1,200) + .073(10) = .376.  Next, we plug this into the logit function:  
exp(.376)/[1 + exp(.376)]  .593.  This is the estimated probability that a student-athlete with 
the given characteristics graduates in five years. 

≈

 For the student-athlete who attended study hall five hours a week, we compute –
1.77 + .24(3.0) + .00058(1,200) + .073(5) = .011.  Evaluating the logit function at this value 
gives exp(.011)/[1 + exp(.011)] ≈ .503.  Therefore, the difference in estimated probabilities 
is .593 − .503 = .090, or just under .10.  [Note how far off the calculation would be if we simply 
use the coefficient on study to conclude that the difference in probabilities is .073(10 – 5) = .365.] 
 
17.3 (i) We use the chain rule and equation (17.23).  In particular, let x1 ≡ log(z1).  Then, by the 
chain rule, 
 

 1

1 1 1 1

( | 0, ) ( | 0, ) ( | 0, ) 1 ,xE y y E y y E y y
z x z x 1z

∂∂ > ∂ > ∂ >
= ⋅ = ⋅

∂ ∂ ∂ ∂
x x x  

 
where we use the fact that the derivative of log(z1) is 1/z1.  When we plug in (17.23) for  
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∂E(y|y > 0,x)/ ∂x1, we obtain the answer. 
 
 (ii) As in part (i), we use the chain rule, which is now more complicated: 
 

 1 2

1 1 1 2

( | 0, ) ( | 0, ) ( | 0, ) ,
1

x xE y y E y y E y y
z x z x z

∂ ∂∂ > ∂ > ∂ >
= ⋅ +

∂ ∂ ∂ ∂
x x x

⋅
∂

 

 
where x1 = z1 and x2 = 2

1z .  But ∂E(y|y > 0,x)/ ∂x1 = β1{1 − λ(xβ/σ)[xβ/σ + λ(xβ/σ)]}, ∂E(y|y > 
0,x)/δx2 = β2{1 − λ(xβ/σ)[xβ/σ + λ(xβ/σ)]}, ∂x1/∂z1 = 1, and ∂x2/∂z1 = 2z1.  Plugging these into 
the first formula and rearranging gives the answer. 
 
17.4 Since log(⋅) is an increasing function – that is, for positive w1 and w2, w1 > w2 if and only if 
log(w1) > log(w2) – it follows that, for each i, mvpi > minwagei if and only if log(mvpi) > 
log(minwagei).  Therefore, log(wagei) = max[log(mvpi), log(minwagei)]. 
 
17.5 (i) patents is a count variable, and so the Poisson regression model is appropriate. 
 
 (ii) Because β1 is the coefficient on log(sales), β1 is the elasticity of patents with respect to 
sales.  (More precisely, β1 is the elasticity of E(patents|sales,RD) with respect to sales.) 
 
 (iii) We use the chain rule to obtain the partial derivative of exp[β0 + β1log(sales) + β2RD + 
β3RD2] with respect to RD: 
 

( | ,E patents sales RD)
RD

∂
∂

  =  (β2 + 2β3RD)exp[β0 + β1log(sales) + β2RD + β3RD2]. 

 
A simpler way to interpret this model is to take the log and then differentiate with respect to RD:  
this gives β2 + 2β3RD, which shows that the semi-elasticity of patents with respect to RD is 
100(β2 + 2β3RD). 
 
17.6 (i) OLS will be unbiased, because we are choosing the sample on the basis of an exogenous 
explanatory variable. The population regression function for sav is the same as the regression 
function in the subpopulation with age > 25. 
 
 (ii) Assuming that marital status and number of children affect sav only through household 
size (hhsize), this is another example of exogenous sample selection.  But, in the subpopulation 
of married people without children, hhsize = 2.  Because there is no variation in hhsize in the 
subpopulation, we would not be able to estimate β2; effectively, the intercept in the 
subpopulation becomes β0 + 2β2, and that is all we can estimate.  But, assuming there is variation 
in inc, educ, and age among married people without children (and that we have a sufficiently 
varied sample from this subpopulation), we can still estimate β1, β3, and β4. 
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 (iii) This would be selecting the sample on the basis of the dependent variable, which causes 
OLS to be biased and inconsistent for estimating the βj in the population model.  We should 
instead use a truncated regression model. 
 
17.7 For the immediate purpose of finding out the variables that determine whether accepted 
applicants choose to enroll, there is not a sample selection problem.  The population of interest is 
applicants accepted by the particular university.  Therefore, it is perfectly appropriate to specify a 
model for this group, probably a linear probability model, a probit model, or a logit model.  OLS 
or maximum likelihood estimation will produce consistent, asymptotically normal estimators.  
This is a good example of where many data analysts’ knee-jerk reaction might be to conclude 
that there is a sample selection problem, which is why it is important to be very precise about the 
purpose of the analysis, including stating the population of interest. 
 If the university is hoping the pool of applicants changes in the near future, then there is a 
sample selection problem:  the current students that apply may be systematically different from 
students that may apply in the future.  As the nature of the pool of applicants is unlikely to 
change dramatically over one year, the sample selection problem can be mitigated, if not entirely 
eliminated, by updating the analysis after each first-year class has enrolled. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
17.8 (i) If spread is zero, there is no favorite, and the probability that the team we (arbitrarily) 
label the favorite should have a 50% chance of winning. 
 
 (ii) The linear probability model estimated by OLS gives 
 
 favwin  = .577 + .0194 spread 
   (.028)  (.0023) 
   [.032]  [.0019] 

 n  =  553,   R2  =  .111. 
 
where the usual standard errors are in (⋅) and the heteroskedasticity-robust standard errors are in 
[⋅].  Using the usual standard error, the t statistic for H0: β0 = .5 is (.577 − .5)/.028 = 2.75, which 
leads to rejecting H0 against a two-sided alternative at the 1% level (critical value  2.58).  
Using the robust standard error reduces the significance but nevertheless leads to strong rejection 
of H

≈

0 at the 2% level against a two-sided alternative:  t = (.577 − .5)/.032 ≈ 2.41 (critical 
value ≈ 2.33). 
 
 (iii) As we expect, spread is very statistically significant using either standard error, with a t 
statistic greater than eight.  If spread = 10 the estimated probability that the favored team wins 
is .577 + .0194(10) = .771. 
 
 (iv) The probit results are given in the following table: 
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Dependent Variable:  favwin 
Independent 
Variable 

Coefficient 
(Standard Error) 

spread .0925 
(.0122) 

constant −.0106 
(.1037) 

Number of Observations    553 

Log Likelihood Value −263.56 

Pseudo R-Squared .129 
 
In the Probit model 
 

P(favwin = 1|spread)  =  Φ(β0 + β1spread), 
 

where Φ(⋅) denotes the standard normal cdf, if β0 = 0 then 
 

P(favwin = 1|spread)  =  Φ(β1spread) 
 

and, in particular, P(favwin = 1|spread = 0) = Φ(0) = .5.  This is the analog of testing whether the 
intercept is .5 in the LPM.  From the table, the t statistic for testing H0: β0 = 0 is only about -.102, 
so we do not reject H0. 
 
 (v) When spread = 10 the predicted response probability from the estimated probit model is 
Φ[-.0106 + .0925(10)] = Φ(.9144)  .820.  This is somewhat above the estimate for the LPM. ≈
 
 (vi) When favhome, fav25, and und25 are added to the probit model, the value of the log-
likelihood becomes –262.64.  Therefore, the likelihood ratio statistic is 2[−262.64 – (−263.56)] = 
2(263.56 – 262.64) = 1.84.  The p-value from the 2

3χ  distribution is about .61, so favhome, fav25, 
and und25 are jointly very insignificant.  Once spread is controlled for, these other factors have 
no additional power for predicting the outcome. 
 
17.9 (i) The probit estimates from approve on white are given in the following table: 
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Dependent Variable:  approve 
Independent 
Variable 

Coefficient 
(Standard Error) 

white .784 
(.087) 

constant .547 
(.075) 

Number of Observations           1,989 

Log Likelihood Value −700.88 

Pseudo R-Squared .053 
 
As there is only one explanatory variable that takes on just two values, there are only two 
different predicted values:  the estimated probabilities of loan approval for white and nonwhite 
applicants.  Rounded to three decimal places these are .708 for nonwhites and .908 for whites.  
Without rounding errors, these are identical to the fitted values from the linear probability model.  
This must always be the case when the independent variables in a binary response model are 
mutually exclusive and exhaustive binary variables.  Then, the predicted probabilities, whether 
we use the LPM, probit, or logit models, are simply the cell frequencies.  (In other words, .708 is 
the proportion of loans approved for nonwhites and .908 is the proportion approved for whites.) 
 
 (ii) With the set of controls added, the probit estimate on white becomes about .520 
(se ≈ .097).  Therefore, there is still very strong evidence of discrimination against nonwhites.  
We can divide this by 2.5 to make it roughly comparable to the LPM estimate in part (iii) of 
Computer Exercise 7.16:  .520/2.5 ≈ .208, compared with .129 in the LPM. 
 
 (iii) When we use logit instead of probit, the coefficient (standard error) on white 
becomes .938 (.173). 
 
 (iv) Recall that, to make probit and logit estimates roughly comparable, we can multiply the 
logit estimates by .625.  The scaled logit coefficient becomes .625(.938) ≈ .586, which is 
reasonably close to the probit estimate.  A better comparison would be to compare the predicted 
probabilities by setting the other controls at interesting values, such as their average values in the 
sample. 
 
17.10 (i) Out of 616 workers, 172, or about 18%, have zero pension benefits.  For the 444 
workers reporting positive pension benefits, the range is from $7.28 to $2,880.27.  Therefore, we 
have a nontrivial fraction of the sample with pensiont = 0, and the range of positive pension 
benefits is fairly wide.  The Tobit model is well-suited to this kind of dependent variable. 
 
 (ii) The Tobit results are given in the following table: 
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Dependent Variable:  pension 

Independent 
Variable 

(1) (2) 

exper 5.20 
(6.01) 

4.39 
(5.83) 

age −4.64 
(5.71) 

−1.65 
(5.56) 

tenure 36.02 
(4.56) 

28.78 
(4.50) 

educ 93.21 
(10.89) 

106.83 
(10.77) 

depends (35.28 
(21.92) 

41.47 
(21.21) 

married (53.69 
(71.73) 

19.75 
(69.50) 

white 144.09 
(102.08) 

159.30 
(98.97) 

male 308.15 
(69.89) 

257.25 
(68.02) 

union ––––– 439.05 
(62.49) 

constant −1,252.43 
(219.07) 

−1,571.51 
(218.54) 

 
Number of Observations 616 616 

Log Likelihood Value −3,672.96 −3648.55 

σ̂  677.74 652.90 
 
 
In column (1), which does not control for union, being white or male (or, of course, both) 
increases predicted pension benefits, although only male is statistically significant (t ≈ 4.41). 
 
 (iii) We use equation (17.22) with exper = tenure = 10, age = 35, educ = 16, depends = 0, 
married = 0, white = 1, and male = 1 to estimate the expected benefit for a white male with the 
given characteristics.  Using our shorthand, we have 
 

ˆxβ   = −1,252.5 + 5.20(10) – 4.64(35) + 36.02(10) + 93.21(16) + 144.09 + 308.15  = 940.90. 
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Therefore, with σ̂  = 677.74 we estimate E(pension|x) as 
 

Φ(940.9/677.74)⋅(940.9) + (677.74)⋅φ(940.9/677.74) ≈ 966.40. 
 
For a nonwhite female with the same characteristics, 
 

ˆxβ   =  −1,252.5 + 5.20(10) – 4.64(35) + 36.02(10) + 93.21(16)  =  488.66. 
 
Therefore, her predicted pension benefit is 
 

Φ(488.66/677.74)⋅(488.66) + (677.74)⋅φ(488.66/677.74) ≈ 582.10. 
 
The difference between the white male and nonwhite female is 966.40 – 582.10 = $384.30. 
 
[Instructor’s Note:  If we had just done a linear regression, we would add the coefficients on 
white and male to obtain the estimated difference.  We get about 114.94 + 272.95 = 387.89, 
which is very close to the Tobit estimate.  Provided that we focus on partial effects, Tobit and a 
linear model often give similar answers for explanatory variables near the mean values.] 
 
 (iv) Column (2) in the previous table gives the results with union added.  The coefficient is 
large, but to see exactly how large, we should use equation (17.22) to estimate E(pension|x) with 
union = 1 and union = 0, setting the other explanatory variables at interesting values.  The t 
statistic on union is over seven. 
 
 (v) When peratio is used as the dependent variable in the Tobit model, white and male are 
individually and jointly insignificant.  The p-value for the test of joint significance is about .74.  
Therefore, neither whites nor males seem to have different tastes for pension benefits as a 
fraction of earnings.  White males have higher pension benefits because they have, on average, 
higher earnings. 
 
17.11 (i) The results for the Poisson regression model that includes pcnv2, ptime862, and inc862 
are given in the following table: 
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Dependent Variable:  narr86 
Independent  
Variable 

Coefficient 
 (Standard Error) 

pcnv 1.15 
(0.28) 

avgsen −.026 
(.021) 

tottime .012 
(.016) 

ptime86 .684 
(.091) 

qemp86 .023 
(.033) 

inc86 −.012 
(.002) 

black .591 
(.074) 

hispan .422 
(.075) 

born60 −.093 
(.064) 

pcnv2 −1.80 
(0.31) 

ptime862 −.103 
(.016) 

inc862 .000021 
(.000006) 

constant −.710 
(.070) 

Number of Observations 2,725 

Log Likelihood Value −2,168.87 
σ̂  1.179 

 
 (ii) 2σ̂  = (1.179)2 ≈ 1.39, and so there is evidence of overdispersion.  The maximum 
likelihood standard errors should be multiplied by σ̂ , which is about 1.179.  Therefore, the MLE 
standard errors should be increased by about 18%. 
 
 (iii) From Table 17.3 we have the log-likelihood value for the restricted model, Lr = 
−2,248.76.  The log-likelihood value for the unrestricted model is given in the above table as –
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2,168.87.  Therefore, the usual likelihood ratio statistic is 159.78.  The quasi-likelihood ratio 
statistic is 159.78/1.39 ≈ 114.95.  In a 2

3χ  distribution this gives a p-value of essentially zero.  
Not surprisingly, the quadratic terms are jointly very significant. 
 
17.12 (i) The Poisson regression results are given in the following table: 
 

Dependent Variable:  kids 

Independent 
Variable 

 
Coefficient 

Standard 
Error 

educ −.048 .007 
age .204 .055 
age2 −.0022 .0006 
black .360 .061 
east .088 .053 
northcen .142 .048 
west .080 .066 
farm −.015 .058 
othrural −.057 .069 
town .031 .049 
smcity .074 .062 
y74 .093 .063 
y76 −.029 .068 
y78 −.016 .069 
y80 −.020 .069 
y82 −.193 .067 
y84 −.214 .069 
constant −3.060 1.211 

n  =  1,129 
L  =  −2,070.23 
σ̂   = .944 

 
The coefficient on y82 means that, other factors in the model fixed, a woman’s fertility was 
about 19.3% lower in 1982 than in 1972. 
 
 (ii) Because the coefficient on black is so large, we obtain the estimated proportionate 
difference as exp(.36) – 1  .433, so a black woman has 43.3% more children than a comparable 
nonblack woman.  (Notice also that black is very statistically significant.) 

≈
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 (iii) From the above table, σ̂  = .944, which shows that there is actually underdispersion in 
the estimated model. 
 
 (iv) The sample correlation between kidsi and  is about .348, which means the R-
squared (or, at least one version of it), is about (.348)

ˆ
ikids

2 ≈ .121.  Interestingly, this is actually 
smaller than the R-squared for the linear model estimated by OLS.  (However, remember that 
OLS obtains the highest possible R-squared for a linear model, while Poisson regression does not 
obtain the highest possible R-squared for an exponential regression model.) 
 
17.13 The results of an OLS regression using only the uncensored durations are given in the 
following table. 
 

Dependent Variable:  log(durat) 
Independent  
Variable 

Coefficient  
(Standard Error) 

workprg .092 
(.083) 

priors −.048 
(.014) 

tserved −.0068 
(.0019) 

felon .119 
(.103) 

alcohol −.218 
(.097) 

drugs .018 
(.089) 

black −.00085 
(.08221) 

married .239 
(.099) 

educ −.019 
(.019) 

age .00053 
(.00042) 

constant 3.001 
(0.244) 

Number of Observations 552 

R-Squared .071 
 
There are several important differences between the OLS estimates using the uncensored 
durations and the estimates from the censored regression in Table 17.4.  For example, the binary 
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indicator for drug usage, drugs, has become positive and insignificant, whereas it was negative 
(as we expect) and significant in Table 17.4.  On the other hand, the work program dummy, 
workprg, becomes positive but is still insignificant.  The remaining coefficients maintain the 
same sign, but they are all attenuated toward zero.  The apparent attenuation bias of OLS for the 
coefficient on black is especially severe, where the estimate changes from −.543 in the 
(appropriate) censored regression estimation to −.00085 in the (inappropriate) OLS regression 
using only the uncensored durations. 
 
17.14 (i) When log(wage) is regressed on educ, exper, exper2, nwifeinc, age, kidslt6, and kidsge6, 
the coefficient and standard error on educ are .0999 (se = .0151). 
 
 (ii) The Heckit coefficient on educ is .1187 (se = .0341), where the standard error is just the 
usual OLS standard error.  The estimated return to education is somewhat larger than without the 
Heckit corrections, but the Heckit standard error is over twice as large. 
 
 (iii) Regressing λ̂  on educ, exper, exper2, nwifeinc, age, kidslt6, and kidsge6 (using only the 
selected sample of 428) produces R2 ≈ .962, which means that there is substantial 
multicollinearity among the regressors in the second stage regression.  This is what leads to the 
large standard errors.  Without an exclusion restriction in the log(wage) equation, λ̂  is almost a 
linear function of the other explanatory variables in the sample. 
 
17.15 (i) 185 out of 445 participated in the job training program.  The longest time in the 
experiment was 24 months (obtained from the variable mosinex). 
 
 (ii) The F statistic for joint significance of the explanatory variables is F(7,437) = 1.43 with 
p-value = .19.  Therefore, they are jointly insignificant at even the 15% level.  Note that, even 
though we have estimated a linear probability model, the null hypothesis we are testing is that all 
slope coefficients are zero, and so there is no heteroskedasticity under H0.  This means that the 
usual F statistic is asymptotically valid. 

 (iii) After estimating the model P(train = 1|x) = Φ(β0 + β1unem74 + β2unem75 + β3age + 
β4educ + β5black + β6hisp + β7married) by probit maximum likelihood, the likelihood ratio test 
for joint significance is 10.18.  In a 2

7χ  distribution this gives p-value = .18, which is very 
similar to that obtained for the LPM in part (ii). 

 (iv) Training eligibility was randomly assigned among the participants, so it is not surprising 
that train appears to be independent of other observed factors.  (However, there can be a 
difference between eligibility and actual participation, as men can always refuse to participate if 
chosen.) 

 (v) The simple LPM results are  
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 78unem =   .354  −   .111 train 
  (.028) (.044) 

 n = 445,  R2 = .014 

Participating in the job training program lowers the estimated probability of being unemployed 
in 1978 by .111, or 11.1 percentage points.  This is a large effect:  the probability of being 
unemployed without participation is .354, and the training program reduces it to .243.  The 
differences is statistically significant at almost the 1% level against at two-sided alternative.  
(Note that this is another case where, because training was randomly assigned, we have 
confidence that OLS is consistently estimating a causal effect, even though the R-squared from 
the regression is very small.  There is much about being unemployed that we are not explaining, 
but we can be pretty confident that this job training program was beneficial.) 
 
 (vi) The estimated probit model is  
 
   Φ(−.375  −   .321 train) P( 1| )unem78 train= =
  (.080 (.128) 
 
where standard errors are in parentheses.  It does not make sense to compare the coefficient on 
train for the probit, −.321, with the LPM estimate.  The probabilities have different functional 
forms.  However, note that the probit and LPM t statistics are essentially the same (although the 
LPM standard errors should be made robust to heteroskedasticity).   
 
 (vii) There are only two fitted values in each case, and they are the same:  .354 when train = 
0 and .243 when train = 1.  This has to be the case, because any method simply delivers the cell 
frequencies as the estimated probabilities.  The LPM estimates are easier to interpret because 
they do not involve the transformation by Φ(⋅), but it does not matter which is used provided the 
probability differences are calculated. 
 
 (viii) The fitted values are no longer identical because the model is not saturated, that is, the 
explanatory variables are not an exhaustive, mutually exclusive set of dummy variables.  But, 
because the other explanatory variables are insignificant, the fitted values are highly correlated:  
the LPM and probit fitted values have a correlation of about .993. 
 
17.16 (i) 248. 
 
 (ii) The distribution is not continuous:  there are clear focal points, and rounding.  For 
example, many more people report one pound than either two-thirds of a pound or 1 1/3 pounds.  
This violates the latent variable formulation underlying the Tobit model, where the latent error 
has a normal distribution.  Nevertheless, we should view Tobit in this context as a way to 
possibly improve functional form.  It may work better than the linear model for estimating the 
expected demand function. 
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 (ii) The following table contains the Tobit estimates and, for later comparison, OLS 
estimates of a linear model: 
 
 

Dependent Variable:  ecolbs 

Independent 
Variable 

Tobit OLS 
(Linear Model) 

ecoprc −5.82 
(.89) 

−2.90 
(.59) 

   
regprc 5.66 

(1.06) 
3.03 
(.71) 

   
faminc .0066 

(.0040) 
.0028 

(.0027) 

hhsize .130 
(.095) 

.054 
(.064) 

constant 1.00 
(.67) 

1.63 
(.45) 

Number of Observations 660 660 

Log Likelihood Value −1,266.44 ⎯⎯⎯ 

σ̂  3.44 2.48 

R-squared      .0369 .0393 
 
Only the price variables, ecoprc and regprc, are statistically significant at the 1% level. 
 
 (iv) The signs of the price coefficients accord with basic demand theory:  the own-price 
effect is negative, the cross price effect for the substitute good (regular apples) is positive. 
 
 (v) The null hypothesis can be stated as H0: β1 + β2 = 0.  Define θ1 = β1 + β2.  Then 1̂θ =  −.16.  
To obtain the t statistic, I write β2 = θ1 − β1, plug in, and rearrange.  This results in doing Tobit 
of ecolbs on (ecoprc − regprc), regprc, faminc, and hhsize.  The coefficient on regprc is 1̂θ  and, 
of course we get its standard error:  about .59.  Therefore, the t statistic is about −.27 and p-value 
= .78.  We do not reject the null. 
 
 (vi) The smallest fitted value is .798, while the largest is 3.327.   
 
 (vii) The squared correlation between ecolbsi and  is about .0369.  This is one 
possible R-squared measure. 

iecolbs
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 (viii) The linear model estimates are given in the table for part (ii).  The OLS estimates are 
smaller than the Tobit estimates because the OLS estimates are estimated partial effects on 
E(ecolbs|x), whereas the Tobit coefficients must be scaled by the term in equation (17.27).  The 
scaling factor is always between zero and one, and often substantially less than one.  The Tobit 
model does not fit better, at least in terms of estimating E(ecolbs|x):  the linear model R-squared 
is a bit larger (.0393 versus .0369). 
 
 (ix) This is not a correct statement.  We have another case where we have confidence in the 
ceteris paribus price effects (because the price variables are exogenously set), yet we cannot 
explain much of the variation in ecolbs.  The fact that demand for a fictitious product is hard to 
explain is not very surprising. 
 
[Instructor’s Notes:  This might be a good place to remind students about basic economics.  You 
can ask them whether reglbs should be included as an additional explanatory variable in the 
demand equation for ecolbs, making the point that the resulting equation would no longer be a 
demand equation.  In other words, reglbs and ecolbs are jointly determined, but it is not 
appropriate to write each as a function of the other.  You could have the students compute 
heteroskedasticity-robust standard errors for the OLS estimates.  Also, you could have them 
estimate a probit model for ecolbs = 0 versus ecolbs > 0, and have them compare the scaled 
Tobit slope estimates with the probit estimates.] 
 
17.17 (i) 497 people do not smoke at all.  101 people report smoking 20 cigarettes a day.  Since 
one pack of cigarettes contains 20 cigarettes, it is not surprising that 20 is a focal point. 
 
 (ii) The Poisson distribution does not allow for the kinds of focal points that characterize cigs.  
If you look at the full frequency distribution, there are blips at half a pack, two packs, and so on.  
The probabilities in the Poisson distribution have a much smoother transition.  Fortunately, the 
Poisson regression model has nice robustness properties. 
 
 (iii) The results of the Poisson regression are given in the following table, along with the 
OLS estimates of a linear model for later reference.  The Poisson standard errors are the usual 
Poisson maximum likelihood standard errors, and the OLS standard errors are the usual 
(nonrobust) standard errors. 
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Dependent Variable:  cigs 

Independent 
Variable 

Poisson 
(Exponential Model)

OLS 
(Linear Model) 

log(cigpric) −.355 
(.144) 

−2.90 
(5.70) 

   
log(income) .085 

(.020) 
.754 

(.730) 
   
white −.0019 

(.0372) 
−.205 

(1.458) 

educ −.060 
(.004) 

−.514 
(.168) 

age .115 
(.005) 

.782 
(.161) 

   
age2 −.00138 

(.00006) 
−.0091 
(.0018) 

   
constant 1.46 

(.61) 
5.77 

(24.08) 

Number of Observations 807 807 

Log Likelihood Value −8,184.03 ⎯⎯⎯ 

σ̂  4.54 13.46 

R-squared      .043 .045 
 
The estimated price elasticity is −.355 and the estimated income elasticity is .085. 
 
 (iv) If we use the maximum likelihood standard errors, the t statistic on log(cigpric) is about 
−2.47, which is significant at the 5% level against a two-sided alternative.  The t statistic on 
log(income) is 4.25, which is very significant. 
 
 (v) 2σ̂  20.61, and so = σ̂ =  4.54.  This is evidence of severe overdispersion, and means that 
all of the standard errors for Poisson regression should be multiplied by 4.54; the t statistics 
should be divided by 4.54. 
 
 (vi) The robust t statistic for log(cigpric) is about −.54, which makes it very insignificant.  
This is a good example of misleading the usual Poisson standard errors and test statistics can be.  
The robust t statistic for log(income) is about .94, which also makes the income elasticity 
statistically insignificant. 
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 (vii) The education and age variables are still quite significant; the robust t statistic on educ 
over three in absolute value, and the robust t statistic on age is over five.  The coefficient on educ 
implies that one more year of education reduces the expected number of cigarettes smoked by 
about 6.0%. 
 
 (viii) The minimum predicted value is .515 and the maximum is 18.84.  The fact that we 
predict some smoking for anyone in the sample is a limitation with using the expected value for 
prediction.  Further, we do not predict that anyone will smoke even one pack of cigarettes, even 
though more than 25% of the people in the sample report smoking a pack or more per day!  This 
shows that smoking, especially heavy smoking, is difficult to predict based on the explanatory 
variables we have access to. 
 
 (ix) The squared correlation between cigsi and  is the R-squared reported in the above 
table, .043. 

icigs

 
 (x) The linear model results are reported in the last column of the previous table.  The R-
squared is slightly higher for the linear model – but remember, the OLS estimates are chosen to 
maximize the R-squared, while the MLE estimates do not maximize the R-squared (as we have 
calculated it).  In any case, both R-squareds are quite small. 
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CHAPTER 18 
 

TEACHING NOTES 
 
Several of the topics in this chapter, including testing for unit roots and cointegration, have 
become staples of applied time series analysis.  Instructors who like their course to be more time 
series oriented might cover this chapter after Chapter 12, if time permits.  Or, the chapter can be 
used as a reference for ambitious students who wish to be versed in recent time series 
developments. 
 
The discussion of infinite distributed lag models, and in particular geometric DL and rational DL 
models, gives one particular interpretation of dynamic regression models.  But one must 
emphasize that only under fairly restrictive assumptions on the serial correlation in the error of 
the infinite DL model does the dynamic regression consistently estimate the parameters in the lag 
distribution.  Computer Exercise 18.10 provides a good illustration of how the GDL model, and a 
simple RDL model, can be too restrictive. 
 
Example 18.5 tests for cointegration between the general fertility rate and the value of the 
personal exemption.  There is not much evidence of cointegration, which sheds further doubt on 
the regressions in levels that were used in Chapter 10.  The error correction model for holding 
yields in Example 18.7 is likely to be of interest to students in finance.  As a class project, or a 
term project for a student, it would be interesting to update the data to see if the error correction 
model is stable over time. 
 
The forecasting section is heavily oriented towards regression methods and, in particular, 
autoregressive models.  These can be estimated using any econometrics package, and forecasts 
and mean absolute errors or root mean squared errors are easy to obtain.  The interest rate data 
sets (for example, in INTQRT.RAW) can be updated to do much more recent out-of-sample 
forecasting exercises. 
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SOLUTIONS TO PROBLEMS 
 
18.1 With zt1 and zt2 now in the model, we should use one lag each as instrumental variables, zt-1,1 
and zt-1,2.  This gives one overidentifying restriction that can be tested. 
 
18.2 (i) When we lag equation (18.68) once, multiply it by (1 – λ), and subtract it from (18.68), 
we obtain 
 

yt – (1 – λ)yt-1  =  λα0 + α1[ *
tx – (1 – λ) *

1tx − ] + ut – (1 – λ)ut-1. 
 

But we can rewrite (18.69) as 
 

*
tx  – (1 – λ) *

1tx −   =  λxt-1; 
 
when we plug this into the first equation we obtain the desired result. 
 
 (ii) If {ut} is serially uncorrelated, then {vt = ut – (1 – λ)ut-1} must be serially correlated.  In 
fact, {vt} is an MA(1) process with α = – (1 – λ).  Therefore, Cov(vt,vt-1) = – (1 – λ) 2

uσ , and the 
correlation between vt and vt-h is zero for h > 1. 
 
 (iii) Because {vt} follows an MA(1) process, it is correlated with the lagged dependent 
variable, yt-1.  Therefore, the OLS estimators of the βj will be inconsistent (and biased, of course).  
Nevertheless, we can use xt-2 as an IV for yt-1 because xt-2 is uncorrelated with vt (because ut and 
ut-1 are both uncorrelated with xt-2) and xt-2) and xt-2 is partially correlated with yt-1. 
 
18.3 For δ ≠ β, yt – δzt = yt – βzt + (β – δ)zt, which is an I(0) sequence (yt – βzt) plus an I(1) 
sequence.  Since an I(1) sequence has a growing variance, it dominates the I(0) part, and the 
resulting sum is an I(1) sequence. 
 
18.4 Following the hint, we show that yt-2 – βxt-2 can be written as a linear function of yt-1 – βxt-1, 
Δyt-1, and Δxt-1.  That is, 
 

yt-2 – βxt-2  =  a1(yt-1 – βxt-1) + a2Δyt-1 + a3Δxt-1
 

for constants a1, a2, and a3.  But 
 

(yt-1 – βxt-1) – Δyt-1 + βΔxt-1  = yt-1 –  βxt-1 – (yt-1 – yt-2) + β(xt-1 – xt-2)  =  yt-2 – βxt-2, 
 

and so a1 = 1, a2 = –1, and a3 = β work in the first equation. 
 
18.5 Following the hint, we have 
 

yt – yt-1  =  βxt – βxt-1 + βxt-1 – yt-1 + ut
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or 
 

Δyt  =  βΔxt – (yt-1 – βxt-1) + ut. 
 

Next, we plug in Δxt = γΔxt-1 + vt to get 
 
 Δyt = β(γΔxt-1 + vt) – (yt-1 – βxt-1) + ut

  = βγΔxt-1 – (yt-1 – βxt-1) + ut + βvt

  ≡ γ1Δxt-1 + δ(yt-1 – βxt-1) + et, 
 
where γ1 = βγ, δ = –1, and et = ut + βvt. 
 
18.6 (i) This is given by the estimated intercept, 1.54.  Remember, this is the percentage growth 
at an annualized rate.  It is statistically different from zero since t = 1.54/.56 = 2.75. 
 
 (ii) 1.54 + .031(10) = 1.85.  As an aside, you could obtain the standard error of this estimate 
by running the regression. 
 

pcipt on pcipt-1, pcipt-2, pcipt-3, (pcspt-1 – 10), 
 

and obtaining the standard error on the intercept. 
 
 (iii) Growth in the S&P 500 index has a statistically significant effect on industrial 
production growth – in the Granger causality sense – because the t statistic on pcspt-1 is about 
2.38.  The economic effect is reasonably large. 
 
18.7 If unemt follows a stable AR(1) process, then this is the null model used to test for Granger 
causality:  under the null that gMt does not Granger cause unemt, we can write 
 
 unemt  =  β0 + β1unemt-1 + ut

 E(ut|unemt-1, gMt-1, unemt-2, gMt-2, K )  =  0 
 
and |β1| < 1.  Now, it is up to us to choose how many lags of gM to add to this equation.  The 
simplest approach is to add gMt-1 and to do a t test.  But we could add a second or third lag (and 
probably not beyond this with annual data), and compute an F test for joint significance of all 
lags of gMt. 
 
18.8 (i) Following the hint we have 
 
 yt = α + δ1zt-1 + ut  =  α + δ1zt-1 + ρut-1 + et

  = α + δ1zt-1 + ρ(yt-1 – α – δ1zt-2) + et

  = (1 – ρ)α + ρyt-1 + δ1zt-1 – ρδ1zt-2 + et. 
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By assumption, E(et|It-1) = 0, and since yt-1, zt-1, and zt-2 are all in It-1, we have 
 

E(yt|It-1)  =  (1 – ρ)α + ρyt-1 + δ1zt-1 – ρδ1zt-2. 
 

We obtain the desired answer by adding one to the time index everywhere. 
 
 (ii) The forecasting equation for yn+1 is obtained by using part (i) with t = n, and then 
plugging in the estimates: 
 

n̂f   =  (1 – ρ̂ )α̂  + ρ̂ yn + 1̂δ zn – 1̂ρ̂δ zn-1

 
where It-1 contains y and z dated at t – 1 and earlier. 
 
 (iii) From part (i), it follows that the model with one lag of z and AR(1) serial correlation in 
the errors can be obtained from 
 

yt  =  α0 + ρyt-1 + γ1zt-1 + γ2zt-2 + et,  E(et|It-1)  =  0 
 

with α0 = (1 − ρ)α, γ1 = δ1, and γ2 = −ρδ1 = −ργ1.  The key is that γ2 is entirely determined (in a 
nonlinear way) by ρ and γ1.  So the model with a lag of z and AR(1) serial correlation is a special 
case of the more general model.  (Note that the general model depends on four parameters, while 
the model from part (i) depends on only three.) 
 
 (iv) For forecasting, the AR(1) serial correlation model may be too restrictive.  It may 
impose restrictions on the parameters that are not met.  On the other hand, if the AR(1) serial 
correlation model holds, it captures the conditional mean E(yt|It-1) with one fewer parameter than 
the general model; in other words, the AR(1) serial correlation model is more parsimonious.  
[See Harvey (1990) for ways to test the restriction γ2 = −ργ1, which is called a common factor 
restriction.] 
 
18.9 Let  be the forecast error for forecasting y1ˆne + n+1, and let 1ˆna +  be the forecast error for 

forecasting Δyn+1.  By definition, = y1ˆne + n+1 − n̂f  = yn+1 – (  + yˆng n) = (yn+1 – yn) −  = Δyˆng n+1 − 
 = , where the last equality follows by definition of the forecasting error for Δyˆng 1ˆna + n+1. 

 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
18.10 (i) The estimated GDL model is 
 
  =  .0013 + .081 gwage + .640 gprice�gprice -1

   (.0003)  (.031)  (.045) 

 n  =  284,   R2  =  .454. 
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The estimated impact propensity is .081 while the estimated LRP is .081/(1 – .640) = .225.  The 
estimated lag distribution is graphed below. 
 

lag
0 1 2 3 4 5 6 7 8 9 10 11 12

0

.02

.04

.06

.08

coefficient .1

 
 (ii) The IP for the FDL model estimated in Problem 11.5 was .119, which is substantially 
above the estimated IP for the GDL model.  Further, the estimated LRP from GDL model is 
much lower than that for the FDL model, which we estimated as 1.172.  Clearly we cannot think 
of the GDL model as a good approximation to the FDL model.  One reason these are so different 
can be seen by comparing the estimated lag distributions (see below for the GDL model).  With 
the FDL, the largest lag coefficient is at the ninth lag, which is impossible with the GDL model 
(where the largest impact is always at lag zero).  It could also be that {ut} in equation (18.8) does 
not follow an AR(1) process with parameter ρ, which would cause the dynamic regression to 
produce inconsistent estimators of the lag coefficients. 
 
 (iii) When we estimate the RDL from equation (18.16) we obtain 
 
  = .0011 + .090 gwage + .619 gprice�gprice -1 + .055 gwage-1

   (.0003)  (.031)  (.046)  (.032) 

 n  =  284,   R2  =  .460. 
 
The coefficient on gwage-1 is not especially significant, but we compute the IP and LRP and 
anyway.  The estimated IP is .09 while the LRP is (.090 + .055)/1 – .619) ≈ .381.  These are 
both slightly higher than what we obtained for the GDL, but the LRP is still well below what we 
obtained for the FDL in Problem 11.5.  While this RDL model is more flexible than the GDL 
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model, it imposes a maximum lag coefficient (in absolute value) at lag zero or one.  For the 
estimates given above, the maximum effect is at the first lag.  (See the estimated lag distribution 
below.)  This is not consistent with the FDL estimates in Problem 11.5. 

lag
0 1 2 3 4 5 6 7 8 9 10 11 12

0

.02

.04

.06

.08

.1

coefficient .12

 
 
18.11 (i) We run the regression 
 
  = –.786 – .956 log(invpc�

tginvpc t-1) + .0068 t  
   (.170)  (.198)  (.0021) 

   + .532 ginvpct-1 + .290 ginvpct-2
    (.162)  (.165) 

 n  =  39,   R2  =  .437, 
 
where ginvpct = log(invpct) – log(invpct-1).  The t statistic for the augmented Dickey-Fuller unit 
root test is –.956/.198  –4.82, which is well below –3.96, the 1% critical value obtained from 
Table 18.3.  Therefore, we strongly reject a unit root in log(invpc

≈
t).  (Incidentally, remember that 

the t statistics on the intercept and time trend in this estimated equation to not have approximate t 
distributions, although those on ginvpct-1 and ginvpct-2 do under the usual null hypothesis that the 
parameter is zero.) 
 
 (ii) When we apply the regression to log(pricet) we obtain 
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  = –.040 – .222 log(price�
tgprice t-1) + .00097 t  

   (.019)  (.092)  (.00049) 

   + .328 gpricet-1 + .130 gpricet-2
    (.155)  (.149) 

 n  =  39,   R2  =  .200, 
 
Now the Dickey-Fuller t statistic is about –2.41, which is above –3.12, the 10% critical value 
from Table 18.3.  [The estimated root is 1 – .222 = .778, which is much larger than for 
log(invpct).]  We cannot reject the unit root null at a sufficiently small significance level. 
 
 (iii) Given the very strong evidence that log(invpct) does not contain a unit root, while 
log(pricet) may very well, it makes no sense to discuss cointegration between the two.  If we take 
any nontrivial linear combination of an I(0) process (which may have a trend) and an I(1) process, 
the result will be an I(1) process (possibly with drift). 
 
18.12 (i) The estimated AR(3) model for pcipt is 
 
 �

tpcip  = 1.80 + .349 pcipt-1 + .071 pcipt-2 + .067 pcipt-2

   (0.55)  (.043)  (.045)  (.043) 

 n  =  554,   R2  =  .166,   σ̂   =  12.15. 
 
When pcipt-4 is added, its coefficient is .0043 with a t statistic of about .10. 
 
 (ii) In the model 
 

pcipt  =  δ0 + α1pcipt-1 + α2pcipt-2 + α3pcipt-3 + γ1pcspt-1 + γ2pcspt-2 + γ3pcspt-3 + ut, 
 

The null hypothesis is that pcsp does not Granger cause pcip.  This is stated as H0: γ1 = γ2 = γ3 = 
0.  The F statistic for joint significance of the three lags of pcspt, with 3 and 547 df, is F = 5.37 
and p-value = .0012.  Therefore, we strongly reject H0 and conclude that pcsp does Granger 
cause pcip. 
 
 (iii) When we add Δi3t-1, Δi3t-2, and Δi3t-3 to the regression from part (ii), and now test the 
joint significance of pcspt-1, pcspt-2, and pcspt-3, the F statistic is 5.08.  With 3 and 544 df in the F 
distribution, this gives p-value = .0018, and so pcsp Granger causes pcip even conditional on 
past Δi3. 
 
[Instructor’s Note:  The F test for joint significance of Δi3t-1, Δi3t-2, and Δi3t-3 yields p-
value = .228, and so Δi3 does not Granger cause pcip conditional on past pcsp.] 
 
18.13 We first run the regression gfrt on pet, t, and t2, and obtain the residuals, .  We then 
apply the augmented Dickey-Fuller test, with one lag of Δ , by regressing Δ  on  and 

ˆtu
ˆtu ˆtu 1ˆtu −
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Δ .  There are 70 observations available for this last regression, and it yields −.165 as the 
coefficient on  with t statistic = −2.76.  This is well above –4.15, the 5% critical value 
[obtained from Davidson and MacKinnon (1993, Table 20.2)].  Therefore, we cannot reject the 
null hypothesis of no cointegration, so we conclude gfr

1ˆtu −

1ˆtu −

t and pet are not cointegrated even if we 
allow them to have different quadratic trends. 
 
18.14 (i) The estimated equation is 
 
  = .078 + 1.027 hy3ˆ6thy t-1 − 1.021 Δhy3t − .085 Δhy3t-1 − .104 Δhy3t-2

   (.028)  (0.016)  (0.038)  (.037)  (.037) 

 n  =  121,   R2  =  .982,   σ̂   =  .123. 
 
The t statistic for H0: β = 1 is (1.027 – 1)/.016 ≈ 1.69.  We do not reject H0: β = 1 at the 5% level 
against a two-sided alternative, although we would reject at the 10% level. 
 
[Instructor’s Note:  The standard errors on all slope coefficients can be used to construct t 
statistics with approximate t distributions, provided there is no serial correlation in {et}.] 
 
 (ii) The estimated error correction model is 
 
  = .070 + 1.259 Δhy3ˆ6thy t-1 − .816 (hy6t-1 – hy3t-2) 
   (.049)  (.278)  (.256) 

  + .283 Δhy3t-2 + .127 (hy6t-2 – hy3t-3) 
   (.272)  (.256) 

 n  =  121,   R2  =  .795. 
 
Neither of the added terms is individually significant.  The F test for their joint significance gives 
F = 1.35, p-value = .264.  Therefore, we would omit these terms and stick with the error 
correction model estimated in (18.39). 
 
18.15 (i) The updated equations using data through 1997 are 
 
  = 1.549 + .734 unem�

tunem t-1

   (0.572)  (.096) 

 n  =  49,   R2  =  .554,   σ̂   =  1.041 
and 
  = 1.286 + .648 unem�

tunem t-1 + .185 inft-1 

   (0.484)  (.083)  (.041) 

 n  =  49,   R2  =  .691,   σ̂   =  .876. 
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The parameter estimates do not change by much.  This is not very surprising, as we have added 
only one year of data. 
 
 (ii) The forecast for unem1998 from the first equation is 1.549 + .734(4.9)  5.15;  from the 
second equation the forecast is 1.286 + .648(4.9) + .185(2.3) 

≈
≈ 4.89.  The actual civilian 

unemployment rate for 1998 was 4.5 (from Table B-42 in the 1999 Economic Report of the 
President).  Once again the model that includes lagged inflation produces a better forecast. 
 
 (iii) There is no practical improvement in reestimating the parameters using data through 
1997:  4.89 versus 4.90, which differs in a digit that is not even reported in the published 
unemployment series. 
 
 (iv) To obtain the two-step-ahead forecast we need the 1996 unemployment rate, which was 
5.4.  From equation (18.55), the forecast of unem1998 made after we know unem1996 is 
(1 + .732)(1.572) + (.7322)(5.4)  5.62.  The one-step ahead forecast is 1.572 + .732(4.9) ≈ ≈ 5.16, 
and so it is better to use the one-step-ahead forecast, as it is much closer to 4.5. 
 
18.16 (i) The estimated linear trend equation using the first 119 observations is  
 
  = 248.58 + 5.15 t �

tchnimp
   (53.20)  (0.77) 

 n  =  119,   R2  =  .277,   σ̂   =  288.33. 
 
The standard error of the regression is 288.33. 
 
 (ii) The estimated AR(1) model excluding the last 12 months is  
 
  = 329.18 + .416 chnimp�

tchnimp t-1

   (54.71)  (.084) 

 n  =  118,   R2  =  .174,   σ̂   =  308.17. 
  
Because σ̂  is lower for the linear trend model, it provides the better in-sample fit.  (The R-
squared is also larger for the linear trend model.) 
 
 (iii) Using the last 12 observations for one-step-ahead out-of-sample forecasting gives an 
RMSE and MAE for the linear trend equation of about 315.5 and 201.9, respectively.  For the 
AR(1) model, the RMSE and MAE are about 388.6 and 246.1, respectively.  Perhaps 
surprisingly, the linear trend is the better forecasting model. 
 
 (iv) Using again the first 119 observations, the F statistic for joint significance of febt, 
mart, …, dect when added to the linear trend model is about 1.15 with p-value ≈ .328.  (The df 
are 11 and 107.)  So there is no evidence that seasonality needs to be accounted for in forecasting 
chnimp. 
 

 185



18.17 (i) As can be seen from the following graph, gfr does not have a clear upward or 
downward trend.  Starting from 1913, there is a sharp downward trend in fertility until the mid-
1930s, when the fertility rate bottoms out.  Fertility increased markedly until the end of the baby 
boom in the early 1960s, after which point it fell sharply and then leveled off. 
 

year
1913 1941 1963 1984

65

85

100

gfr
125

 
 (ii) The regression of gfrt on a cubic in t, using the data up through 1979, gives 
 
  = 148.71 - 6.90 t + .243 tˆ

tgfr 2 − .0024 t3

   (5.09)  (0.64)  (.022)  (.0002) 

 n  =  67,   R2  =  .739,   σ̂   =  9.84. 
 
If we use the usual t critical values, all terms are very statistically significant, and the R-squared 
indicates that this curve-fitting exercise tracks gfrt pretty well, at least up through 1979. 
 
 (iii) The MAE is about 43.02. 
 
 (iv) The regression Δgfrt on just an intercept, using data up through 1979, gives 
 
  = –.871 ˆ

tgfrΔ
   (.543) 

 n  =  66,   σ̂   =  4.41. 
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(The R-squared is identically zero since there are no explanatory variables.  But σ̂ , which 
estimates the standard deviation of the error, is comparable to that in part (ii), and we see that it 
is much smaller here.)  The t statistic for the intercept is about –1.60, which is not significant at 
the 10% level against a two-sided alternative.  Therefore, it is legitimate to treat gfrt as having no 
drift, if it is indeed a random walk.  (That is, if gfrt = α0 + gfrt-1 + et, where {et} is zero-mean, 
serially uncorrelated process, then we cannot reject H0: α0 = 0.) 
 
 (v) The prediction of gfrn+1 is simply gfrn, so the predication error is simply Δgfrn+1 = gfrn+1 – 
gfrn.  Obtaining the MAE for the five prediction errors for 1980 through 1984 gives MAE ≈ .840, 
which is much lower than the 43.02 obtained with the cubic trend model.  The random walk is 
clearly preferred for forecasting. 
 
 (vi) The estimated AR(2) model for gfrt is 
 
  = 3.22 + 1.272 gfrˆ

tgfr t-1 – .311 gfrt-2

   (2.92)  (0.120)  (.121) 

 n  =  65,   R2  =  .949,   σ̂   =  4.25. 
 
The second lag is significant.  (Recall that its t statistic is valid even though gfrt apparently 
contains a unit root:  the coefficients on the two lags sum to .961.)  The standard error of the 
regression is slightly below that of the random walk model. 
 
 (vii) The out-of-sample forecasting performance of the AR(2) model is worse than the 
random walk without drift:  the MAE for 1980 through 1984 is about .991 for the AR(2) model. 
 
[Instructor’s Note:  You might have the students compare an AR(1) model for ∆gfrt − that is, 
impose the unit root − to the random walk without drift model.  The MAE is about .879, so it is 
better to impose the unit root.  But this still does less well than the simple random walk without 
drift.] 
 
18.18 (i) Using the data up through 1989 gives 
 
 ˆty    = 3,186.04 + 116.24 t + .630 yt-1

   (1,163.09)  (46.31)  (.148) 

 n  =  30,   R2  =  .994,   σ̂   =  223.95. 
 
(Notice how high the R-squared is.  However, it is meaningless as a goodness-of-fit measure 
because {yt} has a trend and possibly a unit root.) 
 
 (ii) The forecast for 1990 (t = 32) is 3,186.04 + 116.24(32) + .630(17,804.09)  18,122.30, 
because y is $17,804.09 in 1989.  The actual value for real per capita disposable income was 
$17,944.64, and so the forecast error is –$177.66. 

≈

 
 (iii) The MAE for the 1990s, using the model estimated in part (i), is about 371.76. 
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 (iv) Without yt-1 in the equation, we obtain 
 
 ˆty  = 8,143.11 + 311.26 t 
   (103.38)  (5.64) 

 n  =  31,   R2  =  .991,   σ̂   =  280.87. 
 
The MAE for the forecasts in the 1990s is about 718.26.  This is much higher than for the model 
with yt-1, so we should use the AR(1) model with a linear time trend. 
 
18.19 (i) The AR(1) model for Δr6, estimated using all but the last 16 observations, is 
 
  = .047 – .179 Δr6�

tr6Δ t-1
   (.131)  (.096) 

 n  =  106,   R2  =  .032,   2R   =  .023. 
 
The RMSE for forecasting one-step-ahead over the last 16 quarters is about .704. 
 
 (ii) The equation with sprt-1 included is 
 
  = .372 – .171 Δr6�

tr6Δ t-1 – 1.045 sprt-1
   (.195)  (.095)  (0.474) 

 n  =  106,   R2  =  .076,   2R   =  .058. 
 
The RMSE is about .788, which is higher than the RMSE without the error correction term.  
Therefore, while the EC term improves the in-sample fit (and is statistically significant), it 
actually hampers out-of-sample forecasting. 
 
 (iii) To make the forecasting exercises comparable, we exclude the last 16 observations to 
estimate the cointegrating parameters.  The CI coefficient is about 1.028.  The estimated error 
correction model is 
 
  = .372 – .171 Δr6�

tr6Δ t-1 – 1.045 (r6t-1 – 1.028 r3t-1) 
   (.195)  (.095)  (0.474) 

 n  =  106,   R2  =  .058,  2R   =  .040, 
 
which shows that this fits worse than the EC model when the cointegrating parameter is assumed 
to be one.  The RMSE for the last 16 quarters is .782, so this works slightly better.  But both 
versions of the EC model are dominated by the AR(1) model for Δr6t. 
 
[Instructor’s Note:  Since Δr6t-1 is only marginally significant in the AR(1) model, and its 
coefficient is small, and the intercept is also very small and insignificant, you might have the 
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students use zero to predict Δr6 for each of the last 16 quarters.  The RMSE is about .657, which 
means this works best of all.  The lesson is that econometric methods are not always called for, 
or even desirable.] 
 
 (iv) The conclusions would be identical because, as shown in Problem 18.9, the one-step-
ahead errors for forecasting r6n+1 are identical to those for forecasting Δr6n+1. 
 
18.20 (i) For lsp500, the ADF statistic without a trend is t = −.79; with a trend, the t statistic is 
−2.20.  This are both well above their respective 10% critical values.  In addition, the estimated 
roots are quite close to one.  For lip, the ADF statistic without a trend is −1.37 without a trend 
and −2.52 with a trend.  Again, these are not close to rejecting even at the 10% levels, and the 
estimated roots are very close to one. 
 
 (ii) The simple regression of lsp500 on lip gives  
 
   −2.402  +   1.694 lip �500ls p =
  (.095) (.024) 
 
 n = 558,  R2 = .903 
 
The t statistic for lip is over 70, and the R-squared is over .9.  These are hallmarks of spurious 
regressions. 
 
 (iii) Using the residuals  obtained in part (ii), the ADF statistic (with two lagged changes) 
is −1.57, and the estimated root is over .99.  There is no evidence of cointegration.  (The 10% 
critical value is −3.04.) 

ˆtu

 
 (iv) After adding a linear time trend to the regression from part (ii), the ADF statistic applied 
to the residuals is −1.88, and the estimated root is again about .99.  Even with a time trend there 
is no evidence of cointegration. 
 
 (v) It appears that lsp500 and lip do not move together in the sense of cointegration, even if 
we allow them to have unrestricted linear time trends.  This analysis does not point to a long-run 
equilibrium relationship. 
 
18.21 (i) This is supposed to be an AR(3) model, otherwise the claim is incorrect.  So, estimating 
an AR(3) for pcipt, and computing the F statistic for the second and third lags, gives F(2,550) = 
3.76,  p-value = .024. 
 
 (ii) When pcspt-1 is added to the AR(3) model in part (i), its coefficient is about .031 and its  
 t statistic is about 2.40.  Therefore, we conclude that pcsp does Granger cause pcip. 
 
 (iii) The heteroskedasticity-robust t statistic is 2.47, so the conclusion from part (ii) does not 
change. 
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18.22 (i) The DF statistic is about −3.31, which is above the 2.5% critical value (−3.12), and so, 
using this test, we can reject a unit root at the 2.5% level.  (The estimated root is about .81.) 
 
 (ii) When two lagged changes are added to the regression in part (i), the t statistic becomes 
−1.50, and the root is larger (about .915).  Now, there is little evidence against a unit root. 
 
 (iii) If we add a time trend to the regression in part (ii), the ADF statistic becomes −3.67, and 
the estimated root is about .57.  The 2.5% critical value is −3.66, and so we are back to fairly 
convincingly rejecting a unit root. 
 
 (iv) The best characterization seems to be an I(0) process about a linear trend.  In fact, a 
stable AR(3) about a linear trend is suggested by the regression in part (iii). 
 
 (v) For prcfatt, the ADF statistic without a trend is −4.74 (estimated root = .62) and with a 
time trend the statistic is −5.29 (estimated root = .54).  Here, the evidence is strongly in favor of 
an I(0) process, whether we include a trend or not.  
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CHAPTER 19 
 
TEACHING NOTES 
 
This is a chapter that students should read if you have assigned them a term paper.  I used to 
allow students to choose their own topics, but this is difficult in a first-semester course, and 
places a heavy burden on instructors or teaching assistants, or both.  I now assign a common 
topic and provide a data set with about six weeks left in the term.  The data set is cross-sectional 
(because I teach time series at the end of the course), and I provide guidelines of the kinds of 
questions students should try to answer.  (For example, I might ask them to answer the following 
questions:  Is there a marriage premium for NBA basketball players?  If so, does it depend on 
race?  Can the premium, if it exists, be explained by productivity differences?)  The specifics are 
up to the students, and they are to craft a 10 to 15-page paper on their own.  This gives them 
practice writing up the results in a way that is easy-to-read, and forces them to interpret their 
findings.  While leaving the topic to each student’s discretion is more interesting, I find that 
many students flounder with an open-ended assignment until it is too late.  Naturally, for a 
second-semester course, or a senior seminar, students would be expected to design their own 
topic, collect their own data, and then write a more substantial term paper. 
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APPENDIX A 
 
SOLUTIONS TO PROBLEMS 
 
A.1 (i) $566. 
 
 (ii) The two middle numbers are 480 and 530; when these are averaged, we obtain 505, or 
$505. 
 
 (iii) 5.66 and 5.05, respectively. 
 
 (iv) The average increases to $586 while the median is unchanged ($505). 
 
A.2 (i) This is just a standard linear equation with intercept equal to 3 and slope equal to .2.  The 
intercept is the number of missed classes for a student who lives on campus. 
 
 (ii) 3 + .2(5) = 4 classes. 
 
 (iii) 10(.2) = 2 classes. 
 
A.3 If price = 15 and income = 200, quantity = 120 – 9.8(15) + .03(200) = –21, which is 
nonsense.  This shows that linear demand functions generally cannot describe demand over a 
wide range of prices and income. 
 
A.4 (i) The percentage point change is 5.6 – 6.4 = –.8, or an eight-tenths of a percentage point 
decrease in the unemployment rate. 
 
 (ii) The percentage change in the unemployment rate is 100[(5.6 – 6.4)/6.4] = –12.5%. 
 
A.5 The majority shareholder is referring to the percentage point increase in the stock return, 
while the CEO is referring to the change relative to the initial return of 15%.  To be precise, the 
shareholder should specifically refer to a 3 percentage point increase. 
 
A.6 (i) 100[42,000 – 35,000)/35,000] = 20%. 
 
 (ii) The approximate proportionate change is log(42,000) – log(35,000)  .182, so the 
approximate percentage change is %18.2.  [Note:  log(⋅) denotes the natural log.] 

≈

 
A.7 (i) When exper = 0, log(salary) = 10.6; therefore, salary = exp(10.6) ≈ $40,134.84.  When 
exper = 5, salary = exp[10.6 + .027(5)] ≈ $45,935.80. 
 
 (ii) The approximate proportionate increase is .027(5) = .135, so the approximate percentage 
change is 13.5%. 
 
 (iii) 100[(45,935.80 – 40,134.84)/40,134.84) ≈ 14.5%, so the exact percentage increase is 
about one percentage point higher. 
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A.8 From the given equation, Δgrthemp = –.78(Δsalestax).  Since both variables are in 
proportion form, we can multiply the equation through by 100 to turn each variable into 
percentage form.  This leaves the slope as –.78.  So, a one percentage point increase in the sales 
tax rate (say, from 4% to 5%) reduces employment growth by –.78 percentage points. 
 
A.9 (i) The relationship between yield and fertilizer is graphed below. 
 

fertilizer
0 50 100

120

121

yield 122

 
 
 (ii) Compared with a linear function, the function 
 

yield  =  .120 + .19 fertilizer  
 
has a diminishing effect, and the slope approaches zero as fertilizer gets large.  The initial pound 
of fertilizer has the largest effect, and each additional pound has an effect smaller than the 
previous pound. 
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APPENDIX B 
 

SOLUTIONS TO PROBLEMS 
 
B.1 Before the student takes the SAT exam, we do not know – nor can we predict with certainty 
– what the score will be.  The actual score depends on numerous factors, many of which we 
cannot even list, let alone know ahead of time.  (The student’s innate ability, how the student 
feels on exam day, and which particular questions were asked, are just a few.)  The eventual SAT 
score clearly satisfies the requirements of a random variable. 
 
B.2 (i) P(X ≤ 6) = P[(X – 5)/2 ≤ (6 – 5)/2] = P(Z ≤ –.5) ≈ .309, where Z denotes a Normal (0,1) 
random variable; note how we standardize by dividing X by its standard deviation, 2, not its 
variance.  (We obtain P(Z ≤ –.5) from Table G.1.) 
 
 (ii) P(X > 4) = P[(X – 4)/2 > (4 – 4)/2] = P(Z > 0) = .5 = 1 – P(Z ≤ 0) = 1 – .5 = .5. 
 
 (iii) P(|X – 5| > 1) = P(X – 5 > 1) + P(X – 5 < –1) = P(X > 6) + P(X < 4)  .309 + P(Z < 
0) = .309 + .5 = .809, where we use the answer from part (i) along with P(Z < 0) = P(Z ≤ 0) when 
Z ~ Normal (0,1). 

≈

 
B.3 (i) Let Yit be the binary variable equal to one if fund i outperforms the market in year t.  By 
assumption, P(Yit = 1) = .5 (a 50-50 chance of outperforming the market for each fund in each 
year).  Now, for any fund, we are also assuming that performance relative to the market is 
independent across years.  But then the probability that fund i outperforms the market in all 10 
years, P(Yi1 = 1,Yi2 = 1, K , Yi,10 = 1), is just the product of the probabilities:  P(Yi1 = 1) ⋅P(Yi2 = 1) 

 P(YK i,10 = 1) = (.5)10 = 1/1024 (which is slightly less than .001).  In fact, if we define a binary 
random variable Yi such that Yi = 1 if and only if fund i outperformed the market in all 10 years, 
then P(Yi = 1) = 1/1024. 
 
 (ii) Let X denote the number of funds out of 4,170 that outperform the market in all 10 years.  
Then X = Y1 + Y2 + K  + Y4,170.  If we assume that performance relative to the market is 
independent across funds, then X has the Binomial (n,θ) distribution with n = 4,170 and θ = 
1/1024.  We want to compute P(X ≥ 1) = 1 – P(X = 0) = 1 – P(Y1 = 0, Y2 = 0, …, Y4,170 = 0) = 1 – 
P(Y1 = 0)⋅ P(Y2 = 0)⋅⋅⋅P(Y4,170 = 0) = 1 – (1023/1024)4170 ≈ .983.  This means, if performance 
relative to the market is random and independent across funds, it is almost certain that at least 
one fund will outperform the market in all 10 years. 
 
 (iii) Using the Stata command Binomial(4170,5,1/1024), the answer is about .385.  So there 
is a nontrivial chance that at least five funds will outperform the market in all 10 years. 
 
B.4 We want P(X ≥.6).  Because X is continuous, this is the same as P(X > .6) = 1 – P(X ≤ .6) = 
F(.6) = 3(.6)2 – 2(.6)3 = .648.  One way to interpret this is that almost 65% of all counties have 
an elderly employment rate of .6 or higher. 
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B.5 (i) As stated in the hint, if X is the number of jurors convinced of Simpson’s innocence, then 
X ~ Binomial(12,.20).  We want P(X ≥ 1) = 1 – P(X = 0) = 1 – (.8)12 ≈ .931. 
 
 (ii) Above, we computed P(X = 0) as about .069.  We need P(X = 1), which we obtain from 
(B.14) with n = 12, θ = .2, and x = 1:  P(X = 1) = 12⋅ (.2)(.8)11 ≈ .206.  Therefore, P(X ≥ 2) ≈ 1 – 
(.069 + .206) = .725, so there is almost a three in four chance that the jury had at least two 
members convinced of Simpson’s innocence prior to the trial. 
 

B.6 E(X)  =  
3

0

( )xf x dx∫  =  
3

2

0

[(1/ 9) ]  x x dx∫  = (1/9) 
3

3

0

x dx∫ .  But  
3

3

0

x dx∫  = (1/4)x4
3

0|  = 81/4.  

Therefore, E(X) = (1/9)(81/4) = 9/4, or 2.25 years. 
 
B.7 In eight attempts the expected number of free throws is 8(.74) = 5.92, or about six free 
throws. 
 
B.8 The weights for the two-, three-, and four-credit courses are 2/9, 3/9, and 4/9, respectively.  
Let Yj be the grade in the jth course, j = 1, 2, and 3, and let X be the overall grade point average.  
Then X = (2/9)Y1 + (3/9)Y2 + (4/9)Y3 and the expected value is E(X) = (2/9)E(Y1) + (3/9)E(Y2) + 
(4/9)E(Y3) = (2/9)(3.5) + (3/9)(3.0) + (4/9)(3.0) = (7 + 9 + 12)/9 ≈ 3.11. 
 
B.9 If Y is salary in dollars then Y = 1000 ⋅X, and so the expected value of Y is 1,000 times the 
expected value of X, and the standard deviation of Y is 1,000 times the standard deviation of X.  
Therefore, the expected value and standard deviation of salary, measured in dollars, are $52,300 
and $14,600, respectively. 
 
B.10 (i) E(GPA|SAT = 800) = .70 + .002(800) = 2.3.  Similarly, E(GPA|SAT = 
1,400) = .70 + .002(1400) = 3.5.  The difference in expected GPAs is substantial, but the 
difference in SAT scores is also rather large. 
 
 (ii) Following the hint, we use the law of iterated expectations.  Since 
E(GPA|SAT) = .70 + .002 SAT, the (unconditional) expected value of GPA is .70 + .002 
E(SAT) = .70 + .002(1100) = 2.9. 
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APPENDIX C 
 
SOLUTIONS TO PROBLEMS 
 
C.1 (i) This is just a special case of what we covered in the text, with n = 4:  E(Y ) = µ and 
Var(Y ) = σ2/4. 
 
 (ii) E(W) = E(Y1)/8 + E(Y2)/8 + E(Y3)/4 + E(Y4)/2 = µ[(1/8) + (1/8) + (1/4) + (1/2)] = µ(1 + 
1 + 2 + 4)/8 = µ, which shows that W is unbiased.  Because the Yi are independent, 
 
 Var(W) = Var(Y1)/64 + Var(Y2)/64 + Var(Y3)/16 + Var(Y4)/4 

  = σ2[(1/64) + (1/64) + (4/64) + (16/64)]  = σ2(22/64)  = σ2(11/32). 
 
 (iii) Because 11/32 > 8/32 = 1/4, Var(W) > Var(Y ) for any σ2 > 0, so Y is preferred to W 
because each is unbiased. 
 
C.2 (i) E(Wa) = a1E(Y1) + a2E(Y2) + K   + anE(Yn) = (a1 + a2 + K  + an)µ.  Therefore, we must 
have a1 + a2 + K  + an = 1 for unbiasedness. 
 
 (ii) Var(Wa) = Var(Y2

1a 1) + Var(Y2
2a 2) + K  + Var(Y2

na n)  =  (  +   + K  + )σ2
1a 2

2a 2
na 2. 

 
 (iii) From the hint, when a1 + a2 + K  + an = 1 – the condition needed for unbiasedness of Wa 
– we have 1/n ≤  +  + K  + .  But then Var(2

1a 2
2a 2

na Y ) = σ2/n ≤ σ2(  +  + K  + ) = 

Var(W

2
1a 2

2a 2
na

a). 
 
C.3 (i) E(W1) = [(n – 1)/n]E(Y ) = [(n – 1)/n]µ, and so Bias(W1) = [(n – 1)/n]µ – µ = –µ/n.  
Similarly, E(W2) = E(Y )/2 = µ/2, and so Bias(W2) = µ/2 – µ = –µ/2.  The bias in W1 tends to 
zero as n → ∞, while the bias in W2 is –µ/2 for all n.  This is an important difference. 
 
 (ii) plim(W1) = plim[(n – 1)/n] ⋅plim(Y ) = 1 ⋅µ = µ.  plim(W2) =  plim(Y )/2  = µ/2.  Because 
plim(W1) = µ and plim(W2) = µ/2, W1 is consistent whereas W2 is inconsistent. 
 
 (iii) Var(W1) = [(n – 1)/n]2Var(Y ) = [(n – 1)2/n3]σ2 and Var(W2) = Var(Y )/4 = σ2/(4n).  
 
 (iv) Because Y  is unbiased, its mean squared error is simply its variance.  On the other hand, 
MSE(W1) = Var(W1) + [Bias(W1)]2 = [(n – 1)2/n3]σ2 + µ2/n2.  When µ = 0, MSE(W1) = Var(W1) = 
[(n – 1)2/n3]σ2 < σ2/n = Var(Y ) because (n – 1)/n < 1.  Therefore, MSE(W1) is smaller than 
Var(Y ) for µ close to zero.  For large n, the difference between the two estimators is trivial. 
 
C.4 (i) Using the hint, E(Z|X) = E(Y/X|X) = E(Y|X)/X = θX/X = θ.  It follows by Property CE.4, 
the law of iterated expectations, that E(Z) = E(θ) = θ. 
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 (ii) This follows from part (i) and the fact that the sample average is unbiased for the 
population average:  write  
 

 1 1
1

1 1
( / ) ,

n n

i i i
i i

W n Y X n Z− −

= =

= =∑ ∑  

 
where Zi = Yi/Xi.  From part (i), E(Zi) = θ for all i. 
 
 (iii) In general, the average of the ratios, Yi/Xi, is not the ratio of averages, 2 / .W Y  (This 
non-equivalence is discussed a bit on page 676.)  Nevertheless, W

X=

2 is also unbiased, as a simple 
application of the law of iterated expectations shows.  First, E(Yi|X1,…,Xn) = E(Yi|Xi) under 
random sampling because the observations are independent.  Therefore, E(Yi|X1,…,Xn) = iXθ  
and so  
 

    

1 1
1 1

1 1

1

1

E( | ,..., ) E( | ,..., )

.

n n

n i n
i i

n

i
i

Y X X n Y X X n X

n X X

iθ

θ θ

− −

= =

−

=

= =

= =

∑ ∑

∑
 

Therefore, 2 1 1E( | ,..., ) E( / | ,..., ) / ,n nW X X Y X X X X Xθ θ= = = which means that W2 is actually 
unbiased conditional on 1( ,..., )nX X , and therefore also unconditionally unbiased. 
 
 (iv) For the n = 17 observations given in the table – which are, incidentally, the first 17 
observations in the file CORN.RAW – the point estimates are w1 = .418 and w2 = 120.43/297.41 
= .405.  These are pretty similar estimates.  If we use w1, we estimate E(Y|X = x) for any x > 0 as 

 = .418 x.  For example, if x = 300 then the predicted yield is .418(300) = 125.4. �E( | )Y X x=
 
C.5 (i) While the expected value of the numerator of G is E(Y ) = θ, and the expected value of 
the denominator is E(1 – Y ) = 1 – θ, the expected value of the ratio is not the ratio of the 
expected value. 
 
 (ii) By Property PLIM.2(iii), the plim of the ratio is the ratio of the plims (provided the plim 
of the denominator is not zero):  plim(G) = plim[Y /(1 – Y )] = plim(Y )/[1 – plim(Y )] = θ/(1 – 
θ) = γ. 
 
C.6 (i)  H0: µ = 0. 
 
 (ii) H1: µ < 0. 
 
 (iii) The standard error of y  is /s n  = 466.4/30 ≈ 15.55.  Therefore, the t statistic for 
testing H0: µ = 0 is t = y /se( y ) = –32.8/15.55 ≈ –2.11.  We obtain the p-value as P(Z ≤ –2.11), 
where Z ~ Normal(0,1).  These probabilities are in Table G.1:  p-value = .0174.  Because the p-
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value is below .05, we reject H0 against the one-sided alternative at the 5% level.  We do not 
reject at the 1% level because p-value = .0174 > .01. 
 
 (iv) The estimated reduction, about 33 ounces, does not seem large for an entire year’s 
consumption.  If the alcohol is beer, 33 ounces is less than three 12-ounce cans of beer.  Even if 
this is hard liquor, the reduction seems small.  (On the other hand, when aggregated across the 
entire population, alcohol distributors might not think the effect is so small.) 
 
 (v) The implicit assumption is that other factors that affect liquor consumption – such as 
income, or changes in price due to transportation costs, are constant over the two years. 
 
C.7 (i) The average increase in wage is d  = .24, or 24 cents.  The sample standard deviation is 
about .451, and so, with n = 15, the standard error of d  is .451 15  ≈ .1164.  From Table G.2, 
the 97.5th percentile in the t14 distribution is 2.145.  So the 95% CI is .24 ± 2.145(.1164), or about 
–.010 to .490. 
 
 (ii) If µ = E(Di) then H0: µ = 0.  The alternative is that management’s claim is true:  H1: µ > 0. 
 
 (iii) We have the mean and standard error from part (i):  t = .24/.1164 ≈ 2.062.  The 5% 
critical value for a one-tailed test with df = 14 is 1.761, while the 1% critical value is 2.624.  
Therefore, H0 is rejected in favor of H1 at the 5% level but not the 1% level. 
 
 (iv) The p-value obtained from Stata is .029; this is half of the p-value for the two-sided 
alternative.  (Econometrics packages, including Stata, report the p-value for the two-sided 
alternative.) 
 
C.8 (i) For Mark Price, y  = 188/429 ≈ .438. 
 
 (ii) Var(Y ) = θ(1 – θ)/n [because the variance of each Yi is (1 )θ θ−  and so sd(Y ) =  

(1 ) / nθ θ− . 
 
 (iii) The asymptotic t statistic is (Y − .5)/se(Y ); when we plug in the estimate for Mark Price, 
se( y ) = (1 ) /y y− n  = .438(1 .438) / 429−  ≈ .024.  So the observed t statistic is (.438 –
 .5)/.024  –2.583.  This is well below the 5% critical value (based on the standard normal 
distribution), –1.645.  In fact, the 1% critical value is –2.326, and so H

≈
0 is rejected against H1 at 

the 1% level. 
 
C.9 (i) X is distributed as Binomial(200,.65), and so E(X) = 200(.65) = 130. 
 
 (ii) Var(X) = 200(.65)(1 − .65) = 45.5, so sd(X) ≈ 6.75. 
 
 (iii) P(X ≤ 115) = P[(X – 130)/6.75 ≤ (115 – 130)/6.75] ≈ P(Z ≤ –2.22), where Z is a standard 
normal random variable.  From Table G.1, P(Z ≤ –2.22) ≈ .013. 
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 (iv) The evidence is pretty strong against the dictator’s claim.  If 65% of the voting 
population actually voted yes in the plebiscite, there is only about a 1.3% chance of obtaining 
115 or fewer voters out of 200 who voted yes. 
 
C.10 Since y  = .394, se( y )  .024.  We can use the standard normal approximation for the 
95% CI:  .394 ± 1.96(.024), or about .347 to .441.  Therefore, based on Gwynn’s average up to 
strike, there is not very strong evidence against θ  = .400, as this value is well within the 95% CI.  
(Of course, .350 is within this CI, too.) 

≈
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APPENDIX D 
 

SOLUTIONS TO PROBLEMS 
 

D.1 (i)  
0 1 6

2 1 7 20 6 12
1 8 0

4 5 0 5 36 24
3 0 0

⎛ ⎞
− −⎛ ⎞ ⎛⎜ ⎟= =⎜ ⎟ ⎜⎜ ⎟− −⎝ ⎠ ⎝⎜ ⎟

⎝ ⎠

AB
⎞
⎟
⎠

 
 (ii) BA does not exist because B is 3 × 3 and A is 2 × 3. 
 
D.2 This result is easy to visualize.  If A and B are n × n diagonal matrices, then AB is an n × n 
diagonal matrix with jth diagonal element ajbj.  Similarly, BA is an n × n diagonal matrix with jth 
diagonal element bjaj, which, of course, is the same as ajbj. 
 
D.3 Using the basic rules for transpose, ( ) ( )( )′ ′ ′ ′ ′ ′= =X X X X X X , which is what we wanted to 
show. 
 
D.4 (i) This follows from tr(BC) = tr(CB), when B is n × m and C is m × n.  Take B = ′A  and 
C = A. 
 

 (ii) 
2 0 4 0 2

2 0 1
= 0 3 0 9 0

0 3 0
1 0 2 0 1

−⎛ ⎞ ⎛
−⎛ ⎞⎜ ⎟ ⎜′ =⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎜ ⎟ ⎜− −⎝ ⎠ ⎝

A A
⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎠

⎟

; therefore, tr(A′A) = 14. 

 

Similarly, , and so tr(AA′) = 14. 
2 0

2 0 1 5 0
0 3

0 3 0 0 9
1 0

⎛ ⎞
−⎛ ⎞ ⎛⎜ ⎟′ =⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎜ ⎟−⎝ ⎠

AA =

 
D.5 (i) The n × n matrix C is the inverse of AB if and only if C(AB) = In and (AB)C = In.  We 
verify both of these equalities for C = B-1A-1.  First, (B-1A-1)(AB) = B-1(A-1A)B = B-1InB = 
B-1B = In.  Similarly, (AB)(B-1A-1) = A(BB-1)A-1 = AInA-1 = AA-1 = In. 
 
 (ii) (ABC)-1 = (BC)-1A-1 = C-1B-1A-1. 
 
D.6 (i) Let ej be the n × 1 vector with jth element equal to one and all other elements equal to zero.  
Then straightforward matrix multiplication shows that e′jAej = ajj, where ajj is the jth diagonal 
element.  But by definition of positive definiteness, x′Ax > 0 for all x ≠ 0, including x = ej.  So 
ajj > 0, j = 1,2, K ,n. 
 

 (ii) The matrix A =  works because x′Ax = −2 < 0 for x′ = (1 1). 
1 2
2 1

−⎛ ⎞
⎜−⎝ ⎠
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D.7 We must show that, for any n × 1 vector x, x ≠ 0, x′(P′AB)x > 0.  But we can write this 
quadratic form as (Px)′A(Px) = z′Az where z ≡ Px.  Because A is positive definite by assumption, 
z′Az > 0 for z ≠ 0.  So, all we have to show is that x ≠ 0 implies that z ≠ 0.  We do this by 
showing the contrapositive, that is, if z = 0 then x = 0.  If Px = 0 then, because PP

-1 exists, we 
have P-1

P Px = 0 or x = 0, which completes the proof. 
 
D.8 Let z = Ay + b.  Then, by the first property of expected values, E(z) = Aµy + b, where µy = 
E(y).  By Property (3) for variances, Var(z) = E[(z – µz)(z – µz) ′].  But z – µz = Ay + b – (Aµy + 
b) = A(y – µy).  Therefore, (z – µz)′ = (y – µy)′A′, and so (z – µz)( z – µz)′ = A(y – µy)(y – µy)′A′.  
Now we can take the expectation and use the second property of expected value:  E[A(y – µy)(y – 
µy)′A′] = AE[y – µy)(y – µy) ′]A′ = A[Var(y)]A′. 
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APPENDIX E 
 

SOLUTIONS TO PROBLEMS 
 
E.1 This follows directly from partitioned matrix multiplication in Appendix D.  Write  
 

 X  =  , X′  =  (

1

2

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x
x

x
M 1′x 2′x K n′x ), and y = 

1

2

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

y
y

y
M

 

 

Therefore, X′X =  and X′y =  
1

n

t t
t=

′∑x x
1

n

t t
t=

′∑x y .  An equivalent expression for  is  β̂

      = β̂
1

1

1

n

t t
t

n
−

−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x x  1

1

n

t t
t

n y−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x  

which, when we plug in yt = xtβ + ut for each t and do some algebra, can be written as  

     = β + β̂
1

1

1

n

t t
t

n
−

−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x x 1

1

n

t t
t

n u−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x .  

As shown in Section E.4, this expression is the basis for the asymptotic analysis of OLS using 
matrices. 
 
E.2 (i) Following the hint, we have SSR(b) = (y – Xb)′(y – Xb) = [  + X(  – b)]′[  + X(  – 
b)] = ′  + ′X(  – b) + (  – b)′X′  + (  – b)′X′X(  – b).  But by the first order conditions 
for OLS, X′  = 0, and so (X′ )′ = ′X = 0.  But then SSR(b) = ′  + (  – b)′X′X(  – b), 
which is what we wanted to show. 

û β̂ û β̂
û û û β̂ β̂ û β̂ β̂

û û û û û β̂ β̂

 
 (ii) If X has a rank k then X′X is positive definite, which implies that (  – b) ′X′X(  – b) > 
0 for all b ≠ .  The term ′  does not depend on b, and so SSR(b) – SSR( ) = ( – b) ′X′X 
( – b) > 0 for b ≠ . 

β̂ β̂
β̂ û û β̂ β̂

β̂ β̂
 
E.3 (i) We use the placeholder feature of the OLS formulas.  By definition,  = (Z′Z)β% -1Z′y = 
[(XA)′ (XA)]-1(XA)′y = [A′(X′X)A]-1A′X′y = A-1(X′X)-1(A′)-1A′X′y = A-1(X′X)-1X′y = A-1 β̂ . 
 
 (ii) By definition of the fitted values, ˆty  =  and ˆ

tx β ty%  = .  Plugging ztz β% t and β  into the 

second equation gives 

%

ty%  = (xtA)(A-1 β̂ ) =   = ˆ
tx β ˆty . 

 
 (iii) The estimated variance matrix from the regression of y and Z is 2σ% (Z′Z)-1 where 2σ%  is 
the error variance estimate from this regression.  From part (ii), the fitted values from the two 
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regressions are the same, which means the residuals must be the same for all t.  (The dependent 
variable is the same in both regressions.)  Therefore, 2σ%  =  2σ̂ .  Further, as we showed in part (i), 
(Z′Z)-1 = A-1(X′X)-1(A′)-1, and so 2σ% (Z′Z)-1 = 2σ̂ A-1(X′X)-1(A-1)′, which is what we wanted to 
show. 
 
 (iv) The jβ%  are obtained from a regression of y on XA, where A is the k × k diagonal matrix 

with 1, a2, K , ak down the diagonal.  From part (i), β  = A% -1 β̂ .  But A-1 is easily seen to be the 
k × k diagonal matrix with 1, ,  K , 1

2a− 1
ka−  down its diagonal.  Straightforward multiplication 

shows that the first element of A-1 β̂  is 1̂β  and the jth element is ˆ
jβ /aj,  j = 2, K , k. 

 
 (v) From part (iii), the estimated variance matrix of β  is % 2σ̂ A-1(X′X)-1(A-1)′.  But A-1 is a 
symmetric, diagonal matrix, as described above.  The estimated variance of  jβ%  is the jth 

diagonal element of 2σ̂ A-1(X′X)-1A-1, which is easily seen to be = 2σ̂ cjj/ , where c2
ja−

jj is the jth 

diagonal element of (X′X)-1.  The square root of this, ˆ jjcσ /|aj|, is se( jβ% ), which is simply 

se( jβ% )/|aj|. 
 
 (vi) The t statistic for jβ%  is, as usual, 
 

jβ% /se( jβ% )  =  ( ˆ
jβ /aj)/[se( ˆ

jβ )/|aj|], 
 

and so the absolute value is (| ˆ
jβ |/|aj|)/[se( ˆ

jβ )/|aj|] = | ˆ
jβ |/se( ˆ

jβ ), which is just the absolute value 

of the t statistic for ˆ
jβ .  If aj > 0, the t statistics themselves are identical; if aj < 0, the t statistics 

are simply opposite in sign. 
 
E.4 (i)  垐 �E( | ) E( | ) E( | ) .= = =δ X Gβ X G β X Gβ δ=
 
 (ii) 2 1 2 1垐 �Var( | ) Var( | ) [Var( | )] [ ( ) ] [( ) ] .σ σ− −′ ′ ′ ′ ′= = = =δ X Gβ X G β X G G X X G G X X G  
 
 (iii) The vector of regression coefficients from the regression y on XG-1 is  
 

   

1 1 1 1 1 1 1 1

1 1 1

1

[( ) ] ( ) [( ) ] ( )
                                          ( ) [( ) ] ( )

ˆ                                         ( ) ( ) ( ) .

− − − − − − − −

− − −

−

′ ′ ′ ′ ′ ′=

′ ′ ′ ′ ′=

′ ′ ′ ′ ′ ′ ′ ′= = =

XG XG XG y G X XG G X y
G X X G G X y

G X X G G X y G X X X y δ

 

 
Further, as shown in Problem E.3, the residuals are the same as from the regression y on X, and 
so the error variance estimate, 2ˆ ,σ  is the same.  Therefore, the estimated variance matrix is  
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     2 1 1 1 2 1垐[( ) ] ( ) ,σ σ− − − −′ ′ ′=XG XG G X X G  
 
which is the proper estimate of the expression in part (ii). 
 
 (iv) It is easily seen by matrix multiplication that choosing 
  

      

1 2 3

1 0 0 ... 0
0 1 0 ... 0

...

0 ... 0 1 0
... kc c c c

⋅ ⋅ ⋅ ⋅

⋅ ⋅⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=

⋅
⋅ ⋅ ⋅⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G  ⋅

k

 
does the trick:  if δ = Gβ then δj = βj, j = 1,…,k−1, and 1 1 2 2 ... .k kc c cδ β β β= + + +  
 
 (v) Straightforward matrix multiplication shows that, for the suggested choice of G-1, 

 Also by multiplication, it is easy to see that, for each t,  1 .n
− =G G I

 
    1

1 1 2 2 , 1 1[ ( / ) , ( / ) ,..., ( / ) , / ].t t k tk t k tk t k k k tk tk kx c c x x c c x x c c x x c−
− −= − − −x G  

 
E.5 (i) By plugging in for y, we can write  
 
     1 1( ) ( ) ( ) ( )− −′ ′ ′ ′ ′ ′= = + = +β Z X Z y Z X Z Xβ u β Z X Z u% 1 .−

1−

 
Now we use the fact that Z is a function of X: 
 
     1 1E( | ) E[( ) | ] ( ) E( | ) .− −′ ′ ′ ′= + = + =β X β Z X Z u X β Z X Z u X β%

 
 (ii) We start from the same representation in part (i): 
 

     
1 1

1 2 1 2 1

Var( | ) ( ) [Var( | )] [( ) ]
       ( ) ( ) ( ) ( ) ( ) .nσ σ

− −

− − −

′ ′ ′ ′=

′ ′ ′ ′ ′ ′= =

β X Z X Z u X Z Z X
Z X Z I Z X Z Z X Z Z X Z

%

 
 (iii) The estimator β  is linear in y and, as shown in part (i), it is unbiased (conditional on X).  
Since the Gauss-Markov assumptions hold, the OLS estimator, , is best linear unbiased.  In 
particular, its variance-covariance matrix is “smaller” (in the matrix sense) than Var  
Therefore, we prefer the OLS estimator. 

%

β̂
( | ).β X%
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